TWI785216B - 結合模擬及光學顯微鏡以判定檢查模式 - Google Patents
結合模擬及光學顯微鏡以判定檢查模式 Download PDFInfo
- Publication number
- TWI785216B TWI785216B TW108108407A TW108108407A TWI785216B TW I785216 B TWI785216 B TW I785216B TW 108108407 A TW108108407 A TW 108108407A TW 108108407 A TW108108407 A TW 108108407A TW I785216 B TWI785216 B TW I785216B
- Authority
- TW
- Taiwan
- Prior art keywords
- noise
- mode
- ratios
- determining
- defect
- Prior art date
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 21
- 238000007689 inspection Methods 0.000 title claims abstract description 19
- 238000000399 optical microscopy Methods 0.000 title 1
- 230000007547 defect Effects 0.000 claims abstract description 55
- 230000003287 optical effect Effects 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims description 39
- 238000012360 testing method Methods 0.000 claims description 32
- 235000012431 wafers Nutrition 0.000 claims description 26
- 239000004065 semiconductor Substances 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 12
- 238000003384 imaging method Methods 0.000 claims description 11
- 238000009826 distribution Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 description 27
- 238000005286 illumination Methods 0.000 description 16
- 238000013500 data storage Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000006719 Cassia obtusifolia Nutrition 0.000 description 1
- 235000014552 Cassia tora Nutrition 0.000 description 1
- 244000201986 Cassia tora Species 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20224—Image subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
當無缺陷實例可用或僅有限數目個缺陷實例可用時,可判定用來偵測缺陷之一最佳光學檢查模式。可使用電磁模擬在複數個位點處且針對複數種模式判定一所關注缺陷之一信號。可在該複數個位點及該複數種模式之各組合下判定該所關注缺陷之該信號對雜訊之一比率。可基於該等比率判定具有最佳化信號對雜訊特性之一模式。
Description
本發明係關於判定一光學檢查模式。
半導體製造業之發展對良率管理且尤其對計量及檢查系統提出更高要求。臨界尺寸繼續縮小,但行業需要縮短用於達成高良率、高價值生產之時間。最小化自偵測一良率問題至修復它之總時間判定一半導體製造商之投資回報率。
製造半導體裝置(諸如邏輯及記憶體裝置)通常包含使用大量製程處理一半導體晶圓以形成半導體裝置之各種特徵及多個層級。例如,微影係一種涉及將一圖案自一主光罩轉移至配置於一半導體晶圓上之一光阻劑之半導體製程。半導體製程之額外實例包含但不限於化學機械拋光(CMP)、蝕刻、沈積及離子植入。可以單個半導體晶圓上之一配置製造多個半導體裝置,其等被分成個別半導體裝置。
尋找間隙缺陷係複雜且耗時的。通常,在後段(end of line)調查期間識別間隙缺陷。尋找間隙缺陷之當前技術係運行熱掃描或執行模擬。若缺陷密度係低的,則藉由運行熱掃描或依靠電子束工具來尋找缺陷實例可能需要很長時間。
當一樣本中不存在足夠所關注缺陷(DOI)時,判定一最佳光學檢查模式可具挑戰性,因為不存在統計資料來恰當地評估光學檢查模式。當存在不足雜訊實例時,判定一最佳光學檢查模式亦可具挑戰性。模擬雜訊係困難的,因為雜訊源係未知的。基於一光學影像,吾等無法判定雜訊是例如線邊緣粗糙度(LER)還是先前層中之一擾亂點。在一掃描電子顯微鏡(SEM)工具上,僅看見最上層(當前層)且先前層(下層)中之內容係未知的。此意謂著無法形成一模型來模擬雜訊,因為雜訊/擾亂點實際上看似如何係未知的。
先前使用一基於模擬之方法。形成印刷於晶圓上之結構之一模型。在模型上運行電磁模擬且計算缺陷及雜訊之信號強度。然而,此基於模擬之方法通常無法形成雜訊結構之一正確模型。通常難以形成一恰當雜訊模型且需要大量時間投入。通常,僅可識別雜訊源之一子集且預測經常出錯,因為雜訊源係未知的。
先前亦使用一光學件選擇器。光學件選擇器計算各種已知缺陷及擾亂點事件之信號及雜訊。當不存在DOI或僅少數DOI可用(情況通常如此)時,光學件選擇器可能出故障。歸因於有限的統計資料,有時無法識別最佳光學檢查模式且檢查無權運行。
運行電磁模擬來預測最佳模式係一替代方案,但此需要關於層堆疊之詳細資訊。判定什麼是限制雜訊源及如何模型化雜訊通常難以恰當地執行。
此外,僅當缺陷實例可用時可有效地執行工具上之光學模式選擇,此通常並非一間隙缺陷的情況。
因此,需要改良式系統及方法以判定用來偵測缺陷(諸如間隙缺陷)之一最佳光學檢查模式。
在一第一實施例中提供一種系統。該系統包括:一光源,其經組態以將一光束引導於一晶圓處;一偵測器,其收集自該晶圓反射之該光束;及一處理器,其與該偵測器進行電子通信。該處理器經組態以:針對複數種模式自該偵測器接收該晶圓之測試影像及參考影像;自該等測試影像及該等參考影像判定差分影像;在複數個位點處基於該等差分影像判定雜訊;使用電磁模擬在該複數個位點處且針對該複數種模式判定一所關注缺陷之一信號;在該複數個位點及該複數種模式之各組合下判定該所關注缺陷之該信號對該雜訊之一比率;及基於該等比率判定具有最佳化信號對雜訊特性之一模式。呈該等比率之各者之該所關注缺陷之該信號及該雜訊對應於該複數個位點及該複數種模式中之一相同位點及模式。
可藉由檢驗一分佈中之離群值(outlier)、尋找該等比率之一最大值、尋找該等比率之一最大平均值或尋找該等比率之一最大中值來判定具有最佳化信號對雜訊特性之該模式。
在一第二實施例中提供一種方法。該方法包括在一處理器處,針對複數種模式接收該晶圓之測試影像及參考影像。使用該處理器,自該等測試影像及該等參考影像判定差分影像。使用該處理器,在複數個位點處基於該等差分影像判定雜訊。使用該處理器,使用電磁模擬在該複數個位點處且針對該複數種模式判定一所關注缺陷之一信號。使用該處理器,在該複數個位點及該複數種模式之各組合下判定該所關注缺陷之該信號對該雜訊之一比率。呈該等比率之各者之該所關注缺陷之該信號及該雜訊對應於該複數個位點及該複數種模式中之一相同位點及模式。使用該處理器,基於該等比率判定具有最佳化信號對雜訊特性之一模式。
可藉由檢驗一分佈中之離群值、尋找該等比率之一最大值、尋找該等比率之一最大平均值或尋找該等比率之一最大中值來判定具有最佳化信號對雜訊特性之該模式。
該方法可進一步包括調整一系統以使用具有最佳化信號對雜訊特性之該模式。該系統可為用於半導體晶圓之一光學檢查系統。
該等測試影像可在一關照區域內。
在一第三實施例中提供一種非暫時性電腦可讀儲存媒體。該非暫時性電腦可讀儲存媒體包括用於在一或多個運算裝置上執行以下步驟之一或多個程式。針對複數種模式自測試影像及參考影像判定差分影像。在複數個位點處基於該等差分影像判定雜訊。使用電磁模擬在該複數個位點處且針對該複數種模式判定一所關注缺陷之一信號。在該複數個位點及該複數種模式之各組合下判定該所關注缺陷之該信號對該雜訊之一比率。呈該等比率之各者之該所關注缺陷之該信號及該雜訊對應於該複數個位點及該複數種模式中之一相同位點及模式。基於該等比率判定具有最佳化信號對雜訊特性之一模式。
可藉由檢驗一分佈中之離群值、尋找該等比率之一最大值、尋找該等比率之一最大平均值或尋找該等比率之一最大中值來判定具有最佳化信號對雜訊特性之該模式。
相關申請案之交叉參考
本申請案主張2018年3月13日申請且被指定為美國申請案第62/642,161號之臨時專利申請案之優先權,該案之揭示內容據此以引用方式併入。
儘管將關於特定實施例描述所主張標的物,但其他實施例(包含不提供本文中所闡述之所有益處及特徵之實施例)亦在本發明之範疇內。在不脫離本發明之範疇之情況下,可進行各種結構、邏輯、程序步驟及電子改變。因此,僅藉由參考隨附發明申請專利範圍來定義本發明之範疇。
當無缺陷實例可用或僅有限數目個缺陷實例可用時,本文中所揭示之實施例可尋找一最佳光學檢查模式來偵測缺陷。一工具上之雜訊之實例可結合來自模擬之DOI使用。不需要晶圓上之一DOI之一實例,此節省時間及精力。因為使用電磁模擬及DOI信號,所以可避免對可能雜訊源進行耗時且費力之研究。本文中所揭示之實施例可提供比先前技術更準確之信號對雜訊數值。結果可與光學影像資料收集結合以估計雜訊及電磁模擬以判定信號。
結合光學模式選擇分析與電磁模擬之優勢可增強尋找最佳檢查模式之效能。可使用電磁模擬來計算每種可能光學模式之所關注缺陷之信號。可使用一光學件選擇器類型環境或光瞳成像儀(例如,收集整個光瞳空間之影像之一工具)之光學影像收集來收集其中可能發生缺陷且計算雜訊之光學影像。若在配方中使用關照區域,則可能僅在關照區域內計算雜訊。
本文中所揭示之實施例對於難以尋找之缺陷尤其有用,諸如展示缺陷在光學上看似如何之少許實例之缺陷。具有光學性質之不反射光之小缺陷係可受益於本文中所揭示之實施例之一缺陷類型之一項實例。
圖1係一方法100之一實施例之一流程圖。可在一處理器上或使用一處理器執行方法100之步驟。在101處,在一處理器處針對複數種模式接收晶圓之測試影像及參考影像。此等影像可為一半導體晶圓之光學影像,諸如圖塊影像、圖框影像或關照區域。
在102處,自測試影像及參考影像判定差分影像。此可使用影像減法或其他技術。
在103處,在複數個位點處基於差分影像判定雜訊。此可為均方根雜訊或其他度量。可判定差分影像中之差分灰階。可判定其變異數之平方根以尋找雜訊。
可計算圖塊影像、圖框影像(其等大於圖塊影像)或區(例如,邏輯、SRAM、DRAM或特定結構)上之雜訊。
亦可藉由使用一測試影像與一參考影像、一測試影像與一中值參考影像、一測試影像與一經運算參考影像、或來自一晶圓上之其他位置之一參考晶粒之一測試影像與一標準參考影像之間的差分影像灰階之標準偏差來判定雜訊。
雖然揭示均方根雜訊,但其他度量亦係可能的。例如,可擬合高斯分佈且可判定標準偏差以尋找雜訊。
在104處,使用電磁模擬在複數個位點處且針對複數種模式判定一DOI之一信號。形成具有DOI及無DOI之一結構之一3D模型。接著,預測一測試影像及一參考影像之灰階值且相減,此導致DOI之差分灰階。此可針對所有可能之不同模式執行。信號可為一信號強度數值。可針對DOI或DOI類型之各者判定信號。
一種可能模擬技術係嚴格耦合波分析(RCWA),但亦可使用其他技術。
在105處,在複數個位點及複數種模式之各組合下判定DOI之信號對雜訊之一比率。呈比率之各者之DOI之信號及雜訊對應於複數個位點及複數種模式中之一相同位點及模式。
在先前方程式中,[i]表示一實例位點且[j]表示一實例模式。
可判定及/或輸出具有使用比率計算之對應信號對雜訊特性之一模式清單。
在106處,基於比率判定具有最佳化信號對雜訊特性之一模式。可藉由檢驗一分佈中之離群值、藉由尋找比率之一最大值、藉由尋找比率之一最大平均值或藉由尋找比率之一最大中值來判定具有最佳化信號對雜訊特性之模式。
可應用具有最佳化信號對雜訊特性之模式,或可調整工具設定以使用具有最佳化信號對雜訊特性之模式。例如,可在工具之軟體中選擇一經預測光學件模式。
在一實例中,將一模型檔案載入至一處理器上且一使用者定義缺陷看似如何。使用者可選擇晶圓上可能具有缺陷之特定位置。可針對此等位置針對所有可能模式執行電磁模擬以計算此等缺陷之信號值。工具之載物台針對所有可能模式移動至彼等位置且可判定雜訊。可展示一信號對雜訊數值,使得使用者或軟體可尋找最佳檢查模式。
圖3係一方法之另一實施例之一流程圖。圖3之實例中之測試影像(被指定為「Test」)不需要含有一缺陷。雜訊(諸如均方根(RMS)雜訊)可經定義為背景區之變異數平均值之平方根。可使用一關照區域(CA)之面積。模式1至n可包含焦點偏移、光偏振(照明及收集部分)、光譜範圍、載物台速度、光圈或其他設定之組合。光圈可包含客製化光圈(例如,準確度)。圖3中之變數n及k係光學常數。
可在圖3中收集一設計剪輯,因為設計剪輯可具有有用資訊或可提供一確切位置。
圖2係一系統200之一實施例之一方塊圖。系統200包含基於光學之子系統201。通常,基於光學之子系統201經組態用於藉由將光引導至(或掃描光遍及)一樣品202且偵測來自一樣品202之光來為樣品202產生基於光學之輸出。在一項實施例中,樣品202包含一晶圓。晶圓可包含此項技術中已知之任何晶圓。在另一實施例中,樣品包含一主光罩。主光罩可包含此項技術中已知之任何主光罩。
在圖2中所展示之系統200之實施例中,基於光學之子系統201包含經組態以將光引導至樣品202之一照明子系統。照明子系統包含至少一個光源。例如,如圖2中所展示,照明子系統包含光源203。在一項實施例中,照明子系統經組態以依一或多個入射角將光引導至樣品202,該一或多個入射角可包含一或多個傾斜角及/或一或多個法線角。例如,如圖2中所展示,來自光源203之光依一傾斜入射角引導穿過光學元件204且接著穿過透鏡205至樣品202。傾斜入射角可包含任何合適傾斜入射角,此可取決於例如樣品202之特性而變化。
基於光學之子系統201可經組態以在不同時間依不同入射角將光引導至樣品202。例如,基於光學之子系統201可經組態以更改照明子系統之一或多個元件之一或多個特性,使得光可依不同於圖2中所展示之一入射角引導至樣品202。在一個此實例中,基於光學之子系統201可經組態以移動光源203、光學元件204及透鏡205,使得光依一不同傾斜入射角或一法線(或近法線)入射角引導至樣品202。
在一些情況下,基於光學之子系統201可經組態以在相同時間依一個以上入射角將光引導至樣品202。例如,照明子系統可包含一個以上照明通道,該等照明通道之一者可包含如圖2中所展示之光源203、光學元件204及透鏡205,且該等照明通道之另一者(未展示)可包含可不同地或相同地組態之類似元件,或可包含至少一光源及可能一或多個其他組件,諸如本文中進一步描述之彼等組件。若此光與另一光在相同時間引導至樣品,則依不同入射角引導至樣品202之光之一或多個特性(例如,波長、偏振等)可不同,使得可在(若干)偵測器處彼此區分起因於依不同入射角照明樣品202之光。
在另一情況下,照明子系統可包含僅一個光源(例如,圖2中所展示之光源203),且來自該光源之光可藉由照明子系統之一或多個光學元件(未展示)分成不同光學路徑(例如,基於波長、偏振等)。接著可將不同光學路徑之各者中之光引導至樣品202。多個照明通道可經組態以在相同時間或在不同時間(例如,當使用不同照明通道來循序地照明樣品時)將光引導至樣品202。在另一情況下,相同照明通道可經組態以在不同時間將具有不同特性之光引導至樣品202。例如,在一些情況下,光學元件204可經組態為一光譜濾波器且該光譜濾波器之性質可以各種不同方式(例如,藉由換出光譜濾波器)改變,使得不同波長之光可在不同時間引導至樣品202。照明子系統可具有此項技術中已知之用於依不同或相同入射角循序地或同時地將具有不同或相同特性之光引導至樣品202之任何其他合適組態。
在一項實施例中,光源203可包含一寬頻電漿(BBP)源。以此方式,由光源203產生且引導至樣品202之光可包含寬頻光。然而,光源可包含任何其他合適光源,諸如一雷射。雷射可包含此項技術中已知之任何合適雷射且可經組態以產生此項技術中已知之任何合適波長之光。另外,雷射可經組態以產生單色或近單色之光。以此方式,雷射可為一窄頻雷射。光源203亦可包含產生多個離散波長或波帶之光之多色光源。
來自光學元件204之光可藉由透鏡205聚焦至樣品202上。儘管透鏡205在圖2中被展示為單個折射光學元件,但應理解在實踐中,透鏡205可包含組合地將來自光學元件之光聚焦至樣品之數個折射及/或反射光學元件。圖2中所展示且本文中所描述之照明子系統可包含任何其他合適光學元件(未展示)。此等光學元件之實例包含但不限於可包含此項技術中已知之任何此等合適光學元件之(若干)偏振組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)分束器(諸如分束器213)、(若干)光圈及類似者。另外,基於光學之子系統201可經組態以基於待用於產生基於光學之輸出之照明類型更改照明子系統之元件之一或多者。
基於光學之子系統201亦可包含經組態以致使光掃描遍及樣品202之一掃描子系統。例如,基於光學之子系統201可包含在基於光學之輸出產生期間上方安置有樣品202之載物台206。掃描子系統可包含可經組態以移動樣品202,使得光可掃描遍及樣品202之任何合適機械及/或機器人總成(其包含載物台206)。另外或替代地,基於光學之子系統201可經組態使得基於光學之子系統201之一或多個光學元件執行遍及樣品202之一些光掃描。光可以任何合適方式(諸如呈一蛇狀路徑或一螺旋路徑)掃描遍及樣品202。
基於光學之子系統201進一步包含一或多個偵測通道。一或多個偵測通道之至少一者包含一偵測器,該偵測器經組態以歸因於由子系統照明樣品202而偵測來自樣品202之光且回應於經偵測光而產生輸出。例如,圖2中所展示之基於光學之子系統201包含兩個偵測通道,一個偵測通道由收集器207、元件208及偵測器209形成且另一偵測通道由收集器210、元件211及偵測器212形成。如圖2中所展示,兩個偵測通道經組態以依不同收集角收集及偵測光。在一些情況下,兩個偵測通道經組態以偵測經散射光,且該等偵測通道經組態以偵測依不同角自樣品202散射之光。然而,該等偵測通道之一或多者可經組態以偵測來自樣品202之另一類型之光(例如,經反射光)。
如圖2中進一步展示,兩個偵測通道被展示為定位於紙張平面中且照明子系統亦被展示為定位於紙張平面中。因此,在此實施例中,兩個偵測通道經定位(例如,居中)於入射平面中。然而,該等偵測通道之一或多者可經定位於入射平面外。例如,由收集器210、元件211及偵測器212形成之偵測通道可經組態以收集及偵測散射出入射平面之光。因此,此一偵測通道通常可被稱為「側」通道,且此一側通道可居中於實質上垂直於入射平面之一平面中。
儘管圖2展示包含兩個偵測通道之基於光學之子系統201之一實施例,但基於光學之子系統201可包含不同數目個偵測通道(例如,僅一個偵測通道或兩個或更多個偵測通道)。在一個此情況下,由收集器210、元件211及偵測器212形成之偵測通道可形成如上文所描述之一個側通道,且基於光學之子系統201可包含形成為另一側通道之經定位於入射平面之相對側上之一額外偵測通道(未展示)。因此,基於光學之子系統201可包含偵測通道,該偵測通道包含收集器207、元件208及偵測器209並居中於入射平面中且經組態以收集及偵測成依法向或接近法向於樣品202表面之(若干)散射角之光。因此,此偵測通道可通常被稱為「頂部」通道,且基於光學之子系統201亦可包含如上文所描述般組態之兩個或更多個側通道。因而,基於光學之子系統201可包含至少三個通道(即,一個頂部通道及兩個側通道),且至少三個通道之各者具有自身收集器,該等收集器之各者經組態以收集依不同於其他收集器之各者之散射角之光。
如上文進一步描述,包含於基於光學之子系統201中之偵測通道之各者可經組態以偵測經散射光。因此,圖2中所展示之基於光學之子系統201可經組態用於樣品202之暗場(DF)輸出產生。然而,基於光學之子系統201亦可或替代地包含經組態用於樣品202之亮場(BF)輸出產生之(若干)偵測通道。換言之,基於光學之子系統201可包含經組態以偵測自樣品202鏡面反射之光之至少一個偵測通道。因此,本文中所描述之基於光學之子系統201可經組態僅用於DF成像、僅用於BF成像、或DF及BF成像兩者。儘管收集器之各者在圖2中被展示為單個折射光學元件,但應理解,收集器之各者可包含一或多個折射光學晶粒及/或一或多個反射光學元件。
一或多個偵測通道可包含此項技術中已知之任何合適偵測器。例如,偵測器可包含光電倍增管(PMT)、電荷耦合裝置(CCD)、時間延遲積分(TDI)相機及此項技術中已知之任何其他合適偵測器。偵測器亦可包含非成像偵測器或成像偵測器。以此方式,若偵測器係非成像偵測器,則偵測器之各者可經組態以偵測經散射光之特定特性(諸如強度),但可未經組態以依據成像平面內之位置偵測此等特性。因而,由包含於基於光學之子系統之偵測通道之各者中之偵測器之各者產生之輸出可為信號或資料,但非影像信號或影像資料。在此等情況下,一處理器(諸如處理器214)可經組態以自偵測器之非成像輸出產生樣品202之影像。然而,在其他情況下,偵測器可經組態為成像偵測器,其等經組態以產生成像信號或影像資料。因此,基於光學之子系統可經組態以依數種方式產生本文中所描述之光學影像或其他基於光學之輸出。
應注意,本文中提供圖2以大體上繪示一基於光學之子系統201之一組態,該基於光學之子系統201可包含於本文中所描述之系統實施例中或可產生由本文中所描述之系統實施例使用之基於光學之輸出。可更改本文中所描述之基於光學之子系統201組態以最佳化如通常在設計一商業輸出擷取系統時執行之基於光學之子系統201之效能。另外,本文中所描述之系統可使用一既有系統(例如,藉由將本文中所描述之功能性添加至一既有系統)來實施。針對一些此等系統,本文中所描述之方法可經提供為系統之可選功能性(例如,除系統之其他功能性以外)。替代地,本文中所描述之系統可經設計為一全新系統。
處理器214可以任何合適方式(例如,經由一或多個傳輸媒體,其(等)可包含有線及/或無線傳輸媒體)耦合至系統200之組件,使得處理器214可接收輸出。處理器214可經組態以使用輸出執行數個功能。系統200可自處理器214接收指令或其他資訊。處理器214及/或電子資料儲存單元215視情況可與一晶圓檢查工具、一晶圓計量工具或一晶圓檢視工具(未繪示)進行電子通信以接收額外資訊或發送指令。例如,處理器214及/或電子資料儲存單元215可與一SEM進行電子通信。
本文中所描述之處理器214、(若干)其他系統或(若干)其他子系統可為各種系統之部分,包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路設施、網際網路設施或其他裝置。(若干)子系統或(若干)系統亦可包含此項技術中已知之任何合適處理器,諸如一平行處理器。另外,(若干)子系統或(若干)系統可包含具有高速處理及軟體之一平台,作為一獨立工具或一網路化工具。
處理器214及電子資料儲存單元215可經安置於系統200或另一裝置中或另外作為系統200或另一裝置之部分。在一實例中,處理器214及電子資料儲存單元215可為一獨立控制單元之部分或在一集中式品質控制單元中。可使用多個處理器214或電子資料儲存單元215。
在實踐中,處理器214可藉由硬體、軟體及韌體之任何組合來實施。再者,如本文中所描述之處理器214之功能可由一個單元執行,或在不同組件之間劃分,該等組件之各者可轉而由硬體、軟體及韌體之任何組合來實施。用於處理器214實施各種方法及功能之程式碼或指令可經儲存於可讀儲存媒體中,諸如電子資料儲存單元215中之一記憶體或其他記憶體。
若系統200包含一個以上處理器214,則不同子系統可彼此耦合使得可在子系統之間發送影像、資料、資訊、指令等。例如,一個子系統可藉由任何合適傳輸媒體耦合至(若干)額外子系統,該傳輸媒體可包含此項技術中已知之任何合適有線及/或無線傳輸媒體。此等子系統之兩者或更多者亦可藉由一共用電腦可讀儲存媒體(未展示)有效地耦合。
處理器214可經組態以使用系統200之輸出或其他輸出執行數個功能。例如,處理器214可經組態以將輸出發送至一電子資料儲存單元215或另一儲存媒體。處理器214可如本文中描述般進一步組態。
可根據本文中所描述之任何實施例組態處理器214。處理器214亦可經組態以使用系統200之輸出或使用來自其他源之影像或資料執行其他功能或額外步驟。
由以下一或多者實行本文中所揭示之系統200及方法之各種步驟、功能及/或操作:電子電路、邏輯閘、多工器、可程式化邏輯裝置、ASIC、類比或數位控制器/開關、微控制器或運算系統。實施方法(諸如本文中所描述之彼等方法)之程式指令可透過載體媒體傳輸或儲存於載體媒體上。載體媒體可包含一儲存媒體,諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及類似者。一載體媒體可包含一傳輸媒體,諸如一電線、電纜或無線傳輸鏈路。例如,貫穿本發明所描述之各個步驟可由單個處理器214或替代地由多個處理器214來實行。此外,系統200之不同子系統可包含一或多個運算或邏輯系統。因此,上文描述不應被解釋為限制本發明而是僅僅闡釋。
在一情況下,處理器214與系統200通信。處理器214經組態以針對複數種模式接收晶圓之測試影像及參考影像。可自測試影像及參考影像判定差分影像。可在複數個位點處基於差分影像判定雜訊。可使用電磁模擬在複數個位點處且針對複數種模式判定一所關注缺陷之一信號。可在複數個位點及複數種模式之各組合下判定所關注缺陷之信號對雜訊之一比率。呈比率之各者之所關注缺陷之信號及雜訊對應於複數個位點及複數種模式中之一相同位點及模式。可基於比率判定具有最佳化信號對雜訊特性之一模式。
一額外實施例係關於一種儲存可在一控制器上執行以執行如本文中所揭示之用於判定一模式之一電腦實施方法之程式指令之非暫時性電腦可讀媒體。特定而言,如圖2中所展示,電子資料儲存單元215或其他儲存媒體可含有包含可在處理器214上執行之程式指令之非暫時性電腦可讀媒體。電腦實施方法可包含本文中所描述之(若干)任何方法之(若干)任何步驟,包含方法100或圖2之實施例。偵測器212可提供測試影像。
程式指令可以任何各種方式來實施,包含基於程序之技術、基於組件之技術及/或物件導向技術等。例如,程式指令可根據需要使用ActiveX控制項、C++物件、JavaBeans、微軟基礎類別(MFC)、串流SIMD擴展(SSE)或其他技術或方法論來實施。
可如本文中所描述般執行方法之步驟之各者。方法亦可包含可由本文中所描述之處理器及/或(若干)電腦子系統或(若干)系統執行之(若干)任何其他步驟。步驟可由可根據本文中所描述之任何實施例組態之一或多個電腦系統來執行。另外,上文所描述之方法可由本文中所描述之任何系統實施例來執行。
儘管已關於一或多項特定實施例描述本發明,但將理解,在不脫離本發明之範疇之情況下,可製作本發明之其他實施例。因此,本發明被認為僅受隨附發明專利申請範圍及其等之合理解釋限制。
100‧‧‧方法
101‧‧‧步驟
102‧‧‧步驟
103‧‧‧步驟
104‧‧‧步驟
105‧‧‧步驟
106‧‧‧步驟
200‧‧‧系統
201‧‧‧基於光學之子系統
202‧‧‧樣品
203‧‧‧光源
204‧‧‧光學元件
205‧‧‧透鏡
206‧‧‧載物台
207‧‧‧收集器
208‧‧‧元件
209‧‧‧偵測器
210‧‧‧收集器
211‧‧‧元件
212‧‧‧偵測器
213‧‧‧分束器
214‧‧‧處理器
215‧‧‧電子資料儲存單元
為了更全面地理解本發明之本質及目的,應參考結合隨附圖式進行之下文詳細描述,其中:
圖1係根據本發明之一方法之一實施例之一流程圖;
圖2係根據本發明之一系統之一實施例之一方塊圖;及
圖3係根據本發明之一方法之另一實施例之一流程圖。
100‧‧‧方法
101‧‧‧步驟
102‧‧‧步驟
103‧‧‧步驟
104‧‧‧步驟
105‧‧‧步驟
106‧‧‧步驟
Claims (18)
- 一種光學檢查系統,其包括:一光源,其經組態以將一光束引導於一晶圓處;一偵測器,其收集自該晶圓反射之該光束;及一處理器,其與該偵測器進行電子通信,其中該處理器經組態以:針對複數種模式自該偵測器接收該晶圓之多個測試影像及多個參考影像;自該等測試影像及該等參考影像判定多個差分影像;在複數個位點處基於該等差分影像中之多個灰階判定雜訊;使用電磁模擬在該複數個位點處且針對該複數種模式判定一所關注缺陷之一信號強度,其中針對該複數種模式,該電磁模擬判定該等測試影像之一者及該等參考影像之一者的多個預測的灰階值,並且減掉該等測試影像之該一者及該等參考影像之該一者的該等預測的灰階值,藉此判定該所關注缺陷之一差分灰階;在該複數個位點及該複數種模式之各組合下判定該所關注缺陷之該信號強度對該雜訊之一比率,其中呈該等比率之各者之該所關注缺陷之該信號強度及該雜訊對應於該複數個位點及該複數種模式中之一相同位點及模式;及基於該等比率判定具有最佳化信號對雜訊特性之一模式。
- 如請求項1之系統,其中藉由檢驗一分佈中之離群值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項1之系統,其中藉由尋找該等比率之一最大值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項1之系統,其中藉由尋找該等比率之一最大平均值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項1之系統,其中藉由尋找該等比率之一最大中值來判定具有最佳化信號對雜訊特性之該模式。
- 一種光學檢查方法,其包括:在一處理器處,針對複數種模式接收一晶圓之多個測試影像及多個參考影像;使用該處理器,自該等測試影像及該等參考影像判定多個差分影像;使用該處理器,在複數個位點處基於該等差分影像中之多個灰階判定雜訊;使用該處理器,使用電磁模擬在該複數個位點處且針對該複數種模式判定一所關注缺陷之一信號強度,其中針對該複數種模式,該電磁模擬判定該等測試影像之一者及該等參考影像之一者的多個預測的灰階值,並且減掉該等測試影像之該一者及該等參考影像之該一者的該等預測的灰階值,藉此判定該所關注缺陷之一差分灰階;使用該處理器,在該複數個位點及該複數種模式之各組合下判定該 所關注缺陷之該信號強度對該雜訊之一比率,其中呈該等比率之各者之該所關注缺陷之該信號強度及該雜訊對應於該複數個位點及該複數種模式中之一相同位點及模式;及使用該處理器,基於該等比率判定具有最佳化信號對雜訊特性之一模式。
- 如請求項6之方法,其中藉由檢驗一分佈中之離群值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項6之方法,其中藉由尋找該等比率之一最大值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項6之方法,其中藉由尋找該等比率之一最大平均值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項6之方法,其中藉由尋找該等比率之一最大中值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項6之方法,其進一步包括調整一系統以使用具有最佳化信號對雜訊特性之該模式。
- 如請求項11之方法,其中該系統係用於半導體晶圓之一光學檢查系統。
- 如請求項6之方法,其中該等測試影像在一關照區域內。
- 一種非暫時性電腦可讀儲存媒體,其包括用於在一或多個運算裝置上執行以下步驟之一或多個程式:針對複數種模式自多個測試影像及多個參考影像判定多個差分影像;在複數個位點處基於該等差分影像中之多個灰階判定雜訊;使用電磁模擬在該複數個位點處且針對該複數種模式判定一所關注缺陷之一信號強度,其中針對該複數種模式,該電磁模擬判定該等測試影像之一者及該等參考影像之一者的多個預測的灰階值,並且減掉該等測試影像之該一者及該等參考影像之該一者的該等預測的灰階值,藉此判定該所關注缺陷之一差分灰階;在該複數個位點及該複數種模式之各組合下判定該所關注缺陷之該信號強度對該雜訊之一比率,其中呈該等比率之各者之該所關注缺陷之該信號強度及該雜訊對應於該複數個位點及該複數種模式中之一相同位點及模式;及基於該等比率判定具有最佳化信號對雜訊特性之一模式。
- 如請求項14之非暫時性電腦可讀儲存媒體,其中藉由檢驗一分佈中之離群值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項14之非暫時性電腦可讀儲存媒體,其中藉由尋找該等比率 之一最大值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項14之非暫時性電腦可讀儲存媒體,其中藉由尋找該等比率之一最大平均值來判定具有最佳化信號對雜訊特性之該模式。
- 如請求項14之非暫時性電腦可讀儲存媒體,其中藉由尋找該等比率之一最大中值來判定具有最佳化信號對雜訊特性之該模式。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862642161P | 2018-03-13 | 2018-03-13 | |
US62/642,161 | 2018-03-13 | ||
US16/295,715 | 2019-03-07 | ||
US16/295,715 US10964016B2 (en) | 2018-03-13 | 2019-03-07 | Combining simulation and optical microscopy to determine inspection mode |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201945721A TW201945721A (zh) | 2019-12-01 |
TWI785216B true TWI785216B (zh) | 2022-12-01 |
Family
ID=67905863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108108407A TWI785216B (zh) | 2018-03-13 | 2019-03-13 | 結合模擬及光學顯微鏡以判定檢查模式 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10964016B2 (zh) |
KR (1) | KR102485548B1 (zh) |
CN (1) | CN111819596B (zh) |
TW (1) | TWI785216B (zh) |
WO (1) | WO2019178011A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10867108B2 (en) * | 2018-09-18 | 2020-12-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Optical mode optimization for wafer inspection |
US10801968B2 (en) * | 2018-10-26 | 2020-10-13 | Kla-Tencor Corporation | Algorithm selector based on image frames |
US11416982B2 (en) * | 2019-10-01 | 2022-08-16 | KLA Corp. | Controlling a process for inspection of a specimen |
US11328410B2 (en) | 2020-08-03 | 2022-05-10 | KLA Corp. | Deep generative models for optical or other mode selection |
US11922619B2 (en) * | 2022-03-31 | 2024-03-05 | Kla Corporation | Context-based defect inspection |
US20230314336A1 (en) | 2022-03-31 | 2023-10-05 | Kla Corporation | Multi-mode optical inspection |
US20240255415A1 (en) * | 2023-01-31 | 2024-08-01 | Lawrence Livermore National Security, Llc | Optimal parameter selection for structured light metrology |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6177993B1 (en) * | 1999-12-07 | 2001-01-23 | The Regents Of The University Of California | Inspection of lithographic mask blanks for defects |
US20080049219A1 (en) * | 2006-08-25 | 2008-02-28 | Ji-Hye Kim | Wafer inspecting method |
US20110286656A1 (en) * | 2005-11-18 | 2011-11-24 | Kla-Tencor Technologies Corporation | Methods and systems for utilizing design data in combination with inspection data |
US20170169552A1 (en) * | 2015-12-09 | 2017-06-15 | Kla-Tencor Corporation | Defect signal to noise enhancement by reducing die to die process noise |
TW201805618A (zh) * | 2016-05-25 | 2018-02-16 | 克萊譚克公司 | 結合修補及基於設計之缺陷偵測 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7570797B1 (en) * | 2005-05-10 | 2009-08-04 | Kla-Tencor Technologies Corp. | Methods and systems for generating an inspection process for an inspection system |
US8041103B2 (en) * | 2005-11-18 | 2011-10-18 | Kla-Tencor Technologies Corp. | Methods and systems for determining a position of inspection data in design data space |
US7389206B2 (en) * | 2006-08-10 | 2008-06-17 | General Electric Company | Inspection systems and methods of operation |
US8223327B2 (en) * | 2009-01-26 | 2012-07-17 | Kla-Tencor Corp. | Systems and methods for detecting defects on a wafer |
US10599944B2 (en) * | 2012-05-08 | 2020-03-24 | Kla-Tencor Corporation | Visual feedback for inspection algorithms and filters |
US9766187B2 (en) | 2014-08-27 | 2017-09-19 | Kla-Tencor Corp. | Repeater detection |
US9766186B2 (en) * | 2014-08-27 | 2017-09-19 | Kla-Tencor Corp. | Array mode repeater detection |
-
2019
- 2019-03-07 US US16/295,715 patent/US10964016B2/en active Active
- 2019-03-12 CN CN201980017027.2A patent/CN111819596B/zh active Active
- 2019-03-12 WO PCT/US2019/021725 patent/WO2019178011A1/en active Application Filing
- 2019-03-12 KR KR1020207029195A patent/KR102485548B1/ko active IP Right Grant
- 2019-03-13 TW TW108108407A patent/TWI785216B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6177993B1 (en) * | 1999-12-07 | 2001-01-23 | The Regents Of The University Of California | Inspection of lithographic mask blanks for defects |
US20110286656A1 (en) * | 2005-11-18 | 2011-11-24 | Kla-Tencor Technologies Corporation | Methods and systems for utilizing design data in combination with inspection data |
US20080049219A1 (en) * | 2006-08-25 | 2008-02-28 | Ji-Hye Kim | Wafer inspecting method |
US20170169552A1 (en) * | 2015-12-09 | 2017-06-15 | Kla-Tencor Corporation | Defect signal to noise enhancement by reducing die to die process noise |
TW201805618A (zh) * | 2016-05-25 | 2018-02-16 | 克萊譚克公司 | 結合修補及基於設計之缺陷偵測 |
Also Published As
Publication number | Publication date |
---|---|
CN111819596B (zh) | 2021-12-07 |
US10964016B2 (en) | 2021-03-30 |
US20190287232A1 (en) | 2019-09-19 |
KR20200121907A (ko) | 2020-10-26 |
TW201945721A (zh) | 2019-12-01 |
CN111819596A (zh) | 2020-10-23 |
KR102485548B1 (ko) | 2023-01-05 |
WO2019178011A1 (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI785216B (zh) | 結合模擬及光學顯微鏡以判定檢查模式 | |
CN109964116B (zh) | 用于三维半导体结构的检验的缺陷发现及配方优化 | |
KR102326402B1 (ko) | 포커스 용적 측정 방법을 이용한 웨이퍼 검사 | |
US10698325B2 (en) | Performance monitoring of design-based alignment | |
TWI744540B (zh) | 用於高效處理窗口探索之混合檢測系統 | |
KR102177677B1 (ko) | 계측 최적화 검사 | |
TWI816922B (zh) | 用於半導體晶圓檢測演算法選擇的系統及方法,以及非暫時性電腦可讀儲存媒體 | |
US20210398261A1 (en) | Design-to-wafer image correlation by combining information from multiple collection channels | |
TW202206805A (zh) | 用於光學目標檢索之光學影像對比度量 | |
TWI829958B (zh) | 用於檢驗半導體裝置之系統及方法 | |
KR102201122B1 (ko) | 민감도 개선 및 뉴슨스 억제를 위해 로직 및 핫스팟 검사에서 z-층 컨텍스트를 사용하는 시스템 및 방법 | |
KR102548663B1 (ko) | 실험 및 반응 표면 모델의 설계를 사용한 프로세스 최적화 | |
TW202137355A (zh) | 基於雜訊特性而叢集次管理區域 | |
US11113827B2 (en) | Pattern-to-design alignment for one-dimensional unique structures | |
TWI851882B (zh) | 用於判定一樣本之資訊之系統及方法,以及非暫時性電腦可讀媒體 | |
KR102719204B1 (ko) | 노이즈 특성에 기초한 서브케어 영역의 클러스터링 | |
TWI851819B (zh) | 半導體檢測的系統及方法,以及非暫時性電腦可讀媒體 | |
JP2024525262A (ja) | 結像条件を推定し改善するための画像コントラストメトリック | |
KR20220154161A (ko) | 시료 스캔을 위한 포커스 설정의 결정 | |
TW202300900A (zh) | 以經呈現設計影像之設計照護區域之分段 | |
TW202338331A (zh) | 雷射退火圖案抑制 | |
JP2024537955A (ja) | レーザアニールパターンの抑制 |