WO2023092830A1 - 放射性标记物、其前体化合物、及制法和应用 - Google Patents

放射性标记物、其前体化合物、及制法和应用 Download PDF

Info

Publication number
WO2023092830A1
WO2023092830A1 PCT/CN2022/070444 CN2022070444W WO2023092830A1 WO 2023092830 A1 WO2023092830 A1 WO 2023092830A1 CN 2022070444 W CN2022070444 W CN 2022070444W WO 2023092830 A1 WO2023092830 A1 WO 2023092830A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
compound
formula
adjust
add
Prior art date
Application number
PCT/CN2022/070444
Other languages
English (en)
French (fr)
Inventor
陈跃
王映伟
王琦新
邱琳
冯悦
王力
陈赞
杨健
彭登赛
刘光富
徐婷婷
邢乃果
刘汉香
Original Assignee
西南医科大学附属医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南医科大学附属医院 filed Critical 西南医科大学附属医院
Priority to CN202280072109.9A priority Critical patent/CN118176200A/zh
Priority to CA3236742A priority patent/CA3236742A1/en
Priority to IL312414A priority patent/IL312414A/en
Priority to AU2022397838A priority patent/AU2022397838A1/en
Priority to EP22896935.8A priority patent/EP4438612A1/en
Priority to KR1020247014170A priority patent/KR20240115230A/ko
Publication of WO2023092830A1 publication Critical patent/WO2023092830A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6524Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having four or more nitrogen atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0489Phosphates or phosphonates, e.g. bone-seeking phosphonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of nuclear medicine, and specifically relates to a radiolabel, a precursor compound thereof, a preparation method and an application.
  • Bone is a predilection site for distant metastasis of malignant tumors, and its incidence rate is second only to lung and liver. Early diagnosis and treatment of metastatic bone tumors can effectively improve the prognosis and quality of life of patients.
  • Radiotherapy treatments for metastatic bone tumors mainly include radiotherapy, chemotherapy, radionuclide therapy, bisphosphonate therapy, analgesic therapy, and palliative surgery.
  • Targeted radionuclide therapy for metastatic bone tumors can significantly relieve bone pain and at the same time kill tumor cells with less toxic and side effects. It is a safe and effective treatment.
  • the commonly used radiopharmaceuticals for the treatment of metastatic bone tumors in China include 89 SrCl 2 and 153 Sm-EDTMP, which can significantly relieve bone pain and reduce the incidence of bone-related events, but both need to be produced by reactors, and the price is relatively expensive, and 89 SrCl 2 cannot be used for imaging, so its use is limited. There is an urgent need for more effective, inexpensive and easily available therapeutic radiopharmaceuticals.
  • 68 Ga, 177 Lu, 225 Ac, 64 Cu, and 221 At are medical isotopes with excellent nuclear properties.
  • 68 Ga is obtained through a 68 Ge/ 68 Ga generator, which is convenient in source and low in cost; it can emit ⁇ + rays for PET imaging.
  • 177 Lu, 225 Ac, 64 Cu, and 221 At are all purchased from abroad, and the supply channels are smooth and stable.
  • the half-life (T1/2) of 177 Lu is 6.7d, it emits 3 kinds of energy ⁇ -particles 497keV (78.6%), 384keV (9.1%), 176keV (12.2%) can be used for treatment, and also emits gamma rays 113keV (6.4%) %), 208keV (11%), suitable for imaging in vivo.
  • 225 Ac emits ⁇ -rays with higher ⁇ -ion energy transmission line density, high energy, short range, higher relative biological effects, and the strongest killing effect on tumor cells. Its half-life (T1/2) is 9.9d, and its The half-life (T1/2) of the daughter nuclide 213 Bi is 46min.
  • HEDP Phosphonate
  • the potency of HEDP is significantly lower than that of the second- and third-generation bisphosphonates.
  • Nitrogen-containing bisphosphonates, such as alendronic acid and ibandronic acid Therefore, it is an urgent problem to be solved by those skilled in the art to provide a drug with better imaging effect and better therapeutic effect, which combines imaging and treatment of metastatic bone tumors.
  • One of the objectives of the present invention is to provide a precursor compound represented by formula I, which can be labeled with a nuclide to obtain a drug capable of imaging and treating metastatic bone tumors.
  • the second object of the present invention is to provide a radiolabeled substance represented by formula II, which is obtained by labeling the compound of formula I with a nuclide.
  • the third object of the present invention is to provide a preparation method of the precursor compound represented by formula I.
  • the fourth object of the present invention is to provide a method for preparing the radioactive label represented by formula II.
  • the fifth object of the present invention is to provide the application of the precursor compound represented by formula I.
  • the sixth object of the present invention is to provide the application of the radioactive label represented by formula II.
  • the radiolabeled compound of formula I provided by the present invention or a pharmaceutically acceptable salt thereof has a structure as shown in formula II,
  • A is a nuclide, preferably 68 Ga, 177 Lu, 225 Ac, 64 Cu, 221 At.
  • the present invention creatively combines the chelating agent DOTA with ibandronic acid to form a new compound DOTA-ibandronic acid.
  • DOTA-ibandronic acid labeled with a variety of radionuclides , this is a new type of drug that not only has bone imaging, but also can treat metastatic bone tumors. This drug can better play the role of radionuclides 68 Ga, 177 Lu, 225 Ac, 64 Cu, 211 At and DOTA-I
  • the imaging and therapeutic effects of bandronic acid on metastatic bone tumors create an effect of 1 plus 1 greater than 2.
  • the radiochemical purity is greater than or equal to 95%.
  • the preparation method of the radiolabel shown in formula II provided by the present invention comprises: compounding formula I
  • the radionuclide when the radionuclide is 68 Ga, 177 Lu or 64 Cu, the compound solution of formula I, sodium acetate solution, and radionuclide salt solution are mixed uniformly, the pH value of the mixed solution is adjusted, and the reaction is performed again Adjust the pH value, sterilize, filter, and obtain;
  • radionuclide When the radionuclide is 225 Ac, mix the compound solution of formula I, sodium citrate solution, sodium ascorbate solution and radionuclide salt solution evenly, adjust the pH value of the mixed solution, react, adjust the pH value again, sterilize, filter, instant;
  • radionuclide is 211 At, mix the compound solution of formula I, sodium borate solution, and radionuclide salt solution evenly, adjust the pH value of the mixed solution, react, adjust the pH value again, sterilize, and filter to obtain the product.
  • the radionuclide when the radionuclide is 68 Ga, 20-30 ⁇ g of the compound of formula I is added to 0.8-1.4 ml of a sodium acetate solution with a concentration of 0.25M; then a 68 Ga salt solution with an activity of 20 mCi is added; Mix evenly, adjust the pH value of the mixed solution to 4-7, preferably 5; react at 80-100°C, preferably 95°C; the reaction time is 10-30min, preferably 15min; after the reaction, adjust the pH value to 5; Formula I The concentration of the compound solution is 1mg/ml; the concentration of the 68 Ga salt solution is 5mCi/ml ⁇ 10mCi/ml;
  • the radionuclide is 177 Lu
  • the value is 4-7, preferably 5; react at 80-100°C, preferably 95°C; the reaction time is 10-30min, preferably 15min; after the reaction, adjust the pH value to 4.5; the concentration of the compound solution of formula I is 1mg/ml ;
  • the concentration of 177 Lu salt solution is 10mCi/ml ⁇ 20mCi/ml;
  • the radionuclide is 225 Ac
  • the radionuclide is 64 Cu
  • the value is 4-7, preferably 5; react at 80-100°C, preferably 95°C; the reaction time is 10-30min, preferably 15min; after the reaction, adjust the pH value to 4; the concentration of the compound solution of formula I is 1mg/ml ;
  • the concentration of 64 Cu salt solution is 5mCi/ml ⁇ 10mCi/ml;
  • the radionuclide is 211 At
  • the value is 4-7, preferably 5; react at 80-100°C, preferably 95°C; the reaction time is 10-30min, preferably 15min; adjust the pH value to 7 after the reaction; the concentration of the compound solution of formula I is 1mg/ml ;
  • the concentration of 211 At salt solution is 1.0mCi/ml ⁇ 2.0mCi/ml.
  • the present invention has the following beneficial effects:
  • the invention has scientific design and simple method.
  • the present invention creatively combines ibandronic acid with a chelating agent to obtain DOTA-ibandronic acid, and then uses radionuclides 68 Ga, 177 Lu, 225 Ac, 64 Cu, 211 At to label DOTA-ibandronic acid to obtain 68 Ga, 177 Lu, 225 Ac, 64 Cu, 211 At-DOTA-ibandronic acid.
  • the 68 Ga, 177 Lu, 225 Ac, 64 Cu, 211 At-DOTA-ibandronic acid of the present invention has high water solubility, good in vitro stability at room temperature, high plasma protein binding rate, and in vivo distribution in mice And the imaging of New Zealand rabbits showed higher and longer bone uptake, it is a bone imaging agent with excellent performance and radiopharmaceuticals for the treatment of metastatic bone tumors.
  • the labeling method for preparing 68 Ga, 177 Lu, 225 Ac, 64 Cu, 211 At-DOTA-ibandronic acid of the present invention is simple, the reaction time is short, the labeling yield is high, and the amount of precursor is small (microgram level), The target-to-non-target ratio of the lesion is very high (T/N value), up to more than 10 times. According to literature reports, a T/N ratio greater than 4-5 has high therapeutic potential.
  • This embodiment discloses the preparation method of the precursor compound represented by formula I of the present invention, and its synthetic route is:
  • This example discloses the dosage investigation of DOTA-ibandronic acid when preparing 68 Ga-DOTA-ibandronic acid, specifically:
  • the present embodiment investigates the pH value among the present invention, specifically:
  • the present embodiment investigates sodium acetate consumption among the present invention, specifically:
  • the present embodiment investigates reaction temperature and time among the present invention, specifically:
  • This example discloses the preparation method of 177Lu -DOTA-ibandronic acid of the present invention, specifically:
  • This example discloses a new preparation method of 225 Ac-DOTA-ibandronic acid of the present invention, specifically:
  • DOTA-ibandronic acid 25ug
  • 1ml ascorbic acid solution 0.1M
  • 1ml sodium citrate solution 0.1M
  • 100ul freshly rinsed 225 AcCl 3 eluent about 0.01mci
  • 0.04 M hydrochloric acid to adjust the pH to about 4.5
  • react in a 95°C metal bath for 15 minutes take out and adjust the pH to about 4.5 with 0.04M hydrochloric acid, and then pass the product through a sterile filter membrane to finally obtain 225 Ac-DOTA-ibandrone acid.
  • This example discloses a new preparation method of 64 Cu-DOTA-ibandronic acid of the present invention, specifically:
  • This example discloses a new preparation method of 211 At-DOTA-ibandronic acid of the present invention, specifically:
  • the 68 Ga-DOTA-ibandronic acid used in Test Examples 1-5 was prepared according to the method of No. 5 in Table 1 of Example 2.
  • This test example discloses the in vitro stability test of 68 Ga-DOTA-ibandronic acid of the present invention, specifically:
  • This test example discloses the investigation of the lipid-water distribution coefficient of 68 Ga-DOTA-ibandronic acid of the present invention, specifically:
  • This test example discloses the investigation of the plasma protein binding rate of 68 Ga-DOTA-ibandronic acid of the present invention, specifically:
  • This test example discloses the investigation of the in vivo distribution of 68 Ga-DOTA-ibandronic acid of the present invention in mice, specifically:
  • This test example discloses the imaging investigation of 68 Ga-DOTA-ibandronic acid of the present invention at different time points in New Zealand rabbits, specifically:
  • a 2Kg New Zealand rabbit was injected with about 1.0mci/0.2ml of freshly prepared 68 Ga-DOTA-ibandronic acid through the ear vein, and PET whole-body imaging was performed 1h and 3h after the injection respectively (Figure 1).
  • the 177 Lu-DOTA-ibandronic acid prepared according to the method of Example 6 was imaged at different time points in New Zealand rabbits, specifically:
  • the 225 Ac-DOTA-ibandronic acid prepared according to the method of Example 7 was imaged at different time points in New Zealand rabbits, specifically:
  • This test example discloses the investigation of the therapeutic effect of 177 Lu-DOTA-ibandronic acid of the present invention on tumor-bearing mice (PC-3, H1975, MDA-MB-231 bone metastasis model).
  • the 177 Lu used in this test example -DOTA-ibandronic acid was prepared according to the method in Example 6.
  • Pain behavior scores were scored according to the following criteria: 0 points, normal movement, the movement of the hind limbs of the model side and the control side were the same; 1 point, mild lameness of the model side hind limbs; 2 points, the degree of lameness of the model side hind limbs was between 1 point and 3 points Between; 3 points, the model side hindlimb has severe lameness; 4 points, the model side hindlimb cannot move at all and cannot touch the ground.
  • Table 7 The results are shown in Table 7 below:
  • () represents the 1st, 2nd and 3rd tumor-bearing mice in each group, / represents the death of tumor-bearing mice.
  • the average score of the free-walking pain behavior score of the surviving tumor-bearing mice was 5 weeks after the treatment with a high activity dose of 177 Lu-DOTA-ibandronic acid (500 ⁇ Ci).
  • the decrease was the largest among all groups, and the number of survivors was relatively the largest; the average decrease in the free-walking pain behavior scores of the surviving tumor-bearing mice at week 5 using different activity doses of 177 Lu-DOTA-ibandronic acid was higher than that of the corresponding groups. control group.
  • the labeling method of 68 Ga/ 177 Lu/ 225 Ac/ 64 Cu/ 221 At-DOTA-ibandronic acid is simple, the reaction time is short, and the labeling yield is high. It has high water solubility, good in vitro stability at room temperature, and high plasma protein binding rate. Its in vivo distribution in mice and imaging in New Zealand rabbits all show high and long-term bone uptake, indicating that the study
  • the invented preparation is a bone imaging agent with excellent performance and a therapeutic radiopharmaceutical for metastatic bone tumors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

如式(I)所示的放射性标记物的前体化合物、其放射性标记物或其药学上可接受的盐,该放射性标记物水溶性较大、室温下体外稳定性好,血浆蛋白结合率高,在小鼠中的体内分布及新西兰兔的显像中都显示出较高及较长时间的骨骼摄取,动物试验表明显像效果优于 99mTc-MDP。

Description

放射性标记物、其前体化合物、及制法和应用 技术领域
本发明属于核医学技术领域,具体涉及放射性标记物、其前体化合物、及制法和应用。
背景技术
骨是恶性肿瘤远处转移的好发部位,其发生率仅次于肺与肝。转移性骨肿瘤的早期诊断、治疗能有效改善患者的预后及生存质量。
目前治疗转移性骨肿瘤的治疗方法主要包括放疗、化疗、放射性核素治疗、双膦酸盐治疗、止痛治疗及姑息手术治疗。转移性骨肿瘤靶向放射性核素治疗能够明显缓解骨痛,同时可以杀伤肿瘤细胞,且毒副作用小,是安全、有效的治疗方式。目前国内常用的治疗转移性骨肿瘤的放射性药物包括 89SrCl 2153Sm-EDTMP,它们可明显缓解骨痛并减低骨相关事件的发生率,但两者需要通过反应堆生产,价格较为昂贵,且 89SrCl 2不能用于显像,因此使用受到了一定的限制。临床上迫切需要更加有效、价廉、易于获得的治疗性放射性药物。
68Ga、 177Lu、 225Ac、 64Cu、 221At都是具有优良核性质的医用同位素。 68Ga是通过 68Ge/ 68Ga发生器获得,来源方便,成本较低;它可发射β +射线,用于PET显像。 177Lu、 225Ac、 64Cu、 221At均从国外购买,供货渠道通畅、稳定。 177Lu的半衰期(T1/2)为6.7d,其发射3种能量β-粒子497keV(78.6%),384keV(9.1%),176keV(12.2%)可用于治疗,同时还发射γ射线113keV(6.4%),208keV(11%),适合体内定位显像。 225Ac发射α射线,α离子传能线密度更高,射线能量高,射程短,相对生物学效应更高,对肿瘤细胞的杀伤作用最强,其半衰期(T1/2)为9.9d,其子核素 213Bi的半衰期(T1/2)为46min。 64Cu核素因其适宜的半衰期(12.7h)、独特的衰变性质(β+衰变、β-衰变、电子俘获),以及可与多种配体配位形成配合物等特点,现已成为PET分子探针及诊疗一体化药物领域的研究热点。 211At衰变释放的α射线平均能量为6.8MeV,在组织中的射程为55-88um,其半衰期为7.2h,其具有很强的临床应用价值。目前 99mTc-MDP是临床最常用的骨显像剂,然而作为单光子显像剂,病灶的定位以及显示远低于正电子显像剂。膦酸盐(HEDP)是临床研究常用于转移性骨肿瘤的显像与靶向治疗的药物,然而作为第一代不含氮的双膦酸盐,HEDP的作用强度明显低于第二、三代含氮的 双膦酸盐,如阿仑膦酸与伊班膦酸。因此提供显像效果更好,治疗效果更好、兼具显像与治疗转移性骨肿瘤的药物成为了本领域技术人员亟待解决的问题。
发明内容
本发明的目的之一在于,提供式I所示的前体化合物,其经核素标记后,能得到兼具显像与治疗转移性骨肿瘤的药物。
本发明的目的之二于,提供式II所示放射性标记物,其为式I化合物经核素标记而成。
本发明的目的之三在于,提供式I所示的前体化合物的制备方法。
本发明的目的之四在于,提供式II所示放射性标记物的制备方法。
本发明的目的之五在于,提供式I所示的前体化合物的应用。
本发明的目的之六在于,提供式II所示放射性标记物的应用。
为实现上述目的,本发明采用的技术方案如下:
本发明提供的结构如式I所示的放射性标记物的前体化合物或其药学上可接受的盐,
Figure PCTCN2022070444-appb-000001
本发明提供的式I化合物的放射性标记物或其药学上可接受的盐,其结构如式II所示,
Figure PCTCN2022070444-appb-000002
其中A为核素,优选为 68Ga、 177Lu、 225Ac、 64Cu、 221At。
本发明创造性地将螯合剂DOTA与伊班膦酸结合,形成新的化合物DOTA-伊班磷酸。在与放射核素 68Ga、 177Lu、 225Ac、 64Cu、 211At标记时,前体用量远远低于单独的伊班磷酸,我们提供多种放射性核素标记的DOTA-伊班膦酸,这既具有骨显像、又能针对转移性骨肿瘤进行治疗的新型药物,这种药物能更好地发挥放射性核素 68Ga、 177Lu、 225Ac、 64Cu、 211At和DOTA-伊班膦酸对转移性骨肿瘤的显像和治疗作用,创造出1加1大于2的效果。
本发明的部分实施方案中,其放射化学纯度大于等于95%。
本发明提供的式I所示的放射性标记物的前体化合物的制备方法,包括以下步骤:
S1.化合物1与丙烯酸叔丁酯反应生成化合物2;
S2.化合物2的EtOAc溶液中滴加HCl/EtOAc,反应生成化合物3;
S3.将化合物3加入pHCl中,氮气保护下加入POCl 3和H 3PO 3,加热反应,
冷却后将氯苯溶液倾倒出,加入H 2O,加热搅拌,生成化合物4;
S4.向化合物4的H 2O溶液中加入DOTA-NHS-ester溶液,随后加入三乙胺,
反应生成式I化合物;
其反应式如下:
Figure PCTCN2022070444-appb-000003
本发明提供的式II所示的放射性标记物的制备方法,包括:将式I化合物
本发明的部分实施方案中,放射性核素为 68Ga、 177Lu或 64Cu时,将式I化合物溶液、醋酸钠溶液、及放射性核素盐溶液混合均匀,调节混合溶液pH值,反应,再次调节pH值、灭菌、过滤,即得;
当放射性核素为 225Ac时,将式I化合物溶液、柠檬酸钠溶液、抗坏血酸钠溶液及放射性核素盐溶液混合均匀,调节混合溶液pH值,反应,再次调节pH值、灭菌、过滤,即得;
当放射性核素为 211At时,将式I化合物溶液、硼酸钠溶液、及放射性核素盐溶液混合均匀,调节混合溶液pH值,反应,再次调节pH值、灭菌、过滤,即得。
本发明的部分实施方案中,当放射性核素为 68Ga时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的醋酸钠溶液;随后加入活度为20mCi的 68Ga盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为5;式I化合物溶液的浓度为1mg/ml; 68Ga盐溶液的浓度为5mCi/ml~10mCi/ml;
当放射性核素为 177Lu时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的醋酸钠溶液,随后加入活度为2mCi的 177Lu盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为4.5;式I化合物溶液的浓度为1mg/ml; 177Lu盐溶液的浓度为10mCi/ml~20mCi/ml;
当放射性核素为 225Ac时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.1M的抗坏血酸钠溶液和0.8-1.4ml浓度为0.1M的柠檬酸钠溶液,随后加入活度为0.01mCi的 225Ac盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为4.5;式I化合物溶液的浓度为1mg/ml; 225Ac盐溶液的浓度为0.01mCi/ml~0.02mCi/ml;
当放射性核素为 64Cu时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的醋酸钠溶液;随后加入活度为5mCi的 64Cu盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min, 优选为15min;反应后调节pH值为4;式I化合物溶液的浓度为1mg/ml; 64Cu盐溶液的浓度为5mCi/ml~10mCi/ml;
当放射性核素为 211At时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的硼酸钠溶液;随后加入活度为1mCi的 211At盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为7;式I化合物溶液的浓度为1mg/ml; 211At盐溶液的浓度为1.0mCi/ml~2.0mCi/ml。
本发明提供的式I化合物在制备兼具显像与治疗转移性骨肿瘤的药物中的应用。
本发明提供的式II化合物在制备兼具显像与治疗转移性骨肿瘤的药物中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明设计科学、方法简单。本发明创造性地将伊班膦酸与鳌合剂结合,得到DOTA-伊班膦酸,再采用放射性核素 68Ga、 177Lu、 225Ac、 64Cu、 211At标记DOTA-伊班膦酸,得到 68Ga、 177Lu、 225Ac、 64Cu、 211At-DOTA-伊班膦酸。本发明的 68Ga、 177Lu、 225Ac、 64Cu、 211At-DOTA-伊班膦酸水溶性较大、室温下体外稳定性较好,血浆蛋白结合率高,在小鼠中的体内分布及新西兰兔的显像中都显示出较高及较长时间的骨骼摄取,是一个具有优良性能的骨显像剂及转移性骨肿瘤治疗性放射性药物。药效学试验表明, 68Ga、 177Lu、 225Ac、 64Cu、 211At-DOTA-伊班膦酸,在用于诊断或治疗后的效果都高于相应组别的 68GaCl 3177LuCl 3225AcCl 364Cu Cl 2、Na 211At或DOTA-伊班膦酸,表明 68Ga、 177Lu、 225Ac、 64Cu、 211At-DOTA-伊班膦酸在恶性肿瘤骨转移诊断及治疗中的可行性及有效性。
本发明的制备 68Ga、 177Lu、 225Ac、 64Cu、 211At-DOTA-伊班膦酸的标记方法简单,反应时间较短,标记产率高,前体用量很少(微克级别),病灶靶与非靶比值很高(T/N值),最大可达10倍以上。根据文献报道,T/N比值大于4-5就有很高的治疗潜在价值。
附图说明
附图1为试验例5的 68Ga-DOTA-IBA新西兰兔1h及3h的PET显像图;
附图2为试验例6的 177Lu-DOTA-IBA新西兰兔1d、3d、5d、7d的SPECT 全身静态显像图;
附图3为试验例7的 225-DOTA-IBA新西兰兔1d、3d、5d的SPECT全身静态显像图。
附图4为式I所示的前体化合物的HPLC图;
附图5为式I所示的前体化合物的LC-MS图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例公开了本发明的式I所示的前体化合物的制备方法,其合成路线为:
Figure PCTCN2022070444-appb-000004
S1.化合物2的制备
Figure PCTCN2022070444-appb-000005
向化合物1(5.00g,24.7mmol)中加入丙烯酸叔丁酯(6.34g,49.4mmol)。反应 在25℃下搅拌3小时。TLC监测反应完全,有新点产生。反应液浓缩得到无色油状化合物2(7.90g,产率:96.7%)。粗品不需要纯化直接用于下一步反应。
S2.化合物3的制备
Figure PCTCN2022070444-appb-000006
冰浴条件下,向化合物2(1.90g,5.75mmol)的EtOAc(2.00mL)溶液中滴加HCl/EtOAc(4M,20.0mL)。反应液在25℃搅拌2小时。LC-MS检测原料反应完全。反应液真空浓缩得到无色油状粗品化合物3(800mg,产率:79.9%),不需要进一步纯化直接用于下一步反应
S3.化合物4的制备
Figure PCTCN2022070444-appb-000007
将化合物3(800mg,3.24mmol,HCl salt)加入pHCl(100mL)中,氮气保护下加入POCl 3(9.93g,64.7mmol)和H3PO3(5.31g,64.7mmol)。反应加热到80℃搅拌16小时,冷却后将氯苯溶液倾倒出,加入H 2O(20.0mL),80℃搅拌5小时。LC-MS监测有产物mass,反应液过滤并在真空下浓缩,剩余物通过prep-HPLC(YMC-Actus Triart Diol-HILIC,150*30mm,5um,
Figure PCTCN2022070444-appb-000008
Mobile phase:0.2%CH3COOH,CH3CN)纯化得到白色固体化合物4(90.0mg,8.68%产率)
S4.式I化合物Carbs的制备
Figure PCTCN2022070444-appb-000009
向化合物4(60.0mg,187umol)的H 2O(200uL)溶液中加入DOTA-NHS-ester(141mg,281umol)的DMF(200uL)溶液,随后加入三乙胺(114mg,1.12mmol)。反应液在25℃下搅拌16小时。LC-MS监测有产物mass。反应液过滤并浓缩,残渣通过prep-HPLC(Hilic,0.2%CH3COOH)纯化。得到白色固体式I化合物Carbs(4.00mg,3.02%yield,86.8%purity)。
式I化合物的HPLC图如附图4所示,LC-MS图如附图5所示。
实施例2
本实施例公开了制备 68Ga-DOTA-伊班膦酸时,DOTA-伊班膦酸的用量考察,具体为:
取8个EP管,向每管依次加入DOTA-伊班膦酸(1mg/ml)5μg、10μg、15μg、20μg、25μg、30μg、35μg、40μg,分别加入醋酸钠溶液(0.25M)1ml,随后每管分别加入新鲜淋洗的 68GaCl 3洗脱液(5mci/ml)4ml,用0.25摩尔的醋酸钠溶液和0.01摩尔的盐酸调节pH值至5左右,充分震荡混匀,95℃金属浴下反应15min,反应完成冷却至室温后,每管调节pH值为4-6,采用0.22μm的滤膜进行灭菌、过滤。随后采用薄层纸层析法(TLC)测定 68Ga-DOTA-伊班膦酸的放射化学纯度,结果如表1所示:
表1不同DOTA-伊班膦酸用量下的放射化学纯度结果
Figure PCTCN2022070444-appb-000010
Figure PCTCN2022070444-appb-000011
从表1可以看出,在其他条件固定的情况下,当DOTA-伊班膦酸用量为20-30μg时, 68Ga-DOTA-伊班膦酸的放射化学纯度最佳,用量低于或高于此范围,放射化学纯度都会逐渐降低。
实施例3
本实施例对本发明中pH值进行了考察,具体为:
取7个EP管,向每管依次加入DOTA-伊班膦酸(1mg/ml)25μg、醋酸钠溶液(0.25M)1ml、加入新鲜淋洗的 68GaCl 3洗脱液(5mci/ml)4ml,用0.25摩尔的醋酸钠溶液和0.1摩尔的盐酸分别调节pH值至2、3、4、5、6、7、8,充分震荡混匀,95℃金属浴下反应15min,反应完成冷却至室温后,采用0.22μm的滤膜进行灭菌、过滤。随后采用薄层纸层析法(TLC)测定 68Ga-DOTA-伊班膦酸的放射化学纯度,结果如表2所示:
表2不同PH下的放射化学纯度结果
序号 PH值 放化纯
1 2 47%
2 3 89%
3 4 92%
4 5 98%
5 6 95%
6 7 27%
7 8 18%
从表2可以看出,在PH值为5时,DOTA-伊班膦酸的放射化学纯度最佳,PH值高于或者低于5时放射化学纯度逐渐降低,PH值高于6放射化学纯度迅速降低。
实施例4
本实施例对本发明中醋酸钠用量进行了考察,具体为:
取8个EP管,每管分别加向每管依次加入醋酸钠溶液(0.25M)0.2ml、0.4ml、0.6ml、0.8ml、1.0ml、1.2ml、1.4ml、1.6m,分别加入DOTA-伊班膦酸(1mg/ml)25μg及新鲜淋洗的 68GaCl 3洗脱液(5mci/ml)4ml,用0.25摩尔的醋酸钠溶液和0.1摩尔的盐酸分别调节pH值至5,充分震荡混匀,95℃金属浴下反应15min,反应完成冷却至室温后,每管调节pH值为5,采用0.22μm的滤膜进行灭菌、过滤。随后采用薄层纸层析法(TLC)测定 68Ga-DOTA-伊班膦酸的放射化学纯度,结果如下表3所示:
表3不同醋酸钠溶液(0.25M)用量下的放射化学纯度结果
序号 醋酸钠溶液(ml) 放化纯
1 0.2 60%
2 0.4 66%
3 0.6 85%
4 0.8 92%
5 1 96%
6 1.2 94%
7 1.4 91%
8 1.6 84%
从表3可以看出,在其他条件不变的情况下,当醋酸钠溶液用量为0.8-1.4ml时, 68Ga-DOTA-伊班膦酸的放射化学纯度最佳,用量低于或高于此范围,放射化学纯度都会逐渐降低。
实施例5
本实施例对本发明中反应温度及时间进行了考察,具体为:
取18个EP管,设A(室温:25±2℃)、B(60℃)、C(95℃)3组,每组各取6管分别标记为A/B/C ①-⑥号,每管预先依次入分别加入DOTA-伊班膦酸(1mg/ml)25μg、醋酸钠溶液(0.25M)1ml及新鲜淋洗的 68GaCl 3洗脱液(5mci/ml)4ml,用0.25摩尔的醋酸钠溶液和0.1摩尔的盐酸分别调节pH值至5左右,充分震荡混匀。随后每组6管在各组的温度下依次反应5min、10min、15min、20min、25min、 30min,反应完成冷却至室温后,每管调节pH值为5,采用0.22μm的滤膜进行灭菌、过滤。随后采用薄层纸层析法(TLC)测定 68Ga-DOTA-伊班膦酸的放射化学纯度,结果如下表4所示:
表4不同温度及时间下的放射化学纯度结果
温度/时间 5min 10min 15min 20min 25min 30min
25±2℃ 40% 52% 56% 65% 70% 72%
60℃ 56% 65% 79% 81% 84% 85%
95℃ 78% 87% 96% 94% 94% 93%
从表4可以看出,在其他条件不变的情况下,当在95℃下反应15min时, 68Ga-DOTA-伊班膦酸的放射化学纯度最佳,反应时间过长、过短或温度过低,放射化学纯度都会降低。
实施例6
本实施例公开了本发明的 177Lu-DOTA-伊班膦酸的备制方法,具体为:
取DOTA-伊班膦酸(25ug)加入1ml醋酸钠溶液(0.25M)再加入0.2ml新鲜淋洗的 177LuCl 3洗脱液(约2.0mci),用0.25摩尔的醋酸钠溶液和0.01摩尔的盐酸调节pH值至5左右,在95℃金属浴中反应15分钟,取出用0.04M的盐酸调节pH至4.5左右,反应液过CM柱子(除去游离 177Lu),再把产品过无菌滤膜,最终得到 177Lu-DOTA-伊班膦酸。
实施例7
本实施例公开了本发明的 225Ac-DOTA-伊班膦酸在新的备制方法,具体为:
取DOTA-伊班膦酸(25ug)加入1ml抗坏血酸溶液(0.1M)及1ml柠檬酸钠溶液(0.1M),再加入100ul新鲜淋洗的 225AcCl 3洗脱液(约0.01mci),用0.04M的盐酸调节pH至4.5左右,在95℃金属浴中反应15分钟,取出用0.04M的盐酸调节pH至4.5左右,再把产品过无菌滤膜,最终得到 225Ac-DOTA-伊班膦酸。
实施例8
本实施例公开了本发明的 64Cu-DOTA-伊班膦酸在新的备制方法,具体为:
取DOTA-伊班膦酸(25ug)加入1ml醋酸钠溶液(0.25M)再加入1ml新鲜淋洗的 64CuCl 2洗脱液(约5mci),用0.04M的盐酸调节pH至4左右,在95℃金属浴中反应15分钟,取出用0.04M的盐酸调节pH至4左右,再把产品过无 菌滤膜,最终得到 64Cu-DOTA-伊班膦酸。
实施例9
本实施例公开了本发明的 211At-DOTA-伊班膦酸在新的备制方法,具体为:
取DOTA-伊班膦酸(25ug),加入1ml硼酸钠溶液(0.25M)再加入1ml新鲜淋洗的Na 211At洗脱液(约1.0mci),调节pH至7左右,95℃在金属浴中反应15分钟,调节pH至7左右,再把产品过无菌滤膜,最终得到 211At-DOTA-伊班膦酸。
试验例1-5采用的 68Ga-DOTA-伊班膦酸为按实施例2表1编号5的方法制备而成。
试验例1
本试验例公开了本发明的 68Ga-DOTA-伊班膦酸的体外稳定性实验,具体为:
取4个EP管,依次标记为①-④号,其中①、②号分别加入生理盐水0.1ml,③、④号分别加入稀释了10倍的新鲜人血清0.1ml,随后4管分别加入新鲜制备的 68Ga-DOTA-伊班膦酸1.0mci,①、③号放置于室温(25±2℃)、②、④号放置于37℃金属浴中孵育,在10min、30min、1h、2h、3h、4h分别采用薄层纸层析法(TLC)测定①-④号的放射化学纯度,结果如下表5所示。
表5不同处理方式及处理时间下 68Ga-DOTA-伊班膦酸的放射化学纯度
  10min 30min 1h 2h 3h 4h
室温(生理盐水) 98% 97% 95% 95% 95% 93%
室温(血清) 99% 99% 99% 96% 96% 93%
37℃(生理盐水) 99% 96% 96% 92% 90% 87%
37℃(血清) 99% 97% 96% 92% 88% 82%
从表5可以看出, 68Ga-DOTA-伊班膦酸在室温下的体外稳定性较好,室温下在生理盐水和血清中放置4h其放射化学纯度仍>90%。
试验例2
本试验例公开了本发明的 68Ga-DOTA-伊班膦酸的脂水分布系数考察,具体为:
取3支5ml离心管分别编号A-①、A-②、A-③,向每管中分别加入0.5ml 正辛醇、0.485ml去离子水及0.25ml约0.5mci新鲜制备的 68Ga-DOTA-伊班膦酸,使用旋涡混匀器震荡20min,随后以2000r/min离心5min,分别收集上层液体(有机相)0.1ml至3支对应试管中(分别编号B-①、B-②、B-③),并收集下层液体(水相)0.1ml至3支对应试管中(分别编号C-①、C-②、C-③)。使用γ计数器分别测定有机相和水相的放射性总计数,最后使用公式计算脂水分配系数lgP。
结果表明,本发明的 68Ga-DOTA-伊班膦酸的脂水分配系数lgP为-2.33,表明标记物的水溶性较大,脂溶性较小。
试验例3
本试验例公开了本发明的 68Ga-DOTA-伊班膦酸的血浆蛋白结合率考察,具体为:
取肝素抗凝的新鲜人血浆1ml备用。取3个EP管分别编号A-①、A-②、A-③,每管分别加入0.1ml新鲜人血浆及0.25ml约0.5mci新鲜制备的 68Ga-DOTA-伊班膦酸,然后分别置于37℃金属浴中孵育30min。取3支5ml离心管分别编号B-①、B-②、B-③,分别将孵育后的溶液移至对应离心管中,随后在每支离心管中加入1ml的25%的三氯乙酸溶液,充分混匀后以2000r/min离心5min,分别收集上清液至3支对应试管中(分别编号C-①、C-②、C-③),重复离心及收集上清液3次。使用γ计数器分别测定离心管中沉淀和试管中上清液的放射性总计数,并计算血浆蛋白结合率(PPB)。
结果表明,本发明的 68Ga-DOTA-伊班膦酸血浆中孵育30min后的PPB为81%。血浆蛋白结合率越高,提示标记物在机体中停留的时间较长,不易被清除,能达到较好的显像效果。
试验例4
本试验例公开了本发明的 68Ga-DOTA-伊班膦酸在小鼠中的体内分布考察,具体为:
取20只健康昆明种小鼠(体质量为18-22g),随机分为4组,每组5只,雌雄各半,经尾静脉注射0.5mci/0.1ml新鲜制备的 68Ga-DOTA-伊班膦酸,分别于15min、30min、1h、2h后断头处死,取颈动脉血、脑、心、肝、脾、肺、肾、胃、小肠、肌肉、股骨组织称重,并使用γ计数器测定其放射性计数,经时间衰减校正后,计算每克组织百分注射剂量率(%ID/g)。 68Ga-DOTA-伊班膦酸在小鼠中的体内分 布结果如下表6所示:
表6  68Ga-DOTA-伊班膦酸在小鼠中的体内分布结果
Figure PCTCN2022070444-appb-000012
由表6可以看出,骨骼对 68Ga-DOTA-伊班膦酸摄取率高,在2h时达到最大值(8.365%ID/g)。此后随着时间的延长,在骨骼的摄取有所下降,但至4h时,骨骼的每克组织百分注射剂量率仍可达4.268%ID/g,明显高于其他脏器及组织,说明 68Ga-DOTA-伊班膦酸在骨骼上的作用较强、停留时间较长,可达到较理想的显像效果。
试验例5
本试验例公开了本发明的 68Ga-DOTA-伊班膦酸在新西兰兔中不同时间点显像考察,具体为:
取1只约2Kg的新西兰兔,经耳缘静脉注射新鲜制备的 68Ga-DOTA-伊班膦酸约1.0mci/0.2ml,分别于注射后1h、3h进行PET全身显像(图1)。
由图1可以看出,注射后1h双肾、膀胱显影明显,胸腔、软组织影较明显,全身骨显像较清晰,四肢关节处显影明显;图2显示,随着时间延长,胸腔、软组织影逐渐减退,双肾显影逐渐浅淡并逐渐向膀胱排泄,膀胱影逐渐增浓,且随着尿液排泄膀胱影亦逐渐消退。因此 68Ga-DOTA-伊班膦酸是一个软组织清除较快、骨骼摄取较高、经泌尿系统排泄的显像剂,且它在骨骼上的停留时间相对较长,若将其应用于转移性骨肿瘤患者,将会达到较好的显像效果。
试验例6
将按实施例6的方法制得的 177Lu-DOTA-伊班膦酸在新西兰兔中不同时间点显像考察,具体为:
取1只约2Kg的新西兰兔,经耳缘静脉注射新鲜制备的 177Lu-DOTA-伊班膦酸约2.0mci/0.2ml,分别于注射后1d、3d、5d、7d进行PET全身显像(图2)。
试验例7
将按实施例7的方法制得的 225Ac-DOTA-伊班膦酸在新西兰兔中不同时间点显像考察,具体为:
取1只约2Kg的新西兰兔,经耳缘静脉注射上述最佳标记条件下新鲜制备的 225Ac-DOTA-伊班膦酸约0.01mci/2ml,分别于注射后1d、3d、5d进行PET全身显像(图3)。
试验例8
本试验例公开了本发明的 177Lu-DOTA-伊班膦酸的在荷瘤鼠(PC-3、H1975、MDA-MB-231骨转移模型)的治疗作用考察,本试验例所用的 177Lu-DOTA-伊班膦酸按实施例6的方法制得。
(1)荷瘤鼠模型建立:备24只SPF级雄性裸鼠及12只SPF级雌性裸鼠,异氟烷麻醉后,消毒其左侧膝关节周围皮肤,弯曲其左后肢,使用胰岛素针(29G针头)自胫骨头关节窝凹点处垂直胫骨进针,缓慢旋转刺入骨髓腔,注入25μl(约2×10 6)PC-3(12只雄性)、H1975(12只雄性)、MDA-MB-231(12只雌性)细胞培养液;随后消毒,用无菌骨蜡封孔,将动物放置于37℃热板上复温,待其复苏后送回笼中继续饲养。
(2)荷瘤鼠模型检定:接种4周后,使用Micro-CT分别对36只裸鼠进行扫描,观察到每只裸鼠皆有不同程度的骨质破坏,并伴不同程度的软组织肿胀,提示骨转移模型造模成功。
(3)不同治疗方法及分组:将36只造模成功的荷瘤鼠随机分为4组。其中尾静脉注射 177Lu-DOTA-伊班膦酸低高放射性活度(100μCi、、500μCi)各2组,每组3只;注射生理盐水空白对照组,分为小大体积组(10μl、50μl),每组3只。
(4)治疗效果检定及结果:于第0、7、14、21、28、35天作自由行走痛行为评分,将其作为荷瘤鼠骨痛缓解的主要指标。在相应时间点将荷瘤鼠置于透明光滑平底塑料盒内,荷瘤鼠可在盒内自由走动,待其适应30min后观察。按如下标准进行痛行为学评分:0分,行动正常,模型侧和对照侧后肢的动作相同;1分,模型侧后肢轻度跛行;2分,模型侧后肢跛行的程度在1分和3分之间;3分,模型侧后肢有严重的跛行;4分,模型侧后肢完全不能动作,不能着地。结果如下表7所示:
表7不同治疗方式及治疗时间下每组各只荷瘤鼠自由行走痛行为评分
Figure PCTCN2022070444-appb-000013
注:()代表每一组第1、2、3只荷瘤鼠,/代表荷瘤鼠已死亡。
从表7可以看出,以第0天为基线,给予高等活度剂量 177Lu-DOTA-伊班膦酸(500μCi)治疗后第5周,仍存活荷瘤鼠的自由行走痛行为评分的平均降幅在所有组别中最大,且存活数量相对最多;使用不同活度剂量 177Lu-DOTA-伊班膦酸的第5周仍存活荷瘤鼠的自由行走痛行为评分的平均降幅都高于相应对照组。
上述结果说明,在荷瘤鼠中给予高等活度剂量的 177Lu-DOTA-伊班膦酸(500μCi)进行治疗时,其骨痛缓解程度最大,给药5周内的存活率相对最高,且给予不同剂量 177Lu-DOTA-伊班膦酸治疗后的疗效都高于相应对照组,这表明 77Lu-DOTA-伊班膦酸在恶性肿瘤骨转移治疗中的可行性及有效性。
综合上述实施例1-9及试验例1-8, 68Ga/ 177Lu/ 225Ac/ 64Cu/ 221At-DOTA-伊班膦酸的标记方法简单,反应时间较短,标记产率高,其水溶性较大、室温下体外稳定性较好,血浆蛋白结合率高,在小鼠中的体内分布及新西兰兔的显像中都显示出较高及较长时间的骨骼摄取,表明该研究所发明的制剂是具有优良性能的骨显 像剂及转移性骨肿瘤治疗性放射性药物。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (9)

  1. 一种结构如式I所示的放射性标记物的前体化合物或其药学上可接受的盐,
    Figure PCTCN2022070444-appb-100001
  2. 一种式I化合物的放射性标记物或其药学上可接受的盐,其特征在于,结构如式II所示,
    Figure PCTCN2022070444-appb-100002
    其中A为放射性核素,优选为 68Ga、 177Lu、 225Ac、 64Cu、 221At。
  3. 根据权利要求2所述的放射性标记物或其药学上可接受的盐,其特征在于,其放射化学纯度大于等于95%。
  4. 根据权利要求1所述的放射性标记物的前体化合物的制备方法,其特征在于,包括以下步骤:
    S1.化合物1与丙烯酸叔丁酯反应生成化合物2;
    S2.化合物2的EtOAc溶液中滴加HCl/EtOAc,反应生成化合物3;
    S3.将化合物3加入pHCl中,氮气保护下加入POCl 3和H 3PO 3,加热反应,冷却后将氯苯溶液倾倒出,加入H 2O,加热搅拌,生成化合物4;
    S4.向化合物4的H 2O溶液中加入DOTA-NHS-ester溶液,随后加入三乙胺,反应生成式I化合物;
    其反应式如下:
    Figure PCTCN2022070444-appb-100003
  5. 根据权利要求2或3所述的放射性标记物的制备方法,其特征在于,包括:将式I化合物与放射性核素盐溶液反应,得到式II所示的放射性标记物。
  6. 根据权利要求5所述的制备方法,其特征在于,放射性核素为 68Ga、 177Lu或 64Cu时,将式I化合物溶液、醋酸钠溶液、及放射性核素盐溶液混合均匀,调节混合溶液pH值,反应,再次调节pH值、灭菌、过滤,即得;
    当放射性核素为 225Ac时,将式I化合物溶液、柠檬酸钠溶液、抗坏血酸钠溶液及放射性核素盐溶液混合均匀,调节混合溶液pH值,反应,再次调节pH值、灭菌、过滤,即得;
    当放射性核素为 211At时,将式I化合物溶液、硼酸钠溶液、及放射性核素盐溶液混合均匀,调节混合溶液pH值,反应,再次调节pH值、灭菌、过滤,即得。
  7. 根据权利要求6所述的制备方法,其特征在于,当放射性核素为 68Ga时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的醋酸钠溶液;随后加入活度为20mCi的 68Ga盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为5;式I化合物溶液的浓度为1mg/ml; 68Ga盐溶液的浓度为5mCi/ml~10mCi/ml;
    当放射性核素为 177Lu时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的醋酸钠溶液,随后加入活度为2mCi的 177Lu盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为4.5;式I化合物溶液的浓度为1mg/ml; 177Lu盐溶液的浓度为10mCi/ml~20mCi/ml;
    当放射性核素为 225Ac时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.1M的抗坏血酸钠溶液和0.8-1.4ml浓度为0.1M的柠檬酸钠溶液,随后加入活度为0.01mCi的 225Ac盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为4.5;式I化合物溶液的浓度为1mg/ml; 225Ac盐溶液的浓度为0.01mCi/ml~0.02mCi/ml;
    当放射性核素为 64Cu时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的醋酸钠溶液;随后加入活度为5mCi的 64Cu盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为4;式I化合物溶液的浓度为1mg/ml; 64Cu盐溶液的浓度为5mCi/ml~10mCi/ml;
    当放射性核素为 211At时,将20-30μg式I化合物加入0.8-1.4ml浓度为0.25M的硼酸钠溶液;随后加入活度为1mCi的 211At盐溶液;混合均匀,调节混合溶液的pH值为4-7,优选为5;80-100℃反应,优选为95℃;反应时间为10-30min,优选为15min;反应后调节pH值为7;式I化合物溶液的浓度为1mg/ml; 211At盐溶液的浓度为1.0mCi/ml~2.0mCi/ml。
  8. 如权利要求1所述的式I化合物在制备兼具显像与治疗转移性骨肿瘤的药物中的应用。
  9. 如权利要求2或3所述的式II化合物在制备兼具显像与治疗转移性骨肿瘤的药物中的应用。
PCT/CN2022/070444 2021-11-26 2022-01-06 放射性标记物、其前体化合物、及制法和应用 WO2023092830A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202280072109.9A CN118176200A (zh) 2021-11-26 2022-01-06 放射性标记物、其前体化合物、及制法和应用
CA3236742A CA3236742A1 (en) 2021-11-26 2022-01-06 Radiolabled compound, and precursor compound thereof, preparation method therefor, and application thereof
IL312414A IL312414A (en) 2021-11-26 2022-01-06 A radioactively labeled compound, and its predecessor, a preparation method for it, and its placement
AU2022397838A AU2022397838A1 (en) 2021-11-26 2022-01-06 Radioactive marker, and precursor compound thereof, preparation method therefor, and application thereof
EP22896935.8A EP4438612A1 (en) 2021-11-26 2022-01-06 Radioactive marker, and precursor compound thereof, preparation method therefor, and application thereof
KR1020247014170A KR20240115230A (ko) 2021-11-26 2022-01-06 방사성 마커 및 이의 전구체 화합물, 이를 위한 제조방법 및 이의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111419244.XA CN114230610B (zh) 2021-11-26 2021-11-26 放射性标记物、其前体化合物、及制法和应用
CN202111419244.X 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023092830A1 true WO2023092830A1 (zh) 2023-06-01

Family

ID=80751247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070444 WO2023092830A1 (zh) 2021-11-26 2022-01-06 放射性标记物、其前体化合物、及制法和应用

Country Status (7)

Country Link
EP (1) EP4438612A1 (zh)
KR (1) KR20240115230A (zh)
CN (2) CN114230610B (zh)
AU (1) AU2022397838A1 (zh)
CA (1) CA3236742A1 (zh)
IL (1) IL312414A (zh)
WO (1) WO2023092830A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120367A (zh) * 2023-02-21 2023-05-16 西南医科大学附属医院 利噻膦酸衍生物的放射性标记物、其前体化合物、及制法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130296539A1 (en) * 2012-05-07 2013-11-07 Kumar Ranjan Bhushan Magnetic resonance imaging agents for calcification
US20140073780A1 (en) * 2012-09-11 2014-03-13 Kumar Ranjan Bhushan Multimeric dual-modality breast cancer diagnostic agents
US20140234210A1 (en) * 2011-07-08 2014-08-21 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
CN107106711A (zh) * 2014-10-17 2017-08-29 Scv公司 用于诊断和治疗骨病的共轭二膦酸盐

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536034A (ja) * 2001-01-08 2004-12-02 ネオルクス コーポレイション 治療的および診断的化合物、組成物および方法
DE102018126558A1 (de) * 2018-10-24 2020-04-30 Helmholtz-Zentrum Dresden - Rossendorf E.V. Markierungsvorläufer mit Quadratsäure-Kopplung
WO2021067513A1 (en) * 2019-10-01 2021-04-08 City Of Hope Metal chelating agents and methods of using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140234210A1 (en) * 2011-07-08 2014-08-21 The University Of North Carolina At Chapel Hill Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders
US20130296539A1 (en) * 2012-05-07 2013-11-07 Kumar Ranjan Bhushan Magnetic resonance imaging agents for calcification
US20140073780A1 (en) * 2012-09-11 2014-03-13 Kumar Ranjan Bhushan Multimeric dual-modality breast cancer diagnostic agents
CN107106711A (zh) * 2014-10-17 2017-08-29 Scv公司 用于诊断和治疗骨病的共轭二膦酸盐

Also Published As

Publication number Publication date
KR20240115230A (ko) 2024-07-25
CN114230610B (zh) 2023-05-23
CA3236742A1 (en) 2023-06-01
IL312414A (en) 2024-06-01
CN118176200A (zh) 2024-06-11
AU2022397838A1 (en) 2024-05-16
EP4438612A1 (en) 2024-10-02
CN114230610A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
ES2250419T3 (es) Radioterapia.
Louw et al. Evaluation of samarium-153 and holmium-166-EDTMP in the normal baboon model
CA2005880C (en) Macrocyclic aminophosphonic acid complexes, their preparation formulations and use
Franzius et al. High-activity samarium-153-EDTMP therapy followed by autologous peripheral blood stem cell support in unresectable osteosarcoma
Hassfjell et al. 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted radiotherapy
Hayes The medical use of gallium radionuclides: a brief history with some comments
US5077034A (en) Treatment of tumors with 5-radioiodo-2'-deoxyuridine
JPH02237936A (ja) 骨髄抑制剤
WO2024174910A9 (zh) 利噻膦酸衍生物的放射性标记物、其前体化合物、及制法和应用
WO2023092830A1 (zh) 放射性标记物、其前体化合物、及制法和应用
Wang et al. A comparative study of samarium-153-ethylenediaminetetramethylene phosphonic acid with pamidronate disodium in the treatment of patients with painful metastatic bone cancer
RU2160121C2 (ru) Агенты для лучевой терапии, содержащие олово-117m
AU751889B2 (en) Radionuclide associated with nucleotide polyphosphate as tumor imaging agents
JPH0448799B2 (zh)
Appelbaum et al. Specific marrow ablation before marrow transplantation using an aminophosphonic acid conjugate 166Ho-EDTMP
WO2011149844A1 (en) Delivery of high dose therapeutic radioisotopes to bone
RU2614235C2 (ru) Остеотропный радиофармацевтический препарат для пэт-визуализации
JP2024541269A (ja) 放射性標識化合物及びその前駆体化合物、その調製方法並びにその用途
US5094835A (en) Diagnosis of tumors with 5-(123 I)iodo-2'-deoxyuridine
JPH0662440B2 (ja) 石灰性腫瘍の治療のためのアミノカルボン酸錯体
Kassis et al. 5-[125I] iodo-2'-deoxyuridine in the radiotherapy of solid CNS tumors in rats
CN108514645A (zh) 一种兼具骨显像和骨转移瘤治疗的制剂及其制备和应用
CN112604007A (zh) 一种兼具显像与治疗转移性骨肿瘤的药物及其制法和应用
RU2162714C1 (ru) Радиофармацевтическая композиция
CN117731806A (zh) 放射性核素标记的地诺单抗、其前体化合物、制法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896935

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 312414

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2024525938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18705287

Country of ref document: US

Ref document number: 202280072109.9

Country of ref document: CN

Ref document number: 3236742

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: AU2022397838

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022397838

Country of ref document: AU

Date of ref document: 20220106

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11202402876S

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2022896935

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022896935

Country of ref document: EP

Effective date: 20240626