WO2023093126A1 - 一种医院放射性废水衰变池系统及其处理方法 - Google Patents

一种医院放射性废水衰变池系统及其处理方法 Download PDF

Info

Publication number
WO2023093126A1
WO2023093126A1 PCT/CN2022/111016 CN2022111016W WO2023093126A1 WO 2023093126 A1 WO2023093126 A1 WO 2023093126A1 CN 2022111016 W CN2022111016 W CN 2022111016W WO 2023093126 A1 WO2023093126 A1 WO 2023093126A1
Authority
WO
WIPO (PCT)
Prior art keywords
decay
water
hospital
pool
control pump
Prior art date
Application number
PCT/CN2022/111016
Other languages
English (en)
French (fr)
Inventor
刘飞
李磊
Original Assignee
江苏超敏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏超敏科技有限公司 filed Critical 江苏超敏科技有限公司
Publication of WO2023093126A1 publication Critical patent/WO2023093126A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/22Disposal of liquid waste by storage in a tank or other container
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/26Disposal of liquid waste by dilution in water, e.g. in ocean, in stream

Definitions

  • the invention relates to the technical field of radioactive waste water treatment, in particular to a hospital radioactive waste water decay pool system and a treatment method for the radioactive waste water decay.
  • Radioisotopes when diagnosing and treating tumor or cancer patients. Patients produce excrement after injection or taking radioisotope drugs, and a large amount of radioactive waste water will be generated when the excrement is washed and discharged. This has also become a hospital The main source of radioactive wastewater; in addition, hospital laboratory sewage, radioactive protective clothing and washing water for medical equipment and medical equipment, drug preparation, and dumping of excess doses of isotope drugs will all produce radioactive wastewater; Wastewater, to shorten the decay cycle, may mix and discharge part of the hospital's domestic sewage and radioactive wastewater; therefore, the difference from ordinary radioactive wastewater is that the radioactive wastewater produced by the hospital may be mixed with a large amount of impurities;
  • hospitals generally use a multi-stage decay pool system to treat wastewater, so that the nuclides with a short half-life in the wastewater will automatically decay into safe chemical elements after being stored in the decay pool for a period of time; after a period of natural decay, Only when the radioactive concentration of waste water is reduced to a certain standard can it be discharged into municipal sewage pipes; at present, multi-stage decay pool systems are usually used to treat radioactive waste water in hospitals, and multi-stage filters or filtering devices are set in the decay pool system to realize the treatment of waste water. Filtration and increased waste water flow time, while preventing impurities from accumulating in the pool and clogging the delivery pipeline, radioactive decay of nuclides with short half-lives can be achieved.
  • the multi-stage decay cell system set up in this way takes up a lot of space, the equipment is complicated and the utilization rate is low, and it can only handle nuclides with short half-lives during use. Therefore, it is necessary to improve the radioactive wastewater decay pool system in hospitals and modify the decay of wastewater.
  • the present invention provides a novel layout structure of a hospital radioactive waste water multi-stage decay pool system, which is used to store and filter the hospital radioactive waste water transported into the decay pool, and also according to the decay pool
  • the system provides a treatment method for the decay of radioactive wastewater.
  • a radioactive waste water decay pool system in a hospital comprising a water inlet system, a first decay pool, a second decay pool and a water outlet system sequentially connected by cast iron pipes; the water outlet system is respectively connected to the second decay pool and a clean water pool, the A detector is also provided on the water outlet system, and the tap water in the clear water pool is used to dilute the secondary decay liquid after being treated in the second decay tank; the detector is used to detect the Excluded up-to-standard liquid; the radioactive wastewater entering from the water inlet system, after being treated by adding chemical treatment agents, enters the first decay pool in turn and undergoes a first-level decay to become a first-level decay liquid, and then enters the second decay pool through a second-level decay liquid. After decaying into a secondary decay liquid, it reaches the water outlet system and is detected by the detector to meet the discharge standard and becomes a standard liquid, which is discharged from the water outlet control valve to the drainage channel.
  • the water inlet system includes a water inlet pump arranged in sequence, an agitator and a first control pump and a second control pump arranged side by side, and a monitor is also arranged on the side of the agitator; the radioactive waste water entering from the water inlet After the water inlet pump is pressurized, and the chemical treatment agent is added from the monitor, the agitator accelerates stirring and mixing, and the radioactive waste water enters the first decay pool after physical and chemical interactions with the chemical treatment agent;
  • the first control pump and the second control pump arranged side by side realize series and parallel action by adjusting forward and reverse, and close the first control valve at the first decay pool when radioactive waste water enters, Adjust the first control pump and the second control pump to act in series, realize the circulation system formed by the water inlet pump, agitator, the first control pump, and the second control pump, so that the radioactive waste water and the chemical treatment agent have sufficient physical and chemical interactions. chemical action;
  • the water outlet system is also provided with a third control pump and a fourth control pump. After the secondary decay liquid enters the water outlet system, it is fully stirred with the clear water pool by the third control pump and the fourth control pump. The tap water in the tank is fully diluted and treated to become a standard liquid, which is discharged from the outlet control valve to the drainage channel.
  • the speed and pressure of the water body can be quickly increased in the water inlet area, and the dispersion of particles can be prevented.
  • Physical and chemical effects can quickly occur, and enter the decay pool for settlement; and a water pump control and detection system is installed in the water outlet area. While monitoring the water quality, it is convenient to mix and dilute the water body with tap water, and the discharge is safer.
  • the chemical treatment agent includes inorganic flocculants, polyurethane resins and polyacrylamide ammonium flocculants; the weight of chemical treatment agents added is 4.5% to 7.5% of the radioactive wastewater, preferably 5%, 5.5%, 6.5%, 7% %.
  • the inorganic flocculant is selected from one or mixed of activated carbon, activated silica, polyaluminum ferric sulfate, aluminum chloride, ferric sulfate, polyferric chloride; the weight of the added inorganic flocculant is 0.5% of the radioactive waste water ⁇ 1.5%, preferably 0.5%, 0.7%, 1%, 1.2%, 1.5%.
  • the chemical treatment agent also includes a regulator, the regulator is NaOH solution or NaOH and KI solution, the weight of the regulator added is 1.5% to 2.5% of the radioactive wastewater, preferably 1.7%, 2%, 2.3%, 2.5% .
  • the radioactive wastewater is treated by adding a mixed chemical treatment agent.
  • the inorganic flocculant can provide a large number of complexed ions, and can strongly adsorb colloidal particles, form colloidal coagulation through adsorption and cross-linking, and also undergo physical and chemical changes, neutralize
  • the charge on the surface of colloidal particles and suspended matter makes the colloidal particles change from mutual repulsion to mutual attraction, which destroys the stability of micelles, thus forming flocculent coagulation precipitation; polyurethane resin and polyacrylamide flocculant will produce compressed double
  • the electric layer makes the suspended particles in the wastewater lose stability, and the colloidal particles coagulate with each other to increase the size of the particles, forming flocs and alum flowers.
  • the flocs After the flocs grow to a certain volume, they will separate from the water phase and precipitate under the action of gravity, thereby removing A large amount of suspended solids in wastewater, so as to achieve the effect of water treatment; add regulators to make radioactive wastewater in a weakly alkaline state, further improve the activity and action time of chemical treatment agents; at the same time, KI solution has strong oxidation-reduction properties, can Oxidizes radioactive ions to facilitate the formation of flocs while reducing chemical activity. Adding activated carbon, polyaluminum ferric sulfate and polyferric chloride can effectively remove the pigment in the wastewater and quickly clarify the water body.
  • the application also provides a treatment method for the decay of hospital radioactive wastewater, comprising the following steps:
  • Step 1 enter the radioactive waste water from the water inlet and pressurize it through the water inlet pump, and then reach the agitator for stirring;
  • Step 2 adding a chemical treatment agent from the monitor, and further accelerating the stirring and mixing of the radioactive waste water under the circulation of the water inlet pump, the agitator, the first control pump and the second control pump;
  • Step 3 open the first control valve, adjust the first control pump and the second control pump to make the radioactive waste water enter the first decay pool, where it will physically and chemically interact with the chemical treatment agent to form a coagulated colloid of primary decay liquid and stratified water bodies;
  • Step 4 the primary decay liquid enters the second decay pool after being filtered once, and an appropriate amount of chemical treatment agent is added again during the decay process to form a secondary decay liquid.
  • Step 5 The secondary decay liquid enters the water outlet system after secondary filtration, is tested and confirmed, and is diluted with an appropriate amount of tap water to become a standard liquid, and is discharged from the water outlet control valve to the drainage channel.
  • step 2 adds a chemical treatment agent selected from one of polyurethane resin, polyacrylamide flocculant, activated silica, polyaluminum ferric sulfate, aluminum chloride, ferric sulfate, polyferric chloride or a mixture of , the added weight is 4.5% ⁇ 7.5% of the radioactive wastewater; it is preferably a mixture of polyurethane resin, polyacrylamide flocculant, active silica, polyaluminum ferric sulfate and polyferric chloride, and the addition amount is 5% ⁇ 6 %;
  • Step 3 is to add 1.5% to 2.5% NaOH and KI solution as a chemical treatment agent, preferably after 2 to 5 hours of coagulation and precipitation of radioactive waste water, then add 1.5% to 2% NaOH and KI solution for redox reaction, so It can reduce the amount of chemical treatment agent, and it is not easy to produce discoloration in the water body, and reduce the amount of activated carbon and activated silica;
  • Step 4 adding activated carbon and activated silicon dioxide with a chemical treatment agent of 0.5% to 1.5%, to remove plain color in the water body while purifying the water body.
  • the present invention has the advantages of:
  • the water pump control structure By setting up the water pump control structure in the water inlet system and the water outlet system area, while facilitating the control of radioactive wastewater, it can quickly increase the speed and pressure of the water body in the water inlet area, and can prevent the dispersion of particles, adding chemical treatment The physical and chemical effects can quickly occur after the injection, and enter the decay pool for sedimentation; and a water pump control and detection system is installed in the water outlet area. While monitoring the water quality, it is convenient to mix and dilute the water body with tap water, and the discharge is safer.
  • the radioactive wastewater is treated by adding a mixed chemical treatment agent.
  • the inorganic flocculant can provide a large number of complexed ions, and can strongly adsorb colloidal particles, form colloidal coagulation through adsorption and cross-linking, and also undergo physical and chemical changes. Neutralize the charge on the surface of colloidal particles and suspended matter, make the colloidal particles change from mutual repulsion to mutual attraction, destroy the stability of micelles, and form flocculent coagulation precipitation.
  • Fig. 1 is a schematic structural diagram of a hospital radioactive wastewater decay pool system according to the present invention.
  • 1-water inlet system 11-water inlet pump, 12-agitator, 13-first control pump, 14-second control pump, 15-monitor;
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a kind of hospital radioactive waste water decay pool system of the present invention is realized by the following technical scheme: comprise the water inlet system 1, the first decay pool 2, the second decay pool 3 and the water outlet connected in sequence by cast iron pipes 4 System 6; the water outlet system 6 is connected with the second decay pool 3 and the clean water pool 5 respectively, and a detector 63 is also arranged on the water outlet system 6, and the tap water in the clean water pool 5 is used to supply the second decay pool 3 to the second decay pool 3 after treatment.
  • the first-stage decay liquid is diluted; the detector 63 is used to detect the up-to-standard liquid that will be discharged from the water outlet system 6; the radioactive waste water that enters from the water inlet system 1 enters the first decay pool 2 sequentially after being treated with chemical treatment agents and passes through the first stage. It decays into a first-level decay liquid, and then enters the second decay pool 3. After the second-level decay into a second-level decay liquid, it reaches the outlet system 6. After being detected by the detector 63, it reaches the discharge standard and becomes a standard liquid, which is discharged from the outlet control valve 64 to the drainage channel.
  • the speed and pressure of the water body can be quickly increased in the water inlet area, and the dispersion of particles can be prevented.
  • Physical and chemical effects can quickly occur, and enter the decay pool for settlement; and a water pump control and detection system is installed in the water outlet area. While monitoring the water quality, it is convenient to mix and dilute the water body with tap water, and the discharge is safer.
  • the water inlet system 1 includes a water inlet pump 11 arranged in sequence, an agitator 12 and a first control pump 13 and a second control pump 14 arranged side by side, and a monitor 15 is also arranged on the side of the agitator 12;
  • the radioactive waste water entering the water inlet is pressurized by the water inlet pump 11, and at the same time, the chemical treatment agent is added from the monitor 15, and the agitator 12 accelerates the mixing and mixing.
  • the radioactive waste water and the chemical treatment agent undergo physical and chemical interactions and then enter the first decay pool 2; they are arranged side by side
  • the first control pump 13 and the second control pump 14 of the first control pump 14 realize the series and parallel connection by adjusting the forward and reverse mode.
  • the first control valve 21 at the first decay pool 2 When the radioactive waste water enters, the first control valve 21 at the first decay pool 2 is closed, and the first control pump is adjusted. 13 and the second control pump 14 act in series to realize the circulation system formed by the water inlet pump 11, the agitator 12, the first control pump 13 and the second control pump 14, so that the radioactive waste water and the chemical treatment agent have sufficient physical and chemical effects; Open the first control valve 21 at the first decay pool 2, adjust the first control pump 13 and the second control pump 14 to make the radioactive waste water enter the first decay pool 2 quickly after adjusting the first control pump 13 and the second control pump 14; The control pump 61 and the fourth control pump 62, after the secondary decay liquid enters the water outlet system 6, it is fully stirred by the third control pump 61 and the fourth control pump 62 and fully diluted with tap water in the clear water tank 5 to become a standard liquid and controlled from the outlet water. Valve 64 discharges to drain.
  • a method for treating radioactive waste water decay in a hospital comprising the following steps:
  • Step 1 enter the radioactive waste water from the water inlet and pressurize it through the water inlet pump 11, and then reach the agitator 12 for stirring;
  • Step 2 add the chemical treatment agent from the monitor 15, and under the circulation action of the water inlet pump 11, the agitator 12, the first control pump 13 and the second control pump 14, further accelerate the stirring and mixing of the radioactive waste water; the addition of the chemical treatment agent
  • One or a mixture selected from polyurethane resin, polyacrylamide flocculant, active silica, polyaluminum ferric sulfate, aluminum chloride, ferric sulfate, polyferric chloride, and the added weight is 4.5% of the radioactive wastewater ⁇ 7.5%; preferably a mixture of polyurethane resin, polyacrylamide flocculant, active silica, polyaluminum ferric sulfate and polyferric chloride, the addition amount is 5% to 6%;
  • Step 3 open the first control valve 21, adjust the first control pump 13 and the second control pump 14 so that the radioactive waste water enters the first decay pool 2, where it reacts physically and chemically with the chemical treatment agent to form a
  • the coagulated colloid and stratified water of the decay liquid in this step, the chemical treatment agent is 1.5% to 2.5% NaOH and KI solution, preferably radioactive waste water.
  • NaOH and KI solution carry out oxidation-reduction reaction, which can reduce the amount of chemical treatment agent, and it is not easy to produce discoloration in the water body, and reduce the amount of activated carbon and activated silica;
  • Step 4 the primary decay liquid enters the second decay pool 3 after being filtered once, and an appropriate amount of chemical treatment agent is added again during the decay process to form a secondary decay liquid.
  • the chemical treatment agent is 0.5% to 1.5% activated carbon, active Silica, while purifying the water body, removes the plain color in the water body;
  • Step 5 the secondary decay liquid enters the water outlet system 6 after secondary filtration, is tested and confirmed, and is diluted with an appropriate amount of tap water to become a standard liquid, and is discharged from the water outlet control valve 64 to the drainage channel.
  • the chemical treatment agent includes inorganic flocculant, polyurethane resin and polyacrylamide flocculant; preferably 5%, 5.5%, 6.5%, 7%.
  • Inorganic flocculants are selected from activated carbon, activated silica, polyaluminum ferric sulfate, aluminum chloride, ferric sulfate, polyferric chloride or a mixture, preferably 0.5%, 0.7%, 1%, 1.2% , 1.5%.
  • the chemical treatment agent also includes a regulator, which is NaOH solution or NaOH and KI solution, preferably 1.7%, 2%, 2.3%, 2.5%.
  • the radioactive wastewater is treated by adding a mixed chemical treatment agent.
  • the inorganic flocculant can provide a large number of complexed ions, and can strongly adsorb colloidal particles, form colloidal coagulation through adsorption and cross-linking, and also undergo physical and chemical changes, neutralize
  • the charge on the surface of colloidal particles and suspended matter makes the colloidal particles change from mutual repulsion to mutual attraction, which destroys the stability of micelles, thus forming flocculent coagulation precipitation; polyurethane resin and polyacrylamide flocculant will produce compressed double
  • the electric layer makes the suspended particles in the wastewater lose stability, and the colloidal particles coagulate with each other to increase the size of the particles, forming flocs and alum flowers.
  • the flocs After the flocs grow to a certain volume, they will separate from the water phase and precipitate under the action of gravity, thereby removing A large amount of suspended solids in wastewater, so as to achieve the effect of water treatment; add regulators to make radioactive wastewater in a weakly alkaline state, further improve the activity and action time of chemical treatment agents; at the same time, KI solution has strong oxidation-reduction properties, can Oxidizes radioactive ions to facilitate the formation of flocs while reducing chemical activity. Adding activated carbon, polyaluminum ferric sulfate and polyferric chloride can effectively remove the pigment in the wastewater and quickly clarify the water body.
  • radioactive waste water decay pool system Taking the treatment of 1 ton of radioactive waste water as an example, build a radioactive waste water decay pool system.
  • the size of the decay pool is about 2.0m long, 1.0m wide, and 1m high.
  • the total weight will be 5%, 5.5%, 6.5%, 7% chemical treatment agent is added to the radioactive wastewater, and after stirring, the radioactive wastewater enters the first decay pool and the second decay pool to gel in turn, and the radioactive wastewater is gelled after the first decay pool and the second decay pool are fully decayed.
  • the relative risk weight (0.080mSv/h, 0.075mSv/h, 0.082mSv/h, 0.079mSv/h) is detected by a radiation detector (measurement range: 0.05usv/h ⁇ 10000usv/h) The factor is 0.02, meeting the emission standard.

Landscapes

  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Development (AREA)
  • Oceanography (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种医院放射性废水衰变池系统,包括用铸铁管依次连接的进水系统、第一衰变池、第二衰变池和出水系统;该出水系统分别与第二衰变池和清水池连接,其出水系统上还设置有检测器,清水池中的自来水用于向经过第二衰变池处理后出来的二级衰变液进行稀释处理;检测器用于检测将从出水系统排除的达标液体;同时还提供一种放射性废水衰变的处理方法,通过添加化学处理剂实现放射性核素的快速凝聚去除。本发明对输送到衰变池中的医院放射性废水进行存储和过滤,在加入化学处理剂处理后依次进入衰变池成为衰变液后到达出水系统经过检测达标而从出水控制阀排放到排水渠道,在减少处理时间的同时降低衰变池系统的复杂性,且节省空间。

Description

一种医院放射性废水衰变池系统及其处理方法 技术领域
本发明涉及放射性废水处理技术领域,特别涉及一种医院放射性废水衰变池系统,及其该放射性废水衰变的处理方法。
背景技术
医院在对肿瘤或者癌症患者进行诊断和治疗时大都使用放射性同位素,患者在注射或服用放射性同位素药物后产生排泄物,对排泄物冲洗排放就会产生大量的具有放射性的废水,这也成为了医院放射性废水的主要来源;除此之外,医院实验室污水、放射性防护服装及医疗器械医用药具的洗涤水、药物配制以及倾倒多余剂量的同位素药物等都会产生放射性废水;有些医院为了能够稀释放射性废水,缩短衰变周期,可能会将医院部分生活污水与放射性废水进行混合处理、排放;因此与普通放射性废水不同之处在于,医院产生的放射性废水中可能混有大量的杂质;
目前医院一般采用多级衰变池系统来对废水进行处理,以使得废水中的短半衰期的核素在衰变池中贮存一段时间后自动衰变成为安全的化学元素;在经过一段时间的自然衰变后,废水的放射性浓度降低到一定标准才能通入市政污水管道中排放;目前处理医院放射性废水的通常采用多级衰变池系统、并在衰变池系统中设置多级过滤网或过滤装置,来实现对废水的过滤和增加废水流转时间,在防止杂质淤积在池中以及堵塞输送管道的同时实现短半衰期的核素的放射性衰减。这样设置的多级衰变池系统占用空间大,设备复杂且利用率低,以及在使用过程中只能处理短半衰期的核素。因此,需要针对医院放射性废水衰变池系统进行改进以及对废水衰变进行改性处理等。
技术问题
针对现有技术的不足,本发明提供了一种新型的医院放射性废水多级衰变池系统的布局结构,用于对输送到衰变池中的医院放射性废水进行存储和过滤,同时还根据该衰变池系统提供一种放射性废水衰变的处理方法,通过添加化学处理剂实现放射性核素的快速凝聚去除,从而在减少处理时间的同时降低衰变池系统的复杂性,且节省空间。
技术解决方案
本发明通过以下技术方案实现:
一种医院放射性废水衰变池系统,包括用铸铁管依次连接的进水系统、第一衰变池、第二衰变池和出水系统;所述出水系统分别与第二衰变池和清水池连接,所述出水系统上还设置有检测器,所述清水池中的自来水用于向经过所述第二衰变池处理后出来的二级衰变液进行稀释处理;所述检测器用于检测将从所述出水系统排除的达标液体;从进水系统进入的放射性废水,在加入化学处理剂处理后依次进入所述第一衰变池经过一级衰变为一级衰变液,再进入所述第二衰变池经过二级衰变为二级衰变液后到达所述出水系统经过所述检测器检测达到排放标准成为达标液体而从出水控制阀排放到排水渠道。
进一步的,所述进水系统包括依次设置的进水泵、搅拌器和并排设置的第一控制泵、第二控制泵,所述搅拌器侧边还设置有监控器;从进水口进入的放射性废水经过所述进水泵加压,同时从所述监控器加入化学处理剂后所述搅拌器加速搅拌混合,放射性废水与化学处理剂发生物理和化学作用后进入所述第一衰变池;
优选地,并排设置的所述第一控制泵和第二控制泵通过调整正反转的方式实现串联和并联作用,在放射性废水进入时,关闭所述第一衰变池处的第一控制阀,调整所述第一控制泵和第二控制泵成串联作用,实现所述进水泵、搅拌器、第一控制泵、第二控制泵形成循环系统,使放射性废水与化学处理剂发生充分的物理和化学作用;
打开所述第一衰变池处的第一控制阀,调整所述第一控制泵和第二控制泵成并联作用后使放射性废水快速进入所述第一衰变池。
进一步的,所述出水系统上还设置有第三控制泵和第四控制泵,所述二级衰变液进入出水系统后经过所述第三控制泵和第四控制泵充分搅动与所述清水池中的自来水充分稀释处理成为达标液体而从出水控制阀排放到排水渠道。
通过在进水系统和出水系统区域设置水泵控制结构,在方便对放射性废水控制的同时,在进水区域能快速的提高水体的速度和压力,以及能不微粒分散性,在加入化学处理剂后能快速的发生物理化学作用,并进入衰变池进行沉降;而在出水区域设置水泵控制检测系统,在监控水质的同时,方便用自来水混合稀释水体,排放更加安全。
进一步的,所述化学处理剂包括无机絮凝剂、聚氨酯树脂和聚丙烯酰铵絮凝剂;加入化学处理剂重量为放射性废水的4.5%~7.5%,优选为5%、5.5%、6.5%、7%。
所述无机絮凝剂选自活性炭、活性二氧化硅、聚合硫酸氯化铁铝、氯化铝、硫酸铁、聚合氯化铁中的一种或者混合;加入无机絮凝剂重量为放射性废水的0.5%~1.5%,优选为0.5%、0.7%、1%、1.2%、1.5%。
所述化学处理剂还包括调节剂,所述调节剂为NaOH溶液或NaOH与KI溶液,加入调节剂重量为放射性废水的1.5%~2.5%,优选为1.7%、2%、2.3%、2.5%。
通过加入混合型化学处理剂对放射性废水进行处理,无机絮凝剂它能提供大量的络合离子,且能够强烈吸附胶体微粒,通过吸附交联作用形成胶体凝聚,同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,从而形成絮状混凝沉淀;聚氨酯树脂和聚丙烯酰铵絮凝剂会产生压缩双电层,使废水中的悬浮微粒失去稳定性,胶粒物相互凝聚使微粒增大,形成絮凝体、矾花,絮凝体长大到一定体积后即在重力作用下脱离水相沉淀,从而去除废水中的大量悬浮物,从而达到水处理的效果;加入调节剂以使放射性废水处于弱碱性状态,进一步提高化学处理剂的活性和作用时间;同时KI溶液有很强的氧化还原性,能氧化放射性离子,在降低化学活性的同时方便形成絮凝胶体。加入活性炭、聚合硫酸氯化铁铝和聚合氯化铁能有效去除废水中的色素,快速澄清水体。
本申请还提供一种医院放射性废水衰变的处理方法,包括如下步骤:
步骤1,将放射性废水从进水口进入并经过进水泵加压,到达搅拌器处搅拌;
步骤2,从监控器处加入化学处理剂,在进水泵、搅拌器、第一控制泵和第二控制泵的循环作用下,进一步加速搅拌混合放射性废水;
步骤3,打开第一控制阀,调整第一控制泵和第二控制泵使放射性废水进入第一衰变池,在第一衰变池中与化学处理剂发生物理和化学作用形成一次衰变液的凝聚胶体和分层水体;
步骤4,一次衰变液经过一次过滤后进入第二衰变池中,衰变过程中再次加入适量的化学处理剂形成二次衰变液,
步骤5,二次衰变液经过二次过滤后进入出水系统,经过检测确认,以及用适量自来水稀释成为达标液体而从出水控制阀排放到排水渠道。
进一步的,步骤2加入化学处理剂选自聚氨酯树脂、聚丙烯酰铵絮凝剂、活性二氧化硅、聚合硫酸氯化铁铝、氯化铝、硫酸铁、聚合氯化铁中的一种或者混合,加入重量为放射性废水的4.5%~7.5%;优选为聚氨酯树脂、聚丙烯酰铵絮凝剂、活性二氧化硅、聚合硫酸氯化铁铝和聚合氯化铁的混合物,加入量5%~6%;
步骤3加入化学处理剂为1.5%~2.5%的NaOH与KI溶液,优选为放射性废水经过2~5小时的凝聚沉淀后,再加入1.5%~2%的NaOH与KI溶液进行氧化还原反应,这样可以减少化学处理剂的用量,且水体中不容易产生变色现象,降低活性炭、活性二氧化硅的使用量;
步骤4加入化学处理剂为0.5%~1.5%的活性炭、活性二氧化硅,在净化水体的同时,去除水体中的素色。
有益效果
相比于现有技术,本发明的优点在于:
1、通过在进水系统和出水系统区域设置水泵控制结构,在方便对放射性废水控制的同时,在进水区域能快速的提高水体的速度和压力,以及能不微粒分散性,在加入化学处理剂后能快速的发生物理化学作用,并进入衰变池进行沉降;而在出水区域设置水泵控制检测系统,在监控水质的同时,方便用自来水混合稀释水体,排放更加安全。
2、通过加入混合型化学处理剂对放射性废水进行处理,无机絮凝剂它能提供大量的络合离子,且能够强烈吸附胶体微粒,通过吸附交联作用形成胶体凝聚,同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,从而形成絮状混凝沉淀。
3、加入调节剂以使放射性废水处于弱碱性状态,进一步提高化学处理剂的活性和作用时间;同时KI溶液有很强的氧化还原性,能氧化放射性离子,在降低化学活性的同时方便形成絮凝胶体。加入活性炭、聚合硫酸氯化铁铝和聚合氯化铁能有效去除废水中的色素,快速澄清水体。
附图说明
图1为本发明一种医院放射性废水衰变池系统结构示意图。
1-进水系统,11-进水泵,12-搅拌器,13-第一控制泵,14-第二控制泵,15-监控器;
2-第一衰变池,21-第一控制阀;3-第二衰变池;4-铸铁管;5-清水池;6-出水系统,61-第三控制泵,62-第四控制泵,63-检测器,64-出水控制阀。
本发明的实施方式
以下结合较佳实施例及其附图对发明技术方案作进一步非限制性的详细说明。在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1所示,本发明的一种医院放射性废水衰变池系统,通过以下技术方案实现:包括用铸铁管4依次连接的进水系统1、第一衰变池2、第二衰变池3和出水系统6;出水系统6分别与第二衰变池3和清水池5连接,出水系统6上还设置有检测器63,清水池5中的自来水用于向经过第二衰变池3处理后出来的二级衰变液进行稀释处理;检测器63用于检测将从出水系统6排除的达标液体;从进水系统1进入的放射性废水,在加入化学处理剂处理后依次进入第一衰变池2经过一级衰变为一级衰变液,再进入第二衰变池3经过二级衰变为二级衰变液后到达出水系统6经过检测器63检测达到排放标准成为达标液体而从出水控制阀64排放到排水渠道。通过在进水系统和出水系统区域设置水泵控制结构,在方便对放射性废水控制的同时,在进水区域能快速的提高水体的速度和压力,以及能不微粒分散性,在加入化学处理剂后能快速的发生物理化学作用,并进入衰变池进行沉降;而在出水区域设置水泵控制检测系统,在监控水质的同时,方便用自来水混合稀释水体,排放更加安全。
作为进一步的改善,进水系统1包括依次设置的进水泵11、搅拌器12和并排设置的第一控制泵13、第二控制泵14,搅拌器12侧边还设置有监控器15;从进水口进入的放射性废水经过进水泵11加压,同时从监控器15加入化学处理剂后搅拌器12加速搅拌混合,放射性废水与化学处理剂发生物理和化学作用后进入第一衰变池2;并排设置的第一控制泵13和第二控制泵14通过调整正反转的方式实现串联和并联作用,在放射性废水进入时,关闭第一衰变池2处的第一控制阀21,调整第一控制泵13和第二控制泵14成串联作用,实现进水泵11、搅拌器12、第一控制泵13、第二控制泵14形成循环系统,使放射性废水与化学处理剂发生充分的物理和化学作用;打开第一衰变池2处的第一控制阀21,调整第一控制泵13和第二控制泵14成并联作用后使放射性废水快速进入第一衰变池2;出水系统6上还设置有第三控制泵61和第四控制泵62,二级衰变液进入出水系统6后经过第三控制泵61和第四控制泵62充分搅动与清水池5中的自来水充分稀释处理成为达标液体而从出水控制阀64排放到排水渠道。
作为本发明的放射性废水衰变池系统,还提供一种医院放射性废水衰变的处理方法,包括如下步骤:
步骤1,将放射性废水从进水口进入并经过进水泵11加压,到达搅拌器12处搅拌;
步骤2,从监控器15处加入化学处理剂,在进水泵11、搅拌器12、第一控制泵13和第二控制泵14的循环作用下,进一步加速搅拌混合放射性废水;该加入化学处理剂选自聚氨酯树脂、聚丙烯酰铵絮凝剂、活性二氧化硅、聚合硫酸氯化铁铝、氯化铝、硫酸铁、聚合氯化铁中的一种或者混合,加入重量为放射性废水的4.5%~7.5%;优选为聚氨酯树脂、聚丙烯酰铵絮凝剂、活性二氧化硅、聚合硫酸氯化铁铝和聚合氯化铁的混合物,加入量5%~6%;
步骤3,打开第一控制阀21,调整第一控制泵13和第二控制泵14使放射性废水进入第一衰变池2,在第一衰变池2中与化学处理剂发生物理和化学作用形成一次衰变液的凝聚胶体和分层水体;该步骤加入化学处理剂为1.5%~2.5%的NaOH与KI溶液,优选为放射性废水经过2~5小时的凝聚沉淀后,再加入1.5%~2%的NaOH与KI溶液进行氧化还原反应,这样可以减少化学处理剂的用量,且水体中不容易产生变色现象,降低活性炭、活性二氧化硅的使用量;
步骤4,一次衰变液经过一次过滤后进入第二衰变池3中,衰变过程中再次加入适量的化学处理剂形成二次衰变液,该步骤加入化学处理剂为0.5%~1.5%的活性炭、活性二氧化硅,在净化水体的同时,去除水体中的素色;
步骤5,二次衰变液经过二次过滤后进入出水系统6,经过检测确认,以及用适量自来水稀释成为达标液体而从出水控制阀64排放到排水渠道。
作为进一步的改进,化学处理剂包括无机絮凝剂、聚氨酯树脂和聚丙烯酰铵絮凝剂;优选为5%、5.5%、6.5%、7%。无机絮凝剂选自活性炭、活性二氧化硅、聚合硫酸氯化铁铝、氯化铝、硫酸铁、聚合氯化铁中的一种或者混合,优选为0.5%、0.7%、1%、1.2%、1.5%。化学处理剂还包括调节剂,调节剂为NaOH溶液或NaOH与KI溶液,优选为1.7%、2%、2.3%、2.5%。通过加入混合型化学处理剂对放射性废水进行处理,无机絮凝剂它能提供大量的络合离子,且能够强烈吸附胶体微粒,通过吸附交联作用形成胶体凝聚,同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,使胶体微粒由原来的相斥变为相吸,破坏了胶团稳定性,从而形成絮状混凝沉淀;聚氨酯树脂和聚丙烯酰铵絮凝剂会产生压缩双电层,使废水中的悬浮微粒失去稳定性,胶粒物相互凝聚使微粒增大,形成絮凝体、矾花,絮凝体长大到一定体积后即在重力作用下脱离水相沉淀,从而去除废水中的大量悬浮物,从而达到水处理的效果;加入调节剂以使放射性废水处于弱碱性状态,进一步提高化学处理剂的活性和作用时间;同时KI溶液有很强的氧化还原性,能氧化放射性离子,在降低化学活性的同时方便形成絮凝胶体。加入活性炭、聚合硫酸氯化铁铝和聚合氯化铁能有效去除废水中的色素,快速澄清水体。
分别以处理1吨放射性废水为例,建造放射性废水衰变池系统,衰变池的尺寸长约2.0m,宽约1.0m,高约1m的,分别将用总重5%、5.5%、6.5%、7%化学处理剂加入到放射性废水中,再搅拌后使放射性废水依次进入第一衰变池和第二衰变池凝胶化,其中第一衰变池和第二进行充分衰变后,将放射性废水凝胶过滤后,将2.5%、2.3%、2%、1.7%的NaOH与KI溶液加入进行氧化还原反应;最后将1.5%、1.2%、1.0%、0.7%的活性炭和活性二氧化硅,在净化水体的同时,去除水体中的素色,反应时间2小时、2.5小时、3.5小时和4.5小时进行测试。依据核医学放射防护标准,用放射检测仪(测量范围:0.05usv/h~10000usv/h)检测得到(0.080mSv/h,0.075mSv/h,0.082mSv/h,0.079mSv/h)相对危险权重因子为0.02,满足排放标准。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种医院放射性废水衰变池系统,包括用铸铁管(4)依次连接的进水系统(1)、第一衰变池(2)、第二衰变池(3)和出水系统(6);其特征在于:所述出水系统(6)分别与第二衰变池(3)和清水池(5)连接,所述出水系统(6)上还设置有检测器(63),所述清水池(5)中的自来水用于向经过所述第二衰变池(3)处理后出来的二级衰变液进行稀释处理;所述检测器(63)用于检测将从所述出水系统(6)排除的达标液体。
  2. 根据权利要求1所述的医院放射性废水衰变池系统,其特征在于:所述进水系统(1)包括依次设置的进水泵(11)、搅拌器(12)和并排设置的第一控制泵(13)、第二控制泵(14),所述搅拌器(12)侧边还设置有监控器(15);从进水口进入的放射性废水经过所述进水泵(11)加压,同时从所述监控器(15)加入化学处理剂后所述搅拌器(12)加速搅拌混合,放射性废水与化学处理剂发生物理和化学作用后进入所述第一衰变池(2)。
  3. 根据权利要求2所述的医院放射性废水衰变池系统,其特征在于:并排设置的所述第一控制泵(13)和第二控制泵(14)通过调整正反转的方式实现串联和并联作用,在放射性废水进入时,关闭所述第一衰变池(2)处的第一控制阀(21),调整所述第一控制泵(13)和第二控制泵(14)成串联作用,实现所述进水泵(11)、搅拌器(12)、第一控制泵(13)和第二控制泵(14)形成循环系统。
  4. 根据权利要求1所述的医院放射性废水衰变池系统,其特征在于:所述出水系统(6)上还设置有第三控制泵(61)和第四控制泵(62),二级衰变液进入所述出水系统(6)后经过所述第三控制泵(61)和第四控制泵(62)充分搅动与所述清水池(5)中的自来水充分稀释处理成为达标液体而从出水控制阀(64)排放到排水渠道。
  5. 根据权利要求2所述的医院放射性废水衰变池系统,其特征在于:所述化学处理剂包括无机絮凝剂、聚氨酯树脂和聚丙烯酰铵絮凝剂;加入所述化学处理剂重量为放射性废水的4.5%~7.5%。
  6. 根据权利要求5所述的医院放射性废水衰变池系统,其特征在于:所述无机絮凝剂选自活性炭、活性二氧化硅、聚合硫酸氯化铁铝、氯化铝、硫酸铁、聚合氯化铁中的一种或者混合。
  7. 根据权利要求5所述的医院放射性废水衰变池系统,其特征在于:所述化学处理剂还包括调节剂,所述调节剂为NaOH溶液或NaOH与KI溶液,加入调节剂重量为放射性废水的1.5%~2.5%。
  8. 一种医院放射性废水衰变的处理方法,其特征在于,包括如下步骤:
    步骤1,将放射性废水从进水口进入并经过进水泵(11)加压,到达搅拌器(12)处搅拌;
    步骤2,从监控器(15)处加入化学处理剂,在进水泵(11)、搅拌器(12)、第一控制泵(13)和第二控制泵(14)的循环作用下,进一步加速搅拌混合放射性废水;
    步骤3,打开第一控制阀(21),调整第一控制泵(13)和第二控制泵(14)使放射性废水进入第一衰变池(2),在第一衰变池(2)中与化学处理剂发生物理和化学作用形成一次衰变液的凝聚胶体和分层水体;
    步骤4,一次衰变液经过一次过滤后进入第二衰变池(3)中,衰变过程中再次加入适量的化学处理剂形成二次衰变液;
    步骤5,二次衰变液经过二次过滤后进入出水系统(6),经过检测确认,以及用适量自来水稀释成为达标液体而从出水控制阀(64)排放到排水渠道。
  9. 根据权利要求8所述的医院放射性废水衰变的处理方法,其特征在于:步骤2加入化学处理剂选自聚氨酯树脂、聚丙烯酰铵絮凝剂、活性二氧化硅、聚合硫酸氯化铁铝、氯化铝、硫酸铁、聚合氯化铁中的一种或者混合,加入重量为放射性废水的4.5%~7.5%。
  10. 根据权利要求8所述的医院放射性废水衰变的处理方法,其特征在于:步骤3加入化学处理剂为1.5%~2.5%的NaOH与KI溶液;步骤4加入化学处理剂为0.5%~1.5%的活性炭、活性二氧化硅。
PCT/CN2022/111016 2021-11-29 2022-08-09 一种医院放射性废水衰变池系统及其处理方法 WO2023093126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111431144.9A CN114291921A (zh) 2021-11-29 2021-11-29 一种医院放射性废水衰变池系统及其处理方法
CN202111431144.9 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023093126A1 true WO2023093126A1 (zh) 2023-06-01

Family

ID=80965214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111016 WO2023093126A1 (zh) 2021-11-29 2022-08-09 一种医院放射性废水衰变池系统及其处理方法

Country Status (2)

Country Link
CN (1) CN114291921A (zh)
WO (1) WO2023093126A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117059292A (zh) * 2023-08-16 2023-11-14 西南科技大学 核医疗放射性废水固液分离的预处理系统及应用方法
CN117116521A (zh) * 2023-07-25 2023-11-24 上海核工程研究设计院股份有限公司 核医学衰变池废液全自动处理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114291921A (zh) * 2021-11-29 2022-04-08 江苏超敏科技有限公司 一种医院放射性废水衰变池系统及其处理方法
CN117012429B (zh) * 2023-08-16 2024-03-22 西南科技大学 一种一体化核医疗放射性废水快速处理系统及应用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501691A (en) * 1979-12-25 1985-02-26 Mitsubishi Kinzoku Kabushiki Kaisha Process for treating a radioactive liquid waste
GB9500279D0 (en) * 1994-01-07 1995-03-01 Kaisha Method for processing radioactive waste solution
JP2002267795A (ja) * 2001-03-13 2002-09-18 Chiyoda Technol Corp 放射性物質含有廃液処理方法と装置
CN103151088A (zh) * 2013-03-28 2013-06-12 南京大学宜兴环保研究院 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
US20160211040A1 (en) * 2013-08-23 2016-07-21 Hitachi-Ge Nuclear Energy, Ltd. Method of Treating Radioactive Liquid Waste and Radioactive Liquid Waste Treatment Apparatus
CN211555495U (zh) * 2020-01-21 2020-09-22 潍坊三维生物工程集团有限公司 一种放免试剂盒生产中放射性废水用处理装置
CN114291921A (zh) * 2021-11-29 2022-04-08 江苏超敏科技有限公司 一种医院放射性废水衰变池系统及其处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501691A (en) * 1979-12-25 1985-02-26 Mitsubishi Kinzoku Kabushiki Kaisha Process for treating a radioactive liquid waste
GB9500279D0 (en) * 1994-01-07 1995-03-01 Kaisha Method for processing radioactive waste solution
JP2002267795A (ja) * 2001-03-13 2002-09-18 Chiyoda Technol Corp 放射性物質含有廃液処理方法と装置
CN103151088A (zh) * 2013-03-28 2013-06-12 南京大学宜兴环保研究院 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
US20160211040A1 (en) * 2013-08-23 2016-07-21 Hitachi-Ge Nuclear Energy, Ltd. Method of Treating Radioactive Liquid Waste and Radioactive Liquid Waste Treatment Apparatus
CN211555495U (zh) * 2020-01-21 2020-09-22 潍坊三维生物工程集团有限公司 一种放免试剂盒生产中放射性废水用处理装置
CN114291921A (zh) * 2021-11-29 2022-04-08 江苏超敏科技有限公司 一种医院放射性废水衰变池系统及其处理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116521A (zh) * 2023-07-25 2023-11-24 上海核工程研究设计院股份有限公司 核医学衰变池废液全自动处理系统
CN117116521B (zh) * 2023-07-25 2024-04-26 上海核工程研究设计院股份有限公司 核医学衰变池废液全自动处理系统
CN117059292A (zh) * 2023-08-16 2023-11-14 西南科技大学 核医疗放射性废水固液分离的预处理系统及应用方法
CN117059292B (zh) * 2023-08-16 2024-03-29 西南科技大学 核医疗放射性废水固液分离的预处理系统及应用方法

Also Published As

Publication number Publication date
CN114291921A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023093126A1 (zh) 一种医院放射性废水衰变池系统及其处理方法
KR101643234B1 (ko) 하나 이상의 방사성 화학원소를 함유하는 배출수를 유동층에 처리하여 제염하는 방법
CN101402493A (zh) 一种高含氟污水的处理方法
CN106517608A (zh) 一种高浓度有机磷废水的预处理方法
CN208814790U (zh) 一种钢铁废水浓缩浓盐水软化除硬的处理装置
CN103714874A (zh) 一种放射性含锶废水的处理方法及装置
CN111470655B (zh) 同步去除高价离子和有机物的核晶凝聚诱导造粒水处理装置
CN106745963A (zh) 多步联合净化放射性铯污染饮用水方法及装置
CN105984951A (zh) 一种实现污泥快速沉降的sbr设备及其应用
CN106746078A (zh) 一种高浓度有机磷废水的预处理装置
CN207108747U (zh) 一种纺织印染废水处理系统
CN213060470U (zh) 一种硫酸法钛白废水处理装置
CN106495355A (zh) 一种电镀废水处理回用工艺及其组合装置
CN215924586U (zh) 用于深度去除氟化物的水处理系统
CN209493413U (zh) 一种核医疗污水系统用废水处理装置
CN206915944U (zh) 一种可同时处理多种废水的高效污水处理系统
CN206590987U (zh) 酸洗废水处理设备
CN208200463U (zh) 一种处理Cr(Ⅵ)污染地下水的装置
CN217103405U (zh) 一种含盐污水处理装置
CN206127007U (zh) 一种纺织造纸业废水处理装置
CN214422403U (zh) 含汞废液处理装置
CN216662690U (zh) 一种去除水中不同浓度氟离子的水处理系统
CN110171888A (zh) 一种全自动控制的造纸工业废水深度处理系统
CN202988874U (zh) 净水厂处理装置
CN218115084U (zh) 一种无菌水制备装置