WO2023092372A1 - 一种环行器、隔离器和通信设备 - Google Patents

一种环行器、隔离器和通信设备 Download PDF

Info

Publication number
WO2023092372A1
WO2023092372A1 PCT/CN2021/133047 CN2021133047W WO2023092372A1 WO 2023092372 A1 WO2023092372 A1 WO 2023092372A1 CN 2021133047 W CN2021133047 W CN 2021133047W WO 2023092372 A1 WO2023092372 A1 WO 2023092372A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcb
circulator
welded
inductors
ferrite
Prior art date
Application number
PCT/CN2021/133047
Other languages
English (en)
French (fr)
Inventor
周祺睿
杨吉松
王瑾
吴锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/133047 priority Critical patent/WO2023092372A1/zh
Publication of WO2023092372A1 publication Critical patent/WO2023092372A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators

Definitions

  • the present application relates to the field of electronic devices, in particular to a circulator, an isolator and communication equipment.
  • a circulator is a common non-reciprocal circuit device that transfers signal energy in one direction.
  • a general circulator has several ports, and the signal is transmitted to the next port sequentially according to the direction determined by the static bias magnetic field. It can only propagate along this determined direction, and cannot be transmitted in reverse order.
  • An isolator is obtained by adding a load (or attenuation piece) to either end of the circulator.
  • circulators or isolators can be used for isolation between transmitted signals and received signals, and are commonly used in radar, active electronically scanned antenna (AESA) arrays, satellite communications, and telecommunications.
  • AESA active electronically scanned antenna
  • Embodiments of the present application provide a circulator, an isolator, and a communication device, which are conducive to realizing a miniaturized wide-frequency circulator or isolator, and are conducive to simplifying the structure and process steps of the circulator or isolator, and reducing costs.
  • an embodiment of the present application provides a circulator, the circulator includes a printed circuit board PCB, a first ferrite above the PCB, and a permanent magnet above the first ferrite; the PCB
  • the target layer includes a plurality of center inductors, the first ends of the plurality of center inductors are respectively electrically connected to the plurality of first welding ends on the upper surface of the PCB, and the second ends of the plurality of center inductors are respectively electrically connected to each other.
  • a plurality of second soldering ends connected to the upper surface of the PCB.
  • the circulator also includes a conductor piece located between the plurality of central inductors and the permanent magnet, and the conductor piece is electrically connected to the plurality of first welding ends;
  • the patch component on the upper surface, the patch component includes one or more resonant capacitors, the first end of the resonant capacitor is welded on the first welding end, and the second end of the resonant capacitor is welded on the
  • the first ground pad on the upper surface is used for grounding.
  • the circulator provided in the embodiment of the present application uses PCB as the main carrier, which includes the central inductor and the pads and pins of the chip components.
  • the chip components (such as resonant inductors) are welded on the PCB, which is beneficial to realize LC resonance. , expand the working bandwidth, and simplify the structure and assembly steps of the device.
  • the plurality of terminals provided on the side of the conductor sheet are respectively welded to the plurality of first welding ends.
  • the electrical connection and position fixation of the conductor sheet to the first welding end are realized through multiple terminals, which is beneficial to reduce assembly steps.
  • the first ferrite is sandwiched between the conductor sheet and the PCB.
  • the position of the first ferrite on the PCB can be fixed at the same time, which is beneficial to reduce assembly steps.
  • the patch component also includes one or more impedance matching elements, the first end of the impedance matching element is welded on the second welding end, and the second end of the impedance matching element is welded on the second welding end.
  • a ground pad, the second ground pad is used for grounding.
  • Soldering the impedance matching component on the PCB is beneficial to realize the impedance matching between the central inductance and the transmission line, and installing the impedance matching component through the patch process is beneficial to reduce the assembly steps and reduce the size of the device.
  • the impedance matching element includes an inductance element and/or a capacitance element.
  • the circulator further includes a metal cover, the metal cover is welded on the third ground pad of the PCB, the third ground pad is used for grounding, the first ferrite, the The permanent magnet and the patch element are located inside the metal cover.
  • the PCB further includes a second ferrite located under the plurality of central inductors.
  • the PCB further includes a magnetic compensation sheet located under the second ferrite.
  • the magnetic compensation sheet can be a kind of magnetically permeable material, which is used to make the passing magnetic field more uniform and constant.
  • the PCB is a high-density interconnection board.
  • HDI is a circuit board with relatively high circuit distribution density using micro-blind buried hole technology, which can reduce PCB cost and increase circuit density. Compared with ordinary PCB, HDI has higher fineness and smaller interlayer spacing.
  • an embodiment of the present application provides an isolator, including the circulator described in any possible implementation manner in the first aspect and a load electrically connected to at least one second welding end of the circulator.
  • the isolator includes a printed circuit board PCB, a first ferrite above the PCB, and a permanent magnet above the first ferrite;
  • the target layer of the PCB includes a plurality of center inductors, and the plurality of The first ends of the central inductors are respectively electrically connected to the plurality of first soldering ends on the upper surface of the PCB, and the second ends of the plurality of central inductors are respectively electrically connected to the plurality of second soldering ends on the upper surface of the PCB. Solder ends.
  • the circulator also includes a conductor piece located between the plurality of central inductors and the permanent magnet, and the conductor piece is electrically connected to the plurality of first welding ends;
  • the patch component on the upper surface, the patch component includes one or more resonant capacitors, the first end of the resonant capacitor is welded on the first welding end, and the second end of the resonant capacitor is welded on the The first ground pad on the upper surface is used for grounding.
  • the patch component also includes a load, one end of the load is welded to at least one second welding end.
  • the other end of the load is soldered to the ground pad for grounding.
  • the plurality of terminals provided on the side of the conductor sheet are respectively welded to the plurality of first welding ends.
  • the electrical connection and position fixation of the conductor sheet to the first welding end are realized through multiple terminals, which is beneficial to reduce assembly steps.
  • the first ferrite is sandwiched between the conductor sheet and the PCB.
  • the position of the first ferrite on the PCB can be fixed at the same time, which is beneficial to reduce assembly steps.
  • the patch component also includes one or more impedance matching elements, the first end of the impedance matching element is welded on the second welding end, and the second end of the impedance matching element is welded on the second welding end.
  • a ground pad, the second ground pad is used for grounding.
  • Soldering the impedance matching component on the PCB is beneficial to realize the impedance matching between the central inductance and the transmission line, and installing the impedance matching component through the patch process is beneficial to reduce the assembly steps and reduce the size of the device.
  • the impedance matching element includes an inductance element and/or a capacitance element.
  • the circulator further includes a metal cover, the metal cover is welded on the third ground pad of the PCB, the third ground pad is used for grounding, the first ferrite, the The permanent magnet and the patch element are located inside the metal cover.
  • the PCB further includes a second ferrite located under the plurality of central inductors.
  • the PCB further includes a magnetic compensation sheet located under the second ferrite.
  • the magnetic compensation sheet can be a kind of magnetically permeable material, which is used to make the passing magnetic field more uniform and constant.
  • the PCB is a high-density interconnection board.
  • HDI is a circuit board with relatively high circuit distribution density using micro-blind buried hole technology, which can reduce PCB cost and increase circuit density. Compared with ordinary PCB, HDI has higher fineness and smaller interlayer spacing.
  • the embodiment of the present application provides a communication device, including the circulator as described in any possible implementation manner in the first aspect, and/or, as described in any possible implementation manner in the second aspect the isolator described above.
  • Fig. 1 schematically shows a possible structure of a circulator provided in the embodiment of the present application
  • Figure 2-1 exemplarily shows another possible structure of the circulator provided by the embodiment of the present application.
  • Figure 2-2 exemplarily shows the equivalent circuit of the circulator corresponding to Figure 2-1;
  • Fig. 3 schematically shows a possible structure of the isolator provided by the embodiment of the present application
  • Fig. 4-1 exemplarily shows the structure of PCB 1 upper surface among Fig. 3;
  • Fig. 4-2 schematically shows the structure of PCB 1 middle layer among Fig. 3;
  • Fig. 4-3 exemplarily shows the structure of PCB 1 lower surface among Fig. 3;
  • Fig. 5 schematically shows an assembly diagram of the isolator shown in Fig. 3 and the circuit board;
  • Fig. 6 exemplarily shows the loss of the isolator shown in Fig. 5;
  • FIG. 7-1 and FIG. 7-2 respectively illustrate the application scenarios of the isolator and the circulator provided in the embodiment of the present application in the radio frequency circuit.
  • the current mobile communication has ushered in the era of large bandwidth, and communication equipment in the FDD frequency band has also begun to have the new feature of sharing one radio frequency channel with multiple frequency bands.
  • the equipment processed the signals of different frequency bands separately.
  • the radio frequency isolator only needs to cover the frequency range of one or several frequency bands close to it, which is a narrowband device.
  • the relative bandwidth increases sharply.
  • B3 frequency band (1800MHz), B1 frequency band (2100MHz), and B7 frequency band (2600MHz)
  • the frequency range needs to cover 1710MHz ⁇ 2690MHz, and there are huge technical challenges. .
  • the circulator utilizes the principle of anisotropy of the gyromagnetic ferrite material under magnetic bias, so that the transmission of radio frequency signals has obvious directionality, and can only propagate in one direction with low loss, and the opposite direction produces obvious isolation obstacles .
  • the circulator contains a load (or load resistance), it becomes a two-port unidirectional transmission isolator, and its principle and essence are the same.
  • the current mainstream mobile communication frequency band belongs to the decimeter wave, and the wavelength is relatively long.
  • the structure of the circulator with distributed parameters is relatively large, and it cannot be miniaturized.
  • the use of lumped parameter devices can achieve miniaturization.
  • Lumped parameter circulators use a ring-shaped metal structure to wrap ferrite materials to achieve mutual coupling inductance. It is difficult to achieve large bandwidth. higher.
  • this application relates to the electromagnetic pathway and assembly structure of circulators and isolators, and the design is based on the composition structure of PCB, which simplifies the structure of the device, reduces the number of parts and assembly steps, and the common end of the central inductor is grounded through a capacitor to form an LC Resonance is conducive to expanding the working bandwidth. Therefore, the circulator or isolator provided by the present application is beneficial to realize the chip device of the miniaturized broadband circulator or isolator, and solves the problems of many parts, complicated assembly, and low working bandwidth in the implementation scheme of the traditional miniaturized circulator. Narrow and other shortcomings, and help to solve the existing broadband circulator bulky shortcomings.
  • FIG. 1 exemplarily shows a possible structure of a circulator provided in an embodiment of the present application.
  • the circulator provided by the embodiment of the present application may include a printed circuit board PCB 1, a first ferrite 2 above the PCB 1, and a permanent magnet 3 above the first ferrite 2.
  • the target layer of the PCB 1 includes a plurality of center inductors 10.
  • Figure 1 only shows one of the center inductors 10 as an example, the target layer can include more center inductors 10, for example, the target layer can include three center inductors 10, and the structure of other center inductors 10 can refer to the structure shown in Figure 1 Center inductance 10 for understanding.
  • the first end 101 of the central inductor 10 is electrically connected to the first soldering end h1 on the upper surface of the PCB 1
  • the second end 102 of the central inductor 10 is electrically connected to the second soldering end h2 on the upper surface of the PCB 1.
  • Fig. 1 only schematically shows the first welding end h1 and the second welding end h2 corresponding to the center inductor 10 shown in Fig. h1 and the second solder end h2.
  • the upper surface of the PCB 1 may be provided with three first welding ends h1 respectively corresponding to the first ends 101 of the three central inductors 10, and provided with three corresponding first terminals h1 respectively corresponding to The three second welding ends h2 of the second ends 102 of the three central inductors 10 .
  • the circulator may further include a conductor sheet 4 located between the plurality of central inductors 10 and the permanent magnet 3 , and the conductor sheet 4 is electrically connected to each of the plurality of first welding ends h1 .
  • the signal entering one of the central inductors 10 can enter the conductor sheet 4 through the corresponding first welding terminal h1, and in the conductor sheet 4, it is determined according to the static bias magnetic field
  • the directions are transmitted to the next first welding terminal h1 sequentially, and then transmitted to the external circuit connected to the corresponding central inductor 10 .
  • the circulator can also include patch components welded on the upper surface of the PCB 1.
  • the patch component may include one or more resonant capacitors 51 .
  • Fig. 1 only shows a resonant capacitor 51 by way of example, with reference to Fig. 1, the first end of resonant capacitor 51 is welded on the first welding end h1, and the second end of resonant capacitor is welded on the first ground welding of the upper surface of PCB 1 pad d1, the first ground pad d1 is used for grounding.
  • This is beneficial to form an inductance-capacitance (LC for short) resonance in the circulator, so as to expand the working bandwidth of the circulator.
  • LC inductance-capacitance
  • the circulator provided in the embodiment of the present application uses PCB as the main carrier, which includes the central inductor and the pads and pins of the chip components.
  • the chip components (such as resonant inductors) are welded on the PCB, which is beneficial to realize LC resonance. , expand the working bandwidth, and simplify the structure and assembly steps of the device.
  • the lower surface of the PCB 1 is also provided with a back pad d1' corresponding to the first ground pad d1, and the back pad d1' is electrically connected to the first ground pad d1.
  • a back pad d1' corresponding to the first ground pad d1
  • the back pad d1' is electrically connected to the first ground pad d1.
  • the lower surface of the PCB 1 is also provided with a back pad h2' corresponding to the second welding terminal h2, and the back pad h2' is electrically connected to the second welding terminal h2. Soldering the back of the PCB 1 on the circuit board facilitates the connection of the back pad h2' to the external circuit, and further enables the central inductor 10 to be connected to the external circuit through the second welding terminal h2, simplifying the wiring process.
  • the central inductor 10 shown in FIG. 1 is only a schematic diagram, and the embodiment of the present application does not limit the cross section of the central inductor 10 as shown in FIG. 1 .
  • the PCB 1 in the embodiment of the present application can be a single-layer board or a double-layer board or a multi-layer board, and the target layer in the PCB 1 can correspond to one or more layers in the PCB 1.
  • a plurality of terminals 41 are provided on the side of the conductor sheet 4, and the plurality of terminals 41 are respectively welded to the plurality of first welding terminals h1.
  • FIG. 1 only schematically shows the terminals 41 welded to the first welding terminal h1 shown in FIG. 1 , and the conductor sheet 4 may be provided with more terminals 41 .
  • the circulator includes three central inductors 10
  • three terminals 41 may be provided on the side of the conductor sheet 4, and the three terminals 41 are welded to the three first welding terminals h1 one by one.
  • the first ferrite 2 can be sandwiched between the conductor sheet 4 and the PCB 1.
  • the first ferrite 2 can be fixed on the top of the PCB 1 at the same time, which is conducive to simplifying the assembly steps of the circulator.
  • FIG. 1 only schematically shows a possible cross-sectional shape and position of the first ferrite 2 in the circulator, and the embodiment of the present application does not limit the specific shape and position of the first ferrite 2 .
  • the projection of the first ferrite 2 on the upper surface of the PCB 1 can cover multiple central inductors 10.
  • the first ferrite 2 can be arranged between the conductor piece 4 and the permanent magnet 3 .
  • the permanent magnet 3 can be mounted on the upper surface of the conductor piece 4 .
  • the permanent magnet 3 can be arranged above the conductor sheet 4 in other ways.
  • Fig. 2-1 exemplarily shows another possible structure of the circulator provided by the embodiment of the present application.
  • the circulator provided in the embodiment of the present application may include a PCB 1, a first ferrite 2 above the PCB 1, and a permanent magnet 3 above the first ferrite 2.
  • the target layer of the PCB 1 includes a plurality of center inductors 10.
  • the first terminal 101 of the central inductor 10 is electrically connected to the first soldering terminal h1 on the upper surface of the PCB 1, and the second terminal 102 of the central inductor 10 is electrically connected to the second soldering terminal h2 on the upper surface of the PCB 1.
  • the circulator may further include a conductor sheet 4 located between the plurality of central inductors 10 and the permanent magnet 3 , and the conductor sheet 4 is electrically connected to each of the plurality of first welding ends h1 .
  • the circulator can also include patch components welded on the upper surface of the PCB 1.
  • the patch component may include one or more resonant capacitors 51 .
  • the lower surface of the PCB 1 is also provided with a back pad d1' corresponding to the first ground pad d1.
  • the lower surface of the PCB 1 is also provided with a back pad h2' corresponding to the second soldering end h2.
  • the patch component can also include one or more impedance matching elements 52, the first end of the impedance matching element 52 is welded on the second welding end h2, and the second end of the impedance matching element 52 is welded At the second ground pad d2, the second ground pad d2 is used for grounding.
  • the embodiment of the present application does not limit the type of the impedance matching element 52, as long as the impedance matching element 52 is conducive to realizing the impedance matching between the central inductor 10 and the transmission line (such as including the second welding terminal h2 and the back pad h2', etc.).
  • the impedance matching element 52 may include at least one of the following elements: an inductance element, a capacitance element, and a resistance element.
  • the lower surface of the PCB 1 is also provided with a back pad d2' corresponding to the second ground pad d2, and the back pad d2' is electrically connected to the second ground pad d2.
  • a back pad d2' corresponding to the second ground pad d2
  • the back pad d2' is electrically connected to the second ground pad d2.
  • the circulator can also include other impedance matching components (not shown in FIG. 2-1 ), and the second end of the central inductor 10 can be connected to the second welding terminal h2 through the other impedance matching components, so that the central inductor 10 and Impedance matching of transmission lines.
  • FIG. 2-2 schematically shows an equivalent circuit of the circulator corresponding to FIG. 2-1.
  • the three central inductors 10 in the circulator can be equivalent to the inductance component L in Figure 2-2
  • the resonant capacitor 51 can be equivalent to the capacitor Cg in Figure 2-2
  • the impedance matching element 52 can be equivalent to Figure 2-
  • the matching component in 2 the second soldering end h2 or the rear pad h2' can be equivalent to the external port in Figure 2-2.
  • the circulator may further include a metal cover 6, and the first ferrite, permanent magnet and patch element are located inside the metal cover.
  • the metal cover 6 can be welded on the third grounding pad (not shown in FIG. 2-1 ) of the PCB 1, and the third grounding pad is used for grounding.
  • the permanent magnet 3 can be mounted on the inner surface of the metal cover 6, so that the permanent magnet 3 can be arranged on the upper surface of the PCB 1 by welding the metal cover 6 on the upper surface of the PCB 1 at the same time. Above, simplify the assembly steps.
  • the PCB 1 may further include a second ferrite 7 located below the plurality of central inductors 10.
  • the lower surface of the PCB 1 can be provided with a groove matching the size of the second ferrite, and the second ferrite 7 can be embedded in the groove, which is beneficial to ensure that the lower surface of the PCB 1 is flat. Mounted on the surface of other circuit boards. It should be noted that the embodiment of the present application does not limit the second ferrite 7 to be embedded inside the PCB 1, and optionally, the second ferrite 7 can be mounted on the lower surface of the PCB 1.
  • the PCB 1 may also include magnetic compensation sheets 8 located below the plurality of central inductors 10.
  • the magnetic compensation sheet 8 may be a magnetically permeable material for making the passing magnetic field more uniform and constant.
  • the magnetic compensation sheet 8 may be located under the second ferrite 7 .
  • the groove provided on the lower surface of the PCB 1 can successively embed the second ferrite 7 and the magnetic compensation sheet 8, which is beneficial to ensure that the lower surface of the PCB 1 is mounted on the surface of other circuit boards smoothly.
  • the PCB 1 in the circulator of the embodiment of the present application may be a high density interconnect board (high density interconnect, HDI).
  • HDI high density interconnect
  • HDI is a circuit board with relatively high circuit distribution density using micro-blind buried hole technology, which can reduce PCB cost and increase circuit density.
  • the embodiment corresponding to FIG. 1 may also include one or more structures of the metal cover 6 , the second ferrite 7 and the magnetic compensation sheet 8 shown in FIG. 2-1 .
  • Fig. 3 schematically shows a possible structure of the isolator of the embodiment of the present application.
  • the isolator provided in the embodiment of the present application may include the circulator described in the embodiment corresponding to FIG. 1 or FIG. 2-1 .
  • the isolator may include a PCB 1, a first ferrite 2 above the PCB 1, and a permanent magnet 3 above the first ferrite 2.
  • the target layer of the PCB 1 includes a plurality of center inductors 10.
  • the first terminal 101 of the central inductor 10 is electrically connected to the first soldering terminal h1 on the upper surface of the PCB 1, and the second terminal 102 of the central inductor 10 is electrically connected to the second soldering terminal h2 on the upper surface of the PCB 1.
  • the isolator may further include a conductor sheet 4 located between the plurality of central inductors 10 and the permanent magnet 3 , the conductor sheet 4 is electrically connected to each of the plurality of first welding ends h1 .
  • the isolator can also include patch components soldered on the upper surface of the PCB 1.
  • the patch component may include one or more resonant capacitors 51 .
  • the lower surface of the PCB 1 is also provided with a back pad d1' corresponding to the first ground pad d1.
  • the lower surface of the PCB 1 is also provided with a back pad h2' corresponding to the second soldering end h2.
  • the isolator may also include a metal cover 6 .
  • the PCB 1 can also include a second ferrite 7 located under the multiple central inductors 10.
  • the PCB 1 can also include a second ferrite 7 located under the multiple central inductors 10.
  • FIG. 3 takes an example in which the load 53 is electrically connected to a second welding terminal h2 shown in FIG. 3 .
  • one end of the load 53 can be welded on a second welding terminal h2, and the other end of the load 53 can be welded on the fourth ground pad d4 on the upper surface of the PCB 1, and the fourth ground pad d4 can be used for grounded.
  • the lower surface of the PCB 1 is also provided with a back pad d4' corresponding to the fourth ground pad d4, and the back pad d4' is electrically connected to the fourth ground pad d4.
  • soldering the back of the PCB 1 to the circuit board it is beneficial to realize the grounding of the pad d4' on the back, and then realize the grounding of a second welding terminal h2 through the load, which simplifies the wiring process.
  • an impedance matching element (not shown in FIG. 3 ) may also be welded to the second welding end h2 shown in FIG. 3 , and the other end of the impedance matching element may be welded on a ground pad for grounding.
  • the impedance matching element can be understood with reference to the impedance matching element 52 shown in FIG. 2-1
  • the ground pad can be understood with reference to the second ground pad d2 shown in FIG. 2-1 .
  • other central inductances in the plurality of central inductances 10 except the central inductance 10 connected to the load 53 can be welded with impedance matching components (not shown in FIG. 3 ), and the other end of the impedance matching components can be welded on the ground pad.
  • the impedance matching element can be understood with reference to the impedance matching element 52 shown in FIG. 2-1
  • the ground pad can be understood with reference to the second ground pad d2 shown in FIG. 2-1 .
  • the isolator may further include other impedance matching components, through which the second terminal of the central inductor 10 may be connected to the second welding terminal h2, so as to achieve impedance matching between the central inductor 10 and the transmission line.
  • the circulator or isolator described above can use HDI as the carrier board, solder the SMD components and other components on the HDI by SMD, and embed the lower ferrite in the bottom of the HDI, so that the center inductor can be grounded through the capacitor , to achieve LC resonance, and the permanent magnet mounted on the inside of the metal cover can provide the static magnetic field required for the ferrite to work.
  • Figure 4-1 to Figure 4-3 respectively show the structure of the three-layer board of PCB 1 in Figure 3, Figure 4-1, Figure 4-2 and Figure 4-3 correspond to the upper surface and middle layer of PCB 1 respectively and the lower surface.
  • the structure corresponding to the solid line is the circuit printed on the upper surface of PCB 1, and the structure corresponding to the dotted line is the component soldered on the upper surface of PCB 1.
  • the impedance matching element may include the impedance matching element 52 and other impedance matching elements introduced in the embodiment corresponding to FIG. 2 .
  • the first to fourth ground pads d1 to d4 described above may correspond to one or more connected pad regions.
  • the ground pad d shown in Figure 4-1 may correspond to the first ground pad d1 to the fourth ground pad d4 mentioned in the above-mentioned embodiments. at least one ground pad.
  • the conductor sheet 4 can be respectively welded to the three first welding ends h1 through three terminals.
  • FIG. 4-1 only exemplarily shows a partial structure of the central inductor 10 , and the rest of the central inductor 10 can also refer to the central inductor 10 shown in FIG. 4-2 .
  • the through holes of the central inductor 10 shown in FIG. 4-1 in the region corresponding to the conductor sheet 4 pass through and connect to the corresponding through holes of the central conductor 10 shown in FIG. 4-2, and pass through the corresponding through holes of the central conductor 10.
  • the edge vias are connected through through holes to corresponding first soldering ends h1 shown in FIG. 4-1 .
  • Figure 4-1 and Figure 4-2 use a central inductor 10 as an example to mark the above corresponding relationship.
  • the through hole k1 of the central inductor 10 shown in Figure 4-1 is connected to the through hole k1' of the central inductor 10 shown in Figure 4-2, and the through hole k2' of the central inductor 10 shown in Figure 4-2 is connected through To the via k2 shown in Figure 4-1.
  • FIG. 4-3 exemplarily shows a circuit structure printed on the lower surface of the PCB 1.
  • the back pad d' in Fig. 4-3 may correspond to at least one of the back pad d1', the back pad d2' and the back pad d4' described above.
  • the back pad h2' in FIG. 4-3 may correspond to the back pad h2' introduced above. Installation in the circuit board can be achieved by soldering the back pad d' shown in Figure 4-3 to the ground terminal in the circuit board, and soldering the two back pads h2' to the two external circuits in the circuit board respectively.
  • the isolator is beneficial to simplify the process steps.
  • the two second soldering terminals h2 on the top shown in FIG. 4-1 can be electrically connected to the two back pads shown in FIG. 4-3 through the two external circuit layers shown in FIG. 4-2 respectively. h2'.
  • the ground pad d shown in FIG. 4-1 may be electrically connected to the back pad d' shown in FIG. 4-3 through the ground layer shown in FIG. 4-2.
  • PCB 1 can also include fewer or more layers, and the isolator can include more or fewer components.
  • Fig. 5 exemplarily shows the assembly diagram of the PCB 1 welded with patch components and the metal cover 6, the permanent magnet 3, the conductor sheet 4, the first ferrite 2 and the circuit board.
  • the upper surface, middle layer, and lower surface of the PCB 1 shown in FIG. 5 can refer to the structures shown in FIG. 4-1, FIG. 4-2, and FIG. 4-3, respectively.
  • the two rear pads h2' shown in Figure 4-3 correspond to port 1 and port 2 shown in Figure 5, respectively.
  • PCB as the main carrier, which includes the carrier board (or pad) of the central inductor and the SMD component, and can also include the pins of the device, etc., which is beneficial to reduce the number of parts.
  • the remaining components can be soldered and fixed on the PCB board through the patch process, which simplifies the device structure and assembly steps.
  • the upper layer of ferrite is made of metal sheet or metal plating layer and grounded through a capacitor to realize LC resonance and expand the working bandwidth.
  • the device shell (such as the metal cover 6 ) and the upper ferrite 2 are fixed to the pads on the upper surface of the PCB by reflow soldering, which simplifies the assembly steps.
  • This solution is suitable for replacements that include fine electrodes, or complex devices.
  • the above describes the circulator and isolator provided by the embodiment of the present application in conjunction with the accompanying drawings.
  • the embodiment of the present application also provides a communication device, which may include the circulator provided in any of the above embodiments, or include any of the above-mentioned
  • the isolator provided in the embodiment may include the circulator provided in any of the foregoing embodiments and the isolator provided in any of the embodiments.
  • the communication device may be a radio frequency circuit or an antenna device.
  • Circulators and isolators are common components in RF circuits. They are generally used to improve the isolation between stages of RF links and reduce the performance degradation caused by back-and-forth reflections of signals from front-end and back-end devices. It can also be used to control the flow of radio frequency signals, such as the switching of the transceiver state of the TDD system transceiver.
  • FIG. 7-1 exemplarily shows an application scenario of an isolator in a radio frequency circuit
  • FIG. 7-2 exemplarily shows an application scenario of a circulator in a radio frequency circuit.
  • the isolator shown in Figure 7-1 can be realized by using the circulator provided in the embodiment corresponding to Figure 1 or Figure 2-1, by connecting at least one second welding end of the circulator to the load shown in Figure 7-1 , can realize the function of the isolator.
  • the load shown in FIG. 7-1 can be soldered on the PCB 1 in the embodiment corresponding to FIG. 1 or FIG. 2-1.
  • the isolator and load shown in Figure 7-1 may correspond to the isolator provided in the embodiment corresponding to Figure 3, or correspond to the isolator provided in Figure 4-1 to Figure 4-3, or correspond to The isolator provided in Figure 5.
  • the circulator shown in FIG. 7-2 can be realized by using the circulator provided in the embodiment corresponding to FIG. 1 or FIG. 2-1.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • some or all of the units and modules can also be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

本申请实施例提供一种环行器、隔离器和通信设备。环行器包括PCB、第一铁氧体和永磁体;PCB的目标层包括多个中心电感,多个中心电感的第一端分别电性连接PCB的上表面的多个第一焊接端,多个中心电感的第二端分别电性连接PCB的上表面的多个第二焊接端。环行器还包括位于多个中心电感和永磁体之间的导体片,导体片与多个第一焊接端电性连接;环行器还包括焊接在上表面的一个或多个谐振电容,谐振电容的第一端焊接在第一焊接端,谐振电容的第二端焊接在上表面的第一接地焊盘。该环行器以PCB为主要载体,其包含了中心电感和贴片元件的焊盘、引脚等,谐振电感通过贴片工艺焊接在PCB上,有利于实现LC谐振,拓展工作带宽,简化器件的结构和装配步骤。

Description

一种环行器、隔离器和通信设备 技术领域
本申请涉及电子器件领域,尤其涉及一种环行器、隔离器和通信设备。
背景技术
环行器是一种常见的非互易电路器件,其能够单向传输信号能量。一般环行器拥有数个端口,信号按照由静偏磁场确定的方向顺序传入下一个端口,只能沿这一确定方向传播,无法反顺序传输。将环行器的任意一端加一个负载(或衰减片)便得到隔离器。鉴于这一特性,环行器或隔离器可以用于发射信号和接收信号之间的隔离,常见于雷达、有源电子扫描天线(AESA)阵列、卫星通信及电信等领域。
随着5G通信系统的发展,人们对环行器或隔离器的小型化与宽频率化的需求越来越强烈,但是小型宽频率的环行器或隔离器的结构比较复杂,生产装配工艺步骤较多,成本较高,不利于小型宽频率的环行器或隔离器在通信系统的广泛应用。
发明内容
本申请实施例提供了一种环行器、隔离器和通信设备,有利于实现小型化宽频率的环行器或隔离器,并且有利于简化环行器或隔离器的结构和工艺步骤,降低成本。
第一方面,本申请实施例提供一种环行器,所述环行器包括印刷电路板PCB、所述PCB上方的第一铁氧体和所述第一铁氧体上方的永磁体;所述PCB的目标层包括多个中心电感,所述多个中心电感的第一端分别电性连接所述PCB的上表面的多个第一焊接端,所述多个中心电感的第二端分别电性连接所述PCB的上表面的多个第二焊接端。
所述环行器还包括位于所述多个中心电感和所述永磁体之间的导体片,所述导体片与所述多个第一焊接端电性连接;所述环行器还包括焊接在所述上表面的贴片元件,所述贴片元件包括一个或多个谐振电容,所述谐振电容的第一端焊接在所述第一焊接端,所述谐振电容的第二端焊接在所述上表面的第一接地焊盘,所述第一接地焊盘用于接地。
本申请实施例提供的环行器,以PCB为主要载体,其中包含了中心电感和贴片元件的焊盘、引脚等,贴片元件(例如谐振电感)焊接在PCB上,有利于实现LC谐振,拓展工作带宽,并且简化了器件的结构和装配步骤。
可选的,所述导体片侧边设置的多个接线端分别焊接在多个所述第一焊接端。
导体片通过多个接线端实现与第一焊接端的电性连接和位置固定,有利于减少装配步骤。
可选的,所述第一铁氧体夹设在所述导体片和所述PCB之间。
通过将导体片固定在PCB上,便可同时实现第一铁氧体在PCB上的位置固定,有利于减少装配步骤。
可选的,所述贴片元件还包括一个或多个阻抗匹配元件,所述阻抗匹配元件的第一端焊接在所述第二焊接端,所述阻抗匹配元件的第二端焊接在第二接地焊盘,所述第二接地焊盘用于接地。
通过将阻抗匹配元件焊接在PCB上,有利于实现中心电感与传输线之间的阻抗匹配,并 且,通过贴片工艺安装阻抗匹配元件,有利于减少装配步骤,减小器件尺寸。
可选的,所述阻抗匹配元件包括电感元件和/或电容元件。
可选的,所述环行器还包括金属罩,所述金属罩焊接在所述PCB的第三接地焊盘,所述第三接地焊盘用于接地,所述第一铁氧体、所述永磁体和所述贴片元件位于所述金属罩的内部。
通过将金属罩焊接在PCB上,有利于对环行器中的元件进行保护,并且,减少装配步骤。
可选的,所述PCB还包括位于所述多个中心电感下方的第二铁氧体。
可选的,所述PCB还包括位于所述第二铁氧体下方的磁补偿片。
磁补偿片可以为一种导磁材料,用于使通过的磁场更加均匀恒定。
可选的,所述PCB为高密度互连板。
HDI是使用微盲埋孔技术的一种线路分布密度比较高的电路板,可降低PCB成本,增加线路密度,相对于普通PCB而言,HDI的精细度更高,层间间距更小。
第二方面,本申请实施例提供一种隔离器,包括如第一方面中任意一种可能的实现方式所述的环行器和与环行器的至少一个第二焊接端电性连接的负载。
可选的,隔离器包括印刷电路板PCB、所述PCB上方的第一铁氧体和所述第一铁氧体上方的永磁体;所述PCB的目标层包括多个中心电感,所述多个中心电感的第一端分别电性连接所述PCB的上表面的多个第一焊接端,所述多个中心电感的第二端分别电性连接所述PCB的上表面的多个第二焊接端。
所述环行器还包括位于所述多个中心电感和所述永磁体之间的导体片,所述导体片与所述多个第一焊接端电性连接;所述环行器还包括焊接在所述上表面的贴片元件,所述贴片元件包括一个或多个谐振电容,所述谐振电容的第一端焊接在所述第一焊接端,所述谐振电容的第二端焊接在所述上表面的第一接地焊盘,所述第一接地焊盘用于接地。所述贴片元件还包括负载,负载的一端焊接在至少一个第二焊接端。
可选的,负载的另一端焊接在用于接地的接地焊盘。
可选的,所述导体片侧边设置的多个接线端分别焊接在多个所述第一焊接端。导体片通过多个接线端实现与第一焊接端的电性连接和位置固定,有利于减少装配步骤。
可选的,所述第一铁氧体夹设在所述导体片和所述PCB之间。
通过将导体片固定在PCB上,便可同时实现第一铁氧体在PCB上的位置固定,有利于减少装配步骤。
可选的,所述贴片元件还包括一个或多个阻抗匹配元件,所述阻抗匹配元件的第一端焊接在所述第二焊接端,所述阻抗匹配元件的第二端焊接在第二接地焊盘,所述第二接地焊盘用于接地。
通过将阻抗匹配元件焊接在PCB上,有利于实现中心电感与传输线之间的阻抗匹配,并且,通过贴片工艺安装阻抗匹配元件,有利于减少装配步骤,减小器件尺寸。
可选的,所述阻抗匹配元件包括电感元件和/或电容元件。
可选的,所述环行器还包括金属罩,所述金属罩焊接在所述PCB的第三接地焊盘,所述第三接地焊盘用于接地,所述第一铁氧体、所述永磁体和所述贴片元件位于所述金属罩的内部。
通过将金属罩焊接在PCB上,有利于对环行器中的元件进行保护,并且,减少装配步骤。
可选的,所述PCB还包括位于所述多个中心电感下方的第二铁氧体。
可选的,所述PCB还包括位于所述第二铁氧体下方的磁补偿片。
磁补偿片可以为一种导磁材料,用于使通过的磁场更加均匀恒定。
可选的,所述PCB为高密度互连板。
HDI是使用微盲埋孔技术的一种线路分布密度比较高的电路板,可降低PCB成本,增加线路密度,相对于普通PCB而言,HDI的精细度更高,层间间距更小。
第三方面,本申请实施例提供一种通信设备,包括如第一方面中任意一种可能的实现方式所述的环行器,和/或,如第二方面中任意一种可能的实现方式所述的隔离器。
第二方面或第三方面中任意一种实现方式的有益效果可以参考第一方面相应实现方式的有益效果,此处不再赘述。
附图说明
图1示例性示出了本申请实施例提供的环行器一种可能的结构;
图2-1示例性示出了本申请实施例提供的环行器另一种可能的结构;
图2-2示例性示出了图2-1对应的环行器的等效电路;
图3示例性示出了本申请实施例提供的隔离器一种可能的结构;
图4-1示例性示出了图3中PCB 1上表面的结构;
图4-2示例性示出了图3中PCB 1中间层的结构;
图4-3示例性示出了图3中PCB 1下表面的结构;
图5示例性示出了图3所示隔离器与电路板的装配示意图;
图6示例性示出了图5所示隔离器的损耗;
图7-1和图7-2分别示例性示出了本申请实施例提供的隔离器和环行器在射频电路中的应用场景。
具体实施方式
当前移动通信已经迎来了大带宽时代,FDD频段的通信设备也开始具有多频段共用一个射频通道的新特性。以往设备对不同频段的信号是分通道分开处理的,射频隔离器只需要覆盖一个或接近的多个频段的频率范围,属于窄带器件。多频合一后,相对带宽急剧增加,比如常见的B3频段(1800MHz)、B1频段(2100MHz)、B7频段(2600MHz)的频率组合,频率范围需要覆盖1710MHz~2690MHz,在技术上存在巨大的挑战。
环行器利用了旋磁铁氧体材料在磁偏置下的各向异性的原理,使得射频信号的传输具有明显的方向性,只能沿一个方向低损耗的传播,相反的方向产生明显的隔离阻碍。当环行器内部包含一个负载(或负载电阻)时,就成为一个两端口单向传输的隔离器,其原理和本质是相同的。
当前主流移动通信频段属于分米波,波长较长,采用分布参数的环行器结构都比较大,无法实现小型化。采用集总参数器件可以实现小型化,集总参数环行器使用一个环状的金属结构包裹铁氧体材料实现互耦电感,难以实现大带宽,结构比较复杂,生产装配工艺步骤较 多,综合成本较高。
为此,本申请涉及环行器和隔离器的电磁通路和装配结构,设计基于PCB的组成结构,简化了器件的结构,降低了零件数和装配步骤,中心电感的公共端通过电容接地,形成LC谐振,有利于拓展工作带宽。从而,有本申请提供的环行器或隔离器有利于实现小型化宽带环行器或隔离器的贴片器件,解决了传统小型化环行器的实现方案所存在的零部件多、装配复杂、工作带宽窄等缺点,并且有利于解决现有宽带环行器体积大的缺点。
图1示例性示出了本申请实施例提供的环行器一种可能的结构。参考图1,本申请实施例提供的环行器可以包括印刷电路板PCB 1、PCB 1上方的第一铁氧体2和第一铁氧体2上方的永磁体3。PCB 1的目标层包括多个中心电感10。图1仅示例性示出了其中的一个中心电感10,目标层可以包括更多中心电感10,例如,目标层可以包括3个中心电感10,其他中心电感10的结构可以参考图1所示的中心电感10进行理解。
参考图1,中心电感10的第一端101电性连接PCB 1的上表面的第一焊接端h1,中心电感10的第二端102电性连接PCB 1的上表面的第二焊接端h2。图1仅示例性示出对应于图1所示中心电感10的第一焊接端h1和第二焊接端h2,PCB 1的上表面还可以设置有分别对应于其他中心电感10的第一焊接端h1和第二焊接端h2。
示例性的,假设目标层包括3个中心电感10,PCB 1的上表面可以设置有分别对应于3个中心电感10的第一端101的3个第一焊接端h1,并且设置有分别对应于3个中心电感10的第二端102的3个第二焊接端h2。
环行器还可以包括位于多个中心电感10和永磁体3之间的导体片4,导体片4与多个第一焊接端h1中的每个第一焊接端h1电性连接。这样,分别将多个第二焊接端h2连接外电路后,进入其中一个中心电感10中的信号可以经由对应的第一焊接端h1进入导体片4,并且在导体片4中按照静偏磁场确定的方向顺序传入下一个第一焊接端h1,进而传入对应的中心电感10所连接的外电路。
可选的,环行器还可以包括焊接在PCB 1的上表面的贴片元件。可选的,贴片元件可以包括一个或多个谐振电容51。
图1仅示例性示出了一个谐振电容51,参考图1,谐振电容51的第一端焊接在第一焊接端h1,谐振电容的第二端焊接在PCB 1的上表面的第一接地焊盘d1,第一接地焊盘d1用于接地。这样有利于在环行器中形成电感电容(简称LC)谐振,以拓展环行器的工作带宽。
本申请实施例提供的环行器,以PCB为主要载体,其中包含了中心电感和贴片元件的焊盘、引脚等,贴片元件(例如谐振电感)焊接在PCB上,有利于实现LC谐振,拓展工作带宽,并且简化了器件的结构和装配步骤。
可选的,PCB 1的下表面还设置有对应于第一接地焊盘d1的背面焊盘d1’,背面焊盘d1’与第一接地焊盘d1电性连接。通过将PCB 1的背面焊接在电路板上,有利于实现背面焊盘d1’接地,进而实现第一焊接端h1通过谐振电容51接地,简化接线过程。
可选的,PCB 1的下表面还设置有对应于第二焊接端h2的背面焊盘h2’,背面焊盘h2’与第二焊接端h2电性连接。通过将PCB 1的背面焊接在电路板上,有利于实现背面焊盘h2’连接外电路,进而实现中心电感10通过第二焊接端h2连接外电路,简化接线过程。
图1所示的中心电感10仅为示意图,本申请实施例不限定中心电感10的截面如图1所示。本申请实施例中的PCB 1可以为单层板或双层板或多层板,并且,并且PCB 1中的目标层可以对应于PCB 1中的一层或多层。
可选的,导体片4的侧边设置的多个接线端41,该多个接线端41分别焊接在多个第一焊接端h1。图1仅示例性示出了焊接在图1所示第一焊接端h1的接线端41,导体片4可以设置有更多接线端41。示例性的,假设环行器包括3个中心电感10,导体片4的侧边可以设置有3个接线端41,3个接线端41一一焊接在3个第一焊接端h1。
可选的,参考图1,第一铁氧体2可以夹设在导体片4和PCB 1之间。这样通过将导体片4焊接在PCB 1的上表面,便可以同时实现将第一铁氧体2固定在PCB 1的上方,有利于简化环行器的装配步骤。
图1仅示例性示出第一铁氧体2在环行器中的一种可能截面形状和位置,本申请实施例不限定第一铁氧体2的具体形状和位置。可选的,只要第一铁氧体2在PCB 1的上表面的投影能够覆盖多个中心电感10即可。示例性的,第一铁氧体2可以设置在导体片4与永磁体3之间。
参考图1,永磁体3可以贴装于导体片4的上表面。可选的,永磁体3可以通过其他方式设置在导体片4的上方。
图2-1示例性示出了本申请实施例提供的环行器另一种可能的结构。
参考图2-1,本申请实施例提供的环行器可以包括PCB 1、PCB 1上方的第一铁氧体2和第一铁氧体2上方的永磁体3。PCB 1的目标层包括多个中心电感10。中心电感10的第一端101电性连接PCB 1的上表面的第一焊接端h1,中心电感10的第二端102电性连接PCB 1的上表面的第二焊接端h2。
环行器还可以包括位于多个中心电感10和永磁体3之间的导体片4,导体片4与多个第一焊接端h1中的每个第一焊接端h1电性连接。环行器还可以包括焊接在PCB 1的上表面的贴片元件。
可选的,贴片元件可以包括一个或多个谐振电容51。
可选的,PCB 1的下表面还设置有对应于第一接地焊盘d1的背面焊盘d1’。
可选的,PCB 1的下表面还设置有对应于第二焊接端h2的背面焊盘h2’。
以上所介绍的图2-1对应的实施例中的结构可以参考图1对应的实施例的相应内容进行理解,此处不再赘述。
和图1对应的实施例不同的,贴片元件还可以包括一个或多个阻抗匹配元件52,阻抗匹配元件52的第一端焊接在第二焊接端h2,阻抗匹配元件52的第二端焊接在第二接地焊盘d2,第二接地焊盘d2用于接地。
本申请实施例不限定阻抗匹配元件52的类型,只要阻抗匹配元件52有利于实现中心电感10与传输线(例如包括第二焊接端h2和背面焊盘h2’等)的阻抗匹配即可。可选的,阻抗匹配元件52可以包括如下元件中的至少一种:电感元件、电容元件和电阻元件。
可选的,PCB 1的下表面还设置有对应于第二接地焊盘d2的背面焊盘d2’,背面焊盘d2’与第二接地焊盘d2电性连接。通过将PCB 1的背面焊接在电路板上,有利于实现背面焊盘 d2’接地,进而实现第二焊接端h2通过阻抗匹配元件52接地,简化接线过程。
可选的,环行器还可以包括其他阻抗匹配元件(图2-1未示出),中心电感10的第二端可以通过该其他阻抗匹配元件连接第二焊接端h2,从而实现中心电感10与传输线的阻抗匹配。
以环行器包括3个中心电感10为例,图2-2示例性示出了图2-1对应的环行器的等效电路。环行器中的3个中心电感10可以等效为图2-2中的电感组件L,谐振电容51可以等效于图2-2中的电容Cg,阻抗匹配元件52可以等效于图2-2中的匹配元件,第二焊接端h2或背面焊盘h2’可以等效于图2-2中的外接端口。
参考图2-1,可选的,环行器还可以包括金属罩6,第一铁氧体、永磁体和贴片元件位于金属罩的内部。可选的,金属罩6可以焊接在PCB 1的第三接地焊盘(图2-1未示出),第三接地焊盘用于接地。
参考图2-1,可选的,永磁体3可以贴装于金属罩6的内表面,这样,通过将金属罩6焊接在PCB 1的上表面可以同时实现将永磁体3设置在PCB 1的上方,简化装配步骤。
参考图2-1,可选的,PCB 1还可以包括位于多个中心电感10下方的第二铁氧体7。
可选的,PCB 1的下表面可以开设有与第二铁氧体的尺寸匹配的凹槽,第二铁氧体7可以嵌设在该凹槽中,有利于保证PCB 1的下表面平整的贴装于其他电路板表面。需要说明的是,本申请实施例不限定第二铁氧体7嵌设在PCB 1的内部,可选的,第二铁氧体7可以贴装于PCB 1的下表面。
参考图2-1,可选的,PCB 1还可以包括位于多个中心电感10下方的磁补偿片8。
本申请实施例不限定磁补偿片8的类型,可选的,磁补偿片8可以为一种导磁材料,用于使通过的磁场更加均匀恒定。例如,永磁体3在不同温度下产生的磁场之间存在差异,该磁补偿片8可以用于补偿该差异。可选的,磁补偿片8可以位于第二铁氧体7的下方。可选的,PCB 1的下表面所开设的凹槽可以先后嵌设第二铁氧体7和磁补偿片8,有利于保证PCB1的下表面平整的贴装于其他电路板表面。
可选的,本申请实施例环行器中的PCB 1可以为高密度互连板(high density interconnect,HDI)。HDI是使用微盲埋孔技术的一种线路分布密度比较高的电路板,可降低PCB成本,增加线路密度,相对于普通PCB而言,HDI的精细度更高,层间间距更小。
需要说明的是,可选的,图1对应的实施例也可以包括图2-1所示的金属罩6、第二铁氧体7和磁补偿片8中的一个或多个结构。
以上介绍了本申请实施例提供的环行器几种可能的结构,将以上介绍的任意一个实施例中的环行器的至少一个第二焊接端h2电性连接一个负载(或衰减片)可以得到隔离器。以下介绍本申请实施例提供的隔离器。
图3示例性示出了本申请实施例隔离器一种可能的结构。
参考图3,本申请实施例提供的隔离器可以包括图1或图2-1对应的实施例所介绍的环行器。具体的,参考图3,该隔离器可以包括PCB 1、PCB 1上方的第一铁氧体2和第一铁氧体2上方的永磁体3。PCB 1的目标层包括多个中心电感10。中心电感10的第一端101电性 连接PCB 1的上表面的第一焊接端h1,中心电感10的第二端102电性连接PCB 1的上表面的第二焊接端h2。
隔离器还可以包括位于多个中心电感10和永磁体3之间的导体片4,导体片4与多个第一焊接端h1中的每个第一焊接端h1电性连接。隔离器还可以包括焊接在PCB 1的上表面的贴片元件。
可选的,贴片元件可以包括一个或多个谐振电容51。可选的,PCB 1的下表面还设置有对应于第一接地焊盘d1的背面焊盘d1’。
可选的,PCB 1的下表面还设置有对应于第二焊接端h2的背面焊盘h2’。可选的,隔离器还可以包括金属罩6。
可选的,PCB 1还可以包括位于多个中心电感10下方的第二铁氧体7。可选的,PCB 1还可以包括位于多个中心电感10下方的第二铁氧体7。
以上所介绍的图3对应的实施例中的结构可以参考图1或图2-1对应的实施例的相应内容进行理解,此处不再赘述。
与图1或图2-1对应的实施例不同的,在图3对应的实施例中的至少一个第二焊接端h2与负载53电性连接。图3以负载53与图3所示的一个第二焊接端h2电性连接为例。可选的,负载53的一端可以焊接在一个第二焊接端h2上,负载53的另一端可以焊接在PCB 1的上表面的第四接地焊盘d4上,第四接地焊盘d4可以用于接地。
可选的,PCB 1的下表面还设置有对应于第四接地焊盘d4的背面焊盘d4’,背面焊盘d4’与第四接地焊盘d4电性连接。通过将PCB 1的背面焊接在电路板上,有利于实现背面焊盘d4’接地,进而实现一个第二焊接端h2通过负载接地,简化接线过程。
可选的,图3所示的第二焊接端h2还可以焊接有阻抗匹配元件(图3未示出),阻抗匹配元件的另一端可以焊接在用于接地的接地焊盘上。该阻抗匹配元件可以参考图2-1所示的阻抗匹配元件52进行理解,该接地焊盘可以参考图2-1所示的第二接地焊盘d2进行理解。
可选的,多个中心电感10中除连接负载53的中心电感10以外的其他中心电感可以焊接有阻抗匹配元件(图3未示出),阻抗匹配元件的另一端可以焊接在用于接地的接地焊盘上。该阻抗匹配元件可以参考图2-1所示的阻抗匹配元件52进行理解,该接地焊盘可以参考图2-1所示的第二接地焊盘d2进行理解。
可选的,隔离器还可以包括其他阻抗匹配元件,中心电感10的第二端可以通过该其他阻抗匹配元件连接第二焊接端h2,从而实现中心电感10与传输线的阻抗匹配。
以上介绍的环行器或隔离器可以以HDI为载板,将贴片元件和其他部件通过贴片方式焊接在HDI上,将下铁氧体等埋入HDI的底部,可以实现中心电感通过电容接地,实现LC谐振,贴装于金属罩内侧的永磁体可以提供铁氧体工作所需的静磁场。
图4-1至图4-3分别示出了图3中PCB 1的三层板的结构,图4-1、图4-2和图4-3分别对应于PCB 1的上表面、中间层和下表面。
图4-1中,实线对应的结构为在PCB 1的上表面中印刷制作的线路,虚线对应的结构为在PCB 1的上表面焊接的元件。图4-1中,可选的,阻抗匹配元件可以包括图2对应的实施例所介绍的阻抗匹配元件52和其他阻抗匹配元件。
以上介绍的第一接地焊盘d1至第四接地焊盘d4可以对应于一个或多个连通的焊盘区域。以图4-1为例,可选的,图4-1所示的接地焊盘d可以对应于前文介绍的实施例中提到的第一接地焊盘d1~第四接地焊盘d4中的至少一个接地焊盘。图4-1中,导体片4可以通过三个接线端分别焊接在三个第一焊接端h1上。
可选的,图4-1仅示例性示出了中心电感10的部分结构,中心电感10的其余部分还可以参考图4-2所示的中心电感10。可选的,图4-1所示的中心电感10在导体片4对应的区域中的通孔贯穿连接至图4-2所示的中心导体10的相应通孔,并通过相应中心导体10的边缘通孔贯穿连接至图4-1所示的相应第一焊接端h1中的通孔。图4-1和图4-2以一个中心电感10为例标识出上述对应关系。图4-1所示的中心电感10的通孔k1贯穿连接至图4-2所示的中心电感10的通孔k1’,图4-2所示的中心电感10的通孔k2’贯穿连接至图4-1所示的通孔k2。
可选的,图4-3示例性示出了PCB 1的下表面印刷的电路结构。图4-3中的背面焊盘d’可以对应于前文介绍的背面焊盘d1’、背面焊盘d2’和背面焊盘d4’中的至少一个背面焊盘。可选的,图4-3中的背面焊盘h2’可以对应于前文介绍的背面焊盘h2’。通过将图4-3所示的背面焊盘d’焊接至电路板中的接地端,将两个背面焊盘h2’分别焊接至电路板中的两个外接电路,可以实现向电路板中安装隔离器,有利于简化工艺步骤。
可选的,图4-1所示的顶部的两个第二焊接端h2可以分别通过图4-2所示的两个外接电路层电连接至图4-3所示的两个背面焊盘h2’。
可选的,图4-1所示的接地焊盘d可以通过图4-2所示的接地层电连接至图4-3所示的背面焊盘d’。
需要说明的是,图4-1至图4-3仅作为图3所示隔离器一种可能的结构,可选的,PCB 1还可以包括更少或更多层,隔离器可以包括更多或更少的元件。
图5示例性示出了焊接有贴片元件的PCB 1与金属罩6、永磁体3、导体片4、第一铁氧体2和电路板的装配示意图。图5所示的PCB 1的上表面、中间层和下表面可以分别参考图4-1、图4-2和图4-3所示的结构。图4-3所示的两个背面焊盘h2’分别对应于图5所示的端口1和端口2。
尺寸为7毫米×7毫米×3.5毫米的图5所示小型隔离器的损耗如图6所示。图6中横坐标为频率,单位为GHz,纵坐标为损耗大小,单位为dB。曲线S(1,1)代表图5所示的端口1的回波损耗,曲线S(2,2)代表端口2的回波损耗,曲线S(1,2)代表端口2到端口1的插入损耗,曲线S(2,1)代表端口1到端口2的插入损耗。在频段1710MHz~2690MHz的区间内,插入损耗小于1.2dB,回波损耗(或称隔离度)大于16dB,满足B3频段、B1频段和B7频段的宽带性能。
以上提出了一种小型化宽带环行器或隔离器的实现方案,综合上述介绍可以看出,该实现方案的要点包括:
1、设计PCB为主要载体,其包含了中心电感和贴片元件的载板(或焊盘),还可以包括器件的引脚等,有利于减少零件数目。
2、其余部件(例如谐振电感和阻抗匹配元件等)可以通过贴片工艺焊接固定PCB板上,简化了器件结构和装配步骤。
3、上层铁氧体采用金属片或者金属镀层通过电容接地,实现LC谐振拓展工作带宽。
4、器件外壳(例如金属罩6)和上铁氧体2通过回流焊接与PCB上表面的焊盘固定,简化组装步骤。
5、利用PCB的中心电感下方加工出的空腔,容纳下层铁氧体和/或磁补偿片等,有利于减小器件尺寸。
6、可选的,通过取消下铁氧体和补偿片,可以实现一个带宽相对变窄的环行器,可以降成本替代现有方案的窄带环行器。
本方案适合包含有精细电极、或装配复杂器件的替代。
以上结合附图介绍了本申请实施例提供的环行器和隔离器,本申请实施例还提供一种通信设备,该通信设备可以包括如上述任一实施例提供的环行器,或者包括上述任一实施例提供的隔离器,或者包括上述任一实施例提供的环行器和任一实施例提供的隔离器。
可选的,该通信设备可以为射频电路或天线设备。
环行器和隔离器是射频电路中常见的元件,一般用于提升射频链路级间隔离度,减小前后级器件信号来回反射导致的性能降低。也可以用于射频信号流向的控制,比如TDD系统收发信机的收发状态切换。
图7-1示例性示出了隔离器在射频电路中的应用场景,图7-2示例性示出了环行器在射频电路中的应用场景。
图7-1所示的隔离器可以采用图1或图2-1对应的实施例所提供的环行器来实现,通过将环行器的至少一个第二焊接端连接图7-1所示的负载,可以实现隔离器的功能。
或者,图7-1所示的负载可以焊接在图1或图2-1对应实施例中的PCB 1上。
或者,图7-1所示的隔离器和负载可以对应于图3对应的实施例所提供的隔离器,或者对应于图4-1至图4-3所提供的隔离器,或者,对应于图5所提供的隔离器。
图7-2所示的环行器可以采用图1或图2-1对应的实施例所提供的环行器来实现。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (11)

  1. 一种环行器,其特征在于,所述环行器包括印刷电路板PCB、所述PCB上方的第一铁氧体和所述第一铁氧体上方的永磁体;
    所述PCB的目标层包括多个中心电感,所述多个中心电感的第一端分别电性连接所述PCB的上表面的多个第一焊接端,所述多个中心电感的第二端分别电性连接所述PCB的上表面的多个第二焊接端;
    所述环行器还包括位于所述多个中心电感和所述永磁体之间的导体片,所述导体片与所述多个第一焊接端电性连接;
    所述环行器还包括焊接在所述上表面的贴片元件,所述贴片元件包括一个或多个谐振电容,所述谐振电容的第一端焊接在所述第一焊接端,所述谐振电容的第二端焊接在所述上表面的第一接地焊盘,所述第一接地焊盘用于接地。
  2. 根据权利要求1所述的环行器,其特征在于,所述导体片侧边设置的多个接线端分别焊接在多个所述第一焊接端。
  3. 根据权利要求2所述的环行器,其特征在于,所述第一铁氧体夹设在所述导体片和所述PCB之间。
  4. 根据权利要求1至3中任一项所述的环行器,其特征在于,所述贴片元件还包括一个或多个阻抗匹配元件,所述阻抗匹配元件的第一端焊接在所述第二焊接端,所述阻抗匹配元件的第二端焊接在第二接地焊盘,所述第二接地焊盘用于接地。
  5. 根据权利要求4所述的环行器,其特征在于,所述阻抗匹配元件包括电感元件和/或电容元件。
  6. 根据权利要求1至5中任一项所述的环行器,其特征在于,所述环行器还包括金属罩,所述金属罩焊接在所述PCB的第三接地焊盘,所述第三接地焊盘用于接地,所述第一铁氧体、所述永磁体和所述贴片元件位于所述金属罩的内部。
  7. 根据权利要求1至6中任一项所述的环行器,其特征在于,所述PCB还包括位于所述多个中心电感下方的第二铁氧体。
  8. 根据权利要求1至7中任一项所述的环行器,其特征在于,所述PCB还包括位于所述第二铁氧体下方的磁补偿片。
  9. 根据权利要求1至8中任一项所述的环行器,其特征在于,所述PCB为高密度互连板。
  10. 一种隔离器,其特征在于,包括如权利要求1至9中任一项所述的环行器和与所述环行器的至少一个所述第二焊接端电性连接的负载。
  11. 一种通信设备,其特征在于,包括如权利要求1至9中任一项所述的环行器。
PCT/CN2021/133047 2021-11-25 2021-11-25 一种环行器、隔离器和通信设备 WO2023092372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133047 WO2023092372A1 (zh) 2021-11-25 2021-11-25 一种环行器、隔离器和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/133047 WO2023092372A1 (zh) 2021-11-25 2021-11-25 一种环行器、隔离器和通信设备

Publications (1)

Publication Number Publication Date
WO2023092372A1 true WO2023092372A1 (zh) 2023-06-01

Family

ID=86538469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133047 WO2023092372A1 (zh) 2021-11-25 2021-11-25 一种环行器、隔离器和通信设备

Country Status (1)

Country Link
WO (1) WO2023092372A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715214A (ja) * 1993-06-28 1995-01-17 Taiyo Yuden Co Ltd 非可逆回路素子
JP2001036308A (ja) * 1999-07-22 2001-02-09 Tdk Corp 集中定数型サーキュレータ
JP2002052841A (ja) * 2000-03-03 2002-02-19 Asahi Kasei Corp 感熱記録材料およびその製造方法
CN106654491A (zh) * 2015-10-28 2017-05-10 世达普(苏州)通信设备有限公司 一种通信器件
CN112838344A (zh) * 2020-12-31 2021-05-25 广东大普通信技术有限公司 一种环形器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715214A (ja) * 1993-06-28 1995-01-17 Taiyo Yuden Co Ltd 非可逆回路素子
JP2001036308A (ja) * 1999-07-22 2001-02-09 Tdk Corp 集中定数型サーキュレータ
JP2002052841A (ja) * 2000-03-03 2002-02-19 Asahi Kasei Corp 感熱記録材料およびその製造方法
CN106654491A (zh) * 2015-10-28 2017-05-10 世达普(苏州)通信设备有限公司 一种通信器件
CN112838344A (zh) * 2020-12-31 2021-05-25 广东大普通信技术有限公司 一种环形器

Similar Documents

Publication Publication Date Title
CN113054425B (zh) 一种毫米波双频双极化滤波天线
US8314663B2 (en) Directional coupler
WO2020001270A1 (zh) Massive mimo天线
US7528676B2 (en) Balun circuit suitable for integration with chip antenna
US8072292B2 (en) High-frequency module
JPH10303640A (ja) アンテナ装置
CN114566794B (zh) 一种5g毫米波双极化磁电偶极子滤波天线
CN113824456B (zh) 一种有源多波束瓦片式相控阵接收组件
CN109494489A (zh) 滤波集成式基站天线
CN109194295A (zh) 一种介质集成悬置线wlan双通带低噪声放大器
CN212033202U (zh) 一种宽带小型化微带同轴表贴隔离环行器组件
CN111525904B (zh) 一种叠层片式高通滤波器
US20230207999A1 (en) Multilayer substrate, antenna module, filter, communication device, transmission line, and multilayer substrate manufacturing method
CN217789977U (zh) 射频接口电路
WO2023092372A1 (zh) 一种环行器、隔离器和通信设备
CN216529290U (zh) 一种宽频合路器
JP4711038B2 (ja) 非可逆回路モジュール
KR100470311B1 (ko) 비가역 회로 소자 및 통신장치
US20200280115A1 (en) Integrated filter system and antenna system
CN209183759U (zh) 滤波集成式基站天线
CN108808180B (zh) 基于介质集成悬置线的移相器结构及混频器结构
WO2020014891A1 (en) Balun and method for manufacturing the same
CN114867197B (zh) 射频基板互联结构及射频电子设备
JP3883046B2 (ja) 非可逆回路モジュール
JP2001088097A (ja) ミリ波多層基板モジュール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965109

Country of ref document: EP

Kind code of ref document: A1