WO2023092251A1 - 消除菲涅尔透镜散光的装置、方法及光学设备 - Google Patents

消除菲涅尔透镜散光的装置、方法及光学设备 Download PDF

Info

Publication number
WO2023092251A1
WO2023092251A1 PCT/CN2021/132268 CN2021132268W WO2023092251A1 WO 2023092251 A1 WO2023092251 A1 WO 2023092251A1 CN 2021132268 W CN2021132268 W CN 2021132268W WO 2023092251 A1 WO2023092251 A1 WO 2023092251A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel lens
alignment mark
optical
electro
grating
Prior art date
Application number
PCT/CN2021/132268
Other languages
English (en)
French (fr)
Inventor
陈丽莉
张�浩
董学
董瑞君
黄海涛
白家荣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180003516.XA priority Critical patent/CN116964491A/zh
Priority to PCT/CN2021/132268 priority patent/WO2023092251A1/zh
Priority to US17/913,272 priority patent/US20240210599A1/en
Publication of WO2023092251A1 publication Critical patent/WO2023092251A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present disclosure relates to the field of lens technology, and in particular to a device, method and optical device for eliminating Fresnel lens astigmatism.
  • the Fresnel lens has a relatively set flat surface and concave-convex surface.
  • the concave-convex surface is formed by processing a circle of concentric circles from small to large.
  • the concave-convex surface has an optical working surface and an optical invalid surface.
  • the optical working surface and the optical There is no excessive curvature between the void surfaces, which will not affect the performance of the light passing through the Fresnel lens.
  • the top and bottom angles between the optical working surface and the optical invalid surface have transition chamfers.
  • Rounded corners cause light to scatter when passing through these positions, affecting the light transmission or imaging effect of the Fresnel lens.
  • the light transmission or imaging effect of the Fresnel lens is further deteriorated.
  • a device for eliminating Fresnel lens astigmatism comprising: at least one Fresnel lens body, each Fresnel lens body has a flat surface and a concave-convex surface, and the flat surface is opposite to the concave-convex surface It is provided that a plurality of optical parts are provided on the concave-convex surface, and each optical part is provided with an optical working surface and an optical invalid surface; pixels, and the multiple pixels are controlled to be turned on or off by electric signals to form a shielding area, and the shielding area shields the optically inactive surface.
  • the projection of the optically ineffective surface on the flat surface of the Fresnel lens body is located within the projection of the blocking area on the flat surface.
  • the projection of the connection between the optically inactive surface and the optical working surface on the flat surface of the Fresnel lens body is located within the projection of the shielding area on the flat surface.
  • the electro-grating is disposed on the flat surface and/or the concave-convex surface.
  • the Fresnel lens body is provided with at least one first alignment mark, and when the plurality of pixels form the blocking area, the plurality of pixels on the electro-optical grating
  • the dots are also formed with at least one second alignment mark for aligning with the first alignment mark so that the shielding area shields the optically inactive surface.
  • the shapes of the second alignment mark and the shielding area formed by the plurality of pixels are similar to the shapes of the first alignment mark and the optical part of the Fresnel lens body. correspond.
  • the second alignment mark and the blocking area are moved in translation on the electro-optic grating by adjusting the open or closed positions of the plurality of pixel points of the electro-optic grating, In order to align the second alignment mark with the first alignment mark, the shielding area completely shields the optically ineffective surface.
  • a method for eliminating astigmatism of a Fresnel lens including: at least one electro-induced grating is arranged on the flat surface and/or the concave-convex surface of the Fresnel lens body, and the flat surface and the concave-convex surface Relatively arranged, the concave-convex surface is provided with a plurality of optical parts, and each of the optical parts is provided with an optical working surface and an optical inactive surface, and the electric grating is provided with a plurality of pixels arranged in an array; controlling to turn on or off the plurality of pixels to form a shielding area, so that the shielding area shields the optically invalid surface.
  • the method further includes: forming at least one first alignment mark on the Fresnel lens body, turning on or off the plurality of pixels, forming the shielding area and at least one second alignment mark; aligning the second alignment mark with the first alignment mark so that the shielding area shields the optically ineffective surface.
  • an optical device wherein the optical device comprises the above-described apparatus for eliminating astigmatism of a Fresnel lens.
  • FIG. 1A is a schematic cross-sectional structure diagram of a device for eliminating Fresnel lens astigmatism according to an exemplary embodiment of the present disclosure
  • 1B is a partially enlarged view of a device for eliminating Fresnel lens astigmatism according to an embodiment of the present disclosure
  • FIG. 2A is a schematic diagram of astigmatism produced by an existing Fresnel lens
  • FIG. 2B is a schematic diagram of the closing of the blocking area of the electro-grating of the device according to an exemplary embodiment of the present disclosure
  • FIG. 2C is a schematic diagram of the opening of the blocking area of the electro-grating of the device according to an exemplary embodiment of the present disclosure
  • Fig. 3A is a schematic diagram of a plurality of pixels arranged in an array of an electro-grating device according to an exemplary embodiment of the present disclosure
  • 3B is a schematic diagram of a shielding area formed by a plurality of pixels of the device electro-grating according to an exemplary embodiment of the present disclosure
  • 3C is a schematic diagram of a plurality of pixels forming a plurality of shielding regions of an electro-grating device according to an exemplary embodiment of the present disclosure
  • 3D is a schematic diagram of another shielding area formed by a plurality of pixels of the device electro-grating according to an exemplary embodiment of the present disclosure
  • FIG. 3E is a schematic diagram of another shielding area formed by a plurality of pixels of an electro-grating device according to another exemplary embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for eliminating Fresnel lens astigmatism according to an exemplary embodiment of the present disclosure.
  • connection may refer to a physical connection, an electrical connection, a communicative connection, and/or a fluid connection.
  • the X-axis, Y-axis, and Z-axis are not limited to the three axes of the rectangular coordinate system, and may be interpreted in a wider sense.
  • the X-axis, Y-axis, and Z-axis may be perpendicular to each other, or may represent different directions that are not perpendicular to each other.
  • X, Y, and Z and "at least one selected from the group consisting of X, Y, and Z” may be interpreted as meaning only X, only Y, only Z, or Any combination of two or more of X, Y and Z such as XYZ, XYY, YZ and ZZ.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • first means for describing various components, components, elements, regions, layers and/or sections
  • these components, components, elements, regions, layers and/or parts should not be limited by these terms. Rather, these terms are used to distinguish one component, component, element, region, layer and/or section from another.
  • a first component, first member, first element, first region, first layer, and/or first portion discussed below could be termed a second component, second member, second element, second region , the second layer and/or the second portion, without departing from the teachings of the present disclosure.
  • spatially relative terms such as “upper,” “lower,” “left,” “right,” etc. may be used herein to describe the relationship between one element or feature and another element or feature as shown in the figures. relation. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” or “above” the other elements or features.
  • Fresnel lenses have the problem of astigmatism.
  • Fresnel lenses are applied to display devices such as VR, There are phenomena such as tailing and glare, resulting in poor user experience.
  • manufacturing a mechanical grating in front of the Fresnel lens to block the effect of eliminating astigmatism due to the optically ineffective surface of the optical part in the Fresnel lens due to the limited precision of the machining process, and the need for Fresnel lenses of different sizes and sizes Customizing different gratings is expensive and has low precision.
  • there may be a problem of installation misalignment which makes the installed Fresnel lens unusable.
  • the present disclosure provides a device for eliminating Fresnel lens astigmatism.
  • the disclosed device can effectively eliminate the problem of Fresnel lens astigmatism, and can be opened by adjusting the electric grating for different Fresnel lenses Or close the pixel position, realize the adjustment of grating installation error, convenient and efficient.
  • FIG. 1A is a schematic cross-sectional structure diagram of an apparatus for eliminating Fresnel lens astigmatism according to an exemplary embodiment of the present disclosure.
  • FIG. 1B is a partially enlarged view of an apparatus for eliminating Fresnel lens astigmatism according to an embodiment of the present disclosure.
  • FIG. 2A is a schematic diagram of astigmatism produced by a conventional Fresnel lens.
  • FIG. 2B is a schematic diagram of the blocking area of the electro-grating of the device according to an exemplary embodiment of the present disclosure being turned off.
  • FIG. 2C is a schematic diagram of the opening of the blocking area of the electro-grating of the device according to an exemplary embodiment of the present disclosure.
  • FIG. 1A is a schematic cross-sectional structure diagram of an apparatus for eliminating Fresnel lens astigmatism according to an exemplary embodiment of the present disclosure.
  • FIG. 1B is a partially enlarged view of an apparatus for eliminating Fresnel lens astigmatism according to an
  • FIG. 3A is a schematic diagram of a plurality of pixels of an electro-grating device arranged in an array according to an exemplary embodiment of the present disclosure.
  • FIG. 3B is a schematic diagram of a shielding area formed by a plurality of pixels of an electro-grating device according to an exemplary embodiment of the present disclosure.
  • FIG. 3C is a schematic diagram of a plurality of pixels forming a plurality of shielding regions of an electro-grating device according to an exemplary embodiment of the present disclosure.
  • FIG. 3D is a schematic diagram of another shielding area formed by a plurality of pixels of an electro-grating device according to an exemplary embodiment of the present disclosure.
  • FIG. 3E is a schematic diagram of another shielding area formed by a plurality of pixels of an electro-grating device according to another exemplary embodiment of the present disclosure.
  • the device 100 includes a Fresnel lens body 110 and an electro-optical grating 120 .
  • the number of the Fresnel lens body 110 may be one or more, which is set according to actual requirements. In this embodiment, for example, three Fresnel lens bodies 110 may be provided. In other optional embodiments, for example, there may be 2, 4 or other numbers of Fresnel lens bodies and the like.
  • each Fresnel lens body has a flat surface 111 and a concave-convex surface 112, the flat surface 111 and the concave-convex surface 112 are arranged oppositely, and a plurality of optical parts 113 are provided on the concave-convex surface 112, each optical The portion 113 is provided with an optically active surface 114 and an optically ineffective surface 115 .
  • the optical part 113 is used to refract the light passing through the Fresnel lens
  • the optical working surface 114 is used to refract the light
  • the optically inactive surface 115 is used for the optical working surface 114 between different optical parts. transition between.
  • a plurality of pixel points 121 arranged in an array are arranged on the electroluminescent grating 120, and the plurality of pixel points 121 are controlled by a display control unit (not shown) to realize different
  • the pixel point 121 is turned on or off for the control.
  • a plurality of pixels 121 are controlled to open or close by an electrical signal sent by the display control unit to form a shielding area 122 (as shown in FIG. 3B ).
  • the shielding area 122 is used to shield the optically ineffective surface 115, and to shield the optically ineffective surface 115 and the optical working surface. 114 between the junctions.
  • the shape of the shielding region 122 realizes the adjustment control of the normalized shielding region 122 by controlling the display position of the pixel point 121 .
  • An electrical signal can be, for example, a voltage or a current.
  • the size of the pixel points 121 on the electroluminescent grating 120 can be nanoscale or micron-scale, and the distance between the pixel points is relatively small, so as to ensure that the pixel is in the on or off state, achieving better occlusion effect.
  • the pixel of the electro-optical grating can block light when it is turned on, and when the pixel is opened by an electrical signal, the light cannot pass through the area where the pixel of the electro-optic grating is located, thus blocking the light. And when the pixel point is not passing through the electrical signal, the light can pass through the pixel point of the electro-induced grating.
  • the pixel points that need to be turned on are controlled by electrical signals, so as to determine the shape or position of the shielding area of the electro-induced grating.
  • the pixel of the electro-optic grating can block the light when it is turned off.
  • the pixel does not pass an electrical signal, it is in a closed state, and the light cannot pass through the area where the pixel of the electro-optic grating is located, realizing the shading of the light. Obscuration of light.
  • an electrical signal needs to be sent to the pixel to open some pixels to allow the light to pass through, and other unopened pixels to block the light.
  • the shape of the pixel point 121 on the electroluminescent grating 120 can be a rectangle, a square or other shapes. In this embodiment, for example, it is preferably a square, which can reduce the distance between pixels and improve the shading Effect. The smaller the pixel size, the higher the adjustment accuracy of the occlusion area, achieving a more precise control effect.
  • the arrangement of the internal pixels of the electro-optic grating can adopt regular graphics, such as square, rectangle, rhombus, parallelogram, square, honeycomb, etc., and can also use irregular graphics, as long as the formation can be realized.
  • regular graphics such as square, rectangle, rhombus, parallelogram, square, honeycomb, etc.
  • irregular graphics such as square, honeycomb, etc.
  • a shielding area that can shield the optically ineffective surface is sufficient.
  • the existing Fresnel lens tends to produce astigmatism at the transition position between the optical working surface 114 and the optical invalid surface 115 .
  • light is irradiated from the flat surface of the Fresnel lens body, and after passing through the Fresnel lens body, it reaches the optical part 113 of the concave-convex surface.
  • the optical part 113 has an optical working surface 114 and an optical invalid surface 115.
  • the impact of performance there is a certain transition area between the junction of the optical working surface 114 and the optical ineffective surface 115, the transition area presents rounded corners or other shapes, when the light passes through the position of the transition area, scattering occurs, As shown in the positions of M and N in FIG. 2A , the scattered light is likely to interfere with other light, causing adverse effects such as glare.
  • the electro-optic grating 120 is controlled by an electric signal to open the pixels to form a shielding area 122, and the shielding area blocks the optically ineffective surface 115 , and shield the transitional area between the optically inactive surface 115 and the optically working surface 114, so as to achieve the effect of shielding the scattered light to eliminate the astigmatism of the Fresnel lens.
  • the electro-optic grating 120 is controlled by an electric signal to open the pixels to form a shielding area 122, and the shielding area blocks the optically ineffective surface 115 , and shield the transitional area between the optically inactive surface 115 and the optically working surface 114, so as to achieve the effect of shielding the scattered light to eliminate the astigmatism of the Fresnel lens.
  • the electrograting 120 is preferably disposed on the side of the Fresnel lens body 110 close to the concave-convex surface 112 , so as to better shield the optically inactive surface 115 and the transition region between the optically inactive surface and the optical working surface.
  • the electro-induced grating can also be arranged on the side of the flat surface of the Fresnel lens body, or the electro-induced grating can be arranged on both the concave-convex surface and the flat surface of the Fresnel lens body, so as to achieve more Good effect of eliminating astigmatism.
  • a first electroluminescent grating is arranged on the side of the Fresnel lens body close to the concave-convex surface
  • a second electrograting is arranged on the side of the Fresnel lens body close to the flat surface.
  • the shielding area of the first electric grating shields a part of the optically ineffective surface and shields the transition region between the optically inactive surface and the optical working surface.
  • the shielding area of the second electro-grating shields the transition region between the optically active surface and the optically inactive surface and shields a part of the optically ineffective surface.
  • the projection of the optically ineffective surface 115 on the flat surface 111 of the Fresnel lens body 110 is located within the projection of the shielding area 122 on the flat surface 111 .
  • the projection of the connection between the optically ineffective surface 115 and the optical working surface 114 on the flat surface 111 of the Fresnel lens body 110 is located within the projection of the shielding area 122 on the flat surface 111 .
  • the projection of the optically ineffective surface on the flat surface is located in the projection of the shading area on the flat surface, ensuring that the formed shading area can effectively control the optically ineffective surface.
  • effective shading For example, the width of the projection of the optically ineffective surface 115 on the flat surface is smaller than the projection of the shading area 122 on the flat surface, and the shading area 122 not only blocks the optically inactive surface, but also blocks the transition area between the optically inactive surface 115 and the optical working surface 114, thereby Eliminate the problem of astigmatism caused by light passing through the Fresnel lens body and reaching the transition area.
  • At least one first alignment mark 130 is provided on the Fresnel lens body, and at least one alignment mark 130 is formed on multiple pixels on the electro-optic grating 120 when multiple pixels form the blocking area 122 .
  • the second alignment mark 140 is used to align with the first alignment mark 130 so that the shielding area 122 shields the optically ineffective surface 115 .
  • the first alignment mark 130 may be disposed at the center of the Fresnel lens body 110
  • the second alignment mark 140 may be disposed at the center of the electro-optical grating 120 .
  • the blocking area formed by the pixels blocks the optically inactive surface.
  • multiple first alignment marks can be set, and multiple second alignment marks can be displayed, so that the shading area can be more accurate when shading the optically invalid surface, and while eliminating astigmatism, It does not affect the passage of normal light.
  • different shapes can be displayed by controlling the on and off of multiple pixel points arranged in an array to form different shapes of the shielding area and meet the requirements of different Fresnel lenses for eliminating astigmatism.
  • the shape of the second alignment mark 140 and the shielding area 122 formed by the plurality of pixels 121 of the electro-optic grating 120 is the same as the shape of the first alignment mark 130 and the optical part 113 of the Fresnel lens body. Corresponding.
  • the shape of the electro-induced grating can be any shape, for example, the electro-induced grating can be the same shape as the Fresnel lens body, or the shape of the electro-induced grating is different from the shape of the Fresnel lens body, and the electro-induced grating
  • the area where the plurality of pixels are located is greater than or equal to the area of the Fresnel lens body, which can realize the shielding of the optically ineffective surface in the optical part of the Fresnel lens body.
  • the shape of the electro-induced grating can be designed according to the shape of the Fresnel lens body, which can be circular or irregular.
  • the shapes of the second alignment mark 140 and the shielding area 122 formed by the plurality of pixels 121 of the electro-grating 120 are set according to the size and structure of the Fresnel lens body 110 .
  • different shielding areas can be set to meet the requirements for eliminating astigmatism of different Fresnel lens bodies.
  • the processing parameters of the Fresnel lens body can be obtained, which can include the external dimensions of the Fresnel lens, the size of each optical part, and the optical work in each optical part Surface and the size of the projection of the optically invalid surface on the flat surface and other parameters.
  • the opening or closing of a plurality of pixels of the electric grating is designed to form a shielding area, which corresponds to the shape of the optical part of the Fresnel lens body, that is, the designed shielding area is consistent with the Fresnel lens
  • the optical invalid planes of the optical part of the main body are aligned, the effect of eliminating the astigmatism of the Fresnel lens can be realized.
  • different opening or closing positions of pixels of electro-optic gratings can be designed to form different shielding areas to meet the requirements of eliminating astigmatism of different Fresnel lenses.
  • the electro-grating and the Fresnel lens body are installed together, there may be precision problems caused by the installation method or process.
  • the electro grating is offset by a certain position relative to the Fresnel lens body.
  • the second alignment mark and the shielding area can be moved in translation on the electro-optic grating by adjusting the open or closed positions of a plurality of pixels of the electro-optical grating, so as to align the second alignment mark with the first alignment mark,
  • the shielding area completely shields the optical invalid surface, so as to realize the adjustment of the installation error.
  • the mechanical grating of the related art After the mechanical grating of the related art is installed with the Fresnel lens body, if there is an installation error, the mechanical grating needs to be removed and reinstalled. Due to the influence of the installation process, the error cannot be completely eliminated, and the reinstallation takes a lot of time. More manpower and material resources, lower efficiency.
  • the blocking area can be realized by controlling the opening or closing positions of multiple pixels of the electro-induced grating Translate and move on the electro-induced grating to achieve the purpose of adjustment and error elimination.
  • a first alignment mark is set at the center of the Fresnel lens body, and size parameters of the first alignment mark and each optical portion on the Fresnel lens body are obtained.
  • the size parameter design the opening or closing positions of multiple pixels on the electro-induced grating, so that the formed shading area corresponds to the shape of the optical part of the Fresnel lens body, and then the loudness point in the center of the shading area It is displayed as the second alignment mark. Observe the alignment of the second alignment mark and the first alignment mark.
  • the position of the second alignment mark and the first alignment mark can be adjusted by controlling the shielding area displayed on the electro-optic grating to translate on the electro-optical grating.
  • the shielding area completely blocks the optically ineffective surface and the connection between the optically ineffective surface and the optical working surface, thereby achieving the purpose of eliminating astigmatism.
  • the size of the optically ineffective surface and the optical working surface of the optical part may not be completely consistent with the theoretical size.
  • the occlusion of the optical invalid surface or the optical working surface by the grating may not be able to completely eliminate astigmatism, or may block the optical working surface, resulting in the effect of further affecting the passage of light.
  • the adjustment of the shielding area is realized.
  • the size of the optical invalid surface is larger than the theoretical size, on the basis of the occlusion area designed based on the size of the Fresnel lens body, adjust the corresponding pixel points according to the position where the actual size is different, for example, the optical
  • the pixels around the position with larger invalid surface size are turned on or off to form a occlusion area, which widens the occlusion area at this position, as shown in Figure 3D.
  • the occlusion area at the left position is widened to achieve more Good occlusion effect.
  • the occlusion area may block the optical working surface too much, resulting in the effect of light passing through worse.
  • the pixels at the corresponding positions of the electro-optical grating can be controlled to be turned off or turned on, so as to reduce the area of the shielding area, thereby achieving the effect of better ensuring the passage of light while eliminating astigmatism.
  • the pixel arrangement of the electro-optic grating 120 ′ can also be arranged in a circular array, for example, the pixel arrangement forms a circular array of multiple concentric circles.
  • a second alignment mark 140' is set at the center of the circular array, and the second alignment mark 140' is used for alignment with the first alignment mark set at the center of the Fresnel lens body.
  • the pixels of the annular array are turned on or off to form a shielding area 122', so as to shield the optically ineffective surface of the optical part of the Fresnel lens body and eliminate the astigmatism of the Fresnel lens.
  • the opening and closing of the pixel points can be controlled by electrical signals to form a shielding area, and the position and area of the shielding area can be adjusted to better realize the optical ineffectiveness of the Fresnel lens. Cover the surface to effectively eliminate astigmatism.
  • the occlusion area can be precisely adjusted by precisely controlling the opening and closing of pixels, effectively eliminating errors caused in the processes of manufacturing, processing, and installation, and further improving the efficiency of astigmatism elimination.
  • FIG. 4 is a flowchart of a method for eliminating Fresnel lens astigmatism according to an exemplary embodiment of the present disclosure.
  • Another aspect of the embodiments of the present disclosure provides a method for eliminating astigmatism of a Fresnel lens.
  • the process of the method 400 for eliminating Fresnel lens astigmatism includes operation S401 to operation S402 .
  • At least one electro-induced grating is arranged on the flat surface and/or the concave-convex surface of the Fresnel lens body, the flat surface and the concave-convex surface are arranged oppositely, and the concave-convex surface is provided with a plurality of optical parts, and each optical part is provided with an optical On the working surface and the optical invalid surface, the electro-induced grating is provided with a plurality of pixel points arranged in an array.
  • the light passing through the Fresnel lens is shielded by setting an electric grating on the Fresnel lens body.
  • a plurality of pixels are controlled to be turned on or off by an electric signal to form a shielding area, so that the shielding area shields the optically ineffective surface.
  • the opening or closing of the pixel points is controlled by electrical signals to form a shielding area to shield the optically inactive surface and achieve the purpose of eliminating astigmatism.
  • the method for eliminating Fresnel lens astigmatism further includes operation S403.
  • operation S403 at least one first alignment mark is formed on the Fresnel lens body, a plurality of pixels are turned on or off, and a shielding area is formed on the electro-optic grating and at least one second alignment mark; aligning the second alignment mark with the first alignment mark, so that the shielding area shields the optically ineffective surface.
  • a first alignment mark is formed on the Fresnel lens body, a second alignment mark is formed on the electro-induced grating, and the shielding area is adjusted to shield the optical invalid surface through the alignment of the first alignment mark and the second alignment mark.
  • the shielding area can be shifted on the electro-induced grating, and the shielding position of the shielding area can be adjusted.
  • the method for eliminating the astigmatism of the Fresnel lens further includes adjusting the open or closed positions of the plurality of pixels of the electro-induced grating to increase or decrease the area of the shielding area at a certain position of the electro-induced grating , to achieve the adjustment of a specific occlusion area, and more precisely control the occlusion effect of the occlusion area.
  • the optical device includes the above-mentioned device for eliminating astigmatism of a Fresnel lens.
  • the optical device includes VR glasses, AR glasses, a head-up display (HUD), a projector, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种消除菲涅尔透镜散光的装置(100)、方法(400)和光学设备。消除菲涅尔透镜散光的装置(100)包括:至少一个菲涅尔透镜本体(110),每个菲涅尔透镜本体(110)具有平坦面(111)和凹凸面(112),平坦面(111)和凹凸面(112)相对设置,在凹凸面(112)设有多个光学部(113),每个光学部(113)设有光学工作面(114)和光学无效面(115);至少一个电致光栅(120),电致光栅(120)上设置有呈阵列排布的多个像素点(121),多个像素点(121)通过电信号控制打开或关闭形成遮挡区(122),遮挡区(122)遮挡光学无效面(115)。

Description

消除菲涅尔透镜散光的装置、方法及光学设备 技术领域
本公开涉及透镜技术领域,并且具体地涉及一种消除菲涅尔透镜散光的装置、方法及光学设备。
背景技术
菲涅尔透镜具有相对设置的平坦面和凹凸面,凹凸面是通过加工一圈圈由小到大的同心圆形成的,凹凸面具有光学工作面和光学无效面,理论上光学工作面和光学无效面之间没有过度曲面,不会影响透过菲涅尔透镜的光线的性能。然而,在实际设计、生产、制造等过程中,由于受到设计、加工工艺、材料性能、组装方法等综合因素的影响,导致光学工作面与光学无效面之间的顶角、底角具有过渡倒圆角,导致光线在通过这些位置时发生散射,影响菲涅尔透镜的透光或成像效果。此外,由于组装方法等的影响,导致菲涅尔透镜的透光或成像效果进一步变差。
在本部分中公开的以上信息仅用于对本公开的技术构思的背景的理解,因此,以上信息可包含不构成现有技术的信息。
发明内容
在一个方面,提供一种消除菲涅尔透镜散光的装置,包括:至少一个菲涅尔透镜本体,每个菲涅尔透镜本体具有平坦面和凹凸面,所述平坦面和所述凹凸面相对设置,在所述凹凸面设有多个光学部,每个所述光学部设有光学工作面和光学无效面;至少一个电致光栅,所述电致光栅上设置有呈阵列排布的多个像素点,所述多个像素点通过电信号控制打开或关闭形成遮挡区,所述遮挡区遮挡所述光学无效面。
在一些示例性的实施例中,所述光学无效面在所述菲涅尔透镜本体的平坦面的投影位于所述遮挡区在所述平坦面的投影内。
在一些示例性的实施例中,所述光学无效面与所述光学工作面的连接处在所述菲涅尔透镜本体的平坦面的投影位于所述遮挡区在所述平坦面的投影内。
在一些示例性的实施例中,所述电致光栅设置在所述平坦面和/或所述凹凸面。
在一些示例性的实施例中,所述菲涅尔透镜本体上设置有至少一个第一对准标记,在所述多个像素形成所述遮挡区时,所述电致光栅上的多个像素点还形成有至少一个第二对准标记,所述第二对准标记用于与所述第一对准标记对准,以使所述遮挡区遮挡所述光学无效面。
在一些示例性的实施例中,所述多个像素点形成的所述第二对准标记和所述遮挡区的形状与所述菲涅尔透镜本体的第一对准标记和光学部的形状相对应。
在一些示例性的实施例中,通过调整所述电致光栅的多个像素点的打开或关闭位置,使所述第二对准标记和所述遮挡区在所述电致光栅上平移移动,以将所述第二对准标记与所述第一对准标记对准,所述遮挡区完全遮挡所述光学无效面。
在一些示例性的实施例中,所述多个像素点通过电信号打开时,光线无法穿过所述电致光栅的像素点所在区域。
在一些示例性的实施例中,所述多个像素点通过电信号关闭时,光线无法穿过所述电致光栅的像素点所在区域。
在另一方面,提供了一种消除菲涅尔透镜散光的方法,包括:在菲涅尔透镜本体的平坦面和/或凹凸面设置至少一个电致光栅,所述平坦面和所述凹凸面相对设置,所述凹凸面设有多个光学部,每个所述光学部设有光学工作面和光学无效面,所述电致光栅设有呈阵列排布的多个像素点;通过电信号控制打开或关闭所述多个像素点形成遮挡区,以使所述遮挡区遮挡所述光学无效面。
在一些示例性的实施例中,所述的方法还包括:在所述菲涅尔透镜本体上形成至少一个第一对准标记,打开或关闭所述多个像素点,在所述电致光栅上形成所述遮挡区和至少一个第二对准标记;将所述第二对准标记与所述第一对准标记进行对准,以使所述遮挡区遮挡所述光学无效面。
在一些示例性的实施例中,所述多个像素点形成的所述遮挡区和所述至少一个第二对准标记与所述菲涅尔透镜本体的光学部的形状相对应;所述将所述第二对准标记与所述第一对准标记进行对准,以使所述遮挡区遮挡所述光学无效面包括:调整所述电致光栅的多个像素点的打开或关闭位置,使所述第二对准标记和所述遮挡区在所述电致光栅上平移移动,以将所述第二对准标记与所述第一对准标记对准,所述遮挡区完全遮挡所述光学无效面。
在另一方面,提供了一种光学设备,其中,所述光学设备包括上文所述的消除菲 涅尔透镜散光的装置。
附图说明
为了更清楚地说明本公开文本的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开文本的一些实施例,而非对本公开文本的限制,其中:
图1A是根据本公开的示例性实施例的消除菲涅尔透镜散光的装置的剖面结构示意图;
图1B是根据本公开实施例的消除菲涅尔透镜散光的装置的局部放大图;
图2A是现有的菲涅尔透镜产生散光示意图;
图2B是根据本公开的示例性实施例的装置的电致光栅的遮挡区关闭的示意图;
图2C是根据本公开的示例性实施例的装置的电致光栅的遮挡区开启的示意图;
图3A是根据本公开的示例性实施例的装置电致光栅的多个像素呈阵列排布的示意图;
图3B是根据本公开的示例性实施例的装置电致光栅的多个像素形成一个遮挡区的示意图;
图3C是根据本公开的示例性实施例的装置电致光栅的多个像素形成多个遮挡区的示意图;
图3D是根据本公开的示例性实施例的装置电致光栅的多个像素形成另一遮挡区的示意图;
图3E是根据本公开的示例性另一实施例的装置电致光栅的多个像素形成另一遮挡区的示意图;
图4是根据本公开示例性实施例的消除菲涅尔透镜散光的方法流程图。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开的保护范围。
需要说明的是,在附图中,为了清楚和/或描述的目的,可以放大元件的尺寸和相对尺寸。如此,各个元件的尺寸和相对尺寸不必限于图中所示的尺寸和相对尺寸。在说明书和附图中,相同或相似的附图标号指示相同或相似的部件。
当元件被描述为“在”另一元件“上”、“连接到”另一元件或“结合到”另一元件时,所述元件可以直接在所述另一元件上、直接连接到所述另一元件或直接结合到所述另一元件,或者可以存在中间元件。然而,当元件被描述为“直接在”另一元件“上”、“直接连接到”另一元件或“直接结合到”另一元件时,不存在中间元件。用于描述元件之间的关系的其他术语和/或表述应当以类似的方式解释,例如,“在……之间”对“直接在……之间”、“相邻”对“直接相邻”或“在……上”对“直接在……上”等。此外,术语“连接”可指的是物理连接、电连接、通信连接和/或流体连接。此外,X轴、Y轴和Z轴不限于直角坐标系的三个轴,并且可以以更广泛的含义解释。例如,X轴、Y轴和Z轴可彼此垂直,或者可代表彼此不垂直的不同方向。出于本公开的目的,“X、Y和Z中的至少一个”和“从由X、Y和Z构成的组中选择的至少一个”可以被解释为仅X、仅Y、仅Z、或者诸如XYZ、XYY、YZ和ZZ的X、Y和Z中的两个或更多个的任何组合。如文中所使用的,术语“和/或”包括所列相关项中的一个或多个的任何组合和所有组合。
需要说明的是,虽然术语“第一”、“第二”等可以在此用于描述各种部件、构件、元件、区域、层和/或部分,但是这些部件、构件、元件、区域、层和/或部分不应受到这些术语限制。而是,这些术语用于将一个部件、构件、元件、区域、层和/或部分与另一个相区分。因而,例如,下面讨论的第一部件、第一构件、第一元件、第一区域、第一层和/或第一部分可以被称为第二部件、第二构件、第二元件、第二区域、第二层和/或第二部分,而不背离本公开的教导。
为了便于描述,空间关系术语,例如,“上”、“下”、“左”、“右”等可以在此被使用,来描述一个元件或特征与另一元件或特征如图中所示的关系。应理解,空间关系术语意在涵盖除了图中描述的取向外,装置在使用或操作中的其它不同取向。例如,如果图中的装置被颠倒,则被描述为“在”其它元件或特征“之下”或“下面”的元件将取向为“在”其它元件或特征“之上”或“上面”。
相关技术中,由于菲涅尔透镜在设计、加工工艺、材料以及组装等多个因素的影响下,菲涅尔透镜存在散光的问题,在将菲涅尔透镜应用到VR等显示设备中时,存 在拖尾、炫光等现象,造成用户体验较差。而在菲涅尔透镜前制造机械光栅来遮挡由于菲涅尔透镜中光学部的光学无效面实现消除散光效果时,由于机械加工工艺的精度有限,并且针对不同尺寸和大小的菲涅尔透镜需要定制不同的光栅,成本高昂,精度较低,此外,光栅在安装过程中,可能存在安装错位的问题,导致安装后的菲涅尔透镜无法使用。
为了解决上述问题,本公开提供了一种消除菲涅尔透镜散光的装置,本公开的装置能够有效消除菲涅尔透镜散光的问题,并且针对不同的菲涅尔透镜可以通过调整电致光栅打开或关闭的像素位置,实现对光栅安装误差的调整,方便高效。
下面结合图1A至图3E对本公开实施例的消除菲涅尔透镜散光的装置进行详细的说明。
图1A是根据本公开的示例性实施例的消除菲涅尔透镜散光的装置的剖面结构示意图。图1B是根据本公开实施例的消除菲涅尔透镜散光的装置的局部放大图。图2A是现有的菲涅尔透镜产生散光示意图。图2B是根据本公开的示例性实施例的装置的电致光栅的遮挡区关闭的示意图。图2C是根据本公开的示例性实施例的装置的电致光栅的遮挡区开启的示意图。图3A是根据本公开的示例性实施例的装置电致光栅的多个像素呈阵列排布的示意图。图3B是根据本公开的示例性实施例的装置电致光栅的多个像素形成一个遮挡区的示意图。图3C是根据本公开的示例性实施例的装置电致光栅的多个像素形成多个遮挡区的示意图。图3D是根据本公开的示例性实施例的装置电致光栅的多个像素形成另一遮挡区的示意图。图3E是根据本公开的示例性另一实施例的装置电致光栅的多个像素形成另一遮挡区的示意图。
如图1A和图1B所示,该装置100包括菲涅尔透镜本体110以及电致光栅120。
其中,菲涅尔透镜本体110的数量可以是一个也可以是多个,其根据实际的需求进行设定。在本实施例中,例如可以设置为3个菲涅尔透镜本体110。在其他的可选实施例中,例如可以设置为2个、4个或者其他数目的菲涅尔透镜本体等。
如图1A和图1B所示,每个菲涅尔透镜本体具有平坦面111和凹凸面112,平坦面111和凹凸面112相对设置,在凹凸面112设有多个光学部113,每个光学部113设有光学工作面114和光学无效面115。其中光学部113是用于使穿过菲涅尔透镜的光线发生折射,光学工作面114用于使光线发生折射,而光学无效面115用于在不同的光学部之间的光学工作面114之间进行过渡。
如图1A、图3A和图3B所示,电致光栅120上设置有呈阵列排布的多个像素点121,多个像素点121通过显示控制单元(未示出)进行控制,实现对不同的像素点121打开或关闭的控制。多个像素点121通过显示控制单元发出的电信号控制打开或关闭形成遮挡区122(如图3B所示),遮挡区122用于遮挡光学无效面115,以及遮挡光学无效面115与光学工作面114之间的连接处。遮挡区122的形状通过控制像素点121的显示位置实现归遮挡区122的调整控制。电信号例如可以是电压或者电流。
在本公开的实施例中,电致光栅120上的像素点121的尺寸可以是纳米级或者微米级,像素点之间的间距较小,从而保证像素在打开或者关闭的状态下,实现较好的遮挡效果。
例如,电致光栅的像素点可以是在打开时实现对光线的遮挡,在像素点通过电信号打开时,光线无法穿过电致光栅的该像素点所在的区域,实现对光线的遮挡。而当像素点在不通过电信号时,光线可以穿过电致光栅的该像素点。通过电信号控制需要打开的像素点,从而确定电致光栅的遮挡区的形状或者位置。
又例如,电致光栅的像素点可以是在关闭时实现对光线的遮挡,在像素点不通过电信号时,呈关闭状态,光线无法穿过电致光栅的该像素点所在的区域,实现对光线的遮挡。若要使光线通过该像素点所在的区域,则需要向该像素点发送电信号,以实现对部分像素点打开,使光线通过,其他未被打开的像素点实现对光线的遮挡。
在本公开的实施例中,电致光栅120上的像素点121的形状可以是矩形、正方形或者其他形状,在本实施例中,例如优选为正方形,其可以实现像素间间距减小,提高遮挡效果。像素点的尺寸越小,其对遮挡区的调整精度更高,实现更精确的控制效果。
在本公开的实施例中,电致光栅的内部像素点排布可以采用规则图形,如正方形、长方形、菱形、平行四边形、品字形、蜂窝形等,也可以采用非规则图形,只要能实现形成可以对光学无效面进行遮挡的遮挡区即可。
如图2A所示,现有的菲涅尔透镜在光学工作面114和光学无效面115的过渡的位置容易产生散光。例如,光线从菲涅尔透镜本体的平坦面照射,在经过菲涅尔透镜本体后,到达凹凸面的光学部113,光学部113具有光学工作面114和光学无效面115,由于加工工艺或者材料性能的影响,在光学工作面114和光学无效面115的连接处之间具有一定的过渡区域,该过渡区域呈现倒圆角或者其他的形状,在光线经过该过渡 区域的位置时,发生散射,如图2A中的M和N所在的位置,散射的光线容易对其他光线造成干扰,产生炫光等不良影响。
如图2B和图2C所示,通过在菲涅尔透镜本体110的靠近凹凸面设置电致光栅120,电致光栅120通过电信号控制打开像素点形成遮挡区122,遮挡区遮挡光学无效面115,以及遮挡光学无效面115与光学工作面114过渡的区域,从而是实现将散射光线进行遮挡的效果,以消除菲涅尔透镜散光。如图2B所示,当电致光栅120上的多个像素点的遮挡区关闭时,光线可以穿过该遮挡区,此时电致光栅120对光线没有影响。如图2C所示,当电致光栅120上的多个像素点的遮挡区开启时,光线无法穿过该遮挡区,此时,电致光栅120可以对光学无效面的光线进行遮挡,同时对光学无效面与光学工作面过渡的区域进行遮挡,实现消除散光的效果。
在本实施例中,电致光栅120优选设置在菲涅尔透镜本体110的靠近凹凸面112一侧,能够更好的遮挡光学无效面115以及遮挡光学无效面和光学工作面过渡的区域。
在本公开的可选实施例中,电致光栅还可以设置在菲涅尔透镜本体的平坦面一侧,或者在菲涅尔透镜本体的凹凸面和平坦面均设置电致光栅,以实现更好的消除散光的效果。
例如,在菲涅尔透镜本体的靠近凹凸面的一侧设置第一电致光栅,在菲涅尔透镜本体的靠近平坦面的一侧设置第二电致光栅。其中,第一电致光栅的遮挡区遮挡光学无效面的一部分以及遮挡光学无效面和光学工作面之间的过渡区域。第二电致光栅的遮挡区遮挡光学工作面和光学无效面之间的过渡区域以及遮挡光学无效面的一部分。
如图1B所示,光学无效面115在菲涅尔透镜本体110的平坦面111的投影位于遮挡区122在平坦面111的投影内。光学无效面115与光学工作面114的连接处在菲涅尔透镜本体110的平坦面111的投影位于遮挡区122在平坦面111的投影内。
在本实施例中,通过控制像素点的打开或关闭形成遮挡区后,光学无效面在平坦面的投影位于该遮挡区的在平坦面的投影内,保证形成的遮挡区能够对光学无效面进行有效的遮挡。例如,光学无效面115在平坦面的投影的宽度小于遮挡区122在平坦面的投影,遮挡区122不仅遮挡光学无效面,还遮挡光学无效面115和光学工作面114之间的过渡区域,从而消除光线在穿过菲涅尔透镜本体到达该过渡区域产生的散光的问题。
在本公开的实施例中,菲涅尔透镜本体上设置有至少一个第一对准标记130,在多个像素形成遮挡区122时,电致光栅120上的多个像素点还形成有至少一个第二对准标记140,第二对准标记140用于与第一对准标记130对准,以使遮挡区122遮挡光学无效面115。
如图1A所示,第一对准标记130可以设置在菲涅尔透镜本体110的中心位置,第二对准标记140设置为显示在电致光栅120的中心位置。在进行菲涅尔透镜本体110的散光消除过程中,通过将第二对准标记140与第一对准标记130进行对准,以使像素点形成的遮挡区遮挡光学无效面。
在其他的可选实施例中,第一对准标记可以设置为多个,第二对准标记可以显示为多个,从而使遮挡区域在遮挡光学无效面时更加准确,在消除散光的同时,又不影响正常光线的通过。
如图3A所述,可以通过控制呈阵列排布的多个像素点的打开和关闭显示不同的形状,以形成不同的遮挡区的形状,满足不同的菲涅尔透镜的消除散光的要求。
在本公开的实施例中,电致光栅120的多个像素点121形成的第二对准标记140和遮挡区122的形状与菲涅尔透镜本体的第一对准标记130和光学部113的形状相对应。其中,电致光栅的形状可以是任意的形状,例如,电致光栅可以是与菲涅尔透镜本体相同的形状,或者,电致光栅的形状与菲涅尔透镜本体的形状不同,电致光栅的多个像素点所在的面积大于或等于菲涅尔透镜本体的面积,可以实现对菲涅尔透镜本体的光学部中的光学无效面进行遮挡。例如,电致光栅的形状可以按照菲涅尔透镜本体的外形进行设计,可以是圆形,也可以是非规则外形。
电致光栅120的多个像素点121形成的第二对准标记140和遮挡区122的形状是根据菲涅尔透镜本体110的尺寸以及结构来进行设定的。例如,针对不同的菲涅尔透镜本体的尺寸以及不同的光学部结构,可以设置不同的遮挡区,以满足不同的菲涅尔透镜本体的消除散光的需求。
例如,在生产制造菲涅尔透镜本体时,可以获得菲涅尔透镜本体的加工参数,其中可以包括有菲涅尔透镜的外形尺寸,每一个光学部的尺寸,每一个光学部中的光学工作面以及光学无效面在平坦面上的投影的尺寸等参数。根据这些参数来设计电致光栅的多个像素点的打开或关闭形成遮挡区,该遮挡区与该菲涅尔透镜本体的光学部的 形状相对应,即设计的遮挡区与该菲涅尔透镜本体的光学部的光学无效面对准的情况下,可以实现消除菲涅尔透镜散光的效果。
针对不同的菲涅尔透镜的外形尺寸可以设计不同的电致光栅的像素点的打开或关闭位置形成不同的遮挡区,满足不同菲涅尔透镜的消除散光的要求。
在本公开的实施例中,在将电致光栅与菲涅尔透镜本体安装在一起时,可能会存在安装方法或者工艺导致的精度问题。例如,电致光栅相对菲涅尔透镜本体偏移了一定位置。可以通过调整电致光栅的多个像素点的打开或关闭位置,使第二对准标记和遮挡区在电致光栅上平移移动,以将第二对准标记与第一对准标记对准,遮挡区完全遮挡所述光学无效面,实现对安装误差的调整。
相关技术的机械光栅,在与菲涅尔透镜本体安装在一起后,若存在安装误差,则需要将机械光栅拆除后重新安装,由于安装工艺的影响,无法完全消除误差,并且,重新安装要耗费较多的人力物力,效率较低。本公开的电致光栅在安装完成后,即使存在较大误差,由于菲涅尔透镜本体的加工参数变化不大,可以通过控制电致光栅的多个像素点的打开或关闭位置,实现遮挡区域在电致光栅上平移移动,进而实现调整以及消除误差的目的。
例如,在菲涅尔透镜本体的中心设置第一对准标记,获取第一对准标记与菲涅尔透镜本体上的每一个光学部的尺寸参数。根据该尺寸参数在电致光栅上设计多个像素点的打开或关闭的位置,使形成的遮挡区与该菲涅尔透镜本体的光学部的形状相对应,然后将遮挡区的中心的响度点显示为第二对准标记,观察第二对准标记与第一对准标记的对准情况,若没有对准,则说明遮挡区没有完全遮挡菲涅透镜本体的光学无效面以及光学无效面与光学工作面的连接处,通过控制电致光栅上显示的遮挡区在电致光栅上平移,实现调整第二对准标记与第一对准标记的位置。当第二对准标记与第一对准标记对准后,可以认为遮挡区完全遮挡光学无效面以及光学无效面与光学工作面的连接处,实现消除散光的目的。
在本公开的实施例中,如图3C所示,由于菲涅尔透镜本体的光学部设置有多个,因此需要设置多个与之对应的遮挡区对光学部的光学无效面进行遮挡。
菲涅尔透镜在加工制造过程中,可能存在光学部的光学无效面和光学工作面的尺寸无法与理论尺寸完全一致。当光学无效面和光学工作面与理论尺寸存在差异时,光 栅对光学无效面或者光学工作面的遮挡可能存在无法完全消除散光,或者对光学工作面遮挡,导致进一步影响光线通过的效果。
例如,通过控制电致光栅中多个像素点中的一个或多个,实现对遮挡区的调节。当光学无效面的尺寸相较于理论尺寸较大时,在基于菲涅尔透镜本体的尺寸设计的遮挡区的基础上,根据实际尺寸存在差异的位置调整对应位置的像素点,比如,将光学无效面尺寸较大位置的周围的像素点打开或关闭形成遮挡区,使该位置的遮挡区域加宽,如图3D所示,图中通过对左边的位置的遮挡区进行加宽,以实现更好的遮挡效果。
在其他可选实施例中,若菲涅尔透镜本体在加工过程中造成光学无效面的尺寸相较于理论尺寸较小时,则遮挡区可能会过多的遮挡光学工作面,导致光线通过的效果变差。此时,可以控制电致光栅相应位置的像素关闭或打开,以减小遮挡区的面积,从而实现在消除散光的同时更好的保证光线通过的效果。
在本公开的另一实施例中,如图3E所示,电致光栅120’的像素排布也可以设置成圆形阵列,例如,像素排布形成多个同心圆的圆环形阵列,在圆环形阵列的中心位置设置第二对准标记140’,该第二对准标记140’用于与设置在菲涅尔透镜本体中心的第一对准标记进行对准。圆环形阵列的像素点通过打开或关闭形成遮挡区122’,以对菲涅尔透镜本体的光学部的光学无效面进行遮挡,消除菲涅透镜散光。
根据本公开的实施例,通过设置电致光栅,实现通过电信号控制像素点的打开和关闭形成遮挡区,可以调整遮挡区的位置,遮挡面积,更好的实现对菲涅尔透镜的光学无效面进行遮挡,有效消除散光。并且,该遮挡区可以通过精确控制像素点的打开和关闭实现精确调整,有效消除制造、加工、安装等过程中造成的误差,进一步提高散光消除的效率。
图4是根据本公开示例性实施例的消除菲涅尔透镜散光的方法流程图。
本公开的实施例的另一方面提供了一种消除菲涅尔透镜散光的方法。如图4所示,消除菲涅尔透镜散光的方法400的流程包括操作S401至操作S402。
在操作S401中,在菲涅尔透镜本体的平坦面和/或凹凸面设置至少一个电致光栅,平坦面和凹凸面相对设置,凹凸面设有多个光学部,每个光学部设有光学工作面和光学无效面,电致光栅设有呈阵列排布的多个像素点。
首先,通过在菲涅尔透镜本体上设置电致光栅实现对穿过菲涅尔透镜的光线进行遮挡。
在操作S402中,通过电信号控制打开或关闭多个像素点形成遮挡区,以使遮挡区遮挡光学无效面。
通过电信号控制像素点的打开或关闭形成遮挡区以遮挡光学无效面,实现消除散光的目的。
消除菲涅尔透镜散光的方法还包括操作S403,在操作S403中,在菲涅尔透镜本体上形成至少一个第一对准标记,打开或关闭多个像素点,在电致光栅上形成遮挡区和至少一个第二对准标记;将第二对准标记与第一对准标记进行对准,以使遮挡区遮挡光学无效面。
在菲涅尔透镜本体上形成第一对准标记,在电致光栅上形成第二对准标记,通过第一对准标记和第二对准标记的对准来调整遮挡区遮挡光学无效面。
在本公开的实施例中,多个像素点形成的遮挡区和至少一个第二对准标记与菲涅尔透镜本体的光学部的形状相对应;将第二对准标记与第一对准标记进行对准,以使遮挡区遮挡光学无效面包括:调整电致光栅的多个像素点的打开或关闭位置,使第二对准标记和遮挡区在电致光栅上平移移动,以将第二对准标记与第一对准标记对准,遮挡区完全遮挡光学无效面。
通过控制多个像素点的打开和关闭,实现在电致光栅上平移遮挡区,实现对遮挡区遮挡位置的调整。
在本公开的实施例中,消除菲涅尔透镜散光的方法还包括调整电致光栅的多个像素点的打开或关闭位置,使遮挡区在电致光栅的某一位置的面积增大或缩小,实现对特定遮挡区域的调节,更精确的控制遮挡区的遮挡效果。
本公开的实施例的另一方面提供了一种光学设备,其中,所述光学设备包括上文所述的消除菲涅尔透镜散光的装置。通过在光学设备中设置该消除菲涅尔透镜散光的装置,可有效消除光学设备中的散光现象,有效提升光学设备的整体的显示效果。例如,所述光学设备包括VR眼镜、AR眼镜、平视显示器(HUD)、投影仪等。
以上所述,仅为本公开的一些具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范 围为准。

Claims (13)

  1. 一种消除菲涅尔透镜散光的装置,包括:
    至少一个菲涅尔透镜本体,每个菲涅尔透镜本体具有平坦面和凹凸面,所述平坦面和所述凹凸面相对设置,在所述凹凸面设有多个光学部,每个所述光学部设有光学工作面和光学无效面;
    至少一个电致光栅,所述电致光栅上设置有呈阵列排布的多个像素点,所述多个像素点通过电信号控制打开或关闭形成遮挡区,所述遮挡区遮挡所述光学无效面。
  2. 根据权利要求1所述的装置,其中,
    所述光学无效面在所述菲涅尔透镜本体的平坦面的投影位于所述遮挡区在所述平坦面的投影内。
  3. 根据权利要求2所述的装置,其中,
    所述光学无效面与所述光学工作面的连接处在所述菲涅尔透镜本体的平坦面的投影位于所述遮挡区在所述平坦面的投影内。
  4. 根据权利要求1所述的装置,其中,所述电致光栅设置在所述平坦面和/或所述凹凸面。
  5. 根据权利要求1所述的装置,其中,
    所述菲涅尔透镜本体上设置有至少一个第一对准标记,在所述多个像素形成所述遮挡区时,所述电致光栅上的多个像素点还形成有至少一个第二对准标记,所述第二对准标记用于与所述第一对准标记对准,以使所述遮挡区遮挡所述光学无效面。
  6. 根据权利要求5所述的装置,其中,所述多个像素点形成的所述第二对准标记和所述遮挡区的形状与所述菲涅尔透镜本体的第一对准标记和光学部的形状相对应。
  7. 根据权利要求6所述的装置,其中,通过调整所述电致光栅的多个像素点的打开或关闭位置,使所述第二对准标记和所述遮挡区在所述电致光栅上平移移动,以将所述第二对准标记与所述第一对准标记对准,所述遮挡区完全遮挡所述光学无效面。
  8. 根据权利要求1所述的装置,其中,所述多个像素点通过电信号打开时,光线无法穿过所述电致光栅的像素点所在区域。
  9. 根据权利要求1所述的装置,其中,所述多个像素点通过电信号关闭时,光线无法穿过所述电致光栅的像素点所在区域。
  10. 一种消除菲涅尔透镜散光的方法,包括:
    在菲涅尔透镜本体的平坦面和/或凹凸面设置至少一个电致光栅,所述平坦面和所述凹凸面相对设置,所述凹凸面设有多个光学部,每个所述光学部设有光学工作面和光学无效面,所述电致光栅设有呈阵列排布的多个像素点;
    通过电信号控制打开或关闭所述多个像素点形成遮挡区,以使所述遮挡区遮挡所述光学无效面。
  11. 根据权利要求10所述的方法,其中,还包括:
    在所述菲涅尔透镜本体上形成至少一个第一对准标记,
    打开或关闭所述多个像素点,在所述电致光栅上形成所述遮挡区和至少一个第二对准标记;
    将所述第二对准标记与所述第一对准标记进行对准,以使所述遮挡区遮挡所述光学无效面。
  12. 根据权利要求11所述的方法,其中,所述多个像素点形成的所述遮挡区和所述至少一个第二对准标记与所述菲涅尔透镜本体的光学部的形状相对应;
    所述将所述第二对准标记与所述第一对准标记进行对准,以使所述遮挡区遮挡所述光学无效面包括:
    调整所述电致光栅的多个像素点的打开或关闭位置,使所述第二对准标记和所述遮挡区在所述电致光栅上平移移动,以将所述第二对准标记与所述第一对准标记对准,所述遮挡区完全遮挡所述光学无效面。
  13. 一种光学设备,其中,所述光学设备包括权利要求1至9中任一项所述的消除菲涅尔透镜散光的装置。
PCT/CN2021/132268 2021-11-23 2021-11-23 消除菲涅尔透镜散光的装置、方法及光学设备 WO2023092251A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180003516.XA CN116964491A (zh) 2021-11-23 2021-11-23 消除菲涅尔透镜散光的装置、方法及光学设备
PCT/CN2021/132268 WO2023092251A1 (zh) 2021-11-23 2021-11-23 消除菲涅尔透镜散光的装置、方法及光学设备
US17/913,272 US20240210599A1 (en) 2021-11-23 2021-11-23 Device and method for eliminating stray light of fresnel lens, and optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/132268 WO2023092251A1 (zh) 2021-11-23 2021-11-23 消除菲涅尔透镜散光的装置、方法及光学设备

Publications (1)

Publication Number Publication Date
WO2023092251A1 true WO2023092251A1 (zh) 2023-06-01

Family

ID=86538492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132268 WO2023092251A1 (zh) 2021-11-23 2021-11-23 消除菲涅尔透镜散光的装置、方法及光学设备

Country Status (3)

Country Link
US (1) US20240210599A1 (zh)
CN (1) CN116964491A (zh)
WO (1) WO2023092251A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676804A (en) * 1994-09-13 1997-10-14 Sharp Kabushiki Kaisha Method for fabricating fresnel lenses by selective application and removal of films on lens surfaces
JP2000081668A (ja) * 1998-09-04 2000-03-21 Seiko Epson Corp 背面投写型表示装置
JP2002107834A (ja) * 2000-10-03 2002-04-10 Toppan Printing Co Ltd 投射式スクリーンとそれを搭載した表示装置
JP2002268147A (ja) * 2001-03-07 2002-09-18 Toppan Printing Co Ltd 透過型スクリーンおよび画像表示装置
CN102645688A (zh) * 2011-02-21 2012-08-22 佳能株式会社 衍射光学元件及其制造方法
CN103152594A (zh) * 2013-02-20 2013-06-12 京东方科技集团股份有限公司 一种3d显示控制方法及装置
CN105892069A (zh) * 2014-05-15 2016-08-24 北京康得新三维科技有限责任公司 动态电子光栅
CN110401829A (zh) * 2019-08-26 2019-11-01 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法
CN110531527A (zh) * 2018-05-25 2019-12-03 苏州苏大维格光电科技股份有限公司 三维显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676804A (en) * 1994-09-13 1997-10-14 Sharp Kabushiki Kaisha Method for fabricating fresnel lenses by selective application and removal of films on lens surfaces
JP2000081668A (ja) * 1998-09-04 2000-03-21 Seiko Epson Corp 背面投写型表示装置
JP2002107834A (ja) * 2000-10-03 2002-04-10 Toppan Printing Co Ltd 投射式スクリーンとそれを搭載した表示装置
JP2002268147A (ja) * 2001-03-07 2002-09-18 Toppan Printing Co Ltd 透過型スクリーンおよび画像表示装置
CN102645688A (zh) * 2011-02-21 2012-08-22 佳能株式会社 衍射光学元件及其制造方法
CN103152594A (zh) * 2013-02-20 2013-06-12 京东方科技集团股份有限公司 一种3d显示控制方法及装置
CN105892069A (zh) * 2014-05-15 2016-08-24 北京康得新三维科技有限责任公司 动态电子光栅
CN110531527A (zh) * 2018-05-25 2019-12-03 苏州苏大维格光电科技股份有限公司 三维显示装置
CN110401829A (zh) * 2019-08-26 2019-11-01 京东方科技集团股份有限公司 一种裸眼3d显示设备及其显示方法

Also Published As

Publication number Publication date
US20240210599A1 (en) 2024-06-27
CN116964491A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
DE112018002804B4 (de) Optische vorrichtung, bildanzeigevorrichtung und anzeigevorrichtung
WO2021169944A1 (zh) 阵列基板、其制作方法、显示面板及显示装置
CN202512257U (zh) 光扩散部件和其显示装置
CN102778711B (zh) 光扩散部件和显示装置
JP5796761B2 (ja) 画像表示装置及び表示パネル
EP2818914A1 (en) Liquid crystal lens and process for manufacturing the same, stereoscopic display device and process for manufacturing the same
EP2711767B1 (en) Liquid crystal display device and method of fabricating the same
DE112013004131T5 (de) Beleuchtungslinse für LED-Hintergrundbeleuchtungen
CN108027522A (zh) 光成像装置
WO2016004710A1 (zh) 双视场显示器及其制造方法、驱动方法
CN102955354A (zh) 一种掩膜板及其制备方法
US20150042934A1 (en) Light diffusing member, method for manufacturing same and display device
TWI485473B (zh) 液晶顯示裝置及其製造方法
WO2023092251A1 (zh) 消除菲涅尔透镜散光的装置、方法及光学设备
WO2019047358A1 (zh) 光罩
US11927878B2 (en) Projection screen, manufacturing method, and display system having nanoparticle layers
WO2018188301A1 (zh) 显示基板及其制作方法、显示装置
CN105744258A (zh) 一种单相机双目视觉传感器及其调试方法
WO2019061779A1 (zh) 一种阵列基板、掩膜板及阵列基板制作方法
CN116106995A (zh) 菲涅尔透镜及其制备方法、光学模组及光学成像设备
CN105527759A (zh) 液晶配向方法、像素结构、显示面板及显示装置
CN106843558A (zh) 触控面板的感测金属网格及其制法
TWI714050B (zh) 顯示裝置
WO2016084676A1 (ja) 液晶表示装置及び光制御部材
CN203825292U (zh) 一种可变衰减器装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17913272

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE