WO2021261813A1 - Ultrasonic flow rate measuring apparatus - Google Patents

Ultrasonic flow rate measuring apparatus Download PDF

Info

Publication number
WO2021261813A1
WO2021261813A1 PCT/KR2021/007272 KR2021007272W WO2021261813A1 WO 2021261813 A1 WO2021261813 A1 WO 2021261813A1 KR 2021007272 W KR2021007272 W KR 2021007272W WO 2021261813 A1 WO2021261813 A1 WO 2021261813A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
ultrasonic
fixing parts
body part
disposed
Prior art date
Application number
PCT/KR2021/007272
Other languages
French (fr)
Korean (ko)
Inventor
김일환
이규성
정동진
김태일
서동현
Original Assignee
(주)발맥스기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)발맥스기술 filed Critical (주)발맥스기술
Publication of WO2021261813A1 publication Critical patent/WO2021261813A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Definitions

  • the embodiment relates to an ultrasonic flow measurement device applicable to a small-diameter pipeline.
  • Transmission time difference ultrasonic flow meter is a device used to measure the flow rate and flow rate of a fluid by placing two piezoelectric ultrasonic sensors having a specific resonant frequency in a pipeline through which a fluid flows, and transmitting and receiving ultrasonic signals between the two piezoelectric ultrasonic sensors refers to
  • Such a conventional ultrasonic flow meter is used in various fields such as various industrial sites.
  • the ultrasonic measurement method has a problem in that the distance between the ultrasonic sensors is very close or the ultrasonic transmission time difference is small due to the low flow rate, so that the measurement cannot be performed or a measurement error occurs.
  • the embodiment relates to an ultrasonic flow measurement device applicable in a small-diameter pipeline, in which the ultrasonic sensor is spaced apart by a predetermined distance from the flow passage through which the fluid flows, and the ultrasonic signal transmitted from the ultrasonic sensor is transmitted directly or on the inner surface of the pipeline.
  • Ultrasonic flow rate measuring apparatus includes a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and a pair of fixing parts formed on at least one side of the body part and connected to the flow path; and a pair of ultrasonic sensors respectively disposed on the pair of fixing units and spaced apart from the flow path by a predetermined distance.
  • the pair of fixing parts may be formed on one side of the body part and tilted at the same angle with respect to the central axis of the body part so that each central axis crosses each other.
  • the pair of fixing parts are formed on both sides of the body part, and are formed by being tilted at the same angle with respect to the central axis of the body part, and each central axis may be spaced apart and formed in parallel.
  • the pair of fixing parts are formed on both sides of the body part, and are formed by being tilted at the same angle with respect to the central axis of the body part, and each central axis may be located on the same line.
  • the pair of fixing parts may be disposed to be spaced apart by a predetermined distance, and an ultrasonic signal generated from one ultrasonic sensor may be reflected at least once on the inner surface of the body part and transmitted to the other ultrasonic sensor.
  • the pair of fixing parts may be divided into a first area and a second area from an end to a point where they meet the flow path, and a diameter of the second area may be designed to be equal to or smaller than a diameter of the first area.
  • the pair of ultrasonic sensors may be disposed in a first region of the pair of fixing parts, and an end portion at which an ultrasonic signal is generated may be disposed to be spaced apart from the second region by a predetermined distance.
  • the ultrasonic flow rate measuring apparatus may further include a controller configured to receive ultrasonic signals transmitted and received from the pair of ultrasonic sensors, and measure the flow rate and flow rate of the fluid by using a transmission time difference of the ultrasonic signals.
  • the ultrasonic flow measurement apparatus may further include a connector in which a cable for coupling the measuring tube and the controller and electrically connecting a pair of ultrasonic sensors disposed in the measuring tube and the controller is disposed therein.
  • Ultrasonic flow rate measuring apparatus includes a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and two pairs of fixing parts formed on both sides of the body part and connected to the flow path; and two pairs of ultrasonic sensors disposed on the two pairs of fixing units, respectively, and spaced apart from the flow path by a predetermined distance.
  • the two pairs of fixing parts may include a pair of fixing parts formed on one side of the body part and another pair of fixing parts formed on the other side of the body part.
  • the two pairs of fixing parts may include a pair of fixing parts formed on both sides of the body part and another pair of fixing parts formed on both sides of the body part.
  • the two pairs of fixing parts may be formed such that each central axis is tilted at a constant angle for each pair with respect to the central axis of the body part, and the two pairs of fixing parts cross each other.
  • the two pairs of fixing parts may be disposed to be spaced apart by a predetermined distance, and an ultrasonic signal generated from one ultrasonic sensor may be reflected at least once on an inner surface of the body and transmitted to the other ultrasonic sensor.
  • the two pairs of fixing parts may be divided into a first area and a second area from an end to a point where they meet the flow path, and the diameter of the second area may be designed to be equal to or smaller than the diameter of the first area.
  • the two pairs of ultrasonic sensors may be disposed in a first region of the two pairs of fixing units, and an end portion at which an ultrasonic signal is generated may be disposed to be spaced apart from the second region by a predetermined distance.
  • the ultrasonic flow rate measuring apparatus may further include a controller configured to receive ultrasonic signals transmitted and received from the two pairs of ultrasonic sensors, and measure the flow rate and flow rate of the fluid by using a transmission time difference of the ultrasonic signals.
  • the ultrasonic flow rate measuring apparatus may further include a connector in which a cable for coupling the measuring tube and the controller and electrically connecting the two pairs of ultrasonic sensors disposed in the measuring tube and the controller is disposed therein.
  • the ultrasonic sensor by disposing the ultrasonic sensor to be spaced apart from the flow path through which the fluid flows by a predetermined distance, it may be possible to measure the flow rate and flow rate of the fluid in the small-diameter pipe.
  • the ultrasonic sensor is disposed to be spaced apart from the flow passage through which the fluid flows by a predetermined distance, and two pairs of ultrasonic sensors to which the ultrasonic signal is directly transmitted are disposed on both sides of the flow passage or the ultrasonic signal is transmitted to the inner surface of the flow passage at least once. Because it is reflected and transmitted, the flow rate and flow rate of the fluid can be measured more accurately.
  • FIGS. 1A to 1F are views illustrating an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention.
  • 2A to 2B are diagrams for explaining a connection relationship between an ultrasonic sensor and a controller.
  • 3A to 3B are cross-sectional views showing the structure of the ultrasonic flow rate measuring apparatus according to the first embodiment.
  • 4A to 4F are cross-sectional views illustrating a structure of an ultrasonic flow measurement apparatus according to a second embodiment.
  • FIG. 5 is a cross-sectional view showing the structure of an ultrasonic flow rate measuring device according to a third embodiment.
  • 6A to 6B are cross-sectional views illustrating a structure of an ultrasonic flow rate measuring apparatus according to a fourth embodiment.
  • FIG. 7A to 7D are cross-sectional views illustrating the structure of an ultrasonic flow rate measuring apparatus according to a fifth embodiment.
  • 8A to 8D are cross-sectional views showing the structure of an ultrasonic flow rate measuring apparatus according to a sixth embodiment.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as “at least one (or more than one) of A and (and) B, C”, it is combined with A, B, and C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • the top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components.
  • the meaning of not only the upward direction but also the downward direction based on one component may be included.
  • a new method is proposed in which the ultrasonic sensor is disposed to be spaced apart by a predetermined distance from the flow path through which the fluid flows, and the ultrasonic signal transmitted from the ultrasonic sensor is transmitted directly or reflected at least once on the inner surface of the conduit.
  • the ultrasonic sensor is disposed to be spaced apart from the flow passage through which the fluid flows by a predetermined distance, and two pairs of ultrasonic sensors to which the ultrasonic signal is directly transmitted are disposed on both sides of the flow passage.
  • the ultrasonic sensor is disposed to be spaced apart from the flow passage through which the fluid flows by a predetermined distance, and the ultrasonic signal is reflected and transmitted at least once on the inner surface of the flow passage.
  • FIGS. 1A to 1F are views illustrating an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention.
  • the ultrasonic flow rate measuring apparatus includes a measuring tube 100 through which a fluid flows, an ultrasonic sensor 200, a controller 300, and a connecting tube 400. can do.
  • the measuring tube 100 is formed in a cylindrical shape so that a fluid can flow through an internal flow path.
  • the measuring pipe 100 is, for example, inserted and coupled in the middle of the water and sewage pipe to be connected to the pipe inside the water and sewage pipe, and the diameter of the pipe and the diameter of the flow path inside the measuring pipe 100 may be the same.
  • the measuring tube 100 may include a body part 110 , a fixing part 120 , a coupling part 130 , and a cover 140 .
  • the body part 110 has a fluid flow in a flow path formed in a cylindrical shape inside, and the fixing part 120 is formed in a pair on one side or both sides of the body part 110 so that a pair of ultrasonic sensors 200 are disposed, and combined
  • a pair of parts 130 is formed at both ends of the body part 110 and connected to a pipeline, and the cover 140 is coupled to a pair of fixing parts 120, respectively, to seal the inside of each fixing part 120.
  • the fixing unit 120 may have a connector 100a into which a cable for connecting the ultrasonic sensor 200 and the controller 300 is inserted on one side thereof.
  • the material of the measuring tube 100 may include a synthetic resin and a metal.
  • the body part 110, the fixing part 120, and the coupling part 130 constituting the measuring tube 100 may be integrally formed.
  • the ultrasonic sensor 200 may be disposed obliquely coupled to one or both sides of the measuring tube 100 , and a pair may be provided to transmit and receive an ultrasonic signal to the fluid flowing in the flow path inside the measuring tube 100 . That is, the ultrasonic sensor 200 includes a first ultrasonic sensor 200a and a second ultrasonic sensor 200b, the first ultrasonic sensor 200a transmits an ultrasonic signal and the second ultrasonic sensor 200b sends an ultrasonic signal may be received, or the second ultrasonic sensor 200b may transmit an ultrasonic signal and the first ultrasonic sensor 200a may receive the ultrasonic signal.
  • the ultrasonic sensor 200 may be disposed to be spaced apart from the flow path inside the measuring tube 100 by a predetermined distance.
  • the transmission distance of the ultrasound signal may be increased by the separated distance.
  • the control unit 300 is connected to a pair of ultrasonic sensors 200 installed in the measuring tube 100 , receives an ultrasonic signal received from the pair of ultrasonic sensors 200 , and uses the transmission time difference of the received ultrasonic signal.
  • the flow rate and flow rate of the fluid flowing through the flow path inside the measuring tube 100 may be calculated.
  • the controller 300 may include a case 310 and a controller 320 .
  • the controller 320 is disposed inside the case 310 , and the controller 320 may be connected to the ultrasonic sensor installed in the measuring tube 100 through a cable.
  • the case 310 may have a connector 300a into which a cable for connecting the ultrasonic sensor 200 and the controller 300 is inserted on one side thereof.
  • the connector 400 is disposed between the measurement tube 100 and the control unit 300 , and includes a plurality of fasteners 100b formed on one side of the measurement tube 100 and a plurality of fasteners formed on one side of the control unit 300 . It may be fixedly coupled by being screwed through the fastener 300b.
  • the connector 400 is a cable connecting the ultrasonic sensor and the controller by connecting the connector 100a formed on one side of the fixedly coupled measuring tube 100 and the connector 300a formed on one side of the case 310. Since it is located inside the housing, the cable cannot be touched from the outside.
  • the connector 100a of the measurement tube 100 and the connector 300a of the controller 300 may be directly connected without using the connector 400 described in FIG. 1B .
  • the ultrasonic flow rate measuring apparatus may have a partial shape as needed, as shown in FIGS. 1D to 1F .
  • 2A to 2B are diagrams for explaining a connection relationship between an ultrasonic sensor and a controller.
  • a pair of ultrasonic sensors 200a and 200b and the control unit 300 disposed in the measuring tube 100 through the connecting tube 400 according to the embodiment are connected by a cable 10.
  • the cable 10 may be disposed and connected to the connector 100a formed on one side of the measurement tube 100 , the connector 400 , and the connector 300a formed on one side of the case 310 .
  • the measuring tube 100 and the control unit 300 are connected by the connecting tube 400 and disposed to be spaced apart by the length of the connecting tube 400 , heat insulation and insulation may be possible.
  • 3A to 3B are cross-sectional views showing the structure of the ultrasonic flow rate measuring apparatus according to the first embodiment.
  • the ultrasonic flow rate measuring device is of a reflective type, and a pair of ultrasonic sensors 200a and 200b are attached to a pair of fixing parts 120a and 120b formed on one side of the body part 110 . ), but may be spaced apart by a predetermined distance L1 from the flow path through which the fluid flows.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be identical to each other.
  • the ultrasonic sensors 200a and 200b may be divided into a first part at an end at which an actual ultrasonic signal is generated and a second part supporting the first part.
  • the diameter of the ultrasonic sensor may indicate the diameter of the first part, and the diameter of the first part may be the same as or smaller than the diameter of the second part.
  • the fixing parts (120a, 120b) are formed by tilting by a predetermined angle ( ⁇ ) with respect to the central axis of the body portion, the predetermined angle may be formed within the range of 30 degrees to 60 degrees, preferably formed to be 45 degrees. .
  • the ultrasonic signal generated from the first ultrasonic sensor 200a is reflected once on the inner surface of the channel and transmitted to the second ultrasonic sensor 200b, or the ultrasonic signal generated from the second ultrasonic sensor 200b is reflected once on the inner surface of the channel. It may be transmitted to the first ultrasonic sensor 200a.
  • the transmission path of the ultrasound signal may increase by 2 ⁇ L1.
  • the arrangement interval of the pair of ultrasonic sensors in FIG. 3A may be designed to be twice as wide, so that the ultrasonic signal is reflected and transmitted three times on the inner surface of the flow path.
  • the transmission path of the ultrasound signal may increase by (L2+L2) compared to the transmission path of FIG. 3A .
  • 4A to 4F are cross-sectional views illustrating a structure of an ultrasonic flow measurement apparatus according to a second embodiment.
  • the ultrasonic flow rate measuring device is of a reflective type, and includes a pair of ultrasonic sensors 200a-1 and 200b-1 formed on one side of the body 110-1.
  • Each of the fixing parts 120a-1 and 120b-1 may be disposed to be spaced apart from the flow path through which the fluid flows by a predetermined distance L1.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • the fixing part 120b-1 is divided into a first area A and a second area B in the axial direction from the end, and the diameter of the second area B is the first It may be designed to be smaller than the diameter of the area (A).
  • the ultrasonic sensor 200b - 1 is disposed in the first area A, and the diameter of the first area A is the same as that of the ultrasonic sensor 200b - 1 . Since the ultrasonic sensor 200b-1 vibrates the elastic body to generate an ultrasonic signal, a predetermined gap G is formed between the first region A and the ultrasonic sensor 200b-1 so that the vibration is not transmitted to the body portion. can be
  • the second embodiment is preferable rather than the first embodiment, and when the ultrasonic sensor is disposed as shown in FIG. 4E according to the second embodiment, factors that may affect the transmission of the ultrasound signal disappear, so that the accurate measurement of the transmission time is possible. .
  • the transmission path of the ultrasound signal may increase by 2 ⁇ L1.
  • the spacing between the pair of ultrasonic sensors 200a-1 and 200b-1 in FIG. 4A is designed to be twice as wide, so that the ultrasonic signal is reflected and transmitted three times on the inner surface of the flow path.
  • the transmission path of the ultrasound signal may increase by (L2+L2) compared to the transmission path of FIG. 4A .
  • FIG. 5 is a cross-sectional view showing the structure of an ultrasonic flow rate measuring device according to a third embodiment.
  • the ultrasonic flow rate measuring device is a reflective type, and includes a pair of ultrasonic sensors 200a-2 and 200b-2 formed on both sides of the body 110-2.
  • Each of the fixing parts 120a-2 and 120b-2 may be disposed to be spaced apart by a predetermined distance L1 from the flow passage through which the fluid flows.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
  • a pair of fixing parts (120a-2, 120b-2) are formed on both sides of the body part (110-2), the central axis of each fixing part (120a-2, 120b-2) is not located on the same line It may be formed to be spaced apart by a predetermined distance and positioned in parallel.
  • the ultrasonic signal generated from the first ultrasonic sensor is reflected twice on the inner surface of the channel and transmitted to the second ultrasonic sensor, or the ultrasonic signal generated from the second ultrasonic sensor is reflected twice on the inner surface of the channel and transmitted to the first ultrasonic sensor.
  • the transmission path of the ultrasound signal may increase by (2 ⁇ L1)+L2.
  • 6A to 6B are cross-sectional views illustrating a structure of an ultrasonic flow rate measuring apparatus according to a fourth embodiment.
  • the ultrasonic flow rate measuring device is of a reflective type, and a pair of ultrasonic sensors 200a-3 and 200b-3 are attached to a pair of fixing parts 120a-3 formed on both sides of the body part. , 120b-3), respectively, may be spaced apart from the flow path through which the fluid flows by a predetermined distance L1.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • the ultrasonic signal transmission path may increase by (2 ⁇ L1)+L2.
  • a pair of ultrasonic sensors 200a-3 and 200b-3 are installed on both sides of the body 110-3.
  • Each of the top portions 120a-3 and 120b-3 may be disposed and spaced apart from the flow passage through which the fluid flows by a predetermined distance L1.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • the pair of fixing parts 120a-3 and 120b-3 may be formed on both sides of the body part 110-3 and may be tilted at the same angle with respect to the central axis of the body part so that the central axis may be located on the same line.
  • FIG. 7A to 7D are cross-sectional views illustrating a structure of an ultrasonic flow rate measuring apparatus according to a fifth embodiment.
  • the ultrasonic flow rate measuring device is a straight-line type, and two pairs of ultrasonic sensors ⁇ (200a1-4, 200b1-4), (200a2-4, 200b2-4) ⁇ have a body part
  • the two pairs of fixing parts formed on both sides of (110-4) ⁇ (120a1-4, 120b1-4), (120a2-4, 120b2-4) ⁇ are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows ) may be spaced apart.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
  • Each pair of fixing parts ⁇ (120a1-4, 120b1-4), (120a2-4, 120b2-4) ⁇ is formed on both sides of the body part 110-4, and a constant angle for each pair based on the central axis of the body part It may be tilted so that the central axis is positioned on the same line, and the central axis of the two pairs of fixing units intersects each other.
  • the ultrasonic flow rate measuring device is a reflection type, and two pairs of ultrasonic sensors ⁇ (200a1-4, 200b2-4), (200a2-4, 200b1-4) ⁇ have a body part
  • the two pairs of fixing parts (120a1-4, 120b2-4), (120a2-4, 120b1-4) formed on both sides of 110-4 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart.
  • L1 predetermined distance
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
  • a pair of fixing parts (120a1-4, 120b2-4) is formed on one side of the body part, the other pair of fixing parts (120a2-4, 120b1-4) is formed on the other side of the body part, the two pairs of fixing parts ⁇ (120a1-4, 120b2-4), (120a2-4, 120b1-4) ⁇ is formed symmetrically with respect to a vertical axis perpendicular to the central axis of the body part.
  • the ultrasonic flow measurement device is a reflection type, and two pairs of ultrasonic sensors ⁇ (200a1-4, 200b1-4), (200a2-4, 200b2-4) ⁇ have a body part
  • the two pairs of fixing parts formed on both sides of (110-4) ⁇ (120a1-4, 120b1-4), (120a2-4, 120b2-4) ⁇ are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows ) may be spaced apart.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be identical to each other.
  • Each pair of fixing parts ⁇ (120a1-4, 120b1-4), (120a2-4, 120b2-4) ⁇ is formed on both sides of the body part 110-4, the central axis of the body part 110-4 As a standard, each pair is tilted at a certain angle so that the central axes of the fixing parts ⁇ (120a1-4, 120b1-4), (120a2-4, 120b2-4) ⁇ of each pair are not located on the same line but are spaced apart by a predetermined distance It may be formed to be positioned parallel to each other.
  • the central axes of the two pairs of fixing parts formed at corresponding positions with respect to the central axis of the body part may be formed to cross each other.
  • the ultrasonic flow rate measuring apparatus is of a reflective type, and two pairs of ultrasonic sensors ⁇ (200a1-4, 200b2-4), (200a2-4, 200b1-4) ⁇ have a body part
  • the two pairs of fixing parts (120a1-4, 120b2-4), (120a2-4, 120b1-4) formed on both sides of 110-4 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart.
  • L1 predetermined distance
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
  • a pair of fixing parts (120a1-4, 120b2-4) is formed on one side of the body part (110-4), the other pair of fixing parts (120a2-4, 120b1-4) is the body part (110-4) ) is formed on the other side, and two pairs of fixing parts ⁇ (120a1-4, 120b2-4), (120a2-4, 120b1-4) ⁇ are based on a vertical axis perpendicular to the central axis of the body part 110-4 is formed symmetrically.
  • 8A to 8D are cross-sectional views showing the structure of an ultrasonic flow rate measuring apparatus according to a sixth embodiment.
  • the ultrasonic flow rate measuring device is a straight-line type, and includes two pairs of ultrasonic sensors ⁇ (200a1-5, 200b1-5), (200a2-5, 200b2-5) ⁇ in a body part.
  • the two pairs of fixing parts (120a1-5, 120b1-5, 120a2-5, 120b2-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart.
  • L1 predetermined distance
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • Each pair of fixing parts ⁇ (120a1-5, 120b1-5), (120a2-5, 120b2-5) ⁇ is formed on both sides of the body part 110-5 and is based on the central axis of the body part 110-5
  • Each pair may be tilted at a certain angle so that the central axis is positioned on the same line, and the central axis of the two pairs of fixing units intersects each other.
  • the ultrasonic flow measurement device is a reflection type, and two pairs of ultrasonic sensors ⁇ (200a1-5, 200b2-5), (200a2-5, 200b1-5) ⁇ have a body part
  • the two pairs of fixing parts (120a1-5, 120b2-5), (120a2-5, 120b1-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance L1 from the flow path through which the fluid flows. ) may be spaced apart.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • a pair of fixing parts (120a1-5, 120b2-5) is formed on one side of the body part (110-5), and the other pair of fixing parts (120a2-5, 120b1-5) is the body part (110-5). ) is formed on the other side, and the two pairs of fixing parts ⁇ (120a1-5, 120b2-5), (120a2-5, 120b1-5) ⁇ are based on a vertical axis perpendicular to the central axis of the body part 110-5. is formed symmetrically.
  • the ultrasonic flow rate measuring device is a reflective type, and two pairs of ultrasonic sensors ⁇ (200a1-5, 200b1-5), (200a2-5, 200b2-5) ⁇ have a body part
  • the two pairs of fixing parts (120a1-5, 120b1-5, 120a2-5, 120b2-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • Each pair of fixing parts ⁇ (120a1-5, 120b1-5), (120a2-5, 120b2-5) ⁇ is formed on both sides of the body part 110-5, the central axis of the body part 110-5
  • each pair is tilted at a certain angle so that the central axes of the fixing parts ⁇ (120a1-5, 120b1-5), (120a2-5, 120b2-5) ⁇ of each pair are not located on the same line but are spaced apart by a predetermined distance It may be formed to be positioned parallel to each other.
  • the axes of the two pairs of fixing units formed at corresponding positions with respect to the central axis of the body may be formed to cross each other.
  • the ultrasonic flow rate measuring device is a reflection type, and two pairs of ultrasonic sensors ⁇ (200a1-5, 200b2-5), (200a2-5, 200b1-5) ⁇ have a body part
  • the two pairs of fixing parts (120a1-5, 120b2-5), (120a2-5, 120b1-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance L1 from the flow path through which the fluid flows. ) may be spaced apart.
  • the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
  • a pair of fixing parts (120a1-5, 120b2-5) is formed on one side of the body part (110-5), and the other pair of fixing parts (120a2-5, 120b1-5) is the body part (110-5). ) is formed on the other side, and the two pairs of fixing parts ⁇ (120a1-5, 120b2-5), (120a2-5, 120b1-5) ⁇ are based on a vertical axis perpendicular to the central axis of the body part 110-5. is formed symmetrically.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Disclosed is an ultrasonic flow rate measuring apparatus according to an embodiment. The ultrasonic flow rate measuring apparatus comprises: a measuring tube including a body part, in which a fluid flows through a cylindrical flow channel, and a pair of fixing parts, which are formed on at least one side of the body part and connected to the flow channel; and a pair of ultrasonic sensors which are respectively disposed on the pair of fixing parts so as to be spaced apart a predetermined distance from the flow channel.

Description

초음파 유량 측정 장치Ultrasonic flow measuring device
실시예는 소구경 관로에서 적용 가능한 초음파 유량 측정 장치에 관한 것이다.The embodiment relates to an ultrasonic flow measurement device applicable to a small-diameter pipeline.
전달 시간차 방식의 초음파 유량 측정기는 유체가 흐르는 관로 내에 특정한 공진 주파수를 갖는 두 개의 압전형 초음파 센서를 배치하고 두 개의 압전형 초음파 센서 간에 초음파 신호를 송수신하여 유체의 유속 및 유량을 측정하는데 사용되는 기기를 일컫는다.Transmission time difference ultrasonic flow meter is a device used to measure the flow rate and flow rate of a fluid by placing two piezoelectric ultrasonic sensors having a specific resonant frequency in a pipeline through which a fluid flows, and transmitting and receiving ultrasonic signals between the two piezoelectric ultrasonic sensors refers to
이러한 종래의 초음파 유량 측정기는 각종 산업현장 등의 다양한 분야에서 사용된다.Such a conventional ultrasonic flow meter is used in various fields such as various industrial sites.
하지만 초음파 측정 방식은 소구경 또는 저유속 관로일 경우 초음파 센서 간의 거리가 매우 가까운 상태가 되거나 저유속에 의해 초음파 전달 시간차가 작기 때문에 측정이 되지 않거나 측정 오차가 발생하는 문제점이 있다.However, in the case of a small-diameter or low-flow pipe, the ultrasonic measurement method has a problem in that the distance between the ultrasonic sensors is very close or the ultrasonic transmission time difference is small due to the low flow rate, so that the measurement cannot be performed or a measurement error occurs.
따라서 소구경 관로에서도 적용 가능한 유량 측정기의 개발이 필요한 실정이다.Therefore, it is necessary to develop a flow meter applicable to small-diameter pipelines.
실시예는, 소구경 관로에서 적용 가능한 초음파 유량 측정 장치에 관한 것으로, 초음파 센서를 유체가 흐르는 유로로부터 미리 정해진 거리만큼 이격되어 배치하고, 초음파 센서로부터 송신된 초음파 신호가 직접 전달되거나 관로의 내면에 적어도 한번 반사되어 전달되도록 함으로써, 소구경 관로에서 유체의 유속 및 유량의 측정이 가능할 수 있고, 유체의 유속 및 유량을 보다 정확히 측정할 수 있다.The embodiment relates to an ultrasonic flow measurement device applicable in a small-diameter pipeline, in which the ultrasonic sensor is spaced apart by a predetermined distance from the flow passage through which the fluid flows, and the ultrasonic signal transmitted from the ultrasonic sensor is transmitted directly or on the inner surface of the pipeline. By making it reflected and transmitted at least once, it may be possible to measure the flow rate and flow rate of the fluid in the small-diameter pipe, and it is possible to measure the flow rate and flow rate of the fluid more accurately.
실시예에 따른 초음파 유량 측정 장치는 내측에 원통형으로 형성된 유로에 유체가 흐르는 몸체부와 상기 몸체부의 적어도 일측에 형성되어 상기 유로에 연결되는 한 쌍의 고정부를 포함하는 측정관; 및 상기 한 쌍의 고정부에 각각 배치되되, 상기 유로로부터 미리 정해진 거리만큼 이격되어 배치된 한 쌍의 초음파 센서를 포함할 수 있다.Ultrasonic flow rate measuring apparatus according to an embodiment includes a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and a pair of fixing parts formed on at least one side of the body part and connected to the flow path; and a pair of ultrasonic sensors respectively disposed on the pair of fixing units and spaced apart from the flow path by a predetermined distance.
상기 한 쌍의 고정부는 상기 몸체부의 일측에 형성되되, 상기 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 형성되되, 각 중심축이 서로 교차되도록 형성될 수 있다.The pair of fixing parts may be formed on one side of the body part and tilted at the same angle with respect to the central axis of the body part so that each central axis crosses each other.
상기 한 쌍의 고정부는 상기 몸체부의 양측에 형성되되, 상기 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 형성되되, 각 중심축이 이격되어 평행하게 형성될 수 있다.The pair of fixing parts are formed on both sides of the body part, and are formed by being tilted at the same angle with respect to the central axis of the body part, and each central axis may be spaced apart and formed in parallel.
상기 한 쌍의 고정부는 상기 몸체부의 양측에 형성되되, 상기 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 형성되되, 각 중심축이 동일 선상에 위치할 수 있다.The pair of fixing parts are formed on both sides of the body part, and are formed by being tilted at the same angle with respect to the central axis of the body part, and each central axis may be located on the same line.
상기 한 쌍의 고정부는 미리 정해진 거리만큼 이격되어 배치되고, 하나의 초음파 센서로부터 발생된 초음파 신호는 적어도 몸체부의 내면에 적어도 한번 반사되어 다른 하나의 초음파 센서로 전달될 수 있다.The pair of fixing parts may be disposed to be spaced apart by a predetermined distance, and an ultrasonic signal generated from one ultrasonic sensor may be reflected at least once on the inner surface of the body part and transmitted to the other ultrasonic sensor.
상기 한 쌍의 고정부는 끝단에서부터 상기 유로와 만나는 지점까지 제1 영역과 제2 영역으로 구분되고, 상기 제2 영역의 직경은 상기 제1 영역의 직경과 같거나 작게 설계될 수 있다.The pair of fixing parts may be divided into a first area and a second area from an end to a point where they meet the flow path, and a diameter of the second area may be designed to be equal to or smaller than a diameter of the first area.
상기 한 쌍의 초음파 센서는 상기 한 쌍의 고정부의 제1 영역에 배치되되, 초음파 신호가 발생되는 단부가 상기 제2 영역으로부터 소정 거리 이격되도록 배치될 수 있다.The pair of ultrasonic sensors may be disposed in a first region of the pair of fixing parts, and an end portion at which an ultrasonic signal is generated may be disposed to be spaced apart from the second region by a predetermined distance.
상기 초음파 유량 측정 장치는 상기 한 쌍의 초음파 센서로부터 송신 및 수신되는 초음파 신호를 전달받고, 상기 초음파 신호의 전달 시간차를 이용하여 상기 유체의 유속 및 유량을 측정하는 제어부를 더 포함할 수 있다.The ultrasonic flow rate measuring apparatus may further include a controller configured to receive ultrasonic signals transmitted and received from the pair of ultrasonic sensors, and measure the flow rate and flow rate of the fluid by using a transmission time difference of the ultrasonic signals.
상기 초음파 유량 측정 장치는 상기 측정관과 상기 제어부를 결합시키고, 상기 측정관에 배치된 한 쌍의 초음파 센서와 상기 제어부를 전기적으로 연결시키는 케이블이 내부에 배치되는 연결관을 더 포함할 수 있다.The ultrasonic flow measurement apparatus may further include a connector in which a cable for coupling the measuring tube and the controller and electrically connecting a pair of ultrasonic sensors disposed in the measuring tube and the controller is disposed therein.
실시예에 따른 초음파 유량 측정 장치는 내측에 원통형으로 형성된 유로에 유체가 흐르는 몸체부와 상기 몸체부의 양측에 형성되어 상기 유로에 연결되는 두 쌍의 고정부를 포함하는 측정관; 및 상기 두 쌍의 고정부에 각각 배치되되, 상기 유로로부터 미리 정해진 거리만큼 이격되어 배치된 두 쌍의 초음파 센서를 포함할 수 있다.Ultrasonic flow rate measuring apparatus according to an embodiment includes a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and two pairs of fixing parts formed on both sides of the body part and connected to the flow path; and two pairs of ultrasonic sensors disposed on the two pairs of fixing units, respectively, and spaced apart from the flow path by a predetermined distance.
상기 두 쌍의 고정부는 상기 몸체부의 일측에 형성되는 한 쌍의 고정부와 상기 몸체부의 타측에 형성되는 다른 한 쌍의 고정부를 포함할 수 있다.The two pairs of fixing parts may include a pair of fixing parts formed on one side of the body part and another pair of fixing parts formed on the other side of the body part.
상기 두 쌍의 고정부는 상기 몸체부의 양측에 형성되는 한 쌍의 고정부와 상기 몸체부의 양측에 형성되는 다른 한 쌍의 고정부를 포함할 수 있다.The two pairs of fixing parts may include a pair of fixing parts formed on both sides of the body part and another pair of fixing parts formed on both sides of the body part.
상기 두 쌍의 고정부는 각 중심축이 상기 몸체부의 중심축을 기준으로 각 쌍마다 일정한 각도로 틸딩되고, 상기 두 쌍의 고정부는 각 중심축이 서로 교차되도록 형성될 수 있다.The two pairs of fixing parts may be formed such that each central axis is tilted at a constant angle for each pair with respect to the central axis of the body part, and the two pairs of fixing parts cross each other.
상기 두 쌍의 고정부는 미리 정해진 거리만큼 이격되어 배치되고, 하나의 초음파 센서로부터 발생된 초음파 신호는 몸체부의 내면에 적어도 한번 반사되어 다른 하나의 초음파 센서로 전달될 수 있다.The two pairs of fixing parts may be disposed to be spaced apart by a predetermined distance, and an ultrasonic signal generated from one ultrasonic sensor may be reflected at least once on an inner surface of the body and transmitted to the other ultrasonic sensor.
상기 두 쌍의 고정부는 끝단에서부터 상기 유로와 만나는 지점까지 제1 영역과 제2 영역으로 구분되고, 상기 제2 영역의 직경은 상기 제1 영역의 직경과 같거나 작게 설계될 수 있다.The two pairs of fixing parts may be divided into a first area and a second area from an end to a point where they meet the flow path, and the diameter of the second area may be designed to be equal to or smaller than the diameter of the first area.
상기 두 쌍의 초음파 센서는 상기 두 쌍의 고정부의 제1 영역에 배치되되, 초음파 신호가 발생되는 단부가 상기 제2 영역으로부터 소정 거리 이격되도록 배치될 수 있다.The two pairs of ultrasonic sensors may be disposed in a first region of the two pairs of fixing units, and an end portion at which an ultrasonic signal is generated may be disposed to be spaced apart from the second region by a predetermined distance.
상기 초음파 유량 측정 장치는 상기 두 쌍의 초음파 센서로부터 송신 및 수신되는 초음파 신호를 전달받고, 상기 초음파 신호의 전달 시간차를 이용하여 상기 유체의 유속 및 유량을 측정하는 제어부를 더 포함할 수 있다.The ultrasonic flow rate measuring apparatus may further include a controller configured to receive ultrasonic signals transmitted and received from the two pairs of ultrasonic sensors, and measure the flow rate and flow rate of the fluid by using a transmission time difference of the ultrasonic signals.
상기 초음파 유량 측정 장치는 상기 측정관과 상기 제어부를 결합시키고, 상기 측정관에 배치된 두 쌍의 초음파 센서와 상기 제어부를 전기적으로 연결시키는 케이블이 내부에 배치되는 연결관을 더 포함할 수 있다.The ultrasonic flow rate measuring apparatus may further include a connector in which a cable for coupling the measuring tube and the controller and electrically connecting the two pairs of ultrasonic sensors disposed in the measuring tube and the controller is disposed therein.
실시예에 따르면, 초음파 센서를 유체가 흐르는 유로로부터 미리 정해진 거리만큼 이격시켜 배치하도록 함으로써, 소구경 관로에서 유체의 유속 및 유량의 측정이 가능할 수 있다.According to the embodiment, by disposing the ultrasonic sensor to be spaced apart from the flow path through which the fluid flows by a predetermined distance, it may be possible to measure the flow rate and flow rate of the fluid in the small-diameter pipe.
실시예에 따르면, 초음파 센서를 유체가 흐르는 유로로부터 미리 정해진 거리만큼 이격시켜 배치하되, 초음파 신호가 직접 전달되는 두 쌍의 초음파 센서를 유로의 양쪽 측면에 배치하거나 초음파 신호가 유로의 내면에 적어도 한번 반사되어 전달되도록 하기 때문에, 유체의 유속 및 유량을 보다 정확히 측정할 수 있다.According to the embodiment, the ultrasonic sensor is disposed to be spaced apart from the flow passage through which the fluid flows by a predetermined distance, and two pairs of ultrasonic sensors to which the ultrasonic signal is directly transmitted are disposed on both sides of the flow passage or the ultrasonic signal is transmitted to the inner surface of the flow passage at least once. Because it is reflected and transmitted, the flow rate and flow rate of the fluid can be measured more accurately.
도 1a 내지 도 1f는 본 발명의 실시예에 따른 초음파 유량 측정 장치를 나타내는 도면이다.1A to 1F are views illustrating an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention.
도 2a 내지 도 2b는 초음파 센서와 제어부의 연결 관계를 설명하기 위한 도면이다.2A to 2B are diagrams for explaining a connection relationship between an ultrasonic sensor and a controller.
도 3a 내지 도 3b는 제1 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.3A to 3B are cross-sectional views showing the structure of the ultrasonic flow rate measuring apparatus according to the first embodiment.
도 4a 내지 도 4f는 제2 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.4A to 4F are cross-sectional views illustrating a structure of an ultrasonic flow measurement apparatus according to a second embodiment.
도 5는 제3 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.5 is a cross-sectional view showing the structure of an ultrasonic flow rate measuring device according to a third embodiment.
도 6a 내지 도 6b는 제4 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.6A to 6B are cross-sectional views illustrating a structure of an ultrasonic flow rate measuring apparatus according to a fourth embodiment.
도 7a 내지 도 7d는 제5 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.7A to 7D are cross-sectional views illustrating the structure of an ultrasonic flow rate measuring apparatus according to a fifth embodiment.
도 8a 내지 도 8d는 제6 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.8A to 8D are cross-sectional views showing the structure of an ultrasonic flow rate measuring apparatus according to a sixth embodiment.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.However, the technical spirit of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and within the scope of the technical spirit of the present invention, one or more of the components may be selected between embodiments. It can be combined and substituted for use.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention may be generally understood by those of ordinary skill in the art to which the present invention belongs, unless specifically defined and described explicitly. It may be interpreted as a meaning, and generally used terms such as terms defined in advance may be interpreted in consideration of the contextual meaning of the related art.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.In addition, the terminology used in the embodiments of the present invention is for describing the embodiments and is not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, “A 및(와) B, C 중 적어도 하나(또는 한 개 이상)”로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In this specification, the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as “at least one (or more than one) of A and (and) B, C”, it is combined with A, B, and C It may include one or more of all possible combinations.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.These terms are only for distinguishing the component from other components, and are not limited to the essence, order, or order of the component by the term.
그리고, 어떤 구성 요소가 다른 구성요소에 ‘연결’, ‘결합’ 또는 ‘접속’된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 ‘연결’, ‘결합’ 또는 ‘접속’ 되는 경우도 포함할 수 있다.And, when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
또한, 각 구성 요소의 “상(위) 또는 하(아래)”에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In addition, when it is described as being formed or disposed on “above (above) or under (below)” of each component, the top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components. In addition, when expressed as “upper (upper) or lower (lower)”, the meaning of not only the upward direction but also the downward direction based on one component may be included.
실시예에서는, 초음파 센서를 유체가 흐르는 유로로부터 미리 정해진 거리만큼 이격되어 배치하고, 초음파 센서로부터 송신된 초음파 신호가 직접 전달되거나 관로의 내면에 적어도 한번 반사되어 전달되도록 한, 새로운 방안을 제안한다.In the embodiment, a new method is proposed in which the ultrasonic sensor is disposed to be spaced apart by a predetermined distance from the flow path through which the fluid flows, and the ultrasonic signal transmitted from the ultrasonic sensor is transmitted directly or reflected at least once on the inner surface of the conduit.
실시예에서는, 초음파 센서를 유체가 흐르는 유로로부터 미리 정해진 거리만큼 이격시켜 배치하되, 초음파 신호가 직접 전달되는 두 쌍의 초음파 센서를 유로의 양쪽 측면에 배치한다.In the embodiment, the ultrasonic sensor is disposed to be spaced apart from the flow passage through which the fluid flows by a predetermined distance, and two pairs of ultrasonic sensors to which the ultrasonic signal is directly transmitted are disposed on both sides of the flow passage.
실시예에서는, 초음파 센서를 유체가 흐르는 유로로부터 미리 정해진 거리만큼 이격시켜 배치하되, 초음파 신호가 유로의 내면에 적어도 한번 반사되어 전달한다.In the embodiment, the ultrasonic sensor is disposed to be spaced apart from the flow passage through which the fluid flows by a predetermined distance, and the ultrasonic signal is reflected and transmitted at least once on the inner surface of the flow passage.
도 1a 내지 도 1f는 본 발명의 실시예에 따른 초음파 유량 측정 장치를 나타내는 도면이다.1A to 1F are views illustrating an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention.
도 1a 내지 도 1b를 참조하면, 본 발명의 실시예에 따른 초음파 유량 측정 장치는 내측에 유체가 흐르는 측정관(100), 초음파 센서(200), 제어부(300), 연결관(400)를 포함할 수 있다.1A to 1B , the ultrasonic flow rate measuring apparatus according to an embodiment of the present invention includes a measuring tube 100 through which a fluid flows, an ultrasonic sensor 200, a controller 300, and a connecting tube 400. can do.
측정관(100)은 원통형으로 형성되어 내부의 유로를 통해 유체가 흐를 수 있다. 측정관(100)은 예컨대, 상하수도 배관의 중간에 삽입 결합되어 상하수도 배관 내부의 관로에 연결되되, 관로의 직경과 측정관(100) 내부의 유로의 직경은 동일할 수 있다.The measuring tube 100 is formed in a cylindrical shape so that a fluid can flow through an internal flow path. The measuring pipe 100 is, for example, inserted and coupled in the middle of the water and sewage pipe to be connected to the pipe inside the water and sewage pipe, and the diameter of the pipe and the diameter of the flow path inside the measuring pipe 100 may be the same.
측정관(100)은 몸체부(110), 고정부(120), 결합부(130), 커버(140)를 포함할 수 있다. 몸체부(110)는 내측이 원통형으로 형성된 유로에 유체가 흐르고, 고정부(120)는 몸체부(110)의 일측 또는 양측에 한 쌍이 형성되어 한 쌍의 초음파 센서(200)가 배치되고, 결합부(130)는 몸체부(110)의 양단에 한 쌍이 형성되어 관로에 연결되고, 커버(140)는 한 쌍의 고정부(120)에 각각 결합되어 각 고정부(120)의 내부를 밀폐할 수 있다. 또한 고정부(120)는 일 측면에 초음파 센서(200)와 제어부(300)를 연결하기 위한 케이블이 삽입되는 연결구(100a)가 형성될 수 있다.The measuring tube 100 may include a body part 110 , a fixing part 120 , a coupling part 130 , and a cover 140 . The body part 110 has a fluid flow in a flow path formed in a cylindrical shape inside, and the fixing part 120 is formed in a pair on one side or both sides of the body part 110 so that a pair of ultrasonic sensors 200 are disposed, and combined A pair of parts 130 is formed at both ends of the body part 110 and connected to a pipeline, and the cover 140 is coupled to a pair of fixing parts 120, respectively, to seal the inside of each fixing part 120. can In addition, the fixing unit 120 may have a connector 100a into which a cable for connecting the ultrasonic sensor 200 and the controller 300 is inserted on one side thereof.
또한 측정관(100)의 재질은 합성 수지 및 금속을 포함할 수 있다. 이때, 측정관(100)을 구성하는 몸체부(110), 고정부(120), 결합부(130)는 일체형으로 형성될 수 있다.In addition, the material of the measuring tube 100 may include a synthetic resin and a metal. At this time, the body part 110, the fixing part 120, and the coupling part 130 constituting the measuring tube 100 may be integrally formed.
초음파 센서(200)는 측정관(100)의 일측 또는 양측에 경사지게 결합 배치되되, 측정관(100) 내부의 유로에 흐르는 유체에 초음파 신호를 송신하여 수신하도록 한 쌍이 구비될 수 있다. 즉, 초음파 센서(200)는 제1 초음파 센서(200a)와 제2 초음파 센서(200b)를 포함하고, 제1 초음파 센서(200a)는 초음파 신호를 송신하고 제2 초음파 센서(200b)가 초음파 신호를 수신하거나 제2 초음파 센서(200b)가 초음파 신호를 송신하고 제1 초음파 센서(200a)가 초음파 신호를 수신할 수 있다.The ultrasonic sensor 200 may be disposed obliquely coupled to one or both sides of the measuring tube 100 , and a pair may be provided to transmit and receive an ultrasonic signal to the fluid flowing in the flow path inside the measuring tube 100 . That is, the ultrasonic sensor 200 includes a first ultrasonic sensor 200a and a second ultrasonic sensor 200b, the first ultrasonic sensor 200a transmits an ultrasonic signal and the second ultrasonic sensor 200b sends an ultrasonic signal may be received, or the second ultrasonic sensor 200b may transmit an ultrasonic signal and the first ultrasonic sensor 200a may receive the ultrasonic signal.
이때, 초음파 센서(200)는 측정관(100) 내부의 유로로부터 일정 거리 이격되어 배치될 수 있다. 이격된 거리만큼 초음파 신호의 전달 거리가 늘어날 수 있다.In this case, the ultrasonic sensor 200 may be disposed to be spaced apart from the flow path inside the measuring tube 100 by a predetermined distance. The transmission distance of the ultrasound signal may be increased by the separated distance.
제어부(300)는 측정관(100)에 설치된 한 쌍의 초음파 센서(200)와 연결되고, 한 쌍의 초음파 센서(200)로부터 수신되는 초음파 신호를 전달받아 전달받은 초음파 신호의 전달 시간차를 이용하여 측정관(100) 내부의 유로를 흐르는 유체의 유속 및 유량을 산출할 수 있다.The control unit 300 is connected to a pair of ultrasonic sensors 200 installed in the measuring tube 100 , receives an ultrasonic signal received from the pair of ultrasonic sensors 200 , and uses the transmission time difference of the received ultrasonic signal. The flow rate and flow rate of the fluid flowing through the flow path inside the measuring tube 100 may be calculated.
제어부(300)는 케이스(310), 컨트롤러(320)를 포함할 수 있다. 케이스(310)의 내부에는 컨트롤러(320)가 배치되고, 컨트롤러(320)는 케이블을 통해 측정관(100)에 설치된 초음파 센서와 연결될 수 있다. 또한 케이스(310)는 일 측면에 초음파 센서(200)와 제어부(300)를 연결하기 위한 케이블이 삽입되는 연결구(300a)가 형성될 수 있다.The controller 300 may include a case 310 and a controller 320 . The controller 320 is disposed inside the case 310 , and the controller 320 may be connected to the ultrasonic sensor installed in the measuring tube 100 through a cable. In addition, the case 310 may have a connector 300a into which a cable for connecting the ultrasonic sensor 200 and the controller 300 is inserted on one side thereof.
연결관(400)은 측정관(100)과 제어부(300) 사이에 배치되어, 측정관(100)의 일측면에 형성된 다수의 체결구(100b)와 제어부(300)의 일측면에 형성된 다수의 체결구(300b)를 통해 나사 결합됨으로써 고정 결합될 수 있다.The connector 400 is disposed between the measurement tube 100 and the control unit 300 , and includes a plurality of fasteners 100b formed on one side of the measurement tube 100 and a plurality of fasteners formed on one side of the control unit 300 . It may be fixedly coupled by being screwed through the fastener 300b.
연결관(400)은 고정 결합된 측정관(100)의 일 측면에 형성된 연결구(100a)와 케이스(310)의 일 측면에 형성된 연결구(300a)를 연결시킴으로써, 초음파 센서와 컨트롤러를 연결하는 케이블이 하우징 내부에 위치하도록 하여 외부에서 케이블을 접촉할 수 없다.The connector 400 is a cable connecting the ultrasonic sensor and the controller by connecting the connector 100a formed on one side of the fixedly coupled measuring tube 100 and the connector 300a formed on one side of the case 310. Since it is located inside the housing, the cable cannot be touched from the outside.
도 1c를 참조하면, 도 1b에서 설명한 연결관(400)을 사용하지 않고 측정관(100)의 연결구(100a)와 제어부(300)의 연결구(300a)를 직접 연결할 수도 있다.Referring to FIG. 1C , the connector 100a of the measurement tube 100 and the connector 300a of the controller 300 may be directly connected without using the connector 400 described in FIG. 1B .
실시예에 따른 초음파 유량 측정 장치는 도 1d 내지 도 1f와 같이 필요에 따라 일부 형상이 달라질 수 있다.The ultrasonic flow rate measuring apparatus according to the embodiment may have a partial shape as needed, as shown in FIGS. 1D to 1F .
도 2a 내지 도 2b는 초음파 센서와 제어부의 연결 관계를 설명하기 위한 도면이다.2A to 2B are diagrams for explaining a connection relationship between an ultrasonic sensor and a controller.
도 2a 내지 도 2b를 참조하면, 실시예에 따른 연결관(400)을 통해 측정관(100)에 배치된 한 쌍의 초음파 센서(200a, 200b)와 제어부(300)는 케이블(10)로 연결될 수 있다. 즉, 케이블(10)은 측정관(100)의 일 측면에 형성된 연결구(100a), 연결관(400), 케이스(310)의 일 측면에 형성된 연결구(300a)에 배치되어 연결될 수 있다.2A to 2B , a pair of ultrasonic sensors 200a and 200b and the control unit 300 disposed in the measuring tube 100 through the connecting tube 400 according to the embodiment are connected by a cable 10. can That is, the cable 10 may be disposed and connected to the connector 100a formed on one side of the measurement tube 100 , the connector 400 , and the connector 300a formed on one side of the case 310 .
또한, 측정관(100)과 제어부(300)는 연결관(400)에 의해 연결되어 연결관(400)의 길이만큼 이격되어 배치되기 때문에, 단열 및 절연(insulation)이 가능할 수 있다.In addition, since the measuring tube 100 and the control unit 300 are connected by the connecting tube 400 and disposed to be spaced apart by the length of the connecting tube 400 , heat insulation and insulation may be possible.
도 3a 내지 도 3b는 제1 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.3A to 3B are cross-sectional views showing the structure of the ultrasonic flow rate measuring apparatus according to the first embodiment.
도 3a를 참조하면, 제1 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 한 쌍의 초음파 센서(200a, 200b)를 몸체부(110)의 일측에 형성된 한 쌍의 고정부(120a, 120b)에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 동일하게 설계될 수 있다.Referring to FIG. 3A , the ultrasonic flow rate measuring device according to the first embodiment is of a reflective type, and a pair of ultrasonic sensors 200a and 200b are attached to a pair of fixing parts 120a and 120b formed on one side of the body part 110 . ), but may be spaced apart by a predetermined distance L1 from the flow path through which the fluid flows. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be identical to each other.
이때, 초음파 센서(200a, 200b)는 실제 초음파 신호가 발생하는 끝단의 제1 파트와 제1 파트를 지지하는 제2 파트로 구분될 수 있다. 초음파 센서의 직경은 제1 파트의 직경을 나타내고, 제1 파트의 직경은 제2 파트의 직경과 동일하거나 작을 수 있다.In this case, the ultrasonic sensors 200a and 200b may be divided into a first part at an end at which an actual ultrasonic signal is generated and a second part supporting the first part. The diameter of the ultrasonic sensor may indicate the diameter of the first part, and the diameter of the first part may be the same as or smaller than the diameter of the second part.
이때, 고정부(120a, 120b)는 몸체부의 중심축을 기준으로 소정 각도(θ)만큼 틸팅되어 형성되되, 소정 각도는 30도 ~ 60도의 범위 내에서 형성될 수 있고, 45도로 형성되는 것이 바람직하다.At this time, the fixing parts (120a, 120b) are formed by tilting by a predetermined angle (θ) with respect to the central axis of the body portion, the predetermined angle may be formed within the range of 30 degrees to 60 degrees, preferably formed to be 45 degrees. .
제1 초음파 센서(200a)로부터 발생된 초음파 신호가 유로의 내면에 한번 반사되어 제2 초음파 센서(200b)로 전달되거나 제2 초음파 센서(200b)로부터 발생된 초음파 신호가 유로의 내면에 한번 반사되어 제1 초음파 센서(200a)로 전달되도록 할 수 있다.The ultrasonic signal generated from the first ultrasonic sensor 200a is reflected once on the inner surface of the channel and transmitted to the second ultrasonic sensor 200b, or the ultrasonic signal generated from the second ultrasonic sensor 200b is reflected once on the inner surface of the channel. It may be transmitted to the first ultrasonic sensor 200a.
제1 실시예에 따르면, 한 쌍의 초음파 센서가 유로로부터 미리 정해진 거리만큼 이격되어 배치되기 때문에 초음파 신호의 전달 경로가 2×L1만큼 증가할 수 있다.According to the first embodiment, since the pair of ultrasound sensors are disposed to be spaced apart from the flow path by a predetermined distance, the transmission path of the ultrasound signal may increase by 2×L1.
도 3b를 참조하면, 상기 도 3a에서 한 쌍의 초음파 센서의 배치 간격을 두배만큼 넓게 설계하여, 초음파 신호가 유로의 내면에 세번 반사되어 전달되도록 할 수 있다.Referring to FIG. 3B , the arrangement interval of the pair of ultrasonic sensors in FIG. 3A may be designed to be twice as wide, so that the ultrasonic signal is reflected and transmitted three times on the inner surface of the flow path.
이를 통해, 초음파 신호의 전달 경로는 도 3a의 전달 경로보다 (L2+L2)만큼 증가할 수 있다.Through this, the transmission path of the ultrasound signal may increase by (L2+L2) compared to the transmission path of FIG. 3A .
도 4a 내지 도 4f는 제2 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.4A to 4F are cross-sectional views illustrating a structure of an ultrasonic flow measurement apparatus according to a second embodiment.
도 4a를 참조하면, 제2 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 한 쌍의 초음파 센서(200a-1, 200b-1)를 몸체부(110-1)의 일측에 형성된 한 쌍의 고정부(120a-1, 120b-1)에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 4A , the ultrasonic flow rate measuring device according to the second embodiment is of a reflective type, and includes a pair of ultrasonic sensors 200a-1 and 200b-1 formed on one side of the body 110-1. Each of the fixing parts 120a-1 and 120b-1 may be disposed to be spaced apart from the flow path through which the fluid flows by a predetermined distance L1. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
도 4b 내지 도 4c를 참조하면, 고정부(120b-1)는 끝단에서부터 축 방향으로 제1 영역(A)과 제2 영역(B)으로 구분되고, 제2 영역(B)의 직경은 제1 영역(A)의 직경보다 작게 설계될 수 있다. 제1 영역(A)에는 초음파 센서(200b-1)가 배치되고, 제1 영역(A)의 직경은 초음파 센서(200b-1)의 직경과 동일하다. 초음파 센서(200b-1)는 탄성체를 진동시켜 초음파 신호를 발생시키기 때문에 진동이 몸체부에 전달되지 않도록 제1 영역(A)과 초음파 센서(200b-1) 사이에는 소정의 갭(G)이 형성될 수 있다.4B to 4C , the fixing part 120b-1 is divided into a first area A and a second area B in the axial direction from the end, and the diameter of the second area B is the first It may be designed to be smaller than the diameter of the area (A). The ultrasonic sensor 200b - 1 is disposed in the first area A, and the diameter of the first area A is the same as that of the ultrasonic sensor 200b - 1 . Since the ultrasonic sensor 200b-1 vibrates the elastic body to generate an ultrasonic signal, a predetermined gap G is formed between the first region A and the ultrasonic sensor 200b-1 so that the vibration is not transmitted to the body portion. can be
이를 통해 초음파 센서(200a-1, 200b-1)로부터 발생된 초음파 신호의 방사 노이즈를 효과적으로 제어할 수 있다. 즉, 초음파 센서(200a-1, 200b-1)의 탄성체가 진동할 수 있는 공간을 확보할 수 있고, 탄성체의 진동이 몸체부에 전달되어 초음파 신호의 전달 방향에 영향을 줄 수 있는 요인을 줄일 수 있습니다.Through this, it is possible to effectively control the radiation noise of the ultrasonic signal generated from the ultrasonic sensors 200a-1 and 200b-1. That is, it is possible to secure a space in which the elastic body of the ultrasonic sensors 200a-1 and 200b-1 can vibrate, and the vibration of the elastic body is transmitted to the body portion to reduce factors that may affect the transmission direction of the ultrasonic signal. can.
또한, 초음파 센서(200a-1, 200b-1) 하단부에 공기층이 형성되는 것을 방지할 수 있다.In addition, it is possible to prevent an air layer from being formed at the lower end of the ultrasonic sensors 200a-1 and 200b-1.
도 4d 내지 도 4e를 참조하면, 실시예1과 실시예2에 따른 장치 내 유체의 흐름을 비교하여 보여주고 있다. 즉, 제1 실시예에 따른 도 4d와 같이 초음파 센서의 하단부에 공간이 형성되지 않은 경우 일측 하단부에 공기층(빈공간)이 형성되기 때문에 초음파 신호가 온전히 유체를 통과하지 않고 공기층을 거쳐 유체를 통과하게 된다. 반면, 제2 실시예에 따른 도 4e와 같이 초음파 신호가 발생되는 단부가 제2 영역으로부터 소정 거리 이격되도록 배치되면, 그 이격된 공간에 유체가 흘러 들어가 공기층이 형성되지 않게 된다.4D to 4E, the flow of the fluid in the apparatus according to Example 1 and Example 2 is compared and shown. That is, when a space is not formed at the lower end of the ultrasonic sensor as shown in FIG. 4D according to the first embodiment, since an air layer (empty space) is formed at the lower end of one side, the ultrasonic signal does not completely pass through the fluid, but passes through the fluid through the air layer will do On the other hand, when the end portion at which the ultrasonic signal is generated is disposed to be spaced apart from the second region by a predetermined distance as shown in FIG. 4E according to the second embodiment, the fluid flows into the spaced space so that an air layer is not formed.
따라서, 제1 실시예보다는 제2 실시예가 바람직하고, 제2 실시예에 따른 도 4e와 같이 초음파 센서를 배치하면 초음파 신호의 전달에 영향을 줄 수 있는 요인이 사라져 정확한 전달 시간의 측정이 가능하다.Therefore, the second embodiment is preferable rather than the first embodiment, and when the ultrasonic sensor is disposed as shown in FIG. 4E according to the second embodiment, factors that may affect the transmission of the ultrasound signal disappear, so that the accurate measurement of the transmission time is possible. .
제2 실시예에 따르면, 한 쌍의 초음파 센서가 유로로부터 미리 정해진 거리만큼 이격되어 배치되기 때문에 초음파 신호의 전달 경로가 2×L1만큼 증가할 수 있다.According to the second exemplary embodiment, since the pair of ultrasound sensors are disposed to be spaced apart from the flow path by a predetermined distance, the transmission path of the ultrasound signal may increase by 2×L1.
도 4f를 참조하면, 상기 도 4a에서 한 쌍의 초음파 센서(200a-1, 200b-1)의 배치 간격을 두배만큼 넓게 설계하여, 초음파 신호가 유로의 내면에 세번 반사되어 전달되도록 할 수 있다.Referring to FIG. 4F , the spacing between the pair of ultrasonic sensors 200a-1 and 200b-1 in FIG. 4A is designed to be twice as wide, so that the ultrasonic signal is reflected and transmitted three times on the inner surface of the flow path.
이를 통해, 초음파 신호의 전달 경로는 도 4a의 전달 경로보다 (L2+L2)만큼 증가할 수 있다.Through this, the transmission path of the ultrasound signal may increase by (L2+L2) compared to the transmission path of FIG. 4A .
도 5는 제3 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.5 is a cross-sectional view showing the structure of an ultrasonic flow rate measuring device according to a third embodiment.
도 5를 참조하면, 제3 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 한 쌍의 초음파 센서(200a-2, 200b-2)를 몸체부(110-2)의 양측에 형성된 한 쌍의 고정부(120a-2, 120b-2)에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 동일하게 설계될 수 있다.Referring to FIG. 5 , the ultrasonic flow rate measuring device according to the third embodiment is a reflective type, and includes a pair of ultrasonic sensors 200a-2 and 200b-2 formed on both sides of the body 110-2. Each of the fixing parts 120a-2 and 120b-2 may be disposed to be spaced apart by a predetermined distance L1 from the flow passage through which the fluid flows. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
한 쌍의 고정부(120a-2, 120b-2)는 몸체부(110-2)의 양측에 형성되되, 각 고정부(120a-2, 120b-2)의 중심축이 동일 선상에 위치하지 않고 소정 거리만큼 이격되어 평행하게 위치하도록 형성될 수 있다.A pair of fixing parts (120a-2, 120b-2) are formed on both sides of the body part (110-2), the central axis of each fixing part (120a-2, 120b-2) is not located on the same line It may be formed to be spaced apart by a predetermined distance and positioned in parallel.
이러한 구조에서 제1 초음파 센서로부터 발생된 초음파 신호가 유로의 내면에 두번 반사되어 제2 초음파 센서로 전달되거나 제2 초음파 센서로부터 발생된 초음파 신호가 유로의 내면에 두번 반사되어 제1 초음파 센서로 전달될 수 있다.In this structure, the ultrasonic signal generated from the first ultrasonic sensor is reflected twice on the inner surface of the channel and transmitted to the second ultrasonic sensor, or the ultrasonic signal generated from the second ultrasonic sensor is reflected twice on the inner surface of the channel and transmitted to the first ultrasonic sensor. can be
제3 실시예에 따르면, 한 쌍의 초음파 센서가 유로로부터 미리 정해진 거리만큼 이격되어 배치되기 때문에 초음파 신호의 전달 경로가 (2×L1)+ L2만큼 증가할 수 있다.According to the third exemplary embodiment, since the pair of ultrasound sensors are disposed to be spaced apart from the flow path by a predetermined distance, the transmission path of the ultrasound signal may increase by (2×L1)+L2.
도 6a 내지 도 6b는 제4 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.6A to 6B are cross-sectional views illustrating a structure of an ultrasonic flow rate measuring apparatus according to a fourth embodiment.
도 6a를 참조하면, 제4 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 한 쌍의 초음파 센서(200a-3, 200b-3)를 몸체부의 양측에 형성된 한 쌍의 고정부(120a-3, 120b-3)에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 6A , the ultrasonic flow rate measuring device according to the fourth embodiment is of a reflective type, and a pair of ultrasonic sensors 200a-3 and 200b-3 are attached to a pair of fixing parts 120a-3 formed on both sides of the body part. , 120b-3), respectively, may be spaced apart from the flow path through which the fluid flows by a predetermined distance L1. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
고정부의 구조는 도 5에서 설명한 고정부의 구조와 동일하므로 상세한 설명은 생략한다.Since the structure of the fixing part is the same as that of the fixing part described with reference to FIG. 5 , a detailed description thereof will be omitted.
도 6a에 따르면, 한 쌍의 초음파 센서가 유로로부터 미리 정해진 거리만큼 이격되어 배치되기 때문에 초음파 신호의 전달 경로가 (2×L1)+L2만큼 증가할 수 있다.Referring to FIG. 6A , since the pair of ultrasonic sensors are disposed to be spaced apart from the flow path by a predetermined distance, the ultrasonic signal transmission path may increase by (2×L1)+L2.
도 6b를 참조하면, 도 6a의 초음파 유량 측정 장치를 직선 타입으로 변경하면, 한 쌍의 초음파 센서(200a-3, 200b-3)를 몸체부(110-3)의 양측에 형성된 한 쌍의 고정부(120a-3, 120b-3)에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 6B , when the ultrasonic flow rate measuring device of FIG. 6A is changed to a straight line type, a pair of ultrasonic sensors 200a-3 and 200b-3 are installed on both sides of the body 110-3. Each of the top portions 120a-3 and 120b-3 may be disposed and spaced apart from the flow passage through which the fluid flows by a predetermined distance L1. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
한 쌍의 고정부(120a-3, 120b-3)는 몸체부(110-3)의 양측에 형성되되 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 중심축이 동일 선상에 위치할 수 있다.The pair of fixing parts 120a-3 and 120b-3 may be formed on both sides of the body part 110-3 and may be tilted at the same angle with respect to the central axis of the body part so that the central axis may be located on the same line.
도 7a 내지 도 7d는 제5 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.7A to 7D are cross-sectional views illustrating a structure of an ultrasonic flow rate measuring apparatus according to a fifth embodiment.
도 7a를 참조하면, 제5 실시예에 따른 초음파 유량 측정 장치는 직진 타입으로, 두 쌍의 초음파 센서{(200a1-4, 200b1-4), (200a2-4, 200b2-4)}는 몸체부(110-4)의 양측에 형성된 두 쌍의 고정부{(120a1-4, 120b1-4), (120a2-4, 120b2-4)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 동일하게 설계될 수 있다.Referring to FIG. 7A , the ultrasonic flow rate measuring device according to the fifth embodiment is a straight-line type, and two pairs of ultrasonic sensors {(200a1-4, 200b1-4), (200a2-4, 200b2-4)} have a body part The two pairs of fixing parts formed on both sides of (110-4) {(120a1-4, 120b1-4), (120a2-4, 120b2-4)} are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
각 쌍의 고정부{(120a1-4, 120b1-4), (120a2-4, 120b2-4)}는 몸체부(110-4)의 양측에 형성되되 몸체부의 중심축을 기준으로 각 쌍마다 일정한 각도로 틸팅되어 중심축이 동일 선상에 위치하고, 두 쌍의 고정부의 중심축은 서로 교차되도록 형성될 수 있다.Each pair of fixing parts {(120a1-4, 120b1-4), (120a2-4, 120b2-4)} is formed on both sides of the body part 110-4, and a constant angle for each pair based on the central axis of the body part It may be tilted so that the central axis is positioned on the same line, and the central axis of the two pairs of fixing units intersects each other.
도 7b를 참조하면, 제5 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 두 쌍의 초음파 센서{(200a1-4, 200b2-4), (200a2-4, 200b1-4)}는 몸체부(110-4)의 양측에 형성된 두 쌍의 고정부{(120a1-4, 120b2-4), (120a2-4, 120b1-4)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 동일하게 설계될 수 있다.Referring to FIG. 7B , the ultrasonic flow rate measuring device according to the fifth embodiment is a reflection type, and two pairs of ultrasonic sensors {(200a1-4, 200b2-4), (200a2-4, 200b1-4)} have a body part The two pairs of fixing parts (120a1-4, 120b2-4), (120a2-4, 120b1-4) formed on both sides of 110-4 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
한 쌍의 고정부(120a1-4, 120b2-4)는 몸체부의 일측에 형성되고, 다른 한 쌍의 고정부(120a2-4, 120b1-4)는 몸체부의 타측에 형성되고, 두 쌍의 고정부{(120a1-4, 120b2-4), (120a2-4, 120b1-4)}는 몸체부의 중심축에 수직한 수직축을 기준으로 대칭으로 형성된다.A pair of fixing parts (120a1-4, 120b2-4) is formed on one side of the body part, the other pair of fixing parts (120a2-4, 120b1-4) is formed on the other side of the body part, the two pairs of fixing parts {(120a1-4, 120b2-4), (120a2-4, 120b1-4)} is formed symmetrically with respect to a vertical axis perpendicular to the central axis of the body part.
도 7c를 참조하면, 제5 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 두 쌍의 초음파 센서{(200a1-4, 200b1-4), (200a2-4, 200b2-4)}는 몸체부(110-4)의 양측에 형성된 두 쌍의 고정부{(120a1-4, 120b1-4), (120a2-4, 120b2-4)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 동일하게 설계될 수 있다.Referring to FIG. 7C , the ultrasonic flow measurement device according to the fifth embodiment is a reflection type, and two pairs of ultrasonic sensors {(200a1-4, 200b1-4), (200a2-4, 200b2-4)} have a body part The two pairs of fixing parts formed on both sides of (110-4) {(120a1-4, 120b1-4), (120a2-4, 120b2-4)} are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be identical to each other.
각 쌍의 고정부{(120a1-4, 120b1-4), (120a2-4, 120b2-4)}는 몸체부(110-4)의 양측에 형성되되, 몸체부(110-4)의 중심축을 기준으로 각 쌍마다 일정한 각도로 틸팅되어 각 쌍의 고정부{(120a1-4, 120b1-4), (120a2-4, 120b2-4)}의 중심축이 동일 선상에 위치하지 않고 소정 거리만큼 이격되어 평행하게 위치하도록 형성될 수 있다. 몸체부의 중심축을 기준으로 대응되는 위치에 형성된 두 쌍의 고정부의 중심축은 서로 교차되도록 형성될 수 있다.Each pair of fixing parts {(120a1-4, 120b1-4), (120a2-4, 120b2-4)} is formed on both sides of the body part 110-4, the central axis of the body part 110-4 As a standard, each pair is tilted at a certain angle so that the central axes of the fixing parts {(120a1-4, 120b1-4), (120a2-4, 120b2-4)} of each pair are not located on the same line but are spaced apart by a predetermined distance It may be formed to be positioned parallel to each other. The central axes of the two pairs of fixing parts formed at corresponding positions with respect to the central axis of the body part may be formed to cross each other.
도 7d를 참조하면, 제5 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 두 쌍의 초음파 센서{(200a1-4, 200b2-4), (200a2-4, 200b1-4)}는 몸체부(110-4)의 양측에 형성된 두 쌍의 고정부{(120a1-4, 120b2-4), (120a2-4, 120b1-4)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 동일하게 설계될 수 있다.Referring to FIG. 7D , the ultrasonic flow rate measuring apparatus according to the fifth embodiment is of a reflective type, and two pairs of ultrasonic sensors {(200a1-4, 200b2-4), (200a2-4, 200b1-4)} have a body part The two pairs of fixing parts (120a1-4, 120b2-4), (120a2-4, 120b1-4) formed on both sides of 110-4 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be the same.
한 쌍의 고정부(120a1-4, 120b2-4)는 몸체부(110-4)의 일측에 형성되고, 다른 한 쌍의 고정부(120a2-4, 120b1-4)는 몸체부(110-4)의 타측에 형성되고, 두 쌍의 고정부{(120a1-4, 120b2-4), (120a2-4, 120b1-4)}는 몸체부(110-4)의 중심축에 수직한 수직축을 기준으로 대칭으로 형성된다.A pair of fixing parts (120a1-4, 120b2-4) is formed on one side of the body part (110-4), the other pair of fixing parts (120a2-4, 120b1-4) is the body part (110-4) ) is formed on the other side, and two pairs of fixing parts {(120a1-4, 120b2-4), (120a2-4, 120b1-4)} are based on a vertical axis perpendicular to the central axis of the body part 110-4 is formed symmetrically.
도 8a 내지 도 8d는 제6 실시예에 따른 초음파 유량 측정 장치의 구조를 나타내는 단면도이다.8A to 8D are cross-sectional views showing the structure of an ultrasonic flow rate measuring apparatus according to a sixth embodiment.
도 8a를 참조하면, 제6 실시예에 따른 초음파 유량 측정 장치는 직진 타입으로, 두 쌍의 초음파 센서{(200a1-5, 200b1-5), (200a2-5, 200b2-5)}를 몸체부(110-5)의 양측에 형성된 두 쌍의 고정부{(120a1-5, 120b1-5), (120a2-5, 120b2-5)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 8A , the ultrasonic flow rate measuring device according to the sixth embodiment is a straight-line type, and includes two pairs of ultrasonic sensors {(200a1-5, 200b1-5), (200a2-5, 200b2-5)} in a body part. The two pairs of fixing parts (120a1-5, 120b1-5, 120a2-5, 120b2-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
각 쌍의 고정부{(120a1-5, 120b1-5), (120a2-5, 120b2-5)}는 몸체부(110-5)의 양측에 형성되고 몸체부(110-5)의 중심축을 기준으로 각 쌍마다 일정한 각도로 틸팅되어 중심축이 동일 선상에 위치하고, 두 쌍의 고정부의 중심축은 서로 교차되도록 형성될 수 있다.Each pair of fixing parts {(120a1-5, 120b1-5), (120a2-5, 120b2-5)} is formed on both sides of the body part 110-5 and is based on the central axis of the body part 110-5 Each pair may be tilted at a certain angle so that the central axis is positioned on the same line, and the central axis of the two pairs of fixing units intersects each other.
도 8b를 참조하면, 제6 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 두 쌍의 초음파 센서{(200a1-5, 200b2-5), (200a2-5, 200b1-5)}는 몸체부(110-5)의 양측에 형성된 두 쌍의 고정부{(120a1-5, 120b2-5), (120a2-5, 120b1-5)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 8B , the ultrasonic flow measurement device according to the sixth embodiment is a reflection type, and two pairs of ultrasonic sensors {(200a1-5, 200b2-5), (200a2-5, 200b1-5)} have a body part The two pairs of fixing parts (120a1-5, 120b2-5), (120a2-5, 120b1-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance L1 from the flow path through which the fluid flows. ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
한 쌍의 고정부(120a1-5, 120b2-5)는 몸체부(110-5)의 일측에 형성되고, 다른 한 쌍의 고정부(120a2-5, 120b1-5)는 몸체부(110-5)의 타측에 형성되고, 두 쌍의 고정부{(120a1-5, 120b2-5), (120a2-5, 120b1-5)}는 몸체부(110-5)의 중심축에 수직한 수직축을 기준으로 대칭으로 형성된다.A pair of fixing parts (120a1-5, 120b2-5) is formed on one side of the body part (110-5), and the other pair of fixing parts (120a2-5, 120b1-5) is the body part (110-5). ) is formed on the other side, and the two pairs of fixing parts {(120a1-5, 120b2-5), (120a2-5, 120b1-5)} are based on a vertical axis perpendicular to the central axis of the body part 110-5. is formed symmetrically.
도 8c를 참조하면, 제6 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 두 쌍의 초음파 센서{(200a1-5, 200b1-5), (200a2-5, 200b2-5)}는 몸체부(110-5)의 양측에 형성된 두 쌍의 고정부{(120a1-5, 120b1-5), (120a2-5, 120b2-5)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 8C , the ultrasonic flow rate measuring device according to the sixth embodiment is a reflective type, and two pairs of ultrasonic sensors {(200a1-5, 200b1-5), (200a2-5, 200b2-5)} have a body part The two pairs of fixing parts (120a1-5, 120b1-5, 120a2-5, 120b2-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance (L1) from the flow path through which the fluid flows. ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
각 쌍의 고정부{(120a1-5, 120b1-5), (120a2-5, 120b2-5)}는 몸체부(110-5)의 양측에 형성되되, 몸체부(110-5)의 중심축을 기준으로 각 쌍마다 일정한 각도로 틸팅되어 각 쌍의 고정부{(120a1-5, 120b1-5), (120a2-5, 120b2-5)}의 중심축이 동일 선상에 위치하지 않고 소정 거리만큼 이격되어 평행하게 위치하도록 형성될 수 있다. 몸체부의 중심축을 기준으로 대응되는 위치에 형성된 두 쌍의 고정부의 축은 서로 교차되도록 형성될 수 있다.Each pair of fixing parts {(120a1-5, 120b1-5), (120a2-5, 120b2-5)} is formed on both sides of the body part 110-5, the central axis of the body part 110-5 As a standard, each pair is tilted at a certain angle so that the central axes of the fixing parts {(120a1-5, 120b1-5), (120a2-5, 120b2-5)} of each pair are not located on the same line but are spaced apart by a predetermined distance It may be formed to be positioned parallel to each other. The axes of the two pairs of fixing units formed at corresponding positions with respect to the central axis of the body may be formed to cross each other.
도 8d를 참조하면, 제6 실시예에 따른 초음파 유량 측정 장치는 반사 타입으로, 두 쌍의 초음파 센서{(200a1-5, 200b2-5), (200a2-5, 200b1-5)}는 몸체부(110-5)의 양측에 형성된 두 쌍의 고정부{(120a1-5, 120b2-5), (120a2-5, 120b1-5)}에 각각 배치되되, 유체가 흐르는 유로로부터 미리 정해진 거리(L1)만큼 이격되어 배치될 수 있다. 여기서, 초음파 센서의 직경과 고정부의 직경은 서로 다르게 설계될 수 있다.Referring to FIG. 8D , the ultrasonic flow rate measuring device according to the sixth embodiment is a reflection type, and two pairs of ultrasonic sensors {(200a1-5, 200b2-5), (200a2-5, 200b1-5)} have a body part The two pairs of fixing parts (120a1-5, 120b2-5), (120a2-5, 120b1-5) formed on both sides of 110-5 are respectively disposed at a predetermined distance L1 from the flow path through which the fluid flows. ) may be spaced apart. Here, the diameter of the ultrasonic sensor and the diameter of the fixing part may be designed to be different from each other.
한 쌍의 고정부(120a1-5, 120b2-5)는 몸체부(110-5)의 일측에 형성되고, 다른 한 쌍의 고정부(120a2-5, 120b1-5)는 몸체부(110-5)의 타측에 형성되고, 두 쌍의 고정부{(120a1-5, 120b2-5), (120a2-5, 120b1-5)}는 몸체부(110-5)의 중심축에 수직한 수직축을 기준으로 대칭으로 형성된다.A pair of fixing parts (120a1-5, 120b2-5) is formed on one side of the body part (110-5), and the other pair of fixing parts (120a2-5, 120b1-5) is the body part (110-5). ) is formed on the other side, and the two pairs of fixing parts {(120a1-5, 120b2-5), (120a2-5, 120b1-5)} are based on a vertical axis perpendicular to the central axis of the body part 110-5. is formed symmetrically.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that it can be done.
[부호의 설명][Explanation of code]
100: 측정관100: measuring tube
110: 몸체부110: body part
120: 고정부120: fixed part
130: 결합부130: coupling part
140: 커버140: cover
200: 초음파 센서200: ultrasonic sensor
300: 제어부300: control unit
310: 케이스310: case
320: 컨트롤러320: controller
400: 연결관400: connector

Claims (12)

  1. 내측에 원통형으로 형성된 유로에 유체가 흐르는 몸체부와 상기 몸체부의 적어도 일측에 형성되어 상기 유로에 연결되는 한 쌍의 고정부를 포함하는 측정관; 및a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and a pair of fixing parts formed on at least one side of the body part and connected to the flow path; and
    상기 한 쌍의 고정부에 각각 배치되되, 상기 유로로부터 미리 정해진 거리만큼 이격되어 배치된 한 쌍의 초음파 센서를 포함하고,A pair of ultrasonic sensors disposed in each of the pair of fixing units, and spaced apart from the flow path by a predetermined distance, are included.
    상기 한 쌍의 고정부는 끝단에서부터 상기 유로와 만나는 지점까지 제1 영역과 제2 영역으로 구분되되, 상기 제2 영역의 직경은 상기 제1 영역의 직경보다 작게 설계되고,The pair of fixing parts are divided into a first area and a second area from the end to the point where they meet the flow path, and the diameter of the second area is designed to be smaller than the diameter of the first area,
    상기 한 쌍의 초음파 센서는 상기 한 쌍의 고정부의 제1 영역에 배치되되, 초음파 신호가 발생되는 단부가 상기 제2 영역으로부터 소정 거리 이격되도록 배치되고,The pair of ultrasonic sensors are disposed in a first area of the pair of fixing parts, and an end at which an ultrasonic signal is generated is disposed to be spaced apart from the second area by a predetermined distance,
    상기 초음파 신호가 발생되는 단부는 상기 제2 영역의 직경보다 큰, 초음파 유량 측정 장치.An end portion at which the ultrasonic signal is generated is larger than a diameter of the second region, an ultrasonic flow measurement device.
  2. 제1항에 있어서,According to claim 1,
    상기 한 쌍의 고정부는,The pair of fixing parts,
    상기 몸체부의 일측에 형성되되, 상기 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 형성되되, 각 중심축이 서로 교차되도록 형성된, 초음파 유량 측정 장치.Doedoe formed on one side of the body portion, formed by tilting at the same angle with respect to the central axis of the body portion, and formed so that each central axis intersects each other, the ultrasonic flow rate measuring device.
  3. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 고정부는,The pair of fixing parts,
    상기 몸체부의 양측에 형성되되, 상기 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 형성되되, 각 중심축이 이격되어 평행하게 형성된, 초음파 유량 측정 장치.Doedoe formed on both sides of the body portion, formed by tilting at the same angle with respect to the central axis of the body portion, each central axis is spaced apart and formed in parallel, the ultrasonic flow rate measuring device.
  4. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 고정부는,The pair of fixing parts,
    상기 몸체부의 양측에 형성되되, 상기 몸체부의 중심축을 기준으로 동일한 각도로 틸팅되어 형성되되, 각 중심축이 동일 선상에 위치한 초음파 유량 측정 장치.Doedoe formed on both sides of the body portion, the ultrasonic flow rate measuring device is formed by tilting at the same angle with respect to the central axis of the body portion, each central axis is located on the same line.
  5. 제2항 또는 제3항에 있어서,4. The method of claim 2 or 3,
    상기 한 쌍의 고정부는 미리 정해진 거리만큼 이격되어 배치되고,The pair of fixing parts are arranged to be spaced apart by a predetermined distance,
    하나의 초음파 센서로부터 발생된 초음파 신호는 적어도 몸체부의 내면에 적어도 한번 반사되어 다른 하나의 초음파 센서로 전달되는, 초음파 유량 측정 장치.Ultrasonic signal generated from one ultrasonic sensor is reflected at least once on the inner surface of the body portion and transmitted to the other ultrasonic sensor.
  6. 내측에 원통형으로 형성된 유로에 유체가 흐르는 몸체부와 상기 몸체부의 적어도 일측에 형성되어 상기 유로에 연결되는 한 쌍의 고정부를 포함하는 측정관; 및a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and a pair of fixing parts formed on at least one side of the body part and connected to the flow path; and
    상기 한 쌍의 고정부에 각각 배치되되, 상기 유로로부터 미리 정해진 거리만큼 이격되어 배치된 한 쌍의 초음파 센서;a pair of ultrasonic sensors disposed in each of the pair of fixing units and spaced apart from the flow path by a predetermined distance;
    상기 한 쌍의 초음파 센서로부터 송신 및 수신되는 초음파 신호를 전달받고, 상기 초음파 신호의 전달 시간차를 이용하여 상기 유체의 유속 및 유량을 측정하는 제어부; 및a controller configured to receive ultrasonic signals transmitted and received from the pair of ultrasonic sensors, and measure the flow velocity and flow rate of the fluid using a time difference between the ultrasonic signals; and
    상기 측정관과 상기 제어부를 결합시키고, 상기 측정관에 배치된 한 쌍의 초음파 센서와 상기 제어부를 전기적으로 연결시키는 케이블이 내부에 배치되는 연결관을 포함하고,A connector coupling the measuring tube and the control unit and having a cable for electrically connecting a pair of ultrasonic sensors disposed in the measuring tube and the control unit is disposed therein;
    상기 측정관의 고정부의 일측면에 상기 초음파 센서에 연결된 케이블이 삽입되는 연결구가 형성되고,A connector into which a cable connected to the ultrasonic sensor is inserted is formed on one side of the fixing part of the measuring tube,
    상기 제어부의 케이스의 일측면에 컨트롤러에 연결되는 케이블이 삽입되는 연결구가 형성되고, A connector into which a cable connected to the controller is inserted is formed on one side of the case of the control unit,
    상기 연결관은 내부를 관통하는 다수의 통로가 형성되고,The connection pipe is formed with a plurality of passages passing through the interior,
    상기 연결관의 두 개의 통로를 통해 상기 측정관의 일측면에 형성된 체결구와 상기 제어부의 일측면에 형성된 체결구가 나사 결합되고,A fastener formed on one side of the measuring tube and a fastener formed on one side of the control unit are screwed through the two passages of the connection tube,
    상기 나사 결합에 의해 상기 연결관의 다른 하나의 통로를 통해 상기 측정관의 연결구와 상기 제어부의 연결구가 연결되고,The connector of the measuring tube and the connector of the controller are connected through the other passage of the connector by the screw coupling,
    상기 한 쌍의 고정부는 끝단에서부터 상기 유로와 만나는 지점까지 제1 영역과 제2 영역으로 구분되되, 상기 제2 영역의 직경은 상기 제1 영역의 직경보다 작게 설계되고,The pair of fixing parts are divided into a first area and a second area from the end to the point where they meet the flow path, and the diameter of the second area is designed to be smaller than the diameter of the first area,
    상기 한 쌍의 초음파 센서는 상기 한 쌍의 고정부의 제1 영역에 배치되되, 초음파 신호가 발생되는 단부가 상기 제2 영역으로부터 소정 거리 이격되도록 배치되는, 초음파 유량 측정 장치.The pair of ultrasonic sensors are disposed in a first region of the pair of fixing parts, and an end portion at which an ultrasonic signal is generated is disposed to be spaced apart from the second region by a predetermined distance.
  7. 내측에 원통형으로 형성된 유로에 유체가 흐르는 몸체부와 상기 몸체부의 양측에 형성되어 상기 유로에 연결되는 두 쌍의 고정부를 포함하는 측정관; 및a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and two pairs of fixing parts formed on both sides of the body part and connected to the flow path; and
    상기 두 쌍의 고정부에 각각 배치되되, 상기 유로로부터 미리 정해진 거리만큼 이격되어 배치된 두 쌍의 초음파 센서를 포함하고,Doedoe disposed in each of the two pairs of fixing parts, including two pairs of ultrasonic sensors spaced apart from the flow path by a predetermined distance,
    상기 두 쌍의 고정부는 끝단에서부터 상기 유로와 만나는 지점까지 제1 영역과 제2 영역으로 구분되고, 상기 제2 영역의 직경은 상기 제1 영역의 직경보다 작게 설계되고,The two pairs of fixing parts are divided into a first area and a second area from the end to the point where they meet the flow path, and the diameter of the second area is designed to be smaller than the diameter of the first area,
    상기 두 쌍의 초음파 센서는 상기 두 쌍의 고정부의 제1 영역에 배치되되, 초음파 신호가 발생되는 단부가 상기 제2 영역으로부터 소정 거리 이격되도록 배치되고,The two pairs of ultrasonic sensors are disposed in a first region of the two pairs of fixing parts, and an end portion at which an ultrasonic signal is generated is disposed to be spaced apart from the second region by a predetermined distance,
    상기 초음파 신호가 발생되는 단부는 상기 제2 영역의 직경보다 큰, 초음파 유량 측정 장치.An end portion at which the ultrasonic signal is generated is larger than a diameter of the second region, an ultrasonic flow measurement device.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 두 쌍의 고정부는The two pairs of fixing parts
    상기 몸체부의 일측에 형성되는 한 쌍의 고정부와 상기 몸체부의 타측에 형성되는 다른 한 쌍의 고정부를 포함하는, 초음파 유량 측정 장치.An ultrasonic flow rate measuring device comprising a pair of fixing parts formed on one side of the body part and another pair of fixing parts formed on the other side of the body part.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 두 쌍의 고정부는The two pairs of fixing parts
    상기 몸체부의 양측에 형성되는 한 쌍의 고정부와 상기 몸체부의 양측에 형성되는 다른 한 쌍의 고정부를 포함하는, 초음파 유량 측정 장치.An ultrasonic flow rate measuring device comprising a pair of fixing parts formed on both sides of the body part and another pair of fixing parts formed on both sides of the body part.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 두 쌍의 고정부는 각 중심축이 상기 몸체부의 중심축을 기준으로 각 쌍마다 일정한 각도로 틸딩되고,Each of the two pairs of fixing parts is tilted at a constant angle for each pair with respect to the central axis of the body part,
    상기 두 쌍의 고정부는, 각 중심축이 서로 교차되도록 형성된, 초음파 유량 측정 장치. The two pairs of fixing parts are formed so that each central axis intersects each other, an ultrasonic flow rate measuring device.
  11. 제8항 또는 제9항에 있어서,10. The method according to claim 8 or 9,
    상기 두 쌍의 고정부는 미리 정해진 거리만큼 이격되어 배치되고,The two pairs of fixing parts are arranged to be spaced apart by a predetermined distance,
    하나의 초음파 센서로부터 발생된 초음파 신호는 적어도 몸체부의 내면에 적어도 한번 반사되어 다른 하나의 초음파 센서로 전달되는, 초음파 유량 측정 장치.Ultrasonic signal generated from one ultrasonic sensor is reflected at least once on the inner surface of the body portion and transmitted to the other ultrasonic sensor.
  12. 내측에 원통형으로 형성된 유로에 유체가 흐르는 몸체부와 상기 몸체부의 적어도 일측에 형성되어 상기 유로에 연결되는 한 쌍의 고정부를 포함하는 측정관; 및a measuring tube including a body part through which a fluid flows in a flow path formed in a cylindrical shape inside, and a pair of fixing parts formed on at least one side of the body part and connected to the flow path; and
    상기 한 쌍의 고정부에 각각 배치되되, 상기 유로로부터 미리 정해진 거리만큼 이격되어 배치된 한 쌍의 초음파 센서;a pair of ultrasonic sensors disposed in each of the pair of fixing units and spaced apart from the flow path by a predetermined distance;
    상기 한 쌍의 초음파 센서로부터 송신 및 수신되는 초음파 신호를 전달받고, 상기 초음파 신호의 전달 시간차를 이용하여 상기 유체의 유속 및 유량을 측정하는 제어부; 및a controller configured to receive ultrasonic signals transmitted and received from the pair of ultrasonic sensors, and measure the flow velocity and flow rate of the fluid using a time difference between the ultrasonic signals; and
    상기 측정관과 상기 제어부를 결합시키고, 상기 측정관에 배치된 한 쌍의 초음파 센서와 상기 제어부를 전기적으로 연결시키는 케이블이 내부에 배치되는 연결관을 포함하고,A connector coupling the measuring tube and the control unit and having a cable for electrically connecting a pair of ultrasonic sensors disposed in the measuring tube and the control unit is disposed therein;
    상기 측정관의 고정부의 일측면에 상기 초음파 센서에 연결된 케이블이 삽입되는 연결구가 형성되고,A connector into which a cable connected to the ultrasonic sensor is inserted is formed on one side of the fixing part of the measuring tube,
    상기 제어부의 케이스의 일측면에 컨트롤러에 연결되는 케이블이 삽입되는 연결구가 형성되고, A connector into which a cable connected to the controller is inserted is formed on one side of the case of the control unit,
    상기 연결관은 내부를 관통하는 다수의 통로가 형성되고,The connection pipe is formed with a plurality of passages passing through the inside,
    상기 연결관의 두 개의 통로를 통해 상기 측정관의 일측면에 형성된 체결구와 상기 제어부의 일측면에 형성된 체결구가 나사 결합되고,A fastener formed on one side of the measuring tube and a fastener formed on one side of the control unit are screwed through the two passages of the connection tube,
    상기 나사 결합에 의해 상기 연결관의 다른 하나의 통로를 통해 상기 측정관의 연결구와 상기 제어부의 연결구가 연결되고,The connector of the measuring tube and the connector of the controller are connected through the other passage of the connector by the screw coupling,
    상기 한 쌍의 고정부는 끝단에서부터 상기 유로와 만나는 지점까지 제1 영역과 제2 영역으로 구분되되, 상기 제2 영역의 직경은 상기 제1 영역의 직경보다 작게 설계되고,The pair of fixing parts are divided into a first area and a second area from the end to the point where they meet the flow path, and the diameter of the second area is designed to be smaller than the diameter of the first area,
    상기 한 쌍의 초음파 센서는 상기 한 쌍의 고정부의 제1 영역에 배치되되, 초음파 신호가 발생되는 단부가 상기 제2 영역으로부터 소정 거리 이격되도록 배치되는, 초음파 유량 측정 장치.The pair of ultrasonic sensors are disposed in a first region of the pair of fixing parts, and an end portion at which an ultrasonic signal is generated is disposed to be spaced apart from the second region by a predetermined distance.
PCT/KR2021/007272 2020-06-23 2021-06-10 Ultrasonic flow rate measuring apparatus WO2021261813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0076495 2020-06-23
KR1020200076495A KR102246720B1 (en) 2020-06-23 2020-06-23 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
WO2021261813A1 true WO2021261813A1 (en) 2021-12-30

Family

ID=75740453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007272 WO2021261813A1 (en) 2020-06-23 2021-06-10 Ultrasonic flow rate measuring apparatus

Country Status (3)

Country Link
KR (1) KR102246720B1 (en)
TW (1) TWI779664B (en)
WO (1) WO2021261813A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102246720B1 (en) * 2020-06-23 2021-04-30 (주)발맥스기술 Ultrasonic flowmeter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271117A (en) * 1998-03-19 1999-10-05 Oval Corp Ultrasonic flowmeter
JP2008111714A (en) * 2006-10-30 2008-05-15 Ricoh Elemex Corp Flowmeter
JP2012021899A (en) * 2010-07-15 2012-02-02 Panasonic Corp Ultrasonic flow rate measuring unit and ultrasonic flowmeter using the same
KR101327182B1 (en) * 2012-12-28 2013-11-06 (주)와이즈산전 Structure of combing duct with ultrasonic oscillator and ultrasonics wave flowmeter using the same of
KR20150114568A (en) * 2013-03-21 2015-10-12 아즈빌주식회사 Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program
KR102246720B1 (en) * 2020-06-23 2021-04-30 (주)발맥스기술 Ultrasonic flowmeter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201234155A (en) * 2010-07-09 2012-08-16 Entegris Inc Flow controller
JP5371066B2 (en) * 2011-11-04 2013-12-18 正道 岩佐 Ultrasonic sensor and ultrasonic flow meter using the same
JP6689582B2 (en) * 2014-07-25 2020-04-28 矢崎エナジーシステム株式会社 Ultrasonic gas meter
JP6369398B2 (en) * 2015-06-19 2018-08-08 東京エレクトロン株式会社 Flow measuring device and processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271117A (en) * 1998-03-19 1999-10-05 Oval Corp Ultrasonic flowmeter
JP2008111714A (en) * 2006-10-30 2008-05-15 Ricoh Elemex Corp Flowmeter
JP2012021899A (en) * 2010-07-15 2012-02-02 Panasonic Corp Ultrasonic flow rate measuring unit and ultrasonic flowmeter using the same
KR101327182B1 (en) * 2012-12-28 2013-11-06 (주)와이즈산전 Structure of combing duct with ultrasonic oscillator and ultrasonics wave flowmeter using the same of
KR20150114568A (en) * 2013-03-21 2015-10-12 아즈빌주식회사 Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program
KR102246720B1 (en) * 2020-06-23 2021-04-30 (주)발맥스기술 Ultrasonic flowmeter

Also Published As

Publication number Publication date
KR102246720B1 (en) 2021-04-30
TWI779664B (en) 2022-10-01
TW202219468A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2021261813A1 (en) Ultrasonic flow rate measuring apparatus
CN1170124C (en) Differential pressure flowmeter with integrated pressure taps
US4738143A (en) High temperature Coriolis mass flow rate meter
WO2010055993A1 (en) Apparatus for measuring fluid leakage from a valve using ultrasonic wave, sound, and temperature variations, and method for measuring fluid leakage using same
WO2021145679A1 (en) Weld bead inspection apparatus
KR20010022112A (en) Coriolis mass flowmeter
WO2010041806A1 (en) Pipeline monitoring system and method
WO2013185406A1 (en) Ultrasonic flowmeter and ultrasonic flow measuring method
WO2017209420A1 (en) Adaptive driving module
WO2013108948A1 (en) Apparatus and method for detecting pipe damage
JP2015517661A (en) Flameproof electrical feedthrough
WO2021201631A1 (en) Differential pressure type flow meter system
WO2023219469A1 (en) Dust measuring apparatus
WO2021261814A1 (en) Ultrasonic flowrate measurement device, controller therefor, and ultrasonic flowrate measurement method
WO2022240040A1 (en) Ultrasonic blood flow measurement apparatus and method therefor
US6564651B1 (en) Modular high-temperature gas flow sensing element for use with a cyclone furnace air flow measuring system
WO2020036380A1 (en) Temperature measuring device using optical fiber bragg grating sensor
WO2020242207A1 (en) Window for plasma oes diagnosis, and plasma apparatus using same
WO2023249417A1 (en) Leak sensor module
BR112015004369B1 (en) fire resistant housing, and method of forming the same
CA3204715A1 (en) Electrical junction having an improved feedthrough element
WO2023132742A1 (en) Abrasion measuring apparatus and abrasion measuring system comprising same
WO2024090656A1 (en) Abnormal signal detection device using dual acoustic wave sensor
WO2022092646A1 (en) Meta-muffler of fractal structure
WO2023017951A1 (en) Temperature measurement sensor module and temperature measurement system comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828870

Country of ref document: EP

Kind code of ref document: A1