WO2023090679A1 - Digital pressure leak inspection device - Google Patents

Digital pressure leak inspection device Download PDF

Info

Publication number
WO2023090679A1
WO2023090679A1 PCT/KR2022/016465 KR2022016465W WO2023090679A1 WO 2023090679 A1 WO2023090679 A1 WO 2023090679A1 KR 2022016465 W KR2022016465 W KR 2022016465W WO 2023090679 A1 WO2023090679 A1 WO 2023090679A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection port
unit
gas
gas supply
auxiliary connection
Prior art date
Application number
PCT/KR2022/016465
Other languages
French (fr)
Korean (ko)
Inventor
이도연
Original Assignee
이도연
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이도연 filed Critical 이도연
Publication of WO2023090679A1 publication Critical patent/WO2023090679A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration

Definitions

  • the present invention relates to a digital pressure leak tester.
  • a semiconductor device includes a fabrication (FAB) process of forming an electrical circuit on a silicon wafer used as a substrate, an electrical die sorting (EDS) process of inspecting electrical characteristics of semiconductor devices formed in the FAB process, and a semiconductor device. It is manufactured through a package assembly process for encapsulating and individualizing them with epoxy resin.
  • FAB fabrication
  • EDS electrical die sorting
  • various layers such as a silicon oxide layer, a polysilicon layer, an aluminum layer, a copper layer, etc. are formed on a substrate by chemical vapor deposition, physical vapor deposition, thermal oxidation, ion implantation ( It is formed through processes such as ion implantation and ion diffusion.
  • the object of the present invention is a digital pressure leak test device that is provided with a manifold unit to connect a plurality of pipes, detects gas pressure and temperature in the pipe, and enables integrated management. is providing
  • a digital pressure leak test device is located inside a housing having a plurality of pipes connected to one side and having a fixing member at the bottom, and using a change in capacitance to check the inside of the pipe.
  • a sensing unit that detects the gas pressure and detects whether or not there is an abnormality in the pipe using a change in the specific resistance of the conductor according to the temperature change, and stores the values of the gas pressure and temperature measured by the sensing unit and manages the history
  • a manifold unit located inside the control unit and the housing and composed of a connection port to which the plurality of pipes to which the sensing unit is connected are connected, a gas supply unit to which the connection port is connected, and brackets supporting both ends of the gas supply unit can include
  • a plurality of gas supply units are spaced apart at equal intervals between the brackets, and may include a connection unit connected from the outside of the brackets.
  • the manifold unit may further include an acceleration sensor connected to the connection part and detecting a positional movement of the gas supply unit due to an external impact.
  • connection port unit includes a plurality of connection ports, and each of the connection ports adjacent to each other may have different lengths.
  • connection port is connected to the gas supply unit and protrudes toward an upper portion of the housing, a second auxiliary connection port provided on the first auxiliary connection port, and a third auxiliary connection port accommodating the second auxiliary connection port.
  • Auxiliary connection ports may be included.
  • the second auxiliary connection port passes through a connection member connecting the first auxiliary connection port and the third auxiliary connection port, a rotation member disposed inside the connection member, and one side and the other side of the connection member, and the lower surface of the rotation member. It may include a shaft fixed to.
  • the third auxiliary connection port may include a guide portion connected to the shaft to guide rotation of the rotating member.
  • the digital pressure leak test apparatus is provided with a manifold unit to connect a plurality of pipes, detects gas pressure and temperature in the pipes, and can perform integrated management.
  • FIG. 1 is a block diagram schematically showing an example configuration of a digital pressure leak test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a state of use of a digital pressure leak test apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view for explaining an example of the housing shown in FIG. 2 .
  • FIG. 4 is a view for explaining another example of the housing shown in FIG. 2;
  • FIG. 5 is a perspective view showing the manifold unit shown in FIG. 2;
  • FIG. 6 is an exploded perspective view of the connection port shown in FIG. 5;
  • FIG. 7 is a cross-sectional view showing a section I-I' of the connection port shown in FIG. 5;
  • FIG. 8 is a view for explaining the rotational motion of the shaft and the rotating member according to the vertical motion of the third auxiliary connection port shown in FIG. 7 .
  • FIG. 9 is an exemplary view for explaining a shaft and a third auxiliary connection port according to another embodiment of the present invention.
  • FIG. 10 is a view for explaining the rotational motion of the shaft and the rotating member according to the vertical motion of the third auxiliary connection port shown in FIG. 9 .
  • FIG. 11 is a plan view showing another manifold unit according to another example of the present invention.
  • FIG. 1 is a block diagram schematically showing an example configuration of a digital pressure leak test apparatus according to an embodiment of the present invention.
  • a digital pressure leak test apparatus 1000 includes a detection unit 100, a C/F conversion unit 110, an A/D conversion unit 120, a control unit ( 200), a transmission unit 300, a display unit 400 and an alarm generating unit 500.
  • the sensing unit 100 may detect a gas pressure using a change in capacitance and detect a temperature using a change in a specific resistance value of a conductor according to a change in temperature.
  • the C/F conversion unit 110 may change the value of the detected temperature from Celsius to Fahrenheit or from Fahrenheit to Celsius according to an embodiment.
  • Both the detected gas pressure and temperature obtained by the sensing unit 100 may be analog values, and the A/D conversion unit 120 may convert these analog values into corresponding digital values.
  • the control unit 200 stores the gas pressure and temperature values measured by the sensing unit 100 (or the gas pressure and temperature values converted to digital values by the A/D conversion unit 120) and manages the history.
  • the stored value may be transmitted to a manager for management or to a device used by the manager through the transmission unit 300 .
  • the transmission unit 300 may be a wired or wireless communication network. That is, both wireless transmission and wired transmission may be possible. For example, wireless transmission can be performed using commercial CDMA communication. In addition, wireless short-range communication such as WiFi, or a wireless interface such as Bluetooth or wireless LAN for transmission to equipment such as a smartphone or tablet PC may be used.
  • the display unit 400 may display gas pressure and temperature values.
  • the display unit 400 may include a printer 410 capable of printing and displaying the history and a monitor 420 capable of displaying the history on a screen.
  • the alarm generating unit 500 may generate an alarm when it is determined that the value detected by the sensing unit 100 is not normal.
  • the alarm generating unit 500 may be composed of an alarm lamp 510 that emits red light to blink to inform an alarm when it is determined that the state of the pipe is not normal, or an alarm speaker 520 that generates an alarm. there is. In particular, it may be controlled to display the contents of the alert on the portable terminal 530 through a wireless network.
  • the configuration of the sensing unit 100, the C/F conversion unit 110, and the A/D conversion unit 120 are all implemented as one block (B) to detect gas Values of pressure and temperature may be transmitted to the control unit 200 .
  • the C/F conversion unit 110 and the A/D conversion unit 120 are separately shown in the drawing, these two conversion units may be included in the sensing unit 100 according to an implementation example, or a control unit ( 200) may be included and implemented.
  • the display unit 400 is shown individually in the drawing, it may be included in the function of the control unit 200 and implemented according to an implementation example.
  • a power source for supplying power to enable each component to operate may be further included.
  • it may include a means such as a lithium battery.
  • Such a function for managing battery power may be included in power, or may be implemented within any one of the above functional blocks.
  • FIG. 2 is a diagram showing a state of use of a digital pressure leak test apparatus according to an embodiment of the present invention.
  • the main gas pipe (P) and the semiconductor manufacturing apparatus (M) may be connected to each other via a system box (SB).
  • Numerous pipes are connected to the semiconductor manufacturing apparatus M, most of which are gas pipes.
  • Various types of gas are supplied to the semiconductor manufacturing apparatus M, and the flow of the gas is controlled through the system box SB.
  • the system box (SB) is installed in the opening formed on the floor of the working floor (CF).
  • the floor (F) of the working floor (CF) is generally formed as an access floor, and a plurality of access panels are connected to each other to form a floor surface. In particular, due to the standardized access panel, the size of the opening is fixed.
  • the system box (SB) is inserted into the opening in the working floor (CF) and installed and fixed.
  • the connection between the system box (SB), the main gas pipe (P) and the supply gas pipe (PS) is made in the equipment layer (MF) where the semiconductor manufacturing device (M) is installed.
  • the system box (SB) controls the flow of gas supplied to the semiconductor manufacturing apparatus (M), and gas is supplied due to replacement of the semiconductor manufacturing apparatus (M) when maintenance is required due to gas leakage from the pipe. If it is necessary to change the type and amount of supply, the gas flow is blocked in the system box (SB) and construction is performed.
  • the main gas pipe (P) may be connected to the digital pressure leak test device (1000).
  • the digital pressure leak test device 1000 may include a housing 105, a detection unit (not shown), a control unit (not shown), a display unit 400, an alarm generating unit 500 and a manifold unit 600. can
  • a plurality of pipes may be connected to the housing 105 .
  • a display unit 400 and an alarm generating unit 500 may be provided on one surface of the housing 105 .
  • a manifold unit 600 may be provided inside the housing 105 .
  • a sensing unit may be located inside the housing 105 .
  • the sensing unit may be respectively installed in a plurality of pipes (P) respectively connected to the connection ports of the manifold unit 600 .
  • the sensing unit may detect a gas pressure inside the pipe by using a change in capacitance, and detect whether or not there is an abnormality in the pipe by using a change in a specific resistance value of a conductor according to a change in temperature.
  • a control unit (not shown) may be connected to one side of the housing 105 .
  • the display unit 400 may be exposed to the outside of the housing, store gas pressure and temperature values measured by the sensing unit, and manage history.
  • the manifold unit 600 is located inside the housing 105, and includes a connection port to which a plurality of pipes P connected to each sensing unit are connected, a gas supply unit to which the connection port unit is connected, and a bracket supporting both ends of the gas supply unit.
  • the connection port of the manifold unit 600 may be exposed to one side of the housing 105 and connected to the main gas pipe P.
  • An exhaust valve for venting gas supplied through a regulator and a manifold unit 600 for maintaining a gas pressure to be supplied at a constant set value may be further provided outside the housing 105 according to an example.
  • An embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detect gas pressure and temperature in the pipes, and can perform integrated management.
  • This manifold unit will be described in detail with reference to the following drawings.
  • FIG. 3 is a view for explaining an example of the housing shown in FIG. 2 .
  • the housing 105 may further include a plurality of fixing members 106 .
  • wheels 107 may be attached to the bottom surface of the housing 105.
  • a stopper 108 for fixing the housing 105 may be provided on the wheel 107 .
  • the fixing members 106 may be inserted into both sides of the housing 105 to be spaced apart from the wheels 107 .
  • the fixing member 106 may be provided on an inner lower surface of the housing 105 .
  • the housing 105 may be primarily fixed by the stopper 108 after moving to a place where the leak test is performed.
  • the control unit may move the fixing member 106 inserted into the lower inner side of the housing 105 toward the ground.
  • the bottom surface of the fixing member 106 may be formed wide to stably contact the ground.
  • the fixing member 106 may be pulled downward and fixed to the ground according to a control signal from the control unit. Accordingly, the housing 105 can be stably fixed to the ground.
  • the fixing member 106 is provided in one embodiment of the present invention, it is possible to prevent a change in pressure due to an impact from the outside during a leak test, enabling a more accurate leak test.
  • the housing 105 may further include a plurality of safety distance display units 109 .
  • the safety distance display unit 109 may be disposed along the outer circumference of the housing 105 . That is, the safety distance display unit 109 may be disposed along the rectangular circumference of the outer surface of the housing 105 .
  • the safety distance display unit 109 may be a laser or beam projector.
  • the safety distance display unit 109 directs the light source 109a to the ground within a radius of 100 to 200 meters where the housing 105 is fixed by a control signal from the control unit. can be investigated
  • the light source 109a may be in the form of a red laser band having a predetermined thickness.
  • the light source 109a may be a phrase such as “during examination, access prohibited”. Accordingly, it is possible to inform people other than the worker that the work is in progress, and to block the access of outsiders to prevent shock from the outside in advance. Accordingly, a more accurate leak test may be possible.
  • FIG. 4 is a view for explaining another example of the housing shown in FIG. 2;
  • fixing members 106 may be provided on both sides of the housing 105 .
  • the fixing member 106 may be formed to be curved from the side of the housing 105 toward the ground.
  • the fixing member 106 may include a first fixing member 106a and a second fixing member 106b.
  • One end of the first fixing member 106a may be inserted into the side surface of the housing 105, and the second fixing member 106b may be connected to the other end of the first fixing member 106a and fixed to the ground.
  • the control unit may move one end of the first fixing member 106a into which the housing 105 is inserted on the inner side in a lateral direction by a predetermined distance, and then move the second fixing member 106b to the ground.
  • the bottom surface of the second fixing member 106b may be formed wide to stably contact the ground. Accordingly, the housing 105 can be stably fixed to the ground. Accordingly, during the leak test, it is possible to prevent the pressure from being changed due to an impact from the outside, enabling a more accurate leak test.
  • FIG. 5 is a perspective view showing the manifold unit shown in FIG. 2;
  • the manifold unit 600 may be located inside or above the housing.
  • the manifold unit 600 may include a connection port 700 , a gas supply unit 800 , a bracket 900 and an acceleration sensor 950 .
  • connection port unit 700 may be connected to a plurality of pipes to which each sensing unit is connected.
  • the connection port part 700 is connected to the gas supply part 800 and may protrude toward the outside of the housing.
  • the connection port unit 700 may include 10 to 15 connection ports, and each of the 10 to 15 connection ports may be installed in a row on the upper surface of the gas supply unit 800 .
  • the lengths of one connection port and another connection port adjacent to each other may be formed to be different from each other. That is, each of the connection ports adjacent to each other may have different lengths.
  • the length of one connection port may be formed shorter than the length of another adjacent connection port. Accordingly, it is possible to prevent a collision between gases introduced into and discharged from the gas supply unit 800 .
  • the 10 to 15 connection ports may be formed of an upper connection port installed in a row on the upper surface of the gas supply unit 800 and a side connection port installed in a row on one side of the gas supply unit 800 .
  • the upper connection port and the side connection port may be arranged to have a zigzag shape. Accordingly, it is possible to further prevent collisions between gases introduced into and discharged from the gas supply unit 800 .
  • the gas supply unit 800 may be connected to the connection port unit 700 .
  • a plurality of gas supply units 800 are spaced apart at regular intervals between the brackets 900 and may include a connection unit 850 connected from the outside of the brackets 900 .
  • the gas supply unit 800 may be a cylindrical pipe.
  • Brackets 900 may be provided at both ends of the gas supply unit 800 .
  • the bracket 900 may support and fix both ends of the gas supply unit 800 .
  • the bracket 900 may include an upper bracket and a lower bracket.
  • the upper bracket and the lower bracket may include through-holes recessed into the inside so that the gas supply unit 800 can stably pass therethrough.
  • the through holes provided in the upper bracket and the lower bracket are connected to form one through hole, and the gas supply unit 800 passes through the through hole formed by the combination of the upper bracket and the lower bracket, and is provided by the bracket 900. It can be supported and fixed.
  • the upper bracket and the lower bracket may be bolted together.
  • the acceleration sensor 950 may be connected to the connection unit 850 .
  • the acceleration sensor 950 may detect a positional movement of the gas supply unit 800 due to an external impact. That is, the acceleration sensor 950 can sense that the gas supply unit 800 is shaken or its position is changed by an external impact. For example, when the location of the gas supply unit 800 is changed, an imbalance may occur in the pressure of the test gas flowing into the main gas pipe through the manifold unit 600 . According to an embodiment of the present invention, since the acceleration sensor 950 is provided, a test gas having a constant pressure can be injected, thereby improving the reliability of the test.
  • Figure 6 is an exploded perspective view of the connection port shown in Figure 5
  • Figure 7 is a cross-sectional view showing the I-I 'section of the connection port shown in Figure 5
  • Figure 8 is a third auxiliary connection port shown in Figure 7 It is a drawing for explaining the rotational motion of the shaft and the rotating member according to the vertical motion.
  • connection port 700 includes a first auxiliary connection port 710, a second auxiliary connection port 720, and a third auxiliary connection port 730.
  • the first auxiliary connection port 710 is connected to the gas supply unit and may protrude toward the top of the housing.
  • the first auxiliary connection port 710 may have a cylindrical shape.
  • An upper end of the first auxiliary connection port 710 may have a rectangular cross section connected to a cylinder, and may be connected to the second auxiliary connection port 720 .
  • the lower end of the first auxiliary connection port 710 may be in the shape of a square pillar having a rectangular cross section connected to a cylinder, and both sides of the lower end may be connected to a gas supply unit.
  • a first additional connection member 741 may be provided between the upper end of the first auxiliary connection port 710 and the second auxiliary connection port 720 .
  • first auxiliary connection port 710 and the second auxiliary connection port 720 can be more firmly fixed.
  • a hole having the same shape as the first auxiliary connection port 710 is formed in the center of the first additional connection member 741 so that the test gas can be transferred through the hole.
  • the second auxiliary connection port 720 may include a connection member 721 , a rotation member 722 , a rubber packing 723 , a shaft 725 and a bushing 726 .
  • the connecting member 721 may be provided on the first additional connecting member 741 .
  • the connection member 721 may be provided between the first auxiliary connection port 710 and the third auxiliary connection port 730 to connect the first auxiliary connection port 710 and the third auxiliary connection port 730 .
  • the connection member 721 may have a square cross-section in the form of a square pillar, and may include an upper connection member 721a and a lower connection member 721b.
  • the connection member 721 may form a hole in the center by a method such as MCT processing. Due to this, a hole may be formed close to a perfect circle.
  • the first auxiliary connection port 710 and the third auxiliary connection port 730 may be cylindrical pipes, and such pipes may be manufactured by injection molding, so that the circles are finely distorted and formed. gas may leak.
  • the connection member 721 may be manufactured by drilling a hole in a rectangular pillar and may be rounder than the first auxiliary connection port 710 and the third auxiliary connection port 730, which may be pipes. Through this, when the rotating member 722 is vertically disposed on the connection member 721 close to the perfect circle to move the gas, the gas can be easily moved. In addition, when the rotating member 722 is disposed horizontally to block the movement of gas, it is possible to prevent gas from leaking.
  • a through hole 721c may be formed between the upper connection member 721a and the lower connection member 721b, and the bushing 726 and the shaft 725 may be provided through the through hole 721c.
  • the diameter of the upper connection member 721a may be smaller than that of the lower connection member 721b. Accordingly, a bent portion may be formed by a step between the upper connection member 721a and the lower connection member 721b. Due to this, when the gas rises, it can pass through the bent part and rise flexibly, and a change in speed can occur, so that the gas can rise easily.
  • the upper end of the upper connection member 721a may protrude upward and be inserted into the third auxiliary connection port 730 . Accordingly, when the third auxiliary connection port 730 moves up and down, leakage of the test gas to the outside can be prevented.
  • the rotating member 722 may be disposed inside the connecting member 721 .
  • the rotating member 722 may be disposed at an inner lower end of the upper connecting member 721a.
  • the rotating member 722 may be disposed above the shaft 725.
  • the rotation member 722 may be a circular plate, and a coupling hole 722b spaced apart from the center may be formed.
  • the coupling hole 722b may coincide with the screw hole 725b of the shaft 725 located on the lower side of the rotating member 722 .
  • a screw inserted into the coupling hole 722b is inserted into the screw hole 725b so that the shaft 725 and the rotating member 722 can be coupled.
  • a curved portion 722a may be formed on an outer surface of the rotating member 722 so as to be curved inward.
  • the rubber packing 723 may be inserted and coupled to the curved portion 722a. That is, a rubber packing 723 may be inserted and coupled between the inner surface of the lower end of the upper connecting member 721a and the curved portion 722a.
  • the shaft 725 may pass through one side and the other side of the connecting member 721 and be fixed to the lower surface of the rotating member 722 .
  • the shaft 725 may be located at the center of the lower end of the rotating member 722, spaced apart from the center of the shaft 725, and may have a screw hole 725b formed therein.
  • a plurality of protrusions 725a may be provided on both end sides of the shaft 725 .
  • Two protrusions 725a may be provided at both ends of the shaft 725 according to an example. In this case, each of the two protrusions 725a may be spaced apart at 90° intervals in the circumferential direction of the shaft 725 with respect to the center of the shaft 725 .
  • one protrusion 725a may be provided on the upper side of the end side of the shaft based on the center of the shaft 725, and the other protrusion 725a may be provided on the upper side of the end side of the shaft based on the center of the shaft 725. It may be provided at a position 90 ° apart from.
  • a guide ball 733b may be connected to each end of the protrusion 725a.
  • the guide ball 733b connects the protrusion 725a and the third auxiliary connection port 730, and the guide ball 733b is connected to the guide groove 733a, thereby contributing to the vertical movement of the third auxiliary connection port 730. It is possible to guide the rotational motion of the shaft 725 by the Accordingly, the opening and closing of the rotating member 722 can be controlled by rotating the rotating member 722 fixed to the shaft 725 by the vertical movement of the third auxiliary connection port 730 .
  • the shaft 725 may be inserted into the through hole 721c formed on the outer surface of the connecting member 721, and the bushing 726 may be coupled to the outer surface of the shaft 725.
  • the upper and lower ends of the shaft 725 may be planar, and side surfaces may be circular. Due to this, it is easy to couple the rotating member 721 to the top of the shaft 725, and the shaft 725 can be smaller than the size of the hole formed in the bushing 726, so that there is a gap between the shaft 725 and the bushing 726. Since this is formed, rotation of the shaft 725 may be facilitated.
  • the bushing 726 may have a circular or quadrangular shape, and a hole may be formed in the center thereof.
  • the bushing 726 may be inserted into the through hole 721c, and the shaft 725 may be inserted into the bushing 726. Due to this, the shaft 725 and the connecting member 721 may be firmly coupled, and the shaft 725 may be rotatable.
  • the third auxiliary connection port 730 may receive the second auxiliary connection port 720 .
  • the third auxiliary connection port 730 may guide the rotational motion of the second auxiliary connection port 720 .
  • the third auxiliary connection port 730 may include a guide part 733 .
  • the guide part 733 may be connected to the shaft 725 to guide rotation of the rotating member 722 .
  • the guide part 733 may include a guide groove 733a and a guide ball 733b.
  • the guide groove 733a may be provided concavely on the inner surface of the third auxiliary connection port 730 .
  • the guide groove 733a may be connected to the guide ball 733b to guide the movement path of the plurality of protrusions 725a provided at both ends of the shaft 725.
  • the guide groove 733a is provided in an area corresponding to the protrusion 725a and may be concave in the circumferential direction of the shaft 725 to facilitate rotation of the protrusion 725a.
  • the guide groove 733a may be provided in a concave half ring shape so that the maximum rotation angle of the protrusion 725a is maintained at 90°. Accordingly, by controlling the rotation angle of the shaft 725 and the rotation member 722 to 90 °, it is possible to stably arrange the rotation member 722 horizontally or vertically.
  • the guide ball (733b) is connected to the projection (725a) and the guide groove (733a), as the third auxiliary connection port 730 is vertically moved, rotates the inside of the guide groove (733a), the projection (725a) ) can guide the rotation.
  • the shaft 725 coupled with the rotating member 722 may be connected to the third auxiliary connection port 730 through a protrusion 725a formed at one end.
  • the third auxiliary connection port 730 may include a guide part 733 for guiding rotational motion of the shaft 725 .
  • the protruding part 725a is connected to the guide part 733, and the opening and closing of the gas can be controlled by rotating the rotating member 722 fixed to the shaft 725 by the vertical movement of the third auxiliary connection port 730. That is, when the third auxiliary connection port 730 rises, the protruding portion 725a may move along the guide groove 733a provided concavely in the circumferential direction of the shaft 725 to correspond to the protruding portion 725a.
  • the shaft 725 can rotate, and the rotating member 722 can be vertically disposed by the rotation of the shaft 725.
  • the protrusion 725a may rotate in a direction opposite to the ascending direction along the guide groove 733a. Accordingly, the shaft 725 can rotate in the opposite direction, and the rotating member 722 is horizontally disposed by the rotation of the shaft 725 to block the inflow of gas.
  • one embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detect gas pressure and temperature in the pipes, and perform integrated management.
  • the rotation member 722 is provided in each connection port 700 to block the flow of gas, it is possible to selectively inspect the pipe for leaks. Accordingly, the accuracy of the leak test can be improved and time can be shortened.
  • first auxiliary connection port 710 and the third auxiliary connection port 730 are connected by the second auxiliary connection port 720, opening and closing of the gas can be controlled, and a pipe that can be finely distorted can be controlled.
  • second auxiliary connection port 720 having a hole formed as gas is prevented from leaking to the outside, and the test gas can be discharged or blocked as rotation is controlled through the rotating member 722 .
  • FIG. 9 is an exemplary view for explaining a shaft and a third auxiliary connection port according to another embodiment of the present invention
  • FIG. 10 is a rotation of the shaft and the rotating member according to the vertical movement of the third auxiliary connection port shown in FIG. It is a drawing to explain movement.
  • the third auxiliary connection port 730 may include a shaft insertion portion 735 .
  • the shaft insertion portion 735 may be provided concavely from the inner surface to the outer surface of the third auxiliary connection port 730 .
  • a shaft 725 may be inserted into the shaft insertion portion 735 .
  • the shaft insertion part 735 may include a first insertion part 735a and a second insertion part 735b. Cross sections of the first insertion portion 735a and the second insertion portion 735b may have a rectangular shape.
  • the horizontal length of the first insertion portion 735a may be greater than the horizontal length of the second insertion portion 735b. Accordingly, the shaft insertion portion 735 may have a T-shape.
  • Rotation springs 727 may be provided on outer circumferential surfaces of both ends of the shaft 725 .
  • the rotation spring 727 is spaced apart from the rotation member 722 by a predetermined distance, and may be formed to surround outer circumferential surfaces of both ends of the shaft 725 .
  • one end of the rotation spring 727 may be fixed to the upper or lower surface of the shaft 725, and the other end may be fixed to the first fixing part 735c of the third auxiliary connection port 730.
  • the rotation spring 727 may be compressed. Accordingly, the shaft 725 may rotate and be inserted into the second insertion portion 735b. Accordingly, the rotation member 722 rotates together with the shaft 725 and is vertically disposed, and test gas may be introduced. In addition, when the third auxiliary connection port 730 descends, the shaft may be inserted into the first insertion portion 735a due to the nature of the condensed rotary spring 727 returning to its original shape. Accordingly, the rotating member 722 rotates together with the shaft 725 and is disposed horizontally, and the inflow of the test gas can be blocked.
  • the horizontal length of the first insertion portion 735a may be smaller than the horizontal length of the second insertion portion 735 . Accordingly, the shaft insertion portion 735 may have a ' ⁇ ' shape.
  • the rotation spring 727 may be compressed. Accordingly, the shaft 725 is rotated and inserted into the first insertion portion 735a, and the rotating member is vertically disposed to introduce test gas.
  • the third auxiliary connection port 730 rises, the shaft is inserted into the second insertion part 735b due to the nature of the condensed rotary spring 727 returning to its original form, and the rotary member is horizontally Arranged to block the inflow of the test gas.
  • Another embodiment of the present invention may further include an LED unit 780.
  • the LED unit 780 is fixed to the outer surface of the third auxiliary connection port 730, and the light emitting switch 781 may be connected to the inside of the third auxiliary connection port 730.
  • the light emitting switch 781 is connected to the LED unit 780 and may be provided above and below the first housing unit 735a.
  • the light emitting switch 781 may be made of conductive metal.
  • the light emitting switch 781 provided under the first accommodating part 735a is connected to the first fixing part 735c and may be connected to the end of the rotation spring 727.
  • the light emitting switch 781 provided above the first accommodating portion 735a will come into contact with the rotation spring 727 located above the shaft 725. can Accordingly, when the shaft 725 is inserted into the first insertion part 735a, since the rotation spring 727 connects the upper and lower parts of the light emitting switch 781, the LED part 780 can emit light. there is.
  • the rotation spring 727 and the first and second fixing parts may be conductive metal.
  • a power supply unit (not shown) for supplying power to the LED unit 780 may be additionally provided on the outer surface of the third auxiliary connection port 730 .
  • the power supply unit (not shown) may be a battery that is connected to the LED unit 780 and supplies and cuts power by the light emitting switch 781 . Accordingly, in another embodiment of the present invention, whether the rotating member 722 is opened or closed can be confirmed once again according to whether the LED unit 780 emits light.
  • Another embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detect gas pressure and temperature in the pipes, and can perform integrated management.
  • the rotation member 722 is provided in each connection port 700 to block the flow of gas, it is possible to selectively inspect the pipe for leaks. Accordingly, the accuracy of the leak test can be improved and time can be shortened.
  • FIG. 11 is a plan view showing a manifold unit according to another example of the present invention.
  • a manifold unit 600 may include a plurality of gas supply units 800 .
  • the gas supply unit 800 may include a first gas supply unit 810 , a second gas supply unit 820 and a third gas supply unit 830 .
  • the first gas supply unit 810 , the second gas supply unit 820 , and the third gas supply unit 830 are spaced apart at equal intervals and may include a connection unit 850 connected from the outside of the bracket 900 .
  • Each of the first gas supply unit 810, the second gas supply unit 820, and the third gas supply unit 830 may be connected to a gas injection unit disposed at one end.
  • the first gas supply unit 810 may be connected to the first gas injection unit 811 and the second gas injection unit 812 with the first three-way valve 961 therebetween.
  • the first gas injection unit 811 and the second gas injection unit 812 may inject different types of gas.
  • the first auxiliary valve 961a and the third auxiliary valve 961c of the first three-way valve 961 are opened to supply the first gas. may flow into the first gas supply unit 810 .
  • the second auxiliary valve 961c may be maintained in a closed state.
  • the second auxiliary valve 961b and the third auxiliary valve 961c of the first three-way valve 961 are opened to supply the second gas. It may flow into the first gas supply unit 810 .
  • the first auxiliary valve 961a may be maintained in a closed state.
  • the first gas may be nitrogen gas and the second gas may be argon gas.
  • the leak test can be performed by injecting different types of gas
  • the leak test can be performed regardless of the material supplied to the pipe. That is, in the case of a pipe supplied with water, the pipe leak test is performed with nitrogen gas, and in the case of an acidic or basic solution other than water, the pipe leak test is performed with argon gas. Since it is possible to perform a leak test by injecting different gases by the configuration as described above, a more efficient leak test may be possible with one equipment.
  • each of the second gas supply unit 820 and the third gas supply unit 830 may be connected to the gas injection units 821 , 822 , 831 , and 832 disposed at one end.
  • the gas injection units 821, 822, 831, and 832 each have a second gas supply unit 820 and a third gas supply unit 830 and second and third three-way valves 962 and 963 ) can be connected.
  • each of the gas injection units 821 , 822 , 831 , and 832 may inject different gases into the second gas supply unit 820 and the third gas supply unit 830 , similarly to the first gas supply unit 810 . .
  • gas can be sequentially supplied to each of the first gas supply unit 810, the second gas supply unit 820, and the third gas supply unit 830.
  • the pipe connected to the first gas supply unit 810 is first tested for leakage by injecting gas into the first gas supply unit 810, and the pipe connected to the first gas supply unit 810 is leak-tested. Gas may be injected into the second gas supplier 820 while the test is being performed.
  • gas may be injected into the third gas supply unit 830 while a leak test is performed on a pipe connected to the second gas supply unit 820 .
  • a first gas blocker 971 is provided between the second gas supply unit 820 and the connection unit 850
  • a second gas blocker 972 is provided between the third gas supply unit 830 and the connection unit 850.
  • the first gas blocking unit 971 is disposed between the first gas supply unit 810 and the second gas supply unit 820, and the second gas is injected into the first gas supply unit 810 and the leak test is performed. It is possible to prevent gas from leaking into the supply unit 820 .
  • the second gas blocking unit 972 is disposed between the second gas supply unit 820 and the third gas supply unit 830, while gas is injected into the second gas supply unit 810 and the leak test is in progress.
  • 3 Gas supply unit 830 can prevent gas from leaking.
  • a leak test can be performed on a plurality of pipes simultaneously or sequentially, and a more efficient leak test can be performed by reducing the time required for gas to be supplied to the pipes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

A digital pressure leak inspection device, according to one embodiment of the present invention, may comprise: a housing having a plurality of pipes connected to one side thereof and a fixing member provided on the lower end thereof; a sensing unit which is located inside the housing, detects gas pressure inside the pipes by using a change in capacitance, and detects whether there is an abnormality in the pipes by using a change in the specific resistance value of a conductor according to a change in temperature; a control unit which stores the gas pressure and temperature values measured by the sensing unit and manages the history thereof; and a manifold unit which is located inside the housing, and comprises a connection port unit to which the plurality of pipes, to which the sensing unit is connected, are connected, a gas supply unit to which the connection port unit is connected, and brackets for supporting respective ends of the gas supply unit.

Description

디지털 압력 리크 검사장치Digital pressure leak tester
본 발명은 디지털 압력 리크 검사장치에 관한 것이다. The present invention relates to a digital pressure leak tester.
일반적으로 반도체 장치는 기판으로 사용되는 실리콘 웨이퍼 상에 전기적인 회로를 형성하는 FAB(fabrication) 공정과, FAB 공정에서 형성된 반도체 장치들의 전기적인 특성을 검사하는 EDS(electrical die sorting) 공정과, 반도체 장치들을 각각 에폭시 수지로 봉지하고 개별화시키기 위한 패키지 조립 공정을 통해 제조된다. In general, a semiconductor device includes a fabrication (FAB) process of forming an electrical circuit on a silicon wafer used as a substrate, an electrical die sorting (EDS) process of inspecting electrical characteristics of semiconductor devices formed in the FAB process, and a semiconductor device. It is manufactured through a package assembly process for encapsulating and individualizing them with epoxy resin.
FAB 공정에서는 기판상에 실리콘 산화층, 폴리실리콘층, 알루미늄층, 구리층 등과 같은 다양한 층들이 화학 기상 증착(chemical vapor deposition), 물리 기상 증착(physical vapor deposition), 열 산화 (thermaloxidation), 이온 주입(ion implantation), 이온 확산(ion diffusion) 등과 같은 공정들을 통해 형성된다.In the FAB process, various layers such as a silicon oxide layer, a polysilicon layer, an aluminum layer, a copper layer, etc. are formed on a substrate by chemical vapor deposition, physical vapor deposition, thermal oxidation, ion implantation ( It is formed through processes such as ion implantation and ion diffusion.
진공에서 플라즈마를 사용하는 장비를 이용한 증착공정에 있어, 공정챔버에서 리크의 발생으로 장비 불량이 초래되는 경우, 종래에는 장비 불량을 초래하는 리크의 발생시점을 실시간으로 발견하기가 상당히 어려웠다. In a deposition process using equipment using plasma in a vacuum, when a leak occurs in a process chamber and equipment failure occurs, conventionally, it is quite difficult to find in real time the point of occurrence of the leak causing equipment failure.
또한, 종래에는 배관의 리크를 검사하기 위하여 각각의 배관에 레코더 게이지를 각각 장착하였으므로, 하나의 배관에 하나씩밖에 장착할 수 없는 단점이 있었다.In addition, in the prior art, since each recorder gauge was mounted on each pipe in order to inspect the leak of the pipe, there was a disadvantage in that only one recorder gauge could be mounted on one pipe.
상기와 같은 기술적 배경을 바탕으로 안출된 것으로, 본 발명의 목적은 매니폴드유닛을 구비하여 복수의 배관을 연결하고, 배관 내 가스 압력 및 온도를 검출하여 통합 관리할 수 있게 한 디지털 압력 리크 검사장치를 제공하는데 있다. It was made based on the above technical background, and the object of the present invention is a digital pressure leak test device that is provided with a manifold unit to connect a plurality of pipes, detects gas pressure and temperature in the pipe, and enables integrated management. is providing
본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치는 일측에 복수의 배관이 연결되고, 하단에 고정부재가 구비된 하우징, 상기 하우징 내부에 위치하며, 정전 용량의 변화를 이용하여 상기 배관 내부의 가스 압력을 검출하고, 온도 변화에 따른 도체의 고유 저항값의 변화를 이용하여 상기 배관의 이상 유무를 검출하는 감지유닛, 상기 감지유닛에서 측정한 가스 압력 및 온도의 값을 저장하고 이력을 관리하는 제어유닛 및 상기 하우징 내부에 위치하며, 상기 감지유닛이 각각 연결된 상기 복수의 배관이 연결되는 연결포트부와 상기 연결포트부가 연결되는 가스공급부와 상기 가스공급부의 양단을 지지하는 브라켓으로 이루어진 매니폴드유닛을 포함할 수 있다. A digital pressure leak test device according to an embodiment of the present invention is located inside a housing having a plurality of pipes connected to one side and having a fixing member at the bottom, and using a change in capacitance to check the inside of the pipe. A sensing unit that detects the gas pressure and detects whether or not there is an abnormality in the pipe using a change in the specific resistance of the conductor according to the temperature change, and stores the values of the gas pressure and temperature measured by the sensing unit and manages the history A manifold unit located inside the control unit and the housing and composed of a connection port to which the plurality of pipes to which the sensing unit is connected are connected, a gas supply unit to which the connection port is connected, and brackets supporting both ends of the gas supply unit can include
가스공급부는 상기 브라켓 사이에 복수개가 등간격으로 이격배치되며, 상기 브라켓의 외부에서 연결되는 연결부를 포함할 수 있다. A plurality of gas supply units are spaced apart at equal intervals between the brackets, and may include a connection unit connected from the outside of the brackets.
매니폴드유닛은 상기 연결부에 연결되어 외부의 충격으로 인한 상기 가스공급부의 위치 이동을 감지하는 가속도센서를 더 포함할 수 있다. The manifold unit may further include an acceleration sensor connected to the connection part and detecting a positional movement of the gas supply unit due to an external impact.
연결포트부는 복수개의 연결포트들을 포함하고, 서로 인접한 연결포트들 각각의 길이는 서로 다르게 구비될 수 있다. The connection port unit includes a plurality of connection ports, and each of the connection ports adjacent to each other may have different lengths.
연결포트는 상기 가스공급부에 연결되며 상기 하우징의 상부를 향해 돌출된 제1 보조연결포트, 상기 제1 보조연결포트 상에 구비되는 제2 보조연결포트 및 상기 제2 보조연결포트를 수납하는 제3 보조연결포트를 포함할 수 있다.The connection port is connected to the gas supply unit and protrudes toward an upper portion of the housing, a second auxiliary connection port provided on the first auxiliary connection port, and a third auxiliary connection port accommodating the second auxiliary connection port. Auxiliary connection ports may be included.
제2 보조연결포트는 상기 제1 보조연결포트와 제3 보조연결포트를 연결하는 연결부재, 상기 연결부재 내부에 배치되는 회전부재 및 상기 연결부재의 일측 및 타측을 관통하고, 상기 회전부재의 하면에 고정되는 샤프트를 포함할 수 있다.The second auxiliary connection port passes through a connection member connecting the first auxiliary connection port and the third auxiliary connection port, a rotation member disposed inside the connection member, and one side and the other side of the connection member, and the lower surface of the rotation member. It may include a shaft fixed to.
제3 보조연결포트는 상기 샤프트와 연결되어 상기 회전부재의 회전을 가이드하는 가이드부를 포함할 수 있다. The third auxiliary connection port may include a guide portion connected to the shaft to guide rotation of the rotating member.
본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치는 매니폴드유닛을 구비하여 복수의 배관을 연결하고, 배관 내 가스 압력 및 온도를 검출하여 통합 관리할 수 있다.The digital pressure leak test apparatus according to an embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detects gas pressure and temperature in the pipes, and can perform integrated management.
도 1은 본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치에 대한 일 예의 구성을 개략적으로 나타낸 블록도이다. 1 is a block diagram schematically showing an example configuration of a digital pressure leak test apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치의 사용상태도를 나타낸 도면이다. 2 is a diagram showing a state of use of a digital pressure leak test apparatus according to an embodiment of the present invention.
도 3은 도 2에 도시된 하우징의 일 예를 설명하기 위한 도면이다. FIG. 3 is a view for explaining an example of the housing shown in FIG. 2 .
도 4는 도 2에 도시된 하우징의 다른 예를 설명하기 위한 도면이다. 4 is a view for explaining another example of the housing shown in FIG. 2;
도 5는 도 2에 도시된 매니폴드유닛을 나타낸 사시도이다. 5 is a perspective view showing the manifold unit shown in FIG. 2;
도 6은 도 5에 도시된 연결포트의 분해사시도이다. 6 is an exploded perspective view of the connection port shown in FIG. 5;
도 7은 도 5에 도시된 연결포트의 Ⅰ-Ⅰ'단면을 나타낸 단면도이다. FIG. 7 is a cross-sectional view showing a section I-I' of the connection port shown in FIG. 5;
도 8은 도 7에 도시된 제3 보조연결포트의 수직운동에 따른 샤프트 및 회전부재의 회전운동을 설명하기 위한 도면이다. FIG. 8 is a view for explaining the rotational motion of the shaft and the rotating member according to the vertical motion of the third auxiliary connection port shown in FIG. 7 .
도 9는 본 발명의 다른 실시예에 따른 샤프트와 제3 보조연결포트를 설명하기 위한 예시도이다. 9 is an exemplary view for explaining a shaft and a third auxiliary connection port according to another embodiment of the present invention.
도 10는 도 9에 도시된 제3 보조연결포트의 수직운동에 따른 샤프트 및 회전부재의 회전운동을 설명하기 위한 도면이다. 10 is a view for explaining the rotational motion of the shaft and the rotating member according to the vertical motion of the third auxiliary connection port shown in FIG. 9 .
도 11은 본 발명의 다른 예에 다른 매니폴드유닛을 나타낸 평면도이다.11 is a plan view showing another manifold unit according to another example of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. This invention may be embodied in many different forms and is not limited to the embodiments set forth herein.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar components throughout the specification.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.In addition, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of explanation, the present invention is not necessarily limited to the shown bar.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, throughout the specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
도 1은 본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치에 대한 일 예의 구성을 개략적으로 나타낸 블록도이다. 1 is a block diagram schematically showing an example configuration of a digital pressure leak test apparatus according to an embodiment of the present invention.
도 1을 참고하면, 본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치(1000)는 감지유닛(100), C/F 변환부(110), A/D 변환부(120), 제어유닛(200), 전송부(300), 디스플레이부(400) 및 경보발생부(500)를 포함할 수 있다. Referring to FIG. 1, a digital pressure leak test apparatus 1000 according to an embodiment of the present invention includes a detection unit 100, a C/F conversion unit 110, an A/D conversion unit 120, a control unit ( 200), a transmission unit 300, a display unit 400 and an alarm generating unit 500.
감지유닛(100)은 정전 용량의 변화를 이용하여 가스의 압력을 검출하고 온도 변화에 따른 도체의 고유 저항값의 변화를 이용하여 온도를 검출할 수 있다. C/F 변환부(110)는 검출된 온도의 값을 섭씨에서 화씨로 또는 실시예에 따라서 화씨에서 섭씨로 변경할 수 있다. 감지유닛(100)에서 얻어진 검출된 가스 압력 및 온도는 모두 아날로그 값일 수 있으며, A/D 변환부(120)는 이 아날로그 값을 대응하는 디지털 값으로 변환할 수 있다. The sensing unit 100 may detect a gas pressure using a change in capacitance and detect a temperature using a change in a specific resistance value of a conductor according to a change in temperature. The C/F conversion unit 110 may change the value of the detected temperature from Celsius to Fahrenheit or from Fahrenheit to Celsius according to an embodiment. Both the detected gas pressure and temperature obtained by the sensing unit 100 may be analog values, and the A/D conversion unit 120 may convert these analog values into corresponding digital values.
제어유닛(200)은 감지유닛(100)이 측정한 가스 압력 및 온도의 값을 (또는 A/D 변환부(120)에서 디지털 값으로 변환된 가스 압력 및 온도 값을) 저장하고 이력을 관리할 수 있다. 그 저장된 값은 관리를 위해서 관리자에게 또는 관리자가 사용하는 장비로 전송부(300)를 통해서 전송될 수 있다. The control unit 200 stores the gas pressure and temperature values measured by the sensing unit 100 (or the gas pressure and temperature values converted to digital values by the A/D conversion unit 120) and manages the history. can The stored value may be transmitted to a manager for management or to a device used by the manager through the transmission unit 300 .
전송부(300)는 유무선통신망일 수 있다. 즉, 무선 전송 또는 유선 전송 모두가 가능할 수 있다. 예를 들면, 상용의 CDMA 통신을 이용하여 무선 전송을 할 수 있다. 또한, WiFi와 같은 무선근거리 통신, 또는 스마트폰이나 테블릿 PC와 같은 장비로의 전송을 위한 블루투스, 무선 LAN 등의 무선 인터페이스를 이용할 수도 있다. The transmission unit 300 may be a wired or wireless communication network. That is, both wireless transmission and wired transmission may be possible. For example, wireless transmission can be performed using commercial CDMA communication. In addition, wireless short-range communication such as WiFi, or a wireless interface such as Bluetooth or wireless LAN for transmission to equipment such as a smartphone or tablet PC may be used.
디스플레이부(400)는 가스 압력 및 온도 값을 표시할 수 있다. 디스플레이부(400)는 이력을 인쇄하여 표시할 수 있는 프린터(410)와 이력을 화면으로 표시할 수 있는 모니터(420)를 포함할 수 있다. The display unit 400 may display gas pressure and temperature values. The display unit 400 may include a printer 410 capable of printing and displaying the history and a monitor 420 capable of displaying the history on a screen.
경보발생부(500)는 감지유닛(100)에서 검출한 값이 정상이 아닌 것으로 판단되는 경우 경보를 발생할 수 있다. 경보발생부(500)는 배관의 상태가 정상이 아닌 것으로 판단되는 경우 경보를 알리도록 적색이 점멸되도록 발광되는 경보램프(510)로 구성되거나, 알람을 발생시키는 경보 스피커(520)로 구성될 수 있다. 특히, 무선망을 통해 휴대단말기(530)에 경보 내용이 표시되도록 제어할 수도 있다.The alarm generating unit 500 may generate an alarm when it is determined that the value detected by the sensing unit 100 is not normal. The alarm generating unit 500 may be composed of an alarm lamp 510 that emits red light to blink to inform an alarm when it is determined that the state of the pipe is not normal, or an alarm speaker 520 that generates an alarm. there is. In particular, it may be controlled to display the contents of the alert on the portable terminal 530 through a wireless network.
예를 들어, 본 발명은 실시예에 따라서 감지유닛(100), C/F 변환부(110), A/D 변환부(120)의 구성이 모두 하나의 블록(B)으로 구현되어 검출된 가스 압력 및 온도의 값들을 제어유닛(200)으로 전송할 수 있다. For example, according to an embodiment of the present invention, the configuration of the sensing unit 100, the C/F conversion unit 110, and the A/D conversion unit 120 are all implemented as one block (B) to detect gas Values of pressure and temperature may be transmitted to the control unit 200 .
또한, 도면에서 C/F 변환부(110), A/D 변환부(120)를 개별적으로 도시했지만, 이 두 변환부들은 구현 예에 따라 감지유닛(100)에 포함될 수도 있으며, 또는 제어유닛(200)의 기능 내에 포함되어 구현될 수도 있다. 또한, 도면에서 디스플레이부(400)를 개별적으로 도시했지만, 이는 구현 예에 따라 제어유닛(200)의 기능 내에 포함되어 구현될 수도 있다.In addition, although the C/F conversion unit 110 and the A/D conversion unit 120 are separately shown in the drawing, these two conversion units may be included in the sensing unit 100 according to an implementation example, or a control unit ( 200) may be included and implemented. In addition, although the display unit 400 is shown individually in the drawing, it may be included in the function of the control unit 200 and implemented according to an implementation example.
도면에는 도시되지 않았지만, 각 구성부들이 동작할 수 있도록 하는 전력을 공급하는 전원을 더 포함할 수 있다. 예를 들면, 리튬 배터리와 같은 수단을 포함할 수 있다. 이와 같은 배터리 전원을 관 리하기 위한 기능은 전원에 포함될 수도 있고, 또는 상기의 기능 블록들 중 어느 하나의 블록 내에서 구현될 수도 있다.Although not shown in the drawing, a power source for supplying power to enable each component to operate may be further included. For example, it may include a means such as a lithium battery. Such a function for managing battery power may be included in power, or may be implemented within any one of the above functional blocks.
도 2는 본 발명의 일 실시예에 따른 디지털 압력 리크 검사장치의 사용상태도를 나타낸 도면이다. 2 is a diagram showing a state of use of a digital pressure leak test apparatus according to an embodiment of the present invention.
도 2를 참고하면, 메인가스배관(P)과 반도체제조장치(M)는 시스템 박스(SB)를 매개로 서로 연결될 수 있다. 반도체제조장치(M)에는 수많은 배관이 연결되며, 이중 대부분이 가스배관이다. 여러 종류의 가스가 반도체제조장치(M)에 공급되고, 시스템 박스(SB)를 통해 가스의 흐름을 제어한다. 시공순서를 설명하면, 먼저 근무층(CF) 바닥에 형성된 개구부에 시스템 박스(SB)가 설치된다. 근무층(CF) 바닥(F)은 일반적으로 엑세스플로워로 형성되며, 복수의 엑세스판넬이 서로 연결되면서 바닥면을 형성하게 된다. 특히, 사이즈가 규격화된 엑세스판넬로 인해, 개구부 사이즈는 일정하게 정해져 있다. Referring to FIG. 2 , the main gas pipe (P) and the semiconductor manufacturing apparatus (M) may be connected to each other via a system box (SB). Numerous pipes are connected to the semiconductor manufacturing apparatus M, most of which are gas pipes. Various types of gas are supplied to the semiconductor manufacturing apparatus M, and the flow of the gas is controlled through the system box SB. Describing the construction sequence, first, the system box (SB) is installed in the opening formed on the floor of the working floor (CF). The floor (F) of the working floor (CF) is generally formed as an access floor, and a plurality of access panels are connected to each other to form a floor surface. In particular, due to the standardized access panel, the size of the opening is fixed.
시스템 박스(SB)는 근무층(CF)에서 개구부에 삽입되어 설치 고정된다. 시스템 박스(SB)와 메인가스배관(P) 및 공급가스배관(PS)의 연결은 반도체제조장치(M)가 설치된 장비층(MF)에서 이루어진다. 이에 따라, 시스템 박스(SB)는 반도체제조장치(M)에 공급되는 가스의 흐름을 제어하고, 배관에서 가스가 누설하여 유지보수가 필요할 경우와 반도체제조장치(M)의 교체로 인해 공급되는 가스의 종류 및 공급량 변경이 필요할 경우 시스템 박스(SB)에서 가스 흐름을 차단하고 공사가 이뤄지게 된다. The system box (SB) is inserted into the opening in the working floor (CF) and installed and fixed. The connection between the system box (SB), the main gas pipe (P) and the supply gas pipe (PS) is made in the equipment layer (MF) where the semiconductor manufacturing device (M) is installed. Accordingly, the system box (SB) controls the flow of gas supplied to the semiconductor manufacturing apparatus (M), and gas is supplied due to replacement of the semiconductor manufacturing apparatus (M) when maintenance is required due to gas leakage from the pipe. If it is necessary to change the type and amount of supply, the gas flow is blocked in the system box (SB) and construction is performed.
배관의 리크 검사 시, 메인가스배관(P)은 디지털 압력 리크 검사장치(1000)와 연결될 수 있다. 디지털 압력 리크 검사장치(1000)는 하우징(105), 감지유닛(미도시), 제어유닛(미도시), 디스플레이부(400), 경보발생부(500) 및 매니폴드유닛(600)을 포함할 수 있다. During the leak test of the pipe, the main gas pipe (P) may be connected to the digital pressure leak test device (1000). The digital pressure leak test device 1000 may include a housing 105, a detection unit (not shown), a control unit (not shown), a display unit 400, an alarm generating unit 500 and a manifold unit 600. can
하우징(105)에는 복수의 배관이 연결될 수 있다. 하우징(105)의 일면에는 디스플레이부(400), 경보발생부(500)가 구비될 수 있다. 하우징(105)의 내부에는 매니폴드유닛(600)이 구비될 수 있다. A plurality of pipes may be connected to the housing 105 . A display unit 400 and an alarm generating unit 500 may be provided on one surface of the housing 105 . A manifold unit 600 may be provided inside the housing 105 .
감지유닛(미도시)은 하우징(105) 내부에 위치할 수 있다. 감지유닛은 매니폴드유닛(600)의 연결포트에 각각 연결되는 복수의 배관(P)에 각각 설치될 수 있다. 감지유닛은 정전 용량의 변화를 이용하여 상기 배관 내부의 가스 압력을 검출하고, 온도 변화에 따른 도체의 고유 저항값의 변화를 이용하여 상기 배관 이상 유무를 검출할 수 있다. A sensing unit (not shown) may be located inside the housing 105 . The sensing unit may be respectively installed in a plurality of pipes (P) respectively connected to the connection ports of the manifold unit 600 . The sensing unit may detect a gas pressure inside the pipe by using a change in capacitance, and detect whether or not there is an abnormality in the pipe by using a change in a specific resistance value of a conductor according to a change in temperature.
제어유닛(미도시)는 하우징(105) 일측에 연결될 수 있다. 디스플레이부(400)는 하우징 외부에 노출될 수 있으며, 감지유닛에서 측정한 가스 압력 및 온도의 값을 저장하고 이력을 관리할 수 있다. A control unit (not shown) may be connected to one side of the housing 105 . The display unit 400 may be exposed to the outside of the housing, store gas pressure and temperature values measured by the sensing unit, and manage history.
매니폴드유닛(600)은 하우징(105) 내부에 위치하며, 감지유닛이 각각 연결된 복수의 배관(P)이 연결되는 연결포트부와 연결포트부가 연결되는 가스공급부 및 상기 가스공급부 양단을 지지하는 브라켓을 포함할 수 있다. 이 경우, 매니폴드유닛(600)의 연결포트부가 하우징(105)의 일측에 노출되어 메인가스배관(P)과 연결될 수 있다. The manifold unit 600 is located inside the housing 105, and includes a connection port to which a plurality of pipes P connected to each sensing unit are connected, a gas supply unit to which the connection port unit is connected, and a bracket supporting both ends of the gas supply unit. can include In this case, the connection port of the manifold unit 600 may be exposed to one side of the housing 105 and connected to the main gas pipe P.
일 예에 따른 하우징(105)의 외측에는 가스의 압력을 일정한 설정값으로 공급하도록 유지해주는 레귤레이터 및 매니폴드유닛(600)을 통해 공급되는 가스를 벤트시키기 위한 배기밸브가 더 구비될 수 있다. An exhaust valve for venting gas supplied through a regulator and a manifold unit 600 for maintaining a gas pressure to be supplied at a constant set value may be further provided outside the housing 105 according to an example.
본 발명의 일 실시예는 매니폴드유닛을 구비하여 복수의 배관을 연결하고, 배관 내 가스 압력 및 온도를 검출하여 통합 관리할 수 있다. 이러한 매니폴드유닛을 하기의 도면을 참고하여 상세히 설명된다. An embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detect gas pressure and temperature in the pipes, and can perform integrated management. This manifold unit will be described in detail with reference to the following drawings.
도 3은 도 2에 도시된 하우징의 일 예를 설명하기 위한 도면이다. FIG. 3 is a view for explaining an example of the housing shown in FIG. 2 .
도 3을 참고하면, 본 발명의 일 실시예에 따른 하우징(105)은 복수개의 고정부재(106)를 더 포함할 수 있다. 예를 들어, 하우징(105)의 이동을 용이하게 하기 위하여, 하우징(105) 바닥면에 바퀴(107)가 부착될 수 있다. 이 경우, 바퀴(107)에는 하우징(105)을 고정시키기 위한 스토퍼(108)가 구비될 수 있다. 그러나, 외부의 충격이 발생되는 경우, 스토퍼(108)만으로 하우징을 지지하기 어려울 수 있다. 이를 방지하기 위하여, 고정부재(106)는 바퀴(107)와 이격되도록 하우징(105)의 양측에 각각 삽입될 수 있다. 예를 들어, 고정부재(106)는 하우징(105)의 내측하면에 구비될 수 있다. 하우징(105)은 리크 검사가 이루어지는 장소로 이동한 후, 스토퍼(108)에 의해 1차적으로 고정될 수 있다. 이 경우, 제어부는 하우징(105)이 내측 하부에 삽입되어 있는 고정부재(106)를 지면 방향으로 이동시킬 수 있다. 고정부재(106)의 바닥면은 지면과 안정적으로 접촉되도록 넓게 형성될 수 있다. 고정부재(106)는 제어부의 제어신호에 따라, 하부로 인출되어 지면에 고정될 수 있다. 이에 따라, 하우징(105)은 안정적으로 지면에 고정될 수 있다.Referring to FIG. 3 , the housing 105 according to an embodiment of the present invention may further include a plurality of fixing members 106 . For example, to facilitate movement of the housing 105, wheels 107 may be attached to the bottom surface of the housing 105. In this case, a stopper 108 for fixing the housing 105 may be provided on the wheel 107 . However, when an external impact occurs, it may be difficult to support the housing only with the stopper 108 . To prevent this, the fixing members 106 may be inserted into both sides of the housing 105 to be spaced apart from the wheels 107 . For example, the fixing member 106 may be provided on an inner lower surface of the housing 105 . The housing 105 may be primarily fixed by the stopper 108 after moving to a place where the leak test is performed. In this case, the control unit may move the fixing member 106 inserted into the lower inner side of the housing 105 toward the ground. The bottom surface of the fixing member 106 may be formed wide to stably contact the ground. The fixing member 106 may be pulled downward and fixed to the ground according to a control signal from the control unit. Accordingly, the housing 105 can be stably fixed to the ground.
상술한 바와 같이, 본 발명의 일 실시예는 고정부재(106)가 구비되기 때문에리크 검사 시, 외부로부터의 충격에 의해 압력이 변화하는 것을 방지할 수 있어 보다 정확한 리크 검사가 가능할 수 있다. As described above, since the fixing member 106 is provided in one embodiment of the present invention, it is possible to prevent a change in pressure due to an impact from the outside during a leak test, enabling a more accurate leak test.
추가로, 하우징(105)은 복수개의 안전거리표시부(109)를 더 포함할 수 있다. 예를 들어, 안전거리표시부(109)는 하우징(105)의 외측면 둘레를 따라 배치될 수 있다. 즉, 하우징(105) 외측면의 사각형 둘레를 따라 안전거리표시부(109)가 배치될 수 있다. 안전거리표시부(109)는 레이져 또는 빔프로젝트일 수 있다. 하우징(105)이 지면에 고정되고, 리크 검사가 시작되면 안전거리표시부(109)는 제어부의 제어신호에 의해 하우징(105)이 고정된 반경 100미터 내지 200미터 사이의 지면에 광원(109a)을 조사할 수 있다. 광원(109a)은 소정의 두께가 있는 붉은계열의 레이져 띠형상일 수 있다. 또한, 광원(109a)은 "검사 중, 접근금지" 등과 같은 문구일 수도 있다. 이에 따라, 작업자 이외의 사람들에게 작업 중임을 알릴 수 있으며, 외부인의 접근을 차단하여 외부로부터의 충격을 미연에 방지할 수 있다. 이에 따라, 보다 정확한 리크 검사가 가능할 수 있다. Additionally, the housing 105 may further include a plurality of safety distance display units 109 . For example, the safety distance display unit 109 may be disposed along the outer circumference of the housing 105 . That is, the safety distance display unit 109 may be disposed along the rectangular circumference of the outer surface of the housing 105 . The safety distance display unit 109 may be a laser or beam projector. When the housing 105 is fixed to the ground and the leak test starts, the safety distance display unit 109 directs the light source 109a to the ground within a radius of 100 to 200 meters where the housing 105 is fixed by a control signal from the control unit. can be investigated The light source 109a may be in the form of a red laser band having a predetermined thickness. Also, the light source 109a may be a phrase such as “during examination, access prohibited”. Accordingly, it is possible to inform people other than the worker that the work is in progress, and to block the access of outsiders to prevent shock from the outside in advance. Accordingly, a more accurate leak test may be possible.
도 4는 도 2에 도시된 하우징의 다른 예를 설명하기 위한 도면이다. 4 is a view for explaining another example of the housing shown in FIG. 2;
도 4를 참고하면, 본 발명의 다른 예에 따른 고정부재(106)는 하우징(105)의 양측면에 구비될 수 있다. 고정부재(106)는 하우징(105)의 측면으로부터 지면방향으로 굴곡지도록 형성될 수 있다. 예를 들어, 고정부재(106)는 제1 고정부재(106a) 및 제2 고정부재(106b)를 포함할 수 있다. 제1 고정부재(106a)의 일단은 하우징(105)의 측면에 삽입되고, 제2 고정부재(106b)는 제1 고정부재(106a)의 타단과 연결되어 지면에 고정될 수 있다. 제어부는 하우징(105)이 내측 측면 삽입되어 있는 제1 고정부재(106a)의 일단을 측면 방향으로 소정거리 이동시킨 후, 제2 고정부재(106b)를 지면으로 이동시킬 수 있다. 제2 고정부재(106b)의 바닥면은 지면과 안정적으로 접촉되도록 넓게 형성될 수 있다. 이에 따라, 하우징(105)은 안정적으로 지면에 고정될 수 있다. 이에 따라, 리크 검사 시, 외부로부터의 충격에 의해 압력이 변화하는 것을 방지할 수 있어 보다 정확한 리크 검사가 가능할 수 있다. Referring to FIG. 4 , fixing members 106 according to another example of the present invention may be provided on both sides of the housing 105 . The fixing member 106 may be formed to be curved from the side of the housing 105 toward the ground. For example, the fixing member 106 may include a first fixing member 106a and a second fixing member 106b. One end of the first fixing member 106a may be inserted into the side surface of the housing 105, and the second fixing member 106b may be connected to the other end of the first fixing member 106a and fixed to the ground. The control unit may move one end of the first fixing member 106a into which the housing 105 is inserted on the inner side in a lateral direction by a predetermined distance, and then move the second fixing member 106b to the ground. The bottom surface of the second fixing member 106b may be formed wide to stably contact the ground. Accordingly, the housing 105 can be stably fixed to the ground. Accordingly, during the leak test, it is possible to prevent the pressure from being changed due to an impact from the outside, enabling a more accurate leak test.
도 5는 도 2에 도시된 매니폴드유닛을 나타낸 사시도이다. 5 is a perspective view showing the manifold unit shown in FIG. 2;
도 5를 참고하면, 본 발명의 일 실시예에 따른 매니폴드유닛(600)은 하우징 내부 또는 상부에 위치할 수 있다. 매니폴드유닛(600)은 연결포트부(700), 가스공급부(800), 브라켓(900) 및 가속도센서(950)를 포함할 수 있다. Referring to FIG. 5 , the manifold unit 600 according to an embodiment of the present invention may be located inside or above the housing. The manifold unit 600 may include a connection port 700 , a gas supply unit 800 , a bracket 900 and an acceleration sensor 950 .
연결포트부(700)는 감지유닛이 각각 연결된 복수의 배관과 연결될 수 있다. 연결포트부(700)는 가스공급부(800)에 연결되며 상기 하우징의 외부로 향해 돌출될 수 있다. 예를 들어, 연결포트부(700)는 10개 내지 15개의 연결포트들을 포함할 수 있으며, 10개 내지 15개의 연결포트들 각각은 가스공급부(800)의 상부면에 일렬로 설치될 수 있다. 이 경우, 어느 하나의 연결포트와 서로 인접한 다른 하나의 연결포트의 길이는 서로 다르게 형성될 수 있다. 즉, 서로 인접한 연결포트들 각각의 길이는 서로 다르게 구비될 수 있다. 예를 들어, 하나의 연결포트의 길이는 인접한 다른 하나의 연결포트의 길이보다 짧게 형성될 수 있다. 이에 따라, 가스공급부(800) 내부로 인입 및 배출되는 가스의 충돌을 방지할 수 있다. 다른 예로 10개 내지 15개의 연결포트들은 가스공급부(800)의 상부면에 일렬로 설치되는 상부연결포트 및 가스공급부(800)의 일측면에 일렬로 설치되는 측부연결포트로 이루어질 수도 있다. 이 경우, 상부연결포트와 측부연결포트는 지그재그 형태를 가지도록 배치될 수 있다. 이에 따라, 가스공급부(800) 내부로 인입 및 배출되는 가스의 충돌을 더욱 방지할 수 있다. The connection port unit 700 may be connected to a plurality of pipes to which each sensing unit is connected. The connection port part 700 is connected to the gas supply part 800 and may protrude toward the outside of the housing. For example, the connection port unit 700 may include 10 to 15 connection ports, and each of the 10 to 15 connection ports may be installed in a row on the upper surface of the gas supply unit 800 . In this case, the lengths of one connection port and another connection port adjacent to each other may be formed to be different from each other. That is, each of the connection ports adjacent to each other may have different lengths. For example, the length of one connection port may be formed shorter than the length of another adjacent connection port. Accordingly, it is possible to prevent a collision between gases introduced into and discharged from the gas supply unit 800 . As another example, the 10 to 15 connection ports may be formed of an upper connection port installed in a row on the upper surface of the gas supply unit 800 and a side connection port installed in a row on one side of the gas supply unit 800 . In this case, the upper connection port and the side connection port may be arranged to have a zigzag shape. Accordingly, it is possible to further prevent collisions between gases introduced into and discharged from the gas supply unit 800 .
가스공급부(800)는 연결포트부(700)와 연결될 수 있다. 가스공급부(800)는 브라켓(900) 사이에 복수개가 등간격으로 이격배치되며, 브라켓(900) 외부에서 연결되는 연결부(850)를 포함할 수 있다. 예를 들어, 가스공급부(800)는 원통형상의 파이프일 수 있다. The gas supply unit 800 may be connected to the connection port unit 700 . A plurality of gas supply units 800 are spaced apart at regular intervals between the brackets 900 and may include a connection unit 850 connected from the outside of the brackets 900 . For example, the gas supply unit 800 may be a cylindrical pipe.
브라켓(900)은 가스공급부(800)의 양단에 구비될 수 있다. 브라켓(900)은 가스공급부(800)의 양단을 지지하고, 고정할 수 있다. 브라켓(900)은 상부브라켓과 하부브라켓을 포함할 수 있다. 상부브라켓과 하부브라켓은 가스공급부(800)가 안정적으로 통과할 수 있도록 내부로 오목하게 구비된 관통홈을 포함할 수 있다. 상부브라켓과 하부브라켓에 구비된 관통홈이 연결되어, 하나의 관통홀을 구성하고, 가스공급부(800)는 상부브라켓과 하부브라켓의 결합에 의해 형성된 관통홀을 관통하여, 브라켓(900)에 의해 지지되고 고정될 수 있다. 예를 들어, 상부브라켓과 하부브라켓은 볼트 결합될 수 있다. Brackets 900 may be provided at both ends of the gas supply unit 800 . The bracket 900 may support and fix both ends of the gas supply unit 800 . The bracket 900 may include an upper bracket and a lower bracket. The upper bracket and the lower bracket may include through-holes recessed into the inside so that the gas supply unit 800 can stably pass therethrough. The through holes provided in the upper bracket and the lower bracket are connected to form one through hole, and the gas supply unit 800 passes through the through hole formed by the combination of the upper bracket and the lower bracket, and is provided by the bracket 900. It can be supported and fixed. For example, the upper bracket and the lower bracket may be bolted together.
가속도센서(950)는 연결부(850)에 연결될 수 있다. 가속도센서(950)는 외부의 충격으로 인한 가스공급부(800)의 위치 이동을 감지할 수 있다. 즉, 가속도센서(950)는 외부의 충격에 의해서 가스공급부(800)가 흔들리거나, 위치가 변경되는 것을 감지할 수 있다. 예를 들어, 가스공급부(800)의 위치가 변경되는 경우, 매니폴드유닛(600)을 통해 메인가스배관으로 유입되는 테스트 가스의 압력에 불균형을 초래할 수 있다. 본 발명의 일 실시예는 가속도센서(950)가 구비됨으로써 일정한 압력의 테스트 가스를 주입할 수 있어, 테스트의 신뢰도를 향상시킬 수 있다. The acceleration sensor 950 may be connected to the connection unit 850 . The acceleration sensor 950 may detect a positional movement of the gas supply unit 800 due to an external impact. That is, the acceleration sensor 950 can sense that the gas supply unit 800 is shaken or its position is changed by an external impact. For example, when the location of the gas supply unit 800 is changed, an imbalance may occur in the pressure of the test gas flowing into the main gas pipe through the manifold unit 600 . According to an embodiment of the present invention, since the acceleration sensor 950 is provided, a test gas having a constant pressure can be injected, thereby improving the reliability of the test.
도 6은 도 5에 도시된 연결포트의 분해사시도이고, 도 7은 도 5에 도시된 연결포트의 Ⅰ-Ⅰ'단면을 나타낸 단면도이며, 도 8은 도 7에 도시된 제3 보조연결포트의 수직운동에 따른 샤프트 및 회전부재의 회전운동을 설명하기 위한 도면이다. Figure 6 is an exploded perspective view of the connection port shown in Figure 5, Figure 7 is a cross-sectional view showing the Ⅰ-Ⅰ 'section of the connection port shown in Figure 5, Figure 8 is a third auxiliary connection port shown in Figure 7 It is a drawing for explaining the rotational motion of the shaft and the rotating member according to the vertical motion.
도 6 내지 도 8을 참고하면, 본 발명의 일 실시예에 따른 연결포트(700)는 제1 보조연결포트(710), 제2 보조연결포트(720) 및 제3 보조연결포트(730)를 포함할 수 있다. 6 to 8, the connection port 700 according to an embodiment of the present invention includes a first auxiliary connection port 710, a second auxiliary connection port 720, and a third auxiliary connection port 730. can include
제1 보조연결포트(710)는 가스공급부에 연결되며 하우징의 상부를 향해 돌출될 수 있다. 제1 보조연결포트(710)는 원기둥 형상일 수 있다. 제1 보조연결포트(710)의 상단은 원기둥과 연결된 사각형 단면으로 형성될 수 있으며, 제2 보조연결포트(720)와 연결될 수 있다. 제1 보조연결포트(710)의 하단은 원기둥과 연결된 사각형 단면의 사각기둥 형상일 수 있으며, 하단의 양측면이 가스공급부에 연결될 수 있다. 예를 들어, 제1 보조연결포트(710)의 상단과 제2 보조연결포트(720) 사이에는 제1 추가연결부재(741)가 구비될 수 있다. 이에 따라, 제1 보조연결포트(710)와 제2 보조연결포트(720)는 더욱 견고하게 고정될 수 있다. 제1 추가연결부재(741)는 중심부에 제1 보조연결포트(710)와 같은 형상의 홀이 형성되어 홀을 통해 테스트 가스가 이송될 수 있다. The first auxiliary connection port 710 is connected to the gas supply unit and may protrude toward the top of the housing. The first auxiliary connection port 710 may have a cylindrical shape. An upper end of the first auxiliary connection port 710 may have a rectangular cross section connected to a cylinder, and may be connected to the second auxiliary connection port 720 . The lower end of the first auxiliary connection port 710 may be in the shape of a square pillar having a rectangular cross section connected to a cylinder, and both sides of the lower end may be connected to a gas supply unit. For example, a first additional connection member 741 may be provided between the upper end of the first auxiliary connection port 710 and the second auxiliary connection port 720 . Accordingly, the first auxiliary connection port 710 and the second auxiliary connection port 720 can be more firmly fixed. A hole having the same shape as the first auxiliary connection port 710 is formed in the center of the first additional connection member 741 so that the test gas can be transferred through the hole.
제2 보조연결포트(720)는 연결부재(721), 회전부재(722), 고무패킹(723), 샤프트(725) 및 부싱(726)을 포함할 수 있다. The second auxiliary connection port 720 may include a connection member 721 , a rotation member 722 , a rubber packing 723 , a shaft 725 and a bushing 726 .
연결부재(721)는 제1 추가연결부재(741) 상에 구비될 수 있다. 연결부재(721)는 제1 보조연결포트(710)와 제3 보조연결포트(730) 사이에 구비되어 제1 보조연결포트(710)와 제3 보조연결포트(730)를 연결할 수 있다. 연결부재(721)는 사각기둥 형태로 사각형 단면일 수 있으며, 상부연결부재(721a)와 하부연결부재(721b)를 포함할 수 있다. The connecting member 721 may be provided on the first additional connecting member 741 . The connection member 721 may be provided between the first auxiliary connection port 710 and the third auxiliary connection port 730 to connect the first auxiliary connection port 710 and the third auxiliary connection port 730 . The connection member 721 may have a square cross-section in the form of a square pillar, and may include an upper connection member 721a and a lower connection member 721b.
연결부재(721)는 MCT 가공 등의 방식으로 중심부에 홀을 형성할 수 있다. 이로 인해, 진원에 가깝게 홀이 형성될 수 있다. 예를 들면, 제1 보조연결포트(710) 및 제3 보조연결포트(730)는 원기둥 형상의 파이프일 수 있고, 이러한 파이프의 제작은 사출 방식으로 제작될 수 있어 원이 미세하게 찌그러지며 형성될 수 있어 가스가 누출될 수 있다. 그러나, 연결부재(721)는 사각형의 기둥에 홀을 뚫는 방식으로 제작되어 파이프일 수 있는 제1 보조연결포트(710) 및 제3 보조연결포트(730)보다 진원일 수 있다. 이를 통해, 진원에 가까운 연결부재(721)에 회전부재(722)가 수직하게 배치되어 가스를 이동시키는 경우, 가스의 이동이 용이할 수 있다. 또한, 회전부재(722)가 수평하게 배치되어 가스의 이동을 차단하는 경우, 가스가 누출되는 것을 방지할 수 있다. The connection member 721 may form a hole in the center by a method such as MCT processing. Due to this, a hole may be formed close to a perfect circle. For example, the first auxiliary connection port 710 and the third auxiliary connection port 730 may be cylindrical pipes, and such pipes may be manufactured by injection molding, so that the circles are finely distorted and formed. gas may leak. However, the connection member 721 may be manufactured by drilling a hole in a rectangular pillar and may be rounder than the first auxiliary connection port 710 and the third auxiliary connection port 730, which may be pipes. Through this, when the rotating member 722 is vertically disposed on the connection member 721 close to the perfect circle to move the gas, the gas can be easily moved. In addition, when the rotating member 722 is disposed horizontally to block the movement of gas, it is possible to prevent gas from leaking.
상부연결부재(721a)와 하부연결부재(721b) 사이에는 관통홀(721c)이 형성될 수 있으며, 관통홀(721c)을 관통하여 부싱(726) 및 샤프트(725)가 구비될 수 있다.A through hole 721c may be formed between the upper connection member 721a and the lower connection member 721b, and the bushing 726 and the shaft 725 may be provided through the through hole 721c.
상부연결부재(721a)의 직경은 하부연결부재(721b)의 직경보다 작게 형성될 수 있다. 이에 따라, 상부연결부재(721a)와 하부연결부재(721b) 사이의 단차에 의해 절곡부가 형성될 수 있다. 이로 인해, 가스가 상승할 때 절곡부를 지나며 유연하게 상승할 수 있으며, 속도의 변화가 생길 수 있어 가스의 상승이 용이할 수 있다. The diameter of the upper connection member 721a may be smaller than that of the lower connection member 721b. Accordingly, a bent portion may be formed by a step between the upper connection member 721a and the lower connection member 721b. Due to this, when the gas rises, it can pass through the bent part and rise flexibly, and a change in speed can occur, so that the gas can rise easily.
또한, 상부연결부재(721a)의 상단은 상부로 돌출되어 제3 보조연결포트(730) 내부로 삽입될 수 있다. 이에 따라, 제3 보조연결포트(730)가 상하로 운동하는 경우에 테스트 가스가 외부로 누출되는 것을 방지할 수 있다. In addition, the upper end of the upper connection member 721a may protrude upward and be inserted into the third auxiliary connection port 730 . Accordingly, when the third auxiliary connection port 730 moves up and down, leakage of the test gas to the outside can be prevented.
회전부재(722)는 연결부재(721) 내부에 배치될 수 있다. 회전부재(722)는 상부연결부재(721a)의 내측 하단부에 배치될 수 있다. 회전부재(722)는 샤프트(725)의 상측에 배치될 수 있다. 회전부재(722)는 원형 플레이트일 수 있으며, 중심부에서 이격된 결합홀(722b)이 형성될 수 있다. 이 때, 결합홀(722b)은 회전부재(722)의 하측에 위치하는 샤프트(725)의 나사홀(725b)과 일치할 수 있다. 이를 통해, 결합홀(722b)로 삽입되는 나사가 나사홀(725b)에 삽입되어 샤프트(725)와 회전부재(722)가 결합할 수 있다. The rotating member 722 may be disposed inside the connecting member 721 . The rotating member 722 may be disposed at an inner lower end of the upper connecting member 721a. The rotating member 722 may be disposed above the shaft 725. The rotation member 722 may be a circular plate, and a coupling hole 722b spaced apart from the center may be formed. At this time, the coupling hole 722b may coincide with the screw hole 725b of the shaft 725 located on the lower side of the rotating member 722 . Through this, a screw inserted into the coupling hole 722b is inserted into the screw hole 725b so that the shaft 725 and the rotating member 722 can be coupled.
또한, 회전부재(722)의 외측면에는 내측으로 만곡지게 만곡부(722a)가 형성될 수 있다. 이 때, 만곡부(722a)로 고무패킹(723)이 삽입되어 결합될 수 있다. 즉, 상부연결부재(721a) 하단부의 내측면과 만곡부(722a) 사이에 고무패킹(723)이 삽입되어 결합될 수 있다. 이를 통해, 회전부재(722)가 수평으로 배치되어 가스의 이동을 차단하는 경우, 가스가 미세하게 외부로 누출되는 것을 방지할 수 있다.In addition, a curved portion 722a may be formed on an outer surface of the rotating member 722 so as to be curved inward. At this time, the rubber packing 723 may be inserted and coupled to the curved portion 722a. That is, a rubber packing 723 may be inserted and coupled between the inner surface of the lower end of the upper connecting member 721a and the curved portion 722a. Through this, when the rotating member 722 is disposed horizontally to block the movement of the gas, it is possible to prevent the gas from leaking to the outside.
샤프트(725)는 연결부재(721)의 일측 및 타측을 관통하고, 회전부재(722) 하면에 고정될 수 있다. 샤프트(725)는 회전부재(722) 하단의 중심에 위치할 수 있으며, 샤프트(725)의 중심부에서 이격되며 나사홀(725b)이 형성될 수 있다. 또한, 샤프트(725)의 양 끝단 측면에는 복수개의 돌출부(725a)가 구비될 수 있다. 일 예에 따른 샤프트(725)의 양 끝단에는 2개의 돌출부(725a)가 구비될 수 있다. 이 경우, 2개의 돌출부(725a) 각각은 샤프트(725)의 중심부를 기준으로, 샤프트(725)의 원주방향으로 90° 간격으로 이격되어 구비될 수 있다. 예를 들어, 하나의 돌출부(725a)는 샤프트(725)의 중심부를 기준으로 샤프트의 끝단 측면 상부에 구비될 수 있고, 다른 하나의 돌출부(725a)는 샤프트의 중심부를 기준으로 샤프트의 끝단 측면 상부으로부터 90° 이격된 위치에 구비될 수 있다. 이 경우, 돌출부(725a) 각각의 끝단에는 가이드볼(733b)이 연결될 수 있다. 가이드볼(733b)은 돌출부(725a)와 제3 보조연결포트(730)를 연결하며, 가이드홈(733a)에 가이드볼(733b)이 연결됨으로써, 제3 보조연결포트(730)의 수직운동에 의한 샤프트(725)의 회전운동을 가이드할 수 있다. 이에 따라, 제3 보조연결포트(730)의 수직운동에 의해 샤프트(725)에 고정된 회전부재(722)를 회전시켜 회전부재(722)의 개폐를 조절할 수 있다. The shaft 725 may pass through one side and the other side of the connecting member 721 and be fixed to the lower surface of the rotating member 722 . The shaft 725 may be located at the center of the lower end of the rotating member 722, spaced apart from the center of the shaft 725, and may have a screw hole 725b formed therein. In addition, a plurality of protrusions 725a may be provided on both end sides of the shaft 725 . Two protrusions 725a may be provided at both ends of the shaft 725 according to an example. In this case, each of the two protrusions 725a may be spaced apart at 90° intervals in the circumferential direction of the shaft 725 with respect to the center of the shaft 725 . For example, one protrusion 725a may be provided on the upper side of the end side of the shaft based on the center of the shaft 725, and the other protrusion 725a may be provided on the upper side of the end side of the shaft based on the center of the shaft 725. It may be provided at a position 90 ° apart from. In this case, a guide ball 733b may be connected to each end of the protrusion 725a. The guide ball 733b connects the protrusion 725a and the third auxiliary connection port 730, and the guide ball 733b is connected to the guide groove 733a, thereby contributing to the vertical movement of the third auxiliary connection port 730. It is possible to guide the rotational motion of the shaft 725 by the Accordingly, the opening and closing of the rotating member 722 can be controlled by rotating the rotating member 722 fixed to the shaft 725 by the vertical movement of the third auxiliary connection port 730 .
샤프트(725)는 연결부재(721)의 외측면에 형성된 관통홀(721c)에 삽입될 수 있으며, 샤프트(725)의 외측면에는 부싱(726)이 결합될 수 있다. 샤프트(725)의 상부와 하단은 평면일 수 있고, 측면은 원형일 수 있다. 이로 인해, 샤프트(725) 상부에 회전부재(721)가 결합되기 용이하고, 샤프트(725)는 부싱(726)에 형성된 홀의 크기보다도 작을 수 있어, 샤프트(725)와 부싱(726) 사이에 간격이 형성되어 샤프트(725)의 회전이 용이할 수 있다.The shaft 725 may be inserted into the through hole 721c formed on the outer surface of the connecting member 721, and the bushing 726 may be coupled to the outer surface of the shaft 725. The upper and lower ends of the shaft 725 may be planar, and side surfaces may be circular. Due to this, it is easy to couple the rotating member 721 to the top of the shaft 725, and the shaft 725 can be smaller than the size of the hole formed in the bushing 726, so that there is a gap between the shaft 725 and the bushing 726. Since this is formed, rotation of the shaft 725 may be facilitated.
부싱(726)은 원형 또는 사각형의 형상일 수 있으며, 중심부에 홀이 형성될 수 있다. 부싱(726)은 관통홀(721c)에 삽입될 수 있으며, 부싱(726)의 내부에 샤프트(725)가 삽입될 수 있다. 이로 인해, 샤프트(725)와 연결부재(721)가 견고하게 결합될 수 있으며, 샤프트(725)가 회전 가능할 수 있다.The bushing 726 may have a circular or quadrangular shape, and a hole may be formed in the center thereof. The bushing 726 may be inserted into the through hole 721c, and the shaft 725 may be inserted into the bushing 726. Due to this, the shaft 725 and the connecting member 721 may be firmly coupled, and the shaft 725 may be rotatable.
제3 보조연결포트(730)는 제2 보조연결포트(720)를 수납할 수 있다. 제3 보조연결포트(730)는 제2 보조연결포트(720)의 회전운동을 가이드할 수 있다. 제3 보조연결포트(730)는 가이드부(733)를 포함할 수 있다. 가이드부(733)는 샤프트(725)와 연결되어 회전부재(722)의 회전을 가이드할 수 있다. The third auxiliary connection port 730 may receive the second auxiliary connection port 720 . The third auxiliary connection port 730 may guide the rotational motion of the second auxiliary connection port 720 . The third auxiliary connection port 730 may include a guide part 733 . The guide part 733 may be connected to the shaft 725 to guide rotation of the rotating member 722 .
가이드부(733)는 가이드홈(733a) 및 가이드볼(733b)을 포함할 수 있다. 가이드홈(733a)은 제3 보조연결포트(730) 내측면에 오목하게 구비될 수 있다. 예를 들어, 가이드홈(733a)은 가이드볼(733b)과 연결되어, 샤프트(725)의 양 끝단에 구비된 복수개의 돌출부(725a)의 이동경로를 가이드할 수 있다. 이를 위해, 가이드홈(733a)은 돌출부(725a)와 대응되는 영역에 구비되며, 돌출부(725a)의 회전이동을 용이하게 하기 위하여 샤프트(725)의 원주방향으로 오목하게 형성될 수 있다. 이 경우, 가이드홈(733a)은 돌출부(725a)의 최대 회전각이 90°로 유지되도록 오목한 반쪽의 링형상으로 구비될 수 있다. 이에 따라, 샤프트(725) 및 회전부재(722)의 회전각을 90°로 제어하여, 안정적으로 회전부재(722)를 수평 또는 수직하게 배치시킬 수 있다. The guide part 733 may include a guide groove 733a and a guide ball 733b. The guide groove 733a may be provided concavely on the inner surface of the third auxiliary connection port 730 . For example, the guide groove 733a may be connected to the guide ball 733b to guide the movement path of the plurality of protrusions 725a provided at both ends of the shaft 725. To this end, the guide groove 733a is provided in an area corresponding to the protrusion 725a and may be concave in the circumferential direction of the shaft 725 to facilitate rotation of the protrusion 725a. In this case, the guide groove 733a may be provided in a concave half ring shape so that the maximum rotation angle of the protrusion 725a is maintained at 90°. Accordingly, by controlling the rotation angle of the shaft 725 and the rotation member 722 to 90 °, it is possible to stably arrange the rotation member 722 horizontally or vertically.
또한, 가이드볼(733b)은 돌출부(725a)와 가이드홈(733a)에 연결되어, 제3 보조연결포트(730)가 수직운동함에 따라, 가이드홈(733a)의 내부를 회전하여, 돌출부(725a)를 회전을 가이드할 수 있다. In addition, the guide ball (733b) is connected to the projection (725a) and the guide groove (733a), as the third auxiliary connection port 730 is vertically moved, rotates the inside of the guide groove (733a), the projection (725a) ) can guide the rotation.
예를 들어, 회전부재(722)와 결합된 샤프트(725)는 일단부에 형성된 돌출부(725a)를 통해 제3 보조연결포트(730)와 연결될 수 있다. 제3 보조연결포트(730)는 샤프트(725)의 회전운동을 가이드하는 가이드부(733)를 포함할 수 있다. 돌출부(725a)는 가이드부(733)에 연결되어, 제3 보조연결포트(730)의 수직운동에 의해 샤프트(725)에 고정된 회전부재(722)를 회전시켜 가스의 개폐를 조절할 수 있다. 즉, 제3 보조연결포트(730)가 상승하는 경우, 돌출부(725a)는 돌출부(725a)와 대응되도록 샤프트(725)의 원주방향으로 오목하게 구비된 가이드홈(733a)을 따라 이동할 수 있다. 이에 따라, 샤프트(725)는 회전운동 할 수 있으며, 샤프트(725)의 회전운동에 의해 회전부재(722)는 수직하게 배치될 수 있다. 또한, 제3 보조연결포트(730)가 하강하는 경우, 돌출부(725a)는 가이드홈(733a)을 따라 상승방향과 반대방향으로 회전할 수 있다. 이에 따라, 샤프트(725)는 반대방향으로 회전할 수 있으며, 샤프트(725)의 회전에 의해 회전부재(722)는 수평하게 배치되어 가스의 유입을 차단할 수 있다.For example, the shaft 725 coupled with the rotating member 722 may be connected to the third auxiliary connection port 730 through a protrusion 725a formed at one end. The third auxiliary connection port 730 may include a guide part 733 for guiding rotational motion of the shaft 725 . The protruding part 725a is connected to the guide part 733, and the opening and closing of the gas can be controlled by rotating the rotating member 722 fixed to the shaft 725 by the vertical movement of the third auxiliary connection port 730. That is, when the third auxiliary connection port 730 rises, the protruding portion 725a may move along the guide groove 733a provided concavely in the circumferential direction of the shaft 725 to correspond to the protruding portion 725a. Accordingly, the shaft 725 can rotate, and the rotating member 722 can be vertically disposed by the rotation of the shaft 725. In addition, when the third auxiliary connection port 730 descends, the protrusion 725a may rotate in a direction opposite to the ascending direction along the guide groove 733a. Accordingly, the shaft 725 can rotate in the opposite direction, and the rotating member 722 is horizontally disposed by the rotation of the shaft 725 to block the inflow of gas.
상술한 바와 같이 본 발명의 일 실시예는 매니폴드유닛을 구비하여 복수의 배관을 연결하고, 배관 내 가스 압력 및 온도를 검출하여 통합 관리할 수 있다. As described above, one embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detect gas pressure and temperature in the pipes, and perform integrated management.
또한, 본 발명의 일 실시예는 각각의 연결포트(700)에 회전부재(722)가 구비되어 가스의 흐름을 차단할 수 있으므로, 선택적으로 배관의 리크 검사를 할 수 있다. 이에 따라, 리크 검사의 정확도를 향상시킬 수 있으며, 시간을 단축할 수 있다. In addition, in one embodiment of the present invention, since the rotation member 722 is provided in each connection port 700 to block the flow of gas, it is possible to selectively inspect the pipe for leaks. Accordingly, the accuracy of the leak test can be improved and time can be shortened.
또한, 제2 보조연결포트(720)로 인해 제1 보조연결포트(710) 및 제3 보조연결포트(730)가 연결됨으로써, 가스의 개폐를 조절할 수 있으며, 미세하게 찌그러질 수 있는 파이프를 진원으로 형성된 홀을 가진 제2 보조연결포트(720)를 지남으로써, 가스가 외부로 새어 나가는 것을 방지하고, 회전부재(722)를 통해 회전을 조절함에 따라 테스트 가스의 배출하거나 차단할 수 있다. In addition, since the first auxiliary connection port 710 and the third auxiliary connection port 730 are connected by the second auxiliary connection port 720, opening and closing of the gas can be controlled, and a pipe that can be finely distorted can be controlled. By passing through the second auxiliary connection port 720 having a hole formed as , gas is prevented from leaking to the outside, and the test gas can be discharged or blocked as rotation is controlled through the rotating member 722 .
도 9는 본 발명의 다른 실시예에 따른 샤프트와 제3 보조연결포트를 설명하기 위한 예시도이며, 도 10은 도 9에 도시된 제3 보조연결포트의 수직운동에 따른 샤프트 및 회전부재의 회전운동을 설명하기 위한 도면이다. 9 is an exemplary view for explaining a shaft and a third auxiliary connection port according to another embodiment of the present invention, and FIG. 10 is a rotation of the shaft and the rotating member according to the vertical movement of the third auxiliary connection port shown in FIG. It is a drawing to explain movement.
도 9 및 도 10을 참고하면, 본 발명의 다른 실시예에 따른 제3 보조연결포트(730)는 샤프트삽입부(735)를 포함할 수 있다. 샤프트삽입부(735)는 제3 보조연결포트(730) 내측면으로부터 외측면 방향으로 오목하게 구비될 수 있다. 샤프트삽입부(735)로는 샤프트(725)가 삽입될 수 있다. 샤프트삽입부(735)는 제1 삽입부(735a) 및 제2 삽입부(735b)를 포함할 수 있다. 제1 삽입부(735a) 및 제2 삽입부(735b)의 단면은 사각형 형상을 가질 수 있다. 제1 삽입부(735a)의 가로길이는 제2 삽입부(735b)의 가로길이 보다 크게 형성될 수 있다. 이에 따라, 샤프트삽입부(735)는 T 자 형상을 가질 수 있다. Referring to FIGS. 9 and 10 , the third auxiliary connection port 730 according to another embodiment of the present invention may include a shaft insertion portion 735 . The shaft insertion portion 735 may be provided concavely from the inner surface to the outer surface of the third auxiliary connection port 730 . A shaft 725 may be inserted into the shaft insertion portion 735 . The shaft insertion part 735 may include a first insertion part 735a and a second insertion part 735b. Cross sections of the first insertion portion 735a and the second insertion portion 735b may have a rectangular shape. The horizontal length of the first insertion portion 735a may be greater than the horizontal length of the second insertion portion 735b. Accordingly, the shaft insertion portion 735 may have a T-shape.
샤프트(725)의 양단부 외주면에는 회전스프링(727)이 구비될 수 있다. 회전스프링(727)은 회전부재(722)와 소정의 거리 이격배치되며, 샤프트(725) 양단 외주면을 감싸도록 형성될 수 있다. 이 경우, 회전스프링(727)의 일단은 샤프트(725)의 상면 또는 하면에 고정되고, 타단은 제3 보조연결포트(730)의 제1 고정부(735c)에 고정될 수 있다. Rotation springs 727 may be provided on outer circumferential surfaces of both ends of the shaft 725 . The rotation spring 727 is spaced apart from the rotation member 722 by a predetermined distance, and may be formed to surround outer circumferential surfaces of both ends of the shaft 725 . In this case, one end of the rotation spring 727 may be fixed to the upper or lower surface of the shaft 725, and the other end may be fixed to the first fixing part 735c of the third auxiliary connection port 730.
이에 따라, 제3 보조연결포트(730)가 상승하는 경우, 회전스프링(727)이 압축될 수 있다. 이에 따라, 샤프트(725)가 회전하여 제2 삽입부(735b)에 삽입될 수 있다. 이에 따라, 회전부재(722)가 샤프트(725)와 함께 회전하여 수직하게 배치되며, 테스트 가스가 유입될 수 있다. 또한, 제3 보조연결포트(730)가 하강하는 경우, 응축된 회전스프링(727)이 원래의 형태로 되돌아가려는 성질로 인하여 샤프트는 제1 삽입부(735a)에 삽입될 수 있다. 이에 따라, 회전부재(722)가 샤프트(725)와 함께 회전하여 수평하게 배치되며, 테스트 가스의 유입을 차단할 수 있다. Accordingly, when the third auxiliary connection port 730 rises, the rotation spring 727 may be compressed. Accordingly, the shaft 725 may rotate and be inserted into the second insertion portion 735b. Accordingly, the rotation member 722 rotates together with the shaft 725 and is vertically disposed, and test gas may be introduced. In addition, when the third auxiliary connection port 730 descends, the shaft may be inserted into the first insertion portion 735a due to the nature of the condensed rotary spring 727 returning to its original shape. Accordingly, the rotating member 722 rotates together with the shaft 725 and is disposed horizontally, and the inflow of the test gas can be blocked.
다른 예로, 제1 삽입부(735a)의 가로길이는 제2 삽입부(735)의 가로길이 보다 작게 형성될 수 있다. 이에 따라, 샤프트삽입부(735)는 'ㅗ'자 형상을 가질 수 있다. 이 경우, 제3 보조연결포트(730)가 하강하는 경우, 회전스프링(727)이 압축될 수 있다. 이에 따라, 샤프트(725)가 회전하여 제1 삽입부(735a)에 삽입되며, 회전부재가 수직하게 배치되어 테스트 가스를 유입시킬 수 있다. 또한, 제3 보조연결포트(730)가 상승하는 경우, 응축된 회전스프링(727)이 원래의 형태로 되돌아가려는 성질로 인하여 샤프트는 제2 삽입부(735b)에 삽입되며, 회전부재가 수평하게 배치되어 테스트 가스의 유입을 차단할 수 있다. As another example, the horizontal length of the first insertion portion 735a may be smaller than the horizontal length of the second insertion portion 735 . Accordingly, the shaft insertion portion 735 may have a 'ㅗ' shape. In this case, when the third auxiliary connection port 730 descends, the rotation spring 727 may be compressed. Accordingly, the shaft 725 is rotated and inserted into the first insertion portion 735a, and the rotating member is vertically disposed to introduce test gas. In addition, when the third auxiliary connection port 730 rises, the shaft is inserted into the second insertion part 735b due to the nature of the condensed rotary spring 727 returning to its original form, and the rotary member is horizontally Arranged to block the inflow of the test gas.
본 발명의 다른 실시예는 LED부(780)를 더 포함할 수 있다. LED부(780)는 제3 보조연결포트(730)의 외측면에 고정되며, 발광스위치(781)가 제3 보조연결포트(730) 내부로 연결될 수 있다. 발광스위치(781)는 LED부(780)와 연결되며, 제1 수납부(735a)의 상부 및 하부에 구비될 수 있다. 발광스위치(781)는 전도성이 있는 금속으로 이루어질 수 있다. 제1 수납부(735a) 하부에 구비된 발광스위치(781)는 제1 고정부(735c)와 연결되며, 회전스프링(727)의 끝단과 연결될 수 있다. 제1 수납부(735a) 상부에 구비된 발광스위치(781)는 샤프트(725)가 제1 수납부(735a)에 삽입되는 경우, 샤프트(725) 상부에 위치된 회전스프링(727)에 접촉될 수 있다. 이에 따라, 제1 삽입부(735a)에 샤프트(725)가 삽입되는 경우, 회전스프링(727)이 발광스위치(781)의 상부 및 하부를 연결하기 때문에, 제LED부(780)가 발광할 수 있다. 이 경우, 회전스프링(727) 및 제1, 제2 고정부는 전도성 금속일 수 있다. 예를 들어, 제3 보조연결포트(730) 외측면에는 LED부(780)에 전원을 공급하는 전원공급부(미도시)가 추가로 구비될 수 있다. 전원공급부(미도시)는 LED부(780)에 연결되어, 발광스위치(781)에 의해 전원을 공급 및 차단하는 배터리일 수 있다. 이에 따라, 본 발명의 다른 실시예는 LED부(780)의 발광여부에 따라, 회전부재(722)의 개폐여부를 다시한번 확인할 수 있다.Another embodiment of the present invention may further include an LED unit 780. The LED unit 780 is fixed to the outer surface of the third auxiliary connection port 730, and the light emitting switch 781 may be connected to the inside of the third auxiliary connection port 730. The light emitting switch 781 is connected to the LED unit 780 and may be provided above and below the first housing unit 735a. The light emitting switch 781 may be made of conductive metal. The light emitting switch 781 provided under the first accommodating part 735a is connected to the first fixing part 735c and may be connected to the end of the rotation spring 727. When the shaft 725 is inserted into the first accommodating portion 735a, the light emitting switch 781 provided above the first accommodating portion 735a will come into contact with the rotation spring 727 located above the shaft 725. can Accordingly, when the shaft 725 is inserted into the first insertion part 735a, since the rotation spring 727 connects the upper and lower parts of the light emitting switch 781, the LED part 780 can emit light. there is. In this case, the rotation spring 727 and the first and second fixing parts may be conductive metal. For example, a power supply unit (not shown) for supplying power to the LED unit 780 may be additionally provided on the outer surface of the third auxiliary connection port 730 . The power supply unit (not shown) may be a battery that is connected to the LED unit 780 and supplies and cuts power by the light emitting switch 781 . Accordingly, in another embodiment of the present invention, whether the rotating member 722 is opened or closed can be confirmed once again according to whether the LED unit 780 emits light.
본 발명의 다른 실시예는 매니폴드유닛을 구비하여 복수의 배관을 연결하고, 배관 내 가스 압력 및 온도를 검출하여 통합 관리할 수 있다. Another embodiment of the present invention is provided with a manifold unit to connect a plurality of pipes, detect gas pressure and temperature in the pipes, and can perform integrated management.
또한, 본 발명의 일 실시예는 각각의 연결포트(700)에 회전부재(722)가 구비되어 가스의 흐름을 차단할 수 있으므로, 선택적으로 배관의 리크 검사를 할 수 있다. 이에 따라, 리크 검사의 정확도를 향상시킬 수 있으며, 시간을 단축할 수 있다. In addition, in one embodiment of the present invention, since the rotation member 722 is provided in each connection port 700 to block the flow of gas, it is possible to selectively inspect the pipe for leaks. Accordingly, the accuracy of the leak test can be improved and time can be shortened.
도 11은 본 발명의 다른 예에 따른 매니폴드유닛을 나타낸 평면도이다.11 is a plan view showing a manifold unit according to another example of the present invention.
도 11을 참고하면, 본 발명의 다른 예에 따른 매니폴드유닛(600)은 복수개의 가스공급부(800)를 포함할 수 있다. 예를 들어, 가스공급부(800)는 제1 가스공급부(810), 제2 가스공급부(820) 및 제3 가스공급부(830)를 포함할 수 있다. 제1 가스공급부(810), 제2 가스공급부(820) 및 제3 가스공급부(830)는 등간격으로 이격배치되며, 브라켓(900) 외부에서 연결되는 연결부(850)를 포함할 수 있다. Referring to FIG. 11 , a manifold unit 600 according to another example of the present invention may include a plurality of gas supply units 800 . For example, the gas supply unit 800 may include a first gas supply unit 810 , a second gas supply unit 820 and a third gas supply unit 830 . The first gas supply unit 810 , the second gas supply unit 820 , and the third gas supply unit 830 are spaced apart at equal intervals and may include a connection unit 850 connected from the outside of the bracket 900 .
제1 가스공급부(810), 제2 가스공급부(820) 및 제3 가스공급부(830) 각각은 일단에 배치된 가스주입부와 연결될 수 있다. 예를 들어, 제1 가스공급부(810)는 제1 삼방벨브(961)를 사이에 두고 제1 가스주입부(811) 및 제2 가스주입부(812)와 연결될 수 있다. 제1 가스주입부(811) 및 제2 가스주입부(812)는 서로 다른 종류의 가스를 주입할 수 있다. 예를 들어, 제1 가스주입부(811)에 제1 가스가 주입되는 경우, 제1 삼방벨브(961)의 제1 보조벨브(961a)와 제3 보조벨브(961c)가 오픈되어 제1 가스가 제1 가스공급부(810)로 유입될 수 있다. 이 때, 제2 보조벨브(961c)는 닫힌 상태로 유지될 수 있다. 다른 예로, 제2 가스주입부(812)에 제2 가스가 주입되는 경우, 제1 삼방벨브(961)의 제2 보조벨브(961b)와 제3 보조벨브(961c)가 오픈되어 제2 가스가 제1 가스공급부(810)로 유입될 수 있다. 이 때, 제1 보조벨브(961a)는 닫힌 상태로 유지될 수 있다. 예를 들어, 제1 가스는 질소가스일 수 있고, 제2 가스는 아르곤 가스일 수 있다. Each of the first gas supply unit 810, the second gas supply unit 820, and the third gas supply unit 830 may be connected to a gas injection unit disposed at one end. For example, the first gas supply unit 810 may be connected to the first gas injection unit 811 and the second gas injection unit 812 with the first three-way valve 961 therebetween. The first gas injection unit 811 and the second gas injection unit 812 may inject different types of gas. For example, when the first gas is injected into the first gas injection unit 811, the first auxiliary valve 961a and the third auxiliary valve 961c of the first three-way valve 961 are opened to supply the first gas. may flow into the first gas supply unit 810 . At this time, the second auxiliary valve 961c may be maintained in a closed state. As another example, when the second gas is injected into the second gas injection unit 812, the second auxiliary valve 961b and the third auxiliary valve 961c of the first three-way valve 961 are opened to supply the second gas. It may flow into the first gas supply unit 810 . At this time, the first auxiliary valve 961a may be maintained in a closed state. For example, the first gas may be nitrogen gas and the second gas may be argon gas.
이에 따라, 본 발명의 일 실시예는 서로 다른 종류의 가스를 주입하여 리크 검사를 수행할 수 있으므로, 배관에 공급되는 물질에 상관없이, 리크 검사가 가능할 수 있다. 즉, 물이 공급되는 배관의 경우, 질소 가스로 배관 리크 검사를 수행하고, 물 이외의 산성이나 염기성을 띄는 용액의 경우 아르곤 가스로 배관 리크 검사를 수행하게 되는데, 본 발명의 일 실시예는 상술한 바와 같은 구성에 의해 서로 다른 가스를 주입시켜 리크 검사를 수행하는 것이 가능하기 때문에, 하나의 장비로 보다 효율적인 리크 검사가 가능할 수 있다. Accordingly, in one embodiment of the present invention, since the leak test can be performed by injecting different types of gas, the leak test can be performed regardless of the material supplied to the pipe. That is, in the case of a pipe supplied with water, the pipe leak test is performed with nitrogen gas, and in the case of an acidic or basic solution other than water, the pipe leak test is performed with argon gas. Since it is possible to perform a leak test by injecting different gases by the configuration as described above, a more efficient leak test may be possible with one equipment.
추가로, 제2 가스공급부(820) 및 제3 가스공급부(830) 각각은 일단에 배치된 가스주입부(821, 822, 831, 832)와 연결될 수 있다. 가스주입부(821, 822, 831, 832)각각은 제1 가스공급부(810)와 마찬가지로 제2 가스공급부(820) 및 제3 가스공급부(830)와 제2 및 제3 삼방벨브(962, 963)로 연결될 수 있다. 또한, 가스주입부(821, 822, 831, 832)각각은 제1 가스공급부(810)와 마찬가지로 제2 가스공급부(820) 및 제3 가스공급부(830) 각각에 서로 다른 가스를 주입시킬 수 있다. Additionally, each of the second gas supply unit 820 and the third gas supply unit 830 may be connected to the gas injection units 821 , 822 , 831 , and 832 disposed at one end. Like the first gas supply unit 810, the gas injection units 821, 822, 831, and 832 each have a second gas supply unit 820 and a third gas supply unit 830 and second and third three-way valves 962 and 963 ) can be connected. In addition, each of the gas injection units 821 , 822 , 831 , and 832 may inject different gases into the second gas supply unit 820 and the third gas supply unit 830 , similarly to the first gas supply unit 810 . .
상술한 바와 같은 구성에 의해 본 발명의 일 실시예는 제1 가스공급부(810), 제2 가스공급부(820) 및 제3 가스공급부(830) 각각에 순차적으로 가스를 공급해 줄 수 있다. 예를 들어, 매니폴드유닛이 다수개의 배관과 연결되는 경우, 배관에 가스가 공급되는 데에 많은 시간이 소요될 수 있다. 그러나, 본 발명의 일 실시예는 제1 가스공급부(810)에 가스를 주입하여 제1 가스공급부(810)와 연결된 배관을 우선적으로 리크 검사하고, 제1 가스공급부(810)와 연결된 배관에 리크 검사가 수행되는 동안 제2 가스공급부(820)에 가스를 주입할 수 있다. 또한, 제2 가스공급부(820)와 연결된 배관에 리크 검사가 수행되는 동안 제3 가스공급부(830)에 가스를 주입할 수 있다. 이 경우, 제2 가스공급부(820)와 연결부(850) 사이에는 제1 가스차단부(971)가 구비되고, 제3 가스공급부(830)와 연결부(850) 사이에는 제2 가스차단부(972)가 구비될 수 있다. 제1 가스차단부(971)는 제1 가스공급부(810)와 제2 가스공급부(820) 사이에 배치되어, 제1 가스공급부(810)에 가스가 주입되고 리크 검사가 진행되는 동안에 제2 가스공급부(820)로 가스가 새는 것을 방지할 수 있다. 또한, 제2 가스차단부(972)는 제2 가스공급부(820)와 제3 가스공급부(830) 사이에 배치되어, 제2 가스공급부(810)에 가스가 주입되고 리크 검사가 진행되는 동안에 제3 가스공급부(830)로 가스가 새는 것을 방지할 수 있다. According to the configuration described above, in one embodiment of the present invention, gas can be sequentially supplied to each of the first gas supply unit 810, the second gas supply unit 820, and the third gas supply unit 830. For example, when a manifold unit is connected to a plurality of pipes, it may take a long time to supply gas to the pipes. However, in one embodiment of the present invention, the pipe connected to the first gas supply unit 810 is first tested for leakage by injecting gas into the first gas supply unit 810, and the pipe connected to the first gas supply unit 810 is leak-tested. Gas may be injected into the second gas supplier 820 while the test is being performed. In addition, gas may be injected into the third gas supply unit 830 while a leak test is performed on a pipe connected to the second gas supply unit 820 . In this case, a first gas blocker 971 is provided between the second gas supply unit 820 and the connection unit 850, and a second gas blocker 972 is provided between the third gas supply unit 830 and the connection unit 850. ) may be provided. The first gas blocking unit 971 is disposed between the first gas supply unit 810 and the second gas supply unit 820, and the second gas is injected into the first gas supply unit 810 and the leak test is performed. It is possible to prevent gas from leaking into the supply unit 820 . In addition, the second gas blocking unit 972 is disposed between the second gas supply unit 820 and the third gas supply unit 830, while gas is injected into the second gas supply unit 810 and the leak test is in progress. 3 Gas supply unit 830 can prevent gas from leaking.
이에 따라, 본 발명의 일 실시예는 다수의 배관에 동시에 또는 순차적으로 리크 검사를 수행할 수 있으며, 배관에 가스가 공급되는 데에 소요되는 시간을 줄임으로써 보다 효율적인 리크 검사가 가능할 수 있다. Accordingly, according to one embodiment of the present invention, a leak test can be performed on a plurality of pipes simultaneously or sequentially, and a more efficient leak test can be performed by reducing the time required for gas to be supplied to the pipes.
본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.Although the present invention has been described through preferred embodiments as described above, the present invention is not limited thereto and various modifications and variations are possible without departing from the concept and scope of the claims described below. Those working in the technical field to which it belongs will readily understand.

Claims (7)

  1. 일측에 복수의 배관이 연결되고, 하단에 고정부재가 구비된 하우징; A housing having a plurality of pipes connected to one side and a fixing member at the bottom;
    상기 하우징 내부에 위치하며, 정전 용량의 변화를 이용하여 상기 배관 내부의 가스 압력을 검출하고, 온도 변화에 따른 도체의 고유 저항값의 변화를 이용하여 상기 배관의 이상 유무를 검출하는 감지유닛; a sensing unit located inside the housing, detecting gas pressure inside the pipe by using a change in capacitance, and detecting whether or not there is an abnormality in the pipe by using a change in the resistivity of a conductor according to a change in temperature;
    상기 감지유닛에서 측정한 가스 압력 및 온도의 값을 저장하고 이력을 관리하는 제어유닛; 및 a control unit that stores the values of the gas pressure and temperature measured by the sensing unit and manages a history thereof; and
    상기 하우징 내부에 위치하며, 상기 감지유닛이 각각 연결된 상기 복수의 배관이 연결되는 연결포트부와 상기 연결포트부가 연결되는 가스공급부와 상기 가스공급부의 양단을 지지하는 브라켓으로 이루어진 매니폴드유닛을 포함하는 디지털 압력 리크 검사장치.Located inside the housing, a manifold unit composed of a connection port portion to which the plurality of pipes to which the detection unit is respectively connected is connected, a gas supply portion to which the connection port portion is connected, and brackets supporting both ends of the gas supply portion. Digital pressure leak tester.
  2. 제 1 항에 있어서, According to claim 1,
    상기 가스공급부는,The gas supply unit,
    상기 브라켓 사이에 복수개가 등간격으로 이격배치되며, 상기 브라켓의 외부에서 연결되는 연결부를 포함하는 디지털 압력 리크 검사장치. A digital pressure leak test device comprising a plurality of brackets spaced apart at equal intervals and including a connection portion connected from the outside of the brackets.
  3. 제 2 항에 있어서, According to claim 2,
    상기 매니폴드유닛은,The manifold unit,
    상기 연결부에 연결되어 외부의 충격으로 인한 상기 가스공급부의 위치 이동을 감지하는 가속도센서를 더 포함하는 디지털 압력 리크 검사장치. Digital pressure leak tester further comprising an acceleration sensor connected to the connection unit and detecting a positional movement of the gas supply unit due to an external impact.
  4. 제 1 항에 있어서, According to claim 1,
    상기 연결포트부는 복수개의 연결포트들을 포함하고, The connection port unit includes a plurality of connection ports,
    서로 인접한 연결포트들 각각의 길이는 서로 다르게 구비되는 디지털 압력 리크 검사장치. A digital pressure leak test device in which each of the connection ports adjacent to each other has a different length.
  5. 제 4 항에 있어서, According to claim 4,
    상기 연결포트는, The connection port is
    상기 가스공급부에 연결되며 상기 하우징의 상부를 향해 돌출된 제1 보조연결포트; a first auxiliary connection port connected to the gas supply unit and protruding toward an upper portion of the housing;
    상기 제1 보조연결포트 상에 구비되는 제2 보조연결포트; 및a second auxiliary connection port provided on the first auxiliary connection port; and
    상기 제2 보조연결포트를 수납하는 제3 보조연결포트를 포함하는 디지털 압력 리크 검사장치. A digital pressure leak tester comprising a third auxiliary connection port accommodating the second auxiliary connection port.
  6. 제 5 항에 있어서, According to claim 5,
    상기 제2 보조연결포트는,The second auxiliary connection port,
    상기 제1 보조연결포트와 제3 보조연결포트를 연결하는 연결부재; a connecting member connecting the first auxiliary connection port and the third auxiliary connection port;
    상기 연결부재 내부에 배치되는 회전부재; 및 a rotating member disposed inside the connecting member; and
    상기 연결부재의 일측 및 타측을 관통하고, 상기 회전부재의 하면에 고정되는 샤프트를 포함하는 디지털 압력 리크 검사장치. A digital pressure leak tester comprising a shaft passing through one side and the other side of the connecting member and fixed to the lower surface of the rotating member.
  7. 제 6 항에 있어서, According to claim 6,
    상기 제3 보조연결포트는, The third auxiliary connection port,
    상기 샤프트와 연결되어 상기 회전부재의 회전을 가이드하는 가이드부를 포함하는 디지털 압력 리크 검사장치. Digital pressure leak test device including a guide connected to the shaft to guide the rotation of the rotating member.
PCT/KR2022/016465 2021-11-18 2022-10-26 Digital pressure leak inspection device WO2023090679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0159525 2021-11-18
KR1020210159525A KR102522525B1 (en) 2021-11-18 2021-11-18 Digital Pressure Leak Inspection Device

Publications (1)

Publication Number Publication Date
WO2023090679A1 true WO2023090679A1 (en) 2023-05-25

Family

ID=85946741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016465 WO2023090679A1 (en) 2021-11-18 2022-10-26 Digital pressure leak inspection device

Country Status (2)

Country Link
KR (1) KR102522525B1 (en)
WO (1) WO2023090679A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203100A (en) * 1992-01-29 1993-08-10 Toshiba Corp Gas supplying device
KR101262187B1 (en) * 2011-12-27 2013-05-14 최경택 Leak test method, using the leak tester for waterproof connector
KR101483755B1 (en) * 2013-07-10 2015-01-16 코원에너지서비스 주식회사 An apparatus for measuring gas pressure and temperature in gas pipe
KR101901152B1 (en) * 2018-02-09 2018-09-21 이도연 Digital Pressure Leak Inspection Device
KR20180128134A (en) * 2017-05-23 2018-12-03 (주)진솔루션 Gas supplying system equipped with seismic monitoring sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203100A (en) * 1992-01-29 1993-08-10 Toshiba Corp Gas supplying device
KR101262187B1 (en) * 2011-12-27 2013-05-14 최경택 Leak test method, using the leak tester for waterproof connector
KR101483755B1 (en) * 2013-07-10 2015-01-16 코원에너지서비스 주식회사 An apparatus for measuring gas pressure and temperature in gas pipe
KR20180128134A (en) * 2017-05-23 2018-12-03 (주)진솔루션 Gas supplying system equipped with seismic monitoring sensor
KR101901152B1 (en) * 2018-02-09 2018-09-21 이도연 Digital Pressure Leak Inspection Device

Also Published As

Publication number Publication date
KR102522525B1 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2015060664A1 (en) Multi sampling port monitoring apparatus for measuring pollution level and monitoring method using the same
WO2019168341A1 (en) Integrated iot module and iot-based integrated facility environment management system
WO2013105730A1 (en) Cooling type showerhead and substrate processing apparatus having same
WO2023090679A1 (en) Digital pressure leak inspection device
WO2013089373A1 (en) Defect inspection device of steel plate
WO2019156343A1 (en) Monitoring and load controlling system for switchboard
WO2022191374A1 (en) Iot-based integrated monitoring switchboard for fault diagnosis and prediction in advance
WO2023113261A1 (en) Magnetic levitation rotation apparatus and substrate processing apparatus using same
WO2018124518A1 (en) Apparatus for detecting internal defect in transformer
WO2017131434A1 (en) Internet of things-based independent power source-type industrial facility predictive preservation system and method
WO2014077563A1 (en) Vapour-deposition device having mobile vapour-deposition source
WO2023121169A1 (en) Rotating body inspection device for electrification component
WO2020096424A1 (en) Wireless rotary testing apparatus comprising power transmission unit
WO2020226194A1 (en) Probe assembly and micro vacuum probe station comprising same
WO2021149847A1 (en) Expansion valve inspection device
CN207937126U (en) A kind of product special-shaped surfaces air-leakage test portable equipment
WO2023074947A1 (en) Cartridge locking apparatus for multi-prober
WO2023277252A1 (en) Flood and water leak sensing device and manhole cover having flood and water leak sensing function using same
WO2021261813A1 (en) Ultrasonic flow rate measuring apparatus
WO2019182214A1 (en) Device for inspecting waterproofness
WO2016167500A1 (en) Remote monitoring system of caterpillar vehicle
WO2021020602A1 (en) Wafer processing apparatus including particle sensor
WO2018117400A1 (en) Apparatus and method for automatically measuring swirl ratio
WO2024128340A1 (en) Iot-based distribution panel remote control system
WO2024096224A1 (en) Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895887

Country of ref document: EP

Kind code of ref document: A1