WO2023092690A1 - 检验胶路状态的装置及其检验方法 - Google Patents

检验胶路状态的装置及其检验方法 Download PDF

Info

Publication number
WO2023092690A1
WO2023092690A1 PCT/CN2021/137019 CN2021137019W WO2023092690A1 WO 2023092690 A1 WO2023092690 A1 WO 2023092690A1 CN 2021137019 W CN2021137019 W CN 2021137019W WO 2023092690 A1 WO2023092690 A1 WO 2023092690A1
Authority
WO
WIPO (PCT)
Prior art keywords
glue
state
path
road
glue path
Prior art date
Application number
PCT/CN2021/137019
Other languages
English (en)
French (fr)
Inventor
时进才
冯蓬勃
靳习永
侯亚松
李晓晖
冯凯
陈龙龙
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023092690A1 publication Critical patent/WO2023092690A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks

Definitions

  • the invention relates to the technical field of rubber path detection, in particular to a device for inspecting the state of a glue path and an inspection method thereof.
  • the existing method is to use a combination of various light sources and 2D cameras to perform multi-spectral traditional 2D solutions to inspect the glue path.
  • This traditional solution has the following disadvantages. To stably detect the glue path, it is necessary to add a fluorescent agent to the glue or use a different The glue of the color of the part, but in the spraying or gluing assembly scene of electronic products with display screens and optical sensor lenses such as wearable heart rate lenses, the use of glue with added fluorescent agents or different colors from the parts is prohibited, so the traditional 2D inspection The glue method cannot carry out the glue road test on this kind of product.
  • the main purpose of the present invention is to propose a device and method for inspecting the state of the glue road, aiming at solving the problem that the current method for inspecting transparent glue and the applied glue is of the same color as the glue carrier does not allow adding fluorescent agents or changing the color of the glue to cause inspection. There is no glue state problem.
  • a method for checking a device for checking the state of the rubber path proposed by the present invention comprises the following steps:
  • the state-related parameters of the glue path include coordinate data, RGB data, and reflectance data;
  • the step of obtaining the state-related parameters of the glue path and the workpiece therein according to the three-dimensional space state image model of the glue path includes:
  • the coordinate data, RGB data and reflectance data of the selected pixel unit of the three-dimensional space state image model of the glue road are obtained;
  • the step of comparing the state-related parameters with the threshold value of the allowable parameter library to determine whether the rubber road is qualified includes:
  • the ratio of the coordinate data accounting for the domain value of the allowed parameter library is recorded as the degree of compliance P
  • the ratio of the RGB data accounting for the domain value of the allowed parameter library is recorded as the degree of compliance C
  • the ratio of the reflectance to the allowed parameter library is recorded as the degree of compliance P
  • the ratio of the domain value of the parameter library is recorded as the degree of compliance R;
  • obtain the conformity of the coordinate data, RGB data, and reflectance data of the selected pixel unit of the glue road calculate the ratio of the coordinate data to the domain value of the allowable parameter library as P, and calculate the ratio of the RGB data to the domain value of the allowable parameter library.
  • the ratio of the threshold value of the allowable parameter library is counted as C
  • the ratio of the reflectivity to the threshold value of the allowed parameter library is counted as R
  • P, C and R are multiplied by the corresponding weighted value and then
  • the value obtained after the addition is compared with the set judgment threshold, before the step of judging whether the rubber road is qualified, including:
  • the set judgment threshold is adjusted.
  • the state-related parameters include at least one of glue deviation parameters, glue width parameters, glue height parameters, glue volume, glue uniform distribution, and whether hollow or air bubbles exist in the glue path.
  • the three-dimensional state model of the glue road includes a glue road area and a workpiece area;
  • the step of obtaining the state-related parameters of the glue path and the workpiece therein according to the three-dimensional space state image model of the glue path includes:
  • the workpiece area and the glue road area in the three-dimensional space state image model of the glue road are separated by the separation boundary, and the three-dimensional image model of the glue road area and the three-dimensional image model of the workpiece area are respectively obtained;
  • the state-related parameters are obtained according to the separation boundary between the workpiece area and the glue road area, the three-dimensional space state model of the glue road, and the three-dimensional space state model of the glue road area.
  • the step of obtaining the state-related parameters includes :
  • the three-dimensional space state image model is obtained by scanning the glue road with a certain area of light emitted by the 3D camera; or,
  • the three-dimensional space state image model is obtained by the 3D camera emitting a certain width of light or wave wall and moving scanning along the track of the glue road.
  • the glue path is formed on the workpiece by at least one of glue coating, glue dispensing and glue spraying.
  • the present invention also proposes a device for checking the state of the glue path, including:
  • 3D camera used to scan the three-dimensional space state model of the glue road
  • a display for displaying a three-dimensional spatial state image model of the glue path for displaying a three-dimensional spatial state image model of the glue path.
  • the control device is electrically connected with the 3D camera and the display, and is used to obtain state-related parameters according to the three-dimensional space state image model of the glue path, and the control device includes a memory, a processor, and a And the control program of the device for checking the state of the glue path that can run on the processor, the control program of the device for checking the state of the glue path is configured to implement the steps of the above-mentioned inspection method for the device for checking the state of the glue path.
  • the device for checking the state of the glue road also includes a robot arm and a mounting plate, and the mounting plate is provided with slotted holes and arc-shaped through holes arranged at intervals, and the slotted holes are used for the robot to arm mount;
  • the device for checking the state of the glue road also includes a bolt, the 3D camera is provided with a mounting hole, and the bolt passes through the mounting hole and is movably connected to the arc-shaped through hole, so that the 3D camera can It is movably installed on the mounting plate along the arc-shaped through hole to adjust the angle and height of the 3D camera.
  • the device for inspecting the state of the glue path also includes a laser calibrator and a sensor, the sensor is used to sense the workpiece with the glue path, and the laser calibrator is used for different workpieces with the glue path The workpiece is automatically positioned and calibrated;
  • Both the laser calibrator and the sensor are electrically connected to the control device.
  • the waves emitted by the 3D scanning camera include any one of light, electromagnetic waves and ultrasonic waves.
  • the three-dimensional space state image model of the 3D scanning glue road is obtained first, so that the accurate and stable state of the glue road can be obtained, and the state-related parameters can be obtained according to the three-dimensional space state image of the glue road, and then the The obtained state-related parameters are compared with the threshold value of the allowable parameter library to judge whether the rubber road is qualified; in this way, the state of the rubber road on the arc surface, corner, and curved surface can be accurately and reliably detected, and the It can inspect the glue path of transparent glue when the addition of fluorescent agent is prohibited, or the glue path of the glue applied with the same color as the glue carrier, and the glue path when the workpiece is made of transparent material.
  • Fig. 1 is a schematic structural view of an embodiment of a device for checking the state of a glue path provided by the present invention
  • Fig. 2 is a schematic flow chart of an embodiment of the inspection method of the device for inspecting the state of the rubber path provided by the present invention
  • Fig. 3 is a schematic flowchart of another embodiment of the inspection method of the device for inspecting the state of the rubber path provided by the present invention.
  • the directional indication is only used to explain the position in a certain posture (as shown in the accompanying drawing). If the specific posture changes, the directional indication will also change accordingly.
  • the existing method is to use a combination of various light sources and 2D cameras to perform multi-spectral traditional 2D solutions to inspect the glue path.
  • This traditional solution has the following disadvantages. To stably detect the glue path, it is necessary to add a fluorescent agent to the glue or use a different The glue of the color of the part, but in the spraying or gluing assembly scene of electronic products with display screens and optical sensor lenses such as wearable heart rate lenses, the use of glue with added fluorescent agents or different colors from the parts is prohibited, so the traditional 2D inspection The glue method cannot carry out the glue road test on this kind of product.
  • Fig. 1 is a schematic structural view of an embodiment of the device for checking the state of the glue path provided by the present invention
  • the device for checking the state of the glue path includes a 3D camera 1, a display 2 and a control device 3, the 3D camera 1 is used to scan the three-dimensional space state image model of the glue path, it should be noted that the The 3D camera 1 sends waves to the glue road, and then accepts reflected waves for imaging.
  • the waves sent by the 3D camera 1 can be but not limited to light, electromagnetic waves, and ultrasonic waves; the display 2 is used to display the glue road.
  • the three-dimensional space state image model that is to say, through the 3D camera 1 to send waves to the glue road, data collection is performed on the glue road, and the data collected by the control device 3 is generated by the display 2.
  • control device 3 can be but not limited to an industrial computer, the state-related parameters are obtained by the industrial computer, and the state-related parameters and the allowable parameters Comparing the domain values of the library can obtain whether the glue path is qualified.
  • the control device 3 is electrically connected to the 3D camera 1 and the display 2, and the control device 3 includes a memory, a processor, and a test glue circuit stored in the memory and operable on the processor.
  • the control program of the device of the state, the control program of the device for checking the state of the glue path realizes the steps of the inspection method for checking the state of the glue path as follows: obtain the three-dimensional space state image model of the 3D scanning glue path; The three-dimensional space state image model obtains the state-related parameters of the glue path and the workpiece where it is located; compares the state-related parameters with the threshold values of the allowable parameter library to determine whether the glue path is qualified.
  • the control device 3 may be independent from the device for checking the state of the glue path, or it may be the device for checking the state of the glue path, and the control device 3 may be an industrial computer.
  • the three-dimensional space state image model of the 3D scanning glue road is obtained first, so that the accurate and stable state of the glue road can be obtained, and the state-related parameters can be obtained according to the three-dimensional space state image of the glue road, and then the The obtained state-related parameters are compared with the threshold value of the allowable parameter library to judge whether the rubber road is qualified; in this way, the state of the rubber road on the arc surface, corner, and curved surface can be accurately and reliably detected, and the It can inspect the glue path of transparent glue when the addition of fluorescent agent is prohibited, or the glue path of the glue applied with the same color as the glue carrier, and the glue path when the workpiece is made of transparent material.
  • the device for inspecting the state of the glue path includes a robot arm and a mounting plate arranged on the robot arm, and the mounting plate is provided with arc-shaped through holes and elongated holes arranged at intervals , the long hole is used for the connection of the robot arm, the device for checking the state of the glue road also includes a bolt, the 3D camera is provided with a mounting hole, and the bolt passes through the mounting hole and the arc
  • the arc-shaped through hole can be movably connected, that is to say, the 3D camera 1 is mounted on the mounting plate through the arc-shaped through-hole through a bolt, so that the 3D camera can move along the arc-shaped through-hole so that the angle and height of the 3D camera 1 can be adjusted, so that the 3D camera 1 can be adjusted conveniently corresponding to the trajectory of the glue path, and can also be adjusted corresponding to the glue path of different trajectories, so as to complete
  • the glue path detection of different tracks in this embodiment, the 3D camera 1 is installed
  • the 3D camera 1 can scan the glue road with a certain area of light or wave front to obtain the three-dimensional space state image model of the glue road; the 3D camera can also emit a certain width of light or The wave wall moves and scans along the track of the glue road to obtain the three-dimensional space state image model of the glue road, so that the 3D camera 1 can be adjusted differently according to the need to obtain different state-related parameters.
  • the device for checking the state of the glue path includes a laser calibrator and a sensor; the sensor can detect the glue head, and when the sensor detects the glue head, the control device 3 controls
  • the laser calibrator is used to align the glue head with the glue path; in this way, it can automatically position and calibrate different workpieces or the glue paths with different trajectories, and then automatically scan and generate trajectories; the present invention does not limit the glue path.
  • the road is formed in the way of spraying glue, gluing, or dispensing.
  • the present invention also provides an inspection method of a device for inspecting the state of the glue path
  • Fig. 2 and Fig. 3 are schematic flow charts of an embodiment of the inspection method for the apparatus for inspecting the state of the glue path provided by the present invention.
  • the inspection method of the device includes the following steps:
  • Step S10 Obtain a three-dimensional space state image model of the 3D scanned glue road
  • the 3D camera 1 emits waves to the glue road, and then accepts the reflected wave for imaging, so as to generate a three-dimensional spatial state image model of the glue road, and can detect transparent glue, glue roads on curved surface workpieces, The glue roads at corners or arcs and the glue roads in deep grooves are inspected, and the waves emitted by the 3D camera 1 can be but not limited to light waves, electromagnetic waves, and ultrasonic waves.
  • Step S20 According to the three-dimensional space state image model of the glue path, obtain the state-related parameters of the glue path and the workpiece;
  • Step S30 Compare the state-related parameters with the threshold values of the allowable parameter database to determine whether the glue path is qualified.
  • the state-related parameters are compared with the domain values of the allowable parameter library of the MES intelligent production system of the production line, and can be compared in size, so as to determine whether the glue road is qualified.
  • the domain value of the allowable parameter library in the MES intelligent production system of the production line is to analyze qualified samples , collect the state-related parameters of the qualified sample, and then input them into the allowable parameter library of the MES intelligent production system of the production line, and can update and re-enter them according to the state-related parameters of different types of the glue roads, and can also be updated after updating In the process of removing the unqualified state-related parameters in the allowable parameter library.
  • the three-dimensional space state image model of the 3D scanning glue road is obtained first, so that the accurate and stable state of the glue road can be obtained, and the state-related parameters can be obtained according to the three-dimensional space state image model of the glue road, Then compare the obtained state-related parameters with the threshold value of the allowable parameter library value to obtain whether the rubber road is qualified; in this way, it is possible to accurately and reliably check the state of the rubber road on arc surfaces, corners, curved surfaces and deep grooves For testing, it is also possible to inspect the glue road using transparent glue or the glue road coated with the same color as the glue carrier.
  • the state-related parameters of the glue path include coordinate data, RGB data, and reflectance data, specifically, also include:
  • S210 Acquire coordinate data, RGB data, and reflectance data of selected pixel units of the three-dimensional space state image model of the glue road according to the three-dimensional space state image model of the glue road;
  • S310 record the ratio of coordinate data to the domain value of the allowable parameter database as the degree of compliance P, record the ratio of RGB data to the domain value of the The ratio of the domain value of the allowable parameter library is recorded as the degree of compliance R;
  • S320 Multiply P, C, and R by the corresponding weighted values and then add them together, and compare them with the set judgment threshold;
  • the degree of conformity is expressed as comparing the obtained state-related parameters of the rubber road with the threshold values of the allowable parameter library;
  • the specific comparison method is, for example, the allowable Corresponding to the coordinate data, RGB data and reflectance data of the selected pixel unit with the parameter library value has a set qualified interval, the coordinate data is the coordinate value X, Y, Z data, and the RGB data is the color R, G, B data, the reflectance data is the reflectance data of the material of the glue path; each qualified interval is set by the operator according to the different glue paths; the glue path falling into the interval
  • the state-related parameters are compared with the median in the set qualified interval to obtain the degree of conformity of the state-related parameters of the rubber road; P, C and R are multiplied and then added to the corresponding weighted values,
  • the weighted value is the weight of the corresponding P, C, and R, which is specifically expressed as: for example, the coordinate data of the selected pixel unit of the glue road accounts for 80%, that
  • the RGB data and the reflectance data each account for 10%, and the obtained coordinate data of the selected pixel unit of the glue path, the RGB data and the reflectivity data correspond to the state-related parameters of the glue path
  • the value obtained by multiplying and adding the coincidence degree and the respective weighted values is then compared with the set judgment threshold to judge whether the state of the glue path on the workpiece is qualified.
  • the three-dimensional space state model of the glue road includes a glue road area and a workpiece area.
  • the obtained state-related parameters it also includes:
  • S220 According to the binary image analysis method, determine the separation boundary between the workpiece area and the glue road area in the three-dimensional space state model image of the glue road;
  • S230 Separate the workpiece area and the glue road area in the three-dimensional space state image model of the glue road through the separation boundary, and respectively obtain the three-dimensional image model of the glue road area and the three-dimensional image of the workpiece area Model;
  • S240 Obtain the state-related parameters according to the separation boundary between the workpiece area and the glue road area, the three-dimensional space state model of the glue road, and the three-dimensional space state model of the glue road area;
  • the three-dimensional spatial state image model of the glue path includes the workpiece area to be measured and Located in the glue path area of the workpiece to be measured, according to the binary image analysis method, determine the separation boundary between the workpiece area and the glue path area in the three-dimensional space state model image of the glue path, and pass through the separation boundary, thereby The workpiece area and the glue road area in the 3D-scanned three-dimensional space state image model of the glue road can be accurately separated, and the three-dimensional space state image model of the workpiece area and the glue road are respectively obtained.
  • the three-dimensional space state image model of the glue road area and then separate the workpiece area and the glue road area in the three-dimensional space state image model of the glue road through the separation boundary, and obtain the three-dimensional image model and the glue road area respectively.
  • a three-dimensional image model of the workpiece area is
  • Step S240 also includes the steps of:
  • the picture processed by the binary image analysis method is obtained, and the uniformity parameter of the glue path is obtained by calculating the number of Blobs, so as to obtain whether the glue path is broken and the area where the glue is broken or Whether there are glue-hanging and glue-hanging areas; Blob is also called a connected area, an area formed by the adjacent connection of the same pixel or similar pixels (similar gray scale), so that the three-dimensional space image of the glue road can be simplified, so in the two In the three-dimensional space state image model of the glue road processed by the value image analysis method, the three-dimensional space state image model of the glue road at this time has the glue road area and the workpiece area, and the glue road area
  • the connected area of the workpiece area is marked as the first connected area
  • the connected area of the workpiece area is marked as the second connected area
  • the connected area where the workpiece area and the glue path area overlap is marked as the third connected area.
  • check the third connected region compare the three-dimensional space state image model of the third connected region with the set three-dimensional space state image model, if there is a part of white space in the third connected region Or part of the gray scale is lighter, and then calculate the number of part of the white vacancy or part of the connected area with a higher gray scale to obtain the glue shortage parameter of the glue road.
  • the three-dimensional spatial state image model of the rubber road is processed according to the binary image analysis method, and the binary image analysis method first needs to set a threshold value.
  • the above setting threshold is set by the operator according to the glue path, and there is no limit here; by comparing the setting threshold, all pixels whose grayscale is greater than or equal to the threshold are judged to belong to a specific object, and their grayscale A value of 255 means that the remaining pixels are excluded from the object area, and the gray value is 0, which means the background or the exception object area, that is to say, the gray value of the pixels on the image is set to 0 or 255, so that
  • the three-dimensional spatial state image model of the glue road presents an obvious black-and-white effect, and the state-related parameters obtained after processing by the binary image analysis method are more accurate, making the image simpler and reducing the amount of data , which can highlight the outline of the glue road.
  • the three-dimensional space state image model of the third connected region is compared with the set three-dimensional space state image model, and if the third connected region appears to have a darker part of the gray, then calculate the partial gray
  • the number of connected areas with deeper degrees can be used to obtain the glue hanging parameters of the glue road.
  • the second connected region is compared with the set three-dimensional space state image model of the glue road, if the grayscale image of the second connected region is the same as the grayscale image of the third connected region If the grayscale images are similar, it means that the rubber path has partial glue, and then calculate the connected area where the second connected region overlaps with the first connected region to obtain the glue partial parameter of the glue path.
  • the rubber surface obtained by sampling the pixel unit of the glue path is compared with the set glue surface, and the reflectance of the glue surface at the position where there are bubbles on the glue path is unqualified, the obtained reflection
  • the reflectance of the glue surface at the position where there are bubbles on the glue path is unqualified, the obtained reflection
  • the reflectivity and the allowable reflectance threshold of the glue surface so the color or grayscale of the glue road with bubbles or hollow positions will be different from the surrounding environment, due to the different colors or grayscales formed by the hollow positions
  • the area of the gray scale is relatively large, so that it can be judged whether the glue path is hollow or whether there are air bubbles.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic CD, CD), including several instructions to make a terminal device (which may be a mobile phone, computer, server, TV, or network device, etc.) execute the method of each embodiment of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种检验胶路状态的装置及其检验方法,检验胶路状态的检验方法包括以下步骤:获得3D扫描胶路的三维空间状态图像模型(S10);根据胶路的三维空间状态图像模型胶路及所在工件的状态相关参数(S20);将状态相关参数与许用参数库的域值对比得到胶路是否合格(S30);先获取3D扫描胶路的三维空间状态图像模型,从而能够得到准确稳定的工件上的胶路状态,获得状态相关参数,再将获得的状态相关参数与许用参数库的域值对比得到胶路的偏差;如此,既能够准确可靠的对各种胶路状态进行检测,还能够对禁止添加荧光剂时的透明胶水的胶路或者所涂胶水与胶水载体同色及工件为透明材质时的胶路进行检验。

Description

检验胶路状态的装置及其检验方法 技术领域
本发明涉及胶路检测技术领域,具体涉及一种检验胶路状态的装置及其检验方法。
背景技术
在穿戴类电子产品及零组件的组装生产中,最常用的组装固定工艺为对各零件或各组件间进行喷或者涂胶后再进行组装固化,但因不同胶水特性不同,喷胶阀或者涂胶阀往往不能有效保障每次喷或者涂的胶状态都符合要求,因而要想保证涂胶组装固化状态或气密性完好,就必须对喷或者涂完胶的零组件或成品进行精准的胶路状态检测来及时发现异常防止批量不良和个别不良流入市场,否则这些因胶路状态不良漏检会引起产品的粘接力、密封性、胶量等不良品出现。
现有的方法为用各种光源和2D相机组合进行多光谱的传统2D方案进行对胶路检验,此传统方案有如下缺点,若要稳定检测胶路需在胶水中添加荧光剂或使用不同于零件颜色的胶水,但在有具有显示屏和具有光传感器镜片例如穿戴类的心率镜片的电子产品的喷或者涂胶组装场景中禁止使用添加荧光剂或不同于零件颜色的胶水,故传统2D检胶方法无法对此类产品的进行胶路检验。
发明内容
本发明的主要目的是提出一种检验胶路状态的装置及其检验方法,旨在解决目前的方法检验透明胶水和所涂胶水与胶水载体同色时又不允许加荧光剂或改变胶水颜色造成检不出胶水状态的问题。
为实现上述目的,本发明提出的一种检验胶路状态的装置的检验方法,包括以下步骤:
获得3D扫描胶路的三维空间状态图像模型;
根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态 相关参数;
将所述状态相关参数与许用参数库的域值比对,判断所述胶路是否合格。
可选地,所述胶路的状态相关参数包括坐标数据、RGB数据以及反射率数据;
根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数的步骤,包括:
根据所述胶路的三维空间状态图像模型,获取所述胶路的三维空间状态图像模型的选定像素单元的坐标数据、RGB数据以及反射率数据;
将所述状态相关参数与许用参数库的域值比对,判断所述胶路是否合格的步骤,包括:
将坐标数据占所述许用参数库的域值的比率记为符合度P,将RGB数据占所述许用参数库的域值的比率记为符合度C,将反射率占所述许用参数库的域值的比率记为符合度R;
将P、C和R与对应的加权值进行相乘后再相加,与设定的判定阀值对比;
根据比较结果,判断所述胶路是否合格。
可选地,获得所述胶路选定像素单元的坐标数据、RGB数据以及反射率数据的符合度,将坐标数据占所述许用参数库的域值的比率计为P,将RGB数据占所述许用参数库的域值的比率计为C,将反射率占所述许用参数库的域值的比率计为R,将P、C和R乘以对应的所述加权值后再相加后得到的数值,与设定的判定阀值对比,判断所述胶路是否合格的步骤之前,包括:
根据检验的所述胶路在其工件上的合格精度要求,调整所述设定的判断阀值。
可选地,所述状态相关参数包括胶偏参数、胶宽参数、胶高参数、胶量、胶体均匀分布性以及胶路中是否存在中空或气泡参数中的至少一种。
可选地,所述胶路的三维空间状态模型包括胶路区以及工件区;
根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数的步骤,包括:
根据二值图像分析法,确定所述胶路的三维空间状态模型图像中的工件区和所述胶路区的分离边界;
通过所述分离边界将所述胶路的三维空间状态图像模型中所述工件区和 所述胶路区分离,分别得到所述胶路区的三维图像模型和所述工件区的三维图像模型;
根据所述工件区和所述胶路区的分离边界、所述胶路的三维空间状态模型和所述胶路区的三维空间状态模型,获得所述状态相关参数。
可选地,根据所述工件区和所述胶路区的分离边界、所述胶路的三维空间状态模型和所述胶路区的三维空间状态模型,获得所述状态相关参数的步骤,包括:
计算Blob数量获取所述胶路的是否有断胶和胶体均匀分布性参数;或者,
通过所述胶路区和所述工件区在所述分离边界的相关数据,获得胶路相对工件的胶偏参数;或者,
获得所述胶路的两个轮廓边线,计算两个轮廓边线之间的距离得到所述胶宽参数;或者,
采样所述胶路最高位置像素中心的高度得到所述胶高参数;或者,
采样所述胶路的胶面的像素单元得到的胶面反射率与许用参数库的反射率的域值对比,判断所述胶路是否中空或者是否有气泡;或者,
获取所述胶路的坐标数据,计算所述胶路边界的长度,获得所述胶路体积以及胶量。
可选地,在获得3D扫描胶路的三维空间状态图像模型的步骤中,所述三维空间状态图像模型为所述3D相机发出一定面积的光或波面对所述胶路定扫描获得的;或者,
所述三维空间状态图像模型所述3D相机发出一定宽度的光或波墙沿所述胶路的轨迹动扫描获得的。
可选地,在获得3D扫描胶路的三维空间状态图像模型的步骤中,所述胶路为在所述工件上通过涂胶、点胶以及喷胶中的至少一种形成的。
本发明还提出一种检验胶路状态的装置,包括:
3D相机,用于扫描胶路的三维空间状态模型;
显示器,用于显示所述胶路的三维空间状态图像模型;以及,
控制装置,与所述3D相机和所述显示器电性连接,用于根据所述胶路的三维空间状态图像模型获得状态相关参数,所述控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的检验胶路状态的装置的 控制程序,所述检验胶路状态的装置的控制程序配置为实现上述的检验胶路状态的装置的检验方法的步骤。
可选地,所述检验胶路状态的装置还包括机器人臂和安装板,所述安装板上设有间隔设置的长条孔和弧形通孔,所述长条孔用于供所述机器人臂安装;
所述检验胶路状态的装置还包括螺栓,所述3D相机上设有安装孔,所述螺栓穿过所述安装孔可活动地连接于所述弧形通孔,以使得所述3D相机可沿所述弧形通孔活动地安装于所述安装板,以调节所述3D相机角度和高度。
可选地,所述检验胶路状态的装置还包括激光校准器以及传感器,所述传感器用以感应具有所述胶路的所述工件,所述激光校准器用以对不同的具有所述胶路的所述工件自动定位校准;
所述激光校准器和所述传感器均与所述控制装置电性连接。
可选地,所述3D扫描相机发射的波包括光、电磁波以及超声波的任意一种。
本发明的技术方案中,先获取3D扫描胶路的三维空间状态图像模型,从而能够得到准确稳定的所述胶路状态,根据所述胶路的三维空间状态图像可以获得状态相关参数,再将获得的所述状态相关参数与许用参数库的域值对比,判断得到所述胶路是否合格;如此,既能够准确可靠的对圆弧面、拐角、曲面上的胶路状态进行检测,还能够对禁止添加荧光剂时的透明胶水的胶路或者所涂胶水与胶水载体同色的胶路及工件为透明材质时的胶路进行检验进行检验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明提供的检验胶路状态的装置的一实施例的结构示意图;
图2为本发明提供的检验胶路状态的装置的检验方法一实施例的流程示意图;
图3为本发明提供的检验胶路状态的装置的检验方法的另一实施例的流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
在穿戴类电子产品及零组件的组装生产中,最常用的组装固定工艺为对各零件或各组件间进行喷或者涂胶后再进行组装固化,但因不同胶水特性不同,喷胶阀或者涂胶阀往往不能有效保障每次喷或者涂的胶状态都符合要求,因而要想保证涂胶组装固化状态或气密性完好,就必须对喷或者涂完胶的零 组件或成品进行精准的胶路状态检测来及时发现异常防止批量不良和个别不良流入市场,否则这些因胶路状态不良漏检会引起产品的粘接力、密封性、胶量等不良品出现。
现有的方法为用各种光源和2D相机组合进行多光谱的传统2D方案进行对胶路检验,此传统方案有如下缺点,若要稳定检测胶路需在胶水中添加荧光剂或使用不同于零件颜色的胶水,但在有具有显示屏和具有光传感器镜片例如穿戴类的心率镜片的电子产品的喷或者涂胶组装场景中禁止使用添加荧光剂或不同于零件颜色的胶水,故传统2D检胶方法无法对此类产品的进行胶路检验。
本发明提供一种检验胶路状态的装置,图1为本发明提供的检验胶路状态的装置的一实施例的结构示意图;
请参阅图1,所述检验胶路状态的装置包括3D相机1、显示器2以及控制装置3,所述3D相机1用于扫描所述胶路的三维空间状态图像模型,需要说明的是,所述3D相机1是通过发出波至胶路上,再接受反射的波以进行成像,所述3D相机1发出的波可以但不限于光、电磁波、超声波;所述显示器2用于显示所述胶路的三维空间状态图像模型;也就是说,通过所述3D相机1发出波至所述胶路,对所述胶路进行数据收集,所述控制装置3将收集的数据由所述显示器2生成所述胶路的三维空间状态图像模型,在本实施例中,所述控制装置3可以但不限于工控机,由所述工控机获取所述状态相关参数,将所述状态相关参数与许用参数库的域值对比从而能够得到所述胶路是否合格。
所述控制装置3与所述3D相机1和所述显示器2电性连接,所述控制装置3包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的检验胶路状态的装置的控制程序,所述检验胶路状态的装置的控制程序实现如下所述的检验胶路状态的检验方法的步骤:获得3D扫描胶路的三维空间状态图像模型;根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数;将所述状态相关参数与许用参数库的域值对比,判断所述胶路是否合格。在这里需要注意的是,所述控制装置3可以独立于所述检验胶路状态的装置,也可以使所述检验胶路状态的装置,所述控制装置3可以是工控机。
本发明的技术方案中,先获取3D扫描胶路的三维空间状态图像模型,从而能够得到准确稳定的所述胶路状态,根据所述胶路的三维空间状态图像可以获得状态相关参数,再将获得的所述状态相关参数与许用参数库的域值对比,判断得到所述胶路是否合格;如此,既能够准确可靠的对圆弧面、拐角、曲面上的胶路状态进行检测,还能够对禁止添加荧光剂时的透明胶水的胶路或者所涂胶水与胶水载体同色的胶路及工件为透明材质时的胶路进行检验进行检验。
在本发明的一实施例中,所述检验胶路状态的装置包括机器人臂以及设于所述机器人臂上的安装板,所述安装板上设有间隔设置的弧形通孔和长形孔,所述长条孔用于供所述机器人臂连接,所述检验胶路状态的装置还包括螺栓,所述3D相机上设有安装孔,所述螺栓穿过所述安装孔与所述弧形通孔可活动连接,也就是说,通过螺栓穿过所述弧形通孔将所述3D相机1安装于所述安装板上,使得所述3D相机活动可沿所述弧形通孔活动,以使所述3D相机1角度和高度可调节,从而能够方便将所述3D相机1对应于所述胶路的轨迹进行调节,也能够对应不同轨迹的所述胶路的进行调整,以完成对不同轨迹的所述胶路检测;在本实施例中,所述3D相机1安装于所述安装板上,且所述3D相机1距胶路检验高度为10-150mm,检验有效宽度0-100mm,且检验角度在0-90°的范围内可调节。
需要说明的是,所述3D相机1能够对所述胶路以一定面积的光或波面进行定扫描获得所述胶路的三维空间状态图像模型;所述3D相机也可以发出一定宽度的光或波墻对沿所述胶路轨迹移动扫描获得所述胶路的三维空间状态图像模型,如此能够针对需要获得不同的所述状态相关参数,对所述3D相机1进行不同的调整。
在本发明的一实施例中,所述检验胶路状态的装置包括激光校准器以及传感器;所述传感器能够检测胶头,在所述传感器检测到所述胶头时,所述控制装置3控制所述激光校准器用于使所述胶头对准所述胶路;如此能够对不同工件或者具有不同轨迹的所述胶路自动定位校准,进而能够自动扫描生成轨迹;本发明不限制所述胶路的形成方式,可以采用喷胶的方式,也可以采用涂胶的方式,还可以采用点胶的方式。
本发明还提供一种检验胶路状态的装置的检验方法,图2和图3为本发 明提供的检验胶路状态的装置的检验方法的一实施例的流程示意图,所述检验胶路状态的装置的检验方法包括以下步骤:
步骤S10:获得3D扫描胶路的三维空间状态图像模型;
所述3D相机1是通过发出波至所述胶路上,再接受反射的波以进行成像,从而能够生成所述胶路的三维空间状态图像模型,能够对透明胶水、曲面工件上的胶路、拐角或圆弧处胶路、深槽里的胶路进行检验,且所述3D相机1发出的波可以但不限于光波、电磁波、超声波。
步骤S20:根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数;
步骤S30:将所述状态相关参数与许用参数库的域值比对,判断所述胶路是否合格。
具体地,在本实施例中,将所述状态相关参数与生产线MES智能生产系统许用参数库的域值进行比对,可以是比较大小,如此,来判断胶路是否合格。
需要说明的是,对所述许用参数库的域值不作限制,在本实施例中,所述产线MES智能生产系统内的所述许用参数库域值,是对合格的样品进行分析,采集该合格样品的状态相关参数,再录入至所述产线MES智能生产系统的许用参数库,并且可以根据不同类型的所述胶路的状态相关参数进行更新再录入,还可以在更新的过程中去除所述许用参数库中的不合格的所述状态相关参数。
在本发明的技术方案中,先获取3D扫描胶路的三维空间状态图像模型,从而能够得到准确稳定的所述胶路状态,根据所述胶路的三维空间状态图像模型可以获得状态相关参数,再将获得的所述状态相关参数与许用参数库值的域值对比得到所述胶路是否合格;如此,既能够准确可靠的对圆弧面、拐角、曲面以及深槽上的胶路状态进行检测,还能够对使用透明胶水的胶路或者所涂胶水与胶水载体同色的胶路进行检验。
在本发明的一实施例中,所述胶路的状态相关参数包括坐标数据、RGB数据以及反射率数据,具体地,还包括,
S210:根据所述胶路的三维空间状态图像模型,获取所述胶路的三维空间状态图像模型的选定像素单元的坐标数据、RGB数据以及反射率数据;
S310:将坐标数据占所述许用参数库的域值的比率记为符合度P,将RGB数据占所述许用参数库的域值的比率记为符合度C,将反射率占所述许用参数库的域值的比率记为符合度R;
S320:将P、C和R与对应的加权值进行相乘后再相加,与设定的判定阀值对比;
S330:根据比较结果,判断所述胶路是否合格。
请参照图3,在本实施例中,所述符合度表示为获取的所述胶路的状态相关参数与所述许用参数库的域值进行对比;具体的对比方式为,例如所述许用参数库值对应选定像素单元的坐标数据、RGB数据以及反射率数据均具有一个设定合格的区间,坐标数据也就是坐标值X、Y、Z数据、RGB数据也就是色彩R、G、B数据,反射率数据为所述胶路材质的反射率数据;各所述设定合格的区间具体由操作人员根据不同的所述胶路进行设定;对落入区间的所述胶路的状态相关参数与所述设定合格区间内的中位数进行对比,得到所述胶路的状态相关参数的符合度;将P、C和R与对应的加权值的进行相乘再相加,所述加权值为对应的P、C、R占的权重,具体表示为:例如,所述胶路选定像素单元的坐标数据的占比百分之八十、也就是加权值为百分之八十,RGB数据以及反射率数据各占比百分之十,将得到的所述胶路的选定像素单元的坐标数据、RGB数据以及反射率数据对应的所述胶路的状态相关参数的符合度与各自的所述加权值相乘再相加得到的数值,再与设定的判定阀值对比,判断所述胶路在其工件上的状态是否合格。
S311:根据检验的所述胶路在其工件上的合格精度要求,调整所述设定的判断阀值。
具体地,所述胶路的三维空间状态模型包括胶路区以及工件区,为了使获取的所述状态相关参数更加精确,还包括:
S220:根据二值图像分析法,确定所述胶路的三维空间状态模型图像中的工件区和所述胶路区的分离边界;
S230:通过所述分离边界将所述胶路的三维空间状态图像模型中所述工件区和所述胶路区分离,分别得到所述胶路区的三维图像模型和所述工件区的三维图像模型;
S240:根据所述工件区和所述胶路区的分离边界、所述胶路的三维空间 状态模型和所述胶路区的三维空间状态模型,获得所述状态相关参数;
在本实施例,由于所述3D相机1扫描的是所述3D扫描待测工件和位于所述待测工件的所述胶路,所述胶路的三维空间状态图像模型包括待测工件区和位于所述待测工件的胶路区,根据二值图像分析法,确定所述胶路的三维空间状态模型图像中的工件区和所述胶路区的分离边界,通过所述分离边界,从而能够准确地将所述3D扫描的所述胶路的三维空间状态图像模型中的所述工件区和所述胶路区分离,分别得到所述工件区的三维空间状态图像模型和所述胶路区的三维空间状态图像模型,再通过所述分离边界将所述胶路的三维空间状态图像模型中所述工件区和所述胶路区分离,分别得到所述胶路区的三维图像模型和所述工件区的三维图像模型。
具体地,所述状态相关参数包括胶偏参数、胶宽参数、胶高参数、胶量、胶体均匀分布性以及胶路中是否存在中空或气泡参数中的至少一种,步骤S240还包括步骤:
S241:计算Blob数量获取所述胶路的是否有断胶和胶体均匀分布性参数
S242:通过所述胶路区和所述工件区在所述分离边界的相关数据,获得胶路相对工件的胶偏参数;
通过所述二值图像分析法,得到所述二值图像分析法处理的图片,通过计算Blob数量获取胶路的所述均匀性参数,以得到所述胶路是否断胶以及断胶的区域或者是否有挂胶以及挂胶的区域;Blob也叫做连通区域,同一像素或者相近像素(相近灰度)相邻连接构成的区域,从而能够将所述胶路的三维空间图像简单化,如此在二值图像分析法处理后的所述胶路的三维空间状态图像模型中,此时的所述胶路的三维空间状态图像模型具有所述胶路区和所述工件区,将所述胶路区的连通区域标记为第一连通区域,将所述工件区域的连通区域标记为第二连通区域,将所述工件区与所述胶路区重合的连通区域标记为第三连通区域。
在一实施例中,查看所述第三连通区域,将所述第三连通区域的三维空间状态图像模型与设定的三维空间状态图像模型进行对比,若所述第三连通区域出现部分白色空缺或者部分灰度较浅,再计算部分白色空缺或者部分灰度较的连通区域的数量,得到所述胶路的缺胶参数。
需要说明的是,在本实施例中,根据二值图像分析法处理所述胶路的三 维空间状态图像模型,所述二值图像分析法首先要设置设定阀值,需要说明的是,所述设定阀值为操作人员根据胶路所设定的,在此不做限制;将通过对比设定阀值对比,所有灰度大于或等于阈值的像素被判定为属于特定物体,其灰度值为255表示,其余的像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域,也就是说将图像上的像素点的灰度值设置为0或255,从而将所述胶路的三维空间状态图像模型呈现出明显的黑白效果,且采用所述二值图像分析法处理后获得的所述状态相关参数更加精准,使图像变得简单,而且数据量减小,能凸显出所述胶路的轮廓。
在另一实施例中,将所述第三连通区域的三维空间状态图像模型与设定的三维空间状态图像模型进行对比,若所述第三连通区域出现部分灰度较深,再计算部分灰度较深的连通区域的数量,得到所述胶路的挂胶参数。
在再一实施例中,将所述第二连通区域与所述胶路的设定的三维空间状态图像模型进行对比,若所述第二连通区域的灰度图与所述第三连通区域的灰度图相似,则说明所述胶路具有偏胶的情况,再计算所述第二连通区域与所述第一连通区域重合的连通区域,得到所述胶路的偏胶参数。
S243:获得所述胶路的两个轮廓边线,计算两个轮廓边线之间的距离得到所述胶宽参数;
在所述胶路区的三维空间状态图像模型中,所述胶路的两侧形成有两个清晰的轮廓线,分别采样两个轮廓线的点,计算两个轮廓线之间的间距,且该两个轮廓线之间的距离一般为不等,为此,可以通过计算其平均值,以获得胶路的宽度参数。
S244:采样所述胶路最高位置像素中心的高度得到所述胶高参数;
直接获取所述胶路的位置像素中心的高度的坐标Z的数值,通过计算其平均值,以获得胶路的胶高参数。
S245:采样所述胶路的胶面的像素单元得到的胶面反射率与许用胶面的反射率范围相比,判断所述胶路是否中空或者是否有气泡;
在本发明的一实施例中,采样所述胶路的像素单元得到的胶面与设定胶面相比,在所述胶路上有气泡的位置的胶面反射率为不合格时,获得的反射率与许用胶面的反射率域值相比有较大的差距,因此所述胶路有气泡或者中空的位置的颜色或者灰度会与周围环境不同,由于中空的位置形成的不同颜 色或者灰度的面积较大,从而能够判断所述胶路中是否中空或者是否有气泡。
S246:获取所述胶路的坐标数据,计算所述胶路边界的长度,获得所述胶路体积及胶量参数。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,电视机,或者网络设备等)执行本发明各个实施例的方法。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (12)

  1. 一种检验胶路状态的装置的检验方法,其特征在于,包括以下步骤:
    获得3D扫描胶路的三维空间状态图像模型;
    根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数;
    将所述状态相关参数与许用参数库的域值比对,判断所述胶路是否合格。
  2. 如权利要求1所述的检验胶路状态的装置的检验方法,其特征在于,所述胶路的状态相关参数包括坐标数据、RGB数据以及反射率数据;
    根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数的步骤,包括:
    根据所述胶路的三维空间状态图像模型,获取所述胶路的三维空间状态图像模型的选定像素单元的坐标数据、RGB数据以及反射率数据;
    将所述状态相关参数与许用参数库的域值比对,判断所述胶路是否合格的步骤,包括:
    将坐标数据占所述许用参数库的域值的比率记为符合度P,将RGB数据占所述许用参数库的域值的比率记为符合度C,将反射率占所述许用参数库的域值的比率记为符合度R;
    将P、C和R与对应的加权值进行相乘后再相加,与设定的判定阀值对比;
    根据比较结果,判断所述胶路是否合格。
  3. 如权利要求2所述的检验胶路状态的装置的检验方法,其特征在于,获得所述胶路选定像素单元的坐标数据、RGB数据以及反射率数据的符合度,将坐标数据占所述许用参数库的域值的比率计为P,将RGB数据占所述许用参数库的域值的比率计为C,将反射率占所述许用参数库的域值的比率计为R,将P、C和R乘以对应的所述加权值后再相加后得到的数值,与设定的判定阀值对比,判断所述胶路是否合格的步骤之前,包括:
    根据检验的所述胶路在其工件上的合格精度要求,调整所述设定的判断 阀值。
  4. 如权利要求1所述的检验胶路状态的装置的检验方法,其特征在于,所述状态相关参数包括胶偏参数、胶宽参数、胶高参数、胶量、胶体均匀分布性以及胶路中是否存在中空或气泡参数中的至少一种。
  5. 如权利要求4所述的检验胶路状态的装置的检验方法,其特征在于,所述胶路的三维空间状态模型包括胶路区以及工件区;
    根据所述胶路的三维空间状态图像模型获得所述胶路及所在工件的状态相关参数的步骤,包括:
    根据二值图像分析法,确定所述胶路的三维空间状态模型图像中的工件区和所述胶路区的分离边界;
    通过所述分离边界将所述胶路的三维空间状态图像模型中所述工件区和所述胶路区分离,分别得到所述胶路区的三维图像模型和所述工件区的三维图像模型;
    根据所述工件区和所述胶路区的分离边界、所述胶路的三维空间状态模型和所述胶路区的三维空间状态模型,获得所述状态相关参数。
  6. 如权利要求5所述的检验胶路状态的装置的检验方法,其特征在于,根据所述工件区和所述胶路区的分离边界、所述胶路的三维空间状态模型和所述胶路区的三维空间状态模型,获得所述状态相关参数的步骤,包括:
    计算Blob数量获取所述胶路的是否有断胶和胶体均匀分布性参数;或者,
    通过所述胶路区和所述工件区在所述分离边界的相关数据,获得胶路相对工件的胶偏参数;或者,
    获得所述胶路的两个轮廓边线,计算两个轮廓边线之间的距离得到所述胶宽参数;或者,
    采样所述胶路最高位置像素中心的高度得到所述胶高参数;或者,
    采样所述胶路的胶面的像素单元得到的胶面反射率与许用参数库的反射率的域值对比,判断所述胶路是否中空或者是否有气泡;或者,
    获取所述胶路的坐标数据,计算所述胶路边界的长度,获得所述胶路体积以及胶量。
  7. 如权利要求1所述的检验胶路状态的装置的检验方法,其特征在于,在获得3D扫描胶路的三维空间状态图像模型的步骤中,所述三维空间状态图像模型为所述3D相机发出一定面积的光或波面对所述胶路定扫描获得的;或者,
    所述三维空间状态图像模型为所述3D相机发出一定宽度的光或波墙沿所述胶路的轨迹动扫描获得的。
  8. 如权利要求1所述的检验胶路状态的装置的检验方法,其特征在于,在获得3D扫描胶路的三维空间状态图像模型的步骤中,所述胶路为在所述工件上通过涂胶、点胶以及喷胶中的至少一种形成的。
  9. 一种检验胶路状态的装置,其特征在于,包括:
    3D相机,用于扫描胶路的三维空间状态模型;
    显示器,用于显示所述胶路的三维空间状态图像模型;以及,
    控制装置,与所述3D相机和所述显示器电性连接,用于根据所述胶路的三维空间状态图像模型获得状态相关参数,所述控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的检验胶路状态的装置的控制程序,所述检验胶路状态的装置的控制程序配置为实现如权利要求1至8中任一项所述的检验胶路状态的装置的检验方法的步骤。
  10. 如权利要求9所述的检验胶路状态的装置,其特征在于,所述检验胶路状态的装置还包括机器人臂和安装板,所述安装板上设有间隔设置的长条孔和弧形通孔,所述长条孔用于供所述机器人臂安装;
    所述检验胶路状态的装置还包括螺栓,所述3D相机上设有安装孔,所述螺栓穿过所述安装孔可活动地连接于所述弧形通孔,以使得所述3D相机可沿所述弧形通孔活动地安装于所述安装板,以调节所述3D相机角度和高度。
  11. 如权利要求9所述的检验胶路状态的装置,其特征在于,所述检验胶路状态的装置还包括激光校准器以及传感器,所述传感器用以感应具有所述胶路的所述工件,所述激光校准器用以对不同的具有所述胶路的所述工件自动定位校准;
    所述激光校准器和所述传感器均与所述控制装置电性连接。
  12. 如权利要求10所述的检验胶路状态的装置,其特征在于,所述3D扫描相机发射的波包括光、电磁波以及超声波的任意一种。
PCT/CN2021/137019 2021-11-29 2021-12-10 检验胶路状态的装置及其检验方法 WO2023092690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111438082.4A CN114252414A (zh) 2021-11-29 2021-11-29 检验胶路状态的装置及其检验方法
CN202111438082.4 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023092690A1 true WO2023092690A1 (zh) 2023-06-01

Family

ID=80793520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137019 WO2023092690A1 (zh) 2021-11-29 2021-12-10 检验胶路状态的装置及其检验方法

Country Status (2)

Country Link
CN (1) CN114252414A (zh)
WO (1) WO2023092690A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116777888A (zh) * 2023-06-30 2023-09-19 广州高迪机电工程有限公司 带角度涂胶时视觉检测系统对胶宽的自适应补偿修正方法
CN116883405A (zh) * 2023-09-07 2023-10-13 苏州聚视兴华智能装备有限公司 胶路视觉检测时路径自动识别方法、装置及电子设备
CN117032151A (zh) * 2023-10-09 2023-11-10 深圳正实自动化设备有限公司 基于姿态控制的点胶路径规划方法及系统
CN117392129A (zh) * 2023-12-12 2024-01-12 无锡黎曼机器人科技有限公司 一种基于2d机器视觉的柴油发动机涂胶检测方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116503386B (zh) * 2023-06-25 2023-12-01 宁德时代新能源科技股份有限公司 结构胶的检测方法、装置、终端及计算机可读存储介质
CN116519039B (zh) * 2023-07-04 2023-09-15 深圳市磐锋精密技术有限公司 一种用于胶线自动化检测设备的监控管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170084075A1 (en) * 2015-09-17 2017-03-23 Thomson Licensing Reflectance parameter estimation in real scenes using an rgb-d sequence
CN107726985A (zh) * 2017-11-13 2018-02-23 易思维(天津)科技有限公司 一种三维实时涂胶检测方法与装置
CN213903353U (zh) * 2020-11-13 2021-08-06 歌尔科技有限公司 一种用于智能设备的胶路检查装置
CN113251925A (zh) * 2021-05-26 2021-08-13 飓蜂科技(苏州)有限公司 一种基于面阵激光的胶量检测方法及装置
CN113487539A (zh) * 2021-06-08 2021-10-08 深圳市格灵精睿视觉有限公司 胶路质量分析方法、设备、系统及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7181058B2 (en) * 1999-12-13 2007-02-20 Gsi Group, Inc. Method and system for inspecting electronic components mounted on printed circuit boards
US6618050B1 (en) * 2000-11-27 2003-09-09 E. I. Du Pont De Nemours And Company Process for generating a computer image of a three-dimensional object provided with a special-effect coating
WO2004053468A1 (en) * 2002-12-10 2004-06-24 Symyx Technologies, Inc. Image analysis of heterogeneous mixtures
JP4229270B2 (ja) * 2003-06-06 2009-02-25 独立行政法人 国立印刷局 2次元データを用いて印刷物をシミュレーションする方法及びその装置
WO2013081907A1 (en) * 2011-11-29 2013-06-06 U.S. Coatings Ip Co. Llc Kit for real time liquid measurement and quality control
US9743909B1 (en) * 2013-05-15 2017-08-29 University Of Washington Through Its Center For Commercialization Imaging bubbles in a medium
WO2016103286A1 (en) * 2014-12-24 2016-06-30 Datalogic Ip Tech S.R.L. System and method for identifying the presence or absence of transparent pills in blister packer machines using high resolution 3d stereo reconstruction based on color linear cameras
CN109031688B (zh) * 2018-06-11 2019-11-15 歌尔股份有限公司 一种光学模组中显示屏的定位方法以及定位装置
CN108956625B (zh) * 2018-07-20 2021-05-04 Oppo广东移动通信有限公司 胶路检测方法及胶路检测装置
CN109840902A (zh) * 2019-01-21 2019-06-04 无锡埃姆维工业控制设备有限公司 一种涂胶检测方法、装置及存储介质
CN110542518B (zh) * 2019-08-29 2022-01-04 歌尔股份有限公司 一种胶粘组合件密封性能测试方法和设备
CN112802139A (zh) * 2021-02-05 2021-05-14 歌尔股份有限公司 一种图像处理方法、装置、电子设备及可读存储介质
CN113042327A (zh) * 2021-03-16 2021-06-29 苏州小蜂视觉科技有限公司 一种点胶胶量检测方法和装置、点胶设备
CN113252625B (zh) * 2021-04-27 2022-08-16 歌尔光学科技有限公司 一种具有荧光效应的胶水的胶路检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170084075A1 (en) * 2015-09-17 2017-03-23 Thomson Licensing Reflectance parameter estimation in real scenes using an rgb-d sequence
CN107726985A (zh) * 2017-11-13 2018-02-23 易思维(天津)科技有限公司 一种三维实时涂胶检测方法与装置
CN213903353U (zh) * 2020-11-13 2021-08-06 歌尔科技有限公司 一种用于智能设备的胶路检查装置
CN113251925A (zh) * 2021-05-26 2021-08-13 飓蜂科技(苏州)有限公司 一种基于面阵激光的胶量检测方法及装置
CN113487539A (zh) * 2021-06-08 2021-10-08 深圳市格灵精睿视觉有限公司 胶路质量分析方法、设备、系统及存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116777888A (zh) * 2023-06-30 2023-09-19 广州高迪机电工程有限公司 带角度涂胶时视觉检测系统对胶宽的自适应补偿修正方法
CN116777888B (zh) * 2023-06-30 2024-02-06 广州高迪机电工程有限公司 带角度涂胶时视觉检测系统对胶宽的自适应补偿修正方法
CN116883405A (zh) * 2023-09-07 2023-10-13 苏州聚视兴华智能装备有限公司 胶路视觉检测时路径自动识别方法、装置及电子设备
CN116883405B (zh) * 2023-09-07 2023-12-05 苏州聚视兴华智能装备有限公司 胶路视觉检测时路径自动识别方法、装置及电子设备
CN117032151A (zh) * 2023-10-09 2023-11-10 深圳正实自动化设备有限公司 基于姿态控制的点胶路径规划方法及系统
CN117032151B (zh) * 2023-10-09 2023-12-15 深圳正实自动化设备有限公司 基于姿态控制的点胶路径规划方法及系统
CN117392129A (zh) * 2023-12-12 2024-01-12 无锡黎曼机器人科技有限公司 一种基于2d机器视觉的柴油发动机涂胶检测方法及装置
CN117392129B (zh) * 2023-12-12 2024-02-23 无锡黎曼机器人科技有限公司 一种基于2d机器视觉的柴油发动机涂胶检测方法及装置

Also Published As

Publication number Publication date
CN114252414A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023092690A1 (zh) 检验胶路状态的装置及其检验方法
US6266138B1 (en) System and method for detecting defects in a surface of a workpiece
US8107737B2 (en) Shape evaluation method, shape evaluation device, and 3D inspection device
CN102175700B (zh) 数字x射线图像焊缝分割和缺陷检测方法
KR100382577B1 (ko) 차륜 측정장치
CN106949848A (zh) 一种高精度激光3d轮廓手机结构件检测方法
CN113344929B (zh) 一种焊点视觉检测识别方法、可读存储介质及设备
CN110567963B (zh) 合金分析视觉定位方法、装置及合金分析系统
US20210390676A1 (en) Automated inspection for sheet parts of arbitrary shape from manufactured film
CN110992337A (zh) 一种集装箱残损检测方法及系统
CN112334761A (zh) 缺陷判别方法、缺陷判别装置、缺陷判别程序及记录介质
CN114252449A (zh) 一种基于线结构光的铝合金焊缝表面质量检测系统及方法
CN113781434A (zh) 缺陷检测方法、装置、智能终端及计算机可读存储介质
US6304680B1 (en) High resolution, high accuracy process monitoring system
US7538750B2 (en) Method of inspecting a flat panel display
KR20090054541A (ko) 도료 분사 상태 측정장치 및 그의 방법
Kholkhujaev et al. Non-contact articulated robot-integrated gap and flushness measurement system for automobile assembly
US7117047B1 (en) High accuracy inspection system and method for using same
JPH11118730A (ja) 被検査面の欠陥検査方法およびその装置
CN114219758A (zh) 缺陷检测方法、系统、电子设备和计算机可读存储介质
JP3372014B2 (ja) エンジン外付け部品の誤欠品検査装置
JPH05322531A (ja) 物体の3次元形状測定装置
JP2000205846A (ja) 塗装ムラ検査装置および方法
CN114509203B (zh) 一种试验模型表面psp测量压力的融合方法
CN115713622A (zh) 一种基于三维模型和探伤图像的铸件缺陷检测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965413

Country of ref document: EP

Kind code of ref document: A1