WO2023113261A1 - Magnetic levitation rotation apparatus and substrate processing apparatus using same - Google Patents

Magnetic levitation rotation apparatus and substrate processing apparatus using same Download PDF

Info

Publication number
WO2023113261A1
WO2023113261A1 PCT/KR2022/018139 KR2022018139W WO2023113261A1 WO 2023113261 A1 WO2023113261 A1 WO 2023113261A1 KR 2022018139 W KR2022018139 W KR 2022018139W WO 2023113261 A1 WO2023113261 A1 WO 2023113261A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
unit
rotating
displacement sensor
substrate
Prior art date
Application number
PCT/KR2022/018139
Other languages
French (fr)
Korean (ko)
Inventor
문용수
김창교
지상현
Original Assignee
에이피시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이피시스템 주식회사 filed Critical 에이피시스템 주식회사
Publication of WO2023113261A1 publication Critical patent/WO2023113261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0231Magnetic circuits with PM for power or force generation
    • H01F7/0242Magnetic drives, magnetic coupling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches

Definitions

  • the present invention relates to a magnetic levitation rotation apparatus and a substrate processing apparatus using the same, and more particularly, to a magnetic levitation rotation apparatus capable of stably rotating a magnetic levitation rotation unit and a substrate processing apparatus using the same.
  • the thickness of a thin film constituting the semiconductor device is only a few nanometers (nm), and the thickness uniformity must be maintained within several percent. This level of uniformity necessitates the requirement that temperature variations across the substrate during high temperature processing cannot exceed several degrees Celsius. Therefore, a technique for minimizing temperature non-uniformity is very important. In particular, as the size of the substrate increases, such uniform heating is not properly performed, resulting in many problems. In order to solve the problem of uniform heating of the substrate, there is a maglev rotating apparatus as a substrate rotation device that horizontally rotates the substrate while rapid heat treatment is performed.
  • the magnetic levitation rotation device includes a stator and a rotor, and the rotating part is lifted and rotated by magnetic force in a non-contact state with the stator. Therefore, noise and vibration are low, no particle is generated, and high-speed rotation is possible, so it is suitable for a rapid heat treatment device that is heated to a high temperature in a short time.
  • the rotor unit supports the edge ring through a support cylinder, and a substrate is placed on the edge ring.
  • Patent Document 1 Korean Patent Publication No. 10-2001-0111030
  • the present invention provides a magnetic levitation rotating device capable of stable magnetic levitation rotation of a rotating part and a substrate processing device including the same.
  • the present invention provides a magnetic levitation rotating device capable of adjusting the height of a fixed part and a rotating part and a substrate processing apparatus including the same.
  • a magnetic levitation rotation device includes a housing portion including a cylindrical inner wall, a cylindrical outer wall provided outside the inner wall, and a bottom portion connecting the inner wall and the outer wall; a cylindrical rotating part accommodated in the receiving space between the inner and outer walls of the housing part, floating by magnetic force and rotating about a vertical axis; a fixing unit provided on the outer side of the outer wall to provide magnetic force to the rotating unit; and a plurality of horizontal displacement sensor units mounted on the fixing unit to measure horizontal displacement of the rotating unit.
  • the magnetic levitation rotating device may further include a plurality of vertical displacement sensors provided on the bottom side to measure displacement of the rotating unit in a vertical direction.
  • the magnetic levitation rotating device may further include a plurality of vertical displacement sensors mounted on the fixing part to correspond to the position of the upper end or the lower end of the rotating part and measuring the displacement in the vertical direction of the rotating part.
  • a moving unit for moving the fixing unit in a vertical direction may be further included.
  • a thickness of the outer wall may be smaller than a thickness of the inner wall.
  • the outer wall is made of at least one of a paramagnetic material, a non-magnetic material, and a diamagnetic material, or a compound thereof, and the thickness of the outer wall may be 0.5 to 2.5 mm.
  • the rotating unit may be made of a ferromagnetic material, and the plurality of horizontal displacement sensor units may measure a horizontal displacement of the rotating unit by sensing a change in electromagnetic characteristics induced by the rotating unit and provided through the outer wall.
  • the fixing part includes a plurality of magnet assemblies symmetrically arranged in pairs around the vertical axis along a plurality of horizontal axes intersecting the vertical axis, and each of the plurality of horizontal displacement sensor units is provided between neighboring magnet assemblies. It can be.
  • the plurality of horizontal displacement sensor units may be symmetrically arranged in pairs around the vertical axis.
  • Each of the plurality of magnet assemblies includes a permanent magnet that lifts the rotating part by generating an attractive force to the rotating part; a first control coil controlling a horizontal position of the rotation unit by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux; and a second control coil controlling the inclination of the rotation unit by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux.
  • the fixing part may further include a vertical position control coil extending along the outer wall to surround the outer wall and controlling a vertical position of the rotating part according to a direction and magnitude of a current generating magnetic flux.
  • a substrate processing apparatus includes a magnetic levitation rotation apparatus according to an embodiment of the present invention; a chamber unit connected to the housing to provide a substrate processing space isolated from an external space; and a substrate support that supports the substrate and is connected to the rotation unit to be rotatably interlocked.
  • the substrate processing apparatus includes a heat source unit provided on the first side of the substrate to provide light energy toward the substrate; a base plate portion provided on the second surface side of the substrate and connected to an upper portion of the inner wall; and a temperature measuring unit at least partially inserted into the base plate to measure the temperature of the substrate.
  • the magnetic levitation rotation device and the substrate processing device there is no need for a displacement sensor fixing member having a complicated structure for mounting the displacement sensor on the inner wall of the housing inside the rotating unit, thereby preventing magnetic levitation rotation due to assembly failure. stability can be ensured.
  • the displacement sensors are located outside the outer wall of the housing, it can be easily reassembled even if an assembly defect occurs.
  • the height of the rotating part can be interlocked and changed according to the change in height of the fixed part.
  • the height of the fixture outside the chamber is controlled when the height of the substrate needs to be precisely adjusted to precisely control the temperature, a new process is performed, or the height of the substrate needs to be changed in a substrate processing device having a new structure. By doing so, it is possible to simply adjust the height of the substrate provided inside the chamber.
  • FIG. 1 is a conceptual diagram of a magnetic levitation rotation device according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view of a fixing unit according to an embodiment of the present invention.
  • Figure 3 is a simplified view of a magnetic levitation rotation device according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a magnetic levitation rotation device according to another embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional perspective view showing a mounting state of displacement sensors according to another embodiment of the present invention.
  • FIG. 7 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
  • FIG. 8 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of a magnetic levitation rotation device according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of a fixing unit according to an embodiment of the present invention
  • Figure 3 is a magnetic levitation rotation device according to an embodiment of the present invention It is a brief diagram.
  • the magnetic levitation rotation device includes a cylindrical inner wall 111, a cylindrical outer wall 112 provided on the outside of the inner wall 111, and the inner wall 111.
  • a housing part 110 including a bottom part 113 connecting the side wall 111 and the outer wall 112;
  • a cylindrical rotating part 120 accommodated in the accommodation space between the inner wall 111 and the outer wall 112 of the housing part, floating by magnetic force and rotating around a vertical axis;
  • a fixing part 130 provided on the outer side of the outer wall to provide magnetic force to the rotating part; and a plurality of horizontal displacement sensor units 141 mounted on the fixing unit 130 to measure displacement of the rotating unit 120 in a horizontal direction.
  • the housing part 110 separates the rotation part 120 accommodated inside and the fixing part 130 provided outside from each other, and is connected to a chamber of a substrate processing apparatus to be described later to define a substrate processing space separated from the outside. there is. Since the inside of the housing can be maintained in a vacuum while being connected to the chamber of the substrate processing apparatus and the substrate processing process is in progress, the housing must have strength capable of withstanding a pressure difference between the external atmospheric pressure and the internal vacuum pressure.
  • the housing portion 110 includes a cylindrical inner wall 111, a cylindrical outer wall 112 provided outside the inner wall 111, and a bottom portion connecting the inner wall 111 and the outer wall 112 ( 113) may be included.
  • the outer wall 112 is provided between the rotating part 120 and the fixed part 130 and may be formed of a thin plate having a thin thickness so that lines of magnetic force can sufficiently pass between the rotating part 120 and the fixed part 130 .
  • the inner wall 111 and the lower surface portion 113 may be thicker than the outer wall 120 for the strength of the overall housing structure as well as to withstand the pressure difference between atmospheric pressure and vacuum pressure without the need for magnetic force lines to pass therethrough. Since the housing 110 is composed of an inner wall 111, an outer wall 112, and a bottom part 113 and has an open top, insertion and separation of the rotating part 120 can be facilitated through the open top. can
  • the cylindrical rotating part 120 is accommodated in an annular accommodation space formed between the inner wall 111 and the outer wall 112 of the housing part, and can be lifted by magnetic force and rotated around a vertical axis.
  • the magnetic force that lifts and rotates the rotating part 120 is provided by the fixing part 130 disposed on the outside of the outer wall 112, so that the interaction of the magnetic field between the rotating part 120 and the fixed part 130 is smooth.
  • the cylindrical rotating part 120 may have a protruding top and bottom ends.
  • the rotating part 120 may be made of a ferromagnetic material so that a strong magnetic field can be induced by the fixing part 130, and a plurality of magnetic pole teeth may be arranged in a ring shape at regular intervals on the outer circumferential surface of the cylindrical rotating part 120. there is.
  • the fixing part 130 may be provided on the outside of the outer wall 112 to provide magnetic force necessary for the floating and moving of the rotating part 120 .
  • the fixing part 130 is in the form of a flat plate and includes magnetic cores 131 and 132 provided as a pair spaced apart in the vertical (Z-axis) direction, and horizontally (X-axis and Y-axis) between the pair of magnetic cores 131 and 132. It includes a plurality of permanent magnets 133a to 133d arranged at equal intervals in the -axis) direction.
  • the magnetic cores 131 and 132 constitute a radial closed circuit as an integral flat plate extending along the outer circumferential surface of the cylindrical rotating part 120, and include radially symmetrical protrusions 131a and 132a, and connection parts 131b and 132b. ) and concave portions 131c and 132c.
  • the plurality of permanent magnets 133a to 133d have a strong magnetic field, so that a strong magnetic field can be generated in the rotating part 120 despite the existence of an air or vacuum gap, thereby injuring the rotating part 120 Rather, the rotation unit 120 allows the center of a plurality of permanent magnets to be aligned in the vertical direction.
  • the fixing unit 130 further includes a driving coil (not shown) and position control coils 134, 135, and 136 coupled to the magnetic cores 131 and 132 and generating magnetic flux by an input current.
  • the driving coil is a multi-phase winding in which a plurality of end windings are arranged at equal intervals along the inner surface of the magnetic core, and interacts with the magnetic field of the rotating part 120 or a plurality of magnetic pole teeth provided on its outer circumferential surface to generate torque around a vertical axis. generated to generate a rotating electromagnetic field that rotates the rotating unit 120.
  • the magnetic flux of the plurality of permanent magnets generates a radial attraction force between the fixed part 130 and the rotating part 120, and this attraction causes instability depending on the direction so that the rotating part 120 can be moved to one side.
  • the position of the rotating unit can be controlled by additionally generating or canceling the attractive force.
  • the fixing part 130 is a plurality of magnet assemblies arranged in pairs symmetrically about the vertical axis along a plurality of horizontal axes (eg, X-axis and Y-axis) intersecting the vertical axis (Z-axis).
  • a plurality of magnet assemblies may be provided at positions corresponding to the protrusions 131a and 132a of the magnetic cores 131 and 132 that are radially symmetrical.
  • Each of the plurality of magnet assemblies includes permanent magnets (133a to 133d) that lift the rotating part by generating an attractive force to the rotating part 120; Horizontal position control coils (134a to 134d) for controlling the horizontal direction position of the rotation unit 120 by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux; and tilt control coils 135a to 135d for controlling the tilt of the rotation unit 120 by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux.
  • the permanent magnets 133a to 133d are disposed on the outer circumferential surface between regions where the protrusions 131a and 132a of the magnetic cores 131 and 132 are provided radially symmetrically and spaced apart in the vertical direction.
  • the horizontal position control coils 134a to 134d and the inclination control coils 135a to 135d are provided separately from each other in the vertical direction, respectively. ) can be wound on.
  • the rotation unit 120 rotates horizontally.
  • Directional position control and tilt control are possible.
  • the fixing part 130 extends along the outer wall 112 and is provided to surround the outer wall 112, and the vertical position control coil controls the vertical position of the rotating part 120 according to the direction and magnitude of current generating magnetic flux.
  • (136) may be further included. Since the rotation unit 120 receives a downward force due to its own weight, the floating rotation unit 120 may not align with the center of the height of the permanent magnet in the vertical direction, and may be lowered than the normal position. In this case, when it rotates at high speed, the rotating part may fluctuate while rotating due to the interaction between the magnetic force and gravity by the permanent magnet. Therefore, it is necessary to control the vertical position of the rotating part 120 so that the rotating part 120 can be positioned at a desired height as needed.
  • the vertical position control coil 136 controls the direction and magnitude of the current flowing through the coil. By doing so, the vertical position of the rotation unit 120 can be controlled.
  • the horizontal and vertical positions of the rotating part must be obtained using a plurality of displacement sensor units spaced apart from each other.
  • a plurality of horizontal displacement sensors are provided inside the rotating unit to measure the displacement of the rotating unit.
  • the horizontal displacement sensor unit is inserted and mounted into a hole formed in the inner wall of the housing.
  • a sealing member such as an O-ring is included to prevent air or gas leakage due to a pressure difference between the vacuum pressure inside the housing and the atmospheric pressure outside the housing.
  • the horizontal displacement sensor unit is assembled using a complicated mounting structure. At this time, there is a very high possibility that assembly failure occurs in the magnetic levitation rotating device assembled with a short separation distance in order to transfer the magnetic force of the fixing part to the rotating part.
  • the horizontal displacement sensor unit In order to dispose the horizontal displacement sensor unit outside the housing, it may be mounted on the outer wall of the housing.
  • the outer wall of the housing located between the fixed part and the rotating part must be formed of a thin plate thinner than the inner wall or bottom so that the magnetic force of the fixed part can lift the rotating part, it is difficult to stably mount the horizontal displacement sensor on the outer wall of the housing, Leakage problems of air or gas can occur as well as mounting on the inner wall.
  • the displacement of the rotation unit 120 in the horizontal direction can be measured by mounting the horizontal displacement sensor unit 141 on the fixing unit 130 .
  • the center of the fixing part and the center of the horizontal displacement sensor must essentially coincide concentrically, and thus adjustment of the displacement sensor values may not be necessary.
  • the horizontal displacement sensor unit 141 is mounted on the fixing unit 130 under atmospheric pressure, there is no need to consider leaks between atmospheric pressure and vacuum pressure, so a fixing member with a complicated structure is not required, preventing magnetic levitation rotation due to poor assembly. stability can be ensured.
  • the horizontal displacement sensors are located outside the outer wall of the housing, it can be easily reassembled even if assembly defects occur.
  • the magnetic levitation rotation device may further include a plurality of vertical displacement sensor units 142 provided on the bottom side to measure displacement of the rotation unit in the vertical direction.
  • the plurality of vertical displacement sensor units 142 spaced apart from each other at equal intervals measure the position or displacement of the lower end of the rotating unit 120 that rotates while floating from the upper side, and calculates the radial positional distance between the vertical displacement sensor unit and the rotating unit. By using it, the inclination and vertical position (height) of the rotating part can be known.
  • the plurality of vertical displacement sensor units 142 may be inserted into holes provided in the bottom portion 113 of the housing and mounted by a mounting member including a sealing structure to prevent air/gas leakage.
  • the thickness of the bottom part 113 is thicker than the thickness of the outer wall 112, so stable support is possible, and since the bottom part is located in an open space of atmospheric pressure, it may be easy to assemble or reassemble.
  • the vertical displacement sensor unit 142 measures the vertical position of the rotating unit 120, the center of the vertical displacement sensor unit 142 and the center of the fixing unit 130 do not need to coincide. does not occur
  • the housing outer wall 112 located between the fixed part and the rotating part so that the magnetic flux of the fixed part 130 and the rotating part 120 interacts to stably lift the rotating part 120, the inner wall 111 or the bottom part ( 113) may be thinner.
  • the outer wall 112 is made of at least one of a paramagnetic material, a non-magnetic material, and a diamagnetic material, or a compound thereof. It may be made, and the thickness may be 0.5 to 2.5 mm.
  • the magnetic flux of the fixed part and the rotating part cannot pass through the outer wall, and when it is made of a non-magnetic material such as STS316 or SUS304, the magnetic flux of the fixed part and the rotating part can pass through without loss. .
  • the rotating unit 120 may be made of a ferromagnetic material (eg STS420) so that a strong magnetic field can be induced by the fixing unit 130.
  • the plurality of horizontal displacement sensor units 141 are configured by the rotating unit 120
  • the horizontal displacement of the rotation unit may be measured by sensing a change in electromagnetic characteristics that is induced and provided through the outer wall 112 . That is, the horizontal displacement sensor unit 141 can accurately measure the displacement of the rotation unit 120 by penetrating the outer wall 112 having a thin thickness (0.5 to 2.5 mm) made of a non-magnetic material or the like.
  • the thickness of the outer wall is less than 0.5 mm, the change in electromagnetic properties cannot withstand the sensitively detectable pressure difference between atmospheric pressure and vacuum pressure, and the housing shape cannot be maintained. When it is structurally stabilized, the displacement (electromagnetic characteristic change) of the rotating part 120 cannot be sensed.
  • the horizontal displacement sensor unit 141 provided on the outside of the outer wall 112 and measuring the displacement of the rotating part 120 inside the outer wall may be an eddy current displacement sensor or a Hall sensor, but is not particularly limited thereto, and the position change of the rotating part It suffices if a change in electromagnetic properties induced by and provided through the outer wall can be sensed.
  • An eddy current displacement sensor is a displacement sensor using eddy current. Eddy current is generated in the conductor when a conductor approaches the sensor due to a magnetic field generated when current is supplied to the coil of the sensor. This eddy current affects the current flowing through the coil of the sensor. Precise distance can be measured using the change in magnitude and phase of this current.
  • the displacement of the rotating part 120 can be measured only when the magnetic field of the eddy current displacement sensor passes through the outer wall 112 of the housing and generates an eddy current in the rotating part 120.
  • the transmission of the magnetic field varies depending on the thickness or material of the outer wall Therefore, in some cases, the transmittance of the magnetic field may be insufficient. For example, even if the outer wall is made of a non-magnetic material, if the magnetic field of the eddy current displacement sensor does not pass through the outer wall, eddy currents are generated only in the outer wall, so that only the displacement of the outer wall can be measured.
  • the coil is wound around a ferromagnetic core (eg, a ferrite core) to increase the eddy current generation depth (magnetic field penetration depth) to generate eddy current in the rotating part 120 can cause
  • a ferromagnetic core eg, a ferrite core
  • the displacement of the rotating part was measured while changing the oscillation frequency according to the thickness of the barrier rib.
  • the hall sensor outputs an output value linearly according to the change in the magnetic flux density (Gauss) from the magnet (that is, the change in distance), from which the displacement can be measured. That is, the Hall sensor creates a bias magnetic field and uses the rotating part 120 made of ferromagnetic material as a target to sense the change in magnetic flux density according to the distance and outputs an analog output value (voltage value or current value). (112) It is possible to measure the displacement of the rotating part 120 located inside.
  • FIG. 4 is a conceptual diagram of a magnetic levitation rotation device according to another embodiment of the present invention
  • FIG. 5 is an explanatory view illustrating the operation of displacement sensors according to another embodiment of the present invention
  • FIG. 6 is another embodiment of the present invention. It is a partial cross-sectional perspective view showing the mounting state of the displacement sensors according to .
  • items overlapping with those described above in relation to the magnetic levitation rotation device according to the embodiment of the present invention will be omitted.
  • the magnetic levitation rotation device according to another embodiment of the present invention is mounted on the fixing part 130 so as to correspond to the position of the upper end or the lower end of the rotating part 120 so that the rotation part 120 is vertical.
  • a plurality of vertical displacement sensor units 142 for measuring directional displacement may be included.
  • a moving unit 150 may be further included to vertically move the fixing unit 130 to which the horizontal displacement sensor unit 141 and the vertical displacement sensor unit are mounted.
  • the thickness of the bottom unit 113 is thick so that the vertical displacement sensor unit 142 is inserted into the hole formed on the bottom side and mounted. do.
  • a sealing member such as an O-ring is included to prevent air or gas leakage due to a pressure difference between the vacuum pressure inside the housing and the atmospheric pressure outside the housing.
  • the vertical displacement sensor unit 142 is assembled using a complicated mounting structure. At this time, there is a very high possibility that assembly failure occurs in the magnetic levitation rotating device assembled with a short separation distance in order to transfer the magnetic force of the fixing part to the rotating part.
  • the vertical displacement sensor unit 142 may be mounted on the fixing unit 130 like the horizontal displacement sensor unit 141 to measure the vertical displacement of the rotation unit from the outside of the housing.
  • the vertical displacement sensor unit 142 may be an eddy current displacement sensor or a hall sensor, and the same sensor as the horizontal displacement sensor unit 141 may be used.
  • FIG. 5 shows the principle of measuring the horizontal displacement of the rotating part by the horizontal displacement sensor unit.
  • the horizontal displacement sensor unit's position changes in the horizontal direction in front of the probe of the horizontal displacement sensor unit, the change occurs according to the change in the distance between the probe and the rotating unit.
  • the distance in the horizontal direction can be measured by sensing the voltage output.
  • the lateral measurement range of the displacement sensor can measure about three times the diameter of the probe.
  • the area of the target object entering the lateral measurement range of the displacement sensor changes according to the vertical displacement of the target object. That is, eddy currents are generated in the target object entering the lateral measurement range of the displacement sensor, and the generated eddy current and output voltage vary according to the size of the area of the target object entering the lateral measurement range of the displacement sensor. Since the voltage output according to the distance changes linearly in a section within several mm, which is the range of general vertical displacement of the rotating part, the vertical displacement of the rotating part can be measured using the output voltage.
  • the height of the fixing unit 130 is fixed, so the magnetic force of the fixing unit 130 There is a limit to controlling the height of the rotating part 120 floated by.
  • the vertical position control coil 136 determines the height of the rotation unit 120 within the measurement range of the vertical displacement sensor unit (eg, within several mm). It is possible to make fine adjustments in However, if it is necessary to adjust the height more than that (eg, several tens of mm), this structure cannot cope. That is, when the vertical displacement sensor unit 142 is fixed to the bottom part 113 of the housing and the rotation unit 120 rises by several tens of mm or more along the fixing unit 130, the rotation unit 120 is vertically displaced. It may be out of the measurement distance of the sensor unit 142 and control of the vertical displacement of the rotating unit may become impossible.
  • the vertical displacement sensor unit 142 is mounted on the fixing part 130, and the vertical displacement sensor unit 142 moves along with the fixing part to move the rotating part 120 vertically. It was possible to measure the directional displacement. That is, when the height of the rotating unit needs to be changed by several tens of mm or more, the rotating unit 120 also moves according to the magnetic force of the fixing unit 130 moved by the moving unit 150 .
  • the rotation unit 120 moved by the fixing unit 130 adjusts the reference value of the vertical displacement sensor unit 142 that is mounted on the fixing unit 130 and moves together, the displacement measurement value of the vertical displacement sensor unit 142 Accordingly, the height of the rotation unit 120 can be finely adjusted by applying current to the vertical position control coil 136 .
  • the fixing part 130 is a plurality of magnet assemblies arranged in pairs symmetrically about the vertical axis along a plurality of horizontal axes (eg, X-axis and Y-axis) intersecting the vertical axis (Z-axis).
  • a plurality of magnet assemblies may be provided at positions corresponding to the protrusions 131a and 132a of the magnetic cores 131 and 132 that are radially symmetrical.
  • Each of the plurality of magnet assemblies includes permanent magnets 133a to 133d, horizontal position control coils 134a to 134d; and gradient control coils 135a to 135d.
  • each of the plurality of horizontal displacement sensor units 141 may be provided between neighboring magnet assemblies. That is, the horizontal displacement sensor unit 141a is fixed to the connecting portion 131b between the protruding portions 131a of the magnetic core 131 around which the horizontal position control coils 134a and 134b are wound, and the empty space between the protruding portions 131a. may be provided in the phosphorus concave portion 131c.
  • each of the plurality of vertical displacement sensor units 142 may be provided between adjacent magnet assemblies. That is, the vertical displacement sensor unit 142a may be fixed to the connecting portion between the protruding portions of the magnetic core 132 around which the tilt control coils 135a and 135b are wound and provided in the concave portion, which is an empty space between the protruding portions.
  • the plurality of horizontal displacement sensor units 141 may be symmetrically arranged in pairs around a vertical axis. That is, the horizontal displacement sensor unit 141a and the horizontal displacement sensor unit 141c are symmetrically arranged as a pair around a vertical axis. For example, a total of four horizontal displacement sensor units may be provided, one pair each in an X-axis direction and a Y-axis direction. Due to the arrangement of the plurality of horizontal displacement sensor units 141, the paired horizontal displacement sensor unit differentiates the sensing value to measure the displacement. In this case, three horizontal displacement sensor units spread at an angle of 120 degrees are basically used. It is possible to control the rotating part more precisely.
  • the plurality of vertical displacement sensor units 142 may also be symmetrically arranged in pairs around the vertical axis.
  • FIG. 7 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
  • a substrate processing apparatus includes a magnetic levitation rotation apparatus 100 according to an embodiment of the present invention; a chamber unit 200 connected to the housing 110 to provide a substrate processing space isolated from an external space; and a substrate support part 300 that supports the substrate and is connected to the rotation part 120 to be rotatably interlocked.
  • a substrate processing apparatus items overlapping with those described above in relation to the magnetic levitation rotation apparatus according to the embodiment of the present invention will be omitted.
  • a substrate processing apparatus is an apparatus for processing a substrate in various ways, such as heat treating a substrate S or forming a thin film on the substrate.
  • the substrate processing apparatus may be a rapid thermal process (RTP) that rapidly heat-treats the substrate S by generating high-temperature heat.
  • RTP rapid thermal process
  • the substrate S may be a silicon wafer used in semiconductor devices, or may be glass applied to display devices such as various processing objects requiring heat treatment, such as LCD and OLED.
  • the housing 110 of the magnetic levitation rotation device 100 is connected to the chamber unit 200 so that the housing 110 and the chamber unit 200 may provide a processing space in which a substrate is processed, separated from an external space.
  • the chamber unit 200 may be formed in a box shape, and at one side of the chamber unit 200, an entrance through which the substrate S may come in and out may be provided. Accordingly, the substrate S may be put into the chamber 200 through the entrance and heat treatment may be performed, and the substrate S processed inside the chamber 200 may be transported to the outside of the chamber 200 through the entrance.
  • a gas supply unit (not shown) for supplying process gas into the chamber unit 200 or a plasma generator (not shown) for activating the process gas may be connected as needed.
  • the substrate support unit 300 is installed to support the substrate S in the processing space of the chamber 100 .
  • the substrate support 300 may be formed to support an edge or an edge of a lower portion of the substrate S. Accordingly, a region of the lower surface of the substrate S that does not contact the substrate support 300 may be exposed to the inner space of the chamber 200 .
  • the substrate support 300 may be formed in a hollow shape with an open central portion. Accordingly, when the substrate S is placed on the substrate support 300, an edge portion of the lower surface of the substrate S may contact the substrate support 300, and the remaining portion may be exposed downward.
  • the substrate support 300 may be connected to the rotation unit 120 of the magnetic levitation rotation device 100 to be rotatable in conjunction with the rotation unit 120 in order to uniformize the temperature of the substrate and the substrate treatment process.
  • a substrate processing apparatus includes a heat source unit 400 provided on a first side of the substrate to provide thermal energy toward the substrate; a base plate portion 500 provided on the second side of the substrate and connected to an upper portion of the inner wall 111; and a temperature measurement unit 600 at least partially inserted into the base plate 500 to measure the temperature of the substrate.
  • the heat source unit 400 serves to supply heat energy to the substrate S, and may include a plurality of light sources 410 radiating light toward the first surface of the substrate.
  • the heat source unit 400 is spaced apart from the upper side of the substrate support unit 300, and light energy generated by a plurality of light sources 410 such as lamps or semiconductor laser modules provided in the heat source unit 400 is transmitted to the substrate support unit 300. ) is provided through the first surface of the substrate (S) seated on the substrate (S) can be heated.
  • the base plate 500 may be provided on the second side of the substrate and connected to an upper portion of the housing inner wall 111 of the magnetic levitation rotation device.
  • the base plate 500 may cover the central portion of the housing and surround the substrate processing space with the chamber, the housing, and the base plate to isolate it from the outside.
  • the base plate may be formed with a through-hole into which a lift pin that supports the substrate and a temperature measuring unit that can measure the temperature of the substrate can be inserted, or a gas flow passage through which a purge gas can flow. .
  • a reflector for reflecting light may be stacked on top of the base plate.
  • the temperature measuring unit 600 may be inserted into the base plate 500 to measure the temperature of the substrate.
  • the temperature measuring unit may be a pyrometer, and one or more are provided on the lower side of the substrate to measure the temperature by detecting light incident from the substrate (S).
  • the pyrometer may receive radiant light incident from the substrate and measure radiant energy or light quantity of the radiant light.
  • the pyrometers are disposed on the lower side of the substrate S seated on the substrate support 300 to obtain the radiant energy and reflectance in the facing area so that each pyrometer is positioned on the substrate S at the corresponding position. ) can measure the temperature by area or location.
  • a window 700 may be further included between the heat source unit 400 and the substrate processing space.
  • the window may transmit light emitted from the light source 410 so that light energy generated by the light source 410 may be provided to the substrate S.
  • the horizontal displacement sensor 141 by mounting the horizontal displacement sensor 141 on the fixing part 130 provided outside the outer wall 112 of the housing, horizontal displacement occurs in a narrow space surrounded by the inner wall 111 of the housing. It is possible to secure the stability of magnetic levitation rotation due to assembly defects that occur in the process of mounting the sensor. In addition, even when there is an assembly defect in the horizontal displacement sensor of the magnetic levitation rotation device, it can be simply reassembled outside the chamber while maintaining a vacuum in the substrate processing space.
  • the horizontal displacement sensor 141 is mounted on the fixing part 130, the center of the fixing part 130 and the center of the plurality of horizontal displacement sensors 141 coincide, so that additional adjustment of the horizontal displacement sensor values is unnecessary. do.
  • FIG. 8 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
  • the substrate processing apparatus is mounted on the fixing part 130 to correspond to the position of the upper end or the lower end of the rotating part 120, thereby reducing the displacement of the rotating part 120 in the vertical direction.
  • a plurality of vertical displacement sensor units 142 for measuring may be included.
  • a moving unit 150 may be further included to vertically move the fixing unit 130 to which the horizontal displacement sensor unit 141 and the vertical displacement sensor unit are mounted.
  • the horizontal displacement sensor unit 141 and the vertical displacement sensor unit are mounted on the fixed unit 130, so that the moving unit 150 ) moves the fixing part 130 in the vertical direction so that the height of the substrate can be adjusted.
  • the height of the fixture outside the chamber can be adjusted without additional configuration.
  • the height of the substrate provided inside the chamber can be easily adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention relates to a magnetic levitation rotation apparatus wherein a rotary part is capable of stable magnetic levitation rotation, and a substrate processing apparatus comprising same. The magnetic levitation rotation apparatus may comprise: a housing part including a cylindrical inner wall, a cylindrical outer wall provided outside the inner wall, and a bottom portion connecting the inner wall and the outer wall; a cylindrical rotary part accommodated in an accommodation space between the inner wall and the outer wall of the housing part, and floating by means of a magnetic force to rotate about a vertical axis; a fixing part provided on the outer side of the outer wall and providing a magnetic force to the rotary part; and a plurality of horizontal displacement sensor parts mounted on the fixing part and measuring the horizontal displacement of the rotary part.

Description

자기부상 회전 장치 및 이를 이용하는 기판 처리 장치Magnetic levitation rotation device and substrate processing device using the same
본 발명은 자기부상 회전 장치 및 이를 이용하는 기판 처리 장치에 관한 것으로, 보다 상세하게는 회전부가 안정적으로 자기부상 회전이 가능한 자기부상 회전 장치 및 이를 이용하는 기판 처리 장치에 관한 것이다.The present invention relates to a magnetic levitation rotation apparatus and a substrate processing apparatus using the same, and more particularly, to a magnetic levitation rotation apparatus capable of stably rotating a magnetic levitation rotation unit and a substrate processing apparatus using the same.
최근의 반도체 소자에서는 반도체 소자를 구성하는 박막의 두께가 수 나노(nm)에 불과하며 그 두께 균일성이 수% 내로 유지되어야 한다. 이러한 균일성의 레벨은 고온 프로세싱 동안에 기판 전체의 온도 변화가 수℃를 초과할 수 없다는 요건을 필요로 한다. 따라서, 온도의 불균일성을 최소화시키는 기술이 매우 중요하다. 특히, 기판이 대형화되면서 이러한 균일 가열이 제대로 이루어지지 않아 많은 문제점들이 발생되고 있다. 이러한 기판의 균일가열문제를 해결하기 위하여 급속열처리가 이루어지는 동안에 기판을 수평회전시키는 기판회전장치로서 자기부상 회전 장치(Maglev rotating apparatus)가 있다.In a recent semiconductor device, the thickness of a thin film constituting the semiconductor device is only a few nanometers (nm), and the thickness uniformity must be maintained within several percent. This level of uniformity necessitates the requirement that temperature variations across the substrate during high temperature processing cannot exceed several degrees Celsius. Therefore, a technique for minimizing temperature non-uniformity is very important. In particular, as the size of the substrate increases, such uniform heating is not properly performed, resulting in many problems. In order to solve the problem of uniform heating of the substrate, there is a maglev rotating apparatus as a substrate rotation device that horizontally rotates the substrate while rapid heat treatment is performed.
자기부상 회전 장치는 고정부(Stator)와 회전부(Rotor)를 포함하며, 회전부는 자기력에 의해 고정부에 비접촉된 상태로 부상되어 회전한다. 따라서 소음 및 진동이 적고, 파티클의 발생이 없으며 고속회전이 가능하여 짧은 시간동안 고온으로 가열되는 급속열처리장치에 적합하다. 회전자부는 지지 실린더를 통하여 에지링을 지지하고, 에지링 상에는 기판이 올려 놓여진다.The magnetic levitation rotation device includes a stator and a rotor, and the rotating part is lifted and rotated by magnetic force in a non-contact state with the stator. Therefore, noise and vibration are low, no particle is generated, and high-speed rotation is possible, so it is suitable for a rapid heat treatment device that is heated to a high temperature in a short time. The rotor unit supports the edge ring through a support cylinder, and a substrate is placed on the edge ring.
일반적으로 고속으로 회전하는 회전부의 변위를 측정하는 변위 센서를 이용하여 회전부의 위치를 미세 조정할 필요가 있다. 이러한 변위 센서는 회전부의 내측에 제공되어 회전부의 변위를 측정하게 되는데, 고정부의 자기력이 회전부에 전달되기 위하여 짧은 이격거리를 사이에 두고 조립되는 자기부상 회전 장치에서 조립불량이 발생될 가능성이 매우 높다. 고정부의 동심과 변위센서의 동심이 일치하지 않게 되는 경우에는 별도의 변위 센서 값을 조정하는 과정이 필요한 번거로움이 발생된다.In general, it is necessary to finely adjust the position of the rotating part using a displacement sensor that measures the displacement of the rotating part rotating at high speed. This displacement sensor is provided inside the rotating part to measure the displacement of the rotating part. In order for the magnetic force of the fixed part to be transmitted to the rotating part, there is a very high possibility of assembly failure in the magnetic levitation rotating device that is assembled with a short distance between them. high. When the concentricity of the fixing unit and the concentricity of the displacement sensor do not match, a process of separately adjusting the displacement sensor value is required, which is cumbersome.
이와 같이 자기부상 회전 장치의 조립 불량이나 변위 센서 값 조정에 에러가 발생하는 경우에는 회전 중에 강제로 정지하게되어 자기부상 회전 장치의 파손이나 공정 중에 있던 웨이퍼의 파손이 불가피하게 되는 문제가 있다.In this way, when an assembly defect of the magnetic levitation rotation device or an error in adjusting the displacement sensor value occurs, the magnetic levitation rotation device is forced to stop during rotation, resulting in damage to the magnetic levitation rotation device or damage to a wafer during the process.
(특허문헌 1) 한국공개특허 제10-2001-0111030호(Patent Document 1) Korean Patent Publication No. 10-2001-0111030
본 발명은 회전부가 안정적인 자기부상 회전이 가능한 자기부상 회전 장치 및 이를 포함하는 기판 처리 장치를 제공한다.The present invention provides a magnetic levitation rotating device capable of stable magnetic levitation rotation of a rotating part and a substrate processing device including the same.
또한, 본 발명은 고정부와 회전부의 높이 조절이 가능한 자기부상 회전 장치 및 이를 포함하는 기판 처리 장치를 제공한다.In addition, the present invention provides a magnetic levitation rotating device capable of adjusting the height of a fixed part and a rotating part and a substrate processing apparatus including the same.
본 발명의 실시예에 따른 자기부상 회전 장치는 원통형의 내측벽, 상기 내측벽의 외측에 제공되는 원통형의 외측벽, 및 상기 내측벽과 외측벽을 연결하는 저면부를 포함하는 하우징부; 상기 하우징부의 내측벽과 외측벽 사이의 수용공간에 수용되고, 자기력에 의해서 부상하여 수직축을 중심으로 회전하는 원통형의 회전부; 상기 외측벽의 외측에 제공되어 상기 회전부에 자기력을 제공하는 고정부; 및 상기 고정부에 장착되어 상기 회전부의 수평 방향 변위를 측정하는 복수의 수평 변위 센서부;를 포함할 수 있다.A magnetic levitation rotation device according to an embodiment of the present invention includes a housing portion including a cylindrical inner wall, a cylindrical outer wall provided outside the inner wall, and a bottom portion connecting the inner wall and the outer wall; a cylindrical rotating part accommodated in the receiving space between the inner and outer walls of the housing part, floating by magnetic force and rotating about a vertical axis; a fixing unit provided on the outer side of the outer wall to provide magnetic force to the rotating unit; and a plurality of horizontal displacement sensor units mounted on the fixing unit to measure horizontal displacement of the rotating unit.
상기 자기부상 회전 장치는 상기 저면부 측에 제공되어 상기 회전부의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부를 더 포함할 수 있다.The magnetic levitation rotating device may further include a plurality of vertical displacement sensors provided on the bottom side to measure displacement of the rotating unit in a vertical direction.
또는, 상기 자기부상 회전 장치는 상기 회전부의 상단부 혹은 하단부의 위치에 대응하도록 상기 고정부에 장착되어 상기 회전부의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부를 더 포함할 수 있다.Alternatively, the magnetic levitation rotating device may further include a plurality of vertical displacement sensors mounted on the fixing part to correspond to the position of the upper end or the lower end of the rotating part and measuring the displacement in the vertical direction of the rotating part.
이때, 상기 고정부를 수직방향으로 이동시키는 이동부를 더 포함할 수 있다.In this case, a moving unit for moving the fixing unit in a vertical direction may be further included.
상기 외측벽의 두께는 상기 내측벽의 두께보다 얇을 수 있다.A thickness of the outer wall may be smaller than a thickness of the inner wall.
상기 외측벽은 상자성 물질, 비자성 물질, 및 반자성 물질 중에서 적어도 어느 하나, 혹은 이들의 화합물로 이루어지고, 상기 외측벽의 두께는 0.5 내지 2.5mm일 수 있다.The outer wall is made of at least one of a paramagnetic material, a non-magnetic material, and a diamagnetic material, or a compound thereof, and the thickness of the outer wall may be 0.5 to 2.5 mm.
상기 회전부는 강자성 물질로 이루어지고, 상기 복수의 수평 변위 센서부는 상기 회전부에 의해 유도되어 상기 외측벽을 통과하여 제공되는 전자기적 특성 변화를 센싱하여 상기 회전부의 수평 방향 변위를 측정할 수 있다.The rotating unit may be made of a ferromagnetic material, and the plurality of horizontal displacement sensor units may measure a horizontal displacement of the rotating unit by sensing a change in electromagnetic characteristics induced by the rotating unit and provided through the outer wall.
상기 고정부는 상기 수직축에 교차하는 복수의 수평축을 따라 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치되는 복수의 자석 조립체를 포함하고, 상기 복수의 수평 변위 센서부 각각은 이웃하는 자석 조립체 사이에 제공될 수 있다.The fixing part includes a plurality of magnet assemblies symmetrically arranged in pairs around the vertical axis along a plurality of horizontal axes intersecting the vertical axis, and each of the plurality of horizontal displacement sensor units is provided between neighboring magnet assemblies. It can be.
상기 복수의 수평 변위 센서부는 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치될 수 있다.The plurality of horizontal displacement sensor units may be symmetrically arranged in pairs around the vertical axis.
상기 복수의 자석 조립체 각각은, 상기 회전부에 흡인력을 발생시켜 상기 회전부를 부상시키는 영구자석; 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 제1 제어 코일; 및 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 상기 회전부의 기울기를 제어하는 제2 제어 코일;을 포함할 수 있다.Each of the plurality of magnet assemblies includes a permanent magnet that lifts the rotating part by generating an attractive force to the rotating part; a first control coil controlling a horizontal position of the rotation unit by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux; and a second control coil controlling the inclination of the rotation unit by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux.
상기 고정부는 상기 외측벽을 따라 연장되어 외측벽을 감싸고, 자속을 발생시키는 전류의 방향과 크기에 따라 상기 회전부의 수직 방향 위치를 제어하는 수직위치 제어 코일을 더 포함할 수 있다.The fixing part may further include a vertical position control coil extending along the outer wall to surround the outer wall and controlling a vertical position of the rotating part according to a direction and magnitude of a current generating magnetic flux.
본 발명의 다른 실시예에 따른 기판 처리 장치는 본 발명의 실시예에 따른 자기부상 회전 장치; 상기 하우징에 연결되어 외부 공간과 격리된 기판의 처리 공간을 제공하는 챔버부; 및 상기 기판을 지지하고, 상기 회전부에 연결되어 연동하여 회전 가능하도록 제공되는 기판 지지부;를 포함할 수 있다.A substrate processing apparatus according to another embodiment of the present invention includes a magnetic levitation rotation apparatus according to an embodiment of the present invention; a chamber unit connected to the housing to provide a substrate processing space isolated from an external space; and a substrate support that supports the substrate and is connected to the rotation unit to be rotatably interlocked.
그리고, 상기 기판 처리 장치는 상기 기판의 제1 면 측에 제공되어 상기 기판을 향하여 광에너지를 제공하는 열원부; 상기 기판의 제2 면 측에 제공되어 상기 내측벽 상부연결되는 베이스 플레이트부; 및 상기 베이스 플레이트에 적어도 일부가 삽입되어 상기 기판의 온도를 측정하는 온도 측정부를 더 포함할 수 있다.Further, the substrate processing apparatus includes a heat source unit provided on the first side of the substrate to provide light energy toward the substrate; a base plate portion provided on the second surface side of the substrate and connected to an upper portion of the inner wall; and a temperature measuring unit at least partially inserted into the base plate to measure the temperature of the substrate.
본 발명의 실시예에 따른 자기부상 회전 장치 및 기판 처리 장치에 의하면, 변위 센서를 회전부 내측의 하우징 내측 벽에 장착하기 위한 복작한 구조의 변위 센서 고정부재가 필요 없어서 조립 불량에 의한 자기부상 회전의 안정성을 확보할 수 있다. 그리고, 변위 센서들이 하우징 외측벽의 외측에 위치하고 있어서 조립 불량이 발생하더라도 간단히 재조립할 수 있다.According to the magnetic levitation rotation device and the substrate processing device according to an embodiment of the present invention, there is no need for a displacement sensor fixing member having a complicated structure for mounting the displacement sensor on the inner wall of the housing inside the rotating unit, thereby preventing magnetic levitation rotation due to assembly failure. stability can be ensured. In addition, since the displacement sensors are located outside the outer wall of the housing, it can be easily reassembled even if an assembly defect occurs.
그리고, 변위 센서들을 고정부에 장착되는 구조이므로, 고정부 중심과 하우징 내측 벽에 조립되는 변위 센서의 중심이 일치하지 않는 경우에 반드시 필요한 과정인 변위센서 값들의 조정이 원천적으로 필요 없게 된다.In addition, since the displacement sensors are mounted on the fixing part, the adjustment of displacement sensor values, which is a necessary process when the center of the fixing part and the center of the displacement sensor assembled on the inner wall of the housing do not coincide, is fundamentally unnecessary.
한편, 변위 센서를 고정부에 장착하여 하우징 외측벽의 외측에서 회전부의 변위를 측정하게 됨으로써, 고정부의 높이 변화에 따라서 회전부의 높이도 연동하여 변경될 수 있다. 이를 통해서 온도를 정밀하게 제어하기 위해서 기판의 높이를 정밀하게 조정하거나, 새로운 공정을 수행하거나, 또는 새로운 구조의 기판 처리 장치에서 기판의 높이를 변경해야하는 경우에 챔버 외부에 있는 고정부의 높이를 제어함으로써 간단히 챔버 내부에 제공된 기판의 높이를 조절할 수 있다.On the other hand, by mounting the displacement sensor on the fixed part to measure the displacement of the rotating part from the outside of the outer wall of the housing, the height of the rotating part can be interlocked and changed according to the change in height of the fixed part. Through this, the height of the fixture outside the chamber is controlled when the height of the substrate needs to be precisely adjusted to precisely control the temperature, a new process is performed, or the height of the substrate needs to be changed in a substrate processing device having a new structure. By doing so, it is possible to simply adjust the height of the substrate provided inside the chamber.
도 1은 본 발명의 실시예에 따른 자기부상 회전 장치의 개념도.1 is a conceptual diagram of a magnetic levitation rotation device according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 고정부의 분해 사시도.Figure 2 is an exploded perspective view of a fixing unit according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 자기부상 회전 장치의 간략도.Figure 3 is a simplified view of a magnetic levitation rotation device according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 자기부상 회전 장치의 개념도.4 is a conceptual diagram of a magnetic levitation rotation device according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 변위 센서들의 작용을 설명하는 설명도.5 is an explanatory diagram explaining the operation of displacement sensors according to another embodiment of the present invention;
도 6은 본 발명의 다른 실시예에 따른 변위 센서들의 장착 상태를 나타낸 부분 단면 사시도.6 is a partial cross-sectional perspective view showing a mounting state of displacement sensors according to another embodiment of the present invention;
도 7은 본 발명의 다른 실시예에 따른 기판 처리 장치의 개념도.7 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 기판 처리 장치의 개념도.8 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different forms, only these embodiments will complete the disclosure of the present invention, and will fully cover the scope of the invention to those skilled in the art. It is provided to inform you. During the description, the same reference numerals are assigned to the same components, and the drawings may be partially exaggerated in size in order to accurately describe the embodiments of the present invention, and the same numerals refer to the same elements in the drawings.
도 1은 본 발명의 실시예에 따른 자기부상 회전 장치의 개념도이고, 도 2는 본 발명의 실시예에 따른 고정부의 분해 사시도이고, 도 3은 본 발명의 실시예에 따른 자기부상 회전 장치의 간략도이다.1 is a conceptual diagram of a magnetic levitation rotation device according to an embodiment of the present invention, Figure 2 is an exploded perspective view of a fixing unit according to an embodiment of the present invention, Figure 3 is a magnetic levitation rotation device according to an embodiment of the present invention It is a brief diagram.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 자기부상 회전 장치는 원통형의 내측벽(111), 상기 내측벽(111)의 외측에 제공되는 원통형의 외측벽(112), 및 상기 내측벽(111)과 외측벽(112)을 연결하는 저면부(113)를 포함하는 하우징부(110); 상기 하우징부의 내측벽(111)과 외측벽(112) 사이의 수용공간에 수용되고, 자기력에 의해서 부상하여 수직축을 중심으로 회전하는 원통형의 회전부(120); 상기 외측벽의 외측에 제공되어 상기 회전부에 자기력을 제공하는 고정부(130); 및 상기 고정부(130)에 장착되어 상기 회전부(120)의 수평 방향 변위를 측정하는 복수의 수평 변위 센서부(141);를 포함할 수 있다.1 to 3, the magnetic levitation rotation device according to an embodiment of the present invention includes a cylindrical inner wall 111, a cylindrical outer wall 112 provided on the outside of the inner wall 111, and the inner wall 111. a housing part 110 including a bottom part 113 connecting the side wall 111 and the outer wall 112; A cylindrical rotating part 120 accommodated in the accommodation space between the inner wall 111 and the outer wall 112 of the housing part, floating by magnetic force and rotating around a vertical axis; A fixing part 130 provided on the outer side of the outer wall to provide magnetic force to the rotating part; and a plurality of horizontal displacement sensor units 141 mounted on the fixing unit 130 to measure displacement of the rotating unit 120 in a horizontal direction.
하우징부(110)는 내부에 수용되는 회전부(120)와 외부에 제공되는 고정부(130)을 서로 분리하고, 후술하는 기판 처리 장치의 챔버와 연결되어 외부와 분리된 기판 처리 공간을 정의할 수 있다. 기판 처리 장치의 챔버와 연결되어 기판 처리 공정이 진행되는 동안에는 하우징부 내부는 진공으로 유지될 수 있어서, 외부의 대기압과 내부의 진공압 사이의 압력차를 견딜 수 있는 강도를 가져야한다.The housing part 110 separates the rotation part 120 accommodated inside and the fixing part 130 provided outside from each other, and is connected to a chamber of a substrate processing apparatus to be described later to define a substrate processing space separated from the outside. there is. Since the inside of the housing can be maintained in a vacuum while being connected to the chamber of the substrate processing apparatus and the substrate processing process is in progress, the housing must have strength capable of withstanding a pressure difference between the external atmospheric pressure and the internal vacuum pressure.
하우징부(110)은 원통형의 내측벽(111), 상기 내측벽(111)의 외측에 제공되는 원통형의 외측벽(112), 및 상기 내측벽(111)과 외측벽(112)을 연결하는 저면부(113)를 포함할 수 있다. 외측벽(112)은 회전부(120)과 고정부(130) 사이에 제공되어 회전부(120)과 고정부(130) 간에 자력선이 충분히 통과할 수 있도록 얇은 두께의 박판으로 이루어질 수 있다. 반면에, 내측벽(111)과 저면부(113)는 자력선이 통과할 필요가 없고 대기압과 진공압의 압력차를 견딜 뿐만 아니라 전체적인 하우징 구조의 강도를 위해서 외측벽(120)보다 두꺼울 수 있다. 하우징(110)이 내측벽(111), 외측벽(112), 및 저면부(113)으로 이루어지고 상부는 오픈된 구조를 가짐으로써, 오픈된 상부를 통해서 회전부(120)의 삽입과 분리가 용이할 수 있다.The housing portion 110 includes a cylindrical inner wall 111, a cylindrical outer wall 112 provided outside the inner wall 111, and a bottom portion connecting the inner wall 111 and the outer wall 112 ( 113) may be included. The outer wall 112 is provided between the rotating part 120 and the fixed part 130 and may be formed of a thin plate having a thin thickness so that lines of magnetic force can sufficiently pass between the rotating part 120 and the fixed part 130 . On the other hand, the inner wall 111 and the lower surface portion 113 may be thicker than the outer wall 120 for the strength of the overall housing structure as well as to withstand the pressure difference between atmospheric pressure and vacuum pressure without the need for magnetic force lines to pass therethrough. Since the housing 110 is composed of an inner wall 111, an outer wall 112, and a bottom part 113 and has an open top, insertion and separation of the rotating part 120 can be facilitated through the open top. can
원통형의 회전부(120)는 하우징부의 내측벽(111)과 외측벽(112) 사이에 형성되는 환상의 수용공간에 수용되고, 자기력에 의해서 부상하여 수직축을 중심으로 회전할 수 있다. 회전부(120)를 부상시키고 회전시키는 자기력은 외측벽(112)의 외측에 배치되는 고정부(130)에 의해서 제공되는데, 회전부(120)와 고정부(130) 사이에 자계의 상호 작용을 원할하게 하기 위해서 원통형의 회전부(120)는 상단부와 하단부가 돌출된 형태일 수 있다. 회전부(120)는 고정부(130)에 의해서 강한 자계가 유도될 수 있도록 강자성 물질로 이루어질 수 있고, 원통형 회전부(120)의 외주면에는 등간격으로 복수개의 자극 톱니가 링 형태로 배치되도록 제공될 수 있다.The cylindrical rotating part 120 is accommodated in an annular accommodation space formed between the inner wall 111 and the outer wall 112 of the housing part, and can be lifted by magnetic force and rotated around a vertical axis. The magnetic force that lifts and rotates the rotating part 120 is provided by the fixing part 130 disposed on the outside of the outer wall 112, so that the interaction of the magnetic field between the rotating part 120 and the fixed part 130 is smooth. For this purpose, the cylindrical rotating part 120 may have a protruding top and bottom ends. The rotating part 120 may be made of a ferromagnetic material so that a strong magnetic field can be induced by the fixing part 130, and a plurality of magnetic pole teeth may be arranged in a ring shape at regular intervals on the outer circumferential surface of the cylindrical rotating part 120. there is.
고정부(130)는 외측벽(112)의 외측에 제공되어 회전부(120)의 부상과 이동에 필요한 자기력을 제공할 수 있다.The fixing part 130 may be provided on the outside of the outer wall 112 to provide magnetic force necessary for the floating and moving of the rotating part 120 .
고정부(130)는 평판 형태로서 수직(Z-축)방향으로 이격되어 한쌍으로 제공되는 자기 코어(131, 132), 및 한쌍의 자기 코어(131, 132) 사이에 수평(X-축 및 Y-축)방향으로 등간격으로 배치되는 복수의 영구자석(133a 내지 133d)을 포함한다.The fixing part 130 is in the form of a flat plate and includes magnetic cores 131 and 132 provided as a pair spaced apart in the vertical (Z-axis) direction, and horizontally (X-axis and Y-axis) between the pair of magnetic cores 131 and 132. It includes a plurality of permanent magnets 133a to 133d arranged at equal intervals in the -axis) direction.
자기 코어(131, 132)는 원통형의 회전부(120)의 외주면을 따라 연장되는 일체의 평판으로 방사상의 폐쇄 회로를 구성하는데, 방사상으로 대칭되게 제공되는 돌출부(131a, 132a), 연결부(131b, 132b) 및 오목부(131c, 132c)를 포함한다.The magnetic cores 131 and 132 constitute a radial closed circuit as an integral flat plate extending along the outer circumferential surface of the cylindrical rotating part 120, and include radially symmetrical protrusions 131a and 132a, and connection parts 131b and 132b. ) and concave portions 131c and 132c.
복수의 영구자석(133a 내지 133d)은 강한 자계를 갖고 있어서 공기 혹은 진공의 갭이 존재함에도 불구하고 회전부(120)에 강한 자계를 발생시킬 수 있고, 이로 인해 회전부(120)를 부상시킬 수 있을 뿐만 아니라 회전부가 (120)가 수직방향으로 복수의 영구자석의 중심이 맞추어질 수 있도록 한다.The plurality of permanent magnets 133a to 133d have a strong magnetic field, so that a strong magnetic field can be generated in the rotating part 120 despite the existence of an air or vacuum gap, thereby injuring the rotating part 120 Rather, the rotation unit 120 allows the center of a plurality of permanent magnets to be aligned in the vertical direction.
고정부(130)는 자기 코어(131, 132) 각각에 결합되고 입력되는 전류에 의해서 자속을 발생시키는 구동 코일(미도시)과 위치 제어 코일(134, 135, 136)을 더 포함한다.The fixing unit 130 further includes a driving coil (not shown) and position control coils 134, 135, and 136 coupled to the magnetic cores 131 and 132 and generating magnetic flux by an input current.
구동 코일은 복수의 단부 권선이 자기 코어의 내측면을 따라 등간격으로 배치되는 다상 권선으로, 회전부(120) 또는 그 외주면에 제공된 복수의 자극 톱니의 자계와 상호작용하여 수직축을 중심으로 한 토오크를 발생시켜 회전부(120)을 회전시키는 회전 전자계를 발생시킨다.The driving coil is a multi-phase winding in which a plurality of end windings are arranged at equal intervals along the inner surface of the magnetic core, and interacts with the magnetic field of the rotating part 120 or a plurality of magnetic pole teeth provided on its outer circumferential surface to generate torque around a vertical axis. generated to generate a rotating electromagnetic field that rotates the rotating unit 120.
한편, 복수의 영구자석의 자속은 고정부(130)과 회전부(120) 사이에 방사상의 흡인력을 발생시키는데, 이러한 흡인력은 방향에 따라 불안정성이 발생되어 회전부(120)을 일측으로 이동시킬 수 있다. 이러한 경우에는 회전부(120)의 위치 제어가 필요하게 되는데, 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하는 위치 제어 코일을 이용하여 회전부(120)의 위치를 제어할 수 있다. 영구자석(133a 내지 133d)의 자속과 위치 제어 코일의 자속의 상대적인 방향이 일치하는지 혹은 반대 방향인지에 따라 흡인력을 추가로 발생시키거나 흡인력을 상쇄시킴으로써 회전부의 위치를 제어할 수 있다.On the other hand, the magnetic flux of the plurality of permanent magnets generates a radial attraction force between the fixed part 130 and the rotating part 120, and this attraction causes instability depending on the direction so that the rotating part 120 can be moved to one side. In this case, it is necessary to control the position of the rotating part 120, and the position of the rotating part 120 can be controlled using a position control coil that adjusts the suction force according to the direction and magnitude of the current generating the magnetic flux. Depending on whether the relative directions of the magnetic flux of the permanent magnets 133a to 133d and the magnetic flux of the position control coil coincide or are in opposite directions, the position of the rotating unit can be controlled by additionally generating or canceling the attractive force.
고정부(130)는 수직축(Z-축)에 교차하는 복수의 수평축(예를 들어, X-축 및 Y-축)을 따라 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치되는 복수의 자석 조립체를 포함할 수 있다. 복수의 자석 조립체는 방사상으로 대칭되게 제공되는 자기 코어(131, 132)의 돌출부(131a, 132a)에 대응되는 위치에 제공될 수 있다.The fixing part 130 is a plurality of magnet assemblies arranged in pairs symmetrically about the vertical axis along a plurality of horizontal axes (eg, X-axis and Y-axis) intersecting the vertical axis (Z-axis). can include A plurality of magnet assemblies may be provided at positions corresponding to the protrusions 131a and 132a of the magnetic cores 131 and 132 that are radially symmetrical.
상기 복수의 자석 조립체 각각은, 회전부(120)에 흡인력을 발생시켜 회전부를 부상시키는 영구자석(133a 내지 133d); 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 회전부(120)의 수평 방향 위치를 제어하는 수평 위치 제어 코일(134a 내지 134d); 및 자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 회전부(120)의 기울기를 제어하는 기울기 제어 코일(135a 내지 135d);을 포함할 수 있다.Each of the plurality of magnet assemblies includes permanent magnets (133a to 133d) that lift the rotating part by generating an attractive force to the rotating part 120; Horizontal position control coils (134a to 134d) for controlling the horizontal direction position of the rotation unit 120 by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux; and tilt control coils 135a to 135d for controlling the tilt of the rotation unit 120 by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux.
영구자석(133a 내지 133d)은 방사상으로 대칭되게 제공되는 수직방향으로 이격되어 제공되는 자기 코어(131, 132)의 돌출부(131a, 132a)가 형성된 영역 사이의 외주면에 배치된다.The permanent magnets 133a to 133d are disposed on the outer circumferential surface between regions where the protrusions 131a and 132a of the magnetic cores 131 and 132 are provided radially symmetrically and spaced apart in the vertical direction.
수평 위치 제어 코일(134a 내지 134d)과 기울기 제어 코일(135a 내지 135d)은 각각 수직방향으로 서로 이격되어 제공되는 상측 자기 코어(131)의 돌출부(131a)와 하측 자기 코어(132)의 돌출부(132a)에 권취될 수 있다.The horizontal position control coils 134a to 134d and the inclination control coils 135a to 135d are provided separately from each other in the vertical direction, respectively. ) can be wound on.
수직축을 중심으로 X-축과 Y-축 방향으로 서로 대칭되게 배치되는 영구자석, 수평 위치 제어 코일, 및 기울기 제어 코일의 자속 방향과 자속 크기를 상대적으로 변화시킴에 따라서, 회전부(120)의 수평 방향 위치 제어와 기울기 제어가 가능하게 된다.As the magnetic flux direction and magnetic flux magnitude of the permanent magnet, the horizontal position control coil, and the tilt control coil are relatively changed in the X-axis and Y-axis directions around the vertical axis, the rotation unit 120 rotates horizontally. Directional position control and tilt control are possible.
고정부(130)는 외측벽(112)을 따라 연장되어 외측벽(112)을 감싸도록 제공되고, 자속을 발생시키는 전류의 방향과 크기에 따라 회전부(120)의 수직 방향 위치를 제어하는 수직 위치 제어 코일(136)을 더 포함할 수 있다. 회전부(120)은 자중에 의해서 아랫방향으로 힘을 받게 되어서 부상되어 있는 회전부가(120)가 수직방향으로 영구자석의 높이 중심이 맞추어지지 못하고, 정위치보다 아래로 쳐질 수가 있다. 이런 경우에서 고속으로 회전하게 되면 영구자석에 의한 자기력과 중력의 상호작용으로 인해서 회전부가 회전하면서 요동칠 수 있다. 따라서, 필요에 따라서 회전부(120)을 원하는 높이에 위치시킬 수 있도록 회전부(120)의 수직 방향 위치를 제어할 필요가 있는데, 수직 위치 제어 코일(136)에서 코일을 흐르는 전류의 방향과 크기를 조절함으로써 회전부(120)의 수직 방향 위치를 제어할 수 있다.The fixing part 130 extends along the outer wall 112 and is provided to surround the outer wall 112, and the vertical position control coil controls the vertical position of the rotating part 120 according to the direction and magnitude of current generating magnetic flux. (136) may be further included. Since the rotation unit 120 receives a downward force due to its own weight, the floating rotation unit 120 may not align with the center of the height of the permanent magnet in the vertical direction, and may be lowered than the normal position. In this case, when it rotates at high speed, the rotating part may fluctuate while rotating due to the interaction between the magnetic force and gravity by the permanent magnet. Therefore, it is necessary to control the vertical position of the rotating part 120 so that the rotating part 120 can be positioned at a desired height as needed. The vertical position control coil 136 controls the direction and magnitude of the current flowing through the coil. By doing so, the vertical position of the rotation unit 120 can be controlled.
한편, 위치 제어 코일(134, 135, 136)을 이용하여 회전부(120)의 위치를 조절하기 위해서는 회전부(120)의 위치 또는 변위를 측정할 필요가 있다. 회전부의 수평 방향 위치, 기울기, 수직 방향 위치를 제어하기 위해서는 서로 이격된 복수의 변위 센서부를 이용하여 회전부의 수평 방향 위치와 수직 방향 위치를 획득하여야 한다.Meanwhile, in order to adjust the position of the rotating part 120 using the position control coils 134 , 135 , and 136 , it is necessary to measure the position or displacement of the rotating part 120 . In order to control the horizontal position, inclination, and vertical position of the rotating part, the horizontal and vertical positions of the rotating part must be obtained using a plurality of displacement sensor units spaced apart from each other.
일반적으로 수평 변위 센서부는 회전부의 내측에 복수개가 제공되어 회전부의 변위를 측정한다. 이를 위해서 수평 변위 센서부는 하우징의 내측벽에 형성된 구멍에 삽입되어 장착된다. 여기서, 자기부상 회전 장치가 기판 처리 장치의 챔버에 연결되어 사용되는 경우에 하우징 내부의 진공압과 하우징 외부의 대기압 사이의 압력 차이에 의한 공기 혹은 가스 누설을 방지하기 위해서는 오링 등의 실링 부재를 포함하여 복잡한 장착 구조를 이용하여 수평 변위 센서부가 조립된다. 이때, 고정부의 자기력이 회전부에 전달되기 위하여 짧은 이격거리를 사이에 두고 조립되는 자기부상 회전 장치에서 조립불량이 발생될 가능성이 매우 높다. 또한, 고정부의 동심과 변위센서의 동심이 일치하지 않게 되는 경우에는 별도의 변위 센서 값을 조정하는 과정이 필요한 번거로움이 발생된다. 이와 같이 자기부상 회전 장치의 조립 불량이나 변위 센서 값 조정에 에러가 발생하는 경우에는 회전 중에 강제로 정지하게되어 자기부상 회전 장치의 파손이나 공정 중에 있던 웨이퍼의 파손이 불가피하게 되는 문제가 있다.In general, a plurality of horizontal displacement sensors are provided inside the rotating unit to measure the displacement of the rotating unit. To this end, the horizontal displacement sensor unit is inserted and mounted into a hole formed in the inner wall of the housing. Here, when the magnetic levitation rotation device is connected to the chamber of the substrate processing device, a sealing member such as an O-ring is included to prevent air or gas leakage due to a pressure difference between the vacuum pressure inside the housing and the atmospheric pressure outside the housing. Thus, the horizontal displacement sensor unit is assembled using a complicated mounting structure. At this time, there is a very high possibility that assembly failure occurs in the magnetic levitation rotating device assembled with a short separation distance in order to transfer the magnetic force of the fixing part to the rotating part. In addition, when the concentricity of the fixing part and the concentricity of the displacement sensor do not match, a process of separately adjusting the displacement sensor value is required, which is cumbersome. In this way, when an assembly defect of the magnetic levitation rotation device or an error in adjusting the displacement sensor value occurs, the magnetic levitation rotation device is forced to stop during rotation, resulting in damage to the magnetic levitation rotation device or damage to a wafer during the process.
수평 변위 센서부를 하우징 외측에 배치하기 위해서 하우징 외측벽에 장착할 수도 있다. 하지만, 고정부의 자기력이 회전부를 부양할 수 있도록 고정부와 회전부 사이에 위치하는 하우징 외측벽은 내측벽이나 저면부보다 얇은 박판으로 형성되어야 하므로 하우징 외측벽에 수평 변위 센서부를 안정적으로 장착하기는 어렵고, 공기 혹은 가스의 누설 문제도 내측벽 장착과 마찬가지로 발생될 수 있다.In order to dispose the horizontal displacement sensor unit outside the housing, it may be mounted on the outer wall of the housing. However, since the outer wall of the housing located between the fixed part and the rotating part must be formed of a thin plate thinner than the inner wall or bottom so that the magnetic force of the fixed part can lift the rotating part, it is difficult to stably mount the horizontal displacement sensor on the outer wall of the housing, Leakage problems of air or gas can occur as well as mounting on the inner wall.
따라서, 본 발명에서는 수평 변위 센서부(141)를 고정부(130)에 장착하여 회전부(120)의 수평 방향 변위를 측정할 수 있다. 이러한 구조에서는 수평 변위 센서부들을 고정부에 장착하므로, 고정부의 중심과 수평 변위 센서의 중심이 원천적으로 동심으로 일치할 수 밖에 없게 되어 변위센서 값들의 조정이 필요 없을 수 있다.Therefore, in the present invention, the displacement of the rotation unit 120 in the horizontal direction can be measured by mounting the horizontal displacement sensor unit 141 on the fixing unit 130 . In this structure, since the horizontal displacement sensor parts are mounted on the fixing part, the center of the fixing part and the center of the horizontal displacement sensor must essentially coincide concentrically, and thus adjustment of the displacement sensor values may not be necessary.
또한, 수평 변위 센서부(141)가 대기압 하에 있는 고정부(130)에 장착되므로, 대기압과 진공압 사이의 누설을 고려할 필요가 없으므로 복잡한 구조의 고정부재가 필요 없어서 조립 불량에 의한 자기부상 회전의 안정성을 확보할 수 있다. 그리고, 수평 변위 센서들이 하우징 외측벽의 외측에 위치하고 있어서 조립 불량이 발생하더라도 간단히 재조립할 수 있다.In addition, since the horizontal displacement sensor unit 141 is mounted on the fixing unit 130 under atmospheric pressure, there is no need to consider leaks between atmospheric pressure and vacuum pressure, so a fixing member with a complicated structure is not required, preventing magnetic levitation rotation due to poor assembly. stability can be ensured. In addition, since the horizontal displacement sensors are located outside the outer wall of the housing, it can be easily reassembled even if assembly defects occur.
본 발명의 실시예에 따른 자기부상 회전 장치는 상기 저면부 측에 제공되어 상기 회전부의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부(142)를 더 포함할 수 있다.The magnetic levitation rotation device according to an embodiment of the present invention may further include a plurality of vertical displacement sensor units 142 provided on the bottom side to measure displacement of the rotation unit in the vertical direction.
서로 등간격으로 이격되어 복수의 수직 변위 센서부(142)는 상측에서 부상한채로 회전하는 회전부(120)의 하단부의 위치 혹은 변위를 측정하여, 수직 변위 센서부와 회전부 사이의 방사상 위치별 간격을 이용하여 회전부의 기울기와 수직 위치(높이)를 알 수 있다.The plurality of vertical displacement sensor units 142 spaced apart from each other at equal intervals measure the position or displacement of the lower end of the rotating unit 120 that rotates while floating from the upper side, and calculates the radial positional distance between the vertical displacement sensor unit and the rotating unit. By using it, the inclination and vertical position (height) of the rotating part can be known.
복수의 수직 변위 센서부(142)는 하우징의 저면부(113)에 제공된 구멍에 삽입되고 공기/가스 누설을 방지하기 위해서 실링 구조를 포함한 장착부재에 의해서 장착될 수 있다. 저면부(113)의 두께는 외측벽(112)의 두께보다 두꺼워서 안정적인 지지가 가능하고, 저면부가 대기압의 오픈된 공간에 위치하므로 조립 혹은 재조립하기가 용이할 수 있다. 또한, 수직 변위 센서부(142)는 회전부(120)의 수직 위치를 측정하는 것이어서 수직 변위 센서부(142)의 중심과 고정부(130)의 중심이 일치할 필요가 없으므로 동심이 아닌 경우의 문제는 발생되지 않는다.The plurality of vertical displacement sensor units 142 may be inserted into holes provided in the bottom portion 113 of the housing and mounted by a mounting member including a sealing structure to prevent air/gas leakage. The thickness of the bottom part 113 is thicker than the thickness of the outer wall 112, so stable support is possible, and since the bottom part is located in an open space of atmospheric pressure, it may be easy to assemble or reassemble. In addition, since the vertical displacement sensor unit 142 measures the vertical position of the rotating unit 120, the center of the vertical displacement sensor unit 142 and the center of the fixing unit 130 do not need to coincide. does not occur
고정부(130)과 회전부(120)의 자속이 상호작용하여 회전부(120)를 안정적으로 부양할 수 있도록 고정부와 회전부 사이에 위치하는 하우징 외측벽(112)은 내측벽(111)이나 저면부(113)보다 얇을 수 있다. 또한, 고정부(130)과 회전부(120)의 자속이 외측벽(112)를 손실없이 투과하기 위해서 외측벽(112)은 상자성 물질, 비자성 물질, 및 반자성 물질 중에서 적어도 어느 하나, 혹은 이들의 화합물로 이루어 질 수 있고, 그 두께는 0.5 내지 2.5mm일 수 있다. 외측벽(112)가 강자성체 물질로 이루어지는 경우에는 고정부과 회전부의 자속이 외측벽을 투과할 수 없고, STS316 또는 SUS304 등의 비자성 물질로 이루어지는 경우에는 고정부와 회전부의 자속이 손실 없이 투과할 수 있게 된다.The housing outer wall 112 located between the fixed part and the rotating part so that the magnetic flux of the fixed part 130 and the rotating part 120 interacts to stably lift the rotating part 120, the inner wall 111 or the bottom part ( 113) may be thinner. In addition, in order for the magnetic flux of the fixed part 130 and the rotating part 120 to pass through the outer wall 112 without loss, the outer wall 112 is made of at least one of a paramagnetic material, a non-magnetic material, and a diamagnetic material, or a compound thereof. It may be made, and the thickness may be 0.5 to 2.5 mm. When the outer wall 112 is made of a ferromagnetic material, the magnetic flux of the fixed part and the rotating part cannot pass through the outer wall, and when it is made of a non-magnetic material such as STS316 or SUS304, the magnetic flux of the fixed part and the rotating part can pass through without loss. .
한편, 회전부(120)는 고정부(130)에 의해서 강한 자계가 유도될 수 있도록 강자성 물질(예를 들어 STS420)로 이루어질 수 있는데, 복수의 수평 변위 센서부(141)는 회전부(120)에 의해 유도되어 외측벽(112)을 통과하여 제공되는 전자기적 특성 변화를 센싱하여 상기 회전부의 수평 방향 변위를 측정할 수 있다. 즉, 수평 변위 센서부(141)는 비자성 물질 등으로 이루어진 얇은 두께(0.5 내지 2.5mm)의 외측벽(112)를 투과하여 회전부(120)의 변위를 정확히 측정할 수 있다. 외측벽의 두께가 0.5mm보다 얇은 경우는 전자기적 특성 변화는 민감하게 감지할 수 있은 대기압과 진공압 사이의 압력차를 견딜 수 없게 되어 하우징 형상을 유지할 수 없게 되고, 외측벽의 두께가 2.5mm보다 두껍게 되면 구조적으로는 안정화되지만 회전부(120)의 변위(전자기적 특성 변화)를 감지할 수 없게 된다.Meanwhile, the rotating unit 120 may be made of a ferromagnetic material (eg STS420) so that a strong magnetic field can be induced by the fixing unit 130. The plurality of horizontal displacement sensor units 141 are configured by the rotating unit 120 The horizontal displacement of the rotation unit may be measured by sensing a change in electromagnetic characteristics that is induced and provided through the outer wall 112 . That is, the horizontal displacement sensor unit 141 can accurately measure the displacement of the rotation unit 120 by penetrating the outer wall 112 having a thin thickness (0.5 to 2.5 mm) made of a non-magnetic material or the like. If the thickness of the outer wall is less than 0.5 mm, the change in electromagnetic properties cannot withstand the sensitively detectable pressure difference between atmospheric pressure and vacuum pressure, and the housing shape cannot be maintained. When it is structurally stabilized, the displacement (electromagnetic characteristic change) of the rotating part 120 cannot be sensed.
외측벽(112)의 외측에 제공되어 외측벽 내부의 회전부(120)의 변위를 측정하는 수평 변위 센서부(141)는 와전류 변위 센서 또는 홀 센서일 수 있는데, 특별히 이들에 제한되는 것에 아니고 회전부의 위치 변화에 의해 유도되어 상기 외측벽을 통과하여 제공되는 전자기적 특성 변화를 감지할 수 있으면 족하다.The horizontal displacement sensor unit 141 provided on the outside of the outer wall 112 and measuring the displacement of the rotating part 120 inside the outer wall may be an eddy current displacement sensor or a Hall sensor, but is not particularly limited thereto, and the position change of the rotating part It suffices if a change in electromagnetic properties induced by and provided through the outer wall can be sensed.
와전류 변위센서를 와전류를 이용한 변위센서로서, 센서의 코일에 전류를 공급하면 생성되는 자기장에 의해서 센서 주위에 도체가 접근하면 도체에 와전류가 생성된다. 이 와전류는 센서의 코일에 흐르는 전류에 영향을 준다. 이 전류의 크기변화와 위상 변화 등을 이용하여 정밀한 거리를 측정할 수 있다.An eddy current displacement sensor is a displacement sensor using eddy current. Eddy current is generated in the conductor when a conductor approaches the sensor due to a magnetic field generated when current is supplied to the coil of the sensor. This eddy current affects the current flowing through the coil of the sensor. Precise distance can be measured using the change in magnitude and phase of this current.
한편, 와전류 변위 센서의 자기장이 하우징의 외측벽(112)을 통과하여 회전부(120)에 와전류를 생성해야만 회전부(120)의 변위를 측정할 수 있는데, 외측벽의 두께나 재료에 따라서 자기장의 투과가 달라지게 되므로 경우에 따라서 자기장의 투과량이 불충분할 수 있다. 예를 들어 외측벽이 비자성체 물질로 이루어져 있다고 하더라도 와전류 변위 센서의 자기장이 외측벽을 통과하지 못하면 외측벽에만 와전류가 발생되어 외측벽의 변위만 측정할 수 있게 될 수도 있다. 따라서, 일반적인 와전류 변위 센서의 프로브(probe)에는 코일만 감겨 있는데 반하여 본 발명에서는 강자성체 코어(예를 들어 페라이트 코어)에 코일을 감아 와전류 발생 깊이(자기장 침투 깊이)를 늘려서 회전부(120)에 와전류를 발생시킬 수 있다. 또한, 회전부에 와전류를 발생시키기 위하여 발진 주파수를 격벽의 두께에 따라 변경하면서 회전부의 변위를 측정하였다.On the other hand, the displacement of the rotating part 120 can be measured only when the magnetic field of the eddy current displacement sensor passes through the outer wall 112 of the housing and generates an eddy current in the rotating part 120. The transmission of the magnetic field varies depending on the thickness or material of the outer wall Therefore, in some cases, the transmittance of the magnetic field may be insufficient. For example, even if the outer wall is made of a non-magnetic material, if the magnetic field of the eddy current displacement sensor does not pass through the outer wall, eddy currents are generated only in the outer wall, so that only the displacement of the outer wall can be measured. Therefore, while only a coil is wound on the probe of a typical eddy current displacement sensor, in the present invention, the coil is wound around a ferromagnetic core (eg, a ferrite core) to increase the eddy current generation depth (magnetic field penetration depth) to generate eddy current in the rotating part 120 can cause In addition, in order to generate eddy current in the rotating part, the displacement of the rotating part was measured while changing the oscillation frequency according to the thickness of the barrier rib.
홀 센서는 자석에서 나오는 자속밀도(가우스)의 크기 변화(즉, 거리 변화)에 따라 선형적으로 출력값을 출력하는데, 이로부터 변위를 측정할 수 있다. 즉, 홀 센서는 바이어스 자기장을 만들어 강자성체 물질로 이루어진 회전부(120)을 타겟으로 거리에 따른 자속밀도 변화를 감지하여 아날로그 출력값(전압값 또는 전류값)을 출력하므로, 이를 이용하면 자속이 통과하는 외측벽(112) 내측에 위치하는 회전부(120)의 변위를 측정할 수 있다.The hall sensor outputs an output value linearly according to the change in the magnetic flux density (Gauss) from the magnet (that is, the change in distance), from which the displacement can be measured. That is, the Hall sensor creates a bias magnetic field and uses the rotating part 120 made of ferromagnetic material as a target to sense the change in magnetic flux density according to the distance and outputs an analog output value (voltage value or current value). (112) It is possible to measure the displacement of the rotating part 120 located inside.
도 4는 본 발명의 다른 실시예에 따른 자기부상 회전 장치의 개념도이고, 도 5는 본 발명의 다른 실시예에 따른 변위 센서들의 작용을 설명하는 설명도이고, 도 6은 본 발명의 다른 실시예에 따른 변위 센서들의 장착 상태를 나타낸 부분 단면 사시도이다. 본 발명의 다른 실시예에 따른 자기부상 회전 장치를 설명함에 있어서, 본 발명의 실시예에 따른 자기부상 회전 장치와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.4 is a conceptual diagram of a magnetic levitation rotation device according to another embodiment of the present invention, FIG. 5 is an explanatory view illustrating the operation of displacement sensors according to another embodiment of the present invention, and FIG. 6 is another embodiment of the present invention. It is a partial cross-sectional perspective view showing the mounting state of the displacement sensors according to . In describing the magnetic levitation rotation device according to another embodiment of the present invention, items overlapping with those described above in relation to the magnetic levitation rotation device according to the embodiment of the present invention will be omitted.
도 4 내지 도 6을 참조하면, 본 발명의 다른 실시예에 따른 자기부상 회전 장치는 회전부(120)의 상단부 혹은 하단부의 위치에 대응하도록 고정부(130)에 장착하여 상기 회전부(120)의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부(142)를 포함할 수 있다. 그리고, 수평 변위 센서부(141)과 수직 변위 센서부가 장착된 고정부(130)를 수직방향으로 이동시키는 이동부(150)를 더 포함할 수 있다.4 to 6, the magnetic levitation rotation device according to another embodiment of the present invention is mounted on the fixing part 130 so as to correspond to the position of the upper end or the lower end of the rotating part 120 so that the rotation part 120 is vertical. A plurality of vertical displacement sensor units 142 for measuring directional displacement may be included. Further, a moving unit 150 may be further included to vertically move the fixing unit 130 to which the horizontal displacement sensor unit 141 and the vertical displacement sensor unit are mounted.
수직 변위 센서부(142)를 하우징의 저면부(113) 측에 배치하는 경우에는 저면부(113)의 두께가 두꺼워서 수직 변위 센서부(142)를 장착하기 위해서는 저면부에 형성된 구멍에 삽입되어 장착된다. 여기서, 자기부상 회전 장치가 기판 처리 장치의 챔버에 연결되어 사용되는 경우에 하우징 내부의 진공압과 하우징 외부의 대기압 사이의 압력 차이에 의한 공기 혹은 가스 누설을 방지하기 위해서는 오링 등의 실링 부재를 포함하여 복잡한 장착 구조를 이용하여 수직 변위 센서부(142)가 조립된다. 이때, 고정부의 자기력이 회전부에 전달되기 위하여 짧은 이격거리를 사이에 두고 조립되는 자기부상 회전 장치에서 조립불량이 발생될 가능성이 매우 높다.When the vertical displacement sensor unit 142 is disposed on the bottom side 113 side of the housing, the thickness of the bottom unit 113 is thick so that the vertical displacement sensor unit 142 is inserted into the hole formed on the bottom side and mounted. do. Here, when the magnetic levitation rotation device is connected to the chamber of the substrate processing device, a sealing member such as an O-ring is included to prevent air or gas leakage due to a pressure difference between the vacuum pressure inside the housing and the atmospheric pressure outside the housing. Thus, the vertical displacement sensor unit 142 is assembled using a complicated mounting structure. At this time, there is a very high possibility that assembly failure occurs in the magnetic levitation rotating device assembled with a short separation distance in order to transfer the magnetic force of the fixing part to the rotating part.
따라서, 수직 변위 센서부(142)도 수평 변위 센서부(141)와 마찬가지로 고정부(130)에 장착하여 하우징의 외측으로부터 회전부의 수직 방향 변위를 측정할 수 있다. 수직 변위 센서부(142)는 와전류 변위 센서 혹은 홀 센서일 수 있는데, 수평 변위 센서부(141)와 동일한 센서를 사용할 수 있다.Accordingly, the vertical displacement sensor unit 142 may be mounted on the fixing unit 130 like the horizontal displacement sensor unit 141 to measure the vertical displacement of the rotation unit from the outside of the housing. The vertical displacement sensor unit 142 may be an eddy current displacement sensor or a hall sensor, and the same sensor as the horizontal displacement sensor unit 141 may be used.
도 5의 (a)는 수평 변위 센서부가 회전부의 수평 방향 변위를 측정하는 원리를 나타낸 것으로, 수평 변위 센서부의 프로브 전방에서 회전부가 수평 방향으로 위치 변화를 하면 프로브와 회전부 사이의 거리 변화에 따라서 변화하는 전압 출력을 센싱하여 수평 방향 거리를 측정할 수 있다.(a) of FIG. 5 shows the principle of measuring the horizontal displacement of the rotating part by the horizontal displacement sensor unit. When the horizontal displacement sensor unit's position changes in the horizontal direction in front of the probe of the horizontal displacement sensor unit, the change occurs according to the change in the distance between the probe and the rotating unit. The distance in the horizontal direction can be measured by sensing the voltage output.
도 5의 (b)는 수직 변위 센서부가 회전부의 수직 방향 변위를 측정하는 원리를 설명하는 것이다. 변위 센서의 측방향 측정범위는 프로브 직경의 3배 정도를 측정할 수 있다. 변위 센서의 프로브가 타겟 물체(회전부)의 상단부 혹은 하단부에 대응되도록 위치시키면, 타겟 물체가 수직 방향으로 변위하는 것에 따라서 변위 센서의 측방향 측정범위에 들어오는 타겟 물체의 영역이 변화하게 된다. 즉, 변위 센서의 측방향 측정범위에 들어오는 타겟 물체에는 와전류가 발생되는데, 변위 센서의 측방향 측정범위에 들어오는 타겟 물체의 영역의 크기에 따라 발생되는 와전류와 출력전압도 변화하게 된다. 회전부의 일반적인 수직 방향 변위의 범위인 수 mm 이내의 구간에서는 거리에 따른 전압출력이 선형적으로 변화하므로, 출력전압을 이용하여 회전부의 수직 방향 변위를 측정할 수 있다.(b) of FIG. 5 explains the principle of the vertical displacement sensor unit measuring the displacement in the vertical direction of the rotating unit. The lateral measurement range of the displacement sensor can measure about three times the diameter of the probe. When the probe of the displacement sensor is positioned to correspond to the upper or lower end of the target object (rotating part), the area of the target object entering the lateral measurement range of the displacement sensor changes according to the vertical displacement of the target object. That is, eddy currents are generated in the target object entering the lateral measurement range of the displacement sensor, and the generated eddy current and output voltage vary according to the size of the area of the target object entering the lateral measurement range of the displacement sensor. Since the voltage output according to the distance changes linearly in a section within several mm, which is the range of general vertical displacement of the rotating part, the vertical displacement of the rotating part can be measured using the output voltage.
한편, 후술하는 기판 처리 장치에서 회전부(120)에 연결된 기판의 높이를 조절할 필요가 있는 경우에도, 일반적인 자기부상 회전 장치에서는 고정부(130)의 높이가 고정되어 있어서, 고정부(130)의 자기력에서 의해서 부상되는 회전부(120)의 높이를 제어하는데 한계가 있다.Meanwhile, even when it is necessary to adjust the height of a substrate connected to the rotation unit 120 in a substrate processing apparatus described later, in a general magnetic levitation rotation apparatus, the height of the fixing unit 130 is fixed, so the magnetic force of the fixing unit 130 There is a limit to controlling the height of the rotating part 120 floated by.
수직 변위 센서부(142)에서 측정된 회전부의 수직 방향 변위값을 이용하여 수직 위치 제어 코일(136)은 회전부(120)의 높이를 수직 변위 센서부의 측정 범위내(예를 들어, 수mm 이내)에서 미세하게 조절하는 것은 가능하다. 하지만, 그 이상으로(예를 들어, 수십mm) 높이를 조절할 필요가 있는 경우에는 이러한 구조로는 대응이 불가능하다. 즉, 수직 변위 센서부(142)가 하우징의 저면부(113)에 고정되어 있는 경우에 고정부(130)를 따라서 회전부(120)이 수십mm 이상으로 상승하게 되면, 회전부(120)가 수직 변위 센서부(142)의 측정 거리를 벗어나게 되어 회전부의 수직 변위에 대한 제어가 불능인 상태가 될 수 있다. 또는, 수직 변위 센서부(142)에서 측정되는 회전부의 위치가 기준 위치에서 벗어나는 것으로 판단하여 수직 위치 제어 코일(136)에 구동 전류를 인가하여 회전부를 하강하는 방향으로 힘을 발생시켜서 고정부과 회전부 사이의 자속 상호작용의 균형을 깨드릴 수 있고, 나아가 자기부상 회전 장치의 고장을 유발할 수 있다.Using the vertical displacement value of the rotation unit measured by the vertical displacement sensor unit 142, the vertical position control coil 136 determines the height of the rotation unit 120 within the measurement range of the vertical displacement sensor unit (eg, within several mm). It is possible to make fine adjustments in However, if it is necessary to adjust the height more than that (eg, several tens of mm), this structure cannot cope. That is, when the vertical displacement sensor unit 142 is fixed to the bottom part 113 of the housing and the rotation unit 120 rises by several tens of mm or more along the fixing unit 130, the rotation unit 120 is vertically displaced. It may be out of the measurement distance of the sensor unit 142 and control of the vertical displacement of the rotating unit may become impossible. Alternatively, it is determined that the position of the rotating part measured by the vertical displacement sensor unit 142 is out of the reference position, and a driving current is applied to the vertical position control coil 136 to generate force in a direction in which the rotating part descends so as to move between the fixed part and the rotating part. can break the balance of magnetic flux interaction, and further cause failure of the magnetic levitation rotation device.
따라서, 고정부(130)와 회전부(120)의 높이를 자유롭게 변화시키기 위해서 본 발명에서는 수직 변위 센서부(142)를 고정부(130)에 장착하여 고정부와 함께 이동하면서 회전부(120)의 수직방향 변위를 측정할 수 있도록 하였다. 즉, 회전부의 높이를 수십mm 이상 변화시켜야 하는 경우에는, 이동부(150)에 의해서 이동하는 고정부(130)의 자기력에 의해서 따라서 회전부(120)도 이동하게 된다. 추가적으로, 고정부(130)에 의해서 이동된 회전부(120)는 고정부(130)에 장착되어 함께 이동한 수직 변위 센서부(142)의 기준값을 조정하면 수직 변위 센서부(142)의 변위 측정값에 따라 수직 위치 제어 코일(136)에 전류를 인가하여 회전부(120)의 높이를 미세하게 조정할 수 있음은 물론이다.Therefore, in order to freely change the heights of the fixing part 130 and the rotating part 120, in the present invention, the vertical displacement sensor unit 142 is mounted on the fixing part 130, and the vertical displacement sensor unit 142 moves along with the fixing part to move the rotating part 120 vertically. It was possible to measure the directional displacement. That is, when the height of the rotating unit needs to be changed by several tens of mm or more, the rotating unit 120 also moves according to the magnetic force of the fixing unit 130 moved by the moving unit 150 . Additionally, when the rotation unit 120 moved by the fixing unit 130 adjusts the reference value of the vertical displacement sensor unit 142 that is mounted on the fixing unit 130 and moves together, the displacement measurement value of the vertical displacement sensor unit 142 Accordingly, the height of the rotation unit 120 can be finely adjusted by applying current to the vertical position control coil 136 .
고정부(130)는 수직축(Z-축)에 교차하는 복수의 수평축(예를 들어, X-축 및 Y-축)을 따라 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치되는 복수의 자석 조립체를 포함할 수 있다. 복수의 자석 조립체는 방사상으로 대칭되게 제공되는 자기 코어(131, 132)의 돌출부(131a, 132a)에 대응되는 위치에 제공될 수 있다.The fixing part 130 is a plurality of magnet assemblies arranged in pairs symmetrically about the vertical axis along a plurality of horizontal axes (eg, X-axis and Y-axis) intersecting the vertical axis (Z-axis). can include A plurality of magnet assemblies may be provided at positions corresponding to the protrusions 131a and 132a of the magnetic cores 131 and 132 that are radially symmetrical.
복수의 자석 조립체 각각은, 영구자석(133a 내지 133d), 수평 위치 제어 코일(134a 내지 134d); 및 기울기 제어 코일(135a 내지 135d);을 포함할 수 있다.Each of the plurality of magnet assemblies includes permanent magnets 133a to 133d, horizontal position control coils 134a to 134d; and gradient control coils 135a to 135d.
이때, 복수의 수평 변위 센서부(141) 각각은 이웃하는 자석 조립체 사이에 제공될 수 있다. 즉, 수평 변위 센서부(141a)는 수평 위치 제어 코일들(134a, 134b)이 권취되는 자기 코어(131)의 돌출부(131a) 사이의 연결부(131b)에 고정되어 돌출부(131a) 사이의 빈 공간인 오목부(131c)에 제공될 수 있다.At this time, each of the plurality of horizontal displacement sensor units 141 may be provided between neighboring magnet assemblies. That is, the horizontal displacement sensor unit 141a is fixed to the connecting portion 131b between the protruding portions 131a of the magnetic core 131 around which the horizontal position control coils 134a and 134b are wound, and the empty space between the protruding portions 131a. may be provided in the phosphorus concave portion 131c.
복수의 수직 변위 센서부(142)가 고정부(130)에 장착되는 경우에는 복수의 수직 변위 센서부(142) 각각은 이웃하는 자석 조립체 사이에 제공될 수 있다. 즉, 수직 변위 센서부(142a)는 기울기 제어 코일들(135a, 135b)이 권취되는 자기 코어(132)의 돌출부 사이의 연결부에 고정되어 돌출부 사이의 빈 공간인 오목부에 제공될 수 있다.When the plurality of vertical displacement sensor units 142 are mounted on the fixing unit 130, each of the plurality of vertical displacement sensor units 142 may be provided between adjacent magnet assemblies. That is, the vertical displacement sensor unit 142a may be fixed to the connecting portion between the protruding portions of the magnetic core 132 around which the tilt control coils 135a and 135b are wound and provided in the concave portion, which is an empty space between the protruding portions.
복수의 수평 변위 센서부(141)는 수직축을 중심으로 대칭적으로 쌍을 이루어 배치될 수 있다. 즉, 수평 변위 센서부(141a)와 수평 변위 센서부(141c)는 수직축을 중심으로 대칭적으로 쌍을 이루어 배치된다. 예를 들어, X-축 방향과 Y-축 방향으로 각각 한 쌍씩해서 총 4개의 수평 변위 센서부가 제공될 수 있다. 이와 같은 복수의 수평 변위 센서부(141)의 배치에 의해서 쌍을 이루는 수평 변위 센서부는 센싱값을 차분(diffrentiate)하여 변위를 측정하게 되어 기본에 120도 각도로 벌어진 3개의 수평 변위 센서부를 이용하는 경우보다 더욱 정밀하게 회전부를 제어할 수 있게 된다.The plurality of horizontal displacement sensor units 141 may be symmetrically arranged in pairs around a vertical axis. That is, the horizontal displacement sensor unit 141a and the horizontal displacement sensor unit 141c are symmetrically arranged as a pair around a vertical axis. For example, a total of four horizontal displacement sensor units may be provided, one pair each in an X-axis direction and a Y-axis direction. Due to the arrangement of the plurality of horizontal displacement sensor units 141, the paired horizontal displacement sensor unit differentiates the sensing value to measure the displacement. In this case, three horizontal displacement sensor units spread at an angle of 120 degrees are basically used. It is possible to control the rotating part more precisely.
복수의 수직 변위 센서부(142)도 마찬가지로 수직축을 중심으로 대칭적으로 쌍을 이루어 배치될 수 있다.The plurality of vertical displacement sensor units 142 may also be symmetrically arranged in pairs around the vertical axis.
도 7은 본 발명의 다른 실시예에 따른 기판 처리 장치의 개념도이다.7 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
도 7을 참조하면, 본 발명의 다른 실시예에 따른 기판 처리 장치는 본 발명의 실시예에 따른 자기부상 회전 장치(100); 상기 하우징(110)에 연결되어 외부 공간과 격리된 기판의 처리 공간을 제공하는 챔버부(200); 및 상기 기판을 지지하고, 상기 회전부(120)에 연결되어 연동하여 회전 가능하도록 제공되는 기판 지지부(300);를 포함할 수 있다. 본 발명의 다른 실시예에 따른 기판 처리 장치를 설명함에 있어서, 본 발명의 실시예에 따른 자기부상 회전 장치와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.Referring to FIG. 7 , a substrate processing apparatus according to another embodiment of the present invention includes a magnetic levitation rotation apparatus 100 according to an embodiment of the present invention; a chamber unit 200 connected to the housing 110 to provide a substrate processing space isolated from an external space; and a substrate support part 300 that supports the substrate and is connected to the rotation part 120 to be rotatably interlocked. In describing the substrate processing apparatus according to another embodiment of the present invention, items overlapping with those described above in relation to the magnetic levitation rotation apparatus according to the embodiment of the present invention will be omitted.
본 발명의 다른 실시예에 따른 기판 처리장치는 기판(S)을 열처리하거나 기판 상에 박막을 형성하는 등의 다양한 방식으로 기판을 처리하는 장치이다. 예를 들어, 기판 처리 장치는 고온의 열을 발생시켜, 기판(S)을 급속으로 열처리하는 급속열처리 장치(RTP: Rapid Thermal Process)일 수 있다. 기판(S)은 반도체 장치에 사용되는 실리콘 웨이퍼(Wafer)일 수도 있고, 열처리가 필요한 다양한 피처리물 예컨대, LCD, OLED 등의 디스플레이 장치에 적용되는 글라스(Glass)일 수도 있다.A substrate processing apparatus according to another embodiment of the present invention is an apparatus for processing a substrate in various ways, such as heat treating a substrate S or forming a thin film on the substrate. For example, the substrate processing apparatus may be a rapid thermal process (RTP) that rapidly heat-treats the substrate S by generating high-temperature heat. The substrate S may be a silicon wafer used in semiconductor devices, or may be glass applied to display devices such as various processing objects requiring heat treatment, such as LCD and OLED.
본 발명의 다른 실시예에 따른 기판 처리장치에서 본 발명의 실시예에 따른 자기부상 회전 장치(100)의 하우징(110)은 챔버부(200)와 연결되어 하우징(110)과 챔버부(200)는 외부 공간과 분리되어 기판이 처리되는 처리 공간을 제공할 수 있다. 챔버부(200)는 박스 모양으로 형성될 수 있고, 챔버부(200)의 일측에는 기판(S)이 출입할 수 있는 출입구가 구비될 수 있다. 이에, 출입구를 통해 챔버부(200) 내부로 기판(S)을 넣고 열처리할 수 있고, 챔버부(200) 내부에서 처리가 완료된 기판(S)을 출입구를 통해 챔버부(200) 외측으로 운반할 수 있다. 필요에 따라서 챔버부(200) 내부로 공정 가스를 공급하는 가스 공급부(미도시), 또는 공정 가스를 활성화하는 플라즈마 발생부(미도시) 등이 연결될 수도 있다.In the substrate processing apparatus according to another embodiment of the present invention, the housing 110 of the magnetic levitation rotation device 100 according to the embodiment of the present invention is connected to the chamber unit 200 so that the housing 110 and the chamber unit 200 may provide a processing space in which a substrate is processed, separated from an external space. The chamber unit 200 may be formed in a box shape, and at one side of the chamber unit 200, an entrance through which the substrate S may come in and out may be provided. Accordingly, the substrate S may be put into the chamber 200 through the entrance and heat treatment may be performed, and the substrate S processed inside the chamber 200 may be transported to the outside of the chamber 200 through the entrance. can A gas supply unit (not shown) for supplying process gas into the chamber unit 200 or a plasma generator (not shown) for activating the process gas may be connected as needed.
기판 지지부(300)는 챔버(100)의 처리 공간에서 기판(S)을 지지할 수 있도록 설치된다. 기판 지지부(300)는 기판(S) 하부의 가장자리 또는 에지(Edge)를 지지하도록 형성될 수 있다. 이에, 기판(S)의 하부면 중 기판 지지부(300)와 접촉하지 않는 영역이 챔버부(200)의 내부공간으로 노출될 수 있다.The substrate support unit 300 is installed to support the substrate S in the processing space of the chamber 100 . The substrate support 300 may be formed to support an edge or an edge of a lower portion of the substrate S. Accordingly, a region of the lower surface of the substrate S that does not contact the substrate support 300 may be exposed to the inner space of the chamber 200 .
기판 지지부(300)는 중심부가 개방되어 중공형으로 형성될 수 있다. 이에, 기판 지지부(300) 상에 기판(S)이 안착되면, 기판(S)의 하부면에서 가장자리 부분은 기판 지지부(300)와 접촉하고, 나머지 부분은 하부로 노출될 수 있다.The substrate support 300 may be formed in a hollow shape with an open central portion. Accordingly, when the substrate S is placed on the substrate support 300, an edge portion of the lower surface of the substrate S may contact the substrate support 300, and the remaining portion may be exposed downward.
그리고, 기판 지지부(300)는 기판의 온도와 기판 처리 공정을 균일하게 하기 위하여 자기부상 회전 장치(100)의 회전부(120)에 연결되어 회전부(120)에 연동하여 회전 가능하도록 제공될 수 있다.In addition, the substrate support 300 may be connected to the rotation unit 120 of the magnetic levitation rotation device 100 to be rotatable in conjunction with the rotation unit 120 in order to uniformize the temperature of the substrate and the substrate treatment process.
본 발명의 다른 실시예에 따른 기판 처리장치는 상기 기판의 제1 면 측에 제공되어 상기 기판을 향하여 열에너지를 제공하는 열원부(400); 상기 기판의 제2 면 측에 제공되어 상기 내측벽(111) 상부에 연결되는 베이스 플레이트부(500); 및 상기 베이스 플레이트(500)에 적어도 일부가 삽입되어 상기 기판의 온도를 측정하는 온도 측정부(600)를 더 포함할 수 있다.A substrate processing apparatus according to another embodiment of the present invention includes a heat source unit 400 provided on a first side of the substrate to provide thermal energy toward the substrate; a base plate portion 500 provided on the second side of the substrate and connected to an upper portion of the inner wall 111; and a temperature measurement unit 600 at least partially inserted into the base plate 500 to measure the temperature of the substrate.
열원부(400)는 기판(S)에 열에너지를 공급하는 역할을 하는데, 상기 기판의 제1 면을 향하여 빛을 조사하는 복수의 광원(410)을 구비할 수 있다. 열원부(400)는 기판 지지부(300)의 상측에 이격되어 배치되어, 열원부(400)에 구비된 램프 또는 반도체 레이저 모듈 등의 복수의 광원(410)이 발생시키는 광에너지가 기판 지지부(300)에 안착된 기판(S)의 제1 면을 통해 제공되어 기판(S)을 가열할 수 있다.The heat source unit 400 serves to supply heat energy to the substrate S, and may include a plurality of light sources 410 radiating light toward the first surface of the substrate. The heat source unit 400 is spaced apart from the upper side of the substrate support unit 300, and light energy generated by a plurality of light sources 410 such as lamps or semiconductor laser modules provided in the heat source unit 400 is transmitted to the substrate support unit 300. ) is provided through the first surface of the substrate (S) seated on the substrate (S) can be heated.
베이스 플레이트(500)는 기판의 제2 면 측에 제공되어 자기부상 회전 장치의 하우징 내측벽(111) 상부에 연결될 수 있다. 베이스 플레이트(500)는 하우징의 중앙부를 커버하여 기판 처리 공간을 챔버, 하우징, 및 베이스 플레이트에 의해 둘러싸서 외부와 분리시킬 수 있다. 베이스 플레이트에는 기판을 지지하여 승하강 하는 리프트 핀과 기판의 온도를 측정할 수 있는 온도 측정부 등이 삽입될 수 있는 관통홀이나, 퍼지 가스가 유동할 수 있는 가스 유동 통로 등이 형성될 수 있다. 베이스 플레이트의 상부에는 광을 반사하는 반사판이 적층될 수도 있다.The base plate 500 may be provided on the second side of the substrate and connected to an upper portion of the housing inner wall 111 of the magnetic levitation rotation device. The base plate 500 may cover the central portion of the housing and surround the substrate processing space with the chamber, the housing, and the base plate to isolate it from the outside. The base plate may be formed with a through-hole into which a lift pin that supports the substrate and a temperature measuring unit that can measure the temperature of the substrate can be inserted, or a gas flow passage through which a purge gas can flow. . A reflector for reflecting light may be stacked on top of the base plate.
온도 측정부(600)는 베이스 플레이트(500)에 적어도 일부가 삽입되어 상기 기판의 온도를 측정할 수 있다. 예를 들어 온도 측정부는 파이로미터일 수 있는데, 기판의 하측에 하나 이상 제공되어, 기판(S)으로부터 입사하는 빛을 검출하여 온도를 측정한다. 파이로미터는 기판으로부터 입사하는 복사광을 입력받아 복사광의 복사 에너지 또는 광량을 측정할 수 있다. 이때, 파이로미터는 기판 지지부(300) 상에 안착된 기판(S)의 하측에 배치되어, 마주보는 영역에서의 복사 에너지와 반사율을 획득하여 각 파이로미터가 대응하는 위치에서의 기판(S)의 영역별 또는 위치별 온도를 측정할 수 있다.At least a part of the temperature measuring unit 600 may be inserted into the base plate 500 to measure the temperature of the substrate. For example, the temperature measuring unit may be a pyrometer, and one or more are provided on the lower side of the substrate to measure the temperature by detecting light incident from the substrate (S). The pyrometer may receive radiant light incident from the substrate and measure radiant energy or light quantity of the radiant light. At this time, the pyrometers are disposed on the lower side of the substrate S seated on the substrate support 300 to obtain the radiant energy and reflectance in the facing area so that each pyrometer is positioned on the substrate S at the corresponding position. ) can measure the temperature by area or location.
열원부(400)과 기판 처리 공간 사이에는 윈도우(700)를 더 포함할 수 있다. 윈도우는 광원(410)에서 발생된 광에너지가 기판(S)으로 제공될 수 있도록, 광원(410)에서 발광된 빛을 투과시킬 수 있다.A window 700 may be further included between the heat source unit 400 and the substrate processing space. The window may transmit light emitted from the light source 410 so that light energy generated by the light source 410 may be provided to the substrate S.
본 발명의 다른 실시예에 따른 기판 처리 장치에서는 수평 변위 센서(141)를 하우징 외측벽(112) 외측에 제공되는 고정부(130)에 장착함으로써, 하우징 내측벽(111)에 둘러싸인 좁은 공간에 수평 변위 센서를 장착하는 과정에서 생기는 조립불량이나 이로 인한 자기부상 회전의 안정성을 확보할 수 있다. 또한 자기부상 회전 장치의 수평 변위 센서 조립 불량이 있는 경우에도, 기판 처리 공간을 진공으로 유지한채 챔버 외부에서 간단히 재조립할 수 있다.In the substrate processing apparatus according to another embodiment of the present invention, by mounting the horizontal displacement sensor 141 on the fixing part 130 provided outside the outer wall 112 of the housing, horizontal displacement occurs in a narrow space surrounded by the inner wall 111 of the housing. It is possible to secure the stability of magnetic levitation rotation due to assembly defects that occur in the process of mounting the sensor. In addition, even when there is an assembly defect in the horizontal displacement sensor of the magnetic levitation rotation device, it can be simply reassembled outside the chamber while maintaining a vacuum in the substrate processing space.
그리고, 수평 변위 센서(141)를 고정부(130)에 장착되는 구조이므로, 고정부(130) 중심과 복수의 수평 변위 센서(141) 중심이 일치하게 되어 수평 변위 센서 값들의 추가적인 조정이 불필요하게 된다.In addition, since the horizontal displacement sensor 141 is mounted on the fixing part 130, the center of the fixing part 130 and the center of the plurality of horizontal displacement sensors 141 coincide, so that additional adjustment of the horizontal displacement sensor values is unnecessary. do.
도 8은 본 발명의 또 다른 실시예에 따른 기판 처리 장치의 개념도이다.8 is a conceptual diagram of a substrate processing apparatus according to another embodiment of the present invention.
도 8을 참조하면, 본 발명의 또 다른 실시예에 따른 기판 처리 장치는 회전부(120)의 상단부 혹은 하단부의 위치에 대응하도록 고정부(130)에 장착하여 상기 회전부(120)의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부(142)를 포함할 수 있다. 그리고, 수평 변위 센서부(141)과 수직 변위 센서부가 장착된 고정부(130)를 수직방향으로 이동시키는 이동부(150)를 더 포함할 수 있다.Referring to FIG. 8 , the substrate processing apparatus according to another embodiment of the present invention is mounted on the fixing part 130 to correspond to the position of the upper end or the lower end of the rotating part 120, thereby reducing the displacement of the rotating part 120 in the vertical direction. A plurality of vertical displacement sensor units 142 for measuring may be included. Further, a moving unit 150 may be further included to vertically move the fixing unit 130 to which the horizontal displacement sensor unit 141 and the vertical displacement sensor unit are mounted.
회전부(120)에 연결된 기판 지지부(300)에 거치된 기판의 높이를 조절할 필요가 있는 경우에, 고정부(130)에 수평 변위 센서부(141)과 수직 변위 센서부가 장착되어 있어서 이동부(150)가 고정부(130)를 수직방향으로 이동시켜서 기판의 높이를 조절할 수 있게 된다.When it is necessary to adjust the height of the substrate mounted on the substrate support unit 300 connected to the rotation unit 120, the horizontal displacement sensor unit 141 and the vertical displacement sensor unit are mounted on the fixed unit 130, so that the moving unit 150 ) moves the fixing part 130 in the vertical direction so that the height of the substrate can be adjusted.
이를 통해서 온도를 정밀하게 제어하기 위해서 기판의 높이를 정밀하게 조정하거나, 새로운 공정을 수행하거나, 또는 새로운 타입의 장치에서 기판의 높이를 변경해야하는 경우에 추가적인 구성 없이도 챔버 외부에 있는 고정부의 높이를 제어함으로써 간단히 챔버 내부에 제공된 기판의 높이를 조절할 수 있다.Through this, when the height of the substrate needs to be precisely adjusted to precisely control the temperature, a new process is performed, or the height of the substrate needs to be changed in a new type of device, the height of the fixture outside the chamber can be adjusted without additional configuration. By controlling, the height of the substrate provided inside the chamber can be easily adjusted.
상기 설명에서 사용한 “~ 상에”라는 의미는 직접 접촉하는 경우와 직접 접촉하지는 않지만 상부 또는 하부에 대향하여 위치하는 경우를 포함하고, 상부면 또는 하부면 전체에 대향하여 위치하는 것뿐만 아니라 부분적으로 대향하여 위치하는 것도 가능하며, 위치상 떨어져 대향하거나 상부면 또는 하부면에 직접 접촉한다는 의미로 사용하였다.The meaning of "on" used in the above description includes the case of direct contact and the case of not directly contacting but located opposite to the upper or lower surface, as well as partially opposite to the upper or lower surface as a whole. It is also possible to be located oppositely, and it is used in the sense of facing away from each other or directly contacting the upper or lower surface.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the above embodiments, and common knowledge in the field to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Those who have will understand that various modifications and other equivalent embodiments are possible from this. Therefore, the technical protection scope of the present invention should be determined by the claims below.

Claims (13)

  1. 원통형의 내측벽, 상기 내측벽의 외측에 제공되는 원통형의 외측벽, 및 상기 내측벽과 외측벽을 연결하는 저면부를 포함하는 하우징부;a housing portion including a cylindrical inner wall, a cylindrical outer wall provided outside the inner wall, and a bottom portion connecting the inner wall and the outer wall;
    상기 하우징부의 내측벽과 외측벽 사이의 수용공간에 수용되고, 자기력에 의해서 부상하여 수직축을 중심으로 회전하는 원통형의 회전부;a cylindrical rotating part accommodated in the receiving space between the inner and outer walls of the housing part, floating by magnetic force and rotating about a vertical axis;
    상기 외측벽의 외측에 제공되어 상기 회전부에 자기력을 제공하는 고정부; 및a fixing unit provided on the outer side of the outer wall to provide magnetic force to the rotating unit; and
    상기 고정부에 장착되어 상기 회전부의 수평 방향 변위를 측정하는 복수의 수평 변위 센서부;를 포함하는 자기부상 회전 장치.A magnetic levitation rotation device comprising: a plurality of horizontal displacement sensor units mounted on the fixing unit and measuring horizontal displacement of the rotating unit.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 저면부 측에 제공되어 상기 회전부의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부를 더 포함하는 자기부상 회전 장치.The magnetic levitation rotation device further comprises a plurality of vertical displacement sensor units provided on the bottom side and measuring vertical displacement of the rotating unit.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 회전부의 상단부 혹은 하단부의 위치에 대응하도록 상기 고정부에 장착되어 상기 회전부의 수직 방향 변위를 측정하는 복수의 수직 변위 센서부를 더 포함하는 자기부상 회전 장치.The magnetic levitation rotation device further comprises a plurality of vertical displacement sensor units mounted on the fixing unit to correspond to the position of the upper end or the lower end of the rotation unit and measuring the displacement in the vertical direction of the rotation unit.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 고정부를 수직방향으로 이동시키는 이동부를 더 포함하는 자기부상 회전 장치.Magnetic levitation rotation device further comprising a moving unit for moving the fixing unit in the vertical direction.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 외측벽의 두께는 상기 내측벽의 두께보다 얇은 자기부상 회전 장치.The thickness of the outer wall is smaller than the thickness of the inner wall magnetic levitation rotating device.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 외측벽은 상자성 물질, 비자성 물질, 및 반자성 물질 중에서 적어도 어느 하나, 혹은 이들의 화합물로 이루어지고,The outer wall is made of at least one of a paramagnetic material, a non-magnetic material, and a diamagnetic material, or a compound thereof,
    상기 외측벽의 두께는 0.5 내지 2.5mm인 자기부상 회전 장치.The thickness of the outer wall is 0.5 to 2.5mm magnetic levitation rotating device.
  7. 청구항 1에 있어서,The method of claim 1,
    상기 회전부는 강자성 물질로 이루어지고,The rotating part is made of a ferromagnetic material,
    상기 복수의 수평 변위 센서부는 상기 회전부에 의해 유도되어 상기 외측벽을 통과하여 제공되는 전자기적 특성 변화를 센싱하여 상기 회전부의 수평 방향 변위를 측정하는 자기부상 회전 장치.The plurality of horizontal displacement sensor units measure the displacement in the horizontal direction of the rotating unit by sensing changes in electromagnetic characteristics induced by the rotating unit and provided through the outer wall.
  8. 청구항 1에 있어서,The method of claim 1,
    상기 고정부는 상기 수직축에 교차하는 복수의 수평축을 따라 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치되는 복수의 자석 조립체를 포함하고,The fixing part includes a plurality of magnet assemblies arranged in pairs symmetrically about the vertical axis along a plurality of horizontal axes intersecting the vertical axis,
    상기 복수의 수평 변위 센서부 각각은 이웃하는 자석 조립체 사이에 제공되는 자기부상 회전 장치.Each of the plurality of horizontal displacement sensor units is provided between neighboring magnet assemblies.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 복수의 수평 변위 센서부는 상기 수직축을 중심으로 대칭적으로 쌍을 이루어 배치되는 자기부상 회전 장치.The plurality of horizontal displacement sensor units are arranged in pairs symmetrically about the vertical axis.
  10. 청구항 8에 있어서,The method of claim 8,
    상기 복수의 자석 조립체 각각은,Each of the plurality of magnet assemblies,
    상기 회전부에 흡인력을 발생시켜 상기 회전부를 부상시키는 영구자석;a permanent magnet that lifts the rotating part by generating a suction force on the rotating part;
    자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 상기 회전부의 수평 방향 위치를 제어하는 수평 위치 제어 코일; 및a horizontal position control coil controlling a horizontal position of the rotation unit by adjusting the suction force according to the direction and magnitude of the current generating the magnetic flux; and
    자속을 발생시키는 전류의 방향과 크기에 따라 상기 흡인력을 조절하여 상기 회전부의 기울기를 제어하는 기울기 제어 코일;을 포함하는 자기부상 회전 장치.A tilt control coil controlling the tilt of the rotating unit by adjusting the suction force according to the direction and magnitude of the current that generates the magnetic flux; magnetic levitation rotation device comprising a.
  11. 청구항 8에 있어서,The method of claim 8,
    상기 고정부는 상기 외측벽을 따라 연장되어 외측벽을 감싸고, 자속을 발생시키는 전류의 방향과 크기에 따라 상기 회전부의 수직 방향 위치를 제어하는 수직위치 제어 코일을 더 포함하는 자기부상 회전 장치.The fixed unit further comprises a vertical position control coil extending along the outer wall to surround the outer wall and controlling the vertical position of the rotating part according to the direction and magnitude of the current generating the magnetic flux.
  12. 청구항 1 내지 청구항 11 중 어느 한 항의 자기부상 회전 장치;Claims 1 to 11 of any one of the magnetic levitation rotation device;
    상기 하우징에 연결되어 외부 공간과 분리된 기판의 처리 공간을 제공하는 챔버부; 및a chamber unit connected to the housing to provide a substrate processing space separated from an external space; and
    상기 기판을 지지하고, 상기 회전부에 연결되어 연동하여 회전 가능하도록 제공되는 기판 지지부;를 포함하는 기판 처리 장치.A substrate processing apparatus comprising a; substrate support portion that supports the substrate and is connected to the rotating portion to be rotatably interlocked.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 기판의 제1 면 측에 제공되어 상기 기판을 향하여 열에너지를 제공하는 열원부;a heat source unit provided on the first side of the substrate to provide thermal energy toward the substrate;
    상기 기판의 제2 면 측에 제공되어 상기 내측벽 상부에 연결되는 베이스 플레이트부; 및a base plate portion provided on the second side of the substrate and connected to an upper portion of the inner wall; and
    상기 베이스 플레이트에 적어도 일부가 삽입되어 상기 기판의 온도를 측정하는 온도 측정부를 더 포함하는 기판 처리 장치.The substrate processing apparatus further comprises a temperature measuring unit at least partially inserted into the base plate to measure the temperature of the substrate.
PCT/KR2022/018139 2021-12-16 2022-11-16 Magnetic levitation rotation apparatus and substrate processing apparatus using same WO2023113261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210180677A KR20230091506A (en) 2021-12-16 2021-12-16 Magnetic levitation rotating apparatus and aparatus for processing substrate using the same
KR10-2021-0180677 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023113261A1 true WO2023113261A1 (en) 2023-06-22

Family

ID=86773041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018139 WO2023113261A1 (en) 2021-12-16 2022-11-16 Magnetic levitation rotation apparatus and substrate processing apparatus using same

Country Status (3)

Country Link
KR (1) KR20230091506A (en)
TW (1) TW202345281A (en)
WO (1) WO2023113261A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254714A (en) * 2023-11-14 2023-12-19 苏州苏磁智能科技有限公司 Magnetic suspension device applied to wafer processing and semiconductor processing equipment
CN117637516A (en) * 2024-01-25 2024-03-01 中国科学院长春光学精密机械与物理研究所 Through silicon via test structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818137A (en) * 1995-10-26 1998-10-06 Satcon Technology, Inc. Integrated magnetic levitation and rotation system
JP2001351874A (en) * 2000-06-09 2001-12-21 Ebara Corp Substrate rotating apparatus
CN106571321A (en) * 2016-11-18 2017-04-19 中国电子科技集团公司第四十八研究所 Slide holder applied to fast heat treatment device
KR20180021220A (en) * 2008-11-06 2018-02-28 어플라이드 머티어리얼스, 인코포레이티드 Rapid thermal processing chamber with micro-positioning system
KR20200018317A (en) * 2018-08-10 2020-02-19 가부시키가이샤 에바라 세이사꾸쇼 Substrate rotation device, substrate cleaning device, substrate processing device, and control method for substrate rotation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818137A (en) * 1995-10-26 1998-10-06 Satcon Technology, Inc. Integrated magnetic levitation and rotation system
JP2001351874A (en) * 2000-06-09 2001-12-21 Ebara Corp Substrate rotating apparatus
KR20180021220A (en) * 2008-11-06 2018-02-28 어플라이드 머티어리얼스, 인코포레이티드 Rapid thermal processing chamber with micro-positioning system
CN106571321A (en) * 2016-11-18 2017-04-19 中国电子科技集团公司第四十八研究所 Slide holder applied to fast heat treatment device
KR20200018317A (en) * 2018-08-10 2020-02-19 가부시키가이샤 에바라 세이사꾸쇼 Substrate rotation device, substrate cleaning device, substrate processing device, and control method for substrate rotation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254714A (en) * 2023-11-14 2023-12-19 苏州苏磁智能科技有限公司 Magnetic suspension device applied to wafer processing and semiconductor processing equipment
CN117254714B (en) * 2023-11-14 2024-03-19 苏州苏磁智能科技有限公司 Magnetic suspension device applied to wafer processing and semiconductor processing equipment
CN117637516A (en) * 2024-01-25 2024-03-01 中国科学院长春光学精密机械与物理研究所 Through silicon via test structure
CN117637516B (en) * 2024-01-25 2024-04-16 中国科学院长春光学精密机械与物理研究所 Through silicon via test structure

Also Published As

Publication number Publication date
TW202345281A (en) 2023-11-16
KR20230091506A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2023113261A1 (en) Magnetic levitation rotation apparatus and substrate processing apparatus using same
EP0876702B1 (en) Integrated magnetic levitation and rotation system
JP4709335B2 (en) Magnetically levitated rotating device for RTP chamber
WO2014193138A1 (en) Substrate support device and substrate treatment device comprising same
WO2014042362A1 (en) Superconducting accelerometer, acceleration measurement device, and acceleration measurement method
WO2018056708A1 (en) Earth-leakage circuit breaker having ac and dc leakage current detection device, having multilayer pcb core structure, applied thereto
WO2012091390A2 (en) Dry coating apparatus
TW202343959A (en) Magnetic suspension device and semiconductor processing apparatus
WO2022065740A1 (en) Ingot growth apparatus
KR20020062165A (en) Substrate processing apparatus and method for manufacturing a semiconductor device employing same
KR102424177B1 (en) Magnetic levitation rotating apparatus and aparatus for vacuum processing
WO2023113262A1 (en) Magnetic levitation rotating apparatus and magnetic levitation rotating method
WO2023055022A1 (en) Plasma source using planar helical coil
WO2023074947A1 (en) Cartridge locking apparatus for multi-prober
CN111434796A (en) Film forming apparatus, film forming method, and apparatus and method for manufacturing electronic device
KR102424176B1 (en) Magnetic levitation rotating apparatus and aparatus for vacuum processing including the same
WO2021157935A1 (en) Motor
WO2022065739A1 (en) Ingot growing apparatus comprising heater and method for manufacturing heater for ingot growing apparatus
WO2009096739A2 (en) Generator and wind power generating system comprising same
WO2023128606A1 (en) Apparatus for heat treating substrate capable of individually controlling output of vcsel devices
WO2022145930A1 (en) Substrate heat treatment device using laser light emitter
WO2011136512A2 (en) High density plasma generating apparatus
WO2022146060A1 (en) Substrate heat-treatment device using laser-light-emitting device
WO2023234568A1 (en) Substrate processing apparatus
WO2024034818A1 (en) Electronic device comprising coil device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907731

Country of ref document: EP

Kind code of ref document: A1