WO2023092898A1 - 一种薄膜探针卡及其探针头 - Google Patents

一种薄膜探针卡及其探针头 Download PDF

Info

Publication number
WO2023092898A1
WO2023092898A1 PCT/CN2022/080729 CN2022080729W WO2023092898A1 WO 2023092898 A1 WO2023092898 A1 WO 2023092898A1 CN 2022080729 W CN2022080729 W CN 2022080729W WO 2023092898 A1 WO2023092898 A1 WO 2023092898A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
elastic
film
support
elastic body
Prior art date
Application number
PCT/CN2022/080729
Other languages
English (en)
French (fr)
Inventor
赵梁玉
于海超
王艾琳
Original Assignee
强一半导体(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 强一半导体(苏州)有限公司 filed Critical 强一半导体(苏州)有限公司
Publication of WO2023092898A1 publication Critical patent/WO2023092898A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes

Definitions

  • the invention belongs to the technical field of probe cards and wafer testing, and in particular relates to a film probe card and a probe head thereof.
  • the thin-film probe card realizes small-scale probe structure processing and high-precision signal line structure parameter control, reduces the generation of parasitic capacitance and inductance, greatly shortens the signal path, and improves The degree of impedance matching is widely used in high-frequency wafer-level test analysis.
  • Measuring slippage refers to the small horizontal movement of the probe when it comes into contact with the pad under test and starts to lift vertically. An appropriate amount is extremely necessary to push away the oxide on the surface of the pad or bump under test and obtain stable electrical contact: if the slippage is too small, the vertical contact force required for the probe to obtain stable contact may be too large, causing damage to the Pad; Excessive slippage may cause the probe to touch the passivation layer area outside the pad and damage the object under test.
  • the controllable contact force has a positive effect on ensuring that the chip pad is not damaged.
  • pad and bump materials include aluminum, gold, copper or solder: the surface of aluminum is prone to oxidation in the air, and a force of 3-5gf is generally required during the test to penetrate or push away the surface oxide to achieve stability Contact; gold requires a small contact force due to its soft material, generally between 0.1-1gf; copper materials require greater force to establish a good contact, about 5-6gf.
  • the pad metal layer and the low-K interlayer dielectric layer become thinner, which also increases the requirements for the control of the contact force of the probe.
  • Patent US5395253 proposes that the initial film is in a stretched state, and when the probe comes into contact with the Pad to be tested and begins to lift vertically, the film gradually relaxes, and the probe will therefore make a slight horizontal movement to the center of the film, resulting in measurement slippage shift.
  • a significant disadvantage of this method is that the measured slippage of the probe is related to the position of the probe relative to the center of the film, which is not uniform.
  • the purpose of the present invention is to provide a thin film probe card and its probe head, which can realize the proper measurement slip of the probe during the test process, provide controllable contact force, and especially reduce the stress during the use of the thin film probe , improve service life.
  • the technical scheme of the thin film probe card used in the present invention is: a thin film probe card, including a PCB board, a connector and a thin film probe head;
  • the thin film probe head includes a support body providing an action surface , a thin film covered on the active surface of the support body, and probes and interconnection wires arranged on the thin film;
  • a supporting elastic layer is placed between the active surface of the support body and the thin film, and the elastic support layer includes a first The elastic body and the second elastic body, the elastic force of the first elastic body and the second elastic body are not equal, the first elastic body and the second elastic body are put together on a plane, and their joints are opposed to form a splicing seam;
  • the probe The needle corresponds to the seam, and the projection of the probe straddles the seam.
  • the active surface of the supporting body is covered with a supporting rigid body, and the supporting elastic layer is integrally formed on the surface of the supporting rigid body facing the probe.
  • the middle part of the support body has a convex portion protruding downwards, and the lower surface of the convex portion serves as the active surface; the support body is provided with a connecting surface on the periphery of the convex portion for abutting against the PCB board.
  • the connection surface is also covered by the film, and probes are also provided on the film portion corresponding to the connection surface, and a support elastic layer is also placed between the connection surface of the support body and the film.
  • the supporting elastic layer includes a plurality of first elastic bodies and a plurality of second elastic bodies, and these first elastic bodies and second elastic bodies are arranged at intervals on a plane and joined together.
  • the technical solution of the thin film probe head used in the present invention is: a thin film probe head, including a support body providing an action surface, a film covering the action surface of the support body, and a probe set on the film. Needles and interconnecting wires; a supporting elastic layer is arranged between the active surface of the supporting body and the film, and the supporting elastic layer includes a first elastic body and a second elastic body, and the elastic force of the first elastic body and the second elastic body If they are not equal, the first elastic body and the second elastic body are joined together on a plane, and their joints are opposed to form a seam; the probe corresponds to the seam, and the projection of the probe straddles the seam.
  • the active surface of the supporting body is covered with a supporting rigid body, and the supporting elastic layer is integrally formed on the surface of the supporting rigid body facing the probe.
  • the middle part of the support body has a convex portion protruding downwards, and the lower surface of the convex portion serves as the active surface; the support body is provided with a connecting surface on the periphery of the convex portion for abutting against the PCB board.
  • the connection surface is also covered by the film, and probes are also provided on the film portion corresponding to the connection surface, and a support elastic layer is also placed between the connection surface of the support body and the film.
  • the supporting elastic layer includes a plurality of first elastic bodies and a plurality of second elastic bodies, and these first elastic bodies and second elastic bodies are arranged at intervals on a plane and joined together.
  • the present invention cleverly increases the support elastic layer, and the support elastic layer is assembled by the first elastic body and the second elastic body, so that the elastic force of the elastic layer lined on both sides of each probe is unequal, so that the probe is in the contact process An appropriate amount of measurement slip can occur to penetrate or push away the surface oxide of the chip under test to achieve more stable contact. Moreover, since the supporting elastic layer is installed between the action surface of the supporting body and the film for modification, the probe does not need to be changed, and the probe can adopt an ordinary symmetrical structure.
  • the initial state probe is not in contact with the tested chip Pad, the elastic component lined above the support is in the initial compression state, and the supporting elastic layer is also in the uncompressed state; with the application of the test OD, the probe and the tested chip
  • the measuring chip Pad contacts displacement occurs in the vertical direction, most of the displacement is absorbed by the elastic component, and the remaining part of the displacement is absorbed by the probe and the supporting elastic layer; at this time, because the elastic force of the supporting elastic layer lined on both sides of the probe is not equal, When the probe moves vertically, it tilts slightly, and the probe slides in the horizontal direction, which can push away the dirt and oxides on the surface of the chip under test to achieve a more stable electrical connection.
  • the elastic force of the supporting elastic layer lined on both sides of each probe is unequal, so that the probe is in the vertical direction While moving, it realizes lateral sliding in the horizontal direction and realizes stable and reliable electrical contact;
  • the present invention realizes the absorption and compatibility of the flatness problems such as the local height difference of the probe and the overall inclination, and prevents the contact force caused by the local probe being too long or too short, and the tested Pad is damaged Or probe virtual connection, open circuit and other problems.
  • FIG. 1 is a schematic structural view of a thin film probe card according to Embodiment 1 and Embodiment 2 of the present invention
  • FIG. 2 is a schematic structural view of the thin film probe head of Embodiment 1 and Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of the slope support structure of the film probe head of Embodiment 1 and Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of the corresponding positions of the splicing seam and the probe in Embodiment 1 and Embodiment 2 of the present invention
  • Fig. 5 is a schematic diagram of the position of the probe before the test of Embodiment 1 and Embodiment 2 of the present invention
  • Fig. 6 is a schematic diagram showing the comparison of the positions of the probes during the test of the first embodiment and the second embodiment of the present invention.
  • Support body 311. Action surface; 312. Connection surface;
  • Probe 331. Needle seat structure; 332. Needle tip structure;
  • a thin-film probe card comprising a PCB board 1, a connector 2, and a thin-film probe head 3; The thin film 32 , and the probes 33 and interconnection lines 34 arranged on the thin film 32 .
  • PCB board 1 is a multi-layer epoxy resin circuit board, on which coaxial connectors 11 and signal connection points 12 are distributed, and PCB traces 13 are distributed inside, respectively connecting coaxial connectors 11 to corresponding signal connection points 12, Realize electrical signal conduction and transmission; the surface of PCB 1 is also distributed with spring structures 14 and PCB end threaded holes 15; the center of PCB 1 is hollowed out to accommodate the film probe head 3; spring structure 14 is located in the center of PCB 1 The outer periphery of the hollowed out part is used to realize the tight connection with the film probe head 3 .
  • the supporting body 31 is a rigid body with a convex part protruding downwards in its middle, and the lower surface of the convex part serves as the active surface 311 .
  • the supporting body 31 is provided with a connection surface 312 on the periphery of the convex portion for contacting the PCB board 1, the connection surface 312 is also covered by the film 32, and a probe is also provided on the film 32 corresponding to the connection surface 312. 33 , the probe 33 is used for docking with the PCT board 1 .
  • a supporting elastic layer 35 is placed between the active surface 311 of the supporting body 31 and the film 32, and the supporting elastic layer 35 is composed of a plurality of first elastic bodies 351 and a plurality of second elastic bodies 352 arranged on a plane and joined together. Composition, the joints are offset to form a seam 354; the probe 33 corresponds to the seam 354, and the projection of the probe 33 straddles the seam 354. As shown in FIG. 4 , the seam 354 is linear, and the probes 33 are arranged in multiple columns along the seam 354 .
  • the number of the first elastic body 351 and the second elastic body 352 can be only one, and its seam 354 can also be in various forms such as arcs and curves, that is, the first elastic body 351 and the second elastic body 352 It can be assembled in various arrangement shapes.
  • a support rigid body 353 is further included, and the support rigid body 353 is fixedly covered on the action surface 311 of the support body 31 through the adhesive layer 36 .
  • the material of the supporting rigid body 353 can be high temperature resistant hard material such as silicon, glass, PMMA.
  • the supporting elastic layer 35 is made of flexible materials such as PDMS and silica gel, which can be adjusted by adjusting the material ratio, curing temperature and other conditions, so as to realize the absorption and compatibility of the small height difference between the pad or probe structure of the tested chip. Specifically, the supporting elastic layer 35 is integrally made and adhered to the supporting rigid body 353 .
  • the film 32 can be fixed on the supporting elastic layer 35 through the adhesive layer 36 .
  • a support elastic layer 35 is also provided between the connection surface 312 of the support body 31 and the film 32 , and the support elastic layer 35 is lined behind the film 32 .
  • the specific structure of the supporting elastic layer 35 is the same as that of the supporting elastic layer 35 between the action surface 311 of the supporting body 31 and the film 32 , and will not be repeated here.
  • the probe 33 specifically includes two parts: a needle seat structure 331 and a needle tip structure 332 .
  • the needle point structure 332 is located on the needle seat structure 331 .
  • the shape of the seat structure 331 is cuboid, cylinder, prism, etc., and the material can be rhodium, Ni, or Pd-Ni, Ni-B alloy and other high-hardness materials.
  • the shape of the needle tip is a truncated pyramid or a truncated truncated, circular truncated, etc., and the material is rhodium, Ni or Pd-Ni, Ni-B alloy and other wear-resistant materials.
  • the top of the support body 31 is also provided with a reinforcing plate 38, which is a metal plate with a recessed area in the center, on which there are screw holes 381 for assembly and screw holes 382 for adjusting the unequal elastic force.
  • the edge is connected to the support body 31, and its central recessed area is used to accommodate the elastic component 37.
  • the elastic component 37 can be an elastic body structure such as an airbag or a multi-claw spring. As shown in the figure, the elastic component 37 is an airbag.
  • the leveling screws 39 are located in the leveling screw holes 382 , and the bottom is in contact with the upper surface of the elastic component 37 . Adjusting the relative positions of a plurality of leveling screws 39 can realize the correction of the inclination between the reinforcing plate 38 and the supporting body 31 .
  • the elastic component 37 is located between the reinforcing plate 38 and the support body 31. During the test, the elastic component 37 is in a compressed state. When OD is applied, the elastic component 37 can undergo elastic deformation to absorb the vertical movement displacement.
  • the initial state is as shown in Figure 5
  • the probe 33 is not in contact with the tested chip Pad
  • the elastic component 37 is in the initial compression state
  • the supporting elastic layer 35 is in the uncompressed state
  • the application of the test OD as shown in Figure 6
  • the probe is in contact with the tested chip Pad, and displacement occurs in the vertical direction, most of the displacement is absorbed by the elastic component 37, and the rest of the displacement is absorbed by the probe 33 and the supporting elastic layer 35; due to the supporting elasticity on both sides of the probe 33
  • the elastic force of the layer 35 is inconsistent, so the vertical movement will be inclined at the same time, and the probe 33 will slide laterally with a distance L, which can push away the dirt and oxides on the surface of the chip under test to achieve a more stable electrical connection.
  • Embodiment two see shown in accompanying drawing 1-6:
  • a film probe head including a support body 31 providing an action surface 311, a film 32 covering the action surface 311 of the support body 31, and probes 33 and interconnection wires 34 arranged on the film 32, specifically
  • the structure is the same as that of the thin-film probe head in Embodiment 1, and will not be repeated here.
  • the first elastic body 351 and the second elastic body 352 in the supporting elastic layer 35 may be multiple as in Embodiment 1, or may be only one.
  • the combination of the first elastic body 351 and the second elastic body 352 The shape of the seam 354 is also not limited, it can be a straight line or a curve, etc., and the actual joint shape is adjusted according to the distribution of the probes 33;
  • the splicing seam 354 needs to correspond to the probe 33.
  • the correspondence here can be that one splicing seam 354 corresponds to one probe 33, or one splicing seam 354 corresponds to multiple probes 33;
  • the supporting elastic layer 35 in addition to the first elastic body 351 and the second elastic body 352, other elastic bodies with different elastic forces such as the third elastic body 351 can also be included, that is, two, three or even more composed of elastic body splicing;
  • the supporting rigid body 353 can be removed and not used, and the supporting elastic layer 35 is directly arranged on the action surface 311 of the supporting body 31;
  • the adhesive layer 36 between the film 32 and the supporting elastic layer 35 can be removed, and the film 32 is fixed relative to the surface of the supporting elastic layer 35 in other ways, or it is not fixed but only stretched against the supporting elastic layer 35 also may.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种薄膜探针卡及其探针头,薄膜探针卡包括薄膜探针头(3),薄膜探针头(3)包括支撑体(31)、薄膜(32)、探针(33)、互连线(34);支撑体(31)的作用面(311)与薄膜(32)之间垫设有一支撑弹性层(35),支撑弹性层(35)包括第一弹性体(351)和第二弹性体(352),第一弹性体(351)和第二弹性体(352)的弹力不相等,第一弹性体(351)和第二弹性体(352)在一个平面上相拼合,其连接处相抵形成拼接缝(354);探针(33)与拼接缝(354)相对应,探针(33)的投影跨在拼接缝(354)上。

Description

一种薄膜探针卡及其探针头 技术领域
本发明属于探针卡、晶圆测试技术领域,具体涉及一种薄膜探针卡及其探针头。
背景技术
近年来,随着5G技术和消费电子技术的发展和普及,半导体器件不断朝着小型化、集成化、衬垫间距密集化发展,工作频率不断提高,面向高频的晶圆级测试逐渐成为RF芯片生产中不可获取的重要一环。相较于其他类型探针卡,薄膜探针卡实现了小尺度的探针结构加工和高精度的信号线结构参数控制,减少了寄生电容和电感的产生,极大地缩短了信号路径,提高了阻抗匹配程度,广泛应用于面向高频的晶圆级测试分析。
晶圆测试过程中,需提供适当的测量滑移量和可控的接触力大小。
测量滑移,是指探针与被测Pad开始接触并开始垂直抬升运动时,探针作出微小的水平运动。适量的对推开被测焊垫或凸块表面氧化物,获得稳定电接触极为必要:滑移过小,可能会导致探针获得稳定接触所需的垂直接触力过大,对Pad产生损伤;滑移过大,可能导致探针接触到Pad外钝化层区域,损伤被测物。
可控的接触力对保证芯片pad不受损伤具有积极作用。目前常用的焊盘及凸块材料包括铝、金、铜或焊料:在空气中铝表面易发生氧化,测试过程中一般需要3-5gf的力,以穿透或推开表层氧化物,实现稳定接触;金由于材质较软,所需接触力很小,一般在0.1-1gf之间;铜材料则需要更大的力建立良好的接触,约为5-6gf。随着半导体工艺的小型化和集成化,焊垫金属层和低K层间介质层变薄,也提高了对探针接触力控制的要求。
专利US5395253中提出:初始薄膜处于拉伸状态,当探针与被测Pad开始接触并开始垂直抬升运动时,薄膜逐渐处于放松状态,探针会因此向薄膜中心区域做微小水平运动,产生测量滑移。这种方式存在的一个显著缺点在于探针的测量滑移量与探针相对薄膜中心位置有关,不均一。
现有技术中,最具代表性的结构可参见美国专利US7893704,它提出了一种新型的薄膜探针结构,它是将探针设计为类似悬臂的结构,利用测试过程中类似悬臂的探针结构绕悬臂末端的旋转实现了测量滑移的实现,但这种方式由于探针需反复绕悬臂末端进行旋转运动,该处应力集中,薄膜易损坏。
可见,本领域亟须一种薄膜探针卡,能够实现适当的测量滑移,并提供可控的接触力,特别地,可降低薄膜探针应力,提高薄膜探针寿命。
发明内容
本发明目的是提供一种薄膜探针卡及其探针头,可实现测试过程中探针的适当测量滑移,提供可控的接触力,特别地,可降低薄膜探针使用过程中的应力,提高使用寿命。
为达到上述目的,本发明采用的薄膜探针卡技术方案是:一种薄膜探针卡,包括PCB板、连接件以及薄膜探针头;所述薄膜探针头包括提供一作用面的支撑体、覆在支撑体的作用面上的薄膜、以及设置在薄膜上的探针和互连线;所述支撑体的作用面与薄膜之间垫设有一支撑弹性层,该支撑弹性层包括第一弹性体和第二弹性体,第一弹性体和第二弹性体的弹力不相等,第一弹性体和第二弹性体在一个平面上相拼合,其连接处相抵形成拼接缝;所述探针与拼接缝相对应,探针的投影跨在拼接缝上。
上述方案中,所述支撑体的作用面覆设有一支撑刚性体,所述支撑弹性层一体成型于支撑刚性体的朝向探针的那侧表面上。
上述方案中,所述支撑体中部具有一向下突出的凸部,该凸部的下表面作为所述作用面;所述支撑体上在凸部的外围设有供与PCB板相抵的连接面,该连接面也被所述薄膜覆盖,在对应于连接面的薄膜部位也设有探针,所述支撑体的连接面与薄膜之间也垫设有一所述支撑弹性层。
上述方案中,所述支撑弹性层包括多个第一弹性体和多个第二弹性体,这些第一弹性体和第二弹性体在一个平面上间隔设置相拼合。
为达到上述目的,本发明采用的薄膜探针头技术方案是:一种薄膜探针头,包括提供一作用面的支撑体、覆在支撑体的作用面上的薄膜以及设置在薄膜上的探针和互连线;所述支撑体的作用面与薄膜之间垫设有一支撑弹性层,该支撑弹性层包括第一弹性体和第二弹性体,第一弹性体和第二弹性体的弹力不相等,第一弹性体和第二弹性体在一个平面上相拼合,其连接处相抵形成拼接缝;所述探针与拼接缝相对应,探针的投影跨在拼接缝上。
上述方案中,所述支撑体的作用面覆设有一支撑刚性体,所述支撑弹性层一体成型于支撑刚性体的朝向探针的那侧表面上。
上述方案中,所述支撑体中部具有一向下突出的凸部,该凸部的下表面作为所述作用面;所述支撑体上在凸部的外围设有供与PCB板相抵的连接面,该连接面也被所述薄膜覆盖,在对应于连接面的薄膜部位也设有探针,所述支撑体的连接面与薄膜之间也垫设有一所述支撑弹性层。
上述方案中,所述支撑弹性层包括多个第一弹性体和多个第二弹性体,这些第一弹性体和第二弹性体在一个平面上间隔设置相拼合。
本发明巧妙地通过增加支撑弹性层,且支撑弹性层由第一弹性体和第二弹性体相拼合,使每个探针两侧所衬的弹性层弹力不相等,从而使探针在接触过程能够发生适量测量滑移,以穿透或推开被测芯片表层氧化物,实现更稳定地接触。并且,由于是在支撑体的作用面与薄膜之间设置支撑弹性层进行改造,并不对探针进行改变,探针采用普通的对称结构即可。在测试过程中:初始状态探针与被测芯片Pad未接触,衬在支撑体上方的弹性组件处于初始 压缩状态,支撑弹性层也处于未压缩状态;随着测试OD的施加,探针与被测芯片Pad接触,垂直方向发生位移,大部分位移被弹性组件吸收,剩余部分位移由探针和支撑弹性层共同吸收;这时就由于探针两侧所衬的支撑弹性层的弹力不相等,在探针垂直运动的同时就发生了稍稍地倾斜,探针在水平方向上产生滑移,可推开被测芯片表面脏污和氧化物,实现更稳定的电连接。
本发明有益效果:
1、本发明通过增加支撑弹性层,且支撑弹性层由第一弹性体和第二弹性体相拼合,使每个探针两侧所衬的支撑弹性层弹力不相等,使得探针在垂直方向运动的同时实现了水平方向的侧向滑移,实现了稳定可靠的电接触;
2、本发明通过控制第一弹性体和第二弹性体的选材配比,调整第一弹性体和第二弹性体的弹力差,即可最终实现对测量滑移量和接触力的控制;
3、本发明通过增加支撑弹性层,实现了探针局部高度差异及整体倾斜等平面度问题的吸收和兼容,防止由于局部探针过长或多短导致的接触力过大,被测Pad损伤或探针虚接、开路等问题。
附图说明
图1为本发明实施例一及实施例二薄膜探针卡的结构示意图;
图2为本发明实施例一及实施例二的薄膜探针头的结构示意图;
图3为本发明实施例一及实施例二薄膜探针头的斜面支撑结构处的示意图;
图4为本发明实施例一及实施例二的拼接缝与探针的对应位置的示意图;
图5为本发明实施例一及实施例二测试前探针位置示意图;
图6为本发明实施例一及实施例二测试时探针位置对比示意图。
以上附图中:1、PCB板;11、同轴连接器;12、信号连接点;13、PCB走线;14、弹簧结构;15、PCB端螺纹孔;
2、连接件;
3、薄膜探针头;
31、支撑体;311、作用面;312、连接面;
32、薄膜;
33、探针;331、针座结构;332、针尖结构;
34、互连线;
35、支撑弹性层;351、第一弹性体;352、第二弹性体;353、支撑刚性体;354、拼接缝;
36、黏附层;
37、弹性组件;
38、补强板;381、装配用螺丝孔;382、调平用螺丝孔;
39、调平螺丝。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例一:参见附图1-6所示:
一种薄膜探针卡,包括PCB板1、连接件2以及薄膜探针头3;所述薄膜探针头3包括提供一作用面311的支撑体31、覆在支撑体31的作用面311上的薄膜32、以及设置在薄膜32上的探针33和互连线34。
PCB板1为多层环氧树脂线路板,其上分布有同轴连接器11和信号连接点12,其内部分布有PCB走线13,分别连接同轴连接器11到对应信号连接点12,实现电信号导通和传输;PCB板1表面还分布有弹簧结构14和PCB端螺纹孔15;PCB板1中心位置掏空,用于容纳薄膜探针头3;弹簧结构14位于PCB板1中心掏空处外周,用于实现与薄膜探针头3的紧密连接。
所述支撑体31为一刚性体,其中部具有一向下突出的凸部,该凸部的下表面作为所述作用面311。所述支撑体31上在凸部的外围设有供与PCB板1相抵的连接面312,该连接面312也被所述薄膜32覆盖,在对应于连接面312的薄膜32部位也设有探针33,该探针33用于与PCT板1对接。
所述支撑体31的作用面311与薄膜32之间垫设有一支撑弹性层35,该支撑弹性层35由多个第一弹性体351和多个第二弹性体352在一个平面上排列相拼合构成,其连接处相抵形成拼接缝354;所述探针33与拼接缝354相对应,探针33的投影跨在拼接缝354上。如图4所示,所述拼接缝354为直线状,所述探针33即是沿着拼接缝354布置的多列。此为举例,第一弹性体351和第二弹性体352的数量可以仅为一个,其拼接缝354也可以弧线、曲线等各种形式,即第一弹性体351和第二弹性体352可以按各种布置形状相拼合。
具体,还包括一支撑刚性体353,该支撑刚性体353通过黏附层36固定覆设在支撑体31的作用面311上。支撑刚性体353的材料可为硅、玻璃、PMMA等耐高温硬质材料。
支撑弹性层35材料为PDMS、硅胶等柔性材料,可通过调节材料配比、固化温度等条件实现弹性调整,实现被测芯片Pad或探针结构间的微小高度差吸收和兼容。具体,所述支撑弹性层35为一体制作粘附于支撑刚性体353上。
具体,薄膜32可通过黏附层36固定覆于支撑弹性层35上。
为了与PCB板1对接的探针也具有测量滑移,在支撑体31的连接面312与薄膜32之间也设有一所述支撑弹性层35,该支撑弹性层35衬在薄膜32之后。该支撑弹性层35的具体结构与支撑体31作用面311与薄膜32之间的支撑弹性层35相同,这里不再赘述。
所述探针33具体包括针座结构331和针尖结构332两部分。针尖结构332位于针座结构331之上。针座结构331形状为长方体、圆柱、棱柱等,材料可为铑、Ni或Pd-Ni、Ni-B合金等高硬度材料。针尖结构形状为截断金字塔形或棱台、圆台等,材料为铑、Ni或Pd-Ni、Ni-B合金等耐磨性材料。
所述支撑体31的上方还设有一补强板38,该补强板38为一中心设凹陷区域的金属板,其上分布有装配用螺丝孔381和调弹力不相等平用螺丝孔382,边缘与支撑体31连接,其中心凹陷区域用于容纳弹性组件37,弹性组件37可为气囊、多爪弹簧等弹性体结构,如图示为弹性组件37为一气囊。调平螺丝39位于调平用螺丝孔382中,底部与弹性组件37上表面接触,调整多个调平螺丝39的相对位置可实现增强板38和支撑体31之间倾斜的校正。
弹性组件37位于补强板38与支撑体31之间,测试过程中弹性组件37处于压缩状态,施加OD,弹性组件37可发生弹性形变,吸收垂直方向运动位移。
测试过程中:初始状态如图5所示,探针33与被测芯片Pad未接触,弹性组件37处于初始压缩状态,支撑弹性层35处于未压缩状态;随着测试OD的施加,如图6所示,探针与被测芯片Pad接触,垂直方向发生位移,大部分位移被弹性组件37吸收,剩余部分位移由探针33和支撑弹性层35共同吸收;由于探针33两侧的支撑弹性层35的弹力不一致,因此垂直运动的同时会发生倾斜,探针33侧向产生距离为L的滑移,可推开被测芯片表面脏污和氧化物,实现更稳定的电连接。
实施例二:参见附图1-6所示:
一种薄膜探针头,包括提供一作用面311的支撑体31、覆在支撑体31的作用面311上的薄膜32、以及设置在薄膜32上的探针33和互连线34,其具体结构同实施例一中的薄膜探针头相同,这里不再赘述。
上述实施例为举例,实际中可作出以下实际变化:
1、所述支撑弹性层35中的第一弹性体351和第二弹性体352可以如实施例一为多个,也可以仅为一个,第一弹性体351和第二弹性体352间的拼接缝354的形状也不限,可以是直线,也可以曲线等,实际拼合形状按探针33的分布情况来调整;
2、拼接缝354与探针33需要对应,这里的对应可以是一个拼接缝354对应一个探针33,也可以一个拼接缝354对应多个探针33;
3、所述支撑弹性层35中,除第一弹性体351和第二弹性体352外,还可以包括第三弹性体351等其他不同弹力的弹性体,即由二种、三种甚至更多的弹性体拼合构成;
4、所述支撑刚性体353可以去除不采用,而将所述支撑弹性层35直接设置在支撑体31的作用面311上;
5、所述薄膜32与支撑弹性层35之间的黏附层36可以去除,薄膜32以其他方式相对支撑弹 性层35的表面固定,或者不固定而仅是绷紧抵靠在支撑弹性层35上也可。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种薄膜探针卡,包括PCB板(1)、连接件(2)以及薄膜探针头(3);所述薄膜探针头(3)包括提供一作用面(311)的支撑体(31)、覆在支撑体(31)的作用面(311)上的薄膜(32)以及设置在薄膜(32)上的探针(33)和互连线(34);其特征在于:
    所述支撑体(31)的作用面(311)与薄膜(32)之间垫设有一支撑弹性层(35),该支撑弹性层(35)包括第一弹性体(351)和第二弹性体(352),第一弹性体(351)和第二弹性体(352)的弹力不相等,第一弹性体(351)和第二弹性体(352)在一个平面上相拼合,其连接处相抵形成拼接缝(354);所述探针(33)与拼接缝(354)相对应,探针(33)的投影跨在拼接缝(354)上。
  2. 根据权利要求1所述薄膜探针卡,其特征在于:所述支撑体(31)的作用面(311)覆设有一支撑刚性体(353),所述支撑弹性层(35)一体成型于支撑刚性体(353)的朝向探针(33)的那侧表面上。
  3. 根据权利要求1所述薄膜探针卡,其特征在于:所述支撑体(31)中部具有一向下突出的凸部,该凸部的下表面作为所述作用面(311);所述支撑体(31)上在凸部的外围设有供与PCB板(1)相抵的连接面(312),该连接面(312)也被所述薄膜(32)覆盖,在对应于连接面(312)的薄膜(32)部位也设有探针(33),所述支撑体(31)的连接面(312)与薄膜(32)之间也垫设有一所述支撑弹性层(35)。
  4. 根据权利要求1所述薄膜探针卡,其特征在于:所述支撑弹性层(35)包括多个第一弹性体(351)和多个第二弹性体(352),这些第一弹性体(351)和第二弹性体(352)在一个平面上间隔设置相拼合。
  5. 一种薄膜探针头,其特征在于:包括提供一作用面的支撑体(31)、覆在支撑体(31)的作用面(311)上的薄膜(32)、以及设置在薄膜(32)上的探针(33)和互连线(34);其特征在于:
    所述支撑体(31)的作用面(311)与薄膜(32)之间垫设有一支撑弹性层(35),该支撑弹性层(35)包括第一弹性体(351)和第二弹性体(352),第一弹性体(351)和第二弹性体(352)的弹力不相等,第一弹性体(351)和第二弹性体(352)在一个平面上相拼合,其连接处相抵形成拼接缝(354);所述探针(33)与拼接缝(354)相对应,探针(33)的投影跨在拼接缝(354)上。
  6. 根据权利要求5所述薄膜探针头,其特征在于:所述支撑体(31)的作用面(311)覆设有一支撑刚性体(353),所述支撑弹性层(35)一体成型于支撑刚性体(353)的朝向探针(33)的那侧表面上。
  7. 根据权利要求5所述薄膜探针头,其特征在于:所述支撑体(31)中部具有一向下突 出的凸部,该凸部的下表面作为所述作用面(311);所述支撑体(31)上在凸部的外围设有供与PCB板(1)相抵的连接面(312),该连接面(312)也被所述薄膜(32)覆盖,在对应于连接面(312)的薄膜(32)部位也设有探针(33),所述支撑体(31)的连接面(312)与薄膜(32)之间也垫设有一所述支撑弹性层(35)。
  8. 根据权利要求5所述薄膜探针头,其特征在于:所述支撑弹性层(35)包括多个第一弹性体(351)和多个第二弹性体(352),这些第一弹性体(351)和第二弹性体(352)在一个平面上间隔设置相拼合。
PCT/CN2022/080729 2021-11-29 2022-03-14 一种薄膜探针卡及其探针头 WO2023092898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111431283.1A CN114200279B (zh) 2021-11-29 2021-11-29 一种薄膜探针卡及其探针头
CN202111431283.1 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023092898A1 true WO2023092898A1 (zh) 2023-06-01

Family

ID=80649350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080729 WO2023092898A1 (zh) 2021-11-29 2022-03-14 一种薄膜探针卡及其探针头

Country Status (2)

Country Link
CN (1) CN114200279B (zh)
WO (1) WO2023092898A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616259B (zh) * 2022-09-26 2023-12-08 上海泽丰半导体科技有限公司 薄膜探针卡水平调节装置及薄膜探针卡
CN115616260B (zh) * 2022-09-26 2024-02-23 上海泽丰半导体科技有限公司 薄膜探针卡组件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180977A (en) * 1991-12-02 1993-01-19 Hoya Corporation Usa Membrane probe contact bump compliancy system
US5461326A (en) * 1993-02-25 1995-10-24 Hughes Aircraft Company Self leveling and self tensioning membrane test probe
US5914613A (en) * 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
CN1661376A (zh) * 2004-02-24 2005-08-31 日本电子材料株式会社 探针卡
CN1851476A (zh) * 2005-04-22 2006-10-25 安捷伦科技有限公司 接合器、以及使用其的半导体测试装置
CN101165494A (zh) * 2006-10-18 2008-04-23 木本军生 探针
TW200846669A (en) * 2007-05-18 2008-12-01 Probeleader Co Ltd Structure and the assembly method of thin film probe card
JP2009250697A (ja) * 2008-04-03 2009-10-29 Renesas Technology Corp 半導体集積回路装置の製造方法およびメンブレン型のプローブ・カード
CN108279368A (zh) * 2018-01-23 2018-07-13 德淮半导体有限公司 测试机台及测试方法
US20190064219A1 (en) * 2017-08-22 2019-02-28 Samsung Electronics Co., Ltd. Probe card, test apparatus including the probe card, and related methods of manufacturing
CN112384811A (zh) * 2018-07-04 2021-02-19 泰克诺探头公司 用于高频应用的探针卡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420948C (zh) * 2005-08-19 2008-09-24 南茂科技股份有限公司 成排弹性探针及其制造方法
CN101726636B (zh) * 2008-10-23 2014-08-13 旺矽科技股份有限公司 多指探针
CN101846696B (zh) * 2010-03-19 2012-10-03 华映光电股份有限公司 探针及其制作方法
TWI582378B (zh) * 2016-05-18 2017-05-11 南臺科技大學 探棒前端感測式探頭
TWI589856B (zh) * 2016-06-01 2017-07-01 致茂電子股份有限公司 測試裝置及測試方法
CN109752574A (zh) * 2017-11-07 2019-05-14 特克特朗尼克公司 探头末端和探头组件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180977A (en) * 1991-12-02 1993-01-19 Hoya Corporation Usa Membrane probe contact bump compliancy system
US5461326A (en) * 1993-02-25 1995-10-24 Hughes Aircraft Company Self leveling and self tensioning membrane test probe
US5914613A (en) * 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
CN1661376A (zh) * 2004-02-24 2005-08-31 日本电子材料株式会社 探针卡
CN1851476A (zh) * 2005-04-22 2006-10-25 安捷伦科技有限公司 接合器、以及使用其的半导体测试装置
CN101165494A (zh) * 2006-10-18 2008-04-23 木本军生 探针
TW200846669A (en) * 2007-05-18 2008-12-01 Probeleader Co Ltd Structure and the assembly method of thin film probe card
JP2009250697A (ja) * 2008-04-03 2009-10-29 Renesas Technology Corp 半導体集積回路装置の製造方法およびメンブレン型のプローブ・カード
US20190064219A1 (en) * 2017-08-22 2019-02-28 Samsung Electronics Co., Ltd. Probe card, test apparatus including the probe card, and related methods of manufacturing
CN108279368A (zh) * 2018-01-23 2018-07-13 德淮半导体有限公司 测试机台及测试方法
CN112384811A (zh) * 2018-07-04 2021-02-19 泰克诺探头公司 用于高频应用的探针卡

Also Published As

Publication number Publication date
CN114200279B (zh) 2023-03-14
CN114200279A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023092898A1 (zh) 一种薄膜探针卡及其探针头
WO2023092899A1 (zh) 一种薄膜探针卡及其探针头
US10267848B2 (en) Method of electrically contacting a bond pad of a device under test with a probe
JP3891798B2 (ja) プローブ装置
US7888957B2 (en) Probing apparatus with impedance optimized interface
KR100791945B1 (ko) 프로브 카드
JP4472593B2 (ja) プローブカード
US20110169518A1 (en) Probe card, semiconductor inspecting apparatus, and manufacturing method of semiconductor device
US20080284458A1 (en) Method for Forming Connection Pin, Probe, Connection Pin, Probe Card and Method for Manufacturing Probe Card
US8922232B2 (en) Test-use individual substrate, probe, and semiconductor wafer testing apparatus
CN114167094B (zh) 一种薄膜探针卡及其探针头
WO2023092897A1 (zh) 一种薄膜探针卡及其探针头
US7081005B2 (en) Electric-connection testing device
TWI503553B (zh) 用於微電路測試器的導電開爾文接觸件
US20090153161A1 (en) Probe Holder and Probe Unit
WO2023092900A1 (zh) 一种实现薄膜探针测量滑移的方法
WO2018089659A1 (en) Probe card assembly having die-level and pin-level compliance, and associated systems and methods
CN114188309A (zh) 一种实现薄膜探针测量滑移的方法
CN114839410A (zh) 一种薄膜探针卡装置
WO2006132243A1 (ja) 検査装置
JP2021028602A (ja) 電気的接触子及び電気的接続装置
JPH11295384A (ja) 半導体素子の検査治具
JPH10107099A (ja) プローブ装置及び検査方法
JPH095355A (ja) プローブカード
JPH10104275A (ja) コンタクトプローブおよびそれを備えたプローブ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896999

Country of ref document: EP

Kind code of ref document: A1