WO2023128125A1 - Intelligent digital metal component, manufacturing method and artificial intelligence system comprising same - Google Patents

Intelligent digital metal component, manufacturing method and artificial intelligence system comprising same Download PDF

Info

Publication number
WO2023128125A1
WO2023128125A1 PCT/KR2022/013049 KR2022013049W WO2023128125A1 WO 2023128125 A1 WO2023128125 A1 WO 2023128125A1 KR 2022013049 W KR2022013049 W KR 2022013049W WO 2023128125 A1 WO2023128125 A1 WO 2023128125A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
metal
intelligent digital
metal part
metal layer
Prior art date
Application number
PCT/KR2022/013049
Other languages
French (fr)
Korean (ko)
Inventor
정임두
서은혁
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2023128125A1 publication Critical patent/WO2023128125A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an intelligent digital metal part having a sensor for data collection in the metal part, a manufacturing method thereof, and a fastening state of the metal part or an external impact object applied to the metal part based on real-time data collected from the sensor It is about an artificial intelligence system that can diagnose and monitor the type of
  • the 4th Industrial Revolution can be said to be the development of various technologies that could not be established only with the existing manufacturing process.
  • artificial intelligence and IoT Internet of Things
  • IoT Internet of Things
  • AI Artificial Intelligence
  • IoT Internet of Things
  • AI Artificial Intelligence
  • the sensor itself can negatively affect the performance of the mechanical system.
  • the senor since the sensor is easily separated or damaged by the movement of metal parts or the external environment, it is difficult to apply it to various environments or use it appropriately.
  • an object of the present invention is to minimize or eliminate various external influences that occur when the sensor is mounted on the surface of various devices, etc.
  • Intelligent sensor is mounted inside the part It is to provide digital metal parts.
  • Another object of the present invention is to provide a method for manufacturing a digital metal part in which a sensor is mounted.
  • Another object of the present invention is to provide an artificial intelligence system capable of monitoring and determining the fastening state of a metal part or the type of an external impact object applied to the metal part.
  • An intelligent digital metal component for achieving the above object includes a first metal layer on which metal powder is laminated; sensor mounting spaces and fastening holes formed in the first metal layer; a sensor built into the sensor mounting space; a protective layer sealing an upper portion of the sensor mounting space; It is characterized by comprising a second metal layer in which metal powder is laminated on the first metal layer and the protective layer.
  • the first metal layer and the second metal layer are formed by laminating metal powder by a laser powder bed melting (L-PBF) process.
  • L-PBF laser powder bed melting
  • the protective layer is made of the same material as the first metal layer and the second metal layer.
  • the sensor mounting space is formed in an area where the most stability is secured through at least one test among a tensile test, a FEM analysis test, and a microstructure analysis test for the intelligent digital metal part.
  • the sensor mounting space may be two or more, and the same sensor or a different sensor is embedded in each sensor mounting space.
  • a protrusion is formed on a surface of at least one of the first metal layer and the second metal layer.
  • the intelligent digital metal component is a T-shaped body including a first body and a second body made of the first metal layer and the second metal layer, and the sensor mounting space is formed in a central portion of the first body, The sensor is embedded in the sensor mounting space.
  • a method of manufacturing an intelligent digital metal part includes forming a first metal layer in which a sensor mounting space is formed at a predetermined portion while repeatedly applying metal powder; mounting a sensor in the sensor mounting space; covering an upper portion of the sensor mounting space with a previously prepared protective layer; and forming a second metal layer by repeatedly applying a metal powder to the upper surfaces of the first metal layer and the protective layer.
  • the first metal layer and the second metal layer are formed by laminating metal powder by a laser powder bed melting (L-PBF) process.
  • L-PBF laser powder bed melting
  • An artificial intelligence system is an artificial intelligence system that analyzes sensor data detected by a sensor embedded in the intelligent digital metal part and monitors the state of the intelligent digital metal part, and performs data preprocessing. preprocessing module; a learning module that learns the preprocessed preprocessed data; and an output module outputting the learned data.
  • the pre-processing module may include a data input unit receiving the sensor data (raw data); a first transform unit that converts the sensor data into a frequency domain by performing a Fast Fourier Transform (FFT) on the sensor data; A second conversion unit for converting the data converted into the frequency domain into data for machine learning, wherein the second conversion unit includes a half cut processor and a spectrogram, and converts the sensor data into a 10*5 image size spectrogram It is generated every predetermined time and provided to the learning module.
  • FFT Fast Fourier Transform
  • the learning module includes 6 convolutional layers; 1 transition layer; 1 pulley connected layer; and a CNN learning model including one softmax function unit, and converts the 10*5 image size into a 2*2 image and outputs it.
  • the output module is classified and expressed as a 3D visualization t-SNE graph.
  • the present invention it is possible to easily embed a sensor capable of detecting various measurement values in a part or device having a predetermined shape, and various problems caused by the prior art in which a thin film sensor is mounted on the surface of a part or device It has the effect of providing intelligent digital metal parts that solve these problems.
  • sensor data of intelligent digital metal parts is analyzed through a CNN learning model, so that the fastening state or external shock factors of intelligent digital metal parts mounted on a series of devices or systems can be easily monitored. there is. Therefore, without any negative impact on the performance of the device or system to which the sensor is attached, the effect of easily determining whether to inspect, repair, or replace the metal parts as well as the devices or systems equipped with metal parts can be expected. .
  • FIG. 1 is a perspective view of an intelligent digital metal component according to an embodiment of the present invention.
  • Figure 2 is a plan view of Figure 1;
  • FIG 3 is a partially enlarged view of a sensor mounting space according to the present invention.
  • FIG. 4 is a process diagram showing a manufacturing process of an intelligent digital metal part according to an embodiment of the present invention.
  • FIG. 5 is a drawing of a metal part to be tested used in a test to form a sensor mounting space in the metal part of the present invention.
  • FIG. 6 is a view showing the tensile test results of the metal part to be tested in FIG. 5;
  • FIG. 7 is a view showing a finite element method (FEM) analysis result of the metal part to be tested in FIG. 5 .
  • FEM finite element method
  • FIG. 8 is a graph showing the result of analyzing the microstructure of the metal part to be tested in FIG. 5 .
  • FIG. 9 is a block diagram of an artificial intelligence system for determining the state of an intelligent metal part of the present invention.
  • FIG. 10 is a detailed configuration diagram of the CNN learning model of FIG. 9 .
  • 11 and 12 are diagrams showing screw fastening states of metal parts and test results thereof.
  • 13 and 14 are exemplary diagrams showing types of external objects applied to metal parts and diagrams showing test results thereof.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
  • Spatially relative terms such as below, beneath, lower, above, upper, etc., facilitate the correlation between one element or component and another element or component, as shown in the drawing.
  • can be used to describe Spatially relative terms should be understood as encompassing different orientations of elements in use or operation in addition to the orientations shown in the figures.
  • an element described as below or beneath another element may be placed above or above the other element.
  • the exemplary term below may include both directions of down and above.
  • Elements may also be oriented in other orientations, and thus spatially relative terms may be interpreted according to orientation.
  • an expression indicating a part such as “part” or “part” refers to a device in which a corresponding component may include a specific function, software which may include a specific function, or a device which may include a specific function. and software, but cannot necessarily be limited to the expressed functions, which are provided only to help a more general understanding of the present invention, and those with ordinary knowledge in the field to which the present invention belongs If so, various modifications and variations are possible from these descriptions.
  • the present invention is to embed sensors in various metal-based parts, and monitor and diagnose the state of each part based on the data collected by the sensor.
  • the present invention will be described in more detail based on the embodiments shown in the drawings. let me explain
  • FIG. 1 is a perspective view of an intelligent digital metal component according to an embodiment of the present invention
  • FIG. 2 is a plan view of FIG. 1
  • the metal part is a 'T' shaped metal part, but the shape of the metal part applied to the present invention is not limited thereto.
  • the intelligent digital metal part (hereinafter also referred to as 'metal part') is a first body 110a and a second body orthogonally intersecting at one end of the first body 110a. It is composed of a T-shaped body 110 made of a body (110b).
  • a plurality of functional fastening holes 111a to 111e are formed in the first body 110a and the second body 110b to fasten fastening means such as screws. All of the fastening holes 111a to 111e may have different shapes. For example, it may be formed in a long hole shape extending along the longitudinal direction of the first body 110a, or may be formed in a substantially circular shape.
  • the diameter of the circular fastening hole may be the same or different. That is, the shape of the fastening holes 111a to 111e may be variously changed according to the overall shape of the metal part.
  • the fastening method of the metal part temporarily fastens appropriate screws to the fastening holes 111a to 111e, and in particular, while the screw is temporarily fastened to the long hole-shaped fastening hole, the metal part is horizontally moved to determine the fastening position, and then the screw When completely fastened, it is possible to firmly mount the metal part on a desired location of the target object.
  • fine protrusions 112 may be formed on the surface of the metal part.
  • the fine protrusions 112 may improve bonding performance by increasing a bonding surface area when the surface of a metal part needs to be bonded to another material or object using a bond or cement.
  • the metal part of the present invention includes a sensor 120.
  • the sensor 120 is for monitoring and diagnosing the state of the metal part on which the sensor is mounted.
  • the figure shows that the sensor 120 is provided inside the first body 110a of the metal part.
  • a sensor mounting space 115 is provided in a predetermined area of the first body 110a, and the sensor 120 is installed in the sensor mounting space 115. That is, according to the present invention, the sensor 120 is not generally mounted on the surface of the structure of the metal part, but the sensor 120 inside the metal part. Therefore, the present invention has the advantage of completely eliminating the problem of loss or deterioration due to external environmental factors when the sensor is mounted on the surface and exposed to the external environment as it is. In addition, since there is no need to manufacture the sensor in the form of a thin film, the time and cost required for manufacturing the sensor can be reduced.
  • the senor 120 may be a strain gage.
  • the sensor 120 is not limited to a strain gauge, and other types of sensors for measuring physical quantities may be provided.
  • two or more sensor mounting spaces may be provided in the body of the metal part, and the same sensor or different sensors may be provided in each sensor mounting space.
  • FIG 3 is a partially enlarged view of a sensor mounting space according to the present invention.
  • a sensor mounting space 115 is formed in the body 110 forming the metal part.
  • a sensor 120 is installed in the sensor mounting space 115, and the sensor 120 is a sensor for measuring the degree of deformation of a metal part, and may be a strain gauge sensor.
  • the body 110 of the metal part is formed of a metal layer on which metal powder is stacked.
  • a metal part is manufactured by using an additive manufacturing method using a selective laser melting (SLM) method.
  • Reference numeral 116 may be referred to as a part formed by the SLM method, and in the manufacturing process, the first metal layer 116a and the second metal layer 116b are formed in order according to the process order. The manufacturing process will be discussed in detail below.
  • a protective layer 130 is formed on top of the sensor 120 .
  • the protective layer 130 serves to protect the sensor 120 as well as to prevent metal powder from collapsing on the upper side of the sensor mounting space during the molding of the metal part or after the molding is completed.
  • the material of the protective layer 130 may be a metal of the same material as the metal powder (ie, the first metal layer and the second metal layer), and is melted together with the metal powder by laser irradiation so as to be integrated. However, other materials that can suitably melt with metal powder may be used.
  • the metal part of the present invention is molded and manufactured by the SLM process. Although the SLM process is not shown in the drawings, it may be performed in the following order.
  • a thin metal layer is repeatedly laminated by applying metal powder to the build plate by a recoater. Lamination is repeated until the shape (height) of the metal part to be molded is formed.
  • the metal parts shown in FIG. 1 and the like can be molded by such an SLM process. As described above, the metal part of FIG. 1 may be in a state in which the sensor mounting space 115 and the fastening holes 111 are formed.
  • 4 is a process diagram showing a manufacturing process of an intelligent digital metal part according to an embodiment of the present invention. 4 is a process of manufacturing an intelligent metal part by mounting a sensor on a metal part molded by a 3D printing process, laser powder bed fusion (L-PBF).
  • L-PBF laser powder bed fusion
  • the body of the metal part in which the sensor mounting space 115 is formed is manufactured.
  • a method of determining the formation position of the sensor mounting space 115 in the metal part will be described in detail below.
  • the process (a) may include a process of repeatedly printing the metal powder until the sensor mounting space 115 is formed at a height sufficient to mount the sensor. At this time, a hole should be formed on the side of the metal part so that the wire of the sensor can be wired.
  • the senor 120 is mounted in the sensor mounting space 115.
  • the sensor mounting space 115 is not formed in the process (b)
  • a process of removing metal powder from the sensor mounting space 115 may be accompanied.
  • the protective layer 130 prepared in advance is covered on top of the sensor 120.
  • the protective layer 130 is pre-manufactured in an appropriate size so as to cover only the upper portion of the sensor mounting space 115, and in particular, the protective layer 130 serves to prevent deterioration of the sensor 120 due to laser processing.
  • the body 110 and the protective layer 130 are integrated by irradiating a laser as in (d).
  • a laser as in (d).
  • an intelligent digital metal part having a built-in sensor capable of measuring physical strain data can be manufactured.
  • the manufacturing process of the intelligent digital metal part according to the present invention can also be carried out in the following way.
  • the first metal layer 116a (FIG. 3) is formed by applying a metal powder to the build plate using a recoater and repeatedly stacking the metal layers. At this time, when the first metal layer 116a is formed, the sensor embedded space 115 in which the sensor 120 is to be embedded and the fastening holes 111 are also formed. Then, the sensor 120 for measuring the physical quantity is inserted into the sensor built-in space 115, and the upper part of the sensor built-in space 115 is covered with a protective layer 130 prepared in advance. Thereafter, a metal layer is repeatedly stacked on the first metal layer 116a and the protective layer 130 to form a second metal layer 116b (FIG. 3).
  • the following describes the process of determining the sensor mounting space where the sensor is to be mounted in the intelligent digital metal part.
  • the present invention when an external force is applied to a metal part, it is necessary to mount the sensor at a position where various characteristics are minimal. To this end, in the present invention, a sample having the same shape as the metal part was first molded, and various tests were conducted on this sample.
  • FIG. 5 is a drawing of a metal part to be tested used in a test to form a sensor mounting space in the metal part of the present invention.
  • Part 1 to Part 3 which are candidate positions of the sensor mounting space, were selected in the T-shaped first body of the metal part to be tested.
  • Part 1 and Part 3 are near the fastening holes in the upper and lower directions from the center of the first body
  • Part 2 is the central portion of the first body in which no fastening holes are formed.
  • Part 1 may be a 15 mm part above the sensor mounting space
  • Part 2 may be a sensor mounting space
  • Part 3 may be a 17 mm part below the sensor mounting space.
  • the sensor mounting space is a position determined by various test results described below. In other words, it can be said that the location of Part 2 was judged more optimal as a sensor mounting space than the locations of Part 1 and Part 3.
  • FIG. 6 is a view showing the tensile test results of the metal part to be tested in FIG. 5;
  • the tensile test was performed by applying tension until the metal part to be tested was fractured.
  • the tension is applied in this way, as can be seen in FIG. 6, it appears that the possibility of breakage is relatively high in Part 1 and Part 3 located at the upper and lower parts, except for Part 2, which corresponds to almost the center of the metal part to be tested.
  • Part 1 showed local deformation until fracture occurred, and Part 3 also showed deformation, although smaller than Part 1. However, it was confirmed that Part 2 maintains its initial state with relatively little deformation.
  • FIG. 7 is a view showing a finite element method (FEM) analysis result of the metal part to be tested in FIG. 5 .
  • FEM finite element method
  • FIG. 8 is a graph showing the result of analyzing the microstructure of the metal part to be tested in FIG. 5 .
  • EBSD electron backscatter diffraction
  • ECCI electron channeling contrast imaging
  • the present invention determines Part 2 of the metal part to be tested, whose stability has been substantially confirmed through the above experiments, as a mounting space in which the sensor 120 is to be mounted, and manufactures an intelligent digital metal part.
  • the artificial intelligence system 200 collects sensor data from intelligent digital metal parts and accurately determines the state of the intelligent digital metal parts based on the collected sensor data.
  • the artificial intelligence system 200 includes a preprocessing module 210 for data preprocessing, a learning module 220, and an output module 230 that outputs the learning result as visualized image data by classifying it into a 3D visualization t-SNE graph. ).
  • the pre-processing module 210 is a data input unit 211 into which sensor data, that is, raw data, is input from the sensor 120 mounted on the intelligent digital metal part, and performs fast Fourier transform (FFT) on the input raw data. It may include a first transform unit 212 that transforms into the frequency domain and a second transform unit 213 that converts the data converted into the frequency domain into data for machine learning.
  • the FFT algorithm of the first transform unit 212 may be a Discrete Fourier Transform (DFT) method that decomposes the discrete input signal into frequencies.
  • DFT Discrete Fourier Transform
  • the second conversion unit 213 includes a half cut 213a and a spectrogram 213b.
  • the spectrogram 213b is generated every 6 seconds as a 10*5 image size spectrogram through a half-cut processor from raw data, and is input as input data to the learning module 220 at a later stage.
  • the reason why the preprocessing module 210 is applied in the present invention is that it is difficult to learn raw data collected by the sensor 120 using machine learning, that is, a Convolution Neural Network Model (CNN) model.
  • CNN Convolution Neural Network Model
  • the learning module 220 may use a CNN learning model.
  • the CNN learning model 220 of this embodiment includes a convolution layer 221, a transition layer 222, a fully connected layer 223, and a softmax function. section 224.
  • the CNN learning model 220 having such a configuration learns the sensor data detected by the sensor 120 embedded in the intelligent digital metal part to learn the current state of the intelligent digital metal part, for example, the screw is not fastened or loosely fastened.
  • the location of the damaged screw can be known, and the type of external impact object can also be known.
  • the CNN learning model 220 applied to this embodiment is based on DenseNet including 6 convolutional layers, 1 conversion layer, a fully connected layer, and a softmax layer.
  • each convolution layer includes a Rectified Linear Unit (ReLU) function, and a conversion layer is placed in the middle of the CNN learning model to reduce the width, vertical size, and number of feature maps.
  • ReLU Rectified Linear Unit
  • a 10*5 image is finally converted into a 2*2 image through a convolution layer and a conversion layer, and the state of a metal part is classified through a fully connected layer and a soft max layer.
  • FIG. 11 and 12 are diagrams showing screw fastening states of metal parts and test results thereof.
  • (a) is the normal state in which the mode screws are completely fixed
  • (b) is the state in which all screws are loose
  • (c) is the left side based on the drawing The test was conducted based on the state where there is no screw (Abnormal state 2) and (d), the left screw is loosely fastened and the right screw is not (Abnormal state 3).
  • test was performed through the processes of the preprocessing module 210, the learning module 220, and the output module 230, and the test result is expressed as a t-SNE 3D plot as shown in FIG. 12. Through this, the user can easily check the fastening state of the metal part.
  • FIG. 13 is a view showing types of external objects applied to metal parts. Looking at this, (a) shows an example of applying an impact to a metal part using a hand, (b) a hammer, and (c) a spanner.
  • test was performed through the processes of the preprocessing module 210, the learning module 220, and the output module 230, and the test result can be expressed as a t-SNE 3D plot as shown in FIG. 14. Referring to FIG. 14, it is expressed differently depending on the type of object applied to the metal part, so that the user can also easily check the type of object applied to the metal part.
  • the present invention embeds a sensor inside a metal part using L-PBF (Laser Powder Bed Fusion) technology, performs FFT (Fast Fourier Transform) and image processing on sensor data collected in real time from the sensor, and then It was trained on the CNN learning model.
  • L-PBF Laser Powder Bed Fusion
  • FFT Fast Fourier Transform
  • image processing image processing
  • the condition or malfunction of metal parts can be diagnosed and predicted by the learning result of the CNN learning model, and the learning result is expressed as t-stochastic Neighbor Embedding (t-SNE).
  • t-SNE t-stochastic Neighbor Embedding

Abstract

The present invention presents an intelligent digital metal component having a sensor for data collection embedded in the metal component, and a manufacturing method therefor. The intelligent digital metal component of the present invention comprises: a first metal layer in which metal powder is stacked; a sensor mounting space and fastening holes formed in the first metal layer; a sensor embedded in the sensor mounting space; a protection layer for sealing the upper part of the sensor mounting space; and a second metal layer formed by stacking metal powder on the first metal layer and the protection layer. The present invention further provides an artificial intelligence system, which analyzes sensor data detected by the sensor of the intelligent digital metal component, so as to monitor the fastened state of the intelligent digital metal component, the type of object applying impact from outside, or the like.

Description

지능형 디지털 금속 부품, 제조방법 및 이를 포함하는 인공 지능 시스템Intelligent digital metal parts, manufacturing methods, and artificial intelligence systems including them
본 발명은 금속 부품에 데이터 수집을 위한 센서(sensor)가 내장된 지능형 디지털 금속 부품과 이의 제조방법, 그리고 센서로부터 수집되는 실시간 데이터를 기반으로 금속 부품의 체결상태나 금속부품에 가해지는 외부 충격 물체의 유형 등을 진단하고 모니터링 할 수 있도록 하는 인공 지능 시스템에 관한 것이다.The present invention relates to an intelligent digital metal part having a sensor for data collection in the metal part, a manufacturing method thereof, and a fastening state of the metal part or an external impact object applied to the metal part based on real-time data collected from the sensor It is about an artificial intelligence system that can diagnose and monitor the type of
4차 산업혁명은 기존의 제조공정만으로 확립할 수 없었던 다양한 기술을 개발하는 것이라 할 수 있는데, 예를 들면 인공지능과 IoT(Internet of Things) 기술은 실시간 원격 모니터링을 접목하여 스마트 공장, 자율주행차, 무인 항공기 등의 지능형 제조기술에 중요한 부분일 수 있다. 또 근래의 다양한 인공 신경망 기술로 인한 AI(Artificial intelligence) 기술은 각종 기계 장치의 상태를 결정하고 예측하는데 이용되고 있다. The 4th Industrial Revolution can be said to be the development of various technologies that could not be established only with the existing manufacturing process. For example, artificial intelligence and IoT (Internet of Things) technology combine real-time remote monitoring to create smart factories and self-driving cars. , it can be an important part of intelligent manufacturing technologies such as unmanned aerial vehicles. In addition, AI (Artificial Intelligence) technology resulting from various recent artificial neural network technologies is used to determine and predict the state of various mechanical devices.
다만 기계 시스템이나 공장의 물리적 환경에서는 의미 있는 빅데이터를 수집하기 어렵기 때문에 제조 분야에 AI 기술을 접목하는 연구는 많이 부족한 실정이다. 그럼에도 제조 시스템의 효율성을 위하여 기존의 각종 시스템 및 공장 등에 센서와 반도체를 결합하여 AI 기술을 적용하기 위한 다양한 연구가 진행되고 있다. 예를 들면 정유 시스템의 펌프 성능 저하로 인해 정유 효율이 저하되는 것을 방지하도록 펌프 표면에 진동 센서를 부착하고, 진동 센서가 수집한 데이터와 AI 기술을 활용하여 펌프 및 펌프의 구성 부품의 교체 시기를 예측할 수 있다. 기존에는 단지 경험이나 정해진 펌프 수명을 기반으로 펌프 등의 부품을 교체하였기 때문에, 기존과 비교하면 효율적으로 기계부품의 상태를 정확하게 모니터링할 수 있고 그 결과에 따라 기계부품을 적정 시기에 교체할 수 있게 되었다. However, since it is difficult to collect meaningful big data from mechanical systems or the physical environment of factories, there is a lack of research on applying AI technology to manufacturing. Nevertheless, various studies are being conducted to apply AI technology by combining sensors and semiconductors to various existing systems and factories for the efficiency of manufacturing systems. For example, a vibration sensor is attached to the surface of the pump to prevent oil refining efficiency from deteriorating due to pump performance degradation in the oil refinery system, and the replacement timing of the pump and pump components is determined by utilizing the data collected by the vibration sensor and AI technology. Predictable. In the past, parts such as pumps were replaced based only on experience or the lifespan of the pump, so compared to the past, the condition of mechanical parts can be efficiently and accurately monitored, and mechanical parts can be replaced at the right time according to the results. It became.
그러나, 종래에 기계 시스템에 센서를 부착하는 경우 시스템 및 센서가 외부 환경에 노출되는 것에 의해 쉽게 열화 된다는 점을 고려하면 다음과 같은 몇몇 문제점이 존재한다. However, in the case of conventionally attaching a sensor to a mechanical system, considering that the system and the sensor are easily deteriorated by being exposed to the external environment, there are several problems as follows.
즉, 센서 자체가 기계 시스템의 성능에 부정적인 영향을 미칠 수 있다. That is, the sensor itself can negatively affect the performance of the mechanical system.
또 금속부품의 움직임 또는 외부 환경에 의하여 센서가 쉽게 이탈되거나 손상되기 때문에 다양한 환경에 적용하거나 이를 적절하게 사용하는 데 어려움이 있었다. In addition, since the sensor is easily separated or damaged by the movement of metal parts or the external environment, it is difficult to apply it to various environments or use it appropriately.
그리고 금속부품에 센서를 설치할 경우 센서는 대부분 박막 형상의 센서를 사용해야 하기 때문에 센서의 제조비용 증가는 물론 설치할 금속부품의 형상 등에 따라 제조할 센서 형상 등이 많은 제약이 있을 수 있다.In addition, when a sensor is installed on a metal part, since most of the sensors must use a thin film sensor, there may be many restrictions on the shape of the sensor to be manufactured depending on the shape of the metal part to be installed as well as the increase in manufacturing cost of the sensor.
따라서 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 센서가 각종 기기 등의 표면에 장착될 경우 발생하는 각종 외부적인 영향을 최소하거나 제거할 수 있도록 부품 내부에 센서가 장착되는 지능형 디지털 금속 부품을 제공하는 것이다.Therefore, it has been devised to solve the above problems, and an object of the present invention is to minimize or eliminate various external influences that occur when the sensor is mounted on the surface of various devices, etc. Intelligent sensor is mounted inside the part It is to provide digital metal parts.
본 발명의 다른 목적은, 내부에 센서가 장착되는 디지털 금속 부품을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a digital metal part in which a sensor is mounted.
본 발명의 또 다른 목적은, 금속 부품의 체결 상태나 그 금속 부품에 가해지는 외부 충격 물체의 유형 등을 모니터링하고 판단할 수 있는 인공 지능 시스템을 제공하는 것이다. Another object of the present invention is to provide an artificial intelligence system capable of monitoring and determining the fastening state of a metal part or the type of an external impact object applied to the metal part.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
이와 같은 목적을 달성하기 위한 본 발명의 일 실시 예에 따른 지능형 디지털 금속 부품은, 금속분말이 적층되는 제1 금속층; 상기 제1 금속층에 형성된 센서 장착공간 및 체결 홀들; 상기 센서 장착공간에 내장된 센서; 상기 센서 장착공간의 상부를 밀폐하는 보호층; 상기 제1 금속층 및 상기 보호층 위에 금속분말이 적층되는 제2 금속층을 포함하여 구성되는 것을 특징으로 한다.An intelligent digital metal component according to an embodiment of the present invention for achieving the above object includes a first metal layer on which metal powder is laminated; sensor mounting spaces and fastening holes formed in the first metal layer; a sensor built into the sensor mounting space; a protective layer sealing an upper portion of the sensor mounting space; It is characterized by comprising a second metal layer in which metal powder is laminated on the first metal layer and the protective layer.
상기 제1 금속층 및 제2 금속층은, 레이저 분말 베드 융해(L-PBF) 공정에 의해 금속분말을 적층하여 성형한다.The first metal layer and the second metal layer are formed by laminating metal powder by a laser powder bed melting (L-PBF) process.
상기 보호층은 상기 제1 금속층 및 제2 금속층과 동일한 재질로 제조된다.The protective layer is made of the same material as the first metal layer and the second metal layer.
상기 센서 장착공간은, 상기 지능형 디지털 금속 부품을 대상으로 한 인장시험, FEM 분석시험, 미세 구조 분석시험 중 적어도 하나의 시험을 통해 가장 안정성이 확보된 영역에 형성된다.The sensor mounting space is formed in an area where the most stability is secured through at least one test among a tensile test, a FEM analysis test, and a microstructure analysis test for the intelligent digital metal part.
상기 센서 장착공간은 둘 이상일 수 있고, 상기 센서는 상기 센서 장착공간마다 동일한 센서 또는 상이한 센서가 내장된다.The sensor mounting space may be two or more, and the same sensor or a different sensor is embedded in each sensor mounting space.
상기 제1 금속층과 제2 금속층 중 적어도 하나의 금속층 표면에는 돌기가 성형된다.A protrusion is formed on a surface of at least one of the first metal layer and the second metal layer.
상기 지능형 디지털 금속 부품은, 상기 제1 금속층 및 제2 금속층으로 이루어진 제1 몸체 및 제2 몸체를 포함하는 T자 형상의 몸체이고, 상기 센서 장착공간은 상기 제1 몸체의 중앙부분에 형성되고, 상기 센서 장착공간에 상기 센서가 내장된다.The intelligent digital metal component is a T-shaped body including a first body and a second body made of the first metal layer and the second metal layer, and the sensor mounting space is formed in a central portion of the first body, The sensor is embedded in the sensor mounting space.
본 발명의 다른 특징에 따른 지능형 디지털 금속 부품의 제조방법은, 금속분말을 반복 도포하면서 소정 부위에 센서 장착공간이 성형되는 제1 금속층을 형성하는 단계; 상기 센서 장착공간에 센서를 장착하는 단계; 상기 센서 장착공간 상부를 미리 준비된 보호층으로 덮는 단계; 및 상기 제1 금속층과 보호층의 상면에 금속분말을 반복 도포하여 제2 금속층을 형성하는 단계를 포함하여 실시하는 것을 특징으로 한다.A method of manufacturing an intelligent digital metal part according to another feature of the present invention includes forming a first metal layer in which a sensor mounting space is formed at a predetermined portion while repeatedly applying metal powder; mounting a sensor in the sensor mounting space; covering an upper portion of the sensor mounting space with a previously prepared protective layer; and forming a second metal layer by repeatedly applying a metal powder to the upper surfaces of the first metal layer and the protective layer.
상기 제1 금속층 및 제2 금속층은, 레이저 분말 베드 융해(L-PBF) 공정에 의해 금속분말을 적층하여 형성된다.The first metal layer and the second metal layer are formed by laminating metal powder by a laser powder bed melting (L-PBF) process.
본 발명의 또 다른 특징에 따른 인공 지능 시스템은, 상기한 지능형 디지털 금속 부품에 내장된 센서가 감지한 센서 데이터를 분석하여 상기 지능형 디지털 금속 부품의 상태를 모니터링 하는 인공 지능 시스템이고, 데이터 전처리를 위한 전처리 모듈; 전처리 된 전처리 데이터를 학습하는 학습 모듈; 및 학습된 데이터를 출력하는 출력 모듈을 포함하여 구성되는 것을 특징으로 한다.An artificial intelligence system according to another feature of the present invention is an artificial intelligence system that analyzes sensor data detected by a sensor embedded in the intelligent digital metal part and monitors the state of the intelligent digital metal part, and performs data preprocessing. preprocessing module; a learning module that learns the preprocessed preprocessed data; and an output module outputting the learned data.
상기 전처리 모듈은, 상기 센서 데이터(raw data)를 입력받는 데이터 입력부; 상기 센서 데이터를 고속 푸리에 변환(FFT)하여 주파수 영역으로 변환하는 제1 변환부; 주파수 영역으로 변환된 데이터를 기계 학습을 위한 데이터로 변환하는 제2 변환부를 포함하고, 상기 제2 변환부는, half cut 프로세서 및 스펙트로그램을 포함하며, 상기 센서 데이터를 10*5 이미지 크기의 스펙트로그램으로 소정 시간마다 생성하여 상기 학습모듈로 제공한다.The pre-processing module may include a data input unit receiving the sensor data (raw data); a first transform unit that converts the sensor data into a frequency domain by performing a Fast Fourier Transform (FFT) on the sensor data; A second conversion unit for converting the data converted into the frequency domain into data for machine learning, wherein the second conversion unit includes a half cut processor and a spectrogram, and converts the sensor data into a 10*5 image size spectrogram It is generated every predetermined time and provided to the learning module.
상기 학습 모듈은, 6개의 컨볼루션 레이어; 1개의 전환 레이어(transition layer); 1개의 풀리 커넥티드 레이어; 및 1개의 소프트맥스(softmax) 함수부를 포함하는 CNN 학습 모델이고, 상기 10*5 이미지 크기를 2*2 이미지로 변환하여 출력한다.The learning module includes 6 convolutional layers; 1 transition layer; 1 pulley connected layer; and a CNN learning model including one softmax function unit, and converts the 10*5 image size into a 2*2 image and outputs it.
상기 출력 모듈은, 3D 시각화 t-SNE 그래프로 분류하여 표현한다. The output module is classified and expressed as a 3D visualization t-SNE graph.
이와 같은 본 발명에 따르면, 소정 형상의 부품이나 기기 등에 각종 계측 값을 감지할 수 있는 센서를 용이하게 내장할 수 있어, 부품이나 기기 표면에 박막 형상의 센서를 장착한 종래 기술에서 초래되었던 여러 문제점들을 해결하는 지능형 디지털 금속 부품을 제공하는 효과가 있다.According to the present invention, it is possible to easily embed a sensor capable of detecting various measurement values in a part or device having a predetermined shape, and various problems caused by the prior art in which a thin film sensor is mounted on the surface of a part or device It has the effect of providing intelligent digital metal parts that solve these problems.
본 발명에 따르면, CNN 학습 모델을 통해 지능형 디지털 금속 부품의 센서 데이터를 분석하고 있어, 일련의 장치나 시스템 등에 장착되는 지능형 디지털 금속 부품의 체결 상태나 외부 충격 요인 등을 쉽게 모니터링 할 수 있는 효과도 있다. 따라서 센서가 부착된 장치나 시스템의 성능에 부정적인 영향을 전혀 주지 않고서도 금속 부품은 물론 금속 부품이 장착된 장치나 시스템의 점검, 수리 여부, 교체 시기 등을 쉽게 판단할 수 있는 효과를 기대할 수 있다.According to the present invention, sensor data of intelligent digital metal parts is analyzed through a CNN learning model, so that the fastening state or external shock factors of intelligent digital metal parts mounted on a series of devices or systems can be easily monitored. there is. Therefore, without any negative impact on the performance of the device or system to which the sensor is attached, the effect of easily determining whether to inspect, repair, or replace the metal parts as well as the devices or systems equipped with metal parts can be expected. .
도 1은 본 발명의 실시 예에 따른 지능형 디지털 금속 부품의 사시도이다.1 is a perspective view of an intelligent digital metal component according to an embodiment of the present invention.
도 2는 도 1의 평면도이다.Figure 2 is a plan view of Figure 1;
도 3은 본 발명에 따른 센서 장착공간의 일부 확대 도면이다.3 is a partially enlarged view of a sensor mounting space according to the present invention.
도 4는 본 발명의 실시 예에 따른 지능형 디지털 금속 부품의 제조 공정을 보인 공정도면이다.4 is a process diagram showing a manufacturing process of an intelligent digital metal part according to an embodiment of the present invention.
도 5는 본 발명의 금속 부품에서 센서 장착공간을 형성하기 위하여 시험에 사용된 시험대상 금속 부품 도면이다.5 is a drawing of a metal part to be tested used in a test to form a sensor mounting space in the metal part of the present invention.
도 6은 도 5의 시험대상 금속 부품의 인장시험 결과를 나타낸 도면이다. 6 is a view showing the tensile test results of the metal part to be tested in FIG. 5;
도 7은 도 5의 시험대상 금속 부품의 FEM(finite element method) 분석 결과를 나타낸 도면이다.FIG. 7 is a view showing a finite element method (FEM) analysis result of the metal part to be tested in FIG. 5 .
도 8은 도 5의 시험대상 금속 부품의 미세 구조를 분석한 결과 그래프이다. 8 is a graph showing the result of analyzing the microstructure of the metal part to be tested in FIG. 5 .
도 9은 본 발명의 지능형 금속 부품의 상태를 판단하는 인공지능 시스템의 구성도이다.9 is a block diagram of an artificial intelligence system for determining the state of an intelligent metal part of the present invention.
도 10은 도 9의 CNN 학습 모델의 구체적인 구성도이다. 10 is a detailed configuration diagram of the CNN learning model of FIG. 9 .
도 11 및 도 12는 금속 부품의 나사 체결 상태 및 이의 테스트 결과를 나타낸 도면이다.11 and 12 are diagrams showing screw fastening states of metal parts and test results thereof.
도 13 및 도 14는 금속 부품에 가해지는 외부 물체의 종류를 보여준 예시 도면 및 이의 테스트 결과를 나타낸 도면이다.13 and 14 are exemplary diagrams showing types of external objects applied to metal parts and diagrams showing test results thereof.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail. However, it should be understood that this is not intended to limit the specific embodiments of the present invention, and includes all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
본 발명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, the terms "include" or "have" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
공간적으로 상대적인 용어인 아래(below, beneath, lower), 위(above, upper) 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관 관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 아래(below, beneath)로 기술된 소자는 다른 소자의 위(above, upper)에 놓여질 수 있다. 따라서, 예시적인 용어인 아래는 아래와 위의 방향을 모두 포함할 수 있다. 소자는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.Spatially relative terms, such as below, beneath, lower, above, upper, etc., facilitate the correlation between one element or component and another element or component, as shown in the drawing. can be used to describe Spatially relative terms should be understood as encompassing different orientations of elements in use or operation in addition to the orientations shown in the figures. For example, when an element shown in the drawing is turned over, an element described as below or beneath another element may be placed above or above the other element. Accordingly, the exemplary term below may include both directions of down and above. Elements may also be oriented in other orientations, and thus spatially relative terms may be interpreted according to orientation.
본 발명에서 사용되는 “부” 또는 “부분” 등의 일부분을 나타내는 표현은 해당 구성요소가 특정 기능을 포함할 수 있는 장치, 특정 기능을 포함할 수 있는 소프트웨어, 또는 특정 기능을 포함할 수 있는 장치 및 소프트웨어의 결합을 나타낼 수 있음을 의미하나, 꼭 표현된 기능에 한정된다고 할 수는 없으며, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As used in the present invention, an expression indicating a part such as “part” or “part” refers to a device in which a corresponding component may include a specific function, software which may include a specific function, or a device which may include a specific function. and software, but cannot necessarily be limited to the expressed functions, which are provided only to help a more general understanding of the present invention, and those with ordinary knowledge in the field to which the present invention belongs If so, various modifications and variations are possible from these descriptions.
또한, 본 발명에서 사용되는 모든 전기 신호들은 일 예시로서, 본 발명의 회로에 반전기 등을 추가적으로 구비하는 경우 이하 설명될 모든 전기 신호들의 부호가 반대로 바뀔 수 있음을 유의해야 한다. 따라서, 본 발명의 권리범위는 신호의 방향에 한정되지 않는다.In addition, it should be noted that all electrical signals used in the present invention, as an example, can be reversed in signs of all electrical signals to be described below when an inverter or the like is additionally provided in the circuit of the present invention. Therefore, the scope of the present invention is not limited to the direction of the signal.
따라서, 본 발명의 사상은 설명된 실시 예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and it will be said that not only the claims to be described later, but also all modifications equivalent or equivalent to these claims fall within the scope of the spirit of the present invention. .
본 발명은 금속 기반의 각종 부품에 센서를 내장하고, 센서가 수집하는 데이터를 기반으로 각 부품의 상태를 모니터링하고 진단하는 것으로, 이하에서는 도면에 도시한 실시 예에 기초하면서 본 발명에 대하여 더욱 상세하게 설명하기로 한다. The present invention is to embed sensors in various metal-based parts, and monitor and diagnose the state of each part based on the data collected by the sensor. Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. let me explain
도 1은 본 발명의 실시 예에 따른 지능형 디지털 금속 부품의 사시도, 도 2는 도 1의 평면도이다. 본 실시 예에 따르면 금속 부품은 'T' 자 형상의 금속 부품을 예를 들지만, 본 발명에 적용되는 금속 부품의 형상은 이에 국한되지 않는다. 1 is a perspective view of an intelligent digital metal component according to an embodiment of the present invention, and FIG. 2 is a plan view of FIG. 1 . According to this embodiment, the metal part is a 'T' shaped metal part, but the shape of the metal part applied to the present invention is not limited thereto.
도 1 및 도 2에 도시한 바와 같이 지능형 디지털 금속 부품(이하, '금속 부품'이라 칭하기도 함)은 제1 몸체(110a)와 상기 제1 몸체(110a)의 일단에서 직교하게 교차하는 제2 몸체(110b)로 이루어진 T자 형상의 몸체(110)로 구성된다. 그리고 상기 제 1몸체(110a)와 제 2몸체(110b)에는 나사 등과 같은 체결 수단이 체결되도록 다수의 기능형 체결 홀(111a ~ 111e)이 형성된다. 상기 체결 홀(111a ~ 111e)의 형상은 모두 상이하게 구성될 수 있다. 예컨대, 제1 몸체(110a)의 길이방향을 따라 길게 형성된 장공 형상으로 형성되거나, 대략 원형 형상으로 형성될 수 있다. As shown in FIGS. 1 and 2, the intelligent digital metal part (hereinafter also referred to as 'metal part') is a first body 110a and a second body orthogonally intersecting at one end of the first body 110a. It is composed of a T-shaped body 110 made of a body (110b). In addition, a plurality of functional fastening holes 111a to 111e are formed in the first body 110a and the second body 110b to fasten fastening means such as screws. All of the fastening holes 111a to 111e may have different shapes. For example, it may be formed in a long hole shape extending along the longitudinal direction of the first body 110a, or may be formed in a substantially circular shape.
그리고 원형 형상의 체결 홀도 그 직경은 같거나 다를 수 있다. 즉 체결 홀(111a ~ 111e)의 형상은 금속 부품의 전체적인 형상에 따라 다양하게 변경 가능할 것이다. 그리고 금속 부품의 체결 방식은 체결 홀(111a ~ 111e)에 적정한 나사를 임시로 체결하며 특히 장공 형상의 체결 홀에 나사가 임시로 체결된 상태에서 금속 부품을 수평 이동시키면서 체결 위치를 결정한 다음에 나사를 완전하게 체결하면, 대상 물체의 원하는 위치에 금속 부품을 견고하게 장착할 수 있게 된다. Also, the diameter of the circular fastening hole may be the same or different. That is, the shape of the fastening holes 111a to 111e may be variously changed according to the overall shape of the metal part. In addition, the fastening method of the metal part temporarily fastens appropriate screws to the fastening holes 111a to 111e, and in particular, while the screw is temporarily fastened to the long hole-shaped fastening hole, the metal part is horizontally moved to determine the fastening position, and then the screw When completely fastened, it is possible to firmly mount the metal part on a desired location of the target object.
도 1에서 보듯이 금속 부품의 표면에는 미세 돌기(112)가 형성될 수 있다. 미세 돌기(112)들은 금속 부품의 표면을 본드나 시멘트를 사용하여 다른 재료 또는 물체에 접합해야 하는 경우 접합 표면적을 넓혀주어 접합 성능을 향상시켜줄 수 있다.As shown in FIG. 1 , fine protrusions 112 may be formed on the surface of the metal part. The fine protrusions 112 may improve bonding performance by increasing a bonding surface area when the surface of a metal part needs to be bonded to another material or object using a bond or cement.
도 1 및 도 2를 보면, 본 발명의 금속 부품은 센서(120)를 포함한다. 센서(120)는 그 센서가 장착된 금속 부품의 상태를 모니터링하고 진단할 수 있도록 하기 위함이다. 도면에서 센서(120)는 금속 부품의 제1 몸체(110a)의 내부에 구비됨을 나타낸다. 구체적으로 보면 제1 몸체(110a)의 소정 영역에 센서 장착공간(115)이 마련되고, 상기 센서 장착공간(115)에 센서(120)가 설치된다. 즉 본 발명에 따르면 일반적으로 금속 부품의 구조체 표면에 센서가 장착되는 것이 아니고 금속 부품의 내부에 센서(120)가 장착되는 것이다. 그래서 본 발명은 센서가 표면에 장착되어 외부 환경에 그대로 노출될 경우 외부 환경 요인에 의해 손실되거나 열화되는 문제 등을 완전하게 제거할 수 있는 이점이 있는 것이다. 또 센서를 박막 형태로 제조할 필요도 없기 때문에, 센서 제조에 필요한 시간 및 비용을 절감할 수 있다.1 and 2, the metal part of the present invention includes a sensor 120. The sensor 120 is for monitoring and diagnosing the state of the metal part on which the sensor is mounted. The figure shows that the sensor 120 is provided inside the first body 110a of the metal part. Specifically, a sensor mounting space 115 is provided in a predetermined area of the first body 110a, and the sensor 120 is installed in the sensor mounting space 115. That is, according to the present invention, the sensor 120 is not generally mounted on the surface of the structure of the metal part, but the sensor 120 inside the metal part. Therefore, the present invention has the advantage of completely eliminating the problem of loss or deterioration due to external environmental factors when the sensor is mounted on the surface and exposed to the external environment as it is. In addition, since there is no need to manufacture the sensor in the form of a thin film, the time and cost required for manufacturing the sensor can be reduced.
본 실시 예에서 센서(120)는 스트레인 게이지(strain gage)일 수 있다. 그러나 센서(120)는 스트레인 게이지로 한정되지 않고 이 외에도 물리량 계측 등을 위한 다른 종류의 센서가 얼마든지 제공될 수 있다. 또 필요에 따라 금속 부품의 몸체에 둘 이상의 센서 장착공간을 마련할 수 있고, 각 센서 장착공간에 동일한 센서 또는 상이한 센서를 구비하는 것도 가능할 것이다.In this embodiment, the sensor 120 may be a strain gage. However, the sensor 120 is not limited to a strain gauge, and other types of sensors for measuring physical quantities may be provided. In addition, if necessary, two or more sensor mounting spaces may be provided in the body of the metal part, and the same sensor or different sensors may be provided in each sensor mounting space.
도 3은 본 발명에 따른 센서 장착공간의 일부 확대 도면이다. 이에 도시한 바와 같이 금속 부품을 형성하는 몸체(110)에는 센서 장착공간(115)이 형성된다. 그리고 센서 장착공간(115) 내에 센서(120)가 설치되고, 센서(120)는 금속 부품의 변형 정도 등을 측정하기 위한 센서로서, 스트레인 게이지 센서일 수 있다. 3 is a partially enlarged view of a sensor mounting space according to the present invention. As shown therein, a sensor mounting space 115 is formed in the body 110 forming the metal part. In addition, a sensor 120 is installed in the sensor mounting space 115, and the sensor 120 is a sensor for measuring the degree of deformation of a metal part, and may be a strain gauge sensor.
그리고 금속 부품의 몸체(110)는 금속 분말이 적층되는 금속층으로 형성된다. 실시 예는 선택적 레이저 용융(SLM: Selective Laser Melting) 방식에 의한 적층 가공방식이 사용되어 금속 부품을 제조하고 있다. 도면부호 116이 SLM 방식으로 형성된 부분이라 할 수 있고, 제조공정에서는 제1 금속층(116a)과 제2 금속층(116b)이 공정 순서에 의해 순서대로 형성된다. 제조공정은 아래에서 상세하게 살펴볼 것이다. And the body 110 of the metal part is formed of a metal layer on which metal powder is stacked. In the embodiment, a metal part is manufactured by using an additive manufacturing method using a selective laser melting (SLM) method. Reference numeral 116 may be referred to as a part formed by the SLM method, and in the manufacturing process, the first metal layer 116a and the second metal layer 116b are formed in order according to the process order. The manufacturing process will be discussed in detail below.
그리고 센서(120)의 상단에는 보호층(protective layer)(130)이 형성된다. 보호층(130)은 센서(120)를 보호함은 물론, 금속 부품의 성형 중간이나 성형이 완료된 후 센서 장착공간의 상측에서 금속분말이 붕괴되지 않도록 하는 기능이다. 상기 보호층(130)의 재질은 금속 분말(즉 제1 금속층 및 제2 금속층)과 동일한 소재의 금속일 수 있고, 레이저 조사에 의해 금속 분말과 함께 용융되게 하여 일체화되도록 한다. 그러나 금속 분말과 용융이 적절하게 수행될 수 있는 다른 재질이 사용될 수도 있을 것이다.A protective layer 130 is formed on top of the sensor 120 . The protective layer 130 serves to protect the sensor 120 as well as to prevent metal powder from collapsing on the upper side of the sensor mounting space during the molding of the metal part or after the molding is completed. The material of the protective layer 130 may be a metal of the same material as the metal powder (ie, the first metal layer and the second metal layer), and is melted together with the metal powder by laser irradiation so as to be integrated. However, other materials that can suitably melt with metal powder may be used.
본 발명의 금속 부품은 SLM 공정에 의해 성형, 제조된다. 상기 SLM 공정은 도면에는 도시하지 않고 있지만 다음과 같은 순서대로 진행될 수 있다. The metal part of the present invention is molded and manufactured by the SLM process. Although the SLM process is not shown in the drawings, it may be performed in the following order.
리코터(recoater)에 의해 빌드 플레이트에 금속분말을 도포하여 얇은 금속 층을 반복적으로 적층한다. 그리고 적층은 성형하고자 하는 금속 부품의 형상(높이)이 형성될 때까지 반복 수행된다. 이러한 SLM 공정에 의해 도 1 등에 도시한 금속 부품을 성형할 수 있는 것이다. 도 1의 금속 부품은 앞서 설명한 바와 같이 센서 장착공간(115)과 체결 홀(111)들이 형성된 상태일 수 있다.A thin metal layer is repeatedly laminated by applying metal powder to the build plate by a recoater. Lamination is repeated until the shape (height) of the metal part to be molded is formed. The metal parts shown in FIG. 1 and the like can be molded by such an SLM process. As described above, the metal part of FIG. 1 may be in a state in which the sensor mounting space 115 and the fastening holes 111 are formed.
다음에는 SLM 공정에 의해 만들어진 금속 부품에 센서를 장착하여 지능형 디지털 금속 부품을 제조하는 과정을 살펴본다. Next, we look at the process of manufacturing intelligent digital metal parts by mounting sensors on metal parts made by the SLM process.
도 4는 본 발명의 실시 예에 따른 지능형 디지털 금속 부품의 제조 공정을 보인 공정도면이다. 도 4는 3D 프린트 공정인 레이저 분말 베드 융해(L-PBF: laser powder bed fusion)에 의해 성형된 금속 부품에 센서를 장착하여 지능형 금속 부품을 제조하는 과정이다.4 is a process diagram showing a manufacturing process of an intelligent digital metal part according to an embodiment of the present invention. 4 is a process of manufacturing an intelligent metal part by mounting a sensor on a metal part molded by a 3D printing process, laser powder bed fusion (L-PBF).
도 4에서 (a)는 센서 장착공간(115)이 형성된 금속 부품의 몸체를 제조한다. 금속 부품에서 센서 장착공간(115)의 형성 위치를 결정하는 방법은 아래에서 상세하게 설명하기로 한다. 상기 (a) 공정은 센서를 장착할 수 있을 만큼의 충분한 높이로 센서 장착공간(115)이 형성되기까지 금속 분말을 반복 인쇄하는 공정을 포함할 수 있다. 이때 금속 부품에는 센서의 와이어가 배선될 수 있도록 측면에 홀이 함께 형성되어야 할 것이다.In FIG. 4 (a), the body of the metal part in which the sensor mounting space 115 is formed is manufactured. A method of determining the formation position of the sensor mounting space 115 in the metal part will be described in detail below. The process (a) may include a process of repeatedly printing the metal powder until the sensor mounting space 115 is formed at a height sufficient to mount the sensor. At this time, a hole should be formed on the side of the metal part so that the wire of the sensor can be wired.
그리고 (b)와 같이 센서 장착공간(115)에 센서(120)를 장착한다. 여기서 상기 (b) 공정에서 센서 장착공간(115)이 형성되지 않았다면, 센서 장착공간(115)의 금속분말을 제거하는 공정이 수반될 수 있다. And, as shown in (b), the sensor 120 is mounted in the sensor mounting space 115. Here, if the sensor mounting space 115 is not formed in the process (b), a process of removing metal powder from the sensor mounting space 115 may be accompanied.
그리고 (c)와 같이 센서(120) 상부에 미리 준비된 보호층(130)을 덮는다. 보호층(130)은 센서 장착공간(115)의 상부만 덮을 수 있도록 적정 크기로 미리 제조되며, 특히 보호층(130)은 레이저 가공에 의한 센서(120)의 열화를 방지하는 역할을 하다. And, as shown in (c), the protective layer 130 prepared in advance is covered on top of the sensor 120. The protective layer 130 is pre-manufactured in an appropriate size so as to cover only the upper portion of the sensor mounting space 115, and in particular, the protective layer 130 serves to prevent deterioration of the sensor 120 due to laser processing.
그런 다음 (d)와 같이 레이저를 조사하여 몸체(110)와 보호층(130)을 일체화한다. 이러한 L-PBF 공정에 의해 (e)와 같이 물리적 변형 데이터를 측정할 수 있는 센서가 내장된 지능형 디지털 금속 부품를 제조할 수 있다.Then, the body 110 and the protective layer 130 are integrated by irradiating a laser as in (d). Through this L-PBF process, as shown in (e), an intelligent digital metal part having a built-in sensor capable of measuring physical strain data can be manufactured.
한편 본 발명에 따른 지능형 디지털 금속 부품의 제조공정은 다음 방법으로도 실시할 수 있다. On the other hand, the manufacturing process of the intelligent digital metal part according to the present invention can also be carried out in the following way.
구체적으로 설명하면, 리코터(recoater)를 사용하여 빌드 플레이트에 금속분말을 도포하여 금속층을 반복적으로 적층하여 제1 금속층(116a, 도 3)을 형성한다. 이때 제1 금속층(116a)을 형성할 때 센서(120)가 내장될 센서 내장공간(115) 및 체결 홀(111) 들도 함께 형성된다. 그런 다음, 상기 센서 내장공간(115)에 물리량 계측을 위한 센서(120)를 삽입 설치하고, 센서 내장 공간(115) 상부는 미리 준비된 보호층(130)으로 덮는다. 이후 제1 금속층(116a)과 보호층(130) 위에 다시 금속층을 반복적으로 적층하여 제2 금속층(116b, 도 3)을 형성한다. Specifically, the first metal layer 116a (FIG. 3) is formed by applying a metal powder to the build plate using a recoater and repeatedly stacking the metal layers. At this time, when the first metal layer 116a is formed, the sensor embedded space 115 in which the sensor 120 is to be embedded and the fastening holes 111 are also formed. Then, the sensor 120 for measuring the physical quantity is inserted into the sensor built-in space 115, and the upper part of the sensor built-in space 115 is covered with a protective layer 130 prepared in advance. Thereafter, a metal layer is repeatedly stacked on the first metal layer 116a and the protective layer 130 to form a second metal layer 116b (FIG. 3).
이렇게 제1 금속층(116a)과 제2 금속층(116b)를 순서대로 성형하는 공정으로 센서가 내장된 금속부품의 제조가 가능하다.Through the process of forming the first metal layer 116a and the second metal layer 116b in this order, it is possible to manufacture a metal part with a built-in sensor.
다음은 지능형 디지털 금속 부품에서 센서가 장착될 센서 장착 공간을 결정하는 과정에 대해 설명한다.The following describes the process of determining the sensor mounting space where the sensor is to be mounted in the intelligent digital metal part.
본 발명은 금속 부품에 외력이 가해질 때 여러 가지 특성이 가장 적은 위치에 센서를 장착할 필요가 있다. 이를 위해 본 발명은 금속 부품과 형상이 동일한 시료를 먼저 성형하고, 이를 대상으로 다양한 시험을 실시하였다. In the present invention, when an external force is applied to a metal part, it is necessary to mount the sensor at a position where various characteristics are minimal. To this end, in the present invention, a sample having the same shape as the metal part was first molded, and various tests were conducted on this sample.
도 5는 본 발명의 금속 부품에서 센서 장착공간을 형성하기 위하여 시험에 사용된 시험대상 금속 부품 도면이다.5 is a drawing of a metal part to be tested used in a test to form a sensor mounting space in the metal part of the present invention.
도 5의 (a) 및 (b)를 보면, 시험대상 금속 부품의 T자형 제1 몸체에서 센서 장착공간의 후보 위치인 Part 1 ~ Part 3을 선정하였다. Part 1 및 Part 3은 제1 몸체의 중앙에서 상부 및 하부 방향의 체결 홀 근방이고, Part 2는 체결 홀이 형성되지 않은 제1 몸체의 중앙부분이다. 구체적으로 Part 1은 센서 장착공간 위의 15mm 부분, Part 2는 센서 장착공간, Part 3은 센서 장착공간 아래의 17mm 부분일 수 있다. 여기서 센서 장착공간은 아래에서 설명하는 각종 시험 결과에 의해 결정되는 위치가 되는 것인데, 즉, Part 2 위치가 Part 1 및 Part 3 위치보다 센서 장착공간으로 더 최적으로 판단되었다고 할 수 있다. Referring to (a) and (b) of FIG. 5 , Part 1 to Part 3, which are candidate positions of the sensor mounting space, were selected in the T-shaped first body of the metal part to be tested. Part 1 and Part 3 are near the fastening holes in the upper and lower directions from the center of the first body, and Part 2 is the central portion of the first body in which no fastening holes are formed. Specifically, Part 1 may be a 15 mm part above the sensor mounting space, Part 2 may be a sensor mounting space, and Part 3 may be a 17 mm part below the sensor mounting space. Here, the sensor mounting space is a position determined by various test results described below. In other words, it can be said that the location of Part 2 was judged more optimal as a sensor mounting space than the locations of Part 1 and Part 3.
도 6은 도 5의 시험대상 금속 부품의 인장시험 결과를 나타낸 도면이다. 6 is a view showing the tensile test results of the metal part to be tested in FIG. 5;
인장 시험은 상기 시험대상 금속 부품이 파단일 발생할 때까지 장력을 가하여 실시하였다. 이같이 장력을 가하게 되면 도 6에서 확인할 수 있는 것처럼 시험대상 금속 부품의 거의 중앙부에 해당하는 Part 2를 제외하고 상부와 하부에 위치한 Part 1과 Part 3에서 상대적으로 파손 가능성이 높은 것으로 나타난다. The tensile test was performed by applying tension until the metal part to be tested was fractured. When the tension is applied in this way, as can be seen in FIG. 6, it appears that the possibility of breakage is relatively high in Part 1 and Part 3 located at the upper and lower parts, except for Part 2, which corresponds to almost the center of the metal part to be tested.
DIC(Digital image correlation) 인장시험에서 Part 1은 파단이 발생할 때까지 국부적 변형을 보였고 Part 3의 경우도 Part 1에 비해 작기는 하지만 변형이 나타났다. 하지만 Part 2는 상대적으로 거의 변형 없이 최초 상태를 유지하고 있음을 확인할 수 있었다.In the digital image correlation (DIC) tensile test, Part 1 showed local deformation until fracture occurred, and Part 3 also showed deformation, although smaller than Part 1. However, it was confirmed that Part 2 maintains its initial state with relatively little deformation.
도 7은 도 5의 시험대상 금속 부품의 FEM(finite element method) 분석 결과를 나타낸 도면이다.FIG. 7 is a view showing a finite element method (FEM) analysis result of the metal part to be tested in FIG. 5 .
도 7a에 도시한 바와 같이 두 개의 라인(line 1, line 2)을 대상으로 FEM 분석을 실험하였고, 도 7b의 실험 결과를 보면, Part 2 부위(sensor embedded region)의 균등 변형 정도가 0.01 미만으로, Part 1 및 Part 3 대비 양호함을 알 수 있다.As shown in FIG. 7a, FEM analysis was performed on two lines (line 1 and line 2), and the experimental results of FIG. 7b show that the degree of uniform deformation of Part 2 (sensor embedded region) was less than 0.01. , it can be seen that it is better than Part 1 and Part 3.
도 8은 도 5의 시험대상 금속 부품의 미세 구조를 분석한 결과 그래프이다. 미세 구조 분석을 위해 전계 방출 주사 전자 현미경(SEM)을 사용하여 전자 역산란 회절법(EBSD: electron backscatter diffraction)과 ECCI(electron channeling contrast imaging) 분석을 수행하여, Part 1, Part 2, Part 3의 방향각들을 각각 비교하였다.8 is a graph showing the result of analyzing the microstructure of the metal part to be tested in FIG. 5 . For the microstructure analysis, electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) analysis were performed using a field emission scanning electron microscope (SEM), and the results of Part 1, Part 2, and Part 3 were analyzed. The orientation angles were compared, respectively.
실험 결과는 도 8의 (a), (b), (c)에서 볼 수 있는 것처럼 Part 1(a 도면)과 Part 3(c 도면)에서 방향각 오차가 60°인 반면 Part 2(b 도면)에서는 방향각 오차가 상대적으로 미미한 것으로 나타났다. As can be seen in (a), (b), and (c) of FIG. 8, the experimental results show that the orientation angle error is 60° in Part 1 (a drawing) and Part 3 (c drawing), whereas Part 2 (b drawing) In , the orientation angle error was found to be relatively insignificant.
이처럼 본 발명은 상기한 실험들을 통해 실질적으로 안정성이 확인된 시험대상 금속 부품의 Part 2를 센서(120)가 장착될 장착 공간으로 결정하여, 지능형 디지털 금속 부품을 제조하는 것이다. As such, the present invention determines Part 2 of the metal part to be tested, whose stability has been substantially confirmed through the above experiments, as a mounting space in which the sensor 120 is to be mounted, and manufactures an intelligent digital metal part.
도 9은 본 발명의 지능형 금속 부품의 상태를 판단하는 인공지능 시스템의 구성도이다. 인공지능 시스템(200)은 지능형 디지털 금속 부품으로부터 센서 데이터를 수집하고, 수집된 센서 데이터를 근거로 상기 지능형 디지털 금속 부품의 상태를 정확하게 판단할 수 있도록 하는 것이다. 9 is a block diagram of an artificial intelligence system for determining the state of an intelligent metal part of the present invention. The artificial intelligence system 200 collects sensor data from intelligent digital metal parts and accurately determines the state of the intelligent digital metal parts based on the collected sensor data.
도시한 바와 같이 인공지능 시스템(200)은 데이터 전처리를 위한 전처리 모듈(210), 학습 모듈(220) 및 3D 시각화 t-SNE 그래프로 분류하여 시각화된 영상 데이터로 학습 결과를 출력하는 출력 모듈(230)을 포함한다. As shown, the artificial intelligence system 200 includes a preprocessing module 210 for data preprocessing, a learning module 220, and an output module 230 that outputs the learning result as visualized image data by classifying it into a 3D visualization t-SNE graph. ).
전처리 모듈(210)은, 지능형 디지털 금속 부품에 장착된 센서(120)로부터 센서 데이터, 즉 원시 데이터(raw data)가 입력되는 데이터 입력부(211), 입력된 원시 데이터를 고속 푸리에 변환(FFT)하여 주파수 영역으로 변환하는 제1 변환부(212), 주파수 영역으로 변환된 데이터를 기계 학습을 위한 데이터로 변환하는 제2 변환부(213)를 포함할 수 있다. 여기서 제1 변환부(212)의 FFT 알고리즘은 이산 입력 신호를 주파수로 분해하는 이산 푸리에 변환(DFT) 방식일 수 있다. 이산 푸리에 변환(DFT)는 다음 식으로 정의할 수 있다.The pre-processing module 210 is a data input unit 211 into which sensor data, that is, raw data, is input from the sensor 120 mounted on the intelligent digital metal part, and performs fast Fourier transform (FFT) on the input raw data. It may include a first transform unit 212 that transforms into the frequency domain and a second transform unit 213 that converts the data converted into the frequency domain into data for machine learning. Here, the FFT algorithm of the first transform unit 212 may be a Discrete Fourier Transform (DFT) method that decomposes the discrete input signal into frequencies. The Discrete Fourier Transform (DFT) can be defined as:
Figure PCTKR2022013049-appb-img-000001
Figure PCTKR2022013049-appb-img-000001
그리고 제2 변환부(213)는, half cut(213a) 및 스펙트로그램(spectrogram)(213b)을 포함한다. 상기 스펙트로그램(213b)은, 원시 데이터를 하프 컷 프로세서를 통해 10*5 이미지 크기의 스펙트로그램으로 6초마다 생성하여 후단의 학습모듈(220)의 입력데이터로 입력한다.And the second conversion unit 213 includes a half cut 213a and a spectrogram 213b. The spectrogram 213b is generated every 6 seconds as a 10*5 image size spectrogram through a half-cut processor from raw data, and is input as input data to the learning module 220 at a later stage.
본 발명에서 상기 전처리 모듈(210)을 적용하는 이유는, 센서(120)가 수집한 원시 데이터는 기계학습, 즉 CNN 모델(Convolution Neural Network Model)을 사용하여 학습하는 것이 어렵기 때문이다. The reason why the preprocessing module 210 is applied in the present invention is that it is difficult to learn raw data collected by the sensor 120 using machine learning, that is, a Convolution Neural Network Model (CNN) model.
도 9에서 학습 모듈(220)은, CNN 학습 모델이 사용될 수 있다. 본 실시 예의 CNN 학습 모델(220)은 컨볼루션 레이어(convolution layer)(221), 전환 레이어(transition layer)(222), 풀리 커넥티드 레이어(fully connected layer)(223) 및 소프트맥스(softmax) 함수부(224)를 포함한다. 이러한 구성을 가지는 CNN 학습 모델(220)은, 지능형 디지털 금속 부품에 내장된 센서(120)가 감지하는 센서 데이터를 학습하여 지능형 디지털 금속 부품의 현재 상태, 예를 들면 나사의 미 체결 상태나 느슨하게 체결된 나사의 위치를 알 수 있고, 또한 외부 충격 물체의 유형도 알 수 있다.In FIG. 9 , the learning module 220 may use a CNN learning model. The CNN learning model 220 of this embodiment includes a convolution layer 221, a transition layer 222, a fully connected layer 223, and a softmax function. section 224. The CNN learning model 220 having such a configuration learns the sensor data detected by the sensor 120 embedded in the intelligent digital metal part to learn the current state of the intelligent digital metal part, for example, the screw is not fastened or loosely fastened. The location of the damaged screw can be known, and the type of external impact object can also be known.
도 10은 도 9의 CNN 학습 모델의 구체적인 구성도이다. 본 실시 예에 적용된 CNN 학습 모델(220)은 6개의 컨볼루션 레이어, 1개의 전환 레이어, 풀리 커넥티드 레이어 및 소프트 맥스 레이어를 포함하는 DenseNet를 기반으로 한다. 그리고 각 컨볼루션 레이어는 ReLU(Rectified Linear Unit) 함수를 포함하고, CNN 학습 모델의 중간에 전환 레이어를 배치하여 너비, 수직크기 및 특징 맵의 개수를 감소한다. 10 is a detailed configuration diagram of the CNN learning model of FIG. 9 . The CNN learning model 220 applied to this embodiment is based on DenseNet including 6 convolutional layers, 1 conversion layer, a fully connected layer, and a softmax layer. In addition, each convolution layer includes a Rectified Linear Unit (ReLU) function, and a conversion layer is placed in the middle of the CNN learning model to reduce the width, vertical size, and number of feature maps.
도 10을 보면, 10*5의 이미지는 컨볼루션 레이어와 전환 레이어를 거치면서 최종적으로 2*2 이미지로 변환되고, 풀리 커넥티드 레이어와 소프트 맥스 레이어를 통해 금속 부품의 상태는 분류된다. Referring to FIG. 10, a 10*5 image is finally converted into a 2*2 image through a convolution layer and a conversion layer, and the state of a metal part is classified through a fully connected layer and a soft max layer.
도 11 및 도 12는 금속 부품의 나사 체결 상태 및 이의 테스트 결과를 나타낸 도면이다. 도 11과 같이 (a)는 모드 나사가 완전하게 고정된 정상상태(Normal state), (b)는 도면을 기준으로 모든 나사가 느슨한 상태(Abnormal state 1), (c)는 도면을 기준으로 왼쪽 나사가 없는 상태(Abnormal state 2), (d)는 왼쪽 나사가 느슨하게 체결되고 오른쪽 나사는 없는 상태(Abnormal state 3)를 기준으로 테스트를 실시하였다. 11 and 12 are diagrams showing screw fastening states of metal parts and test results thereof. As shown in FIG. 11, (a) is the normal state in which the mode screws are completely fixed, (b) is the state in which all screws are loose (abnormal state 1), (c) is the left side based on the drawing The test was conducted based on the state where there is no screw (Abnormal state 2) and (d), the left screw is loosely fastened and the right screw is not (Abnormal state 3).
테스트는 전처리 모듈(210), 학습 모듈(220), 그리고 출력 모듈(230)의 프로세스를 통해 수행하였고, 테스트 결과는 도 12와 같이 t-SNE 3D plot으로 표현된다. 이를 통해 사용자는 금속 부품의 체결 상태 등을 쉽게 확인할 수 있다.The test was performed through the processes of the preprocessing module 210, the learning module 220, and the output module 230, and the test result is expressed as a t-SNE 3D plot as shown in FIG. 12. Through this, the user can easily check the fastening state of the metal part.
다른 예로 금속 부품에 충격을 가하는 물체를 인식하는 것도 가능하다. 도 13은 금속 부품에 가해지는 외부 물체의 종류를 보여준 도면이다. 이를 보면, (a)는 손(hand), (b)는 망치(hammer), (c)는 스패너(spanner)를 이용하여 금속 부품에 충격을 가하는 예를 나타내고 있다.As another example, it is also possible to recognize an object impacting a metal part. 13 is a view showing types of external objects applied to metal parts. Looking at this, (a) shows an example of applying an impact to a metal part using a hand, (b) a hammer, and (c) a spanner.
테스트는 전처리 모듈(210), 학습 모듈(220), 그리고 출력 모듈(230)의 프로세스를 통해 수행하였고, 테스트 결과는 도 14와 같이 t-SNE 3D plot으로 나타낼 수 있다. 도 14를 보면, 금속 부품에 가해지는 물체 유형에 따라 다르게 표현되고 있어, 이 역시 사용자는 금속 부품에 가해지는 물체 유형을 쉽게 확인할 수 있다.The test was performed through the processes of the preprocessing module 210, the learning module 220, and the output module 230, and the test result can be expressed as a t-SNE 3D plot as shown in FIG. 14. Referring to FIG. 14, it is expressed differently depending on the type of object applied to the metal part, so that the user can also easily check the type of object applied to the metal part.
이와 같이 본 발명은 금속 부품 내부에 L-PBF(Laser Powder Bed Fusion) 기술을 이용하여 센서를 내장하고, 그 센서로부터 실시간으로 수집된 센서 데이터를 FFT(Fast Fourier Transform) 및 영상 처리를 수행한 후 CNN 학습 모델에서 학습하도록 하였다. 그리고 CNN 학습 모델의 학습 결과에 의해 금속 부품의 상태나 오작동을 진단하고 예측할 수 있도록 하였고, 학습 결과는 t-stochastic Neighbor Embedding(t-SNE)로 표현하고 있다. As such, the present invention embeds a sensor inside a metal part using L-PBF (Laser Powder Bed Fusion) technology, performs FFT (Fast Fourier Transform) and image processing on sensor data collected in real time from the sensor, and then It was trained on the CNN learning model. In addition, the condition or malfunction of metal parts can be diagnosed and predicted by the learning result of the CNN learning model, and the learning result is expressed as t-stochastic Neighbor Embedding (t-SNE).
이상과 같이 본 발명의 도시된 실시 예를 참고하여 설명하고 있으나, 이는 예시적인 것들에 불과하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다.Although the above has been described with reference to the illustrated embodiments of the present invention, these are only examples, and those skilled in the art to which the present invention belongs can variously It will be apparent that other embodiments that are variations, modifications and equivalents are possible. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
부품 내부에 센서가 장착되는 지능형 디지털 금속 부품에 이용할 수 있다.It can be used for intelligent digital metal parts where sensors are mounted inside the part.

Claims (13)

  1. 금속분말이 적층되는 제1 금속층;A first metal layer on which metal powder is laminated;
    상기 제1 금속층에 형성된 센서 장착공간 및 체결 홀들;sensor mounting spaces and fastening holes formed in the first metal layer;
    상기 센서 장착공간에 내장된 센서;a sensor built into the sensor mounting space;
    상기 센서 장착공간의 상부를 밀폐하는 보호층; 및a protective layer sealing an upper portion of the sensor mounting space; and
    상기 제1 금속층 및 상기 보호층 위에 금속분말이 적층되는 제2 금속층을 포함하여 구성되는 것을 특징으로 하는, 지능형 디지털 금속 부품. Characterized in that it comprises a second metal layer in which metal powder is laminated on the first metal layer and the protective layer, the intelligent digital metal component.
  2. 제 1 항에 있어서,According to claim 1,
    상기 제1 금속층 및 제2 금속층은, The first metal layer and the second metal layer,
    레이저 분말 베드 융해(L-PBF) 공정에 의해 금속분말을 적층하여 성형하는, 지능형 디지털 금속 부품.An intelligent digital metal part formed by laminating metal powder by the laser powder bed melting (L-PBF) process.
  3. 제 1 항에 있어서,According to claim 1,
    상기 보호층은 상기 제1 금속층 및 제2 금속층과 동일한 재질로 제조되는, 지능형 디지털 금속 부품.Wherein the protective layer is made of the same material as the first metal layer and the second metal layer.
  4. 제 1 항에 있어서, According to claim 1,
    상기 센서 장착공간은, The sensor mounting space,
    상기 지능형 디지털 금속 부품을 대상으로 한 인장시험, FEM 분석시험, 미세 구조 분석시험 중 적어도 하나의 시험을 통해 가장 안정성이 확보된 영역에 형성되는, 지능형 디지털 금속 부품. An intelligent digital metal part formed in an area where the most stability is secured through at least one test of a tensile test, a FEM analysis test, and a microstructure analysis test for the intelligent digital metal part.
  5. 제 1 항에 있어서, According to claim 1,
    상기 센서 장착공간은 둘 이상일 수 있고, The sensor mounting space may be two or more,
    상기 센서는 상기 센서 장착공간마다 동일한 센서 또는 상이한 센서가 내장되는, 지능형 디지털 금속 부품.The sensor is an intelligent digital metal part in which the same sensor or a different sensor is embedded in each sensor mounting space.
  6. 제 1 항에 있어서,According to claim 1,
    상기 제1 금속층과 제2 금속층 중 적어도 하나의 금속층 표면에는 돌기가 성형되는, 지능형 디지털 금속 부품.A protrusion is formed on the surface of at least one of the first metal layer and the second metal layer, the intelligent digital metal part.
  7. 제 1 항에 있어서,According to claim 1,
    상기 지능형 디지털 금속 부품은, The intelligent digital metal part,
    상기 제1 금속층 및 제2 금속층으로 이루어진 제1 몸체 및 제2 몸체를 포함하는 T자 형상의 몸체이고,A T-shaped body including a first body and a second body made of the first metal layer and the second metal layer,
    상기 센서 장착공간은 상기 제1 몸체의 중앙부분에 형성되고, The sensor mounting space is formed in the central portion of the first body,
    상기 센서 장착공간에 상기 센서가 내장되는, 지능형 디지털 금속 부품.An intelligent digital metal part in which the sensor is embedded in the sensor mounting space.
  8. 금속분말을 반복 도포하면서 소정 부위에 센서 장착공간이 성형되는 제1 금속층을 형성하는 단계;Forming a first metal layer in which a sensor mounting space is formed in a predetermined area while repeatedly applying metal powder;
    상기 센서 장착공간에 센서를 장착하는 단계;mounting a sensor in the sensor mounting space;
    상기 센서 장착공간 상부를 미리 준비된 보호층으로 덮는 단계; 및covering an upper portion of the sensor mounting space with a previously prepared protective layer; and
    상기 제1 금속층과 보호층의 상면에 금속분말을 반복 도포하여 제2 금속층을 형성하는 단계를 포함하여 실시하는 것을 특징으로 하는, 지능형 디지털 금속 부품의 제조방법.The method of manufacturing an intelligent digital metal part, characterized in that carried out including the step of forming a second metal layer by repeatedly applying a metal powder on the upper surface of the first metal layer and the protective layer.
  9. 제 8 항에 있어서,According to claim 8,
    상기 제1 금속층 및 제2 금속층은, The first metal layer and the second metal layer,
    레이저 분말 베드 융해(L-PBF) 공정에 의해 금속분말을 적층하여 형성되는, 지능형 디지털 금속 부품의 제조방법.A method for manufacturing an intelligent digital metal part formed by laminating metal powder by a laser powder bed melting (L-PBF) process.
  10. 제 1 항 내지 제 7 항 중 어느 한 항의 구성을 포함하는 지능형 디지털 금속 부품에 내장된 센서가 감지한 센서 데이터를 분석하여 상기 지능형 디지털 금속 부품의 상태를 모니터링 하는 인공 지능 시스템이고, An artificial intelligence system for monitoring the state of an intelligent digital metal part by analyzing sensor data detected by a sensor embedded in an intelligent digital metal part comprising the configuration of any one of claims 1 to 7,
    상기 센서 데이터의 전처리를 위한 전처리 모듈; a pre-processing module for pre-processing the sensor data;
    상기 전처리 모듈에 의해 전처리 된 전처리 데이터를 학습하는 학습 모듈; 및a learning module for learning the preprocessed data preprocessed by the preprocessing module; and
    상기 학습 모듈에 의해 학습된 데이터를 출력하는 출력 모듈을 포함하여 구성되는 것을 특징으로 하는, 지능형 디지털 금속 부품의 상태 판단을 위한 인공 지능 시스템.An artificial intelligence system for determining the state of an intelligent digital metal part, characterized in that it comprises an output module that outputs the data learned by the learning module.
  11. 제 10 항에 있어서, According to claim 10,
    상기 전처리 모듈은, The preprocessing module,
    상기 센서 데이터(raw data)를 입력받는 데이터 입력부;a data input unit receiving the sensor data (raw data);
    상기 센서 데이터를 고속 푸리에 변환(FFT)하여 주파수 영역으로 변환하는 제1 변환부; 및 a first transform unit for transforming the sensor data into a frequency domain by performing a Fast Fourier Transform (FFT) on the sensor data; and
    주파수 영역으로 변환된 데이터를 기계 학습을 위한 데이터로 변환하는 제2 변환부를 포함하고,A second conversion unit for converting the data converted into the frequency domain into data for machine learning;
    상기 제2 변환부는, half cut 프로세서 및 스펙트로그램을 포함하며,The second conversion unit includes a half cut processor and a spectrogram,
    상기 센서 데이터를 10*5 이미지 크기의 스펙트로그램으로 소정 시간마다 생성하여 상기 학습모듈로 제공하는, 지능형 디지털 금속 부품의 상태 판단을 위한 인공 지능 시스템.An artificial intelligence system for determining the state of an intelligent digital metal part, generating the sensor data as a spectrogram of 10*5 image size every predetermined time and providing it to the learning module.
  12. 제 11 항에 있어서, According to claim 11,
    상기 학습 모듈은, The learning module,
    6개의 컨볼루션 레이어; 6 convolutional layers;
    1개의 전환 레이어(transition layer); 1 transition layer;
    1개의 풀리 커넥티드 레이어; 및 1 pulley connected layer; and
    1개의 소프트맥스(softmax) 함수부를 포함하는 CNN 학습 모델이고, A CNN learning model including one softmax function,
    상기 10*5 이미지 크기를 2*2 이미지로 변환하여 출력하는, 지능형 디지털 금속 부품의 상태 판단을 위한 인공 지능 시스템.An artificial intelligence system for determining the state of an intelligent digital metal part that converts the 10*5 image size into a 2*2 image and outputs it.
  13. 제 10 항에 있어서, According to claim 10,
    상기 출력 모듈은, The output module,
    3D 시각화 t-SNE 그래프로 분류하여 표현하는, 지능형 디지털 금속 부품의 상태 판단을 위한 인공 지능 시스템.An artificial intelligence system for determining the condition of intelligent digital metal parts, classified and expressed as a 3D visualization t-SNE graph.
PCT/KR2022/013049 2021-12-29 2022-08-31 Intelligent digital metal component, manufacturing method and artificial intelligence system comprising same WO2023128125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210190779A KR20230101028A (en) 2021-12-29 2021-12-29 Intelligent digital metal parts and manufacturing method thereof, Artificial intelligence system including the same
KR10-2021-0190779 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023128125A1 true WO2023128125A1 (en) 2023-07-06

Family

ID=86999591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013049 WO2023128125A1 (en) 2021-12-29 2022-08-31 Intelligent digital metal component, manufacturing method and artificial intelligence system comprising same

Country Status (2)

Country Link
KR (1) KR20230101028A (en)
WO (1) WO2023128125A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140174190A1 (en) * 2011-06-07 2014-06-26 Jawaharlal Nehru Centre for Advanced Scientific-Research Manufacturing strain sensitive sensors and/or strain resistant conduits from a metal and carbon matrix
KR20180003141A (en) * 2016-06-30 2018-01-09 경북대학교 산학협력단 Metal powder 3d printer using plasma treatment
KR20200065304A (en) * 2018-11-30 2020-06-09 한국기계연구원 A metal part comprising electronic components with non-continuous microstructure layer and its manufacturing method
KR20210017637A (en) * 2019-08-09 2021-02-17 주식회사 아프로스 Apparatus and method for precise state diagnosis of rotating machinery based on IoT sensor
KR102322817B1 (en) * 2020-09-10 2021-11-08 한국항공대학교산학협력단 Convolutional neural network based human machine interface system using doppler radar and voice sensor, device for processing sensor data of the human machine interface system, method for operating the sames

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138541A (en) 2011-06-15 2012-12-26 한국항공우주산업 주식회사 Sensor and wiring equipped method for detecting rotor blade of rotary-wing aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140174190A1 (en) * 2011-06-07 2014-06-26 Jawaharlal Nehru Centre for Advanced Scientific-Research Manufacturing strain sensitive sensors and/or strain resistant conduits from a metal and carbon matrix
KR20180003141A (en) * 2016-06-30 2018-01-09 경북대학교 산학협력단 Metal powder 3d printer using plasma treatment
KR20200065304A (en) * 2018-11-30 2020-06-09 한국기계연구원 A metal part comprising electronic components with non-continuous microstructure layer and its manufacturing method
KR20210017637A (en) * 2019-08-09 2021-02-17 주식회사 아프로스 Apparatus and method for precise state diagnosis of rotating machinery based on IoT sensor
KR102322817B1 (en) * 2020-09-10 2021-11-08 한국항공대학교산학협력단 Convolutional neural network based human machine interface system using doppler radar and voice sensor, device for processing sensor data of the human machine interface system, method for operating the sames

Also Published As

Publication number Publication date
KR20230101028A (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2017204490A1 (en) Railway vehicle monitoring device and monitoring method using same
US9104650B2 (en) Intelligent condition monitoring and fault diagnostic system for preventative maintenance
US8356207B2 (en) Intelligent condition monitoring and fault diagnostic system for preventative maintenance
CN1190652C (en) System for measuring loadings in structure, measuring unit and measuring sensor
US20230094052A1 (en) Smart interconnecting clamp system
KR20200014129A (en) Diagnosis method of electric transformer using Deep Learning
WO2020138623A1 (en) Switchboard monitoring system and operation method of same
WO2019112134A1 (en) History management pad of semiconductor test socket, manufacturing method thereof, and semiconductor test device including history management pad
CN111999525A (en) Piezoelectric acceleration sensor capable of detecting working state in real time and detection method
WO2020138549A1 (en) Acoustic emission-based defect signal detection device and method
WO2023128125A1 (en) Intelligent digital metal component, manufacturing method and artificial intelligence system comprising same
CN109322796A (en) The blade state monitoring system and detection method of wind power generating set based on video image processing
WO2018074721A1 (en) Wireless vibration measurement system
KR20220082196A (en) A System for Detecting Abnormal Condition and a Method for Detecting the Same
CN110716133B (en) High-voltage circuit breaker fault studying and judging method based on Internet of things and big data technology
CN1242273C (en) Method and device for detecting semiconductor circuit
CN1447125A (en) Method and appts. of adaptor for face bond of tester and tested device
US20050288898A1 (en) Systems and methods for analyzing machine failure
CN204595124U (en) A kind of SMD charging tray sampling observation equipment
Xing et al. Signal analysis of fretting damages on electrial connector systems
JPH0815005A (en) Piezo-electric vibration sensor apparatus
WO2024096224A1 (en) Device for space charge measurement corresponding to cable insulation thickness parameter and space charge measurement method using same
KR200427417Y1 (en) Midi-fuse connection checking device of junction box
WO2024090656A1 (en) Abnormal signal detection device using dual acoustic wave sensor
JPS62115382A (en) Method of diagnosing abnormal vibration of electronic device and connecter used for it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916279

Country of ref document: EP

Kind code of ref document: A1