WO2023090152A1 - 画像処理装置および画像処理方法 - Google Patents

画像処理装置および画像処理方法 Download PDF

Info

Publication number
WO2023090152A1
WO2023090152A1 PCT/JP2022/040899 JP2022040899W WO2023090152A1 WO 2023090152 A1 WO2023090152 A1 WO 2023090152A1 JP 2022040899 W JP2022040899 W JP 2022040899W WO 2023090152 A1 WO2023090152 A1 WO 2023090152A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
image processing
image
parameter
Prior art date
Application number
PCT/JP2022/040899
Other languages
English (en)
French (fr)
Inventor
勇介 松三
誠司 高木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023561514A priority Critical patent/JP7574947B2/ja
Publication of WO2023090152A1 publication Critical patent/WO2023090152A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present disclosure relates to an image processing device and an image processing method for photographing an object.
  • the above image measuring instrument automatically adjusts the lighting conditions and the operator visually inspects the captured images and manually selects the image with the highest S/N ratio.
  • the parameter space to be searched in adjusting the parameters of the optical system is very complicated, and it is difficult to automatically and exhaustively adjust the parameters of the optical system.
  • the present disclosure has been made to solve the above-mentioned problems, and is an image processing that can be used for general purposes regardless of the object to be photographed and inspection algorithm by automatically and comprehensively adjusting the parameters of the optical system. Intended to obtain equipment.
  • An image processing apparatus includes an optical system for capturing an image of an object, a setting input section for an operator to input optical parameters of the optical system, and an optical parameter storage section for storing the optical parameters input to the setting input section.
  • an optical system control unit that arranges the optical system based on the optical parameters stored in the optical parameter storage unit; an evaluation unit that calculates an objective function from the feature amount calculated by the image processing unit; an approximate function creation unit that calculates an approximate function from the objective function calculated by the evaluation unit; and an optical parameter that minimizes the objective function.
  • the gradient of the approximation function output by the approximation function creation unit in the reference parameter set is calculated as a reference parameter set, and new additional optical parameters in the vicinity of the direction in which the gradient is maximum are stored in the optical parameter storage unit as new optical parameters. and an additional search unit.
  • an image processing method includes the steps of photographing an object using an optical system, inputting optical parameters of the optical system, storing the input optical parameters, and storing arranging the optical system based on the optical parameters; calculating a feature amount from the image of the object output by the arranged optical system; and calculating an objective function from the calculated feature amount. calculating an approximation function from the calculated objective function; using the optical parameter that minimizes the objective function as a reference parameter set, calculating a gradient of the approximation function in the reference parameter set; and storing a new additional optical parameter in the vicinity of the maximum direction as the new optical parameter.
  • the image processing apparatus of the present disclosure it is possible to automatically and comprehensively adjust the parameters of the optical system. Also, by using an algorithm suitable for the object, there is an effect that it can be used universally regardless of the object.
  • the image processing method of the present disclosure it is possible to automatically and comprehensively adjust the parameters of the optical system. Also, by using an algorithm suitable for the object, there is an effect that it can be used universally regardless of the object.
  • FIG. 1 is a configuration diagram of an image processing apparatus according to a first embodiment
  • FIG. 2 is a hardware configuration diagram of the image processing apparatus according to the first embodiment
  • FIG. 4 is a flow chart showing a processing procedure of the image processing apparatus according to the first embodiment
  • 4 is an example of an optical parameter set in the setting input section of the image processing apparatus according to the first embodiment
  • 6 is an example of an additional optical parameter set in the search unit of the image processing apparatus according to the first embodiment
  • 1 is a configuration diagram of an image processing apparatus according to a second embodiment
  • FIG. 9 is a flow chart showing a processing procedure of the image processing apparatus according to the second embodiment
  • FIG. 1 is a configuration diagram of an image processing apparatus according to the first embodiment.
  • FIG. 2 is a hardware configuration diagram of the image processing apparatus according to the first embodiment.
  • FIG. 3 is a flow chart showing processing procedures of the image processing apparatus according to the first embodiment.
  • FIG. 4 shows an example of optical parameter sets in the setting input section of the image processing apparatus according to the first embodiment.
  • FIG. 5 is an example of additional optical parameter sets in the search section of the image processing apparatus according to the first embodiment.
  • the image processing apparatus 1 shown in FIG. 1 includes a setting input unit 10 for inputting optical parameters, an optical parameter storage unit 20 for storing optical parameters, an optical system control unit 30 for arranging an optical system, and an object for photographing.
  • An optical system 40 an image processing unit 50 that calculates a feature amount from an image of a photographed object, a parameter calculation unit 60 that searches for optical parameters, an image collection unit 70 that collects images, and an image display that outputs images. a portion 80;
  • FIG. 2 is a hardware configuration diagram of the image processing apparatus 1 according to the first embodiment.
  • the image processing apparatus 1 includes a processor 2 such as a CPU (Central Processing Unit), a memory 3 such as a RAM (Random Access Memory), a display 4 and an input interface (I/F) 5 .
  • the optical parameter storage unit 20 , the optical system control unit 30 , the optical system 40 , the image processing unit 50 , the parameter calculation unit 60 and the image acquisition unit 70 are implemented by the processor 2 executing programs stored in the memory 3 . However, these may be realized by, for example, cooperation of a plurality of processors 2 .
  • the setting input unit 10 is initialized by the operator inputting optical parameters, reference values, and the maximum number of searches.
  • An optical parameter is a set of values such as the position, angle, and illuminance of an optical system 40 such as a camera and illumination.
  • a reference value is a value that is compared with a feature amount that is the result of image processing of an object photographed by the optical system 40 .
  • the maximum number of searches is the upper limit number of times the search unit 63 searches for optical parameters.
  • the optical parameter storage unit 20 stores the optical parameters, reference values, and maximum number of searches input by the operator to the setting input unit 10 .
  • the optical parameters, reference values, and maximum number of searches stored in the optical parameter storage section 20 are output to the image processing section 50 .
  • the optical system control unit 30 selects one of the optical parameters stored in the optical parameter storage unit 20 and changes the position, angle, illuminance, etc. of the optical system 40 .
  • the optical system 40 refers to the camera, illumination, stage, and mechanism for moving them.
  • the number may be one or more, and regardless of the type of illumination, for example, transmissive illumination, coaxial illumination, or the like may be used.
  • the optical system 40 photographs an object using the optical parameters selected by the optical system control unit 30 and outputs the photographed image of the object to the image processing unit 50 . Also, the captured image of the object is output to the image acquisition unit 70 and recorded.
  • the image processing unit 50 image-processes the image of the object input from the optical system 40 , calculates the feature amount, and outputs it to the evaluation unit 61 .
  • a feature amount is a result of image processing.
  • the feature amount is a value for evaluating whether the input optical parameter is good or bad, and is used when comparing with the reference value input to the setting input unit 10 .
  • Any algorithm can be used for image processing depending on the object. Although the feature amount varies depending on an arbitrary algorithm, for example, the luminance difference between the object and the background, the area of foreign matter on the object, and the like are used. Also, one feature amount may be calculated from one photographed image, or a plurality of feature amounts may be calculated.
  • the image processing unit 50 Based on the optical parameters, the reference value, and the maximum number of times of search input from the optical parameter storage unit 20, the image processing unit 50 detects the target before image processing for which the feature amount that satisfies the reference value or is closest to the reference value is calculated. An image of the object is output to the image acquisition unit 70 .
  • the image to be output to the image acquisition unit 70 is not limited to the image of the object before image processing, and may be an optical parameter for which a feature amount that satisfies the reference value or is closest to the reference value is calculated.
  • the parameter calculation unit 60 consists of an evaluation unit 61 , an approximate function creation unit 62 and a search unit 63 .
  • the evaluation unit 61 calculates an objective function based on the feature amount output from the image processing unit 50 and outputs the objective function to the approximation function creation unit 62 .
  • the objective function is a value for evaluating the quality of an image captured by the optical system 40. For example, the index is how far the feature amount is from the reference value. Also, the value of the objective function obtained from one image is limited to one.
  • the approximate function creation unit 62 creates an approximate function from the objective function calculated by the evaluation unit 61 and outputs it to the search unit 63 .
  • Any type of approximation function may be used, but for example, a quadratic function, a Gaussian function, or the like is used.
  • the search unit 63 calculates the gradient of the approximation function output by the approximation function creation unit 62 in the optical parameter that minimizes the objective function calculated based on the feature amount in the evaluation unit 61, that is, the reference parameter set. A new additional optical parameter in the vicinity of the maximum direction is output to the optical parameter storage unit 20 as a new optical parameter.
  • the details of the optical parameter search method will be described later with reference to flowcharts.
  • the image acquisition unit 70 acquires images of the object photographed by the optical system 40 .
  • the image acquisition unit 70 outputs to the image display unit 80 the image of the object before the image processing of the feature amount that satisfies or is closest to the reference value output from the image processing unit 50 .
  • the image processing unit 50 outputs the optical parameters, it associates them with the image of the object, and outputs the image of the object captured by the optical parameters output by the image processing unit 50 to the image display unit 80 .
  • the image display unit 80 displays an image captured by an optical parameter having the smallest objective function found by searching in the parameter calculation unit 60 input by the image acquisition unit 70 .
  • the image processing apparatus 1 illustrated in FIG. 1 is an example, and an image processing apparatus 1 that does not configure the image acquisition unit 70 is also conceivable. In that case, by outputting to the image display unit 80 the image of the object before the image processing in which the feature amount that satisfies or is closest to the reference value output by the image processing unit 50 is calculated, the effect described in the present disclosure is similarly obtained.
  • FIG. 3 is a flow chart showing the processing procedure of the image processing apparatus 1 according to the first embodiment.
  • the algorithm applied in the present disclosure is not limited, a case will be described below as an example in which the presence or absence of foreign matter on an object is inspected and the area of the foreign matter is used as the feature quantity.
  • Optical parameters (x, y) consisting of camera position x and illumination position y will be explained.
  • step S101 initial settings are performed.
  • the operator sets an object in the optical system 40 and inputs optical parameters, reference values, and the maximum number of searches to the setting input unit 10 . It is necessary to prepare a plurality of sets of optical parameters (x, y) to be input here.
  • the initial settings can be determined by round robin, or by using an experiment design method using an orthogonal array.
  • the setting input section 10 stores the input optical parameters in the optical parameter storage section 20 .
  • optical parameters stored in the optical parameter storage unit 20 in step S102 are sequentially selected and output to the optical system control unit 30. Although the order in which the optical parameters are selected is not determined, all the optical parameters stored in the optical parameter storage section 20 are selected in order and output to the optical system control section 30 .
  • step S103 the optical system control unit 30 changes the position, angle, illuminance, etc. of the optical system 40 based on the optical parameters selected in step S102, and photographs the object.
  • the image of the object captured by the optical system 40 is output to the image processing section 50 .
  • step S104 the image processing unit 50 performs image processing on the image of the object captured by the optical system 40, and calculates the area of the foreign matter as a feature amount.
  • Image processing for measuring the area of a foreign substance may include an algorithm for measuring the area by labeling after binarization.
  • the calculated feature amount is output to the evaluation unit 61 .
  • step S105 the image processing unit 50 compares the reference value input to the setting input unit 10 with the feature amount.
  • the search for the optical parameter ends, and the image processing unit 50 outputs the feature amount satisfying the reference value or the image of the feature amount satisfying the reference value before image processing to the image acquisition unit 70 .
  • the image acquisition unit 70 outputs the image of the object photographed by the optical parameters found by searching to the image display unit 80, and the image display unit 80 displays the image.
  • the feature amount calculated by the image processing unit 50 is output to the evaluation unit 61 .
  • step S106 the evaluation unit 61 calculates an objective function based on the feature amount input from the image processing unit 50 and outputs it to the approximation function creation unit 62.
  • the objective function is the absolute value of the difference between the area of the foreign matter and the actual area of the foreign matter.
  • a small objective function means that the difference between the area of a real foreign substance and the feature amount calculated by image processing is small. Therefore, an optical parameter that reduces the value of the objective function is searched for.
  • step S ⁇ b>107 the approximate function creation unit 62 creates an approximate function from the objective function output from the evaluation unit 61 .
  • the created approximation function is output to the search section 63 .
  • the approximation function f(x, y) as shown in Equation (1) is a quadratic function, but not only polynomials but also Gaussian functions can be used. where A to F are coefficients.
  • step S108 the search unit 63 selects the parameter set (xa, ya) with the smallest objective function as the reference parameter set, and calculates the gradient ⁇ f(xa, ya) of the approximate function f(x, y) in the reference parameter set as calculate.
  • the gradient ⁇ f(xa, ya) is a vector whose components are obtained by differentiating each component of the approximation function f(x, y). Calculating the gradient ⁇ f(xa, ya) using the equation (1) results in the following equation (2).
  • the direction of the parameter with a large gradient means that the parameter has a large contribution to the objective function. In other words, since the slope of the approximation function is steep, even a slight change in the parameters will cause a large change in the value of the objective function.
  • the direction of a parameter with a small gradient means that the value of the objective function does not change even if the value of the parameter is changed, and the need for searching is small.
  • the optical parameter space is multi-dimensional and complicated, but the use of the gradient facilitates the search for the optical parameters.
  • one or more parameter sets arranged in the direction of one or more selected parameters near the parameter set (xa, ya) are stored as new optical parameters. Output to the unit 20 and add.
  • step S109 when the number of parameter searches exceeds the value input in step S101, the search is terminated, and the image acquired by the optical parameter with the smallest objective function is output by the image acquisition unit 70 and displayed on the image display unit 80. do. If the number of parameter searches does not exceed the value input to the setting input unit 10 in step S101, the additional optical parameters searched and found by the search unit 63 are added to the optical parameter storage unit 20, and steps are sequentially executed again from step S102.
  • the search unit 63 selects one or more parameter directions that maximize the component of the gradient ⁇ f(xa, ya) in the reference parameter set (xa, ya) of the approximation function f(x, y). That is, when the search unit 63 selects one parameter direction in which the component of the gradient ⁇ f(xa, ya) in the reference parameter set (xa, ya) of the approximation function f(x, y) is maximized, the reference Add one or more parameter sets that are placed in the direction of the selected parameter in the vicinity of the parameter set (xa, ya).
  • the reference parameter set (xa, ya) of the approximation function f(x, y) Add one or more parameter sets that are arranged in a direction that is a composite of the directions of two or more selected parameters in the vicinity of ya).
  • FIG. 4 is a diagram showing an optical parameter set (x, y) input to the setting input section 10.
  • possible values of the parameter x are x1, x2, x3, x4 and x5
  • possible values of the parameter y are y1, y2, y3, y4 and y5.
  • FIG. 5 illustrates an example of additional optical parameter sets found by searching based on the reference parameter set (xa, ya) with the smallest objective function.
  • the reference parameter set (xa, ya) is illustrated as (x2, y2), (x3, y4), (x4, y3) in FIG. 5, three points are illustrated for the following explanation.
  • the reference parameter set to be set in one optical parameter search is a set of optical parameter sets.
  • the component that maximizes the component of the gradient ⁇ f(x2, y2) in the reference parameter set (x2, y2) is the y component.
  • (x2, y6) and (x2, y7) adjacent to (x2, y2) in the y direction are added to the optical parameter storage unit 20 as additional optical parameter sets for search.
  • the values of the additional optical parameters newly added at this time are, for example, x6 and x7 shown in FIG. Intermediate values can also be used. Alternatively, the value can be determined by weighting according to the magnitude of the gradient. Specifically, when an intermediate value is used, x6 is defined as in equation (3). x7, x8, y6, y7, and y8 can also be calculated using similar formulas.
  • x6 is determined as in equation (4) where the weights are Wx2 and Wx3.
  • x7, x8, y6, y7, and y8 can also be calculated using similar formulas.
  • the x component be the maximum component of the gradient ⁇ f (x3, y4) in the reference parameter set (x3, y4).
  • (x6, y4) and (x7, y4) adjacent to (x3, y4) in the x direction are added to the optical parameter storage unit 20 as additional optical parameter sets for search.
  • the x component and the y component be the maximum component of the gradient ⁇ f(x4, y3) in the reference parameter set (x4, y3).
  • adjacent (x7, y7) and (x8, y8) in the combined direction of the x and y directions of (x4, y3) are optical parameter storages as additional parameter sets for searching. Added to section 20 .
  • optical parameters other than the optical parameters initially set in S101 For example, when three angles of illumination of 20°, 30°, and 40° are input as initial settings, 25°, which is the value between them, or 50°, which is outside the range of the initial settings, is output as the optimum optical parameter. sometimes Therefore, it is possible to search and find the optimum optical parameters without strictly determining the initial setting values.
  • 90° may be output as the optimum optical parameter. can. Based on the approximation function output in this way, it is possible to predict what result will be obtained at which parameter, so that the parameter values can be determined in consideration of the restrictions of the device and the object.
  • the parameters of the optical system 40 can be searched automatically and comprehensively. In addition, it can be used universally regardless of objects and algorithms.
  • Embodiment 1 an example was described in which two parameter sets adjacent to the reference parameter set in the x direction, the y direction, or a direction in which the x direction and the y direction are synthesized are used as additional parameter sets for search. is not limited to For example, around the reference parameter set, n parameter sets in the +x direction and n parameter sets in the -x direction may be added as search parameter sets. The same applies to the y-direction and the direction obtained by synthesizing the x-direction and the y-direction, so the explanation is omitted.
  • Embodiment 2 shows the image processing apparatus 1 that searches for optical parameters based on an image actually captured by the optical system 40 and acquired.
  • an image of the optical system that is not actually captured is estimated, and the optical parameter is searched for including the estimated image.
  • the device 100 is shown.
  • the image processing apparatus 100 newly includes an image estimation unit 90 .
  • the rest of the configuration is the same as that of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 6 is a configuration diagram of the image processing apparatus 100 according to this embodiment.
  • the image processing apparatus 100 includes a setting input unit 10, an optical parameter storage unit 20, an optical system control unit 30, an optical system 40, an image processing unit 50, an evaluation unit 61, an approximate function creation unit 62, and a search unit. 63.
  • the parameters of the optical system 40 can be searched automatically and exhaustively. In addition, it can be used universally regardless of objects and algorithms.
  • the image processing apparatus 100 includes an image estimating section 90 .
  • the image estimation unit 90 estimates an image that is not actually captured and acquired by the optical system 40 from a plurality of images captured by the optical system 40 with different optical parameters. For example, when the optical system 40 captures an image of the object using two different illuminations and acquires two images, the image estimation unit 90 simultaneously uses the two different illuminations to obtain the optical system image from the two images. 40 estimates and acquires an image that can be obtained when the object is photographed. In other words, the image obtained by the image estimating section 90 is an image obtained when photographing in an environment that matches the photographing environment of each base image.
  • the estimation method will be described in detail with specific examples.
  • the image obtained by photographing with the first illumination is image A
  • the image obtained by photographing with the second illumination is image B.
  • F1(x, y) be the luminance value at the position (x, y) of the image A
  • F2(x, y) be the luminance value at the position (x, y) of the image B.
  • FIG. At this time, assuming that the luminance value G(x, y) at the estimated position (x, y) of the image, G(x, y) is expressed by the following equation. Note that a, b, and c are all positive constants.
  • the image estimation unit 90 can estimate and acquire an image.
  • c is the value of the image A.
  • FIG. 7 is a flowchart showing the processing procedure of the image processing apparatus 100 according to this embodiment. Since steps other than step S110 are the same as those in the first embodiment, description thereof is omitted.
  • step S110 the image estimation unit 90 calculates luminance values from the image output from the optical system 40 and estimates the image.
  • the image obtained by the estimation by the image estimation unit 90 is output to the image processing unit 50 .
  • the image processing apparatus 100 includes the image estimating unit 90, and the image estimating unit 90 estimates an image obtained by photographing using optical parameters that are not actually photographed, based on an image obtained by actually photographing. Acquired by As a result, it is possible to comprehensively search for optical parameters. In addition, it is possible to save the operator the trouble of changing the optical parameters and retaking the photograph.
  • the image processing apparatus 100 in which the image estimation unit 90 is separately provided as shown in FIG. 6 has been described. good.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

光学系のパラメータ調整を自動かつ網羅的に行い、撮影する対象物および検査アルゴリズムを選ばず汎用的に利用可能な画像処理装置を得る。 画像処理装置(1)は、対象物の撮影を行う光学系(40)と、画像処理部(50)により算出された特徴量より目的関数を算出する評価部(61)と、評価部(61)が算出した目的関数により近似関数を算出する近似関数作成部(62)と、目的関数が最小となる光学パラメータを基準パラメータセットとし、基準パラメータセットにおける近似関数作成部(62)により出力された近似関数の勾配を算出し、勾配が最大となる方向の近傍の新たな追加光学パラメータを新たな光学パラメータとして光学パラメータ記憶部(20)へ追加する探索部(63)と、を備える。

Description

画像処理装置および画像処理方法
 本開示は対象物を撮影する画像処理装置および画像処理方法に関する。
 画像検査においてS/N比が高い画像を撮影することは重要である。しかし画像撮影において照明の強度、カメラの角度等の光学系のパラメータ調整は、オペレータが経験に基づいて行うことが多い。
 従来技術にはオートフォーカス、寸法測定等特定の処理を対象として自動的に光学系のパラメータを決定する手法がある。例えば、照明条件を測定対象箇所に応じて自動的に調整する画像測定器が開示されている。(例えば、特許文献1参照)
特開2018-54635号公報
 上記の画像測定器は照明条件を自動的に調整して撮影した画像をオペレータが目視し、S/N比が高い画像を手動により選択する。しかし光学系のパラメータ調整において探索すべきパラメータ空間は非常に複雑であり、光学系のパラメータ調整を自動かつ網羅的に行うことは困難である。また画像検査の対象物や検査アルゴリズムは多くの種類があり、汎用的に対応することが困難である。
 本開示は上述のような課題を解決するためになされたものであり、光学系のパラメータ調整を自動かつ網羅的に行い、撮影する対象物および検査アルゴリズムを選ばず汎用的に利用可能な画像処理装置を得ることを目的としている。
 本開示にかかる画像処理装置は、対象物の撮影を行う光学系と、オペレータが光学系の光学パラメータを入力する設定入力部と、設定入力部に入力された光学パラメータを記憶する光学パラメータ記憶部と、光学パラメータ記憶部に記憶した光学パラメータに基づいて光学系を配置する光学系制御部と、光学系制御部により配置された光学系が出力した対象物の画像より特徴量を算出する画像処理部と、画像処理部により算出された特徴量より目的関数を算出する評価部と、評価部が算出した目的関数により近似関数を算出する近似関数作成部と、目的関数が最小となる光学パラメータを基準パラメータセットとし、基準パラメータセットにおける近似関数作成部により出力された近似関数の勾配を算出し、勾配が最大となる方向の近傍の新たな追加光学パラメータを新たな光学パラメータとして光学パラメータ記憶部へ追加する探索部とを備えたものである。
 また、本開示にかかる画像処理方法は、光学系を用いて対象物の撮影を行うステップと、光学系の光学パラメータを入力するステップと、入力された前記光学パラメータを記憶するステップと、記憶した前記光学パラメータに基づいて前記光学系を配置するステップと、配置された前記光学系が出力した前記対象物の画像より特徴量を算出するステップと、算出された前記特徴量より目的関数を算出するステップと、算出した前記目的関数により近似関数を算出するステップと、前記目的関数が最小となる前記光学パラメータを基準パラメータセットとし、前記基準パラメータセットにおける前記近似関数の勾配を算出し、前記勾配が最大となる方向の近傍の新たな追加光学パラメータを新たな前記光学パラメータとして記憶するステップとを備えたものである。
 本開示の画像処理装置によれば、光学系のパラメータ調整を自動かつ網羅的に行うことができる。また、対象物に合わせたアルゴリズムを使用することにより対象物を選ばず汎用的に使用できるという効果を有する。
 また、本開示の画像処理方法によれば、光学系のパラメータ調整を自動かつ網羅的に行うことができる。また、対象物に合わせたアルゴリズムを使用することにより対象物を選ばず汎用的に使用できるという効果を有する。
実施の形態1にかかる画像処理装置の構成図である。 実施の形態1にかかる画像処理装置のハードウェア構成図である。 実施の形態1にかかる画像処理装置の処理手順を示すフローチャートである。 実施の形態1にかかる画像処理装置の設定入力部における光学パラメータセット例である。 実施の形態1にかかる画像処理装置の探索部における追加光学パラメータセット例である。 実施の形態2にかかる画像処理装置の構成図である。 実施の形態2にかかる画像処理装置の処理手順を示すフローチャートである。
 以下に、実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は例示である。また各実施の形態は、適宜組み合わせて実行することができる。
 実施の形態1
 図1は実施の形態1にかかる画像処理装置の構成図である。図2は実施の形態1にかかる画像処理装置のハードウェア構成図である。図3は実施の形態1にかかる画像処理装置の処理手順を示すフローチャートである。図4は実施の形態1にかかる画像処理装置の設定入力部における光学パラメータセット例である。図5は実施の形態1にかかる画像処理装置の探索部における追加光学パラメータセット例である。
 図1に示す画像処理装置1は、光学パラメータを入力する設定入力部10と、光学パラメータを記憶する光学パラメータ記憶部20と、光学系を配置する光学系制御部30と、対象物を撮影する光学系40と、撮影した対象物の画像より特徴量を算出する画像処理部50と、光学パラメータを探索するパラメータ算出部60と、画像を収集する画像収集部70と、画像を出力する画像表示部80とを備えている。
 図2は、実施の形態1にかかる画像処理装置1のハードウェア構成図である。画像処理装置1は、CPU(Central Processing Unit)などのプロセッサ2、RAM(Random Access Memory)などのメモリ3、ディスプレイ4および入力インターフェイス(I/F)5を備えて構成される。光学パラメータ記憶部20、光学系制御部30、光学系40、画像処理部50、パラメータ算出部60および画像収集部70は、プロセッサ2がメモリ3に格納されたプログラムを実行することによって実現する。ただし、これらは、例えば複数のプロセッサ2が連携して実現されても良い。
 設定入力部10はオペレータが光学パラメータ、基準値および最大探索回数を入力し初期設定を行う。光学パラメータとはカメラ、照明等の光学系40の位置、角度および照度等の値の組である。基準値とは光学系40において撮影した対象物の画像処理結果である特徴量との比較を行う値のことである。最大探索回数は探索部63において光学パラメータを探索する上限回数のことである。
 光学パラメータ記憶部20はオペレータが設定入力部10に入力した光学パラメータ、基準値および最大探索回数を記憶する。光学パラメータ記憶部20が記憶した光学パラメータ、基準値および最大探索回数は画像処理部50へ出力する。
 光学系制御部30は光学パラメータ記憶部20に記憶した光学パラメータの中から1つ選択し、光学系40の位置、角度および照度等を変更する。
 光学系40はカメラ、照明、ステージおよびそれらを移動させる機構をいう。その数は1つでも複数でも良く、また照明の種類も問わず例えば透過照明、同軸照明等を用いる。光学系40は光学系制御部30において選択された光学パラメータにより対象物を撮影し、撮影した対象物の画像を画像処理部50へ出力する。また、撮影した対象物の画像は画像収集部70へ出力し記録する。
 画像処理部50は光学系40から入力された対象物の画像を画像処理し、特徴量を算出して評価部61へ出力する。特徴量とは、画像処理した結果である。特徴量は入力した光学パラメータの良し悪しを評価するための値であり、設定入力部10に入力した基準値との比較を行う際に用いる。画像処理は対象物等に応じて任意のアルゴリズムを使用できる。特徴量は任意のアルゴリズムによって変わるが、例えば対象物と背景との輝度差、対象物上の異物の面積等が用いられる。また特徴量は撮影した1つの画像から1つ算出することもあれば複数算出する場合もある。
 また画像処理部50は光学パラメータ記憶部20より入力された光学パラメータ、基準値および最大探索回数をもとに、基準値を満たすまたは基準値に最も近い特徴量が算出された画像処理前の対象物の画像を画像収集部70へ出力する。画像収集部70へ出力する画像は画像処理前の対象物の画像に限らず、基準値を満たすまたは基準値に最も近い特徴量が算出された光学パラメータを出力してもよい。
 パラメータ算出部60は評価部61、近似関数作成部62および探索部63からなる。評価部61は画像処理部50から出力された特徴量をもとに目的関数を算出し近似関数作成部62へ出力する。目的関数とは光学系40において撮影した画像の良し悪しを評価するための値であり、例えば特徴量が基準値からどの程度離れているかを指標にする。また1つの画像から得られる目的関数の値は1つに限られる。
 近似関数作成部62は評価部61より算出された目的関数から近似関数を作成し、探索部63へ出力する。近似関数は種類を問わないが、例えば二次関数、ガウス関数等が用いられる。
 探索部63は、評価部61において特徴量をもとに算出した目的関数が最小となる光学パラメータすなわち基準パラメータセットにおける、近似関数作成部62により出力された近似関数の勾配を算出し、勾配が最大となる方向の近傍の新たな追加光学パラメータを新たな光学パラメータとして光学パラメータ記憶部20へ出力する。光学パラメータの探索方法についてはフローチャートを用いて詳細を後述する。
 画像収集部70は光学系40において撮影された対象物の画像を収集する。画像収集部70は、画像処理部50から出力された基準値を満たすまたは基準値に最も近い特徴量の画像処理前の対象物の画像を画像表示部80へ出力する。画像処理部50が光学パラメータを出力する場合、対象物の画像と紐づけをし、画像処理部50が出力した光学パラメータにより撮影された対象物の画像を画像表示部80へ出力する。
 画像表示部80は画像収集部70が入力したパラメータ算出部60において探索し見つかった目的関数が最も小さい光学パラメータにより撮影した画像を表示する。
 図1に図示した画像処理装置1は一例であり、画像収集部70を構成しない画像処理装置1も考えられる。その場合、画像処理部50が出力した基準値を満たすまたは基準値に最も近い特徴量が算出された画像処理前の対象物の画像を画像表示部80に出力することにより本開示に記載の効果を同様に得られる。
 次に処理手順についてフローチャートを用いて説明する。図3は実施の形態1にかかる画像処理装置1の処理手順を示すフローチャートである。本開示において適用するアルゴリズムに制限は無いが、以下では例として対象物上の異物の有無を検査し、特徴量は異物の面積を使用する場合を説明する。また光学パラメータはカメラ位置xと照明の位置yから成る光学パラメータ(x、y)について説明する。
 図3に示すようにステップS101においては、初期設定を行う。オペレータは、対象物を光学系40にセットし、設定入力部10に光学パラメータ、基準値および最大探索回数を入力する。ここで入力する光学パラメータ(x、y)は複数組用意する必要がある。初期設定の定め方としては総当たりにより定めることも可能であるし、もしくは直交表を用いた実験計画法等を用いて定めることも可能である。設定入力部10は入力した光学パラメータを光学パラメータ記憶部20に記憶させる。
 ステップS102において光学パラメータ記憶部20が記憶した光学パラメータを順に選択し、光学系制御部30へ出力する。光学パラメータを選択する順番は決まっていないが、光学パラメータ記憶部20に記憶されているすべての光学パラメータを順番に選択し光学系制御部30へ出力する。
 ステップS103ではステップS102において選択された光学パラメータをもとに光学系制御部30が光学系40の位置、角度および照度等を変更し対象物を撮影する。光学系40が撮影した対象物の画像は画像処理部50に出力される。
 ステップS104において画像処理部50は光学系40が撮影した対象物の画像を画像処理し、特徴量として異物の面積を算出する。異物の面積を測定する場合の画像処理としては、二値化した後、ラベリング処理により面積を測定するアルゴリズムが考えられる。算出した特徴量は評価部61へ出力される。
 ステップS105において画像処理部50は設定入力部10に入力された基準値と特徴量との比較を行う。特徴量が基準値を満たす場合、光学パラメータの探索を終了し、画像処理部50は基準値を満たす特徴量または基準値を満たす特徴量の画像処理前の画像を画像収集部70へ出力する。そして画像収集部70は探索して見つかった光学パラメータにより撮影された対象物の画像を画像表示部80へ出力し、画像表示部80が表示する。
 特徴量が基準値を満たさない場合、画像処理部50が算出した特徴量を評価部61へ出力する。
 ステップS106では評価部61が画像処理部50より入力された特徴量をもとに目的関数を算出し近似関数作成部62に出力する。
 本実施例では異物の面積および実際の異物の面積の差の絶対値を目的関数とする。目的関数が小さいことは実物の異物の面積と画像処理により算出した特徴量との差が小さいことを意味する。そのため、目的関数の値が小さくなるような光学パラメータを探索する。
 ステップS107において近似関数作成部62は、評価部61より出力された目的関数から近似関数を作成する。作成した近似関数は探索部63へ出力される。以下では例として式(1)のような近似関数f(x、y)が二次関数の場合を説明するが、使用できる関数は多項式だけでなくガウス関数なども用いることができる。ここで、AからFは、係数である。
Figure JPOXMLDOC01-appb-M000001
 ステップS108において探索部63は、目的関数が最も小さいパラメータセット(xa、ya)を基準パラメータセットとして選択し、基準パラメータセットにおける近似関数f(x、y)の勾配∇f(xa、ya)を算出する。ここで勾配∇f(xa、ya)は近似関数f(x、y)の各成分について微分をとったものを成分とするベクトルである。式(1)を用いて勾配∇f(xa、ya)を算出すると以下の式(2)のようになる。
Figure JPOXMLDOC01-appb-M000002
 この勾配が大きいパラメータの方向は目的関数への寄与が大きいパラメータであることを意味する。つまり近似関数の傾きが急なため、わずかなパラメータの変化であっても目的関数の値が大きく変化することを意味する。一方で、勾配が小さいパラメータの方向はパラメータの値を変更しても目的関数の値に変化がないことを意味し、探索する必要性が小さい。
 このように探索する光学パラメータの方向を絞ることで総当たりやランダムに探索を行うより効率的かつ素早く光学パラメータを見つけることができる。また一般に光学パラメータ空間は多次元であり複雑なものになるが、勾配を利用することにより光学パラメータの探索を容易に行うことができる。
 勾配∇f(xa、ya)に基づいて、パラメータセット(xa、ya)の近傍の選択した1個以上のパラメータの方向に配置される1個以上のパラメータセットを新たな光学パラメータとして光学パラメータ記憶部20に出力し、追加する。
 このように勾配をもとに光学パラメータの探索を行うことにより、基準値と目的関数との差が大きくても効率よくパラメータを探索することができる。
 ステップS109においては、パラメータの探索回数がステップS101において入力した値を超えた場合、探索を終了し目的関数が最も小さい光学パラメータにより撮影した画像を画像収集部70が出力し画像表示部80に表示する。パラメータの探索回数がステップS101において設定入力部10に入力した値を超えない場合、探索部63が探索し見つけた追加光学パラメータを光学パラメータ記憶部20に追加し、再度ステップS102から順に実行する。
 このようにパラメータを少しずつ変化させ、近似関数を繰り返し作成することにより網羅的に光学パラメータを探索することができる。
 次に光学パラメータの探索方法について詳細を説明する。
 探索部63は、近似関数f(x、y)の基準パラメータセット(xa、ya)における勾配∇f(xa、ya)の成分が最大となる1個以上のパラメータの方向を選択する。すなわち探索部63は、近似関数f(x、y)の基準パラメータセット(xa、ya)における勾配∇f(xa、ya)の成分が最大となる1個のパラメータの方向を選択したときには、基準パラメータセット(xa、ya)の近傍の選択したパラメータの方向に配置される1個以上のパラメータセットを追加する。
 一方で近似関数f(x、y)の基準パラメータセット(xa、ya)における勾配∇f(xa、ya)の成分が最大となる2個以上のパラメータを選択したときには、基準パラメータセット(xa、ya)の近傍の選択した2個以上のパラメータの方向を合成した方向に配置される1個以上のパラメータセットを追加する。
 図4および図5を用いて説明をする。図4は、設定入力部10に入力された光学パラメータセット(x、y)を示す図である。図4よりパラメータxの取り得る値は、x1、x2、x3、x4、x5であり、パラメータyの取り得る値は、y1、y2、y3、y4、y5である。
 図5は、目的関数が最も小さくなる基準パラメータセット(xa、ya)をもとに探索し見つかった追加光学パラメータセットの例を図示している。図5には基準パラメータセット(xa、ya)を、(x2、y2)、(x3、y4)、(x4、y3)と図示しているが、以降の説明のために3点図示しているに過ぎず、1度の光学パラメータ探索時において設定する基準パラメータセットは一組の光学パラメータセットである。
 図5より例えば、基準パラメータセット(x2,y2)における勾配∇f(x2、y2)の成分が最大となる成分がy成分とする。この場合、(x2、y2)のy方向の隣接する(x2、y6)および(x2、y7)が探索用の追加光学パラメータセットとして光学パラメータ記憶部20に追加される。この時新たに追加される追加光学パラメータの値は、例えば図5に示すx6およびx7のように基準パラメータセット(x3、y4)の隣のパラメータセット(x2、y4)および(x4、y4)の値との中間の値を用いることもできる。また他にも勾配の大きさに応じて重みづけして値を決定することもできる。具体的には中間の値を用いる場合は式(3)のようにx6を定める。x7、x8、y6、y7、y8についても同様の式で計算することができる。
Figure JPOXMLDOC01-appb-M000003
また重みづけする場合はその重みをWx2、Wx3としたとき式(4)のようにx6を定める。x7、x8、y6、y7、y8についても同様の式で計算することができる。
Figure JPOXMLDOC01-appb-M000004
 また別の例として基準パラメータセット(x3、y4)における勾配∇f(x3、y4)の成分が最大となる成分がx成分とする。この場合、図5に示すように(x3、y4)のx方向の隣接する(x6、y4)および(x7、y4)が探索用の追加光学パラメータセットとして光学パラメータ記憶部20に追加される。
 また別の例として基準パラメータセット(x4、y3)における勾配∇f(x4,y3)の成分が最大となる成分がx成分およびy成分とする。この場合、図5に示すように(x4、y3)のx方向およびy方向が合成された方向の隣接する(x7、y7)および(x8、y8)が探索用の追加パラメータセットとして光学パラメータ記憶部20に追加される。
 本開示は例としてはx、yの2つのパラメータの場合で説明したが実際にはパラメータの数には制限がないため、3つ以上のパラメータを選択しそれを組み合わせて方向を決定する場合も考えられる。
 上記のように光学パラメータを探索することでS101において初期設定した光学パラメータ以外の光学パラメータを探索することができる。例えば初期設定として照明の角度を20°、30°および40°の3つの角度を入力したときにその間の値である25°もしくは初期設定の範囲外である50°が最適な光学パラメータとして出力されることもある。そのため初期設定の値を厳密に決めなくても最適な光学パラメータを探索し見つける
ことができる。
 また、例えば照明の角度が20°および90°の時の結果が同等であるとき、対象物の形状から90°の方が撮影しやすい場合には90°を最適な光学パラメータとして出力することもできる。このように出力された近似関数をもとにどのパラメータの時にどんな結果になるかを予想することができるため装置や対象物の制約を加味してパラメータの値を決定することもできる。
 以上のように本開示によれば、光学系40のパラメータを自動かつ網羅的に探索することができる。また対象物およびアルゴリズムを選ばず汎用的に使用することができる。
 変形例.
 上記の実施の形態に限定されるものではなく、例えば以下のような変形例も可能である。
 実施の形態1において、基準パラメータセットとx方向、y方向、またはx方向とy方向とが合成された方向に隣接する2つのパラメータセットを探索用の追加パラメータセットとする例を説明したがこれに限定されるものではない。例えば基準パラメータセットを中心にして、+x方向にn個のパラメータセット、および-x方向にn個のパラメータセットを探索用のパラメータセットとして追加してもよい。y方向およびx方向とy方向とが合成された方向についても、同様であるため説明を省略する。
 実施の形態2
 実施の形態1では、実際に光学系40にて撮影して取得した画像を基に光学パラメータの探索を行う画像処理装置1を示した。本実施の形態では、光学系40にて撮影して取得した画像を基に、実際には撮影していない光学系の画像を推定し、推定した画像も含めて光学パラメータの探索を行う画像処理装置100を示す。画像処理装置100は画像推定部90を新たに備える。それ以外の構成は実施の形態1と同様であり、実施の形態1と同じ構成には同じ番号を付し、説明は省略する。
 図6は本実施の形態にかかる画像処理装置100の構成図である。図6に示すように画像処理装置100は、設定入力部10、光学パラメータ記憶部20、光学系制御部30、光学系40、画像処理部50、評価部61、近似関数作成部62および探索部63を備えている。この構成により、光学系40のパラメータを自動かつ網羅的に探索することができる。また対象物およびアルゴリズムを選ばず汎用的に使用することができる。
 さらに、本実施の形態にかかる画像処理装置100は、画像推定部90を備えている。
 画像推定部90は、光学系40において対象物を異なる光学パラメータにより撮影し取得した複数の画像より、実際には光学系40にて撮影し取得した画像ではない画像を推定する。例えば、光学系40が互いに異なる2つの照明を用いて対象物を撮影し、2枚の画像を取得した場合、画像推定部90は2枚の画像より、異なる2つの照明を同時に用いて光学系40が対象物を撮影した際に得ることのできる画像を推定して取得する。つまり、画像推定部90において得られる画像は、基にする画像各々の撮影環境を合わせた環境で撮影した際に得られる画像である。以下、推定方法について、具体例を挙げて詳細を述べる。
 光学系40において、第1の照明により撮影し得られた画像を画像A、第2の照明により撮影し得られた画像を画像Bとする。そして、画像Aの位置(x、y)における輝度値をF1(x、y)、画像Bの位置(x、y)における輝度値をF2(x、y)とする。このとき、推定される画像の位置(x、y)における輝度値G(x、y)とすると、G(x、y)は以下の式で表される。なお、a、b、cはいずれも正の定数とする。
Figure JPOXMLDOC01-appb-M000005
 式(5)を用いてすべての位置における輝度値を算出することにより、画像推定部90は画像を推定して取得することができる。なお、正の定数a、b、cについて、例えば第1の照明、第2の照明を同時に点灯した場合の画像を推定する場合には、a=1、b=1とし、cは画像Aの位置(x、y)における輝度値F1(x、y)および画像Bの位置(x、y)における輝度値F2(x、y)を平均して-1倍した値として式(5)を計算することにより算出できる。また、第1の照明を通常点灯時の明るさの半分の明るさで点灯し、第2の照明は通常点灯させた際の画像を推定する場合には、a=0.5、b=1とし、cは画像Aの位置(x、y)における輝度値F1(x、y)および画像Bの位置(x、y)における輝度値F2(x、y)を平均して-1倍した値として式(5)を計算することにより算出できる。
 図7は、本実施の形態にかかる画像処理装置100の処理手順を示すフローチャートである。なお、ステップS110以外は実施の形態1と同様であるため説明を省略する。
 ステップS110において、画像推定部90は光学系40より出力された画像より、輝度値を算出して画像を推定する。画像推定部90が推定により得た画像は画像処理部50へ出力される。
 以上より、画像処理装置100は画像推定部90を備え、画像推定部90は実際に撮影して得た画像を基に、実際に撮影をしていない光学パラメータにより撮影して得られる画像を推定により取得する。これにより、網羅的に光学パラメータの探索を行うことができる。また、光学パラメータを変更して撮影をし直すという作業者の手間を省くことができる。
 なお、本実施の形態では、図6に示すように画像推定部90を別途設けた画像処理装置100を説明したが、これに限らず画像推定部90は画像処理部50に設けられていてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではない。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1、100 画像処理装置、2 プロセッサ、3 メモリ、4 ディスプレイ、5 入力インターフェイス、10 設定入力部、20光学パラメータ記憶部、30 光学系制御部、40光学系、50 画像処理部、60 パラメータ算出部、61 評価部、62 近似関数作成部、63 探索部、70 画像収集部、80 画像表示部、90 画像推定部

Claims (7)

  1.  対象物の撮影を行う光学系と、
     オペレータが前記光学系の光学パラメータを入力する設定入力部と、
     前記設定入力部に入力された前記光学パラメータを記憶する光学パラメータ記憶部と、
     前記光学パラメータ記憶部に記憶した前記光学パラメータに基づいて前記光学系を配置する光学系制御部と、
     前記光学系制御部により配置された前記光学系が出力した前記対象物の画像より特徴量を算出する画像処理部と、
     前記画像処理部により算出された前記特徴量より目的関数を算出する評価部と、
     前記評価部が算出した前記目的関数により近似関数を算出する近似関数作成部と、
     前記目的関数が最小となる前記光学パラメータを基準パラメータセットとし、前記基準パラメータセットにおける前記近似関数作成部により出力された前記近似関数の勾配を算出し、前記勾配が最大となる方向の近傍の新たな追加光学パラメータを新たな前記光学パラメータとして前記光学パラメータ記憶部へ追加する探索部と、
     を備える画像処理装置。
  2.  前記評価部は前記画像処理部より算出された前記特徴量と基準値との比較により前記目的関数を算出することを特徴とする請求項1に記載の画像処理装置。
  3.  前記設定入力部に最大探索回数を入力し、探索回数が前記最大探索回数を超えた場合に前記光学パラメータの探索を終了することを特徴とする請求項1または2に記載の画像処理装置。
  4.  前記特徴量が前記基準値を満たす前記光学パラメータが得られた場合に前記光学パラメータの探索を終了することを特徴とする請求項2に記載の画像処理装置。
  5.  前記探索が終了したときに前記目的関数が最も小さい前記光学パラメータにおいて撮影した画像を画像表示部に出力することを特徴とする請求項3または4のいずれか一項に記載の画像処理装置。
  6.  前記光学系が出力した前記対象物の画像より画像の推定を行う画像推定部を備える請求項1に記載の画像処理装置。
  7.  光学系を用いて対象物の撮影を行うステップと、
     前記光学系の光学パラメータを入力するステップと、
     入力された前記光学パラメータを記憶するステップと、
     記憶した前記光学パラメータに基づいて前記光学系を配置するステップと、
     配置された前記光学系が出力した前記対象物の画像より特徴量を算出するステップと、
     算出された前記特徴量より目的関数を算出するステップと、
     算出した前記目的関数により近似関数を算出するステップと、
     前記目的関数が最小となる前記光学パラメータを基準パラメータセットとし、前記基準パラメータセットにおける前記近似関数の勾配を算出し、前記勾配が最大となる方向の近傍の新たな追加光学パラメータを新たな前記光学パラメータとして記憶するステップと、
     を備える画像処理方法。
PCT/JP2022/040899 2021-11-17 2022-11-01 画像処理装置および画像処理方法 WO2023090152A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023561514A JP7574947B2 (ja) 2021-11-17 2022-11-01 画像処理装置および画像処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021186736 2021-11-17
JP2021-186736 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023090152A1 true WO2023090152A1 (ja) 2023-05-25

Family

ID=86396811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040899 WO2023090152A1 (ja) 2021-11-17 2022-11-01 画像処理装置および画像処理方法

Country Status (1)

Country Link
WO (1) WO2023090152A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270163A (ja) * 2002-03-15 2003-09-25 Dainippon Printing Co Ltd 検査方法および装置
JP2019158602A (ja) * 2018-03-13 2019-09-19 オムロン株式会社 外観検査装置、外観検査方法及びプログラム
US20190302004A1 (en) * 2018-04-03 2019-10-03 Hiwin Technologies Corp. Adaptive Method for a Light Source
JP2021092439A (ja) * 2019-12-10 2021-06-17 池上通信機株式会社 照明最適化方法、制御装置、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270163A (ja) * 2002-03-15 2003-09-25 Dainippon Printing Co Ltd 検査方法および装置
JP2019158602A (ja) * 2018-03-13 2019-09-19 オムロン株式会社 外観検査装置、外観検査方法及びプログラム
US20190302004A1 (en) * 2018-04-03 2019-10-03 Hiwin Technologies Corp. Adaptive Method for a Light Source
JP2021092439A (ja) * 2019-12-10 2021-06-17 池上通信機株式会社 照明最適化方法、制御装置、及びプログラム

Also Published As

Publication number Publication date
JPWO2023090152A1 (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
US8194136B1 (en) Systems and methods for lens characterization
JP6290720B2 (ja) 検査装置、検査方法およびプログラム
JP6765791B2 (ja) パターンマッチング用の基準画像セットの作成方法、パターンマッチング用の基準画像セットの作成装置、ワークの認識方法、プログラム、及び記録媒体
CN112033965B (zh) 基于差分图像分析的3d弧形表面缺陷检测方法
TWI785216B (zh) 結合模擬及光學顯微鏡以判定檢查模式
JP2009086920A (ja) 検査装置及び検査方法
TW201100779A (en) System and method for inspecting a wafer (3)
US10803576B2 (en) Defect inspection apparatus and defect inspection method
US8238647B2 (en) Method and system for defect detection
JP2020154317A (ja) 医療用システム及び医療用画像処理方法
JP2007503605A (ja) 画像処理のための画像プロセッサ及び方法
JP2011163916A (ja) 欠陥判定装置および欠陥判定方法
JP2017150878A (ja) 画像処理装置、撮像装置および画像処理プログラム
Ciortan et al. A practical reflectance transformation imaging pipeline for surface characterization in cultural heritage
JP5599849B2 (ja) レンズ検査装置及びその方法
Pan et al. Automatic optimal camera exposure time control for digital image correlation
WO2023090152A1 (ja) 画像処理装置および画像処理方法
CN116843690B (zh) 图像质量评估方法、设备及系统
TW202206805A (zh) 用於光學目標檢索之光學影像對比度量
JP2010181247A (ja) 形状測定装置及び形状測定方法
JP4423347B2 (ja) 複眼測距装置の検査方法及び検査装置並びにそれに用いるチャート
JP5846895B2 (ja) 画像処理システム及びそれを備えた顕微鏡システム
WO2016170655A1 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2012004664A (ja) 画像処理装置、検査装置、画像処理方法および画像処理プログラム
JP2019022147A (ja) 光源方向推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023561514

Country of ref document: JP