WO2024096224A1 - Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same - Google Patents

Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same Download PDF

Info

Publication number
WO2024096224A1
WO2024096224A1 PCT/KR2023/007655 KR2023007655W WO2024096224A1 WO 2024096224 A1 WO2024096224 A1 WO 2024096224A1 KR 2023007655 W KR2023007655 W KR 2023007655W WO 2024096224 A1 WO2024096224 A1 WO 2024096224A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving part
space charge
cable
shell
insulation thickness
Prior art date
Application number
PCT/KR2023/007655
Other languages
French (fr)
Korean (ko)
Inventor
박병배
김해종
조전욱
김호섭
최진욱
권익수
이승원
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2024096224A1 publication Critical patent/WO2024096224A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Definitions

  • the present invention relates to a space charge measurement device corresponding to a cable insulation thickness variable that measures the space charge accumulated inside a cable insulation layer using the Pulsed Electro-Acuostic Method (PEA), and a space charge measurement method using the same.
  • PEA Pulsed Electro-Acuostic Method
  • the Pulsed Electro-Acuostic Method (hereinafter referred to as the “PEA method”) is applied to measure the space charge inside a dielectric in a non-destructive manner.
  • the PEA method enables repeated measurement of space charge on the same sample non-destructively and has excellent reproducibility.
  • the system configuration is relatively simple, and as null is used, related research and development is being actively conducted at home and abroad.
  • the PEA method is configured to measure the distribution of space charge by applying a high voltage short pulse directly to the dielectric and acoustically detecting the pressure wave (or elastic wave) generated inside the dielectric using a piezoelectric element installed in the detection unit. .
  • Figure 1 shows a diagram showing the structure of a space charge measuring device according to the prior art.
  • the position of the measurement target cable (3) is adjusted and fixed by a cable clamp (2) adjusted using a lead screw (1), and the measurement target cable ( 3) is configured so that space charge detection can be performed using the piezoelectric film (5) and organic glass sound wave absorption layer (7) provided inside the grounded metal shield box (6) while seated on the lower electrode aluminum plate (4). do.
  • a rectangular parallelepiped protrusion of a predetermined size is formed protruding on the upper surface of the lower electrode aluminum plate 4, and the protruding protrusion as described above is in close contact with the measurement target cable 3 and the lower electrode aluminum plate 4. Thereafter, space charge is measured using the PEA method.
  • the insulation thickness is formed differently depending on the manufacturer, so in order to analyze the characteristics of the insulation material, the thickness of the piezoelectric element and absorber must also be manufactured and installed to correspond to the cable insulation thickness.
  • the purpose of the present invention is to provide a space charge measurement device corresponding to the cable insulation thickness variable, which allows the space charge to be measured by varying the thickness of the piezoelectric element and absorber in response to cables having various insulation thicknesses depending on the manufacturer.
  • Another object of the present invention is to provide a plurality of module sensors to respond to the required cable insulation thickness variable, and to measure space charge by combining them in a form corresponding to the required variable through positional movement of the piezoelectric element and absorber between each module sensor.
  • the aim is to provide a space charge measurement device corresponding to the cable insulation thickness variable that allows this to be achieved.
  • Another object of the present invention is to provide a method of measuring space charge corresponding to a cable insulation thickness variable using the space charge measuring device described above.
  • the present invention is a space charge measuring device for measuring the space charge distribution of a cable using the Pulsed Electro-Acuostic Method (PEA), which of a plurality of module sensors is used according to the insulation thickness variable of the cable to be measured. It includes a module sensor assembly in which space charge distribution is measured by matching one to the other, wherein the module sensor assembly includes a combination body in which the plurality of module sensors are accommodated and a receiving space is provided so that the plurality of module sensors are disposed at spaced apart positions, and A plurality of module sensors are provided inside the receiving space, include a piezoelectric element, an absorber, and a measuring conductor, and are configured to move up and down within the receiving space by manipulating the measuring conductor, wherein the plurality of modules
  • the sensor is composed of different piezoelectric elements and absorbers, and the combination body includes a first moving part that provides a horizontal dividing area corresponding to the piezoelectric element, and a second moving part providing a horizontal dividing area corresponding to the absorber.
  • the module sensor is configured by combining the piezoelectric element, the absorber, and the measuring conductor according to the change in position of each moving part.
  • each module sensor The piezoelectric elements located at the top of each module sensor are formed to have different thicknesses, and each absorber located below the piezoelectric elements is also formed to have different thicknesses, so that the insulation thickness variable of the cable to be measured is It is characterized in that the piezoelectric element and the absorber are correspondingly combined according to.
  • the accommodation space is defined by each shell provided in the first moving part, the second moving part, and the third moving part, and the ends of each shell are connected to each other to form a vertical movement path of the measuring conductor. It is characterized by
  • a shell fixing conductor is further provided on the lower side of the third moving part.
  • the shell is formed in a cylindrical shape with a diameter corresponding to the receiving space, and a shell fixing spiral for fastening and positioning the shell fixing conductor is formed on the lower part of the receiving space and a portion of the outer peripheral surface of the shell fixing conductor, and the shell A measuring spiral for fastening and positioning the measuring conductor is formed on the inner peripheral surface of the fastening hole provided in the fixed conductor and a portion of the outer peripheral surface of the measuring conductor.
  • the shell includes a first shell that corresponds to the first moving part and moves together with the first moving part, a second shell that corresponds to the second moving part and moves together with the second moving part, and an interior of the third moving part. It includes a third shell accommodated in, and when the first moving part and the first shell move, the piezoelectric element is accommodated inside the first shell, and the absorber is accommodated inside the second shell.
  • the conductor maintains the first position to move the position of the piezoelectric element, and when the second moving part and the second shell move, the measuring conductor moves inside the third shell to maintain the second position. It is characterized in that the position of the absorber is moved.
  • the combination body is formed by stacking the first moving part, the second moving part, and the third moving part in a cylindrical shape with corresponding planes, and each moving part individually rotates around a main axis passing through the central part. It is characterized in that it is configured to make it possible.
  • a sensor cover is further provided at least on the upper side of the first moving part, and the sensor cover is characterized in that a measuring hole is provided at a position corresponding to the top of each module sensor.
  • the method of measuring the space charge corresponding to the cable insulation thickness variable using a space charge measurement device corresponding to the cable insulation thickness variable having the above characteristics includes an insulation thickness confirmation step of checking the insulation thickness variable of the cable to be measured, and the insulation thickness A piezoelectric element arrangement step in which one piezoelectric element is arranged for measurement of the measurement target cable by moving the first moving part to correspond to the insulation thickness variable confirmed through the confirmation step, and the piezoelectric element arrangement step is arranged through the piezoelectric element arrangement step.
  • An absorber arrangement step in which one absorber is disposed for measurement of the cable to be measured by moving the second moving part to the lower side of the piezoelectric element, and the first absorber corresponding to the position in a state in which the arrangement of the piezoelectric element and the absorber is completed.
  • 3 By manipulating the measuring conductor of the moving part, the piezoelectric element, the absorber, and the measuring conductor are aligned in the correct position and the module sensor combined with the cable to be measured is fixed so that it adheres more closely to the cable through the module sensor application step and the module sensor application step. It is characterized by including a space charge measurement step in which the space charge distribution of the cable to be measured is measured through the Pulsed Electro-Acuostic Method (PEA) using a fixed module sensor.
  • PEA Pulsed Electro-Acuostic Method
  • the module sensor assembly constituting the present invention is configured so that a plurality of piezoelectric elements and an absorption layer can move positions.
  • the space charge can be measured after moving the provided piezoelectric element and absorption layer to correspond to the insulation thickness of the cable to be measured without disassembling and installing the piezoelectric element and absorption layer. there is.
  • the piezoelectric element and the absorption layer whose positions are moved as described above are guided in their moving positions within the combination body that provides a moving space, and are positioned at the center during the setting process for measurement by the shell fixing conductor and measuring conductor that are moved up and down after the positioning. As alignment is achieved, more accurate space charge measurements can be made.
  • the piezoelectric element and the absorption layer are each separated and movable, so various combinations can be formed, which has the advantage of being able to measure space charge by easily responding to a wider variety of cable insulation thickness variables.
  • FIG. 1 is a diagram showing the structure of a space charge measuring device according to the prior art.
  • Figure 2 is a diagram showing an example of a space charge measuring device corresponding to a cable insulation thickness variable according to the present invention.
  • Figure 3 is a cross-sectional view taken along section A-A of Figure 2.
  • FIG. 4 is a diagram for explaining the detailed structure of the module sensor, which is the main component of the present invention.
  • Figure 5 is a diagram showing the settings when measuring each module sensor corresponding to the cable insulation thickness.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • a component is described as being “connected,” “coupled,” or “connected” to another component, that component can be connected or connected directly to that other component, but there is no need for another component between each component. It should be understood that may be “connected,” “combined,” or “connected.”
  • space charge measurement device corresponding to the cable insulation thickness variable (hereinafter referred to as “space charge measurement device”) according to the present invention is based on the PEA method to enable measurement by combining signal detection units to correspond to the insulation thickness of the cable to be measured. It is composed.
  • FIG. 2 is a diagram showing an example of a space charge measuring device corresponding to a cable insulation thickness variable according to the present invention
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2.
  • Figure 4 shows a drawing to explain the detailed structure of the module sensor, which is the main component of the present invention
  • Figure 5 shows a drawing showing the settings of each module sensor corresponding to the cable insulation thickness when measuring.
  • the space charge measuring device can fix the cable in a way that the pressing force is adjusted by moving the cable clamp in position by a lead screw.
  • the module sensor assembly 100 in which space charge is measured by being in close contact with the cable by the cable clamp, is configured to include a plurality of module sensors 400. Therefore, space charge can be easily measured through the application of the module sensor 400 corresponding to various cable insulation thickness variables.
  • the module sensor assembly 100 includes a plurality of module sensors 400 each including a piezoelectric element 420, an absorber 440, and a measurement conductor 460, and the plurality of module sensors 400 are spaced apart from each other. It is configured to include a combination body 200 in which a receiving space is provided to be placed in a given position.
  • the module sensor 400 is configured for measurement based on the above-described PEA method, in which the piezoelectric element 420 is located at the uppermost side, and the absorber 440 and the measurement conductor 460 are simply stacked sequentially below it. It has a structured structure.
  • the piezoelectric element 420 may be made of polyvinylidene fluoride (PVDF), which has excellent frequency characteristics, and each piezoelectric element 420 constituting the plurality of module sensors 400 can be connected to various cables. They are formed differently to correspond to the insulation thickness variable.
  • PVDF polyvinylidene fluoride
  • the piezoelectric elements 420 may be formed to have different thicknesses or sizes, and in this embodiment, each has a different thickness as the accommodation space provided in the combination body 200 is formed to a limited size.
  • the absorber 440 is intended to prevent vibrations other than acoustic waves generated from the cable to be measured from being transmitted to the piezoelectric element 420, and may be made of polymethylmethacrylate (PMMA), and may be formed of a plurality of modules. Each absorber 440 constituting the sensor 400 is also provided to have different thicknesses like the piezoelectric element 420.
  • PMMA polymethylmethacrylate
  • the measuring conductor 460 is for detecting a signal transmitted from the piezoelectric element 420, and is configured to move upward and downward from the lower side of the absorber 440 toward the piezoelectric element 420.
  • the measurement conductor 460 raises the absorber 440 and the piezoelectric element 420 for measurement so that the measurement target cable and the module sensor 400 can be maintained in close contact.
  • the measuring conductor 460 is disposed at a plurality of set positions when lowered, allowing the piezoelectric element 420 and the absorber 440 to be replaced.
  • the module sensor 400 can be combined with the piezoelectric element 420 and the absorber 440 by moving its position while being spaced at a certain interval in the receiving space provided in the combination body 200, as described above. there is.
  • the module sensor assembly 100 can be combined while moving along a certain path by dividing the space in which the piezoelectric element 420, the absorber 440, and the measuring conductor 460 are accommodated, respectively, in the horizontal direction. there is.
  • the module sensor assembly 100 is configured to be rotatably movable for the above combination.
  • the combination body 200 in which the module sensor 400 is accommodated is configured in a form in which a plurality of horizontally divided moving parts are stacked to enable rotational movement for each layer based on the main axis 210.
  • the plurality of moving parts include a first moving part 240 providing a horizontal dividing area corresponding to the piezoelectric element 420, a second moving part 260 providing a horizontal dividing area corresponding to the absorber 440, and It includes a third moving part 280 that provides a horizontal division area corresponding to the measurement conductor 460.
  • a sensor cover 229 is further provided on the upper side of the first moving part 240, and a measurement hole is further provided in the sensor cover 220 at a position corresponding to the top of each module sensor 400.
  • the sensor cover 229 may also be provided on the second moving part 260 and the third moving part 280.
  • a housing 110 that can distribute and support the cable load while guiding the rotation path may be further provided on one side of the combination body 200.
  • the accommodation space provided in the combination body 200 is defined by the rotating shell 410 provided in the first moving part 240, the second moving part 260, and the third moving part 280. .
  • the rotating shell 410 is formed in a cylindrical shape with a diameter corresponding to the receiving space and has first to third shells (412, 414, 416) corresponding to the first to third moving parts (240, 260, 280). ), and the ends of each shell are connected to each other to form a vertical movement path of the measuring conductor 460.
  • a shell fixing conductor 480 is further provided on the lower side of the third moving part 280 so that the shells adjacent to each other can maintain a fixed position, and the measuring conductor 460 is included in the shell fixing conductor 480. A portion of may be accepted.
  • a shell fixing helix 482 is formed in the lower part of the receiving space and a portion of the outer peripheral surface of the shell fixing conductor 480 for fastening and positioning the shell fixing conductor 480, and the shell fixing conductor 480
  • a fastening hole (not given a reference numeral) is provided in the central portion of , which has a diameter corresponding to a portion of the measuring conductor 460 to be accommodated.
  • a measuring spiral 462 is formed on the inside of the fastening hole and a portion of the outer peripheral surface of the measuring conductor 460 for fastening and positioning the measuring conductor 460, so that it rises or falls depending on the rotation direction of the measuring conductor 460. Position adjustments may be made.
  • the first shell 412 corresponding to the first moving part 240 can be moved together with the first moving part 240 with the piezoelectric element 420 accommodated therein, and the second shell (414) can be moved together with the second moving part (260) while receiving the absorber (440).
  • the third shell 416 is accommodated inside the third moving part 280 and provides a path for the measuring conductor 460 to move up and down.
  • the space charge measuring device can combine the module sensor 400 by rotating each moving part in response to the insulation thickness variable of the cable to be measured, thereby measuring various cables more accurately and easily. You can.
  • the space charge measuring device measures space charge distribution using the PEA method, and the piezoelectric element 420 and the absorber 440 must correspond to the insulation thickness variable of the cable to be measured for measurement accuracy. It can be improved.
  • an insulation thickness confirmation step is first performed to check the insulation thickness variable of the cable to be measured.
  • the insulation thickness of the cable to be measured can be confirmed in the cable purchase specifications, and for more accurate measurement, you can cut a portion of the cable and check the cross-sectional shape to check the thickness of the insulation layer.
  • the first moving part 240 is moved to correspond to the confirmed insulation thickness variable so that any one piezoelectric element 420 is used to measure the cable to be measured.
  • the piezoelectric element placement step is performed.
  • the piezoelectric element arrangement step is a process of arranging the piezoelectric element 420 that matches the measurement of the insulation thickness variable confirmed by the cable measurement position. After adjusting the position of the measurement conductor 460, the first moving unit 240 rotation takes place.
  • the measuring conductor 460 is moved so that the piezoelectric element 420 is located in the first shell 412, The measuring conductor 460 is moved to the first position so that the absorber 440 is located in the second shell 414.
  • the first moving part 240 rotates around the main axis 220, which changes the position of the piezoelectric element 420.
  • the piezoelectric element 420 corresponding to the insulation thickness variable of the cable to be measured is placed at the measurement position, and the piezoelectric element placement step is completed.
  • an absorber placement step is performed to re-adjust the measurement conductor 460 and place the absorber 440 at the measurement position.
  • the second moving part 260 is moved from the first moving part 240 so that only the absorber 440 is provided inside the second shell 414.
  • the piezoelectric element 420 is maintained positioned inside the first shell 412 by rotating it at a predetermined angle.
  • the measuring conductor 460 is moved downward to move the measuring conductor 460 to the second position inside the third shell 416, and then the second moving part 260 is rotated again.
  • the absorber placement step is completed by placing the absorber 440 corresponding to the insulation thickness variable of the cable to be measured at the measurement position.
  • the module sensor application step is performed in which the piezoelectric element 420 and the absorber 440 disposed at the measurement position are combined.
  • the piezoelectric element 420 and the absorber 440 arranged through each step described above are aligned in the correct position by moving the measuring conductor 460 inside the third shell 416 corresponding to the corresponding position upward. This comes true.
  • the first shell 412, the second shell 414, and the third shell 416 which are arranged at a predetermined angle, can be aligned in the correct position while moving the measurement conductor 460 upward, and when necessary,
  • the position alignment process can be performed while rotating the first moving part 240 and the second moving part 260 by a predetermined angle.
  • module sensor 400 which is combined to correspond to the insulation thickness variable of the cable to be measured through the position alignment process as described above, can be brought into closer contact with the cable to be measured by the upward movement of the measurement conductor 460.
  • the space charge distribution of the cable to be measured is measured through the Pulsed Electro-Acuostic Method (PEA) as described above.
  • PEA Pulsed Electro-Acuostic Method
  • each module sensor 400 is composed of different piezoelectric elements 420 and absorbers 440, and the piezoelectric elements 420 and absorbers 440 are adjusted to correspond to various cable insulation thickness variables. Since selective application can be easily made, easier and more accurate measurement can be made when measuring space charge.
  • the present invention is a technology that can determine whether there is an abnormality in the conductor of electrical and electronic system wiring that requires a high level of stability in preparation for the increase in wire fires and electrical equipment accidents every year. It diagnoses the condition of the cable in a non-destructive way to improve reliability and reliability. It has the advantage of being applicable to various industrial fields in that it increases stability and allows economical maintenance.
  • the global market for control and measuring devices required for network control and monitoring is expected to continue to expand due to the expansion of power generation and transmission and distribution network facilities due to the increase in electricity demand in emerging countries, and the cable safety diagnosis market to prevent accidents such as fire and power equipment failure is expected to grow.
  • the industrial applicability of the present invention is expected to increase.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

The present invention relates to a space charge measurement device for measuring a space charge distribution in a cable by a pulsed electro-acoustic (PEA) method and a space charge measurement method using same, wherein, for cables having various insulation thicknesses, the thicknesses of a piezoelectric element and an absorber of a module sensor can be changed so that it is possible to accurately and easily measure a space charge distribution in a cable.

Description

케이블 절연두께변수 대응 공간전하 측정장치 및 이를 이용한 공간전하 측정방법Space charge measurement device corresponding to cable insulation thickness variable and space charge measurement method using the same
본 발명은 펄스정전응력법(Pulsed Electro-Acuostic Method, PEA)을 이용하여 케이블 절연층 내부 축적된 공간전하를 측정하는 케이블 절연두께변수 대응 공간전하 측정장치 및 이를 이용한 공간전하 측정방법에 관한 것이다.The present invention relates to a space charge measurement device corresponding to a cable insulation thickness variable that measures the space charge accumulated inside a cable insulation layer using the Pulsed Electro-Acuostic Method (PEA), and a space charge measurement method using the same.
일반적으로 유전체 내부의 공간전하(space charge)를 비파괴 방식으로 측정하는 방법에는 펄스정전응력법(Pulsed Electro-Acuostic Method, 이하“PEA법”라 함)이 적용되고 있다. In general, the Pulsed Electro-Acuostic Method (hereinafter referred to as the “PEA method”) is applied to measure the space charge inside a dielectric in a non-destructive manner.
상기 PEA법은 공간전하를 비파괴적으로 동일한 시료 상에서 반복적인 측정이 가능하고 재연성이 뛰어나며, 시스템 구성이 비교적 간단하여 널이 이용됨에 따라 국내외 관련 연구 개발이 활발히 이루어지고 있다.The PEA method enables repeated measurement of space charge on the same sample non-destructively and has excellent reproducibility. The system configuration is relatively simple, and as null is used, related research and development is being actively conducted at home and abroad.
상기 PEA 법은 고전압 단(short) 펄스를 직접 유전체에 인가하여 유전체 내부에서 발생되는 압력파(또는 탄성파)를 검출부에 설치된 압전소자를 이용하여 음향적으로 검출함으로써 공간전하의 분포를 측정하도록 구성된다. The PEA method is configured to measure the distribution of space charge by applying a high voltage short pulse directly to the dielectric and acoustically detecting the pressure wave (or elastic wave) generated inside the dielectric using a piezoelectric element installed in the detection unit. .
일 예로 도 1 에는 종래 기술에 따른 공간전하 측정장치의 구조를 보인 도면이 도시된다. As an example, Figure 1 shows a diagram showing the structure of a space charge measuring device according to the prior art.
도면을 참조하면, 종래 기술에 따른 공간전하 측정장치는 리드스크류(1)를 이용하여 조정되는 케이블 클램프(2)에 의해 측정대상 케이블(3)의 위치가 조정 및 고정되고, 상기 측정대상 케이블(3)은 하부 전극 알루미늄판(4)에 안착된 상태에서 접지 금속 쉴드 박스(6) 내부에 구비되는 압전필름(5) 및 유기 유리 음파 흡수층(7)을 이용하여 공간전하 검출이 이루어질 수 있도록 구성된다. Referring to the drawing, in the space charge measuring device according to the prior art, the position of the measurement target cable (3) is adjusted and fixed by a cable clamp (2) adjusted using a lead screw (1), and the measurement target cable ( 3) is configured so that space charge detection can be performed using the piezoelectric film (5) and organic glass sound wave absorption layer (7) provided inside the grounded metal shield box (6) while seated on the lower electrode aluminum plate (4). do.
그리고, 상기 하부 전극 알루미늄판(4)의 상면에는 소정 크기의 직육면체 돌기가 돌출 형성되며, 상기와 같이 돌출 형성된 돌기는 측정대상 케이블(3)과 하부 전극 알루미늄판(4)이 선접촉 되면서 밀착된 이후 상기 PEA법을 이용하여 공간전하의 측정이 이루어진다.In addition, a rectangular parallelepiped protrusion of a predetermined size is formed protruding on the upper surface of the lower electrode aluminum plate 4, and the protruding protrusion as described above is in close contact with the measurement target cable 3 and the lower electrode aluminum plate 4. Thereafter, space charge is measured using the PEA method.
한편, 동일 직경의 케이블인 경우에도 제조사마다 절연 두께가 다르게 형성되기 때문에 절연재료의 특성을 분석하기 위해서는 압전소자와 흡수체의 두께 또한 케이블 절연 두께에 대응되도록 제작 및 설치되어야 한다. Meanwhile, even for cables of the same diameter, the insulation thickness is formed differently depending on the manufacturer, so in order to analyze the characteristics of the insulation material, the thickness of the piezoelectric element and absorber must also be manufactured and installed to correspond to the cable insulation thickness.
따라서, 종래 기술에 따른 공간전하 측정장치에서는 다양한 케이블을 측정할 경우 각 케이블에 따른 압전소자와 흡수체의 교체 장착이 이루어져야 하는데 실제 작업 현장에서 상기 압전소자와 흡수체의 교체를 위한 분해 및 장착과정은 상당한 번거로움이 있다. Therefore, in the space charge measuring device according to the prior art, when measuring various cables, the piezoelectric element and absorber must be replaced and installed for each cable, but the disassembly and installation process for replacing the piezoelectric element and absorber in an actual work site is considerable. It's a hassle.
또한, 상기와 같은 분해 및 장착과정을 통해 압전소자와 흡수체의 교체가 완료된 경우에도 압전소자와 흡수체 및 신호 출력을 위한 커넥터의 중심이 일치되지 않을 경우에는 정확한 신호 검출이 이루어지지 않는 문제점을 가진다. In addition, even when the replacement of the piezoelectric element and the absorber is completed through the disassembly and installation process described above, there is a problem in that accurate signal detection is not achieved if the centers of the piezoelectric element, the absorber, and the connector for signal output do not match.
본 발명의 목적은 제조사마다 다양한 절연 두께를 가지는 케이블에 대응하여 압전소자 및 흡수체의 두께를 가변시켜 공간전하의 측정이 이루어질 수 있도록 하는 케이블 절연두께변수 대응 공간전하 측정장치를 제공하는 것이다. The purpose of the present invention is to provide a space charge measurement device corresponding to the cable insulation thickness variable, which allows the space charge to be measured by varying the thickness of the piezoelectric element and absorber in response to cables having various insulation thicknesses depending on the manufacturer.
본 발명의 다른 목적은 요구되는 케이블 절연두께변수에 대응가능하도록 복수의 모듈센서를 구비하되, 각 모듈센서간 압전소자와 흡수체의 위치 이동을 통해 요구되는 변수에 대응되는 형태로 조합되어 공간전하 측정이 이루어질 수 잇도록 하는 케이블 절연두께변수 대응 공간전하 측정장치를 제공하는 것이다. Another object of the present invention is to provide a plurality of module sensors to respond to the required cable insulation thickness variable, and to measure space charge by combining them in a form corresponding to the required variable through positional movement of the piezoelectric element and absorber between each module sensor. The aim is to provide a space charge measurement device corresponding to the cable insulation thickness variable that allows this to be achieved.
본 발명의 또 다른 목적은 상기와 같은 공간전하 측정장치를 이용하여 이루어지는 케이블 절연두께변수 대응 공간전하 측정방법을 제공하는 것이다. Another object of the present invention is to provide a method of measuring space charge corresponding to a cable insulation thickness variable using the space charge measuring device described above.
본 발명은 펄스정전응력법(Pulsed Electro-Acuostic Method, PEA)을 이용하여 케이블의 공간전하 분포를 측정하기 위한 공간전하 측정장치에 있어서, 측정대상 케이블의 절연두께변수에 따라 복수의 모듈센서 중 어느 하나를 대응시켜 공간전하 분포 측정이 이루어지는 모듈센서 어셈블리를 포함하며, 상기 모듈센서 어셈블리는 상기 복수의 모듈센서가 내부에 수용되며, 서로 이격된 위치에 배치되도록 수용공간이 마련되는 컴비네이션 바디와, 상기 수용공간 내부에 구비되며, 압전소자와 흡수체 및 측정 컨덕터를 포함하고, 상기 측정 컨덕터의 조작에 의해 상기 수용공간 내부에서 상하 위치이동이 가능하도록 구성되는 복수의 모듈센서를 포함하되, 상기 복수의 모듈센서는 각각 서로 다른 압전소자와 흡수체로 구성되고, 상기 컴비네이션 바디는 상기 압전소자와 대응되는 수평 분할영역을 제공하는 제1 이동부와, 상기 흡수체와 대응되는 수평 분할영역을 제공하는 제2 이동부 및 상기 측정 컨덕터와 대응되는 수평 분할영역을 제공하는 제3이동부를 포함하도록 구성되어, 상기 각 이동부의 위치 변화에 따라 상기 압전소자와 흡수체 및 측정 컨덕터가 조합된 모듈센서가 구성되는 것을 특징으로 한다.The present invention is a space charge measuring device for measuring the space charge distribution of a cable using the Pulsed Electro-Acuostic Method (PEA), which of a plurality of module sensors is used according to the insulation thickness variable of the cable to be measured. It includes a module sensor assembly in which space charge distribution is measured by matching one to the other, wherein the module sensor assembly includes a combination body in which the plurality of module sensors are accommodated and a receiving space is provided so that the plurality of module sensors are disposed at spaced apart positions, and A plurality of module sensors are provided inside the receiving space, include a piezoelectric element, an absorber, and a measuring conductor, and are configured to move up and down within the receiving space by manipulating the measuring conductor, wherein the plurality of modules The sensor is composed of different piezoelectric elements and absorbers, and the combination body includes a first moving part that provides a horizontal dividing area corresponding to the piezoelectric element, and a second moving part providing a horizontal dividing area corresponding to the absorber. And it is configured to include a third moving part that provides a horizontal division corresponding to the measuring conductor, and is characterized in that the module sensor is configured by combining the piezoelectric element, the absorber, and the measuring conductor according to the change in position of each moving part. .
상기 각 모듈센서의 상단에 위치되는 압전소자는 서로 다른 두께를 가지도록 형성되고, 상기 압전소자의 하측에 위치되는 각각의 흡수체도 서로 다른 두께를 가지도록 형성되어, 상기 측정대상 케이블의 절연두께변수에 따라 상기 압전소자와 흡수체가 대응 조합되는 것을 특징으로 한다.The piezoelectric elements located at the top of each module sensor are formed to have different thicknesses, and each absorber located below the piezoelectric elements is also formed to have different thicknesses, so that the insulation thickness variable of the cable to be measured is It is characterized in that the piezoelectric element and the absorber are correspondingly combined according to.
상기 수용공간은 상기 제1 이동부와 제2 이동부 및 제3 이동부에 마련되는 각각의 쉘에 의해 정의되며, 상기 각 쉘은 단부가 서로 연접하여 상기 측정컨덕터의 상하 이동 경로를 형성하는 것을 특징으로 한다.The accommodation space is defined by each shell provided in the first moving part, the second moving part, and the third moving part, and the ends of each shell are connected to each other to form a vertical movement path of the measuring conductor. It is characterized by
상기 제3 이동부의 하측에는 쉘고정 컨덕터가 더 구비되는 것을 것을 특징으로 한다.A shell fixing conductor is further provided on the lower side of the third moving part.
상기 쉘은 상기 수용공간과 대응되는 직경의 원통 형상으로 형성되고, 상기 수용공간의 하부와 상기 쉘고정 컨덕터의 외주면 일부분에는 쉘고정 컨덕터의 체결 및 위치 조정을 위한 쉘고정나선이 형성되며, 상기 쉘고정 컨덕터에 마련되는 체결홀 내주면과 상기 측정 컨덕터의 외주면 일부분에는 측정 컨덕터의 체결 및 위치 조정을 위한 측정나선이 형성되는 것을 특징으로 한다.The shell is formed in a cylindrical shape with a diameter corresponding to the receiving space, and a shell fixing spiral for fastening and positioning the shell fixing conductor is formed on the lower part of the receiving space and a portion of the outer peripheral surface of the shell fixing conductor, and the shell A measuring spiral for fastening and positioning the measuring conductor is formed on the inner peripheral surface of the fastening hole provided in the fixed conductor and a portion of the outer peripheral surface of the measuring conductor.
상기 쉘은 상기 제1 이동부와 대응되어 제1이동부와 함께 이동되는 제1 쉘과, 상기 제2 이동부와 대응되어 제2이동부와 함께 이동되는 제2 쉘 및 상기 제3 이동부 내부에 수용되는 제3 쉘을 포함하며, 상기 제1 이동부와 제1 쉘의 이동 시에는, 상기 압전소자가 제1 쉘의 내부에 수용되고, 상기 흡수체가 제2 쉘의 내부에 수용되도록 상기 측정 컨덕터가 제1위치를 유지하여 상기 압전소자의 위치 이동이 이루어지고, 상기 제2 이동부와 제2 쉘의 이동 시에는, 상기 측정 컨덕터가 상기 제3 쉘 내측으로 이동하여 제2위치를 유지하여 상기 흡수체의 위치 이동이 이루어지는 것을 특징으로 한다.The shell includes a first shell that corresponds to the first moving part and moves together with the first moving part, a second shell that corresponds to the second moving part and moves together with the second moving part, and an interior of the third moving part. It includes a third shell accommodated in, and when the first moving part and the first shell move, the piezoelectric element is accommodated inside the first shell, and the absorber is accommodated inside the second shell. The conductor maintains the first position to move the position of the piezoelectric element, and when the second moving part and the second shell move, the measuring conductor moves inside the third shell to maintain the second position. It is characterized in that the position of the absorber is moved.
상기 컴비네이션 바디는 상기 제1 이동부와 제2 이동부 및 제3 이동부가 서로 대응되는 평면을 가지는 원기둥 형상으로 적층되어 형성되며, 중앙 부분을 관통하는 주축을 중심으로 상기 각 이동부가 개별적으로 회전 이동 가능하도록 구성되는 것을 특징으로 한다.The combination body is formed by stacking the first moving part, the second moving part, and the third moving part in a cylindrical shape with corresponding planes, and each moving part individually rotates around a main axis passing through the central part. It is characterized in that it is configured to make it possible.
적어도 상기 제1 이동부의 상측에는 센서 커버가 더 구비되며, 상기 센서 커버에는 상기 각 모듈센서의 상단과 대응되는 위치에 측정홀이 마련되는 것을 특징으로 한다.A sensor cover is further provided at least on the upper side of the first moving part, and the sensor cover is characterized in that a measuring hole is provided at a position corresponding to the top of each module sensor.
다른 측면에서 상기와 같은 특징의 케이블 절연두께변수 대응 공간전하 측정장치를 이용하여 이루어지는 케이블 절연두께변수 대응 공간전하 측정방법은 측정대상 케이블의 절연두께변수를 확인하는 절연두께 확인단계와, 상기 절연두께 확인단계를 통해 확인된 절연두께변수에 대응되도록 상기 제1 이동부를 이동시켜 어느 하나의 압전소자가 상기 측정대상 케이블의 측정을 위해 배치되는 압전소자 배치단계와, 상기 압전소자 배치단계를 통해 배치된 압전소자의 하측에 상기 제2 이동부를 이동시켜 어느 하나의 흡수체가 상기 측정대상 케이블의 측정을 위해 배치되는 흡수체 배치단계와, 상기 압전소자와 흡수체의 배치가 완료된 상태에서 해당 위치에 대응되는 상기 제3 이동부의 측정 컨덕터를 조작하여 상기 압전소자와 흡수체 및 측정 컨덕터가 정위치 정렬되면서 측정대상 케이블에 조합된 모듈센서가 보다 밀착되도록 고정시키는 모듈센서 적용단계 및 상기 모듈센서 적용단계를 통해 케이블에 말착 고정된 모듈센서를 이용하여 펄스정전응력법(Pulsed Electro-Acuostic Method, PEA)을 통해 측정대상 케이블의 공간전하 분포가 측정되는 공간전하 측정단계가 포함되는 것을 특징으로 한다.In another aspect, the method of measuring the space charge corresponding to the cable insulation thickness variable using a space charge measurement device corresponding to the cable insulation thickness variable having the above characteristics includes an insulation thickness confirmation step of checking the insulation thickness variable of the cable to be measured, and the insulation thickness A piezoelectric element arrangement step in which one piezoelectric element is arranged for measurement of the measurement target cable by moving the first moving part to correspond to the insulation thickness variable confirmed through the confirmation step, and the piezoelectric element arrangement step is arranged through the piezoelectric element arrangement step. An absorber arrangement step in which one absorber is disposed for measurement of the cable to be measured by moving the second moving part to the lower side of the piezoelectric element, and the first absorber corresponding to the position in a state in which the arrangement of the piezoelectric element and the absorber is completed. 3 By manipulating the measuring conductor of the moving part, the piezoelectric element, the absorber, and the measuring conductor are aligned in the correct position and the module sensor combined with the cable to be measured is fixed so that it adheres more closely to the cable through the module sensor application step and the module sensor application step. It is characterized by including a space charge measurement step in which the space charge distribution of the cable to be measured is measured through the Pulsed Electro-Acuostic Method (PEA) using a fixed module sensor.
본 발명을 구성하는 모듈센서 어셈블리는 복수의 압전소자와 흡수층이 위치이동 가능하도록 구성된다. The module sensor assembly constituting the present invention is configured so that a plurality of piezoelectric elements and an absorption layer can move positions.
따라서, 다양한 절연두께를 가지는 케이블을 측정하는 경우에도 압전소자와 흡수층의 분해 장착 없이 구비된 압전소자와 흡수층을 위치이동시켜 측정대상 케이블의 절연두께와 대응되도록 조합한 뒤 공간전하의 측정이 이루어질 수 있다. Therefore, even when measuring cables with various insulation thicknesses, the space charge can be measured after moving the provided piezoelectric element and absorption layer to correspond to the insulation thickness of the cable to be measured without disassembling and installing the piezoelectric element and absorption layer. there is.
또한, 상기와 같이 위치 이동되는 압전소자와 흡수층은 이동 공간을 제공하는 컴비네이션 바디 내부에서 이동 위치가 가이드 되며, 위치 이동 이후 상하로 이동되는 쉘고정컨덕터와 측정컨덕터에 의해 측정을 위한 세팅과정에서 중심정렬이 이루어짐에 따라 보다 정확한 공간전하의 측정이 이루어질 수 있다. In addition, the piezoelectric element and the absorption layer whose positions are moved as described above are guided in their moving positions within the combination body that provides a moving space, and are positioned at the center during the setting process for measurement by the shell fixing conductor and measuring conductor that are moved up and down after the positioning. As alignment is achieved, more accurate space charge measurements can be made.
게다가, 상기 압전소자와 흡수층은 각각 층분리되어 이동 가능하도록 구성됨에 따라 다양한 조합을 구성할 수 있으며, 이로 인해 보다 다양한 케이블의 절연두께변수에 용이하게 대응하여 공간전하의 측정이 이루어질 수 있는 이점을 가진다. In addition, the piezoelectric element and the absorption layer are each separated and movable, so various combinations can be formed, which has the advantage of being able to measure space charge by easily responding to a wider variety of cable insulation thickness variables. have
도 1 은 종래 기술에 따른 공간전하 측정장치의 구조를 보인 도면.1 is a diagram showing the structure of a space charge measuring device according to the prior art.
도 2 는 본 발명에 따른 케이블 절연두께변수 대응 공간전하 측정장치의 일 실시 예를 보인 도면.Figure 2 is a diagram showing an example of a space charge measuring device corresponding to a cable insulation thickness variable according to the present invention.
도 3 은 도 2 의 A-A부 단면도.Figure 3 is a cross-sectional view taken along section A-A of Figure 2.
도 4 는 본 발명의 주요구성인 모듈센서의 상세 구조를 설명하기 위한 도면.Figure 4 is a diagram for explaining the detailed structure of the module sensor, which is the main component of the present invention.
도 5 는 케이블 절연두께에 대응되는 각 모듈센서의 측정 시 세팅 된 모습을 보인 도면.Figure 5 is a diagram showing the settings when measuring each module sensor corresponding to the cable insulation thickness.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through illustrative drawings. When adding reference numerals to components in each drawing, it should be noted that identical components are given the same reference numerals as much as possible even if they are shown in different drawings. Additionally, when describing embodiments of the present invention, if detailed descriptions of related known configurations or functions are judged to impede understanding of the embodiments of the present invention, the detailed descriptions will be omitted.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 “연결”, “결합” 또는 “접속”된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 “연결”, “결합” 또는 “접속”될 수도 있다고 이해되어야 할 것이다.Additionally, when describing the components of an embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term. When a component is described as being “connected,” “coupled,” or “connected” to another component, that component can be connected or connected directly to that other component, but there is no need for another component between each component. It should be understood that may be “connected,” “combined,” or “connected.”
본 발명에 따른 케이블 절연두께변수 대응 공간전하 측정장치(이하 “공간전하 측정장치”라 함)는 PEA법에 기반하여 측정하고자 하는 케이블의 절연두께에 대응되도록 신호검출부를 조합하여 측정이 이루어질 수 있도록 구성된다. The space charge measurement device corresponding to the cable insulation thickness variable (hereinafter referred to as “space charge measurement device”) according to the present invention is based on the PEA method to enable measurement by combining signal detection units to correspond to the insulation thickness of the cable to be measured. It is composed.
도 2 에는 본 발명에 따른 케이블 절연두께변수 대응 공간전하 측정장치의 일 실시 예를 보인 도면이 도시되고, 도 3 에는 도 2 의 A-A부 단면도가 도시된다. 그리고, 도 4 에는 본 발명의 주요구성인 모듈센서의 상세 구조를 설명하기 위한 도면이 도시되고, 도 5 에는 케이블 절연두께에 대응되는 각 모듈센서의 측정 시 세팅 된 모습을 보인 도면이 도시된다. FIG. 2 is a diagram showing an example of a space charge measuring device corresponding to a cable insulation thickness variable according to the present invention, and FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2. In addition, Figure 4 shows a drawing to explain the detailed structure of the module sensor, which is the main component of the present invention, and Figure 5 shows a drawing showing the settings of each module sensor corresponding to the cable insulation thickness when measuring.
한편, 도면에 도시되지는 않았지만, 본 실시 예에서 공간전하 측정장치는 케이블 클램프가 리드스크류에 의해 위치 이동하여 가압력이 조정되는 형태로 케이블의 고정이 이루어질 수 있다. Meanwhile, although not shown in the drawing, in this embodiment, the space charge measuring device can fix the cable in a way that the pressing force is adjusted by moving the cable clamp in position by a lead screw.
그리고, 본 실시 예에서 상기 케이블 클램프에 의해 케이블과 밀착되어 공간전하의 측정이 이루어지는 모듈센서 어셈블리(100)는 복수의 모듈센서(400)를 포함하도록 구성된다. 따라서, 다양한 케이블 절연두께변수에 대응한 모듈센서(400)의 적용을 통해 공간전하의 측정이 용이하게 이루어질 수 있다. In this embodiment, the module sensor assembly 100, in which space charge is measured by being in close contact with the cable by the cable clamp, is configured to include a plurality of module sensors 400. Therefore, space charge can be easily measured through the application of the module sensor 400 corresponding to various cable insulation thickness variables.
상세히, 상기 모듈센서 어셈블리(100)는 압전소자(420), 흡수체(440) 및 측정 컨덕터(460)를 각각 포함하는 복수의 모듈센서(400)와, 상기 복수의 모듈센서(400)를 서로 이격된 위치에 배치하도록 수용공간이 마련되는 컴비네이션바디(200)를 포함하여 구성된다. In detail, the module sensor assembly 100 includes a plurality of module sensors 400 each including a piezoelectric element 420, an absorber 440, and a measurement conductor 460, and the plurality of module sensors 400 are spaced apart from each other. It is configured to include a combination body 200 in which a receiving space is provided to be placed in a given position.
상기 모듈센서(400)는 전술한 PEA법에 기반한 측정을 위한 구성으로 상기 압전소자(420)가 가장 상측에 위치되고, 그 하측으로 흡수체(440) 및 측정 컨덕터(460)가 순차 적으로 단순 적층된 구조를 가진다. The module sensor 400 is configured for measurement based on the above-described PEA method, in which the piezoelectric element 420 is located at the uppermost side, and the absorber 440 and the measurement conductor 460 are simply stacked sequentially below it. It has a structured structure.
본 실시 예에서 상기 압전소자(420)는 주파수 특성이 우수한 폴리비닐리덴플루오라이드(Polyvinylidene Fluoride, PVDF)가 적용될 수 있으며, 복수의 모듈센서(400)를 구성하는 각 압전소자(420)들은 다양한 케이블 절연두께변수에 대응하기 위하여 서로 다르게 형성된다. In this embodiment, the piezoelectric element 420 may be made of polyvinylidene fluoride (PVDF), which has excellent frequency characteristics, and each piezoelectric element 420 constituting the plurality of module sensors 400 can be connected to various cables. They are formed differently to correspond to the insulation thickness variable.
즉, 상기 압전소자(420)들은 서로 다른 두께나 크기가 다르게 형성될 수 있으며, 본 실시 예에서는 상기 컴비네이션 바디(200)에 마련되는 수용공간이 한정된 크기로 형성됨에 따라 각각 서로 다른 두께를 가진다. That is, the piezoelectric elements 420 may be formed to have different thicknesses or sizes, and in this embodiment, each has a different thickness as the accommodation space provided in the combination body 200 is formed to a limited size.
상기 흡수체(440)는 상기 압전소자(420)에 측정대상 케이블로부터 발생되는 음향파 이외에 다른 진동이 전달되는 것을 방지하기 위한 것으로 폴리메타크릴산 메틸(polymethylmethacrylate, PMMA)가 적용될 수 있으며, 복수의 모듈센서(400)를 구성하는 각 흡수체(440)들 또한 상기 압전소자(420)와 마찬가지로 서로 다른 두께를 가지도록 구비된다. The absorber 440 is intended to prevent vibrations other than acoustic waves generated from the cable to be measured from being transmitted to the piezoelectric element 420, and may be made of polymethylmethacrylate (PMMA), and may be formed of a plurality of modules. Each absorber 440 constituting the sensor 400 is also provided to have different thicknesses like the piezoelectric element 420.
그리고, 상기 측정 컨덕터(460)는 상기 압전소자(420)로부터 전달되는 신호를 검출하기 위한 것으로, 상기 흡수체(440)의 하측에서 상기 압전소자(420)를 향해 상승 및 하강 이동가능하도록 구성된다. In addition, the measuring conductor 460 is for detecting a signal transmitted from the piezoelectric element 420, and is configured to move upward and downward from the lower side of the absorber 440 toward the piezoelectric element 420.
즉, 상기 측정 컨덕터(460)는 상기 흡수체(440)와 압전소자(420)를 측정을 위해 상승시켜 측정대상 케이블과 모듈센서(400)가 밀착상태를 유지할 수 있도록 한다. That is, the measurement conductor 460 raises the absorber 440 and the piezoelectric element 420 for measurement so that the measurement target cable and the module sensor 400 can be maintained in close contact.
또한, 상기 측정 컨덕터(460)는 하강 시 복수의 설정위치에 배치되면서 상기 압전소자(420)와 흡수체(440)의 교체가 이루어질 수 있도록 한다. In addition, the measuring conductor 460 is disposed at a plurality of set positions when lowered, allowing the piezoelectric element 420 and the absorber 440 to be replaced.
상세히, 상기 모듈센서(400)는 전술한 바와 같이 컴비네이션 바디(200)에 마련된 수용공간에 일정간격 이격 배치된 상태에서 위치 이동을 통해 상기 압전소자(420)와 흡수체(440)의 조합이 이루어질 수 있다. In detail, the module sensor 400 can be combined with the piezoelectric element 420 and the absorber 440 by moving its position while being spaced at a certain interval in the receiving space provided in the combination body 200, as described above. there is.
상기와 같은 조합을 위해 모듈센서 어셈블리(100)는 상기 압전소자(420)와 흡수체(440) 및 측정 컨덕터(460)가 수용되는 공간은 각각 수평 방향으로 분할되어 일정경로를 따라 이동하면서 조합될 수 있다. For the above combination, the module sensor assembly 100 can be combined while moving along a certain path by dividing the space in which the piezoelectric element 420, the absorber 440, and the measuring conductor 460 are accommodated, respectively, in the horizontal direction. there is.
본 실시 예에서는 상기와 같은 조합을 위해 모듈센서 어셈블리(100)가 회전 이동 가능한 구조로 구성된다. In this embodiment, the module sensor assembly 100 is configured to be rotatably movable for the above combination.
상세히, 상기 모듈센서(400)가 수용되는 컴비네이션 바디(200)는 수평으로 분할된 복수의 이동부가 적층된 형태로 구성되어 주축(210)을 기준으로 각 층별 회전 이동이 가능하도록 구성된다. In detail, the combination body 200 in which the module sensor 400 is accommodated is configured in a form in which a plurality of horizontally divided moving parts are stacked to enable rotational movement for each layer based on the main axis 210.
상기 복수의 이동부는 압전소자(420)와 대응되는 수평 분할영역을 제공하는 제1 이동부(240)와, 상기 흡수체(440)와 대응되는 수평 분할영역을 제공하는 제2 이동부(260) 및 상기 측정 컨덕터(460)와 대응되는 수평 분할영역을 제공하는 제3이동부(280)를 포함한다. The plurality of moving parts include a first moving part 240 providing a horizontal dividing area corresponding to the piezoelectric element 420, a second moving part 260 providing a horizontal dividing area corresponding to the absorber 440, and It includes a third moving part 280 that provides a horizontal division area corresponding to the measurement conductor 460.
그리고, 상기 제1 이동부(240)의 상측에는 센서 커버(229)가 더 구비되며, 상기 센서 커버(220)에는 상기 각 모듈센서(400)의 상단과 대응되는 위치에 측정홀이 더 마련되며, 상기 센서 커버(229)는 상기 제2 이동부(260)와 제3 이동부(280)에도 구비될 수 있다. In addition, a sensor cover 229 is further provided on the upper side of the first moving part 240, and a measurement hole is further provided in the sensor cover 220 at a position corresponding to the top of each module sensor 400. , the sensor cover 229 may also be provided on the second moving part 260 and the third moving part 280.
또한, 상기 컴비네이션 바디(200)의 일측에는 회전 경로를 가이드 하면서 케이블 하중을 분산 지지할 수 있는 하우징(110)이 더 마련될 수 있다. In addition, a housing 110 that can distribute and support the cable load while guiding the rotation path may be further provided on one side of the combination body 200.
그리고, 상기 컴비네이션 바디(200)에 마련되는 수용공간은 상기 제1 이동부(240)와 제2 이동부(260) 및 제3 이동부(280)에 마련되는 로테이팅쉘(410)에 의해 정의된다. In addition, the accommodation space provided in the combination body 200 is defined by the rotating shell 410 provided in the first moving part 240, the second moving part 260, and the third moving part 280. .
즉, 상기 로테이팅쉘(410)은 상기 수용공간과 대응되는 직경의 원통 형상으로 형성되어 상기 제1 내지 3 이동부(240. 260. 280)에 대응되어 제1 내지 3쉴(412, 414, 416)로 구분되며, 각 쉘은 단부가 서로 연접하여 상기 측정컨덕터(460)의 상하 이동 경로를 형성한다. That is, the rotating shell 410 is formed in a cylindrical shape with a diameter corresponding to the receiving space and has first to third shells (412, 414, 416) corresponding to the first to third moving parts (240, 260, 280). ), and the ends of each shell are connected to each other to form a vertical movement path of the measuring conductor 460.
그리고, 상기 제3 이동부(280)의 하측에는 쉘고정 컨덕터(480)가 더 구비되어 서로 연접한 쉘들이 고정된 위치를 유지할 수 있으며, 상기 쉘고정 컨덕터(480)에는 상기 측정 컨덕터(460)의 일부분이 수용될 수 있다.In addition, a shell fixing conductor 480 is further provided on the lower side of the third moving part 280 so that the shells adjacent to each other can maintain a fixed position, and the measuring conductor 460 is included in the shell fixing conductor 480. A portion of may be accepted.
이를 위해, 상기 수용공간의 하부와 상기 쉘고정 컨덕터(480)의 외주면 일부분에는 쉘고정 컨덕터(480)의 체결 및 위치 조정을 위한 쉘고정나선(482)이 형성되고, 상기 쉘고정 컨덕터(480)의 중앙 부분에는 수용될 상기 측정 컨덕터(460)의 일부분과 대응되는 직경의 체결홀(도면부호 부여되지 않음)이 마련된다.For this purpose, a shell fixing helix 482 is formed in the lower part of the receiving space and a portion of the outer peripheral surface of the shell fixing conductor 480 for fastening and positioning the shell fixing conductor 480, and the shell fixing conductor 480 A fastening hole (not given a reference numeral) is provided in the central portion of , which has a diameter corresponding to a portion of the measuring conductor 460 to be accommodated.
또한, 상기 체결홀의 내측과 상기 측정 컨덕터(460)의 외주면 일부분에는 측정 컨덕터(460)의 체결 및 위치 조정을 위한 측정나선(462)이 형성되어 측정 컨덕터(460)의 회전 방향에 따라 상승 또는 하강 위치 조정이 이루어질 수 있다. In addition, a measuring spiral 462 is formed on the inside of the fastening hole and a portion of the outer peripheral surface of the measuring conductor 460 for fastening and positioning the measuring conductor 460, so that it rises or falls depending on the rotation direction of the measuring conductor 460. Position adjustments may be made.
한편, 상기 제1 이동부(240)와 대응되는 제1 쉘(412)은 내부에 압전소자(420)가 수용된 상태로 상기 제1 이동부(240)와 함께 이동될 수 있으며, 상기 제2 쉘(414)은 상기 흡수체(440)를 수용한 상태로 상기 제2 이동부(260)와 함께 이동될 수 있다. 그리고, 상기 제3 쉘(416)은 상기 제3 이동부(280) 내부에 수용되어 상기 측정 컨덕터(460)의 승강 이동 경로를 제공한다. Meanwhile, the first shell 412 corresponding to the first moving part 240 can be moved together with the first moving part 240 with the piezoelectric element 420 accommodated therein, and the second shell (414) can be moved together with the second moving part (260) while receiving the absorber (440). Additionally, the third shell 416 is accommodated inside the third moving part 280 and provides a path for the measuring conductor 460 to move up and down.
즉, 본 발명에 따른 공간전하 측정장치는 측정대상 케이블의 절연두께변수에 대응하여 상기 각 이동부를 회전시킴으로써 모듈센서(400)를 조합할 수 있으며, 이로 인해 다양한 케이블을 보다 정확하고 용이하게 측정할 수 있다. In other words, the space charge measuring device according to the present invention can combine the module sensor 400 by rotating each moving part in response to the insulation thickness variable of the cable to be measured, thereby measuring various cables more accurately and easily. You can.
이하에서는 상기와 같이 구성되는 공간전하 측정장치를 이용하여 케이블 공간전하를 측정하는 방법에 대하여 설명한다. Hereinafter, a method of measuring cable space charge using the space charge measuring device configured as above will be described.
본 발명에 따른 공간전하 측정장치는 전술한 바와 같이 PEA법을 이용하여 공간전하 분포를 측정함에 따라 상기 압전소자(420)와 흡수체(440)가 측정대상 케이블의 절연두께변수와 대응되어야 측정 정확도가 향상될 수 있다.As described above, the space charge measuring device according to the present invention measures space charge distribution using the PEA method, and the piezoelectric element 420 and the absorber 440 must correspond to the insulation thickness variable of the cable to be measured for measurement accuracy. It can be improved.
따라서, 본 발명에 따른 공간전하 측정장치를 이용하여 케이블의 공간전하분포를 측정하기 위해서는 우선, 측정대상 케이블의 절연두께변수를 확인하는 절연두께 확인단계가 수행된다. Therefore, in order to measure the space charge distribution of a cable using the space charge measuring device according to the present invention, an insulation thickness confirmation step is first performed to check the insulation thickness variable of the cable to be measured.
측정대상 케이블의 절연두께는 케이블 구매 사양에서 확인될 수 있으며, 보다 정확한 측정을 위해서는 케이블의 일부분을 절단한 뒤 단면형상을 확인하여 절연층의 두께를 확인하는 과정을 거칠 수 있다. The insulation thickness of the cable to be measured can be confirmed in the cable purchase specifications, and for more accurate measurement, you can cut a portion of the cable and check the cross-sectional shape to check the thickness of the insulation layer.
한편, 상기와 같이 측정대상 케이블의 절연두께변수를 확인한 이후에는 확인된 절연두께변수에 대응되도록 상기 제1 이동부(240)를 이동시켜 어느 하나의 압전소자(420)가 상기 측정대상 케이블의 측정을 위해 배치되는 압전소자 배치단계가 수행된다. Meanwhile, after confirming the insulation thickness variable of the cable to be measured as described above, the first moving part 240 is moved to correspond to the confirmed insulation thickness variable so that any one piezoelectric element 420 is used to measure the cable to be measured. The piezoelectric element placement step is performed.
즉, 상기 압전소자 배치단계는 케이블 측정 위치로 확인된 절연두께변수의 측정을 위해 부합되는 압전소자(420)를 배치하는 과정으로 상기 측정 컨덕터(460)의 위치 조정 이후 제1 이동부(240)의 회전이 이루어진다. In other words, the piezoelectric element arrangement step is a process of arranging the piezoelectric element 420 that matches the measurement of the insulation thickness variable confirmed by the cable measurement position. After adjusting the position of the measurement conductor 460, the first moving unit 240 rotation takes place.
상세히, 상기 제1 쉘(412)의 내부에 구비되는 압전소자(420)를 이동시키기 위해서는 상기 측정 컨덕터(460)를 이동시켜 상기 제1 쉘(412)에는 상기 압전소자(420)가 위치되고, 상기 제2 쉘(414)에는 상기 흡수체(440)가 위치되도록 측정 컨덕터(460)를 제1 위치로 이동시킨다. In detail, in order to move the piezoelectric element 420 provided inside the first shell 412, the measuring conductor 460 is moved so that the piezoelectric element 420 is located in the first shell 412, The measuring conductor 460 is moved to the first position so that the absorber 440 is located in the second shell 414.
상기 측정 컨덕터(460)가 제1 위치로 이동하여 이동 위치를 유지하는 상태가 되면 상기 제1 이동부(240)는 주축(220)을 중심으로 회전하게 되고, 이로 인해 압전소자(420)의 위치가 가변되면서 측정대상 케이블의 절연두께변수에 대응되는 압전소자(420)를 측정 위치에 배치하여 압전소자 배치단계가 완료된다. When the measuring conductor 460 moves to the first position and maintains the moving position, the first moving part 240 rotates around the main axis 220, which changes the position of the piezoelectric element 420. As is varied, the piezoelectric element 420 corresponding to the insulation thickness variable of the cable to be measured is placed at the measurement position, and the piezoelectric element placement step is completed.
상기와 같이 압전소자 배치단계가 완료된 이후에는 상기 측정 컨덕터(460)를 다시 조정하여 상기 흡수체(440)를 측정 위치에 배치하기 위한 흡수체 배치단계가 수행된다. After the piezoelectric element placement step is completed as described above, an absorber placement step is performed to re-adjust the measurement conductor 460 and place the absorber 440 at the measurement position.
이를 위해 상기 흡수체 배치단계에서는 우선, 상기 제2 쉘(414)의 내부에 흡수체(440)만 구비될 수 있도록 상기 압전소자 배치단계 이후 제2 이동부(260)를 제1 이동부(240)로부터 소정 각도 회동시켜 상기 압전소자(420)가 제1 쉘(412) 내부에 위치된 상태를 유지하도록 한다. To this end, in the absorber arrangement step, first, after the piezoelectric element arrangement step, the second moving part 260 is moved from the first moving part 240 so that only the absorber 440 is provided inside the second shell 414. The piezoelectric element 420 is maintained positioned inside the first shell 412 by rotating it at a predetermined angle.
그리고, 상기와 같은 상태에서 상기 측정 컨덕터(460)를 하강 이동시켜 상기 측정 컨덕터(460)를 상기 제3 쉘(416) 내부의 제2 위치까지 이동 시킨 다음 제2 이동부(260)를 다시 회전시켜 측정대상 케이블의 절연두께변수에 대응되는 흡수체(440)를 측정 위치에 배치함으로써 흡수체 배치단계가 완료된다. Then, in the above state, the measuring conductor 460 is moved downward to move the measuring conductor 460 to the second position inside the third shell 416, and then the second moving part 260 is rotated again. The absorber placement step is completed by placing the absorber 440 corresponding to the insulation thickness variable of the cable to be measured at the measurement position.
한편, 상기와 같이 흡수체 배치단계가 완료되면, 측정 위치에 배치된 압전소자(420)와 흡수체(440)가 조합된 모듈센서 적용단계가 수행된다. Meanwhile, when the absorber arrangement step is completed as described above, the module sensor application step is performed in which the piezoelectric element 420 and the absorber 440 disposed at the measurement position are combined.
상기 모듈센서 적용단계에서는 전술한 각 단계를 통해 배치된 압전소자(420)와 흡수체(440)를 해당 위치에 대응되는 제3 쉘(416) 내부의 측정 컨덕터(460)를 상승 이동 시키면서 정위치 정렬이 이루어진다. In the module sensor application step, the piezoelectric element 420 and the absorber 440 arranged through each step described above are aligned in the correct position by moving the measuring conductor 460 inside the third shell 416 corresponding to the corresponding position upward. This comes true.
즉, 서로 소정 각도 어긋나게 배치되어 있는 제1 쉘(412)과 제2 쉘(414) 및 제3 쉘(416)은 상기 측정 컨덕터(460)를 상승 이동 시키면서 정위치 정렬이 이루어질 수 있으며, 필요 시 상기 제1 이동부(240)와 제2 이동부(260)를 소정 각도 회전 시키면서 상기 정위치 정렬 과정이 이루어질 수 있다. That is, the first shell 412, the second shell 414, and the third shell 416, which are arranged at a predetermined angle, can be aligned in the correct position while moving the measurement conductor 460 upward, and when necessary, The position alignment process can be performed while rotating the first moving part 240 and the second moving part 260 by a predetermined angle.
그리고, 상기와 같이 정위치 정렬 과정을 통해 측정대상 케이블의 절연두께변수와 대응되도록 조합된 모듈센서(400)는 상기 측정 컨덕터(460)의 상승 이동에 의해 측정대상 케이블에 보다 밀착될 수 있다. In addition, the module sensor 400, which is combined to correspond to the insulation thickness variable of the cable to be measured through the position alignment process as described above, can be brought into closer contact with the cable to be measured by the upward movement of the measurement conductor 460.
한편, 상기와 같이 조합된 모듈센서(400)가 측정대상 케이블에 밀착 고정되면, 전술한 바와 같이 펄스정전응력법(Pulsed Electro-Acuostic Method, PEA)을 통해 측정대상 케이블의 공간전하 분포가 측정되는 공간전하 측정단계가 수행된다. Meanwhile, when the module sensor 400 combined as described above is closely fixed to the cable to be measured, the space charge distribution of the cable to be measured is measured through the Pulsed Electro-Acuostic Method (PEA) as described above. A space charge measurement step is performed.
그리고, 도 5 에 도시된 바와 같이 각 모듈센서(400)는 서로 다른 압전소자(420)와 흡수체(440)로 구성되어 다양한 케이블 절연두께변수에 대응되도록 압전소자(420)와 흡수체(440)의 선택적용이 용이하게 이루어질 수 있으므로 공간전하 측정 시 보다 용이하고 정확한 측정이 이루어질 수 있다. And, as shown in FIG. 5, each module sensor 400 is composed of different piezoelectric elements 420 and absorbers 440, and the piezoelectric elements 420 and absorbers 440 are adjusted to correspond to various cable insulation thickness variables. Since selective application can be easily made, easier and more accurate measurement can be made when measuring space charge.
이상에서 설명한 것은 본 발명에 따른 공간전하 측정장치를 실시하기 위한 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양하게 변경하여 실시가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only an example for carrying out the space charge measuring device according to the present invention, and the present invention is not limited to the above-described embodiment, and does not depart from the gist of the present invention as claimed in the claims below. Anyone with ordinary knowledge in the technical field to which the invention pertains will say that the technical spirit of the present invention exists to the extent that it can be implemented with various modifications.
본 발명은 매년 증가하는 전선화재 및 전기설비 사고에 대비해 고도의 안정성을 요구하는 전기, 전자 시스템 배선에 대한 도선의 이상 유무를 판별할 수 있는 기술로, 케이블 상태를 비파괴적인 방법으로 진단해 신뢰성 및 안정성을 높이고 경제적인 정비가 이루어질 수 있도록 점에서 다양한 산업분야에 적용가능한 장점을 가진다. The present invention is a technology that can determine whether there is an abnormality in the conductor of electrical and electronic system wiring that requires a high level of stability in preparation for the increase in wire fires and electrical equipment accidents every year. It diagnoses the condition of the cable in a non-destructive way to improve reliability and reliability. It has the advantage of being applicable to various industrial fields in that it increases stability and allows economical maintenance.
또한, 신흥국 전력수요 증가에 따른 발전 및 송배전망 설비 확충으로 네트워크 제어 및 감시에 필요한 제어계측기기 세계시장 규모가 지속적으로 확대될 전망이며, 화재 및 전력설비고장 등 사고 예방을 위한 케이블 안전 진단 시장이 확대 될 것으로 전망됨에 따라 본 발명의 산업상 이용가능성은 보다 높아질 것으로 예상된다. In addition, the global market for control and measuring devices required for network control and monitoring is expected to continue to expand due to the expansion of power generation and transmission and distribution network facilities due to the increase in electricity demand in emerging countries, and the cable safety diagnosis market to prevent accidents such as fire and power equipment failure is expected to grow. As it is expected to expand, the industrial applicability of the present invention is expected to increase.

Claims (9)

  1. 펄스정전응력법(Pulsed Electro-Acuostic Method, PEA)을 이용하여 케이블의 공간전하 분포를 측정하기 위한 공간전하 측정장치에 있어서,In the space charge measurement device for measuring the space charge distribution of a cable using the Pulsed Electro-Acuostic Method (PEA),
    측정대상 케이블의 절연두께변수에 따라 복수의 모듈센서 중 어느 하나를 대응시켜 공간전하 분포 측정이 이루어지는 모듈센서 어셈블리를 포함하며,It includes a module sensor assembly in which space charge distribution is measured by matching one of a plurality of module sensors according to the insulation thickness variable of the cable to be measured,
    상기 모듈센서 어셈블리는,The module sensor assembly is,
    상기 복수의 모듈센서가 내부에 수용되며, 서로 이격된 위치에 배치되도록 수용공간이 마련되는 컴비네이션 바디와,A combination body in which the plurality of module sensors are accommodated, and a receiving space is provided so that the plurality of module sensors are disposed at positions spaced apart from each other;
    상기 수용공간 내부에 구비되며, 압전소자와 흡수체 및 측정 컨덕터를 포함하고, 상기 측정 컨덕터의 조작에 의해 상기 수용공간 내부에서 상하 위치이동이 가능하도록 구성되는 복수의 모듈센서;를 포함하되, A plurality of module sensors are provided inside the receiving space, include a piezoelectric element, an absorber, and a measuring conductor, and are configured to move up and down within the receiving space by manipulating the measuring conductor.
    상기 복수의 모듈센서는 각각 서로 다른 압전소자와 흡수체로 구성되고,The plurality of module sensors are each composed of different piezoelectric elements and absorbers,
    상기 컴비네이션 바디는 상기 압전소자와 대응되는 수평 분할영역을 제공하는 제1 이동부와, 상기 흡수체와 대응되는 수평 분할영역을 제공하는 제2 이동부 및 상기 측정 컨덕터와 대응되는 수평 분할영역을 제공하는 제3이동부를 포함하도록 구성되어, 상기 각 이동부의 위치 변화에 따라 상기 압전소자와 흡수체 및 측정 컨덕터가 조합된 모듈센서가 구성되는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.The combination body includes a first moving part providing a horizontal dividing area corresponding to the piezoelectric element, a second moving part providing a horizontal dividing area corresponding to the absorber, and a horizontal dividing area corresponding to the measuring conductor. A space charge measuring device corresponding to a cable insulation thickness variable, characterized in that it is configured to include a third moving part, and a module sensor is configured by combining the piezoelectric element, an absorber, and a measuring conductor according to a change in the position of each moving part.
  2. 제1 항에 있어서,According to claim 1,
    상기 각 모듈센서의 상단에 위치되는 압전소자는 서로 다른 두께를 가지도록 형성되고, 상기 압전소자의 하측에 위치되는 각각의 흡수체도 서로 다른 두께를 가지도록 형성되어, 상기 측정대상 케이블의 절연두께변수에 따라 상기 압전소자와 흡수체가 대응 조합되는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.The piezoelectric elements located at the top of each module sensor are formed to have different thicknesses, and each absorber located below the piezoelectric elements is also formed to have different thicknesses, so that the insulation thickness variable of the cable to be measured is A space charge measurement device corresponding to a cable insulation thickness variable, characterized in that the piezoelectric element and the absorber are respectively combined according to.
  3. 제1 항에 있어서,According to claim 1,
    상기 수용공간은 상기 제1 이동부와 제2 이동부 및 제3 이동부에 마련되는 각각의 쉘에 의해 정의되며,The accommodation space is defined by each shell provided in the first moving part, the second moving part, and the third moving part,
    상기 각 쉘은 단부가 서로 연접하여 상기 측정컨덕터의 상하 이동 경로를 형성하는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.A space charge measurement device corresponding to a cable insulation thickness variable, characterized in that the ends of each shell are connected to each other to form a vertical movement path of the measurement conductor.
  4. 제3 항에 있어서,According to clause 3,
    상기 제3 이동부의 하측에는 쉘고정 컨덕터가 더 구비되는 것을 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.A space charge measuring device corresponding to a cable insulation thickness variable, characterized in that a shell-fixed conductor is further provided on the lower side of the third moving part.
  5. 제4 항에 있어서,According to clause 4,
    상기 쉘은 상기 수용공간과 대응되는 직경의 원통 형상으로 형성되고,The shell is formed in a cylindrical shape with a diameter corresponding to the receiving space,
    상기 수용공간의 하부와 상기 쉘고정 컨덕터의 외주면 일부분에는 쉘고정 컨덕터의 체결 및 위치 조정을 위한 쉘고정나선이 형성되며,A shell fixing spiral for fastening and positioning the shell fixing conductor is formed in the lower part of the receiving space and a portion of the outer peripheral surface of the shell fixing conductor,
    상기 쉘고정 컨덕터에 마련되는 체결홀 내주면과 상기 측정 컨덕터의 외주면 일부분에는 측정 컨덕터의 체결 및 위치 조정을 위한 측정나선이 형성되는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.A space charge measuring device corresponding to a cable insulation thickness variable, characterized in that a measuring spiral for fastening and positioning the measuring conductor is formed on the inner peripheral surface of the fastening hole provided in the shell fixing conductor and a portion of the outer peripheral surface of the measuring conductor.
  6. 제3 항에 있어서, According to clause 3,
    상기 쉘은 상기 제1 이동부와 대응되어 제1이동부와 함께 이동되는 제1 쉘과,The shell corresponds to the first moving part and moves together with the first moving part,
    상기 제2 이동부와 대응되어 제2이동부와 함께 이동되는 제2 쉘 및A second shell corresponding to the second moving part and moving together with the second moving part, and
    상기 제3 이동부 내부에 수용되는 제3 쉘을 포함하며,It includes a third shell accommodated inside the third moving part,
    상기 제1 이동부와 제1 쉘의 이동 시에는, 상기 압전소자가 제1 쉘의 내부에 수용되고, 상기 흡수체가 제2 쉘의 내부에 수용되도록 상기 측정 컨덕터가 제1위치를 유지하여 상기 압전소자의 위치 이동이 이루어지고,When the first moving part and the first shell are moved, the piezoelectric element is accommodated inside the first shell, and the measuring conductor maintains the first position so that the absorber is accommodated inside the second shell, so that the piezoelectric The position of the element is moved,
    상기 제2 이동부와 제2 쉘의 이동 시에는, 상기 측정 컨덕터가 상기 제3 쉘 내측으로 이동하여 제2위치를 유지하여 상기 흡수체의 위치 이동이 이루어지는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.When the second moving part and the second shell are moved, the measuring conductor moves inside the third shell and maintains the second position, so that the position of the absorber is moved. Space charge corresponding to the cable insulation thickness variable Measuring device.
  7. 제1 항에 있어서,According to claim 1,
    상기 컴비네이션 바디는 상기 제1 이동부와 제2 이동부 및 제3 이동부가 서로 대응되는 평면을 가지는 원기둥 형상으로 적층되어 형성되며, 중앙 부분을 관통하는 주축을 중심으로 상기 각 이동부가 개별적으로 회전 이동 가능하도록 구성되는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.The combination body is formed by stacking the first moving part, the second moving part, and the third moving part in a cylindrical shape with corresponding planes, and each moving part individually rotates around a main axis passing through the central part. A space charge measurement device corresponding to a cable insulation thickness variable, characterized in that it is configured to enable.
  8. 제1 항에 있어서,According to claim 1,
    적어도 상기 제1 이동부의 상측에는 센서 커버가 더 구비되며,A sensor cover is further provided at least on the upper side of the first moving part,
    상기 센서 커버에는 상기 각 모듈센서의 상단과 대응되는 위치에 측정홀이 마련되는 것을 특징으로 하는 케이블 절연두께변수 대응 공간전하 측정장치.A space charge measurement device corresponding to a cable insulation thickness variable, characterized in that the sensor cover has a measurement hole at a position corresponding to the top of each module sensor.
  9. 제1 항 내지 8 항중 어느 한 항에 따른 케이블 절연두께변수 대응 공간전하 측정장치를 이용하며,Using a space charge measuring device corresponding to the cable insulation thickness variable according to any one of claims 1 to 8,
    측정대상 케이블의 절연두께변수를 확인하는 절연두께 확인단계;Insulation thickness confirmation step of checking the insulation thickness variable of the cable to be measured;
    상기 절연두께 확인단계를 통해 확인된 절연두께변수에 대응되도록 상기 제1 이동부를 이동시켜 어느 하나의 압전소자가 상기 측정대상 케이블의 측정을 위해 배치되는 압전소자 배치단계;A piezoelectric element arrangement step in which one piezoelectric element is arranged to measure the cable to be measured by moving the first moving part to correspond to the insulation thickness variable confirmed through the insulation thickness confirmation step;
    상기 압전소자 배치단계를 통해 배치된 압전소자의 하측에 상기 제2 이동부를 이동시켜 어느 하나의 흡수체가 상기 측정대상 케이블의 측정을 위해 배치되는 흡수체 배치단계; An absorber arrangement step of moving the second moving part below the piezoelectric element disposed through the piezoelectric element arrangement step to dispose an absorber for measuring the measurement target cable;
    상기 압전소자와 흡수체의 배치가 완료된 상태에서 해당 위치에 대응되는 상기 제3 이동부의 측정 컨덕터를 조작하여 상기 압전소자와 흡수체 및 측정 컨덕터가 정위치 정렬되면서 측정대상 케이블에 조합된 모듈센서가 보다 밀착되도록 고정시키는 모듈센서 적용단계; 및When the arrangement of the piezoelectric element and the absorber is completed, the measurement conductor of the third moving part corresponding to the corresponding position is manipulated so that the piezoelectric element, the absorber, and the measurement conductor are aligned in the correct position, and the module sensor combined with the cable to be measured is brought into closer contact. A module sensor application step of fixing as much as possible; and
    상기 모듈센서 적용단계를 통해 케이블에 말착 고정된 모듈센서를 이용하여 펄스정전응력법(Pulsed Electro-Acuostic Method, PEA)을 통해 측정대상 케이블의 공간전하 분포가 측정되는 공간전하 측정단계;가 포함되는 케이블 절연두께변수 대응 공간전하 측정방법.A space charge measurement step in which the space charge distribution of the cable to be measured is measured through the Pulsed Electro-Acuostic Method (PEA) using a module sensor fixed to the cable through the module sensor application step; includes; Space charge measurement method for cable insulation thickness variables.
PCT/KR2023/007655 2022-11-04 2023-06-02 Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same WO2024096224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0145933 2022-11-04
KR1020220145933A KR20240064198A (en) 2022-11-04 2022-11-04 A space charge measuring device corresponding to cable insulation thickness variable and space charge measuring method using of the same

Publications (1)

Publication Number Publication Date
WO2024096224A1 true WO2024096224A1 (en) 2024-05-10

Family

ID=90930844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007655 WO2024096224A1 (en) 2022-11-04 2023-06-02 Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same

Country Status (2)

Country Link
KR (1) KR20240064198A (en)
WO (1) WO2024096224A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066064A (en) * 2008-09-09 2010-03-25 Nitto Denko Corp Apparatus for measuring space charge distribution, method of measuring space charge distribution using the same, and high-temperature insulating material measured using the method
CN101696995A (en) * 2009-11-10 2010-04-21 上海交通大学 Measurement system of space charge of coaxial high-voltage direct current plastic cable
US20130025909A1 (en) * 2010-01-29 2013-01-31 Gabriele Perego Energy cable
KR20180115459A (en) * 2017-04-13 2018-10-23 엘에스전선 주식회사 Measurement system of space charge distribution for cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051000A (en) 2019-09-25 2021-04-01 キヤノン株式会社 Angular-velocity detector, image display device, method for detecting angular velocity, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066064A (en) * 2008-09-09 2010-03-25 Nitto Denko Corp Apparatus for measuring space charge distribution, method of measuring space charge distribution using the same, and high-temperature insulating material measured using the method
CN101696995A (en) * 2009-11-10 2010-04-21 上海交通大学 Measurement system of space charge of coaxial high-voltage direct current plastic cable
US20130025909A1 (en) * 2010-01-29 2013-01-31 Gabriele Perego Energy cable
KR20180115459A (en) * 2017-04-13 2018-10-23 엘에스전선 주식회사 Measurement system of space charge distribution for cable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HWANG, BO-SEUNG: "The Measurement System of Space Charge Distribution in Polymer Dielectric Materials by the PEA Method", THE JOURNAL OF THE KOREA INSTITUTE OF ELECTRONIC COMMUNICATION SCIENCES, vol. 7, no. 6, 31 December 2012 (2012-12-31), pages 1403 - 1411 *

Also Published As

Publication number Publication date
KR20240064198A (en) 2024-05-13

Similar Documents

Publication Publication Date Title
WO2015102389A1 (en) Device for detecting partial discharge of gas insulated switchgear
WO2020138623A1 (en) Switchboard monitoring system and operation method of same
JP6964598B2 (en) Non-contact voltage measuring device and diagnostic system
WO2018124518A1 (en) Apparatus for detecting internal defect in transformer
KR102128865B1 (en) Multi-channel charge/discharge power supply with contact function
CN112526210B (en) Real-time monitoring test system and method for thermal vibration combined insulativity of aircraft cable assembly
WO2015041426A1 (en) Control knob having image output part
WO2024096224A1 (en) Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same
WO2023128428A1 (en) Test socket for signal loss protection
WO2018074721A1 (en) Wireless vibration measurement system
KR102143015B1 (en) POWER CABLE MANAGEMENT IoT DEVICE
WO2017061651A1 (en) Contact pin for testing electric terminal
WO2013119014A1 (en) Electrode pattern test apparatus
WO2022265229A1 (en) Piston position detection device
WO2020050645A1 (en) Probe card for electrical inspection, and probe head of probe card
WO2024090656A1 (en) Abnormal signal detection device using dual acoustic wave sensor
WO2013151456A1 (en) Wireless vibration and temperature monitoring system and assembly for fixing a piezoelectric element
WO2023128125A1 (en) Intelligent digital metal component, manufacturing method and artificial intelligence system comprising same
WO2020096417A1 (en) Wireless rotary testing apparatus comprising power pickup
WO2023177141A1 (en) Apparatus for measuring thickness of notch of secondary battery vent cap
WO2024085486A1 (en) Circuit board test terminal
WO2019182200A1 (en) Coupling strength inspection device and coupling strength inspection system including same
WO2023048415A1 (en) Apparatus for measuring amount of cylindrical battery deformation in charge-discharge test
CN115810954B (en) Low leakage current cable device
US20230160491A1 (en) Electric field device