WO2018117400A1 - Apparatus and method for automatically measuring swirl ratio - Google Patents

Apparatus and method for automatically measuring swirl ratio Download PDF

Info

Publication number
WO2018117400A1
WO2018117400A1 PCT/KR2017/012295 KR2017012295W WO2018117400A1 WO 2018117400 A1 WO2018117400 A1 WO 2018117400A1 KR 2017012295 W KR2017012295 W KR 2017012295W WO 2018117400 A1 WO2018117400 A1 WO 2018117400A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirl ratio
valve
cylinder head
measuring
swirl
Prior art date
Application number
PCT/KR2017/012295
Other languages
French (fr)
Korean (ko)
Inventor
한국현
전정인
이왕희
강선일
양근녕
박주민
Original Assignee
삼영기계(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼영기계(주) filed Critical 삼영기계(주)
Publication of WO2018117400A1 publication Critical patent/WO2018117400A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a swirl ratio automatic measuring device and a measuring method, and more particularly, a device for automatically measuring the swirl ratio generated in the intake air flowing from the cylinder head of the engine to the intake port and a swirl ratio measuring method using the same It is about.
  • the swirl ratio of the intake air flowing from the cylinder head of the engine to the intake port is an important design element directly related to the performance of the engine. If the swirl ratio of each cylinder is not constant in a multi-cylinder engine and a deviation occurs, the performance of the engine is inevitably deteriorated. In particular, due to recent environmental problems, the importance of securing a uniform swirl ratio is increasing in the trend of gradually changing from a diesel engine to a gas engine. In addition, in the design of the product, even if it is designed to the specifications that the manufacturer wants, deviation occurs in each product during the process of production and processing, so it is necessary to measure the swirl ratio precisely as a premise to reduce the deviation at the same time to develop the technology to reduce the deviation. .
  • Korean Patent Application Publication No. 2009-0071901 (“Ceiling head steady flow tester with a continuous valve head change mechanism", 2009.07.02.), which is a test apparatus for measuring the swirl ratio of a cylinder head, is disclosed.
  • the method includes a shelf 1, a cap shaft rotating unit 2, an encoder 3, a valve position detecting unit 4, an internal pressure forming unit 5, and a flow meter 6. It is.
  • the conventional measuring equipment as described above does not consider the shape of the actual cylinder head, and it is difficult to effectively measure the swirl ratio of the cylinder.
  • the equipment in order to measure the swirl ratio generated in the cylinder, the equipment must be manually operated. Therefore, stepwise measurement according to the valve lift height of the intake port is difficult.
  • stepwise measurement also requires a long waiting time to stabilize the internal differential pressure, which consumes a lot of work time and labor.
  • it is difficult to obtain the reliability of the measurement result when measuring based on the configuration, and it is difficult to apply in the actual production line because a separate process is required to collect and process it after all the measurement is finished.
  • it is difficult to measure each swirl ratio for a plurality of cylinder heads by the above-described method.
  • Patent Document 1 Korean Laid-open Patent No. 2009-0071901 ("Cylinder Head Normal Flow Tester with Continuous Valve Head Change Mechanism", 2009.07.02)
  • the present invention has been made to solve the above problems, it is possible to automatically measure the valve by opening the valve of the cylinder head step by step, to stabilize the differential pressure in the surge tank so that the calculated swirl ratio has the correct value, If the calculated swirl ratio is nonlinear, it is to measure the finer and more, and to provide a swirl ratio automatic measuring device with high accuracy and reproducibility.
  • valve 110 to open or close the intake port of the cylinder head 10 and receives the electrical signal from the outside to control the valve 110
  • a valve lift 100 including a lift control unit 120 It is formed to communicate from one side to the other side, the cylinder head 10 is mounted on one side, the paddle 240 is formed therein is a dummy cylinder 200 that can measure the rotation value by the swirl; Is connected to the other side of the dummy cylinder 200, a pressure sensor or a differential pressure gauge is provided to measure and control the internal pressure or the differential pressure, the surge for discharging the fluid introduced from the dummy cylinder 200 to the blower pipe (20) Tank 300; A flow rate measuring part 400 formed on the blower tube 20 and having a flow meter 410 for measuring a flow rate passing through the blower tube; And a blower 500 connected to the blower tube 20 to transfer the fluid introduced through the valve of the cylinder head 10 to the blower tube 20.
  • valve lift 100 may be provided with a motor and an encoder inside the lift control unit 120 to perform precise control of the valve 110.
  • valve lift 100 further comprises a laser sensor 130 for measuring the length of the valve 110 is lowered, so that the opening and closing level of the port of the cylinder head 10 through the valve 110 can be measured. It can be made, including.
  • the swirl ratio automatic measuring method using the swirl ratio automatic measuring device the valve closing step of closing the intake port of the cylinder head 10 by using the valve (S110); A blower operation step of operating the blower 500; A valve opening step (S130) for opening the valve 110 to a set level through the lift control unit 120; A differential pressure measuring step (S140) of measuring a differential pressure inside the surge tank 300; After determining whether the surge tank 300 is stable at a constant differential pressure, if the internal differential pressure of the surge tank 300 is not stabilized, the RPM of the blower 500 is controlled, and the internal differential pressure of the surge tank 300 is increased.
  • the swirl ratio automatic measuring method is characterized in that the valve opening step (S130) to perform a swirl ratio calculation step (S160) repeatedly, if the intake port of the cylinder head 10 is opened by a target value
  • the average swirl ratio calculation step (S170) for calculating the average swirl ratio through the swirl ratio derived through the swirl ratio calculation step (S160); may be further included.
  • the method for automatically measuring swirl ratio may further include an output step S180 of outputting a measured or calculated value after the average swirl ratio calculation step S170.
  • the average swirl ratio calculation step (S170) may be characterized in that it is determined whether the swirl ratio derived through the swirl ratio calculation step (S160) is linear.
  • the automatic measurement method of the swirl ratio if there is a section in which the swirl ratio is non-linear in the average swirl ratio calculation step (S170), the interval setting step of checking and setting the section in which the swirl ratio is non-linear (S200); A valve portion sealing step (S210) for partially sealing the intake port of the cylinder head 10 by a set section; A fine opening step (S230) of opening the intake port of the cylinder head (10) by resetting more finely than the set level of the opening step (S130); A hydraulic system and a paddle value measuring step of measuring a flow rate of the flow measuring unit 400 and measuring a rotation value of the paddle 240 of the dummy cylinder 200; And a swirl ratio calculating step (S260) of calculating a swirl ratio based on the values measured through the hydraulic system and the paddle value measuring step (S250).
  • the fine opening step (S230) to the swirl ratio calculation step 260 is repeated until the intake port of the cylinder head 10 is opened, and the valve of the cylinder head 10 is opened by the set section.
  • the calculated average swirl ratio calculation step 270 of calculating the average swirl ratio of the calculated swirl ratios of the interval-set portion may be further included.
  • a plurality of cylinder head swirl ratio automatic measurement method using a swirl ratio automatic measuring device the cylinder head mounting step of mounting one cylinder head 10 on one side of the dummy cylinder (200); A valve sealing step (S320) of sealing the intake port of the cylinder head (10) by using the valve (110); A blower operation step of operating the blower 500; A valve opening step (S340) of opening the valve 110 to a set level through the lift control unit 120; A differential pressure measuring step (S350) of measuring a differential pressure inside the surge tank 300; After determining whether the surge tank 300 is stable at a constant differential pressure in the differential pressure measuring step S350, if the internal differential pressure of the surge tank 300 is not stabilized, the RPM of the blower 500 is controlled, and the surge tank A valve lift continuous opening step (S360) of continuously opening the valve 110 when the internal differential pressure of 300 is stabilized; In parallel with the continuous opening step (S360), to measure the flow rate of the flow measuring unit 400 and the hydraulic pressure and paddle value measuring step (S370) of
  • the plurality of cylinder head swirl ratio automatic measuring method if the cylinder head 10 to be measured remains, the valve closing step (S320) to the cylinder head replacement step (S400) is repeatedly performed, the cylinder head to be measured further (10) calculating the deviation between the continuous open swirl ratios of the measured plurality of cylinder heads 10 after the continuous open swirl ratio calculating step (S380); And an output step S420 of outputting the measured value and the calculated value.
  • the plurality of cylinder head swirl ratio automatic measurement method after the continuous open swirl ratio calculation step (S380), it is determined whether the valve 110 of the valve lift 100 is opened by the target value, and opened by the target value. If not, the valve lift may be continuously opened (S360) to continuously open swirl ratio calculation step (S380), and may be determined whether there is a cylinder head to be measured any more when the target value is opened.
  • the swirl ratio automatic measuring device and the measuring method according to the present invention having the above-described configuration open the doors step by step after closing the valve completely, and calculate the swirl ratio at each stage, and calculate the swirl ratio By calculating the average swirl ratio of, more reliable and accurate measurement is possible.
  • the time for measuring the cylinder head is significantly shortened because all the steps up to the output are automated.
  • FIG. 1 is a perspective view of a steady flow tester of a cylinder head according to the prior art.
  • FIG. 2 is a perspective view of a swirl ratio automatic measurement equipment according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a valve lift according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a dummy cylinder according to an embodiment of the present invention.
  • 5 is an internal projection of the dummy cylinder according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a surge tank according to an embodiment of the present invention.
  • Figure 7 is a perspective view of the flow rate measuring unit provided in the blower tube according to an embodiment of the present invention.
  • FIG. 8 is a flow chart for swirl ratio automatic measurement equipment control according to an embodiment of the present invention.
  • Figure 9 is a block diagram of swirl ratio automatic measurement equipment according to an embodiment of the present invention.
  • FIG. 10 is a flow chart according to an embodiment of the inventor's swirl ratio automatic measurement method.
  • FIG. 11 is a flow chart according to another embodiment of the inventor's swirl rate automatic measurement method.
  • FIG. 12 is a flow chart according to an embodiment of the present invention for measuring a plurality of cylinder head swirl ratio automatic.
  • FIG. 2 is a swirl ratio automatic measuring device of the present invention
  • Figure 2 is an overall perspective view of the swirl ratio automatic measuring equipment of the present invention.
  • the swirl ratio automatic measuring device 1000 of the present invention for measuring the cylinder head 10 includes a valve lift 100, a dummy cylinder 200, a surge tank 300, and a flow measuring unit 400. ) And a blower 500.
  • FIGS. 3 to 7 Each configuration will be described more clearly in FIGS. 3 to 7, and the relationship between each configuration is briefly described through the overall perspective view of FIG. 2.
  • the valve lift 100 is provided to adjust the amount of opening and closing of the plurality of intake ports formed in the cylinder head 10.
  • the dummy cylinder 200 may be mounted to one side of the cylinder head 10, the rotation of the fluid (Swirl) of the fluid flowing from the intake port of the cylinder head 10 is adjusted through the valve lift 100 The value can be measured.
  • the surge tank 300 may be formed on the other side of the dummy cylinder 200, to measure the internal differential pressure to stabilize the equipment as a whole.
  • the flow rate measuring unit 400 is connected to the surge tank 300 through the blower tube 20, as shown in Figure 2 blower pipe 20 for connecting between the surge tank 300 and the blower 500 It can be formed on.
  • valve lift 100 includes a valve 110 for opening or closing a valve of a cylinder head and a lift controller 120 for controlling the valve 110 by receiving an electrical signal from the outside. Can be.
  • the cylinder head 10 includes a plurality of intake ports, and the valve 110 opens and closes the first valve 111 for opening and closing one intake valve of the cylinder head and the other intake port of the cylinder head. It may include a second valve 112, and when the cylinder head is actually used, since the swirl is measured through the first valve 111 and the second valve 112, the exhaust port is closed with the exhaust valve By measuring at In addition, the first valve 111 and the second valve 112 may operate as one body to simultaneously open or close the plurality of intake ports formed in the head cylinder.
  • the lift controller 120 may provide power to control the numerical value at which the valve 110 opens and closes the intake port, and may control the opening / closing amount of the valve 110 itself through a sensor such as an encoder. That is, a motor and an encoder are provided inside the lift controller 120 to enable precise control of the valve 110.
  • the valve lift 100 may further include a laser sensor 130 and a coupling 140 as shown in FIG.
  • the laser sensor 130 is a device capable of re-validating whether the length value of the valve 110 is correct through sensing when the motor is controlled by using the encoder information in the lift controller 120. . Through this, if an error occurs, it can be adjusted to the exact opening and closing amount through feedback control.
  • the laser sensor 130 is attached to the lift control unit 120 can be sensed by irradiating a laser to the valve 110.
  • the laser sensor 130 may be provided in a separate fixing bracket having a “c” shape and may be combined with a lower side of the lift control unit 120.
  • the laser sensor 130 may further include a reflective tape 131 attached to the upper plate of the valve 110 moving up and down. As such, the laser irradiated from the laser sensor 130 is reflected from the reflective tape 131 formed on the upper plate of the valve 110 so that the distance can be measured, and the valve 110 moves up and down. Since it is also associated with the opening and closing level, it is possible to re-verify whether the control of the lift control unit 120 is correct based on this.
  • the coupling 140 is a device for transmitting the power of the lift control unit 120 to the valve 110 may be provided between the lift control unit 120 and the valve 110, the lift control unit 120 may further include a reduction gear box.
  • the dummy cylinder 200 may include a first flange 210, a cylinder body 220, and a second flange 230.
  • the first flange 210 is formed on one side, the bolt groove is formed so that the cylinder head is mounted, and may be formed in a shape corresponding to a portion of the cylinder head, the second flange 230 is formed on the other side the surge tank It is a connection that can be combined with (300).
  • the cylinder body 220 is formed in communication from one side to the other side, and consists of a tube that can be discharged to the other side the fluid introduced from the cylinder head mounted on one side.
  • a window 250 may be formed in the cylinder body 220, and an internal rotation value may be measured through a proximity sensor on the outside of the window 250.
  • the dummy cylinder 200 is a transparent cylinder is formed inside the cylinder body 220, so that the inner side can be measured from the outside of the window 250.
  • the dummy cylinder is formed with the paddle 240, the paddle 240 is rotated by the swirl of the fluid flowing from one side to the other side.
  • the paddle 240 may be connected to the center shaft 231 of the second flange by a bearing. That is, the paddle center 241 and the center shaft 231 of the second flange are coupled to be rotatable so that the paddle 240 can rotate.
  • FIG. 6 is a swirl ratio automatic measuring device of the present invention
  • Figure 6 is a perspective view of the surge tank of the present invention.
  • the surge tank 300 includes a cylinder mounting portion 310 to which a dummy cylinder 200 may be coupled to an upper side, a pipe connection portion 330 and a tank body 320 coupled to a blower tube 20. It can be made, including.
  • the tank body 320 may include a differential pressure sensor (Diff. Pressure Sensor) for measuring the differential pressure generated in the process that the fluid introduced from the cylinder mounting portion 310 is discharged to the pipe connection 330, or a pressure sensor
  • the pressure inside the tank body 320 may be measured by using a.
  • the internal fluid of the tank body 320 may be formed to be stabilized through values detected by the differential pressure gauge or the pressure sensor.
  • FIG. 7 is a swirl ratio automatic measuring device of the present invention
  • Figure 7 is a perspective view of the flow rate measuring unit of the present invention.
  • the flow rate measuring unit 400 may include a flow meter 410 formed between the first pipe 21 and the second pipe 22 to measure the flow rate of the fluid passing through the pipe. have. In other words, the flow rate on the pipe is measured using a flow meter.
  • FIG. 8 and 9 illustrate a system for controlling a swirl ratio automatic measuring device according to the present invention
  • FIG. 8 is a flowchart illustrating a swirl ratio automatic measuring device control according to an embodiment of the present invention
  • FIG. Swirl ratio automatic measurement equipment block diagram according to an embodiment.
  • a control method of the aforementioned proximity sensor, flow meter, differential pressure sensor, motor, encoder, and displacement sensor is described. Able to know.
  • the separate control software (Embedded PC) accepts rotational speed, flow rate, pressure and length values and provides them to control blowers and motors.
  • the control software is connected to the HMI software, the HMI software is provided as a touch panel PC (Touch Panel PC) to facilitate the user's operation.
  • touch panel PC Touch Panel PC
  • the rotation speed measures a count value of the proximity sensor rotating by the swirl of the paddle 240 in the dummy cylinder 200.
  • the flow rate value can be seen by measuring the flow rate of the fluid passing through the blower pipe 20 in the flow rate measuring unit 400 formed on the blower pipe 20 through a flow meter.
  • the pressure value may be made through a differential pressure gauge or a pressure sensor measuring the differential pressure inside the surge tank 300, and when the pressure value is unstable, it can be stabilized by operating the blower 500.
  • the length value can be known through an encoder attached to the valve lift 100, and can be re-validated by further attaching a laser sensor, which is a displacement sensor, to verify this more accurately.
  • the motor and more specifically, the servo motor, may be controlled through the value of the encoder, and the valve 110 of the valve lift 100 may be controlled by a set value through the encoder. Can open and close.
  • FIG. 10 is an embodiment of an automatic swirl ratio measuring method of the present invention
  • FIG. 10 is a flowchart.
  • valve closing step (S110) blower operation step (S120), valve opening step (S130), surge tank differential pressure measurement step (S140), flow rate value and rotation
  • S150 flow rate value measuring step S150
  • a swirl ratio calculating step S160 an average swirl ratio calculating step S170
  • an output step S180 may be performed.
  • each step configuration will be described below.
  • the valve sealing step (S110) is a step of closing the intake port of the cylinder head 10 by using the valve 110 of the valve lift 100. At this time, the cylinder head 10 is coupled to the upper side of the dummy cylinder 200, and since the cylinder head 10 is generally provided with two intake ports, it is sealed using a plurality of valves 110. can do.
  • the blower operation step (S120) is a step of operating the blower 500 when all the intake ports of the cylinder head 10 are blocked through the valve sealing step S110.
  • the intake valve of the cylinder head 10 may be gradually opened through the valve opening step S130.
  • the valve opening step (S130) may be applied to the open value in real time, it may use a predetermined value. That is, if it is assumed that the valve is fully opened at 30 mm, the valve may be opened at 3 mm intervals, and the target value may be set within 30 mm.
  • the valve opening step S130 may be performed by using a servo motor. 110, it can be immediately confirmed and adjusted by using the encoder (Encoder) and the laser sensor 130.
  • the surge tank differential pressure measuring step S140 is a step of measuring the differential pressure inside the surge tank 300 through a differential pressure gauge. At this time, it is determined whether the value measured by the differential pressure gauge is stabilized. If the measured value is not stabilized, the differential pressure inside the surge tank 300 may be stabilized by controlling the RPM of the blower 500. Through this, unstable airflow can be suppressed as much as possible to obtain a reliable measurement value.
  • the flow rate of the blower pipe 20 may be measured through a flow meter, and the rotational value of the paddle 240 of the dummy cylinder 200 by swirl may be measured through a proximity sensor. .
  • the swirl ratio calculating step (S160) is a step of calculating a swirl ratio based on the flow rate value and the rotation value. At this time, after the swirl ratio calculation step (S160), the valve 110 of the valve lift 100 is determined to be open, and if the intake port of the cylinder head 10 is not opened as much as a target value, The valve opening step (S130) to the swirl ratio calculation step (S160) may be repeatedly performed until open.
  • the average swirl ratio calculation step (S170) calculates an average swirl ratio based on the values of all swirl ratios derived through the swirl ratio calculation step (S160) when the intake port of the cylinder head 10 is opened by a target value. Step.
  • the average swirl ratio calculation step (S170) may calculate the swirl ratio for each opening level of the valve 110 in an integral form proportional to the corresponding section according to the shape profile of the cam, and at the same time, it may be illustrated as a graph.
  • the values calculated and shown in this manner may be output to be confirmed from the outside through the output step (S180).
  • FIG. 11 is another embodiment of the swirl ratio automatic measuring method of the present invention, and FIG. 11 is a flowchart.
  • the method for automatically measuring the swirl ratio of the present invention may determine whether the swirl ratio derived through the swirl ratio calculation step S160 is linear in the average swirl ratio calculation step S170.
  • the swirl ratio automatic measurement method of the present invention the section setting step (S200), valve partial sealing step (S210), valve fine opening step (S230), surge tank differential pressure measuring step (S240 ), The flow rate and rotation value measurement step (S250), swirl ratio calculation step (S260) and the average swirl ratio calculation step (S270) may be further included.
  • the surge tank differential pressure measuring step (S240) to the average swirl ratio calculation step (S270) is similar to the surge tank differential pressure measuring step (S140) to the average swirl ratio calculation step (S170) of the embodiment, Description is omitted.
  • a section may be determined by identifying a non-linear section. For example, if the valve opening step (S130) is set so that the valve having a maximum opening of 30 mm is opened at 3 mm intervals, and the nonlinear section appears at 6 mm opening, the section setting step (S200) is a section between 3 mm and 9 mm. Can be set.
  • the valve partial sealing step S210 may operate the valve 110 of the valve lift 100 to seal the valve 110 to a minimum level of the opening value of the section set in the section setting step S200. .
  • the fine opening step (S230) may be sequentially opened on the section set in the section setting step (S200), and may be formed to be opened more finely than the previously set interval up to the section maximum value. If the above example continues, the existing preset to open at 3mm intervals is changed to 1mm intervals, it is provided to open sequentially.
  • the average swirl ratio calculation step (S270) is a step of separately calculating the average value of the finely measured section after the section setting step (S200), through which can increase the reliability of the cylinder head 10, and then manufacture The cylinder head can be induced to solve the problem.
  • FIG. 12 is a plurality of cylinder head swirl ratio automatic measurement method of the present invention
  • Figure 12 shows a flow chart.
  • a plurality of cylinder head swirl ratio automatic measurement method of the present invention the cylinder head mounting step (S310), valve sealing step (S320), blower operation step (S330), valve opening step (S340), differential pressure Measurement step (S350), continuous opening step (S360), hydraulic pressure and paddle value measurement step (S370), continuous open swirl ratio calculation step (S380), and if the cylinder head 10 to be measured replacement of the cylinder head Repeating (S400), and when the measurement of all the cylinder head 10 is completed, it can be provided to the external user through the continuous open swirl ratio deviation calculation step (S410) and output step (S420) of all the cylinder head.
  • the cylinder head mounting step (S310) is a step of mounting one cylinder head 10 on one side of the dummy cylinder 200.
  • the valve sealing step (S320) is a step of closing the intake port of the cylinder head 10 by using the valve 110 of the valve lift (100).
  • the cylinder head 10 is coupled to an upper side of the dummy cylinder 200, and the first valve 111 and the second valve 112 are tested to test a plurality of intake valves of the cylinder head 10.
  • the intake port provided in the cylinder head 10 may be sealed through the valve 110 included therein.
  • the blower operation step S330 is a step of operating the blower 500 when all the intake ports of the cylinder head 10 are blocked through the valve sealing step S320.
  • the intake valve of the cylinder head 10 may be gradually opened through the valve opening step S130.
  • the valve opening step S340 is a step in which the valve 110 of the valve lift 100 opens only a part of the intake port of the cylinder head 10 while the blower 500 is operated.
  • the surge tank differential pressure measuring step S350 is a step of measuring the differential pressure inside the surge tank 300 through a differential pressure gauge. At this time, it is determined whether the value measured by the differential pressure gauge is stabilized. If the measured value is not stabilized, the differential pressure inside the surge tank 300 may be stabilized by controlling the RPM of the blower 500. Through this, unstable airflow can be suppressed as much as possible to obtain a reliable measurement value.
  • valve 110 of the valve lift 100 is connected to the cylinder head 10. Opening the intake port continuously.
  • the hydraulic system and the paddle value measuring step S370 may be performed in parallel with the valve lift continuous opening step S360, and may be continuously opened and at the same time, the blower pipe may be formed through a flow meter of the flow measuring unit 400.
  • a flow rate value of 20 may be measured, and a rotation value of the paddle 240 of the dummy cylinder 200 by swirl may be measured through a proximity sensor.
  • the continuous open swirl ratio calculating step (S380) is a step of calculating a swirl ratio at regular intervals in which the flow rate value and the rotation value continuously change, and the average swirl ratio may be calculated along with the calculation.
  • the continuous open swirl ratio calculation step (S380) it can be determined whether there is a cylinder head to be measured further, if there is a cylinder head to be measured further by replacing the cylinder head (S400) to the valve sealing step (S320) to continuous
  • the open swirl ratio calculation step S400 may be repeated.
  • the valve 110 of the valve lift 100 after the continuous open swirl ratio calculation step (S380) ) Is determined to open as much as the target value, and if it is not opened by the target value, the valve lift is continuously opened (S360) to continuously open swirl ratio calculation step (S380), and when the target value is opened, the measurement is no longer performed. It may be decided to determine if there is a cylinder to perform.
  • the swirl ratio automatic measuring method of the present invention through the continuous open swirl ratio deviation calculation step (S410) and the output step (S420) of outputting the cylinder head to measure a plurality of cylinder heads Can be.
  • valve lift 110 valve
  • first valve 112 second valve
  • first flange 220 cylinder body

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The present invention relates to an apparatus and a method for automatically measuring a swirl ratio, and can provide a more reliable automated measurement method by using the swirl ratio automatic measurement apparatus including a valve lift, a dummy cylinder, a surge tank, a flowrate measuring unit, and a blower, and further can effectively measure a plurality of cylinder heads.

Description

스월비 자동 측정 장비 및 측정 방법Swirlby automatic measuring equipment and measuring method
본 발명은 스월비 자동 측정 장비 및 측정 방법에 관한 것으로, 더욱 상세하게는 엔진의 실린더 헤드에서 흡기 포트로 유입되는 흡기에서 발생하는 스월비를 자동으로 측정할 수 있는 장비와 이를 이용한 스월비 측정 방법에 관한 것이다.The present invention relates to a swirl ratio automatic measuring device and a measuring method, and more particularly, a device for automatically measuring the swirl ratio generated in the intake air flowing from the cylinder head of the engine to the intake port and a swirl ratio measuring method using the same It is about.
엔진의 실린더 헤드에서 흡기 포트로 유입되는 흡기의 스월비(Swirl ratio)는 엔진의 성능과 직결되는 중요한 설계 요소이다. 만일 다기통의 엔진에서 각 실린더의 스월비가 일정하지 않고 편차가 발생하면, 엔진의 성능이 저하될 수 밖에 없는 것이다. 특히, 최근 환경 문제로 인해 디젤 엔진에서 가스 엔진으로 점차적으로 변화하는 추세에서 균일한 스월비의 확보의 중요성이 더욱 대두되고 있다. 또한 제품설계시에는 제작자가 원하는 스펙으로 설계되어도 생산과 가공의 과정에서 제품별로 편차가 발생하기 때문에, 편차를 줄일 수 있는 기술 개발과 동시에 편차를 줄이기 위한 전제로 스월비의 정확한 측정이 필요한 상황이다. The swirl ratio of the intake air flowing from the cylinder head of the engine to the intake port is an important design element directly related to the performance of the engine. If the swirl ratio of each cylinder is not constant in a multi-cylinder engine and a deviation occurs, the performance of the engine is inevitably deteriorated. In particular, due to recent environmental problems, the importance of securing a uniform swirl ratio is increasing in the trend of gradually changing from a diesel engine to a gas engine. In addition, in the design of the product, even if it is designed to the specifications that the manufacturer wants, deviation occurs in each product during the process of production and processing, so it is necessary to measure the swirl ratio precisely as a premise to reduce the deviation at the same time to develop the technology to reduce the deviation. .
관련 기술로, 실린더헤드의 스월비를 측정하기 위한 시험장치인 한국공개특허 제2009-0071901호("연속형 밸브 양정 변화기구를 갖춘 실린더헤드의 정상유동시험기", 2009.07.02.)가 개시되어 있다. 상기한 공법은 도 1에서 보는 바와 같이 선반(1), 캡축회전부(2), 엔코더(3), 밸브위치감지부(4), 내압형성부(5)와 유량측정기(6)를 포함해서 구성되어 있다. As a related art, Korean Patent Application Publication No. 2009-0071901 ("Ceiling head steady flow tester with a continuous valve head change mechanism", 2009.07.02.), Which is a test apparatus for measuring the swirl ratio of a cylinder head, is disclosed. have. As shown in FIG. 1, the method includes a shelf 1, a cap shaft rotating unit 2, an encoder 3, a valve position detecting unit 4, an internal pressure forming unit 5, and a flow meter 6. It is.
하지만, 상기와 같은 종래의 측정 장비는 실제 실린더헤드의 형상은 고려하지 않았으며, 실린더의 스월비를 효과적으로 측정하기가 힘들다. 즉 실린더에서 발생되는 스월비를 측정하기 위해서 장비를 수동으로 조작하여야 하며, 이에 따라 흡기 포트의 밸브 리프트 높이에 따른 단계별 측정이 힘들다. 또한, 이러한 단계별 측정을 위해서도 내부 차압을 안정화하기 위해서 긴 대기시간이 필요하므로 작업 시간 및 노동의 소모가 극심하다. 그리고 해당 구성을 바탕으로 측정 시, 측정 결과에 대한 신뢰성을 얻기가 힘들며, 모든 측정이 마무리 된 후에 이를 취합하여 처리하기 위해서도 별도의 과정이 요구되기 때문에 실제 생산라인에서 적용하기 힘든 문제점이 발생한다. 마지막으로 상기한 공법으로는 다수의 실린더헤드에 대한 각각의 스월비를 측정하기가 곤란하다.However, the conventional measuring equipment as described above does not consider the shape of the actual cylinder head, and it is difficult to effectively measure the swirl ratio of the cylinder. In other words, in order to measure the swirl ratio generated in the cylinder, the equipment must be manually operated. Therefore, stepwise measurement according to the valve lift height of the intake port is difficult. In addition, such a step measurement also requires a long waiting time to stabilize the internal differential pressure, which consumes a lot of work time and labor. In addition, it is difficult to obtain the reliability of the measurement result when measuring based on the configuration, and it is difficult to apply in the actual production line because a separate process is required to collect and process it after all the measurement is finished. Finally, it is difficult to measure each swirl ratio for a plurality of cylinder heads by the above-described method.
[특허문헌][Patent Documents]
(특허문헌 1) 한국공개특허 제2009-0071901호("연속형 밸브 양정 변화기구를 갖춘 실린더헤드의 정상유동 시험기", 2009.07.02)(Patent Document 1) Korean Laid-open Patent No. 2009-0071901 ("Cylinder Head Normal Flow Tester with Continuous Valve Head Change Mechanism", 2009.07.02)
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 실린더헤드의 밸브를 단계적으로 개방하여 이를 자동으로 측정할 수 있으며, 산출된 스월비가 올바른 값을 가질 수 있도록 서지탱크 내의 차압을 안정화하고, 산출된 스월비가 비선형일 경우에는 이를 더 미세하게 측정함으로써 정확성과 재현성이 높은 스월비 자동 측정 장비와 스월비 측정 방법을 제공하고자 하는 것이다. The present invention has been made to solve the above problems, it is possible to automatically measure the valve by opening the valve of the cylinder head step by step, to stabilize the differential pressure in the surge tank so that the calculated swirl ratio has the correct value, If the calculated swirl ratio is nonlinear, it is to measure the finer and more, and to provide a swirl ratio automatic measuring device with high accuracy and reproducibility.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 스월비 자동 측정 장비는, 실린더헤드(10)의 흡기포트의 개방 또는 밀폐하는 밸브(110) 및 외부에서 전기적 신호를 받아 상기 밸브(110)를 제어하는 리프트제어부(120)를 포함하는 밸브리프트(100); 일측에서 타측으로 연통되어 형성되고, 일측에 상기 실린더헤드(10)가 장착되며, 내부에 패들(240)이 형성되어 스월에 의한 회전 값을 측정할 수 있는 더미실린더(200); 상기 더미실린더(200)의 타측과 연결되며, 내부 압력 또는 차압을 측정 및 제어할 수 있도록 압력센서 또는 차압계가 구비되고, 상기 더미실린더(200)에서 유입된 유체를 송풍관(20)으로 배출하는 서지탱크(300); 상기 송풍관(20) 상에 형성되며, 상기 송풍관을 지나는 유량을 측정하는 유량계(410)가 형성된 유량측정부(400); 및 상기 실린더헤드(10)의 밸브를 통해 유입된 유체를 상기 송풍관(20)까지 이송할 수 있도록 상기 송풍관(20)에 연결된 블로워(500);를 포함하여 이루어질 수 있다.Swirl ratio automatic measuring device of the present invention for achieving the above object, the valve 110 to open or close the intake port of the cylinder head 10 and receives the electrical signal from the outside to control the valve 110 A valve lift 100 including a lift control unit 120; It is formed to communicate from one side to the other side, the cylinder head 10 is mounted on one side, the paddle 240 is formed therein is a dummy cylinder 200 that can measure the rotation value by the swirl; Is connected to the other side of the dummy cylinder 200, a pressure sensor or a differential pressure gauge is provided to measure and control the internal pressure or the differential pressure, the surge for discharging the fluid introduced from the dummy cylinder 200 to the blower pipe (20) Tank 300; A flow rate measuring part 400 formed on the blower tube 20 and having a flow meter 410 for measuring a flow rate passing through the blower tube; And a blower 500 connected to the blower tube 20 to transfer the fluid introduced through the valve of the cylinder head 10 to the blower tube 20.
이때, 상기 밸브리프트(100)는 상기 리프트제어부(120) 내부에 모터 및 엔코더가 구비되어 상기 밸브(110)의 정밀 제어가 가능한 것을 특징으로 할 수 있다.In this case, the valve lift 100 may be provided with a motor and an encoder inside the lift control unit 120 to perform precise control of the valve 110.
또한, 상기 밸브리프트(100)는 상기 밸브(110)를 통해 상기 실린더헤드(10) 포트의 개폐수준을 측정할 수 있도록, 상기 밸브(110)가 내려간 길이를 측정하는 레이저센서(130)를 더 포함하여 이루어질 수 있다.In addition, the valve lift 100 further comprises a laser sensor 130 for measuring the length of the valve 110 is lowered, so that the opening and closing level of the port of the cylinder head 10 through the valve 110 can be measured. It can be made, including.
또한, 상기 스월비 자동 측정 장비를 이용한 스월비 자동 측정 방법은, 상기 밸브(110)를 이용하여 상기 실린더헤드(10)의 흡기포트를 밀폐하는 밸브밀폐단계(S110); 상기 블로워(500)를 가동하는 블로워 가동단계(S120); 상기 리프트제어부(120)를 통해 상기 밸브(110)를 설정된 수준으로 개방하는 밸브개방단계(S130); 상기 서지탱크(300) 내부의 차압을 측정하는 차압측정단계(S140); 상기 서지탱크(300)가 일정한 차압에서 안정되었는지를 판단 후, 상기 서지탱크(300)의 내부 차압이 안정화되지 않으면 상기 블로워(500)의 RPM을 제어하며, 상기 서지탱크(300)의 내부 차압이 안정화되면 상기 유량측정부(400)의 유량을 측정하고 상기 더미실린더(200)의 패들(240)의 회전값을 측정하는 유압계 및 패들값 측정단계(S150); 및 상기 유압계 및 패들값 측정단계(S150)를 통해 측정된 값들을 토대로 스월비를 연산하는 스월비 산출단계(S160);를 포함하여 이루어질 수 있다.In addition, the swirl ratio automatic measuring method using the swirl ratio automatic measuring device, the valve closing step of closing the intake port of the cylinder head 10 by using the valve (S110); A blower operation step of operating the blower 500; A valve opening step (S130) for opening the valve 110 to a set level through the lift control unit 120; A differential pressure measuring step (S140) of measuring a differential pressure inside the surge tank 300; After determining whether the surge tank 300 is stable at a constant differential pressure, if the internal differential pressure of the surge tank 300 is not stabilized, the RPM of the blower 500 is controlled, and the internal differential pressure of the surge tank 300 is increased. A hydraulic system and a paddle value measuring step of measuring a flow rate of the flow measuring unit 400 and measuring a rotation value of the paddle 240 of the dummy cylinder 200 when it is stabilized; And a swirl ratio calculating step S160 of calculating a swirl ratio based on the values measured through the hydraulic system and the paddle value measuring step S150.
이때, 상기 스월비 자동 측정 방법은 상기 밸브개방단계(S130) 내지 스월비 산출단계(S160)를 반복하여 수행하는 것을 특징으로 하며, 상기 실린더헤드(10)의 흡기포트가 목표수치만큼 개방되면 상기 스월비 산출단계(S160)를 통해 도출된 스월비들을 통해 평균스월비를 계산하는 평균스월비 계산단계(S170);를 더 포함하여 이루어질 수 있다.In this case, the swirl ratio automatic measuring method is characterized in that the valve opening step (S130) to perform a swirl ratio calculation step (S160) repeatedly, if the intake port of the cylinder head 10 is opened by a target value The average swirl ratio calculation step (S170) for calculating the average swirl ratio through the swirl ratio derived through the swirl ratio calculation step (S160); may be further included.
또한, 상기 스월비 자동 측정 방법은 상기 평균스월비 계산단계(S170) 이후, 측정 또는 산출된 값을 출력하는 출력단계(S180);를 더 포함하여 이루어질 수 있다.The method for automatically measuring swirl ratio may further include an output step S180 of outputting a measured or calculated value after the average swirl ratio calculation step S170.
또한, 상기 평균스월비 계산단계(S170)는, 상기 스월비 산출단계(S160)를 통해 도출된 스월비가 선형을 이루는지 판단하는 것을 특징으로 할 수 있다.In addition, the average swirl ratio calculation step (S170) may be characterized in that it is determined whether the swirl ratio derived through the swirl ratio calculation step (S160) is linear.
이때, 상기 스월비 자동 측정 방법은 상기 평균스월비 계산단계(S170)에서 스월비가 비선형을 이루는 구간이 있을 경우, 상기 스월비가 비선형을 이루는 구간을 확인하고 설정하는 구간설정단계(S200); 설정된 구간만큼 상기 실린더헤드(10)의 흡기포트를 부분적으로 밀폐하는 밸브부분밀폐단계(S210); 상기 실린더헤드(10)의 흡기포트를 상기 밸브개방단계(S130)의 설정된 수준보다 더 미세하게 재설정하여 개방하는 밸브미세개방단계(S230); 상기 유량측정부(400)의 유량을 측정하며, 상기 더미실린더(200)의 패들(240)의 회전값을 측정하는 유압계 및 패들값 측정단계(S250); 및 상기 유압계 및 패들값 측정단계(S250)를 통해 측정된 값들을 토대로 스월비를 연산하는 스월비 산출단계(S260);를 더 포함하여 이루어지며, 상기 스월비 자동 측정 방법은 설정된 구간으로 상기 실린더헤드(10)의 흡기포트가 개방될 때까지 상기 밸브미세개방단계(S230) 내지 스월비산출단계(260)를 반복하는 것을 특징으로 하고, 상기 실린더헤드(10)의 밸브가 설정된 구간만큼 개방되면, 상기 스월비산출단계(S260) 후, 구간설정된 부분의 산출된 스월비들의 평균스월비를 계산하는 산출된 평균스월비 계산단계(270);를 더 포함하여 이루어질 수 있다.At this time, the automatic measurement method of the swirl ratio, if there is a section in which the swirl ratio is non-linear in the average swirl ratio calculation step (S170), the interval setting step of checking and setting the section in which the swirl ratio is non-linear (S200); A valve portion sealing step (S210) for partially sealing the intake port of the cylinder head 10 by a set section; A fine opening step (S230) of opening the intake port of the cylinder head (10) by resetting more finely than the set level of the opening step (S130); A hydraulic system and a paddle value measuring step of measuring a flow rate of the flow measuring unit 400 and measuring a rotation value of the paddle 240 of the dummy cylinder 200; And a swirl ratio calculating step (S260) of calculating a swirl ratio based on the values measured through the hydraulic system and the paddle value measuring step (S250). The fine opening step (S230) to the swirl ratio calculation step 260 is repeated until the intake port of the cylinder head 10 is opened, and the valve of the cylinder head 10 is opened by the set section. When the swirl ratio calculation step S260 is performed, the calculated average swirl ratio calculation step 270 of calculating the average swirl ratio of the calculated swirl ratios of the interval-set portion may be further included.
또한, 스월비 자동 측정 장비를 이용한 복수의 실린더헤드 스월비 자동 측정 방법은, 상기 더미실린더(200)의 일측에 하나의 실린더헤드(10)를 장착하는 실린더헤드 장착단계(S310); 상기 밸브(110)를 이용하여 상기 실린더헤드(10)의 흡기포트를 밀폐하는 밸브밀폐단계(S320); 상기 블로워(500)를 가동하는 블로워 가동단계(S330); 상기 리프트제어부(120)를 통해 상기 밸브(110)를 설정된 수준으로 개방하는 밸브개방단계(S340); 상기 서지탱크(300) 내부의 차압을 측정하는 차압측정단계(S350); 차압측정단계(S350)에서 상기 서지탱크(300)가 일정한 차압에서 안정되었는지를 판단 후, 상기 서지탱크(300)의 내부 차압이 안정화되지 않으면 상기 블로워(500)의 RPM을 제어하며, 상기 서지탱크(300)의 내부 차압이 안정화되면 상기 밸브(110)를 연속으로 개방하는 밸브리프트 연속개방단계(S360); 상기 연속개방단계(S360)와 병행하여, 상기 유량측정부(400)의 유량을 측정하고 상기 더미실린더(200)의 패들(240)의 회전값을 측정하는 유압계 및 패들값 측정단계(S370); 상기 유압계 및 패들값 측정단계(S150)를 통해 측정된 연속개방 스월비를 산출하는 단계(S380); 및 측정되지 못한 실린더헤드(10)가 있는지 판단 후, 측정할 실린더헤드(10)가 있으면 실린더헤드를 교체하는 단계(S400);를 포함하여 이루어질 수 있다.In addition, a plurality of cylinder head swirl ratio automatic measurement method using a swirl ratio automatic measuring device, the cylinder head mounting step of mounting one cylinder head 10 on one side of the dummy cylinder (200); A valve sealing step (S320) of sealing the intake port of the cylinder head (10) by using the valve (110); A blower operation step of operating the blower 500; A valve opening step (S340) of opening the valve 110 to a set level through the lift control unit 120; A differential pressure measuring step (S350) of measuring a differential pressure inside the surge tank 300; After determining whether the surge tank 300 is stable at a constant differential pressure in the differential pressure measuring step S350, if the internal differential pressure of the surge tank 300 is not stabilized, the RPM of the blower 500 is controlled, and the surge tank A valve lift continuous opening step (S360) of continuously opening the valve 110 when the internal differential pressure of 300 is stabilized; In parallel with the continuous opening step (S360), to measure the flow rate of the flow measuring unit 400 and the hydraulic pressure and paddle value measuring step (S370) of measuring the rotation value of the paddle 240 of the dummy cylinder (200) ; Calculating a continuous open swirl ratio measured through the hydraulic system and the paddle value measuring step (S150); And after determining whether there is a cylinder head 10 that has not been measured, if there is a cylinder head 10 to be measured, replacing the cylinder head (S400).
이때, 상기 복수의 실린더헤드 스월비 자동 측정 방법은, 측정할 실린더헤드(10)가 남아 있으면 상기 밸브밀폐단계(S320) 내지 실린더헤드 교체단계(S400)를 반복수행하며, 더 이상 측정할 실린더헤드(10)가 없으면 상기 연속개방 스월비 산출단계(S380) 후, 측정된 복수의 실린더헤드(10)의 연속개방 스월비 간 편차를 계산하는 단계(410); 및 상기 측정값 및 계산값을 출력하는 출력단계(S420);를 더 포함하여 이루어질 수 있다.At this time, the plurality of cylinder head swirl ratio automatic measuring method, if the cylinder head 10 to be measured remains, the valve closing step (S320) to the cylinder head replacement step (S400) is repeatedly performed, the cylinder head to be measured further (10) calculating the deviation between the continuous open swirl ratios of the measured plurality of cylinder heads 10 after the continuous open swirl ratio calculating step (S380); And an output step S420 of outputting the measured value and the calculated value.
또한, 상기 복수의 실린더헤드 스월비 자동 측정 방법은, 상기 연속개방 스월비 산출단계(S380) 이후, 상기 밸브리프트(100)의 밸브(110)가 목표수치만큼 개방되었는지 판단하여, 목표수치만큼 개방되지 않을 경우에는 상기 밸브리프트 연속개방단계(S360) 내지 연속개방 스월비 산출단계(S380)를 반복하며, 목표수치만큼 개방되면 더 이상 측정할 실린더 헤드가 있는지를 판단하는 것을 특징으로 할 수 있다.In addition, the plurality of cylinder head swirl ratio automatic measurement method, after the continuous open swirl ratio calculation step (S380), it is determined whether the valve 110 of the valve lift 100 is opened by the target value, and opened by the target value. If not, the valve lift may be continuously opened (S360) to continuously open swirl ratio calculation step (S380), and may be determined whether there is a cylinder head to be measured any more when the target value is opened.
상기와 같은 구성에 의한 본 발명에 따른 스월비 자동 측정 장비 및 측정 방법은, 밸브를 완전하게 밀폐한 후에 설정한 수치만큼 단계적으로 개방함과 동시에 각 단계의 스월비를 산출하여, 산출된 스월비의 평균스월비를 계산함으로써 보다 신뢰성이 높고 정밀한 측정이 가능하다.The swirl ratio automatic measuring device and the measuring method according to the present invention having the above-described configuration open the doors step by step after closing the valve completely, and calculate the swirl ratio at each stage, and calculate the swirl ratio By calculating the average swirl ratio of, more reliable and accurate measurement is possible.
또한, 실린더헤드를 측정 장비에 올려두어 측정 장비를 가동시키면, 출력까지 모든 단계가 자동화되어 있기 때문에, 실린더헤드를 측정하는 시간이 보다 획기적으로 단축된다. In addition, when the cylinder head is placed on the measuring equipment and the measuring equipment is operated, the time for measuring the cylinder head is significantly shortened because all the steps up to the output are automated.
또한, 하나의 실린더헤드의 구비된 복수의 흡기포트를 동시에 측정할 수 있으며, 나아가 복수의 실린더헤드를 모두 측정할 수 있는 방법을 제공하여, 복수의 실린더헤드 간의 스월비 편차를 최단 시간 내에 비교할 수 있도록 제공된다.In addition, it is possible to simultaneously measure a plurality of intake ports provided in one cylinder head, and further provide a method of measuring all of the plurality of cylinder heads so that the swirl ratio deviation between the plurality of cylinder heads can be compared within the shortest time. To be provided.
도 1은 종래 기술에 따른 실린더헤드의 정상유동시험기의 사시도.1 is a perspective view of a steady flow tester of a cylinder head according to the prior art.
도 2는 본 발명의 일 실시예에 따른 스월비 자동 측정 장비의 사시도.2 is a perspective view of a swirl ratio automatic measurement equipment according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 밸브리프트의 사시도.3 is a perspective view of a valve lift according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 더미실린더의 사시도.4 is a perspective view of a dummy cylinder according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 더미실린더의 내부투영도.5 is an internal projection of the dummy cylinder according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 서지탱크의 사시도.6 is a perspective view of a surge tank according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 송풍관에 구비된 유량측정부의 사시도.Figure 7 is a perspective view of the flow rate measuring unit provided in the blower tube according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 스월비 자동 측정 장비 제어 흐름도.8 is a flow chart for swirl ratio automatic measurement equipment control according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 스월비 자동 측정 장비 블럭도.Figure 9 is a block diagram of swirl ratio automatic measurement equipment according to an embodiment of the present invention.
도 10은 본 발명인 스월비 자동 측정 방법의 일 실시예에 따른 플로우 차트.10 is a flow chart according to an embodiment of the inventor's swirl ratio automatic measurement method.
도 11은 본 발명인 스월비 자동 측정 방법의 다른 실시예에 따른 플로우 차트.11 is a flow chart according to another embodiment of the inventor's swirl rate automatic measurement method.
도 12는 본 발명인 복수의 실린더헤드 스월비 자동 측정 방법의 일 실시예에 따른 플로우 차트.12 is a flow chart according to an embodiment of the present invention for measuring a plurality of cylinder head swirl ratio automatic.
이하 첨부한 도면들을 참조하여 본 발명의 실시예에 따른 스월비 자동 측정 장비 및 측정 방법을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described in detail a swirl ratio automatic measuring equipment and measuring method according to an embodiment of the present invention. The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms. Also, like reference numerals denote like elements throughout the specification.
이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning that is commonly understood by those of ordinary skill in the art to which the present invention belongs, and the gist of the present invention is unnecessary in the following description and the accompanying drawings. Descriptions of well-known functions and configurations that may be blurred are omitted.
[스월비 자동 측정 장비][Swirlby automatic measuring equipment]
도 2는 본 발명의 스월비 자동 측정 장비로서, 도 2는 본 발명의 스월비 자동 측정 장비의 전체 사시도이다. 도 2를 참조하면, 실린더헤드(10)를 측정하기 위한 본 발명의 스월비 자동 측정 장비(1000)는 밸브리프트(100), 더미실린더(200), 서지탱크(300), 유량측정부(400) 및 블로워(500)를 포함하여 이루어질 수 있다. 각 구성에 대해서는 도 3 내지 도 7에서 보다 명확하게 설명할 것이며, 이에 앞서 도 2의 전체사시도를 통해 개략적으로 각 구성들의 관계를 간단하게 기재한다. 2 is a swirl ratio automatic measuring device of the present invention, Figure 2 is an overall perspective view of the swirl ratio automatic measuring equipment of the present invention. Referring to FIG. 2, the swirl ratio automatic measuring device 1000 of the present invention for measuring the cylinder head 10 includes a valve lift 100, a dummy cylinder 200, a surge tank 300, and a flow measuring unit 400. ) And a blower 500. Each configuration will be described more clearly in FIGS. 3 to 7, and the relationship between each configuration is briefly described through the overall perspective view of FIG. 2.
상기 밸브리프트(100)는 상기 실린더헤드(10)에 형성된 복수의 흡기포트의 개폐량을 조절할 수 있도록 구비된다.The valve lift 100 is provided to adjust the amount of opening and closing of the plurality of intake ports formed in the cylinder head 10.
상기 더미실린더(200)는 일측에 상기 실린더헤드(10)가 장착될 수 있으며, 상기 밸브리프트(100)를 통해 조절되는 상기 실린더헤드(10)의 흡기포트에서 유입되는 유체의 스월(Swirl) 회전 값을 측정할 수 있다.The dummy cylinder 200 may be mounted to one side of the cylinder head 10, the rotation of the fluid (Swirl) of the fluid flowing from the intake port of the cylinder head 10 is adjusted through the valve lift 100 The value can be measured.
상기 서지탱크(300)는 상기 더미실린더(200)의 타측에 형성될 수 있으며, 내부 차압을 측정하여 장비를 전반적으로 안정화할 수 있도록 한다.The surge tank 300 may be formed on the other side of the dummy cylinder 200, to measure the internal differential pressure to stabilize the equipment as a whole.
상기 유량측정부(400)는 송풍관(20)을 통해 상기 서지탱크(300)와 연결되며, 도 2에서 도시된 바와 같이 상기 서지탱크(300)와 블로워(500) 사이를 연결하는 송풍관(20) 상에 형성될 수 있다. The flow rate measuring unit 400 is connected to the surge tank 300 through the blower tube 20, as shown in Figure 2 blower pipe 20 for connecting between the surge tank 300 and the blower 500 It can be formed on.
도 3은 본 발명의 스월비 자동 측정 장비로서, 도 3은 본 발명의 밸브리프트의 사시도이다. 도 3을 참조하면, 상기 밸브리프트(100)는 실린더헤드의 밸브를 개방 또는 밀폐하는 밸브(110) 및 외부에서 전기적 신호를 받아 상기 밸브(110)를 제어하는 리프트제어부(120)를 포함하여 이루어질 수 있다. 3 is a swirl ratio automatic measuring device of the present invention, Figure 3 is a perspective view of the valve lift of the present invention. Referring to FIG. 3, the valve lift 100 includes a valve 110 for opening or closing a valve of a cylinder head and a lift controller 120 for controlling the valve 110 by receiving an electrical signal from the outside. Can be.
이때, 상기 실린더헤드(10)는 복수의 흡기포트를 포함하고 있으며, 상기 밸브(110)는 실린더헤드의 하나의 흡기밸브를 개폐하는 제1밸브(111) 및 실린더헤드의 다른 흡기포트를 개폐하는 제2밸브(112)를 포함하여 이루어질 수 있으며, 실린더헤드가 실제로 사용될 경우에는 상기 제1밸브(111) 및 제2밸브(112)를 통해 스월을 측정하기 때문에 배기포트는 배기밸브로 밀폐한 상태에서 측정함으로써 이루어질 수 있다. 또한, 상기 제1밸브(111) 및 제2밸브(112)는 한 몸체로 동작하여 헤드실린더에 형성된 복수의 흡기포트를 동시에 개방 또는 밀폐할 수 있다.In this case, the cylinder head 10 includes a plurality of intake ports, and the valve 110 opens and closes the first valve 111 for opening and closing one intake valve of the cylinder head and the other intake port of the cylinder head. It may include a second valve 112, and when the cylinder head is actually used, since the swirl is measured through the first valve 111 and the second valve 112, the exhaust port is closed with the exhaust valve By measuring at In addition, the first valve 111 and the second valve 112 may operate as one body to simultaneously open or close the plurality of intake ports formed in the head cylinder.
상기 리프트제어부(120)는 상기 밸브(110)가 흡기포트를 개폐하는 수치를 제어할 수 있는 동력을 제공함과 동시에 엔코더와 같은 센서를 통하여 상기 밸브(110)의 개폐량 자체를 제어할 수 있다. 즉, 상기 리프트제어부(120) 내부에 모터 및 엔코더가 구비되어 상기 밸브(110)의 정밀 제어가 가능한 것이다.The lift controller 120 may provide power to control the numerical value at which the valve 110 opens and closes the intake port, and may control the opening / closing amount of the valve 110 itself through a sensor such as an encoder. That is, a motor and an encoder are provided inside the lift controller 120 to enable precise control of the valve 110.
또한, 상기 밸브리프트(100)는 도 3에서 도시된 바와 같이 레이저센서(130) 및 커플링(140)을 더 포함하여 이루어질 수 있다. 상기 레이저센서(130)는 상기 리프트제어부(120)에서 엔코더(Encoder) 정보를 이용하여 모터(Motor) 제어가 되면, 센싱을 통하여 상기 밸브(110)의 길이 값이 정확한지 재검증할 수 있는 장치이다. 이를 통하여 오차가 발생할 경우 피드백 제어를 통해 정확한 개폐량으로 조절할 수 있다. 상기 레어저센서(130)는 상기 리프트제어부(120)에 부착되어 상기 밸브(110)에 레이저를 조사함으로써 센싱이 가능하다. 이때 상기 레이저센서(130)는 "ㄷ"자 형상의 별도의 고정브라켓에 구비되어 상기 리프트제어부(120)의 하측과 결합될 수 있다. 그리고 상기 레이저센서(130)는 상기 레이저는 상하로 움직이는 상기 밸브(110)의 상판에 부착되는 반사테이프(131)를 더 포함하여 이루어질 수 있다. 이와 같이 상기 레이저센서(130)에서 조사되는 레이저가 상기 밸브(110)의 상판에 형성된 반사테이프(131)에서 반사되어 거리측정이 가능하며, 상기 밸브(110)가 상하로 움직인다는 것은 흡기포트의 개폐수준과도 연관되기 때문에, 이를 바탕으로 상기 리프트제어부(120)의 제어가 올바른지 재검증이 가능하다. In addition, the valve lift 100 may further include a laser sensor 130 and a coupling 140 as shown in FIG. The laser sensor 130 is a device capable of re-validating whether the length value of the valve 110 is correct through sensing when the motor is controlled by using the encoder information in the lift controller 120. . Through this, if an error occurs, it can be adjusted to the exact opening and closing amount through feedback control. The laser sensor 130 is attached to the lift control unit 120 can be sensed by irradiating a laser to the valve 110. In this case, the laser sensor 130 may be provided in a separate fixing bracket having a “c” shape and may be combined with a lower side of the lift control unit 120. The laser sensor 130 may further include a reflective tape 131 attached to the upper plate of the valve 110 moving up and down. As such, the laser irradiated from the laser sensor 130 is reflected from the reflective tape 131 formed on the upper plate of the valve 110 so that the distance can be measured, and the valve 110 moves up and down. Since it is also associated with the opening and closing level, it is possible to re-verify whether the control of the lift control unit 120 is correct based on this.
또한, 상기 커플링(140)은 상기 리프트제어부(120)의 동력을 상기 밸브(110)로 전달하기 위한 장치로 상기 리프트제어부(120) 및 밸브(110) 사이에 구비될 수 있으며, 상기 리프트제어부(120)는 감속기어박스를 더 포함하여 이루어질 수 있다.In addition, the coupling 140 is a device for transmitting the power of the lift control unit 120 to the valve 110 may be provided between the lift control unit 120 and the valve 110, the lift control unit 120 may further include a reduction gear box.
도 4 및 도 5는 본 발명의 스월비 자동 측정 장비로서, 도 4는 본 발명의 더미실린더의 사시도이며, 도 5는 본 발명의 더미실린더의 내부투영도이다. 도 4를 참조하면, 상기 더미실린더(200)는 제1플랜지(210), 실린더몸체(220) 및 제2플랜지(230)를 포함하여 이루어질 수 있다. 4 and 5 is a swirl ratio automatic measuring device of the present invention, Figure 4 is a perspective view of the dummy cylinder of the present invention, Figure 5 is an internal projection of the dummy cylinder of the present invention. Referring to FIG. 4, the dummy cylinder 200 may include a first flange 210, a cylinder body 220, and a second flange 230.
상기 제1플랜지(210)는 일측에 형성되어 실린더헤드가 장착되도록 볼트홈이 형성되며 실린더헤드의 일부와 대응하는 형상으로 이루어질 수 있고, 상기 제2플랜지(230)는 타측에 형성되어 상기 서지탱크(300)와 결합될 수 있는 연결부이다.The first flange 210 is formed on one side, the bolt groove is formed so that the cylinder head is mounted, and may be formed in a shape corresponding to a portion of the cylinder head, the second flange 230 is formed on the other side the surge tank It is a connection that can be combined with (300).
상기 실린더몸체(220)는 일측에서 타측으로 연통되어 형성되며, 일측에 장착된 실린더헤드에서 유입된 유체가 타측으로 배출될 수 있는 관으로 이루어져 있다. 또한 상기 실린더몸체(220)에는 윈도우(250)가 형성될 수 있으며, 상기 윈도우(250)의 외측에서 근접센서(Proximity Sensor)를 통해 내부의 회전값을 측정할 수 있다. 이를 보다 명확하게 설명하기 위해 도 5를 참조한다.The cylinder body 220 is formed in communication from one side to the other side, and consists of a tube that can be discharged to the other side the fluid introduced from the cylinder head mounted on one side. In addition, a window 250 may be formed in the cylinder body 220, and an internal rotation value may be measured through a proximity sensor on the outside of the window 250. In order to explain this more clearly, reference is made to FIG. 5.
상기 더미실린더(200)는 상기 실린더몸체(220)의 내부에 투명실린더가 형성되어, 상기 윈도우(250)의 외측에서 내측을 측정할 수 있도록 한다. 또한 상기 더미실린더는 내부에 상기 패들(240)이 형성되며, 상기 패들(240)은 일측에서 타측으로 흘러가는 유체의 스월(Swirl)에 의해 회전한다. 또한 상기 패들(240)은 제2플랜지의 중심샤프트(231)와 베어링으로 연결될 수 있다. 즉, 상기 패들중심(241) 및 상기 제2플랜지의 중심샤프트(231)가 회전이 가능하도록 결합되어 상기 패들(240)이 회전할 수 있도록 형성되는 것이다. The dummy cylinder 200 is a transparent cylinder is formed inside the cylinder body 220, so that the inner side can be measured from the outside of the window 250. In addition, the dummy cylinder is formed with the paddle 240, the paddle 240 is rotated by the swirl of the fluid flowing from one side to the other side. In addition, the paddle 240 may be connected to the center shaft 231 of the second flange by a bearing. That is, the paddle center 241 and the center shaft 231 of the second flange are coupled to be rotatable so that the paddle 240 can rotate.
도 6은 본 발명의 스월비 자동 측정 장비로서, 도 6은 본 발명의 서지탱크의 사시도이다. 도 6을 참조하면, 상기 서지탱크(300)는 상측에 더미실린더(200)가 결합될 수 있는 실린더장착부(310), 송풍관(20)과 결합되는 배관연결부(330) 및 탱크몸체(320)를 포함하여 이루어질 수 있다. 6 is a swirl ratio automatic measuring device of the present invention, Figure 6 is a perspective view of the surge tank of the present invention. Referring to FIG. 6, the surge tank 300 includes a cylinder mounting portion 310 to which a dummy cylinder 200 may be coupled to an upper side, a pipe connection portion 330 and a tank body 320 coupled to a blower tube 20. It can be made, including.
상기 탱크몸체(320) 내부는 상기 실린더장착부(310)에서 유입된 유체가 상기 배관연결부(330)로 배출되는 과정에서 생기는 차압을 측정하는 차압계(Diff. Pressure Sensor)가 포함될 수 있으며, 또는 압력센서를 이용하여 상기 탱크몸체(320) 내부의 압력을 측정할 수 있다. 이때 차압계 또는 압력센서에서 검출된 값을 통해서 상기 탱크몸체(320)의 내부 유체가 안정화가 될 수 있도록 형성될 수 있다. The tank body 320 may include a differential pressure sensor (Diff. Pressure Sensor) for measuring the differential pressure generated in the process that the fluid introduced from the cylinder mounting portion 310 is discharged to the pipe connection 330, or a pressure sensor The pressure inside the tank body 320 may be measured by using a. In this case, the internal fluid of the tank body 320 may be formed to be stabilized through values detected by the differential pressure gauge or the pressure sensor.
도 7은 본 발명의 스월비 자동 측정 장비로서, 도 7은 본 발명의 유량측정부의 사시도이다. 도 7을 참조하면, 상기 유량측정부(400)는 제1배관(21) 및 제2배관(22) 사이에 형성되어 배관을 지나는 유체의 유량을 측정할 수 있는 유량계(410)를 포함할 수 있다. 즉 유량계(Flow Meter)를 이용하여 배관 상의 유량값을 측정하는 구성이다.7 is a swirl ratio automatic measuring device of the present invention, Figure 7 is a perspective view of the flow rate measuring unit of the present invention. Referring to FIG. 7, the flow rate measuring unit 400 may include a flow meter 410 formed between the first pipe 21 and the second pipe 22 to measure the flow rate of the fluid passing through the pipe. have. In other words, the flow rate on the pipe is measured using a flow meter.
도 8 및 도 9는 본 발명의 스월비 자동 측정 장비를 제어시스템을 도시하기 위한 것으로서, 도 8은 본 발명의 일 실시예에 따른 스월비 자동 측정 장비 제어 흐름도이며, 도 9는 본 발명의 일 실시예에 따른 스월비 자동 측정 장비 블록도이다. 도 8을 참조하면, 앞서 언급한 근접센서(Proximity Sensor), 유량계(Flow Meter), 차압계(Diff. Pressure Sensor), 모터(Motor)와 엔코더(Encoder) 및 변위센서(Laser Sensor)의 제어방식을 알 수 있다. 별도의 제어 소프트웨어(Embedded PC)에서는 회전수, 유량값, 압력 및 길이값을 받아들여 이를 바탕으로 블로워(Blower) 및 모터(Motor)를 제어하도록 제공하는 것이다. 또한 상기 제어 소프트웨어는 HMI 소프트웨어와 연결되며, 상기 HMI 소프트웨어는 터치 패널 PC(Touch Panel PC)로 이루어져 사용자의 조작이 용이하도록 제공된다.8 and 9 illustrate a system for controlling a swirl ratio automatic measuring device according to the present invention, FIG. 8 is a flowchart illustrating a swirl ratio automatic measuring device control according to an embodiment of the present invention, and FIG. Swirl ratio automatic measurement equipment block diagram according to an embodiment. Referring to FIG. 8, a control method of the aforementioned proximity sensor, flow meter, differential pressure sensor, motor, encoder, and displacement sensor is described. Able to know. The separate control software (Embedded PC) accepts rotational speed, flow rate, pressure and length values and provides them to control blowers and motors. In addition, the control software is connected to the HMI software, the HMI software is provided as a touch panel PC (Touch Panel PC) to facilitate the user's operation.
도 9를 참조하면, 상기 회전수는 상기 근접센서(Proximity Sensor)가 상기 더미실린더(200) 내 패들(240)이 유체의 스월(Swirl)에 의해 회전하는 것을 카운트 값을 측정한다. 또한 상기 유량값은 상기 송풍관(20) 상에 형성된 유량측정부(400)에서 상기 송풍관(20)을 지나는 유체의 유량을 유량계(Flow Meter)를 통해 측정함으로써 알 수 있다. 또한, 상기 압력값은 상기 서지탱크(300) 내부의 차압을 측정하는 차압계 또는 압력센서를 통해 이루어질 수 있으며, 상기 압력값이 불안정할 경우에는 블로워(500)를 조작하여 안정화할 수 있다. 마지막으로, 상기 길이값은 상기 밸브리프트(100)에 부착된 엔코더(Encoder)를 통해 알 수 있으며, 이를 보다 정확하게 검증할 수 있도록 변위센서인 레이저센서를 더 부착하여 재검증이 가능하도록 할 수 있다. 이때, 상기 엔코더(Encoder)의 값을 통해 상기 모터(Motor), 보다 명확하게는 서보 모터(Servo Motor)를 제어할 수 있으며, 이를 통하여 설정된 수치만큼 상기 밸브리프트(100)의 밸브(110)를 개폐할 수 있다. Referring to FIG. 9, the rotation speed measures a count value of the proximity sensor rotating by the swirl of the paddle 240 in the dummy cylinder 200. In addition, the flow rate value can be seen by measuring the flow rate of the fluid passing through the blower pipe 20 in the flow rate measuring unit 400 formed on the blower pipe 20 through a flow meter. In addition, the pressure value may be made through a differential pressure gauge or a pressure sensor measuring the differential pressure inside the surge tank 300, and when the pressure value is unstable, it can be stabilized by operating the blower 500. Finally, the length value can be known through an encoder attached to the valve lift 100, and can be re-validated by further attaching a laser sensor, which is a displacement sensor, to verify this more accurately. . In this case, the motor, and more specifically, the servo motor, may be controlled through the value of the encoder, and the valve 110 of the valve lift 100 may be controlled by a set value through the encoder. Can open and close.
[스월비 자동 측정 방법][Swirl ratio automatic measurement method]
<실시예 1><Example 1>
도 10은 본 발명의 스월비 자동 측정 방법의 일 실시예로서, 도 10은 플로우 차트를 나타낸다. 도 10을 참조하면, 본 발명의 스월비 자동 측정 방법은, 밸브밀폐단계(S110), 블로워 가동단계(S120), 밸브개방단계(S130), 서지탱크 차압측정단계(S140), 유량값 및 회전값 측정단계(S150), 스월비 산출단계(S160), 평균스월비 계산단계(S170) 및 출력단계(S180)를 포함하여 이루어질 수 있다. 도 2 내지 도 9의 스월비 자동 측정 장비를 참조하여, 각 단계구성을 설명하면 아래와 같다. FIG. 10 is an embodiment of an automatic swirl ratio measuring method of the present invention, and FIG. 10 is a flowchart. Referring to Figure 10, the swirl ratio automatic measuring method of the present invention, valve closing step (S110), blower operation step (S120), valve opening step (S130), surge tank differential pressure measurement step (S140), flow rate value and rotation A value measuring step S150, a swirl ratio calculating step S160, an average swirl ratio calculating step S170, and an output step S180 may be performed. Referring to the swirl ratio automatic measurement equipment of Figures 2 to 9, each step configuration will be described below.
상기 밸브밀폐단계(S110)는 밸브리프트(100)의 밸브(110)를 이용하여 실린더헤드(10)의 흡기포트를 밀폐하는 단계이다. 이때 상기 실린더헤드(10)는 상기 더미실린더(200)의 상측에 결합된 상태이며, 상기 실린더헤드(10)는 일반적으로 2개의 흡기포트를 구비하고 있기 때문에 복수의 밸브(110)를 이용하여 밀폐할 수 있다. The valve sealing step (S110) is a step of closing the intake port of the cylinder head 10 by using the valve 110 of the valve lift 100. At this time, the cylinder head 10 is coupled to the upper side of the dummy cylinder 200, and since the cylinder head 10 is generally provided with two intake ports, it is sealed using a plurality of valves 110. can do.
상기 블로워 가동단계(S120)는 상기 밸브밀폐단계(S110)를 통하여 실린더헤드(10)의 흡기포트가 모두 차단되면, 블로워(500)를 가동하는 단계이다. 또한 상기 블로워 가동단계(S120) 이후, 상기 밸브개방단계(S130) 통하여 상기 실린더헤드(10)의 흡기밸브를 단계적으로 개방할 수 있다.The blower operation step (S120) is a step of operating the blower 500 when all the intake ports of the cylinder head 10 are blocked through the valve sealing step S110. In addition, after the blower operation step S120, the intake valve of the cylinder head 10 may be gradually opened through the valve opening step S130.
상기 밸브개방단계(S130)는 실시간으로 개방수치를 적용할 수 있으며, 기 설정된 수치를 사용할 수 있다. 즉, 밸브가 완전히 개방되는 수치가 30mm라 가정한다면 3mm 간격으로 개방할 수 있으며, 목표수치를 30mm 이내로 설정할 수 있고, 상기 밸브개방단계(S130)는 서보모터(Servo Motor)를 이용하여 상기 밸브(110)를 조작할 수 있으며, 상기 엔코더(Encoder) 및 레이저센서(130)를 이용하여 이를 즉각적으로 확인 및 조절할 수 있다. The valve opening step (S130) may be applied to the open value in real time, it may use a predetermined value. That is, if it is assumed that the valve is fully opened at 30 mm, the valve may be opened at 3 mm intervals, and the target value may be set within 30 mm. The valve opening step S130 may be performed by using a servo motor. 110, it can be immediately confirmed and adjusted by using the encoder (Encoder) and the laser sensor 130.
상기 서지탱크 차압측정단계(S140)는 상기 서지탱크(300) 내부의 차압을 차압계(Diff. Pressur Sensor)를 통해 측정하는 단계이다. 이때 상기 차압계를 통해 측정된 값이 안정화되었는지를 판단하며, 측정값이 안정화되지 않는다면 상기 블로워(500)의 RPM을 제어하여 상기 서지탱크(300) 내부의 차압을 안정화할 수 있다. 이를 통하여 불안정한 기류를 최대한 억제하여 신뢰성 높은 측정값을 얻도록 유도할 수 있다.The surge tank differential pressure measuring step S140 is a step of measuring the differential pressure inside the surge tank 300 through a differential pressure gauge. At this time, it is determined whether the value measured by the differential pressure gauge is stabilized. If the measured value is not stabilized, the differential pressure inside the surge tank 300 may be stabilized by controlling the RPM of the blower 500. Through this, unstable airflow can be suppressed as much as possible to obtain a reliable measurement value.
상기 유압계 및 패들값 측정단계(S150)는 상기 서지탱크(300)가 일정한 차압에서 안정되었는지를 판단 후, 상기 서지탱크(300)의 내부 차압이 안정화되면, 상기 유량측정부(400)의 유량계(Flow Meter)를 통해 송풍관(20)의 유량값을 측정하고, 상기 더미실린더(200)의 패들(240)이 스월(Swirl)에 의한 회전값을 근접센서(Proximity Sensor)를 통해 측정할 수 있다. The hydraulic system and the paddle value measuring step (S150) after determining whether the surge tank 300 is stable at a constant differential pressure, and when the internal differential pressure of the surge tank 300 is stabilized, the flow meter of the flow measuring unit 400 The flow rate of the blower pipe 20 may be measured through a flow meter, and the rotational value of the paddle 240 of the dummy cylinder 200 by swirl may be measured through a proximity sensor. .
상기 스월비 산출단계(S160)는 상기 유량값 및 회전값을 토대로 스월비를 산출하는 단계이다. 이때 상기 스월비 산출단계(S160) 이후, 상기 밸브리프트(100)의 밸브(110)가 개방된 정도를 판단하여, 상기 실린더헤드(10)의 흡기포트를 목표수치만큼 개방하지 않는다면, 목표수치만큼 개방될 때까지 상기 밸브개방단계(S130) 내지 스월비 산출단계(S160)를 반복하여 수행할 수 있다.The swirl ratio calculating step (S160) is a step of calculating a swirl ratio based on the flow rate value and the rotation value. At this time, after the swirl ratio calculation step (S160), the valve 110 of the valve lift 100 is determined to be open, and if the intake port of the cylinder head 10 is not opened as much as a target value, The valve opening step (S130) to the swirl ratio calculation step (S160) may be repeatedly performed until open.
상기 평균스월비 계산단계(S170)는 상기 실린더헤드(10)의 흡기포트가 목표수치만큼 개방되면 상기 스월비 산출단계(S160)를 통해 도출된 모든 스월비들의 값을 토대로 평균스월비를 계산하는 단계이다. 이때 상기 평균스월비 계산단계(S170)는 밸브(110)의 개방 수준 별 스월비를 캠의 형상 프로파일에 따라서 해당 구간에 비례하는 적분 형태로 계산할 수 있으며, 동시에 이를 그래프와 같이 도시화할 수 있다. 또한, 이와 같이 계산 및 도시된 수치들은 상기 출력단계(S180)를 통해 외부에서 확인할 수 있도록 출력될 수 있다. The average swirl ratio calculation step (S170) calculates an average swirl ratio based on the values of all swirl ratios derived through the swirl ratio calculation step (S160) when the intake port of the cylinder head 10 is opened by a target value. Step. In this case, the average swirl ratio calculation step (S170) may calculate the swirl ratio for each opening level of the valve 110 in an integral form proportional to the corresponding section according to the shape profile of the cam, and at the same time, it may be illustrated as a graph. In addition, the values calculated and shown in this manner may be output to be confirmed from the outside through the output step (S180).
<실시예 2><Example 2>
도 11은 본 발명의 스월비 자동 측정 방법의 다른 실시예로서, 도 11은 플로우 차트를 나타낸다. 도 11을 참조하면, 본 발명의 스월비 자동 측정 방법은, 상기 평균스월비 계산단계(S170)에서 상기 스월비 산출단계(S160)를 통해 도출된 스월비가 선형을 이루는지를 판단할 수 있다. 이때 상기 스월비의 비선형 구간이 있다면, 본 발명의 스월비 자동 측정 방법은, 구간설정단계(S200), 밸브부분밀폐단계(S210), 밸브미세개방단계(S230), 서지탱크 차압측정단계(S240), 유량값 및 회전값 측정단계(S250), 스월비 산출단계(S260) 및 평균스월비 계산단계(S270)를 더 포함할 수 있다. 이때, 상기 서지탱크 차압측정단계(S240) 내지 평균스월비 계산단계(S270)는, 상기 일 실시예의 서지탱크 차압측정단계(S140) 내지 평균스월비 계산단계(S170)와 유사하기 때문에, 보다 상세한 설명은 생략한다.11 is another embodiment of the swirl ratio automatic measuring method of the present invention, and FIG. 11 is a flowchart. Referring to FIG. 11, the method for automatically measuring the swirl ratio of the present invention may determine whether the swirl ratio derived through the swirl ratio calculation step S160 is linear in the average swirl ratio calculation step S170. At this time, if there is a non-linear section of the swirl ratio, the swirl ratio automatic measurement method of the present invention, the section setting step (S200), valve partial sealing step (S210), valve fine opening step (S230), surge tank differential pressure measuring step (S240 ), The flow rate and rotation value measurement step (S250), swirl ratio calculation step (S260) and the average swirl ratio calculation step (S270) may be further included. At this time, the surge tank differential pressure measuring step (S240) to the average swirl ratio calculation step (S270) is similar to the surge tank differential pressure measuring step (S140) to the average swirl ratio calculation step (S170) of the embodiment, Description is omitted.
상기 구간설정단계(S200)는 비선형적 구간을 파악하여 구간을 정할 수 있다. 예컨대 30mm가 최대 개방인 밸브가 3mm 간격으로 개방되도록 상기 밸브개방단계(S130)가 설정이 되며 비선형적 구간이 6mm 개방 시에 나타난다면, 상기 구간설정단계(S200)는 3mm~9mm 사이의 구간으로 설정될 수 있다. In the section setting step S200, a section may be determined by identifying a non-linear section. For example, if the valve opening step (S130) is set so that the valve having a maximum opening of 30 mm is opened at 3 mm intervals, and the nonlinear section appears at 6 mm opening, the section setting step (S200) is a section between 3 mm and 9 mm. Can be set.
상기 밸브부분밀폐단계(S210)는 상기 구간설정단계(S200)에서 설정된 구간의 개방 값의 최저치 수준으로 상기 밸브(110)를 밀폐하도록 상기 밸브리프트(100)의 밸브(110)를 조작할 수 있다.The valve partial sealing step S210 may operate the valve 110 of the valve lift 100 to seal the valve 110 to a minimum level of the opening value of the section set in the section setting step S200. .
상기 밸브미세개방단계(S230)는 상기 구간설정단계(S200)에서 설정된 구간 상에서 순차적으로 개방될 수 있으며, 구간 최대치까지 기존 설정된 간격보다 더 미세하게 개방되도록 형성될 수 있다. 앞서 말한 예를 이어 간다면, 기존 3mm 간격으로 개방하도록 기 설정된 것을 1mm 간격으로 변경하며, 순차적으로 개방할 수 있도록 제공된다.The fine opening step (S230) may be sequentially opened on the section set in the section setting step (S200), and may be formed to be opened more finely than the previously set interval up to the section maximum value. If the above example continues, the existing preset to open at 3mm intervals is changed to 1mm intervals, it is provided to open sequentially.
상기 평균스월비 계산단계(S270)는 상기 구간설정단계(S200)이후 미세하게 측정된 구간의 평균값을 별도로 계산하는 단계이며, 이를 통하여 상기 실린더헤드(10)의 신뢰성을 보다 높일 수 있으며, 이후 제작하는 실린더헤드에 문제점을 해결하도록 유도할 수 있다.The average swirl ratio calculation step (S270) is a step of separately calculating the average value of the finely measured section after the section setting step (S200), through which can increase the reliability of the cylinder head 10, and then manufacture The cylinder head can be induced to solve the problem.
[복수의 실린더헤드 스월비 자동 측정 방법][Method of Automatic Measurement of Multiple Cylinder Head Swirl Ratio]
도 12는 본 발명의 복수의 실린더헤드 스월비 자동 측정 방법로서, 도 12는 플로우 차트를 나타낸다. 도 12를 참조하면, 본 발명의 복수의 실린더헤드 스월비 자동 측정 방법은, 실린더헤드 장착단계(S310), 밸브밀폐단계(S320), 블로워 가동단계(S330), 밸브개방단계(S340), 차압측정단계(S350), 연속개방단계(S360), 유압계 및 패들값 측정단계(S370), 연속개방 스월비 산출단계(S380)를 포함하며, 측정할 실린더헤드(10)가 남아있으면 실린더헤드 교체(S400)를 반복하고, 모든 실린더헤드(10)의 측정이 완료되면 모든 실린더헤드의 연속개방 스월비 편차 계산단계(S410) 및 출력단계(S420)를 통해 이를 외부 사용자에게 제공할 수 있다.12 is a plurality of cylinder head swirl ratio automatic measurement method of the present invention, Figure 12 shows a flow chart. Referring to Figure 12, a plurality of cylinder head swirl ratio automatic measurement method of the present invention, the cylinder head mounting step (S310), valve sealing step (S320), blower operation step (S330), valve opening step (S340), differential pressure Measurement step (S350), continuous opening step (S360), hydraulic pressure and paddle value measurement step (S370), continuous open swirl ratio calculation step (S380), and if the cylinder head 10 to be measured replacement of the cylinder head Repeating (S400), and when the measurement of all the cylinder head 10 is completed, it can be provided to the external user through the continuous open swirl ratio deviation calculation step (S410) and output step (S420) of all the cylinder head.
상기 실린더헤드 장착단계(S310)는 하나의 실린더헤드(10)를 더미실린더(200)의 일측에 장착하는 단계이다.The cylinder head mounting step (S310) is a step of mounting one cylinder head 10 on one side of the dummy cylinder 200.
상기 밸브밀폐단계(S320)는 밸브리프트(100)의 밸브(110)을 이용하여 실린더헤드(10)의 흡기포트를 밀폐하는 단계이다. 이때 상기 실린더헤드(10)는 상기 더미실린더(200)의 상측에 결합된 상태이며, 상기 실린더헤드(10)의 다수의 흡기밸브 를 테스트하도록 제1밸브(111) 및 제2밸브(112)를 포함하는 밸브(110)를 통해 상기 실린더헤드(10)에 구비된 흡기포트를 모두 밀폐할 수 있다.The valve sealing step (S320) is a step of closing the intake port of the cylinder head 10 by using the valve 110 of the valve lift (100). In this case, the cylinder head 10 is coupled to an upper side of the dummy cylinder 200, and the first valve 111 and the second valve 112 are tested to test a plurality of intake valves of the cylinder head 10. The intake port provided in the cylinder head 10 may be sealed through the valve 110 included therein.
상기 블로워 가동단계(S330)는 상기 밸브밀폐단계(S320)를 통하여 실린더헤드(10)의 흡기포트가 모두 차단되면, 블로워(500)를 가동하는 단계이다. 또한 상기 블로워 가동단계(S330) 이후, 상기 밸브개방단계(S130) 통하여 상기 실린더헤드(10)의 흡기밸브를 단계적으로 개방할 수 있다.The blower operation step S330 is a step of operating the blower 500 when all the intake ports of the cylinder head 10 are blocked through the valve sealing step S320. In addition, after the blower operation step S330, the intake valve of the cylinder head 10 may be gradually opened through the valve opening step S130.
상기 밸브개방단계(S340)는 상기 블로워(500)가 가동된 상태에서 상기 밸브리프트(100)의 밸브(110)가 상기 실린더헤드(10)의 흡기포트를 일부만 개방하는 단계이다. The valve opening step S340 is a step in which the valve 110 of the valve lift 100 opens only a part of the intake port of the cylinder head 10 while the blower 500 is operated.
상기 서지탱크 차압측정단계(S350)는 상기 서지탱크(300) 내부의 차압을 차압계(Diff. Pressur Sensor)를 통해 측정하는 단계이다. 이때 상기 차압계를 통해 측정된 값이 안정화되었는지를 판단하며, 측정값이 안정화되지 않는다면 상기 블로워(500)의 RPM을 제어하여 상기 서지탱크(300) 내부의 차압을 안정화할 수 있다. 이를 통하여 불안정한 기류를 최대한 억제하여 신뢰성 높은 측정값을 얻도록 유도할 수 있다. The surge tank differential pressure measuring step S350 is a step of measuring the differential pressure inside the surge tank 300 through a differential pressure gauge. At this time, it is determined whether the value measured by the differential pressure gauge is stabilized. If the measured value is not stabilized, the differential pressure inside the surge tank 300 may be stabilized by controlling the RPM of the blower 500. Through this, unstable airflow can be suppressed as much as possible to obtain a reliable measurement value.
상기 밸브리프트 연속개방단계(S360)는 상기 서지탱크 차압측정단계(S350)에서 서지탱크(300) 내부 차압이 안정화되면, 상기 밸브리프트(100)의 밸브(110)가 상기 실린더헤드(10)의 흡기포트를 연속으로 개방하는 단계이다. In the continuous opening of the valve lift step S360, when the differential pressure inside the surge tank 300 is stabilized in the surge tank differential pressure measuring step S350, the valve 110 of the valve lift 100 is connected to the cylinder head 10. Opening the intake port continuously.
상기 유압계 및 패들값 측정단계(S370)는 상기 밸브리프트 연속개방단계(S360)와 병행하여 이루어지며, 연속개방이 되는 것과 동시에 상기 유량측정부(400)의 유량계(Flow Meter)를 통해 송풍관(20)의 유량값을 측정하고, 상기 더미실린더(200)의 패들(240)이 스월(Swirl)에 의한 회전값을 근접센서(Proximity Sensor)를 통해 측정할 수 있다.The hydraulic system and the paddle value measuring step S370 may be performed in parallel with the valve lift continuous opening step S360, and may be continuously opened and at the same time, the blower pipe may be formed through a flow meter of the flow measuring unit 400. A flow rate value of 20 may be measured, and a rotation value of the paddle 240 of the dummy cylinder 200 by swirl may be measured through a proximity sensor.
상기 연속개방 스월비 산출단계(S380)는 상기 유량값 및 회전값이 연속으로 변화하는 것을 일정 간격마다 스월비를 산출하는 단계이며, 산출과 더불어 평균스월비를 계산할 수 있다. The continuous open swirl ratio calculating step (S380) is a step of calculating a swirl ratio at regular intervals in which the flow rate value and the rotation value continuously change, and the average swirl ratio may be calculated along with the calculation.
상기 연속개방 스월비 산출단계(S380) 이후 더 이상 측정할 실린더 헤드가 있는지를 파악할 수 있으며, 더 측정할 실린더 헤드가 있는 경우에는 실린더 헤드를 교체(S400)하여 상기 밸브밀폐단계(S320) 내지 연속개방 스월비 산출단계(S400)를 반복하여 수행할 수 있다. 이때 상기 더 이상 측정할 실린더가 있는지를 파악하기에 앞서, 본 발명의 복수의 실린더헤드 스월비 자동 측정 방법은, 상기 연속개방 스월비 산출단계(S380) 이후 상기 밸브리프트(100)의 밸브(110)가 목표수치만큼 개방되었는지를 판단하여, 목표수치만큼 개방되지 않을 경우에는 상기 밸브리프트 연속개방단계(S360) 내지 연속개방 스월비 산출단계(S380)를 반복하며, 목표수치만큼 개방되면 더 이상 측정할 실린더가 있는지를 판단하는 단계로 넘어갈 수 있다.After the continuous open swirl ratio calculation step (S380) it can be determined whether there is a cylinder head to be measured further, if there is a cylinder head to be measured further by replacing the cylinder head (S400) to the valve sealing step (S320) to continuous The open swirl ratio calculation step S400 may be repeated. At this time, prior to determining whether the cylinder to be measured any more, the plurality of cylinder head swirl ratio automatic measuring method of the present invention, the valve 110 of the valve lift 100 after the continuous open swirl ratio calculation step (S380) ) Is determined to open as much as the target value, and if it is not opened by the target value, the valve lift is continuously opened (S360) to continuously open swirl ratio calculation step (S380), and when the target value is opened, the measurement is no longer performed. It may be decided to determine if there is a cylinder to perform.
이후 더 이상 측정할 실린더가 없으면, 모든 실린더헤드의 연속개방 스월비 편차 계산단계(S410) 및 이를 출력하는 출력단계(S420)를 통하여 본 발명의 스월비 자동 측정 방법은 복수의 실린더헤드를 측정할 수 있다. Since there is no longer a cylinder to measure, the swirl ratio automatic measuring method of the present invention through the continuous open swirl ratio deviation calculation step (S410) and the output step (S420) of outputting the cylinder head to measure a plurality of cylinder heads Can be.
이상과 같이 본 발명에서는 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by specific embodiments such as specific components and the like, but the embodiments are provided to assist in a more general understanding of the present invention, and the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations are possible from such description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술되는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and all claims having equivalent or equivalent modifications to the claims as well as the following claims are intended to be included in the scope of the spirit of the present invention. will be.
[부호의 설명][Description of the code]
1000 : 스월비 자동 측정 장비1000: Swirlby Automatic Measuring Equipment
10 : 실린더헤드 20 : 송풍관 10: cylinder head 20: blower tube
21 : 제1배관 22 : 제2배관21: 1st piping 22: 2nd piping
100 : 밸브리프트 110 : 밸브100: valve lift 110: valve
111 : 제1밸브 112 : 제2밸브111: first valve 112: second valve
120 : 리프트제어부 130 : 레이저센서120: lift control unit 130: laser sensor
140 : 커플링 200 : 더미실린더140: coupling 200: dummy cylinder
210 : 제1플랜지 220 : 실린더몸체210: first flange 220: cylinder body
230 : 제2플랜지 231 : 중심샤프트230: second flange 231: center shaft
240 : 패들 241 : 패들중심240: paddle 241: paddle center
250 : 윈도우 300 : 서지탱크250: Windows 300: Surge Tank
310 : 실린더장착부 320 : 탱크몸체310: cylinder mounting portion 320: tank body
330 : 배관연결부 400 : 유량측정부330: pipe connection 400: flow measurement unit
410 : 유량계 500 : 블로워410: flow meter 500: blower

Claims (11)

  1. 실린더헤드(10)의 흡기포트의 개방 또는 밀폐하는 밸브(110) 및 외부에서 전기적 신호를 받아 상기 밸브(110)를 제어하는 리프트제어부(120)를 포함하는 밸브리프트(100);A valve lift (100) including a valve (110) for opening or closing an intake port of the cylinder head (10) and a lift control unit (120) for receiving the electrical signal from the outside to control the valve (110);
    일측에서 타측으로 연통되어 형성되고, 일측에 상기 실린더헤드(10)가 장착되며, 내부에 패들(240)이 형성되어 스월에 의한 회전 값을 측정할 수 있는 더미실린더(200);It is formed to communicate from one side to the other side, the cylinder head 10 is mounted on one side, the paddle 240 is formed therein is a dummy cylinder 200 that can measure the rotation value by the swirl;
    상기 더미실린더(200)의 타측과 연결되며, 내부 차압을 측정 및 제어할 수 있도록 차압계 또는 압력센서가 구비되고, 상기 더미실린더(200)에서 유입된 유체를 송풍관(20)으로 배출하는 서지탱크(300); Is connected to the other side of the dummy cylinder 200, the differential pressure gauge or pressure sensor is provided to measure and control the internal differential pressure, the surge tank for discharging the fluid introduced from the dummy cylinder 200 to the blower pipe (20) 300);
    상기 송풍관(20) 상에 형성되며, 상기 송풍관을 지나는 유량을 측정하는 유량계(410)가 형성된 유량측정부(400); 및A flow rate measuring part 400 formed on the blower tube 20 and having a flow meter 410 for measuring a flow rate passing through the blower tube; And
    상기 실린더헤드(10)의 밸브를 통해 유입된 유체를 상기 송풍관(20)까지 이송할 수 있도록 상기 송풍관(20)에 연결된 블로워(500);A blower (500) connected to the blower pipe (20) to transfer the fluid introduced through the valve of the cylinder head (10) to the blower pipe (20);
    를 포함하는 스월비 자동 측정 장비.Swirlby automatic measuring equipment comprising a.
  2. 제1항에 있어서, 상기 밸브리프트(100)는The method of claim 1, wherein the valve lift 100
    상기 리프트제어부(120) 내부에 모터 및 엔코더가 구비되어 상기 밸브(110)의 정밀 제어가 가능한 것을 특징으로 하는 스월비 자동 측정 장비.Swirl ratio automatic measurement equipment, characterized in that the lift control unit 120 is provided with a motor and an encoder to precisely control the valve (110).
  3. 제2항에 있어서, 상기 밸브리프트(100)는The method of claim 2, wherein the valve lift 100
    상기 밸브(110)를 통해 상기 실린더헤드(10) 포트의 개폐수준을 측정할 수 있도록, 상기 밸브(110)가 내려간 길이를 측정하는 레이저센서(130)를 더 포함하는 스월비 자동 측정 장비.Swirl ratio automatic measuring equipment further comprises a laser sensor for measuring the length of the valve 110 is lowered to measure the opening and closing level of the cylinder head (10) port through the valve (110).
  4. 제1항 내지 제3항 중 선택되는 어느 한 항의 스월비 자동 측정 장비를 이용한 스월비 자동 측정 방법에 있어서,In the swirl ratio automatic measuring method using the swirl ratio automatic measuring device of any one of claims 1 to 3,
    상기 밸브(110)를 이용하여 상기 실린더헤드(10)의 흡기포트를 밀폐하는 밸브밀폐단계(S110);A valve sealing step (S110) of closing the intake port of the cylinder head (10) by using the valve (110);
    상기 블로워(500)를 가동하는 블로워 가동단계(S120);A blower operation step of operating the blower 500;
    상기 리프트제어부(120)를 통해 상기 밸브(110)를 설정된 수준으로 개방하는 밸브개방단계(S130);A valve opening step (S130) for opening the valve 110 to a set level through the lift control unit 120;
    상기 서지탱크(300) 내부의 차압을 측정하는 차압측정단계(S140);A differential pressure measuring step (S140) of measuring a differential pressure inside the surge tank 300;
    상기 서지탱크(300)가 일정한 차압에서 안정되었는지를 판단 후,After determining whether the surge tank 300 is stable at a constant differential pressure,
    상기 서지탱크(300)의 내부 차압이 안정화되지 않으면 상기 블로워(500)의 RPM을 제어하며, When the internal pressure difference of the surge tank 300 is not stabilized, the RPM of the blower 500 is controlled.
    상기 서지탱크(300)의 내부 차압이 안정화되면 상기 유량측정부(400)의 유량을 측정하고 상기 더미실린더(200)의 패들(240)의 회전값을 측정하는 유압계 및 패들값 측정단계(S150); 및When the internal pressure difference of the surge tank 300 is stabilized, the hydraulic system and the paddle value measuring step of measuring the flow rate of the flow measuring unit 400 and measuring the rotation value of the paddle 240 of the dummy cylinder 200 (S150). ); And
    상기 유압계 및 패들값 측정단계(S150)를 통해 측정된 값들을 토대로 스월비를 연산하는 스월비 산출단계(S160);A swirl ratio calculating step (S160) of calculating a swirl ratio based on the values measured through the hydraulic system and the paddle value measuring step (S150);
    를 포함하는 스월비 자동 측정 방법.Swirl ratio automatic measurement method comprising a.
  5. 제4항에 있어서, 상기 스월비 자동 측정 방법은The method of claim 4, wherein the automatic measurement of swirl ratio
    상기 밸브개방단계(S130) 내지 스월비 산출단계(S160)를 반복하여 수행하는 것을 특징으로 하며,It characterized in that to perform the valve opening step (S130) to swirl ratio calculation step (S160) repeatedly,
    상기 실린더헤드(10)의 흡기포트가 목표수치만큼 개방되면 상기 스월비 산출단계(S160)를 통해 도출된 스월비들을 통해 평균스월비를 계산하는 평균스월비 계산단계(S170);An average swirl ratio calculation step (S170) of calculating an average swirl ratio through swirl ratios derived through the swirl ratio calculation step (S160) when the intake port of the cylinder head 10 is opened by a target value;
    를 더 포함하는 스월비 자동 측정 방법.Swirl ratio automatic measurement method further including.
  6. 제5항에 있어서, 상기 스월비 자동 측정 방법은The method of claim 5, wherein the automatic measurement of swirl ratio
    상기 평균스월비 계산단계(S170) 이후, After the average swirl ratio calculation step (S170),
    측정 또는 산출된 값을 출력하는 출력단계(S180);An output step S180 of outputting a measured or calculated value;
    를 더 포함하는 스월비 자동 측정 방법.Swirl ratio automatic measurement method further including.
  7. 제5항에 있어서, 상기 평균스월비 계산단계(S170)는,The method of claim 5, wherein the average swirl ratio calculation step (S170),
    상기 스월비 산출단계(S160)를 통해 도출된 스월비가 선형을 이루는지 판단하는 것을 특징으로 하는 스월비 자동 측정 방법.Swirl ratio automatic measurement method characterized in that it is determined whether the swirl ratio derived by the swirl ratio calculation step (S160) to form a linear.
  8. 제7항에 있어서, 상기 스월비 자동 측정 방법은The method of claim 7, wherein the swirl ratio automatic measurement method
    상기 평균스월비 계산단계(S170)에서 스월비가 비선형을 이루는 구간이 있을 경우, If there is a section in which the swirl ratio is nonlinear in the average swirl ratio calculation step (S170),
    상기 스월비가 비선형을 이루는 구간을 확인하고 설정하는 구간설정단계(S200);A section setting step (S200) of checking and setting a section in which the swirl ratio is nonlinear;
    설정된 구간만큼 상기 실린더헤드(10)의 흡기포트를 부분적으로 밀폐하는 밸브부분밀폐단계(S210);A valve portion sealing step (S210) for partially sealing the intake port of the cylinder head 10 by a set section;
    상기 실린더헤드(10)의 흡기포트를 상기 밸브개방단계(S130)의 설정된 수준보다 더 미세하게 재설정하여 개방하는 밸브미세개방단계(S230);A fine opening step (S230) of opening the intake port of the cylinder head (10) by resetting more finely than the set level of the opening step (S130);
    상기 유량측정부(400)의 유량을 측정하며, 상기 더미실린더(200)의 패들(240)의 회전값을 측정하는 유압계 및 패들값 측정단계(S250); 및A hydraulic system and a paddle value measuring step of measuring a flow rate of the flow measuring unit 400 and measuring a rotation value of the paddle 240 of the dummy cylinder 200; And
    상기 유압계 및 패들값 측정단계(S250)를 통해 측정된 값들을 토대로 스월비를 연산하는 스월비 산출단계(S260);A swirl ratio calculating step (S260) of calculating a swirl ratio based on values measured through the hydraulic system and the paddle value measuring step (S250);
    를 더 포함하여 이루어지며,It is made to include more
    상기 스월비 자동 측정 방법은 설정된 구간으로 상기 실린더헤드(10)의 흡기포트가 개방될 때까지 상기 밸브미세개방단계(S230) 내지 스월비산출단계(260)를 반복하는 것을 특징으로 하고,The swirl ratio automatic measuring method is characterized in that for repeating the valve fine opening step (S230) to swirl ratio calculation step 260 until the intake port of the cylinder head 10 in the set interval,
    상기 실린더헤드(10)의 밸브가 설정된 구간만큼 개방되면,When the valve of the cylinder head 10 is opened by a set section,
    상기 스월비산출단계(S260) 후,After the swirl ratio calculation step (S260),
    구간설정된 부분의 산출된 스월비들의 평균스월비를 계산하는 산출된 평균스월비 계산단계(270);A calculated average swirl ratio calculation step 270 of calculating an average swirl ratio of the calculated swirl ratios of the sectioned portion;
    를 더 포함하는 스월비 자동 측정 방법.Swirl ratio automatic measurement method further including.
  9. 제1항 내지 제3항 중 선택되는 어느 한 항의 스월비 자동 측정 장비를 이용한 복수의 실린더헤드 스월비 자동 측정 방법에 있어서,In the multiple cylinder head swirl ratio automatic measuring method using the swirl ratio automatic measuring apparatus of any one of Claims 1-3,
    상기 더미실린더(200)의 일측에 하나의 실린더헤드(10)를 장착하는 실린더헤드 장착단계(S310);A cylinder head mounting step (S310) of mounting one cylinder head 10 on one side of the dummy cylinder 200;
    상기 밸브(110)를 이용하여 상기 실린더헤드(10)의 흡기포트를 밀폐하는 밸브밀폐단계(S320);A valve sealing step (S320) of sealing the intake port of the cylinder head (10) by using the valve (110);
    상기 블로워(500)를 가동하는 블로워 가동단계(S330);A blower operation step of operating the blower 500;
    상기 리프트제어부(120)를 통해 상기 밸브(110)를 설정된 수준으로 개방하는 밸브개방단계(S340);A valve opening step (S340) of opening the valve 110 to a set level through the lift control unit 120;
    상기 서지탱크(300) 내부의 차압을 측정하는 차압측정단계(S350);A differential pressure measuring step (S350) of measuring a differential pressure inside the surge tank 300;
    차압측정단계(S350)에서 상기 서지탱크(300)가 일정한 차압에서 안정되었는지를 판단 후,After determining whether the surge tank 300 is stable at a constant differential pressure in the differential pressure measuring step (S350),
    상기 서지탱크(300)의 내부 차압이 안정화되지 않으면 상기 블로워(500)의 RPM을 제어하며, When the internal pressure difference of the surge tank 300 is not stabilized, the RPM of the blower 500 is controlled.
    상기 서지탱크(300)의 내부 차압이 안정화되면 상기 밸브(110)를 연속으로 개방하는 밸브리프트 연속개방단계(S360);A valve lift continuous opening step (S360) of continuously opening the valve 110 when the pressure difference inside the surge tank 300 is stabilized;
    상기 연속개방단계(S360)와 병행하여, 상기 유량측정부(400)의 유량을 측정하고 상기 더미실린더(200)의 패들(240)의 회전값을 측정하는 유압계 및 패들값 측정단계(S370); In parallel with the continuous opening step (S360), to measure the flow rate of the flow measuring unit 400 and the hydraulic pressure and paddle value measuring step (S370) of measuring the rotation value of the paddle 240 of the dummy cylinder (200) ;
    상기 유압계 및 패들값 측정단계(S150)를 통해 측정된 연속개방 스월비를 산출하는 단계(S380); 및Calculating a continuous open swirl ratio measured through the hydraulic system and the paddle value measuring step (S150); And
    측정되지 못한 실린더헤드(10)가 있는지 판단 후, 측정할 실린더헤드(10)가 있으면 실린더헤드를 교체하는 단계(S400);After determining whether there is a cylinder head 10 that has not been measured, replacing the cylinder head if there is a cylinder head 10 to be measured (S400);
    를 포함하는 복수의 실린더헤드 자동 측정 방법.A plurality of cylinder head automatic measurement method comprising a.
  10. 제9항에 있어서, 상기 복수의 실린더헤드 스월비 자동 측정 방법은,The method of claim 9, wherein the plurality of cylinder head swirl ratio automatic measurement methods
    측정할 실린더헤드(10)가 남아있으면 상기 밸브밀폐단계(S320) 내지 실린더헤드 교체단계(S400)를 반복수행하며,If the cylinder head 10 to be measured remains, the valve sealing step S320 to the cylinder head replacement step S400 are repeatedly performed.
    더 이상 측정할 실린더헤드(10)가 없으면 상기 연속개방 스월비 산출단계(S380) 후,If there is no cylinder head 10 to measure any more, after the continuous open swirl ratio calculation step (S380),
    측정된 복수의 실린더헤드(10)의 연속개방 스월비 간 편차를 계산하는 단계(410); 및Calculating a deviation between successive open swirl ratios of the measured plurality of cylinder heads 10 (410); And
    상기 측정값 및 계산값을 출력하는 출력단계(S420);An output step (S420) of outputting the measured value and the calculated value;
    를 더 포함하는 복수의 실린더헤드 스월비 자동 측정 방법.A plurality of cylinder head swirl ratio automatic measurement method further comprising.
  11. 제9항에 있어서, 상기 복수의 실린더헤드 스월비 자동 측정 방법은,The method of claim 9, wherein the plurality of cylinder head swirl ratio automatic measurement methods
    상기 연속개방 스월비 산출단계(S380) 이후, After the continuous open swirl ratio calculation step (S380),
    상기 밸브리프트(100)의 밸브(110)가 목표수치만큼 개방되었는지 판단하여, It is determined whether the valve 110 of the valve lift 100 is opened by a target value,
    목표수치만큼 개방되지 않을 경우에는 상기 밸브리프트 연속개방단계(S360) 내지 연속개방 스월비 산출단계(S380)를 반복하며,When not opening as much as the target value, the valve lift is continuously opened (S360) to continuously open swirl ratio calculation step (S380),
    목표수치만큼 개방되면 더 이상 측정할 실린더 헤드가 있는지를 판단하는 것을 특징으로 하는 복수의 실린더헤드 스월비 자동 측정 방법.And a cylinder head swirl ratio automatic measurement method for determining whether there is a cylinder head to be measured any more when the target value is opened.
PCT/KR2017/012295 2016-12-22 2017-11-02 Apparatus and method for automatically measuring swirl ratio WO2018117400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160176292A KR101892494B1 (en) 2016-12-22 2016-12-22 Automatic Measuring Apparatus for Swirl Ratio of Cylinder Head and Measuring Methods Thereof
KR10-2016-0176292 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018117400A1 true WO2018117400A1 (en) 2018-06-28

Family

ID=62627681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012295 WO2018117400A1 (en) 2016-12-22 2017-11-02 Apparatus and method for automatically measuring swirl ratio

Country Status (2)

Country Link
KR (1) KR101892494B1 (en)
WO (1) WO2018117400A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216271B1 (en) * 2019-08-16 2021-02-16 서울과학기술대학교 산학협력단 Apparatus and method of measuring swirl ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103854A (en) * 1993-10-05 1995-04-21 Mitsubishi Motors Corp Inspection apparatus for dynamic valve system valve mechanism of engine
JP2004293297A (en) * 2003-03-25 2004-10-21 Isuzu Motors Ltd Swirl measuring device
JP2006184216A (en) * 2004-12-28 2006-07-13 Isuzu Motors Ltd Engine testing apparatus and engine suction system
KR20090071901A (en) * 2007-12-28 2009-07-02 자동차부품연구원 Steady state flow tester for a cylinder head with continuous valve profile control jig
KR101220359B1 (en) * 2006-12-14 2013-01-09 현대자동차주식회사 System for measuring bowl swirl for diesel engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103854A (en) * 1993-10-05 1995-04-21 Mitsubishi Motors Corp Inspection apparatus for dynamic valve system valve mechanism of engine
JP2004293297A (en) * 2003-03-25 2004-10-21 Isuzu Motors Ltd Swirl measuring device
JP2006184216A (en) * 2004-12-28 2006-07-13 Isuzu Motors Ltd Engine testing apparatus and engine suction system
KR101220359B1 (en) * 2006-12-14 2013-01-09 현대자동차주식회사 System for measuring bowl swirl for diesel engine
KR20090071901A (en) * 2007-12-28 2009-07-02 자동차부품연구원 Steady state flow tester for a cylinder head with continuous valve profile control jig

Also Published As

Publication number Publication date
KR101892494B1 (en) 2018-10-04
KR20180072963A (en) 2018-07-02

Similar Documents

Publication Publication Date Title
WO2015060664A1 (en) Multi sampling port monitoring apparatus for measuring pollution level and monitoring method using the same
WO2012141461A2 (en) Level-measuring apparatus for a coking chamber of a coke oven
WO2019139183A1 (en) Gas-detecting apparatus
WO2018117400A1 (en) Apparatus and method for automatically measuring swirl ratio
EP1212594A1 (en) Process flow plate with temperature measurement feature
CN203837782U (en) Diaphragm gas meter metering performance isothermal calibrating apparatus under conditions of limiting temperature
WO2017171331A1 (en) Calibration device and gas component analysis device having same
CN108709696B (en) Calibrating device for building exterior door and window testing machine
WO2020246745A1 (en) Plasma oes diagnosis window system, method for correcting plasma oes value, and window for plasma oes diagnosis
WO2023153675A1 (en) Smart valve system capable of active control, malfunction diagnosis, and operation status monitoring by artificial intelligence learning
CN207991747U (en) A kind of full-automatic pressure sensor batch detection calibration console
WO2016140494A1 (en) Apparatus and method for detecting pollution location and computer readable recording medium
WO2014182053A1 (en) Apparatus for measuring differential pressure in air blower
CN211234838U (en) Automatic detection platform for valve port air tightness
CN108709703B (en) Calibrating device for building outer glass curtain wall testing machine
CN114459699A (en) Window air tightness detection method and system, storage medium and intelligent terminal
CN107796574A (en) A kind of aircraft is airtight to check complex control system and its application method
CN202351211U (en) Gas concentration calibrating box
KR0153507B1 (en) Measuring and regulating valve
KR20010067445A (en) Exhaust gas dilution apparatus
JPS61182548A (en) Measuring method of valve timing
CN218788161U (en) Domain controller environment test equipment
CN219201509U (en) Smoke and dust flue gas tester
CN215493408U (en) Zirconia oxygen analyzer with automatic check and purge function
CN218675041U (en) Wind direction sensor calibrating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882698

Country of ref document: EP

Kind code of ref document: A1