WO2023093119A1 - 一种高韧性超高强度钢及其制造方法 - Google Patents

一种高韧性超高强度钢及其制造方法 Download PDF

Info

Publication number
WO2023093119A1
WO2023093119A1 PCT/CN2022/109923 CN2022109923W WO2023093119A1 WO 2023093119 A1 WO2023093119 A1 WO 2023093119A1 CN 2022109923 W CN2022109923 W CN 2022109923W WO 2023093119 A1 WO2023093119 A1 WO 2023093119A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength steel
toughness
steel
forging
temperature
Prior art date
Application number
PCT/CN2022/109923
Other languages
English (en)
French (fr)
Inventor
宁静
苏杰
杨卓越
高齐
丁雅莉
陈嘉砚
王敖
刘赓
Original Assignee
钢铁研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钢铁研究总院有限公司 filed Critical 钢铁研究总院有限公司
Priority to US18/574,063 priority Critical patent/US20240318273A1/en
Publication of WO2023093119A1 publication Critical patent/WO2023093119A1/zh
Priority to ZA2023/11584A priority patent/ZA202311584B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the application belongs to the technical field of metal materials, and in particular relates to a high-toughness ultra-high-strength steel and a manufacturing method thereof.
  • 35CrMnSiA steel is the most commonly used, with a tensile strength range of 1650-1950MPa.
  • 35CrMnSiA is an ancient variety developed in the 1950s. It has high strength and low price, but its toughness is low.
  • the impact energy requirement in the current national standard is only ⁇ 31J, and the measured impact energy is mostly in the range of 35-50J; and the hardenability is seriously insufficient.
  • the critical hardening size is only ⁇ 40mm, and its application is limited as the component specifications increase.
  • the present application aims to provide a high-toughness ultra-high-strength steel, which can at least solve one of the following technical problems: (1) the existing low-alloy ultra-high-strength steel has poor toughness; (2) the existing Low-alloy ultra-high-strength steels have poor hardenability.
  • the application provides a high-toughness ultra-high-strength steel
  • the mass percentage of each element of the high-toughness ultra-high-strength steel includes: C: 0.27%-0.35%, Si: 1.10%-1.70%, Mn: 0.70% ⁇ 1.10%, Cr: 1.00% ⁇ 1.40%, Ni: 0.10% ⁇ 0.50%, Mo: 0.05% ⁇ 0.50%, W: 0.05% ⁇ 0.10%, Nb: 0.01% ⁇ 0.04%, the rest is iron and unavoidable of impurities.
  • the high-toughness ultra-high-strength steel also includes V: 0-0.150%.
  • the mass percentages of each element of the high-toughness ultra-high-strength steel include: C: 0.28%-0.34%, Si: 1.20%-1.60%, Mn: 0.80%-1.10%, Cr: 1.20%-1.35%, Ni: 0.15% to 0.30%, Mo: 0.05% to 0.30%, W: 0.05% to 0.10%, Nb: 0.015% to 0.038%, and the rest are iron and unavoidable impurities.
  • the high-toughness ultra-high-strength steel also includes V: 0.03%-0.1%.
  • the microstructure of the high-toughness ultra-high-strength steel is lath martensite + film-like retained austenite + finely dispersed composite ⁇ -carbide + nanoscale NbC.
  • the present application also provides a method for manufacturing high-toughness ultra-high-strength steel, which is used to manufacture the above-mentioned high-toughness ultra-high-strength steel.
  • the method for manufacturing high-toughness ultra-high-strength steel includes the following steps:
  • Step S1 smelting to obtain steel ingots
  • Step S2 putting the steel ingot into the heating furnace to equalize the temperature
  • Step S3 performing forging after uniform temperature
  • Step S4 after forging, annealing is carried out to obtain a forging
  • Step S5 the forging is sequentially subjected to normalizing, oil quenching, and tempering treatments to obtain high-toughness ultra-high-strength steel.
  • step S3 the forging process includes three upsetting and three drawing for forming, and the forging deformation ratio is ⁇ 6.
  • the annealing temperature is 650-680° C.
  • the annealing time is ⁇ 12 hours.
  • step S5 the normalizing heat preservation temperature is 920-970°C.
  • step S5 the quenching temperature is 870-930°C, and the tempering temperature is 220-260°C.
  • the present application can realize at least one of the following beneficial effects:
  • Ni element is an austenite stabilizing element, which can form thin film austenite between martensite laths and enhance the toughness of the matrix
  • Mo element and W elements can play the role of solid solution strengthening and alloy carbide strengthening, and enhance the hardenability of steel
  • Nb elements can form nano-scale NbC, which can exist at higher temperatures and play a role in refining grains , to further improve the toughness.
  • the microstructure of the steel is guaranteed to be lath martensite + no more than 3% film Shaped austenite + finely dispersed composite ⁇ -carbide + nanoscale NbC, thereby improving the strength and toughness of the steel.
  • the tensile strength is above 1739MPa (such as 1739 ⁇ 1842MPa)
  • the yield strength is above 1405MPa (such as 1405 ⁇ 1485MPa)
  • the elongation is above 11.0% (such as 11.0% ⁇ 13.5%)
  • the surface shrinkage is above 46% (such as 46% ⁇ 56%)
  • the impact energy reaches more than 52J (for example, 52 ⁇ 78J)
  • the fracture toughness reaches 98MPa.
  • m 1/2 or more for example, 98 ⁇ 130MPa ⁇ m 1/2 ).
  • the structure obtained by quenching is a lath martensite matrix and a small amount of film-like retained austenite. Due to the higher Si content, the ability to resist temper softening is effectively improved, and fine and dispersed particles are precipitated after tempering.
  • the composite ⁇ -carbides can avoid the precipitation of cementite, and can fully restore the high-strength martensite matrix to obtain a good combination of strength and toughness.
  • the high-toughness ultra-high-strength steel of the present application has good toughness and hardenability, and there is no obvious increase in alloy and manufacturing costs.
  • Fig. 1 is the metallographic structure diagram of 2# sample in the embodiment of the application;
  • Fig. 2 is the transmission electron microscope picture of 2# sample in the embodiment of the present application.
  • the application provides a high-toughness ultra-high-strength steel
  • the mass percentage of each element of the high-toughness ultra-high-strength steel includes: C: 0.27%-0.35%, Si: 1.10%-1.70%, Mn: 0.70%-1.10% , Cr: 1.00% to 1.40%, Ni: 0.10% to 0.50%, Mo: 0.05% to 0.50%, W: 0.05% to 0.10%, Nb: 0.01% to 0.04%, and the rest are iron and unavoidable impurities.
  • V: 0-0.150%, such as V: 0.03%-0.150%, can also be added to the elements of the ultra-high-strength steel.
  • C is a strengthening element, mainly solid solution strengthening of carbon atoms after martensite transformation and precipitation of metastable carbides through low-temperature tempering. If the carbon content is too low, the strength cannot reach the required level, and if it is too high, the toughness will be damaged. Therefore The carbon content designed by the present application is between 0.27% and 0.35%.
  • the added Si dissolves into the martensite matrix, improves the strength of the steel through solid solution strengthening, and at the same time increases the tempering resistance of the steel, so that the tempering temperature of the steel of this application (Low temperature tempering) away from the temperature range of tempered martensite brittleness, but too much Si reduces the solubility of elements such as Mo in the steel matrix, resulting in alloy carbides remaining during quenching and heating, and damaging the toughness of the steel. Therefore, this application Si The content is controlled between 1.10% and 1.70%.
  • Cr As one of the main alloying elements of the steel in this application, it can improve the hardenability of the steel, and improve the strength of the steel through solid solution strengthening. In addition, Cr also improves the tempering resistance of the steel, but too high Cr content reduces the strength of the steel. Thermal conductivity also reduces the martensite transformation temperature (Ms) and increases the proportion of twin martensite, so the Cr content in this application is controlled at 1.00% to 1.40%.
  • Ni As an austenite forming element, a small amount of addition can improve the matrix toughness and hardenability of steel; but too high Ni increases the cost, reduces the martensite transformation temperature (Ms), and increases the proportion of twin martensite . Therefore, the content of Ni in this application is controlled between 0.10% and 0.50%.
  • Mo Adding a small amount of Mo to the steel of this application can improve the strength through solid solution strengthening or the formation of alloy carbides, and has the functions of improving hardenability, purifying grain boundaries, and inhibiting temper embrittlement, but too high Mo will lead to quenching and heating Residual alloy carbides will damage the toughness of steel. Therefore, the content of Mo in this application should be controlled between 0.05% and 0.50%.
  • W Adding a small amount of W element to the steel grade of this application can improve the hardenability, solid solution in the matrix or form alloy carbide can improve the strength of the steel; W and Mo are easy to segregate at the grain boundary, which can improve the grain boundary bonding force, Enhances resilience.
  • W will form M 6 C carbide, and its resolubility temperature is high, so that the solid solution temperature will increase significantly when the W content increases. Every increase of 0.5% W will increase the solid solution temperature by about 50-80°C, resulting in coarse grains and reduced plasticity. Toughness; and the addition of W also significantly increases the difficulty of thermal processing, which is easy to cause cracking. Therefore, the W content of the present application is controlled within the range of 0.05% to 0.10%.
  • Nb micro-alloying element, an appropriate amount of nano-scale NbC carbides remain during quenching and heating to prevent the growth of austenite grains and refine the size of lath martensite after quenching; but if the Nb content is too high, large-sized Nb will be formed (C/N) inclusions reduce the toughness of steel. Therefore, control Nb: 0.01% to 0.04%.
  • V Micro-alloying elements, forming MC-type carbides, the stability is lower than NbC, the precipitation temperature is lower, and the size is smaller.
  • an appropriate amount of nano-sized VC carbide remains to prevent the growth of austenite grains and refine the size of lath martensite after quenching. Too much V content will not improve the effect of grain refinement, so control V: ⁇ 0.15%, for example, 0.03%-0.1%.
  • the mass percentage of each element in the high toughness and ultra-high strength steel of the present application may include: C: 0.28% to 0.34%, Si: 1.20% to 1.60%, Mn: 0.80% to 1.10%, Cr : 1.20% ⁇ 1.35%, Ni: 0.15% ⁇ 0.30%, Mo: 0.05% ⁇ 0.30%, W: 0.05% ⁇ 0.10%, Nb: 0.015% ⁇ 0.038%, V: ⁇ 0.10%, the rest is iron and not Avoid impurities.
  • the microstructure of the above-mentioned high-toughness ultra-high-strength steel is lath martensite + no more than 3% film-like retained austenite + fine and dispersed composite ⁇ -carbide + nano-scale NbC, wherein the martensite Cr, Ni, W, and Mo are solid-dissolved in the matrix, and W and Mo are solid-dissolved in the composite ⁇ -carbide; W and Mo are solid-dissolved in the martensitic matrix to enhance the grain boundary bonding force, and W and Mo are solid-dissolved in the composite Composite alloy carbides with high tempering stability are formed in the ⁇ -carbides, and a small amount of NbC carbides are contained in the structure to refine the grains.
  • the high-toughness ultra-high-strength steel of the present application is alloyed by adding a small amount of Ni, Mo, W, and Nb.
  • Ni element is an austenite-stabilizing element that can form a film-like austenite between the martensite laths.
  • the tensile strength is above 1739MPa (such as 1739 ⁇ 1842MPa)
  • the yield strength is above 1405MPa (such as 1405 ⁇ 1485MPa)
  • the elongation is above 11.0% (such as 11.0% ⁇ 13.5%)
  • the surface shrinkage is above 46% (such as 46% ⁇ 56%)
  • the impact energy reaches more than 52J (for example, 52 ⁇ 78J)
  • the fracture toughness reaches 98MPa.
  • m 1/2 or more for example, 98 ⁇ 130MPa ⁇ m 1/2 ).
  • the manufacturing method of the high-toughness ultra-high-strength steel in the present application comprises the following steps:
  • Step S1 adopting the process of electric furnace or non-vacuum induction furnace + refining outside the furnace + electroslag remelting to obtain steel ingots;
  • Step S2 put the steel ingot into the heating furnace to equalize the temperature, the temperature of the uniform temperature is 1170-1220°C, and the holding time is calculated as 15-20min (preferably, 15min) per 25mm of cross-sectional diameter;
  • Step S3 forging after uniform temperature; initial forging temperature ⁇ 1150°C, final forging temperature ⁇ 850°C;
  • Step S4 after forging, annealing is carried out to obtain a forging
  • Step S5 final heat treatment: the forging is sequentially subjected to normalizing, oil quenching, and tempering treatments to obtain high-toughness and ultra-high-strength steel.
  • the holding temperature for controlling the uniform temperature is 1170-1220°C, and the holding time is calculated as 15-20 minutes (preferably, 15 minutes) per 25 mm of cross-sectional diameter.
  • the forging process includes three upsetting and three drawing for forming.
  • a sufficient forging ratio ensures that the core is forged through and the as-cast structure is fully broken. Therefore, it is necessary to ensure that the forging deformation ratio is ⁇ 6.
  • the annealing holding temperature is controlled to be 650-680° C., and the annealing holding time is ⁇ 12 hours.
  • the normalizing heat preservation temperature is 920-970° C.
  • the heat preservation time is 1-4 hours
  • air cooling is performed.
  • the holding time is related to the diameter of the forging, and the holding time can be determined according to a specific process.
  • the quenching temperature is 870-930° C.
  • the holding time is 1-4 hours
  • oil cooling is performed.
  • the holding time is related to the diameter of the forging, and the holding time can be determined according to a specific process.
  • the tempering temperature is 220-260° C.
  • the holding time is 2-8 hours
  • air cooling is performed.
  • the holding time is related to the diameter of the forging, and the holding time can be determined according to a specific process.
  • the structure obtained by quenching is a lath martensite matrix and a small amount of film-like retained austenite. Due to the higher Si content, the ability to resist temper softening is effectively improved, and fine and dispersed particles are precipitated after tempering.
  • Composite ⁇ -carbides can avoid the precipitation of cementite, and can fully restore the high-strength martensite matrix to obtain good strength and toughness.
  • the quasi-static mechanical properties of the high-toughness ultra-high-strength steel prepared by the above method the tensile strength reaches more than 1739MPa (for example, 1739-1842MPa), the yield strength is more than 1405MPa (for example, 1405-1485MPa), and the elongation is more than 11.0%. (for example, 11.0% to 13.5%), surface shrinkage of more than 46% (for example, 46% to 56%), impact energy of more than 52J (for example, 52 to 78J), and fracture toughness of 98MPa. m 1/2 or more (for example, 98 ⁇ 130MPa ⁇ m 1/2 ).
  • a 50kg vacuum induction furnace was used to smelt test steel No. 1-5#, and the chemical composition is shown in Table 1.
  • the holding temperature is 1200°C, and the holding time is calculated according to the cross-sectional diameter of 25mm for 15 minutes; after equalizing the temperature, forging is carried out; the steel ingot is forged into a 40 ⁇ 40mm square bar, and the forging initial forging temperature is 1200°C.
  • the final forging temperature is 850°C, the forging process includes three upsetting and three pulling, and the forging deformation ratio is ⁇ 6; after forging, it is annealed at 660°C; and then the heat treatment system in Table 2 is used for heat treatment.
  • Table 3 shows the microstructure of the steels tested in Examples 1-5#
  • Table 4 shows the quasi-static mechanical properties of the steels in Examples 1-5#. Visible, after embodiment 1#-5# carries out alloying by adding a small amount of Ni, Mo, W element and trace Nb (and or V), the metallographic structure of steel is lath martensite+no more than 3% (area percentage ) film-like retained austenite + a small amount of NbC/VC + ⁇ -carbide ( Figure 1-2).
  • the solid solution of W and Mo in the martensite matrix produces solid solution strengthening, enhances the hardenability and enhances the bonding force of the grain boundary, and the solid solution of W and Mo in the ⁇ -carbide forms a composite alloy carbide with high tempering stability ; Ni dissolves in the matrix to improve the toughness of the martensite lath, and forms a small amount of film-like retained austenite between the laths; Nb and V form nano-scale carbides, which can refine the grains during quenching.
  • the impact toughness is obviously improved (41J is promoted to more than 52J), and the fracture toughness is improved more than 58% (62MPa ⁇ m 1/2 is promoted to more than 98MPa ⁇ m 1/2 ); in this embodiment, if the strength level is appropriately reduced to 1700MPa (as shown in Example 2), the impact toughness can be greatly increased to 78J, and the fracture toughness can be doubled (130MPa ⁇ m 1/2 ).
  • the steel of the present application has good hardenability, and the critical hardening diameter can reach 80-100 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本申请公开了一种高韧性超高强度钢及其制造方法,属于金属材料技术领域,用以解决现有的低合金超高强度钢的韧性较差,淬透性较差的问题。高韧性超高强度钢的各元素的质量百分数包括:C:0.27%~0.35%、Si:1.10%~1.70%、Mn:0.70%~1.10%、Cr:1.00%~1.40%、Ni:0.10%~0.50%、Mo:0.05%~0.50%、W:0.05%~0.10%、Nb:0.01%~0.04%,其余为铁和不可避免的杂质。本申请的钢的强韧性好,淬透性好。

Description

一种高韧性超高强度钢及其制造方法 技术领域
本申请属于金属材料技术领域,具体涉及一种高韧性超高强度钢及其制造方法。
背景技术
航空航天领域关键部件服役环境恶劣,要求材料具有超高强度和良好的韧性,目前最为常用的是35CrMnSiA钢,抗拉强度范围1650-1950MPa。35CrMnSiA是上世纪50年代开发的古老品种,强度高、价格低廉,但韧性较低,目前国标中冲击功要求仅为≥31J,实测冲击功也多在35-50J范围;且淬透性严重不足,临界淬透尺寸仅为Φ40mm,随着部件规格增大,其应用受到限制。
发明内容
鉴于上述分析,本申请旨在提供一种高韧性超高强度钢,至少能够解决以下技术问题之一:(1)现有的低合金超高强度钢的韧性较差;(2)现有的低合金超高强度钢的淬透性较差。
本申请的目的主要是通过以下技术方案实现的:
一方面,本申请提供了一种高韧性超高强度钢,高韧性超高强度钢的各元素的质量百分数包括:C:0.27%~0.35%、Si:1.10%~1.70%、Mn:0.70%~1.10%、Cr:1.00%~1.40%、Ni:0.10%~0.50%、Mo:0.05%~0.50%、W:0.05%~0.10%、Nb:0.01%~0.04%,其余为铁和不可避免的杂质。
可选的,高韧性超高强度钢还包括V:0~0.150%。
可选的,高韧性超高强度钢的各元素的质量百分数包括: C:0.28%~0.34%、Si:1.20%~1.60%、Mn:0.80%~1.10%、Cr:1.20%~1.35%、Ni:0.15%~0.30%、Mo:0.05%~0.30%、W:0.05%~0.10%、Nb:0.015%~0.038%,其余为铁和不可避免的杂质。
可选的,高韧性超高强度钢还包括V:0.03%~0.1%。
可选的,高韧性超高强度钢的微观组织为板条马氏体+薄膜状残余奥氏体+细小弥散的复合ε-碳化物+纳米级NbC。
本申请还提供了一种高韧性超高强度钢的制造方法,用于制造上述高韧性超高强度钢,高韧性超高强度钢的制造方法包括如下步骤:
步骤S1、冶炼得到钢锭;
步骤S2、将钢锭放入加热炉中均温;
步骤S3、均温后进行锻造;
步骤S4、锻造后红送进行退火得到锻件;
步骤S5、锻件依次经过正火、油淬、回火处理得到高韧性超高强度钢。
可选的,步骤S3中,锻造过程中包括三镦三拔进行成形,锻造变形比≥6。
可选的,步骤S4中,退火保温温度为650~680℃,退火保温时间≥12h。
可选的,步骤S5中,正火保温温度920~970℃。
可选的,步骤S5中,淬火温度870~930℃,回火温度为220~260℃。
与现有技术相比,本申请至少可实现如下有益效果之一:
a)本申请中添加少量Ni、Mo、W、Nb进行合金化,Ni元素为奥氏体稳定元素,可在马氏体板条间形成薄膜状奥氏体,增强基体的韧性;Mo元素和W元素可起到固溶强化和合金碳化物强化的作用,并增强钢的淬透性;少量Nb元素可形成纳米级的NbC,可在较高温度下存在,起 到细化晶粒的作用,进一步提高韧性。
b)本申请中通过精确控制C、Si、Mn、Cr、Ni、Mo、W、Nb的元素含量,并通过控制工艺,保证钢的微观组织为板条马氏体+不超过3%的薄膜状奥氏体+细小弥散的复合ε-碳化物+纳米级NbC,进而提高了钢的强韧性。例如,抗拉强度达到1739MPa以上(例如1739~1842MPa),屈服强度1405MPa以上(例如1405~1485MPa),伸长率11.0%以上(例如11.0%~13.5%),面缩46%以上(例如46%~56%),冲击功达到52J以上(例如,52~78J),断裂韧性达到98MPa﹒m 1/2以上(例如98~130MPa﹒m 1/2)。
c)本申请的制造方法中,淬火得到的组织为板条马氏体基体及微量薄膜状残余奥氏体,由于较高的Si含量有效提升了抗回火软化能力,回火后析出细小弥散的复合ε-碳化物,避免渗碳体的析出,且能使高强度马氏体基体充分回复,来获得良好的强韧性配合。
d)本申请的高韧性超高强度钢具有较好的强韧性、较好的淬透性,且合金及制造成本无明显上升。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分的从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书以来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本申请的限制。
图1为本申请的实施例中2#试样的金相组织图;
图2为本申请的实施例中2#试样的透射电镜图。
具体实施方式
下面具体描述本申请的优选实施例,实施例仅用于阐释本申请的原理,并非用于限定本申请的范围。
本申请提供了一种高韧性超高强度钢,高韧性超高强度钢的各元素的质量百分数包括:C:0.27%~0.35%、Si:1.10%~1.70%、Mn:0.70%~1.10%、Cr:1.00%~1.40%、Ni:0.10%~0.50%、Mo:0.05%~0.50%、W:0.05%~0.10%、Nb:0.01%~0.04%,其余为铁和不可避免的杂质。
具体的,超高强度钢的元素中还可以添加V:0~0.150%,如V:0.03%~0.150%。
下面对本申请中的各元素详细地进行说明,含量均指钢中各个元素的质量百分数。
C:C是强化元素,主要是马氏体转变后碳原子固溶强化和通过低温回火析出亚稳碳化物强化,碳含量太低强度达不到所需级别,太高则损害韧性,因此本申请设计的碳含量在0.27%~0.35%之间。
Si:作为本申请钢的主合金元素之一,添加的Si溶入马氏体基体内,通过固溶强化提高钢的强度,同时提高钢的回火抗力,以使本申请钢的回火温度(低温回火)远离回火马氏体脆性的温度区间,但过多的Si降低Mo等元素在钢基体内的溶解度,导致淬火加热时残留合金碳化物、损害钢的韧性,因此本申请Si含量控制在1.10%~1.70%之间。
Cr:作为本申请钢的主合金元素之一,可提高钢的淬透性,并通过固溶强化提高钢的强度,此外Cr也提高钢的回火抗力,但太高的Cr含量降低钢的热传导性,同时也存在降低马氏体相变温度(Ms)、增加孪晶马氏体的比例,因此本申请Cr含量控制在1.00%~1.40%。
Ni:作为奥氏体形成元素,少量添加可提升钢的基体韧性、提高淬透性;但过高的Ni增加成本,降低马氏体相变温度(Ms)、增加孪晶马氏 体的比例。因此本申请Ni含量控制在0.10%~0.50%之间。
Mo:本申请钢中添加少量的Mo,可通过固溶强化或形成合金碳化物提高强度,具有提高淬透性、净化晶界、抑制回火脆化的作用,但过高的Mo导致淬火加热时残留合金碳化物、损害钢的韧性。因此本申请Mo含量应控制在0.05%~0.50%之间。
W:本申请钢种添加微量的W元素,提高淬透性,固溶在基体内或形成合金碳化物可提升钢的强度;W与Mo易在晶界偏聚,可提升晶界结合力,增强韧性。但W会形成M 6C碳化物,其回溶温度高,导致W含量增加时固溶温度会明显提升,每增加0.5%W大约使固溶温度提升50~80℃,产生粗大晶粒减低塑韧性;且W的添加还明显提升热加工难度,易造成开裂。因此本申请的W含量控制在0.05%~0.10%范围内。
Nb:微合金化元素,淬火加热时适量残留纳米级NbC碳化物,以阻止奥氏体晶粒长大,细化淬火后板条马氏体尺度;但Nb含量过高将会形成大尺寸Nb(C/N)夹杂物,降低钢的韧性。因此,控制Nb:0.01%~0.04%。
V:微合金化元素,形成MC型碳化物,稳定性低于NbC,析出温度较低,尺寸较小。淬火加热时适量残留纳米级VC碳化物,以阻止奥氏体晶粒长大,细化淬火后板条马氏体尺度。V含量过多不会提升细化晶粒的效果,因此控制V:≤0.15%,例如0.03%~0.1%。
为了进一步提高钢的韧性,本申请的高韧性超高强度钢中各元素的质量百分数可以包括:C:0.28%~0.34%、Si:1.20%~1.60%、Mn:0.80%~1.10%、Cr:1.20%~1.35%、Ni:0.15%~0.30%、Mo:0.05%~0.30%、W:0.05%~0.10%、Nb:0.015%~0.038%、V:≤0.10%,其余为铁和不可避免的杂质。
具体的,上述的高韧性超高强度钢的微观组织为板条马氏体+不超过3%的薄膜状残余奥氏体+细小弥散的复合ε-碳化物+纳米级NbC,其中马 氏体基体中固溶有Cr、Ni、W、Mo,复合ε-碳化物中固溶有W、Mo;W、Mo固溶在马氏体基体中提升晶界结合力,W、Mo固溶在复合ε-碳化物中形成回火稳定性较高的复合合金碳化物,组织中含有少量NbC碳化物起到细化晶粒的作用。
需要说明的是,本申请的高韧性超高强度钢中通过添加少量Ni、Mo、W、Nb进行合金化,Ni元素为奥氏体稳定元素,可在马氏体板条间形成薄膜状奥氏体,增强基体的韧性;Mo元素和W元素可起到固溶强化和合金碳化物强化的作用,并增强钢的淬透性;少量Nb元素可形成纳米级的NbC,可在较高温度下存在,起到细化晶粒的作用,进一步提高韧性;并通过精确控制C、Si、Mn、Cr、Ni、Mo、W、Nb的元素含量,保证钢的微观组织为板条马氏体+薄膜状奥氏体+细小弥散的复合ε-碳化物+纳米级NbC,进而提高了钢的强韧性。例如,抗拉强度达到1739MPa以上(例如1739~1842MPa),屈服强度1405MPa以上(例如1405~1485MPa),伸长率11.0%以上(例如11.0%~13.5%),面缩46%以上(例如46%~56%),冲击功达到52J以上(例如,52~78J),断裂韧性达到98MPa﹒m 1/2以上(例如98~130MPa﹒m 1/2)。
本申请中的高韧性超高强度钢的制造方法包括以下步骤:
步骤S1、采用电炉或非真空感应炉+炉外精炼+电渣重熔的工艺进行冶炼得到钢锭;
步骤S2、将钢锭放入加热炉中均温,均温的保温温度1170~1220℃,保温时间按截面直径每25mm保温15~20min(优选的,15min)计算;
步骤S3、均温后进行锻造;始锻温度≥1150℃,终锻温度≥850℃;
步骤S4、锻造后红送进行退火得到锻件;
步骤S5、最终热处理:锻件依次经过正火、油淬、回火处理得到高韧性超高强度钢。
具体的,上述步骤S2中,均温温度过高会造成粗晶,均温温度过低则锻造窗口不足,均温时间过长会造成晶粒过分长大以及资源浪费、过短会导致心部无法热透、温度不均匀,因此,控制均温的保温温度1170~1220℃,保温时间按截面直径每25mm保温15min~20min(优选的,15min)计算。
具体的,上述步骤S3中,锻造过程中包括三镦三拔进行成形,足够的锻造比保障心部锻透、铸态组织充分破碎,因此,需保证锻造变形比≥6。
具体的,上述步骤S4中,退火保温温度过高或过低均会造成达到平衡态的时间延长,因此,控制退火保温温度为650~680℃,退火保温时间≥12h。
具体的,上述步骤S5中,正火保温温度920~970℃,保温时间1~4h,空冷。具体的,实施时,保温时间与锻件的直径相关,可以根据具体工艺确定保温时间。
具体的,上述步骤S5中,淬火温度870~930℃,保温时间1~4h,油冷。具体的,实施时,保温时间与锻件的直径相关,可以根据具体工艺确定保温时间。
具体的,上述步骤S5中,回火温度为220~260℃,保温时间2~8h,空冷。具体的,实施时,保温时间与锻件的直径相关,可以根据具体工艺确定保温时间。
具体的,上述步骤S5中,淬火得到的组织为板条马氏体基体及微量薄膜状残余奥氏体,由于较高的Si含量有效提升了抗回火软化能力,回火后析出细小弥散的复合ε-碳化物,避免渗碳体的析出,且能使高强度马氏体基体充分回复,来获得良好的强韧性配合。
具体的,上述方法制得的高韧性超高强度钢的准静态力学性能:抗拉强度达到1739MPa以上(例如1739~1842MPa),屈服强度1405MPa 以上(例如1405~1485MPa),伸长率11.0%以上(例如11.0%~13.5%),面缩46%以上(例如46%~56%),冲击功达到52J以上(例如,52~78J),断裂韧性达到98MPa﹒m 1/2以上(例如98~130MPa﹒m 1/2)。
下面将以具体的实施例与对比例来展示本申请钢的成分和工艺参数精确控制的优势。
实施例
采用50kg真空感应炉进行冶炼编号1-5#试验钢,化学成分如表1所示。将钢锭放入加热炉中均温,保温温度为1200℃,保温时间按截面直径每25mm保温15min计算;均温后进行锻造;将钢锭锻造成40×40mm方棒,锻造始锻温度1200℃,终锻温度850℃,锻造过程中包括三镦三拔,锻造变形比≥6;锻后红送进行660℃退火;然后采用表2中热处理制度进行热处理。
表1 本申请实施例化学成分(wt.%)
编号 C Si Mn Cr Ni Mo W Nb V
1# 0.30 1.20 0.90 1.21 0.29 0.05 0.09 0.022 -
2# 0.28 1.35 1.04 1.25 0.30 0.10 0.10 0.015 -
3# 0.32 1.51 0.93 1.35 0.15 0.26 0.08 0.038 -
4# 0.34 1.43 0.85 1.30 0.21 0.30 0.06 0.027 0.08
5# 0.32 1.60 0.80 1.20 0.26 0.24 0.05 0.030 0.10
对比例 0.33 1.29 0.97 1.28 - - - - -
表2 热处理工艺参数
编号 正火 淬火 回火
1# 940℃×1h,空冷 890℃×1h,油冷 240℃×2h,空冷
2# 950℃×1h,空冷 880℃×1h,油冷 230℃×2h,空冷
3# 930℃×1h,空冷 880℃×1h,油冷 235℃×2h,空冷
4# 955℃×1h,空冷 920℃×1h,油冷 250℃×2h,空冷
5# 960℃×1h,空冷 930℃×1h,油冷 260℃×2h,空冷
对比例 950℃×1h,油冷 890℃×1h,油冷 230℃×2h,空冷
表3 本申请实施例热处理后微观组织
编号 微观组织
1# 板条马氏体+约1%薄膜状残余奥氏体+少量NbC+ε-碳化物
2# 板条马氏体+约1%薄膜状残余奥氏体+少量NbC+ε-碳化物
3# 板条马氏体+约1%薄膜状残余奥氏体+少量NbC+ε-碳化物
4# 板条马氏体+约1%薄膜状残余奥氏体+少量NbC/VC+ε-碳化物
5# 板条马氏体+约1%薄膜状残余奥氏体+少量NbC/VC+ε-碳化物
对比例 板条马氏体+ε-碳化物
表4 准静态力学性能
Figure PCTCN2022109923-appb-000001
表3所示为实施例1-5#试验钢的微观组织,表4为实施例1-5#钢的准静态力学性能。可见,实施例1#-5#通过添加少量Ni、Mo、W元素以及微量Nb(和或V)进行合金化后,钢的金相组织为板条马氏体+不超过3%(面积百分比)的薄膜状残余奥氏体+少量NbC/VC+ε-碳化物(图 1-2)。W、Mo固溶在马氏体基体中产生固溶强化、增强淬透性并提升晶界结合力,W、Mo固溶在ε-碳化物中形成回火稳定性较高的复合合金碳化物;Ni固溶在基体中提升马氏体板条韧性,并在板条间形成少量薄膜状残余奥氏体;Nb、V形成纳米级碳化物,在淬火时起到细化晶粒的作用。实施例与对比例(现有35CrMnSiA)相比,冲击韧性明显提高(41J提升到52J以上),断裂韧性更是提高了58%以上(62MPa·m 1/2提升到98MPa·m 1/2以上);本实施例中,若适当降低强度级别到1700MPa级(如实施例2所示),冲击韧性更可大幅提高到78J,断裂韧性可增加一倍(130MPa·m 1/2)。
具体的,本申请的钢的淬透性较好,临界淬透直径可达80~100mm。
以上所述仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种高韧性超高强度钢,其特征在于,所述高韧性超高强度钢的各元素的质量百分数包括:C:0.27%~0.35%、Si:1.10%~1.70%、Mn:0.70%~1.10%、Cr:1.00%~1.40%、Ni:0.10%~0.50%、Mo:0.05%~0.50%、W:0.05%~0.10%、Nb:0.01%~0.04%,其余为铁和不可避免的杂质。
  2. 根据权利要求1所述的高韧性超高强度钢,其特征在于,所述高韧性超高强度钢还包括V:0~0.150%。
  3. 根据权利要求1所述的高韧性超高强度钢,其特征在于,所述高韧性超高强度钢的各元素的质量百分数包括:C:0.28%~0.34%、Si:1.20%~1.60%、Mn:0.80%~1.10%、Cr:1.20%~1.35%、Ni:0.15%~0.30%、Mo:0.05%~0.30%、W:0.05%~0.10%、Nb:0.015%~0.038%,其余为铁和不可避免的杂质。
  4. 根据权利要求2所述的高韧性超高强度钢,其特征在于,所述高韧性超高强度钢还包括V:0.03%~0.1%。
  5. 根据权利要求1-4所述的高韧性超高强度钢,其特征在于,所述高韧性超高强度钢的微观组织为板条马氏体+薄膜状残余奥氏体+细小弥散的复合ε-碳化物+纳米级NbC。
  6. 一种高韧性超高强度钢的制造方法,其特征在于,用于制造权利要求1-5所述的高韧性超高强度钢,包括如下步骤:
    步骤S1、冶炼得到钢锭;
    步骤S2、将钢锭放入加热炉中均温;
    步骤S3、均温后进行锻造;
    步骤S4、锻造后红送进行退火得到锻件;
    步骤S5、锻件依次经过正火、油淬、回火处理得到高韧性超高强度钢。
  7. 根据权利要求6所述的制造方法,其特征在于,
    所述步骤S3中,锻造过程中包括三镦三拔进行成形,锻造变形比≥6。
  8. 根据权利要求6所述的制造方法,其特征在于,
    所述步骤S4中,退火保温温度为650~680℃,退火保温时间≥12h。
  9. 根据权利要求6所述的制造方法,其特征在于,
    所述步骤S5中,正火保温温度920~970℃。
  10. 根据权利要求6-9所述的制造方法,其特征在于,所述步骤S5中,淬火温度870~930℃,回火温度为220~260℃。
PCT/CN2022/109923 2021-11-26 2022-08-03 一种高韧性超高强度钢及其制造方法 WO2023093119A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/574,063 US20240318273A1 (en) 2021-11-26 2022-08-03 High-toughness ultrahigh-strength steel and manufacturing method thereof
ZA2023/11584A ZA202311584B (en) 2021-11-26 2023-12-18 High-toughness ultrahigh-strength steel and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111425641.8A CN114107821B (zh) 2021-11-26 2021-11-26 一种高韧性超高强度钢及其制造方法
CN202111425641.8 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023093119A1 true WO2023093119A1 (zh) 2023-06-01

Family

ID=80370611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109923 WO2023093119A1 (zh) 2021-11-26 2022-08-03 一种高韧性超高强度钢及其制造方法

Country Status (4)

Country Link
US (1) US20240318273A1 (zh)
CN (1) CN114107821B (zh)
WO (1) WO2023093119A1 (zh)
ZA (1) ZA202311584B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107821B (zh) * 2021-11-26 2022-07-08 钢铁研究总院 一种高韧性超高强度钢及其制造方法
CN114774630B (zh) * 2022-04-21 2024-05-03 河南中原特钢装备制造有限公司 低成本低合金超高强钢及其制造方法
CN115216695B (zh) * 2022-07-22 2023-08-08 上海大学 一种超高强度合金钢和一种16.8级螺纹紧固件及其制备方法
CN118007027B (zh) * 2023-10-30 2024-10-18 钢铁研究总院有限公司 一种低成本高韧性超高强度钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024870A (zh) * 2006-02-24 2007-08-29 南阳二机石油装备(集团)有限公司 一种低温高强度、高韧性钢及其制造方法
JP2010125511A (ja) * 2008-12-01 2010-06-10 Sanyo Special Steel Co Ltd コールドピルガー圧延機用ロールダイスおよびその製造方法
CN106065455A (zh) * 2015-04-20 2016-11-02 现代自动车株式会社 具有改善的耐久性的渗碳合金钢及其制造方法
US20210189517A1 (en) * 2018-05-22 2021-06-24 Thyssenkrupp Steel Europe Ag Sheet Metal Part Formed from a Steel Having a High Tensile Strength and Method for Manufacturing Said Sheet Metal Part
CN114107821A (zh) * 2021-11-26 2022-03-01 钢铁研究总院 一种高韧性超高强度钢及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123247A (ja) * 1999-10-21 2001-05-08 Daido Steel Co Ltd 被削性に優れた冷間工具鋼
JP4818766B2 (ja) * 2006-03-20 2011-11-16 日産自動車株式会社 セルフピアスリベットの製造方法
CN101210302B (zh) * 2006-12-25 2010-08-18 宝山钢铁股份有限公司 一种中低碳贝氏体高强高韧钢及其制造方法
CN101899622B (zh) * 2009-05-27 2012-03-28 宝山钢铁股份有限公司 一种高压容器用合金钢及其制造方法
CN102212760A (zh) * 2011-06-10 2011-10-12 钢铁研究总院 一种高韧性超高强度钢
CN106048430B (zh) * 2016-07-06 2017-11-03 马钢(集团)控股有限公司 一种高韧性轨道交通用贝氏体钢车轮及其制造方法
BR112020002943B1 (pt) * 2017-11-02 2023-01-17 Nippon Steel Corporation Pino perfurador e método para sua fabricação
JP7277859B2 (ja) * 2020-03-11 2023-05-19 日本製鉄株式会社 ガス軟窒化処理部品及びその製造方法
CN111979487A (zh) * 2020-08-14 2020-11-24 上海佩琛金属材料有限公司 一种高塑韧性低合金超高强度钢及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024870A (zh) * 2006-02-24 2007-08-29 南阳二机石油装备(集团)有限公司 一种低温高强度、高韧性钢及其制造方法
JP2010125511A (ja) * 2008-12-01 2010-06-10 Sanyo Special Steel Co Ltd コールドピルガー圧延機用ロールダイスおよびその製造方法
CN106065455A (zh) * 2015-04-20 2016-11-02 现代自动车株式会社 具有改善的耐久性的渗碳合金钢及其制造方法
US20210189517A1 (en) * 2018-05-22 2021-06-24 Thyssenkrupp Steel Europe Ag Sheet Metal Part Formed from a Steel Having a High Tensile Strength and Method for Manufacturing Said Sheet Metal Part
CN114107821A (zh) * 2021-11-26 2022-03-01 钢铁研究总院 一种高韧性超高强度钢及其制造方法

Also Published As

Publication number Publication date
ZA202311584B (en) 2024-01-31
CN114107821B (zh) 2022-07-08
US20240318273A1 (en) 2024-09-26
CN114107821A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023093119A1 (zh) 一种高韧性超高强度钢及其制造方法
CN106244927B (zh) 一种低密度超高强度钢及其制备方法
CN109082591B (zh) 125ksi抗硫化氢应力腐蚀高强油套管用钢及其制备工艺
CN104328359B (zh) 高韧性易旋压易焊接超高强度d506a钢及制备方法
CN111748739B (zh) 一种抗拉强度>2100MPa耐热弹簧钢及其生产方法
CN111074148B (zh) 一种800MPa级热冲压桥壳钢及其制造方法
CN110079743B (zh) 一种1500MPa级低氢致延迟开裂敏感性热成形钢及生产方法
CN106756509B (zh) 一种耐高温合金结构钢及其热处理工艺
CN113046654B (zh) 一种高塑性高强度高耐蚀不锈钢及其制备方法
CN114411043B (zh) 一种大型热锻热作模具钢的制备方法
US11220733B1 (en) Low carbon martensitic high temperature strength steel and preparation method thereof
CN108368591A (zh) 具有优异的焊后热处理耐性的压力容器钢板及其制造方法
CN113774281A (zh) 一种2000MPa级高塑韧性高耐蚀马氏体时效不锈钢及其制备方法
CN113322415A (zh) 一种航空轴承用马氏体不锈钢及其制备方法
CN104911499B (zh) Cu强化Co‑free二次硬化超高强度钢及制备方法
CN109790602B (zh)
CN113774291A (zh) 一种超低碳高性能马氏体时效不锈钢及其制备方法
CN115627423B (zh) 一种1600MPa级的热轧卷板及其生产方法
JP7223997B2 (ja) 高硬度かつ靱性に優れる鋼
JP3857835B2 (ja) 高強度ボルト用鋼及び高強度ボルトの製造方法
JP5688742B2 (ja) 靭性、耐磨耗性に優れる鋼の製造方法
JP4344126B2 (ja) ねじり特性に優れる高周波焼もどし鋼
JP5601861B2 (ja) ボロン鋼圧延焼鈍鋼板の製造法
CN110846567B (zh) 一种高强度耐极寒环境冲击螺栓用钢及其生产方法
JP2003201513A (ja) 高強度肌焼鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18574063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE