WO2023089916A1 - Power conversion device and control method for power conversion device - Google Patents

Power conversion device and control method for power conversion device Download PDF

Info

Publication number
WO2023089916A1
WO2023089916A1 PCT/JP2022/033287 JP2022033287W WO2023089916A1 WO 2023089916 A1 WO2023089916 A1 WO 2023089916A1 JP 2022033287 W JP2022033287 W JP 2022033287W WO 2023089916 A1 WO2023089916 A1 WO 2023089916A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switching
gate
current
switching element
Prior art date
Application number
PCT/JP2022/033287
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 渡辺
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023089916A1 publication Critical patent/WO2023089916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device and its control method, and for example, to a resonance type power conversion device including a plurality of switching elements, a capacitor, and a transformer, and its control method.
  • Patent Documents 1 and 2 Resonance type power converters are described in Patent Documents 1 and 2, for example.
  • Patent Literatures 1 and 2 describe resonance-type power converters capable of detecting or determining variations in resonance frequency.
  • JP 2017-184599 A Japanese Patent Application Laid-Open No. 2019-201455
  • a resonant power converter includes a plurality of switching elements, a capacitor, and a transformer having a primary winding connected in series with the capacitor.
  • An object of the present invention is to provide a power conversion device and a control method for the power conversion device that can suppress an increase in surge voltage and noise when an out-of-resonance occurs.
  • the power conversion device includes a switching circuit including a plurality of switching elements, a capacitor, and a transformer having a primary winding connected in series with the capacitor, and outputs a gate drive current to the gate of the switching element. and a gate drive circuit for controlling on/off of the switching element, a detection circuit for detecting current flowing through the switching circuit, and a determination circuit for determining reversal of the polarity of the current detected by the detection circuit.
  • the gate drive circuit includes a gate adjustment circuit that adjusts the gate drive current based on the determination result of the determination circuit.
  • a power conversion device capable of suppressing an increase in surge voltage and noise when out-of-resonance occurs. can do.
  • FIG. 1 is a circuit diagram showing a configuration of a power converter according to Embodiment 1;
  • FIG. 2 is a block diagram showing the configuration of a gate drive circuit according to Embodiment 1;
  • FIG. 2 is a circuit diagram showing a configuration of a gate output circuit according to Embodiment 1;
  • FIG. 4 is a flowchart for explaining a control method according to Embodiment 1;
  • 4 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1.
  • FIG. 4 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1.
  • FIG. 2 is a cross-sectional view showing the structure of a GaN-HEMT used in the power converter according to Embodiment 1;
  • FIG. 8 is a circuit diagram showing the configuration of a gate output circuit according to Embodiment 2;
  • FIG. 10 is a circuit diagram showing the configuration of a power conversion device according to Embodiment 3;
  • FIG. 11 is a circuit diagram showing the configuration of a power conversion device according to Embodiment 4;
  • FIG. 11 is a plan view showing a portion of a semiconductor chip according to a fourth embodiment; It is a circuit diagram of a power conversion device for explaining the study of the present inventor.
  • FIG. 12 is a circuit diagram of a power conversion device for explaining the inventor's study.
  • a high-efficiency LLC resonance type resonant power converter using a leakage inductor and an exciting inductor of a transformer and a capacitor coupled to the transformer will be described as an example of the power converter.
  • 100 denotes a power converter (hereinafter also referred to as a DC/DC converter).
  • the DC/DC converter 100 includes a gate drive circuit 2 and a primary side circuit and a secondary side circuit to be described below, and converts the voltage of the DC power supply Vi supplied to the primary side circuit to the secondary side circuit.
  • the coupled load 4 is fed with the converted DC voltage.
  • the primary side circuit includes a half bridge circuit 1 composed of switching elements Q1 and Q2, a resonance capacitor (current resonance capacitor) Cr, and a transformer Tr.
  • the secondary side circuit includes diodes D1 and D2 and a rectifier circuit 3 configured by a smoothing capacitor Co.
  • the two switching elements Q1 and Q2 that make up the half bridge circuit 1 are driven by the gate drive circuit 2. That is, the gate drive circuit 2 alternately switches the switching elements Q1 and Q2 at a predetermined cycle while providing a dead time (a time during which both switching elements are in an OFF state). By alternately switching the switching elements Q1 and Q2 at a predetermined cycle, the value of the voltage output from the secondary side circuit is adjusted.
  • the predetermined period for alternately switching the switching elements Q1 and Q2 is the operation period of the DC/DC converter 100 (in other words, the operation frequency of the DC/DC converter).
  • LLC resonance type DC/DC converter 100 utilizes a series resonance circuit composed of a resonance capacitor Cr, a leakage inductance (not shown) included in transformer Tr, and an exciting inductance, and voltages of switching elements Q1 and Q2 are controlled. Alternatively, when at least one of the currents is zero (“0”), zero voltage (current) switching is performed to turn on/off the switching elements Q1 and Q2. By performing zero-voltage switching, it is possible to reduce the power loss and the occurrence of switching noise during switching of the switching element.
  • the resonance frequency of the series resonance circuit will fluctuate, and the operating frequency of the DC/DC converter 100 will deviate from the resonance frequency. may be lost. In this case, zero voltage switching cannot be achieved, resulting in an increase in power loss, generation of switching noise, destruction of switching elements, and the like.
  • the deviation of the operating frequency of the DC/DC converter from the resonance frequency of the series resonance circuit is also referred to as out-of-resonance.
  • Patent Documents 1 and 2 describe techniques for coping with fluctuations in the resonance frequency of a series resonance circuit.
  • a current detection circuit is provided to detect the value of current flowing through a switching element. is determined to have changed and an abnormality has occurred.
  • current values are detected at two or more points in time that are symmetrical about a half period of the resonance period, and if the current values differ by a predetermined value or more, the resonance frequency is detected. is determined to have changed and an abnormality has occurred.
  • the switching element is forced to continue to be turned off during the period in which the resonance out-of-resonance occurs, that is, the period in which the voltage of the DC power supply Vi and the load 4 on the output side continue to be high. During this period, the DC/DC converter cannot perform power conversion properly.
  • a switching element with a small recovery current in the event of reverse conduction As an example of a switching element with a small recovery current during reverse conduction, a high-speed recovery metal-oxide-semiconductor field effect transistor (MOSFET) or a gallium nitride (GaN)-based material is used. There is a high electron mobility transistor (High Electron Mobility Transistor: HEMT) and the like. A HEMT using a GaN-based material is hereinafter referred to as a GaN-HEMT.
  • MOSFET metal-oxide-semiconductor field effect transistor
  • GaN gallium nitride
  • HEMT high electron mobility transistor
  • a HEMT using a GaN-based material is hereinafter referred to as a GaN-HEMT.
  • the GaN-HEMT does not include a body diode inside the element, the recovery current is theoretically zero. Therefore, in a DC/DC converter using a GaN-HEMT as a switching element, loss due to recovery current does not occur even if a resonance out-of-resonance occurs, and the occurrence of destruction of the switching element can be reduced. It is possible to operate the DC/DC converter even when the voltage value of Vi or the load on the output side is high.
  • the output capacity of GaN-HEMT is small, and the amount of stored charge is small compared to the recovery current, so there is little risk of increased power loss or destruction of switching elements.
  • the amount of time change in current due to recharging of the output capacity (dI/dt: I is the output capacity current flowing through ) increases.
  • This large amount of current change over time (dI/dr) causes a surge voltage and an increase in noise, and interferes with normal operation of the power converter.
  • Patent Documents 1 and 2 do not describe or recognize the surge voltage or noise increase caused by the time change of the current that recharges the output capacitance of the switching element when the resonance out occurs.
  • FIG. 1 is a circuit diagram showing the configuration of the power converter according to Embodiment 1.
  • FIG. 1 indicates a power converter.
  • the power conversion device 101 is an LLC resonance type DC/DC converter including a half bridge circuit 1 using two switching elements.
  • the power conversion device 101 includes a half bridge circuit 1, a gate drive circuit 2, a current detection circuit (hereinafter also referred to as a detection circuit) 5, a current polarity reversal determination circuit (hereinafter also referred to as a determination circuit) 6, a resonance capacitor Cr, a primary It includes a transformer Tr composed of a winding Tr1 and secondary windings Tr2-1 and Tr2-2, and a rectifier circuit 3 composed of diodes D1 and D2 and a smoothing capacitor Co.
  • T1 and T2 indicate input terminals of the power conversion device 101
  • T3 and T4 indicate output terminals of the power conversion device 101.
  • FIG. Input terminals T1 and T2 of the power converter 101 are connected to an external DC power supply Vi as shown in FIG. 1, and a load 4 is connected to output terminals T3 and T4 as shown in FIG. .
  • the DC power supply Vi is, for example, a battery, an AC/DC (alternating current/direct current) converter, or the like.
  • the half bridge circuit 1 is connected between both terminals of the DC power source Vi, as shown in FIG.
  • the half bridge circuit 1 includes switching elements Q1 and Q2 connected in series between both terminals (between input terminals T1 and T2) of a DC power supply Vi.
  • the switching elements Q1 and Q2 are composed of GaN-HEMTs formed on a silicon substrate of one semiconductor chip (the same semiconductor chip), although not particularly limited.
  • Cp1 and Cp2 indicated by broken lines indicate parasitic capacitors of switching elements Q1 and Q2.
  • One terminal of the parasitic capacitor Cp1 is connected to the source terminal of the switching element Q1, and the other terminal is connected to the drain terminal of the switching element Q1.
  • This parasitic capacitor Cp1 corresponds to the output capacitance of the switching element Q1.
  • the parasitic capacitor Cp2 is connected between the source terminal and the drain terminal of the switching element Q2, and the parasitic capacitor Cp2 corresponds to the output capacitance of the switching element Q2.
  • the parasitic capacitors Cp1 and Cp2 are hereinafter also referred to as output capacitors Cp1 and Cp2.
  • the drain terminal of the switching element Q1 is connected to the DC power supply Vi through the input terminal T1.
  • a source terminal of the switching element Q1 and a drain terminal of the switching element Q2 are connected.
  • a source terminal of the switching element Q2 is connected to the DC power supply Vi through an input terminal T2.
  • Gate terminals of the switching elements Q1 and Q2 are connected to the gate drive circuit 2 .
  • the detection circuit 5 Between the source terminal of the switching element Q2 and the node where the source terminal of the switching element Q1 and the drain terminal of the switching element Q2 are connected, the detection circuit 5, the resonance capacitor Cr and the primary of the transformer Tr are connected.
  • the winding Tr1 is connected in series.
  • the secondary side of the transformer Tr is composed of secondary windings Tr2-1 and Tr2-2. Although not particularly limited, the secondary windings Tr2-1 and Tr2-2 have the same number of turns and are connected in series so as to have the same winding direction. Note that the ⁇ mark in FIG. 1 indicates the polarity of the transformer Tr.
  • the rectifier circuit 3 is composed of diodes D1 and D2 and a smoothing capacitor Co, and the cathode terminals of the diodes D1 and D2 and one terminal of the smoothing capacitor Co are connected.
  • the other terminal of smoothing capacitor Co is connected to a node at which one terminals of secondary windings Tr2-1 and Tr2-2 of transformer Tr are connected to each other.
  • the other terminals of secondary windings Tr1 and Tr2-2 of transformer Tr are connected to anode terminals of diodes D1 and D2, respectively.
  • the terminals of smoothing capacitor Co are connected to load 4 via output terminals T3 and T4.
  • the detection circuit 5 is composed of a current sensor.
  • the current sensor is composed of, for example, a shunt resistor, a Hall element, or a Rogowski coil.
  • the detection circuit 5 detects the current value of the current I1 flowing through the resonance switching circuit RSC (hereinafter simply referred to as the switching circuit) including the switching elements Q1 and Q2, the resonance capacitor Cr, and the primary winding Tr1 of the transformer Tr. do.
  • the current value detected by the detection circuit 5 is output to the determination circuit 6 as an analog value.
  • the detection circuit 5 is also provided in the resonant switching circuit RSC in order to detect the current value of the current I1.
  • the determination circuit 6 is composed of a comparator and an edge detector (not shown), although not particularly limited.
  • the comparator is configured by, for example, a comparator
  • the edge detector is configured by, for example, an edge detection circuit configured by combining logic circuits or an edge detector using a microprocessor.
  • the comparator is supplied with the input (analog current value) from the detection circuit 5 and the reference value corresponding to the current value "0 (zero)", and the comparator compares the analog current value and the reference value. A comparison result is output to the edge detector as a digital value.
  • the edge detector captures changes in the input digital value as falling and rising signals, and outputs them as determination signals indicating the polarity (current polarity) of the current I1 of the resonant switching circuit flowing through the detection circuit 5 to the gate drive circuit. Output to 2.
  • the comparator in the determination circuit 6 changes the digital value from “1" to "0".
  • the edge detector in the determination circuit 6 captures a change from a digital value of "1" to "0" as a signal falling, indicating that the current polarity of the current I1 of the resonant switching circuit RSC has been reversed from positive to negative. Outputs a judgment signal.
  • the comparator in the determination circuit 6 changes the digital value from "0" to "1".
  • the edge detector in the determination circuit 6 captures the change of the digital value from "0" to "1" as the rise of the signal, and determines that the current polarity of the current I1 of the resonant switching circuit RSC has been reversed from negative to positive. Output a signal.
  • a Schmitt trigger or a low-pass filter may be provided on the input side to the comparator in the determination circuit 6. Noise contained in the output from the detection circuit 5 can be removed by this Schmitt trigger or low-pass filter.
  • the gate drive circuit 2 drives the switching elements Q1 and Q2 so as to alternately turn on and off at an operation cycle determined by the operation frequency of the power converter 101 .
  • the gate drive circuit 2 adjusts the drive capability based on the determination signal from the determination circuit 6.
  • FIG. The gate drive circuit 2 will now be described in detail with reference to the drawings. ⁇ Configuration of Gate Drive Circuit>>
  • FIG. 2 is a block diagram showing the configuration of the gate drive circuit according to the first embodiment.
  • the gate drive circuit 2 includes a control circuit 21 and two gate output circuits 22 corresponding to the switching elements Q1 and Q2.
  • the control circuit 21 is composed of, for example, a microprocessor, a programmable gate array (for example, a so-called FPGA), or the like, and includes gates necessary for alternately turning on and off the switching elements Q1 and Q2 at the operating frequency of the power converter 101. Generate a signal. Further, the control circuit 21 inputs the determination signal (current reversal positive/negative and current reversal negative/positive) output from the determination circuit 6 via the input terminals T21 and T22, and switches the gate drive currents of the switching elements Q1 and Q2. to generate an output switching signal for Since the gate drive currents of the switching elements Q1 and Q2 are adjusted by switching the gate drive currents, the control circuit 21 that generates the output switching signal can be regarded as a gate adjustment circuit.
  • the gate output circuit 22 is provided for each of the switching elements Q1 and Q2 and outputs a gate output signal according to the gate signal and the output switching signal input from the control circuit 21 .
  • a gate output signal output from the gate output circuit 22 is supplied to the gate terminals of the switching elements Q1 and Q2 via the output terminals T23 and T24.
  • reference numeral 22-1 indicates a gate output circuit that supplies gate output signal 1 to the gate terminal of switching element Q1
  • reference numeral 22-2 indicates gate output signal 2 to the gate terminal of switching element Q2.
  • Fig. 3 shows a gate output circuit for supplying; ⁇ Configuration of Gate Output Circuit>>>>
  • FIG. 3 is a circuit diagram showing a configuration of a gate output circuit according to Embodiment 1.
  • the gate output circuit 22 includes P-channel field effect (hereinafter also referred to as PMOS) transistors PTr1 and PTr2, N-channel field effect (hereinafter also referred to as NMOS) transistors NTr, resistance elements Rgon1, Rgon2 and Rgoff, and an inverter. It comprises gates inv1 and inv2 and OR gates or1 and or2.
  • the electrical resistance value of the resistive element Rgon2 is set to be greater than the electrical resistance value of the resistive element Rgon1.
  • the source terminals of the PMOS transistors PTr1 and PTr2 are connected to the voltage line Vgon.
  • the voltage (Vg,on) applied to the voltage line Vgon is a predetermined voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn on the switching elements Q1 and Q2.
  • a source terminal of the NMOS transistor NTr is connected to the voltage line Vgoff.
  • the voltage (Vg, off) applied to the voltage line Vgoff is the voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn off the switching elements Q1 and Q2.
  • the voltages (Vg, on) and (Vg, off) are generated from the DC power supply Vi shown in FIG. 1, although not particularly limited.
  • the drain terminals of the PMOS transistors PTr1 and PTr2 are connected to one terminals of the resistance elements Rgon1 and Rgon2, respectively, and the other terminals of the resistance elements Rgon1 and Rgon2 are connected to the output terminal T223.
  • a drain terminal of the NMOS transistor NTr is connected to one terminal of the resistance element Rgoff, and the other terminal of the resistance element Rgoff is connected to the output terminal T223.
  • the gate signal output from the control circuit 21 is supplied to the input of the inverter gate inv2 via the input terminal T222.
  • the output of the inverter gate inv2 is connected to one input of the OR gates or1 and or2, and also connected to the gate terminal of the NMOS transistor NTr.
  • the output switching signal output from the control circuit 21 is connected to the other input of the OR gate or1 via the input terminal T221 and to the other input of the OR gate or2 via the inverter gate inv1.
  • Outputs of OR gates or1 and or2 are connected to gate terminals of PMOS transistors PTr1 and PTr2, respectively.
  • the PMOS transistors PTr1 and PTr2 are turned off while the gate signal is at the low level ("0").
  • the NMOS transistor NTr is turned on.
  • the resistance element Rgoff is connected between the voltage line Vgoff and the gate terminal of the switching element Q1 or Q2 via the NMOS transistor NTr and the output terminal T223. That is, the resistance element Rgoff corresponds to the gate resistance of the switching element, and the voltage (Vg,off) through the gate resistance (resistance element Rgoff) is applied to the switching element Q1 or Q2 as the gate-off voltage.
  • the switching element Q1 or Q2 is turned off.
  • the NMOS transistor NTr is turned off while the gate signal is at high level (“1").
  • the PMOS transistor PTr1 is turned on, and when the output switching signal is high level (“1”), the PMOS transistor PTr2 is turned on. Therefore, in the period when the gate signal is high level, when the output switching signal is low level, the resistance element Rgon1 corresponds to the gate resistance of the switching element, and the switching element Q1 or Q2 is connected through the gate resistance (resistance element Rgon1).
  • the resulting voltage (Vg,on) is applied to the switching element Q1 or Q2 as a gate-on voltage, and the switching element Q1 or Q2 is turned on.
  • the current of the gate output signal (high level gate current) supplied to the gate terminal of the switching element Q1 or Q2 through the gate resistance (resistive element Rgon1). drive current) flows.
  • the resistance element Rgon2 corresponds to the gate resistance of the switching element.
  • the voltage (Vg,on) through (resistive element Rgon2) is applied to switching element Q1 or Q2 as a gate-on voltage.In this case also, switching element Q1 or Q2 is turned on.However, at this time, switching The gate output signal current (gate drive current) supplied to the gate terminal of the element Q1 or Q2 is the gate output signal current (low level gate drive current) determined by the resistor element Rgon2 because the resistor element Rgon2 functions as a gate resistor. Therefore, at this time, in the switching element Q1 or Q2 that is turned on, a drain current corresponding to the gate drive current determined by the resistance element Rgon2 flows.
  • the gate resistances of the switching elements Q1 and Q2 that are turned on can be switched by the output switching signal.
  • a gate drive current determined by the switched gate resistance is supplied to the gate terminals of the switching elements Q1 and Q2.
  • drain current flows. That is, a gate drive current having a level corresponding to the resistance element Rgon1 or Rgon2 corresponding to the gate resistance is supplied to the gate terminal of the switching element, and a drain current corresponding to the gate drive current is output from the switching element.
  • the electrical resistance value of the resistance element Rgon2 is greater than the electrical resistance value of the resistance element Rgon1. Therefore, when the output switching signal is at a high level, the gate output circuit 22 outputs a low level gate drive current to the switching element Q1. , Q2 to switch the drain currents of the switching elements Q1 and Q2 to a low level.
  • the inverter gate inv1, the OR gates or1 and or2, and the PMOS transistors PTr1 and PTr2 form a switching circuit that selects a resistance element from the resistance elements Rgon1 and Rgon2 according to the output signal.
  • the selected resistive element will be connected between the predetermined voltage (Vg,on) and the gate terminal of the switching element.
  • FIG. 4 is a flowchart for explaining a control method according to Embodiment 1.
  • FIG. 4 is a flowchart for explaining a control method according to Embodiment 1.
  • step S1 the control circuit 21 shown in FIG. 2 outputs the gate output signal 1 and the gate output signal 2 to turn on/off the switching elements Q1 and Q2 shown in FIG.
  • steps S2, S3 and S4 are sequentially executed, and these steps S2 to S4 are executed while switching element Q1 or Q2 is on.
  • Step S2 is a current detection step in which the detection circuit 5 of FIG. 1 detects the current I1 flowing through the resonant switching circuit RSC.
  • step S3 the determination circuit 6 determines the polarity of the current I1 based on the current I1 detected in step S2, and supplies the determination result to the control circuit 21 as a determination signal. That is, step S3 is a polarity determination step.
  • step S3 When it is determined in step S3 that the polarity is reversed (Y), the control circuit 21 generates an output switching signal and switches the gate drive current of the switching element. Since the gate drive current is adjusted by switching the gate drive current, step S4 is a step of adjusting the drive current.
  • step S3 When it is determined in step S3 that the polarity is not reversed (N) and when step S4 ends, step S1 is executed again. That is, steps S1 to S3 are repeated.
  • step S3 when it is determined in step S3 that the polarity is reversed, processing is performed assuming that out-of-resonance has occurred. On the other hand, when it is determined in step S3 that the polarity is not reversed, the processing is performed assuming that no resonance has occurred.
  • step S4 adjustment step
  • step S4 includes two steps. That is, in step S4, when it is determined that the polarity is reversed, a step of adjusting (switching) the gate drive current to a low level is performed. and adjusting (switching) the gate drive current to a level higher than the low level after a predetermined period (output switching period) after switching the gate drive current to the low level.
  • step S4 when it is determined that the polarity is reversed, a step of adjusting (switching) the gate drive current to a low level is performed. and adjusting (switching) the gate drive current to a level higher than the low level after a predetermined period (output switching period) after switching the gate drive current to the low level.
  • FIG. 5 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1.
  • FIG. Description will be made below with reference to FIGS. 1 to 3 and 5.
  • FIG. 5 shows the waveforms of the gate output signal 1 and the gate output signal 2 output by the gate drive circuit 2 and the primary winding Tr1 of the transformer Tr detected by the detection circuit 5 in order to control the half bridge circuit 1.
  • the waveform of the current I1 flowing through the resonant switching circuit RSC containing is shown.
  • FIG. 5 shows waveforms of voltages Vds1 and Vds2 applied between the drain terminals and the source terminals of the switching elements Q1 and Q2, and a current (drain current) flowing from the drain terminal to the source terminal of the switching elements Q1 and Q2.
  • Current Id1 and Id2 waveforms are shown.
  • Voltage Vds1 and current Id1 are the voltage and current of switching element Q1
  • voltage Vds2 and current Id2 are the voltage and current of switching element Q2.
  • the detection circuit 5 detects a current with positive (+) polarity in the direction of flow from the left side to the right side, as indicated by the arrow in FIG.
  • a gate output signal 1 output from the gate drive circuit 2 is an output signal for controlling on/off of the switching element Q1
  • a gate output signal 2 is an output signal for controlling on/off of the switching element Q2.
  • Control circuit 21 forming gate drive circuit 2 generates gate signals to complementarily drive switching elements Q1 and Q2 including dead times td1 and td2. Dead times td1 and td2 are periods during which both switching elements Q1 and Q2 are in the off state.
  • FIG. 6 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1.
  • FIG. FIG. 6 is similar to FIG. 5, and similarly to FIG. 5, FIG. Voltages Vds1 and Vds2 between the drain and source terminals and drain currents Id1 and Id2 of the switching elements Q1 and Q2 are shown.
  • FIG. 6 is different from FIG. 5 in that it shows a case where the load 4 suddenly changes to a high load and out-of-resonance occurs while the power converter 101 is operating. be.
  • the switching element Q2 when the switching element Q2 is turned on (transitioned), the current flowing through the switching element Q1 is commutated to the switching element Q2. charging occurs. Since the output capacitance Cp1 is a capacitor connected between the source terminal and the drain terminal of the switching element Q1, during the recharging period during which the output capacitance Cp1 is recharged, the drain terminal of the switching element Q1 and the A current (current for recharging the output capacitor Cp1) flows between the source terminals. At this time, since the switching element Q2 transitions to the ON state, a through current is generated that flows through the switching elements Q1 and Q2.
  • this through current is a current that flows through the switching elements Q1 and Q2, the time change in the current value of the through current is determined by the speed at which the switching element Q2 is turned on.
  • the operation of turning off the switching element Q2 and turning on the switching element Q1 after the dead time td2 has elapsed is a complementary operation to the above. That is, at the time (t23) before the switching element Q2 transitions to the OFF state, the LC resonance causes the polarity of the current I1 flowing through the resonant switching circuit RSC including the primary winding Tr1 of the transformer Tr to change from negative to positive. and reverse.
  • the switching element Q2 is in a reverse conducting state, the output capacitance Cp2 of the switching element Q2 is discharged, and the output capacitance Cp2 is recharged by the transition of the switching element Q1 to the ON state. Therefore, when switching element Q1 transitions to the ON state, a through current is generated that flows through switching elements Q1 and Q2.
  • the time change of the current value of the through current at this time is also determined by the speed at which the switching element Q1 is turned on.
  • the control circuit 21 forming the gate drive circuit 2 executes steps S2 to S4 shown in FIG. 4 during the ON period of the switching element Q1. That is, the control circuit 21 is connected to the switching element Q2 to be turned on when a determination signal indicating that the polarity of the current I1 is inverted (in this case, from positive to negative) is input from the determination circuit 6. output switching signal to the gate output circuit 22-2.
  • the gate output circuit 22-2 switches the gate resistance when driving the switching element Q2 to the ON state from the resistance element Rgon1 to the resistance element Rgon2 to increase the value of the gate resistance.
  • the gate driving current for the switching element Q2 decreases, the drain current of the switching element Q2 also decreases, and the driving current of the switching element Q2 is adjusted to decrease.
  • This adjustment lowers the drain current, thereby lowering the speed at which the switching element Q2 is turned on. Therefore, even when the load 4 becomes a high load during the period when the switching element Q1 is in the ON state, the amount of time change in the through current generated when the switching element Q2 is turned on can be reduced, and the surge can be prevented. It is possible to suppress the generation of voltage and noise.
  • the control circuit 21 also executes steps S2 to S4 shown in FIG. 4 during the ON period of the switching element Q2. That is, when the control circuit 21 receives a determination signal indicating that the polarity of the current I1 is inverted (in this case, the polarity is inverted from negative to positive), the control circuit 21 controls the gate output circuit 22-1 connected to the switching element Q1. Outputs the output switching signal. When the output switching signal is input, the gate output circuit 22-1 switches the gate resistance when driving the switching element Q1 to the ON state from the resistance element Rgon1 to the resistance element Rgon2 to increase the value of the gate resistance. As a result, the gate driving current for the switching element Q1 decreases, the drain current of the switching element Q1 also decreases, and the driving current of the switching element Q1 is adjusted to decrease.
  • the speed at which the switching element Q1 transitions to the ON state decreases. Therefore, even when the load 4 becomes a high load during the period when the switching element Q2 is in the ON state, the amount of time change in the through current generated when the switching element Q1 is turned on can be reduced and the surge can be prevented. It is possible to suppress the generation of voltage and noise.
  • the drain current change Id_1 indicated by the dashed line indicates the change in the drain current when the resistive element Rgon1 is used as the gate resistance without switching the resistive element
  • the drain current change Id_2 indicated by the solid line is 4 shows changes in drain current when the gate resistance is switched to the resistance element Rgon2 according to the first embodiment.
  • a voltage change Vsg_1 indicated by a dashed line indicates changes in the voltages Vds1 and Vds2 when the resistive element Rgon1 is used as the gate resistance without switching the resistive elements.
  • 1 shows changes in voltages Vds1 and Vds2 when the gate resistance is switched to the resistance element Rgon2 according to the first form of FIG.
  • the time during which the drain current change occurs becomes longer, but the peak value can be reduced.
  • the voltage change Vsg_2 becomes smaller than the voltage change Vsg_1, and the generated surge voltage and noise can be suppressed.
  • a period (output switching period) during which the output switching signal is output to the gate output circuits 22 (22-1, 22-2) is set in advance.
  • the gate output circuit 22 uses the resistance element Rgon as the gate resistance and outputs a low gate drive current.
  • the output switching period is longer than the period from when it is determined that the polarity of the current I1 is reversed to when the switching elements Q1 and Q2 are turned on and off, and is the period during which the switching elements Q1 and Q2 are turned on and off. It is set shorter than half (half cycle).
  • the output switching period is set longer than the time from time t12 to time t2 and shorter than the time from time t1 to time t2.
  • the gate output from the output circuit when transitioning the switching element to the ON state is performed in the cycle in which the high load of the load 4 is detected as the polarity reversal of the current I1.
  • the resistance element Rgon1 is used as the gate resistor to raise the gate drive current to a high level, enabling high-speed switching.
  • FIG. 7 is a cross-sectional view showing the structure of the GaN-HEMT used in the power converter according to the first embodiment.
  • 500 indicates the GaN-HEMT.
  • the GaN-HEMT includes a substrate 501, a buffer layer 502 formed on the substrate 501, a gallium nitride (GaN) layer 503 formed on the buffer layer 502, and an aluminum gallium nitride layer 503 formed on the gallium nitride layer 503.
  • AlGaN gallium nitride
  • a gate electrode 507 formed at a predetermined position on the aluminum gallium nitride layer 504 via a P-type gallium nitride (P-GaN) layer 505, and on the aluminum gallium nitride layer 504, It has a gate electrode 507 and a source electrode 506 and a drain electrode 508 formed at separated positions.
  • the gate electrode 507 corresponds to the gate terminals of the switching elements Q1 and Q2, and the source electrode 506 and drain electrode 508 correspond to the source terminals and drain terminals of the switching elements Q1 and Q2.
  • the output capacitance (Cp1) of the switching element (for example, Q1) is a parasitic capacitor with the source electrode 506 as one terminal and the drain electrode 508 as the other terminal. That is, the output capacitor (Cp1) is connected between the source terminal and the drain terminal of the switching element (Q1).
  • the time change dI/dt of the current flowing through the switching elements Q1 and Q2 forming the half bridge circuit 1 is It is possible to suppress surge voltage and increase noise. Therefore, stable operation of the power converter 101 is possible.
  • the configuration using field effect transistors as shown in FIG. 3 has been described as the gate output circuit 22, but instead of the field effect transistors, GaN-HEMTs are used similarly to the switching elements. You may do so. Also, the GaN-HEMTs forming the switching elements Q1 and Q2 and the detection circuit 5 may be formed on the semiconductor substrate of the same semiconductor chip. (Embodiment 2)
  • FIG. 8 is a circuit diagram showing the configuration of the gate output circuit according to the second embodiment.
  • the power converter according to the second embodiment differs from the power converter according to the first embodiment in that the configuration of the gate output circuit is changed from that shown in FIG. 3 to that shown in FIG. This is the point. Therefore, only the gate output circuit will be described below unless necessary for the description.
  • the gate output circuit according to the second embodiment uses a current mirror circuit to switch the gate driving current.
  • 22a indicates a gate output circuit.
  • the gate output circuit 22a includes a PMOS transistor PTr1, a current mirror circuit CM configured by PMOS transistors PTr-CM1 and PTr-CM2, a voltage generation circuit Vref that outputs a voltage value corresponding to an input, an operational amplifier OPref, and an NMOS transistor. It includes transistors NTr and NTr-ref, resistance elements Rref and Rgoff, and an inverter gate inv.
  • the source terminals of the PMOS transistors PTr-CM1 and PTr-CM2 forming the current mirror circuit CM are connected to the voltage line Vgon.
  • the voltage applied to the voltage line Vgon is the voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn on the switching elements Q1 and Q2 (FIG. 1).
  • Gate terminals of the PMOS transistors PTr-CM1 and PTr-CM2 are connected to each other and to the drain terminal of the PMOS transistor PTr-CM1.
  • the drain terminal of the PMOS transistor PTr-CM1 is connected to the drain terminal of the NOMS transistor NTr-ref.
  • a drain terminal of the PMOS transistor PTr-CM2 is connected to the output terminal T223.
  • the source terminal of the PMOS transistor PTr1 is connected to the voltage line Vgon, and its drain terminal is connected to the drain terminal of the NMOS transistor NTr-ref.
  • a source terminal of the NMOS transistor NTr is connected to the voltage line Vgoff.
  • the voltage applied to the voltage line Vgoff is the voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn off the switching elements Q1 and Q2.
  • a drain terminal of the NMOS transistor NTr is connected to one terminal of the resistance element Rgoff, and the other terminal of the resistance element Rgoff is connected to the output terminal T223.
  • the output of the voltage generating circuit Vref is connected to the non-inverting input terminal (+) of the operational amplifier OPref.
  • the inverting input terminal (-) of the operational amplifier OPref is connected to the source terminal of the NMOS transistor NTr-ref, and its output terminal is connected to the gate terminal of the NMOS transistor NT-ref.
  • a source terminal of the NMOS transistor NTr-ref is connected to one terminal of the resistance element Rref, and the other terminal of the resistance element Rref is connected to the voltage line Vgoff.
  • the current flowing from the drain terminal to the source terminal of the NMOS transistor NTr-ref is equal to the ratio (output voltage/Rref) of the output voltage of the voltage generation circuit Vref and the resistance value of the resistance element Rref. Since the resistance value of the resistance element Rref is fixed, the current flowing from the drain terminal to the source terminal of the NMOS transistor NTr-ref has a value proportional to the output voltage of the voltage generation circuit Vref.
  • a gate signal output from the control circuit 21 (FIG. 2) is supplied to the gate terminal of the PMOS transistor PTr1 via the input terminal T222 and to the input of the inverter gate inv.
  • the output of the inverter gate inv is connected to the gate terminal of the NMOS transistor NTr.
  • the output switching signal output from the control circuit 21 is supplied as an input to the voltage generation circuit Vref via the input terminal T221. Since the output switching signal is supplied as an input, the voltage generation circuit Vref generates a lower voltage when the output switching signal is at high level (“1”) than when the output switching signal is at low level (“0”). It works to output.
  • the PMOS transistor PTr1 When the gate signal output from the control circuit 21 (FIG. 2) is at the low level (“0”), the PMOS transistor PTr1 is turned on, so the voltage between the drain terminal and the source terminal of the PMOS transistor PTr-CM1 is almost zero. becomes zero. Since the drain terminal and gate terminal of the PMOS transistor PTr-CM1 are connected to each other, the PMOS transistor PTr-CM1 is turned off, and a current flows between the source terminal and the drain terminal of the PMOS transistor PTr-CM2 that constitutes the current mirror circuit CM. does not flow. At this time, the output of the inverter gate inv becomes high level (“1”), so the NMOS transistor NTr is turned on. Therefore, the resistance element Rgoff functions as a gate resistance, and a gate-off voltage is output to the switching element Q1 or Q2 to turn it off.
  • the gate signal output from the control circuit 21 is at high level ("1")
  • the output of the inverter gate inv is at low level (“0")
  • the NMOS transistor NTr is turned off.
  • the high-level gate signal turns off the PMOS transistor PTr, so that the current mirror circuit CM operates, and a current proportional to the current flowing from the source terminal to the drain terminal of the PMOS transistor PTr-CM1 flows to the PMOS transistor PTr-CM1. It flows from the source terminal of PTr-CM2 to the drain terminal.
  • the current flowing from the source terminal to the drain terminal of the PMOS transistor PTr-CM1 flows from the drain terminal to the source terminal of the NMOS transistor NTr-ref. equal to the current. Therefore, a current proportional to the output voltage of the voltage generation circuit Vref is output to the gate terminal of the switching element Q1 or Q2 via the output terminal T223.
  • the output switching signal is at a high level (“1”)
  • the output voltage of the voltage generation circuit Vref is lower than when the output switching signal is at a low level (“0”).
  • the gate drive current output from the gate drive circuit 2 (FIG. 2) including the circuit 22a is switched to a low level.
  • a current circuit that outputs a current according to the level of the output switching signal supplied to the input terminal T221 is formed by the voltage generation circuit Vref, the operational amplifier OPref, the NMOS transistor NTr-ref, and the resistance element Rref. can be considered configured.
  • a current proportional to the current output from the current circuit is output from the current mirror circuit CM as a gate drive current to the gate terminal of the switching element Q1 or Q2.
  • the level of the gate driving current output from the gate output circuit 22a can be switched according to the output switching signal.
  • the control circuit 21 of the gate drive circuit 2 when out-of-resonance occurs in the power converter, the control circuit 21 of the gate drive circuit 2 generates an output switching signal according to the output of the determination circuit 6 (FIG. 1). , it is possible to suppress the amount of change in the through current with time, suppressing the occurrence of surge voltage and noise.
  • resistance elements corresponding to resistance elements Rgon1 and Rgon2 shown in FIG. 3 are not required, and power loss in these resistance elements can be reduced.
  • the gate output circuit 22 shown in FIG. It is necessary to increase PMOS transistors (corresponding to PTr1 and PTr2 in FIG. 3), resistance elements (corresponding to Rgon1 and Rgon2), and OR gates (corresponding to or1 and or2) controlling the gates of the PMOS transistors.
  • the output voltage of the voltage generating circuit Vref can be multi-staged (three or more stages), so that it can be realized with a simple configuration.
  • the transistors forming the gate output circuit 22a are not limited to field effect transistors, and may be GaN-HEMTs, for example. (Embodiment 3)
  • FIG. 9 is a circuit diagram showing the configuration of the power converter according to Embodiment 3.
  • FIG. 9 Since FIG. 9 is similar to FIG. 1, differences will be mainly described. The main difference is that the power converter shown in FIG. 9 uses a full bridge circuit instead of a half bridge circuit.
  • 101a indicates the power converter according to the third embodiment.
  • the power converter 101a includes a full bridge circuit 7 instead of the half bridge circuit 1 (FIG. 1). That is, the power conversion device 101a includes a full bridge circuit 7, a gate drive circuit 2, a detection circuit 5, a determination circuit 6, a resonance capacitor Cr, a primary winding Tr1 and secondary windings Tr2-1 and Tr2-2.
  • a rectifier circuit 3 including a transformer Tr, diodes D1 and D2, and a smoothing capacitor Co is provided.
  • An external DC power supply Vi is connected to input terminals T1 and T2, and a load 4 is connected to output terminals T3 and T4.
  • the DC power source Vi is a device that supplies a DC power source, such as a battery or an AC/DC converter.
  • a full bridge circuit 7 is connected between both terminals of the DC power supply Vi via input terminals T1 and T2.
  • the switching elements Q1 and Q2 are connected in series, and the switching elements Q3 and Q4 are connected in series.
  • the switching elements Q1 to Q4 are composed of, for example, GaN-HEMTs formed on a silicon substrate of a semiconductor chip.
  • the drain terminals of the switching elements Q1 and Q3 are connected to the DC power source Vi through the input terminal T1.
  • a source terminal of the switching element Q1 and a drain terminal of the switching element Q2 are connected, and a source terminal of the switching element Q3 and a drain terminal of the switching element Q4 are connected.
  • Source terminals of the switching elements Q2 and Q4 are connected to the DC power supply Vi through the input terminal T2.
  • the gate terminals of the switching elements Q1 and Q4 are connected to one gate output of the gate drive circuit 2, eg, T23 in FIG.
  • Gate terminals of switching elements Q2 and Q3 are connected to the other gate output of gate drive circuit 2 (T24 in FIG. 2).
  • a detection circuit 5 a resonance capacitor Cr, and a primary winding Tr1 of a transformer Tr are connected in series.
  • the diagonally positioned switching elements (switching element pair) Q1 and Q4 are simultaneously turned on and off, and similarly the diagonally positioned switching elements (switching element pair) Q2 and Q3 are simultaneously turned on and off. do.
  • the operation during the ON period of the switching elements Q1 and Q4 is the same as the circuit using the half bridge circuit 1 of the first embodiment. As a result, the same operation as in the first embodiment is performed. That is, the current I1 flows through the resonance switching circuit including the DC power source Vi, the switching elements Q1 and Q4, the detection circuit 5, the resonance capacitor Cr, and the primary winding Tr1 of the transformer Tr.
  • the operation during the ON period of the switching elements Q2 and Q3 is such that the DC power source Vi is included in the path of the current I2 flowing through the resonant switching circuit including the primary winding Tr1 of the transformer Tr. Become. Therefore, according to the third embodiment using the full bridge circuit 7, the current is supplied from the DC power supply Vi not only during the ON period of the switching elements Q1 and Q4 but also during the ON period of the switching elements Q2 and Q3. Since it operates, the current that can be output from the power conversion device 101a can be increased compared to the case where the same amount of current as the switching element of the first embodiment flows through the switching elements Q1 to Q4. Therefore, an operation suitable for a power conversion device that outputs a large current becomes possible.
  • the load 4 becomes, for example, a high load
  • the through current flowing between the switching elements Q1 and Q4 and between the switching elements Q3 and Q2 is reduced as in the first embodiment. It is possible to suppress the amount of change over time and suppress the occurrence of surge voltage and noise.
  • the configuration described in the second embodiment may be adopted for the gate output circuit. (Embodiment 4)
  • FIG. 10 is a circuit diagram showing the configuration of the power converter according to Embodiment 4.
  • FIG. 10 Since FIG. 10 is similar to FIG. 1, differences will be mainly described below. The main difference is that in FIG. 10, two sense elements are added, two detection circuits corresponding to the sense elements are provided as detection circuits, and the outputs of the two detection circuits are supplied to the determination circuit. is.
  • 101b indicates the power converter according to the fourth embodiment.
  • the power converter 101b includes a half bridge circuit 1a, a gate drive circuit 2, two detection circuits 5-1 and 5-2, a determination circuit 6a, a resonance capacitor Cr, a primary winding Tr1, a secondary winding Tr2-1 and Tr2-2, a transformer Tr, and a rectifier circuit 3, which is composed of diodes D1 and D2 and a smoothing capacitor Co.
  • An external DC power supply Vi is connected to input terminals T1 and T2, and a load 4 is connected to output terminals T3 and T4.
  • the half bridge circuit 1a includes switching elements Q1a and Q2a connected in series with each other.
  • the switching elements Q1a and Q2a are composed of, for example, GaN-HEMTs formed on a silicon substrate of a semiconductor chip.
  • the switching elements Q1a and Q2a include switching elements (main switching elements) Q1a-f and Q2a-f through which the main current flows, and a switching element (switching element for sensing) Q1a through which the current flowing through the switching elements Q1a and Q2a is split. -s and Q2a-s.
  • the drain terminals of the switching elements Q1a-f and Q1a-s are connected to each other, and the gate terminals of the switching elements Q1a-f and Q1a-s are also connected to each other.
  • respective drain terminals of switching elements Q2a-f and Q2a-s are connected together, and respective gate terminals of switching elements Q2a-f and Q2a-s are also connected together.
  • FIG. 11 is a plan view showing part of a semiconductor chip according to the fourth embodiment.
  • FIG. 11 shows a portion of the switching element Q1a formed on the semiconductor substrate (silicon substrate) of the semiconductor chip.
  • the switching elements Q1a-f and Q1a-s included in the switching element Q1a are integrated on the same substrate.
  • symbols Q1a-Td indicate common drain terminals of switching elements Q1a-f and Q1a-s.
  • References Q1a-Tg indicate common gate terminals of switching elements Q1a-f and Q1a-s.
  • Reference characters Q1a-Ts-f indicate source terminals of the switching elements Q1a-f, and reference characters Q1a-Ts-s indicate source terminals of the switching elements Q1a-s.
  • switching elements Q1a-f and Q1a-s are connected to each other, switching elements Q1a-f and Q1a-s are connected in parallel, and switching elements Q1a-f and Q1a-s are connected in parallel.
  • the switching element Q1a-s is used as a sense element by shunting part of the current flowing through the switching element Q1a to the switching element Q1a-s.
  • the device area of the switching elements Q1a-s is made smaller than the device area of the switching elements Q1a-f.
  • the switching element Q2a is configured similarly to the switching element Q1a.
  • switching elements Q1a and Q2a are formed on the same semiconductor substrate.
  • the source terminals of the switching elements Q1a-f and the drain terminal of the switching element Q2a are connected.
  • the source terminals of the switching elements Q2a-f are connected to the DC power source Vi through the input terminal T2.
  • Gate terminals of the switching elements Q1a and Q2a are connected to the gate drive circuit 2 .
  • a resonance capacitor Cr and a primary winding Tr1 of a transformer Tr are connected between the node where the source terminals of the switching elements Q1a-f and the drain terminals of the switching elements Q2a are connected and the source terminals of the switching elements Q2a-f. connected in series.
  • a detection circuit 5-1 is connected between the source terminals of the switching elements Q1a-f and Q1a-s, and a detection circuit 5-2 is connected between the source terminals of the switching elements Q2a-f and Q2a-s. It is The detection circuits 5-1 and 5-2 are current sensors using, for example, shunt resistors, Hall elements, Rogowski coils, or the like. Detecting circuits 5-1 and 5-2 detect current values of currents flowing through switching elements Q1a-s and Q2a-s, respectively. The current values detected by the detection circuits 5-1 and 5-2 are output as analog values to the determination circuit 6a.
  • the determination circuit 6a is composed of a comparator such as a comparator and an edge detector using an edge detection circuit or a microprocessor, for example.
  • the comparator compares the magnitude of the input from the current detection circuits 5-1 and 5-2 with the detected value when the current value is zero, and outputs the result as a digital value.
  • the signal output from the comparator is input to the edge detector, and the edge detector outputs to the gate drive circuit 2 a signal corresponding to the falling edge of the signal from the comparator.
  • the currents output from the detection circuits 5-1 and 5-2 are shown in FIGS. 6 correspond to the currents Id1 and Id2 shown in FIG. Therefore, the current output from the detection circuit 5-1 is used as the determination signal when the polarity of the current I1 flowing through the primary winding Tr1 of the transformer Tr is reversed from positive to negative. That is, when the current output from the detection circuit 5-1 is inverted from positive to negative, the judgment circuit 6a outputs a judgment signal indicating that the polarity of the current I1 is inverted from positive to negative.
  • the current output from the detection circuit 5-2 is used as the determination signal when the polarity of the current I1 flowing through the primary winding Tr1 of the transformer Tr is reversed from negative to positive. That is, when the current output from the detection circuit 5-2 is inverted from positive to negative, the judgment circuit 6a outputs a judgment signal indicating that the polarity of the current I1 is inverted from negative to positive.
  • the gate drive circuit 2 performs the same operation as in the first embodiment based on the determination signal from the determination circuit 6a.
  • the detection circuits 5-1 and 5-2 detect the currents obtained by shunting the currents flowing through the switching elements Q1a and Q2a. It is smaller than the absolute value of the current I1 flowing through the primary winding Tr1 of Tr. Therefore, it is possible to downsize the detection circuits 5-1 and 5-2.
  • the detection circuits 5-1 and 5-2 are provided at locations other than the resonance switching circuit including the primary winding Tr1 of the transformer Tr, which is a path through which a large current flows, the resonance It becomes possible to reduce the parasitic inductance of the switching circuit.
  • the current sensing ratio fluctuates due to the influence of the temperature distribution inside the element.
  • the sense element is only used to determine the reversal of the polarity (positive, negative) of the current. ) can be used with integrated sense elements without affecting the operation of the power converter.
  • the detection circuit 5-1 shown in FIG. 10 may be formed on the same semiconductor substrate as the switching element Q1a, and the detection circuit 5-2 may also be formed on the same semiconductor substrate as the switching element Q2a. good.
  • Embodiment 4 an example based on the power converter described in Embodiment 1 has been described, but it is not limited to this. That is, it may be based on the power converters described in the second and third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

This power conversion device 101 comprises: a switching circuit RSC comprising switching elements Q1, Q2, a resonant capacitor Cr, and a transformer Tr that comprises a primary winding Tr1 connected in series to the resonant capacitor Cr; a gate driver circuit 2 that outputs a gate drive current to a gate terminal of each of the switching elements Q1, Q2 and controls the turning on and off of the switching elements Q1, Q2; a detection circuit 5 that detects a current I1 flowing through the switching circuit RSC; and a determination circuit 6 that determines a reversal of the polarity of the current detected by the detection circuit 5. The gate driver circuit 2 comprises a gate adjustment circuit that adjusts the gate drive current on the basis of determination results from the determination circuit 6.

Description

電力変換装置および電力変換装置の制御方法POWER CONVERSION DEVICE AND CONTROL METHOD OF POWER CONVERSION DEVICE
 本発明は、電力変換装置およびその制御方法に関し、例えば複数のスイッチング素子と、キャパシタと、トランスとを備えた共振型の電力変換装置およびその制御方法に関する。 The present invention relates to a power conversion device and its control method, and for example, to a resonance type power conversion device including a plurality of switching elements, a capacitor, and a transformer, and its control method.
 共振型の電力変換装置は、例えば特許文献1および2に記載されている。特許文献1および2には、共振周波数の変動を検知あるいは判定することができる共振型電力変換装置が記載されている。 Resonance type power converters are described in Patent Documents 1 and 2, for example. Patent Literatures 1 and 2 describe resonance-type power converters capable of detecting or determining variations in resonance frequency.
特開2017-184599号JP 2017-184599 A 特開2019-201455号Japanese Patent Application Laid-Open No. 2019-201455
 共振型電力変換装置は、複数のスイッチング素子と、キャパシタと、キャパシタと直列的に接続された一次巻線を備えるトランスとを備えている。本発明者が検討したところ、共振型電力変換装置の負荷が、例えば高負荷に急変すると、キャパシタと一次巻線とによって構成される直列共振回路の共振周波数が、複数のスイッチング素子がオンオフする周波数から外れ(共振外れ)、スイッチング素子を貫通して電流が流れることが発生し、サージ電圧およびノイズが増大すると言う課題があることが判明した。本発明者の検討は、後で図面を用いて説明する。 A resonant power converter includes a plurality of switching elements, a capacitor, and a transformer having a primary winding connected in series with the capacitor. As a result of investigation by the present inventor, when the load of the resonance type power conversion device suddenly changes to, for example, a high load, the resonance frequency of the series resonance circuit configured by the capacitor and the primary winding changes to the frequency at which the multiple switching elements turn on and off. It was found that there was a problem that the current flowed through the switching element due to a deviation from the resonance (resonance deviation), resulting in an increase in surge voltage and noise. The study by the inventor will be described later with reference to the drawings.
 本発明の目的は、共振外れが発生したときに、サージ電圧やノイズの増大を抑制することができる電力変換装置および電力変換装置の制御方法を提供することにある。
 本発明の他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power conversion device and a control method for the power conversion device that can suppress an increase in surge voltage and noise when an out-of-resonance occurs.
Other objects and novel features of the present invention will become apparent from the description of the specification and the accompanying drawings.
 本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記の通りである。 A brief outline of representative embodiments among the embodiments disclosed in the present application is as follows.
 すなわち、電力変換装置は、複数のスイッチング素子と、キャパシタと、キャパシタと直列的に接続された一次巻線を備えたトランスとを備えるスイッチング回路と、スイッチング素子のゲートに対してゲート駆動電流を出力して、スイッチング素子のオンオフを制御するゲート駆動回路と、スイッチング回路に流れる電流を検出する検出回路と、検出回路が検出した電流の極性の反転を判定する判定回路とを備える。ここで、ゲート駆動回路は、判定回路による判定の結果に基づいて、ゲート駆動電流を調整するゲート調整回路を備えている。 That is, the power conversion device includes a switching circuit including a plurality of switching elements, a capacitor, and a transformer having a primary winding connected in series with the capacitor, and outputs a gate drive current to the gate of the switching element. and a gate drive circuit for controlling on/off of the switching element, a detection circuit for detecting current flowing through the switching circuit, and a determination circuit for determining reversal of the polarity of the current detected by the detection circuit. Here, the gate drive circuit includes a gate adjustment circuit that adjusts the gate drive current based on the determination result of the determination circuit.
 本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、共振外れが発生したときに、サージ電圧やノイズの増大を抑制することができる電力変換装置を提供することができる。 Among the inventions disclosed in the present application, to briefly explain the effects obtained by the representative embodiments, there is provided a power conversion device capable of suppressing an increase in surge voltage and noise when out-of-resonance occurs. can do.
実施の形態1に係る電力変換装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a power converter according to Embodiment 1; FIG. 実施の形態1に係るゲート駆動回路の構成を示すブロック図である。2 is a block diagram showing the configuration of a gate drive circuit according to Embodiment 1; FIG. 実施の形態1に係るゲート出力回路の構成を示す回路図である。2 is a circuit diagram showing a configuration of a gate output circuit according to Embodiment 1; FIG. 実施の形態1に係る制御方法を説明するためのフローチャートである。4 is a flowchart for explaining a control method according to Embodiment 1; 実施の形態1に係る電力変換装置の動作を説明するための波形図である。4 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1. FIG. 実施の形態1に係る電力変換装置の動作を説明するための波形図である。4 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1. FIG. 実施の形態1に係る電力変換装置で用いられているGaN-HEMTの構造を示す断面図である。2 is a cross-sectional view showing the structure of a GaN-HEMT used in the power converter according to Embodiment 1; FIG. 実施の形態2に係るゲート出力回路の構成を示す回路図である。8 is a circuit diagram showing the configuration of a gate output circuit according to Embodiment 2; FIG. 実施の形態3に係る電力変換装置の構成を示す回路図である。FIG. 10 is a circuit diagram showing the configuration of a power conversion device according to Embodiment 3; 実施の形態4に係る電力変換装置の構成を示す回路図である。FIG. 11 is a circuit diagram showing the configuration of a power conversion device according to Embodiment 4; 実施の形態4に係る半導体チップの一部分を示す平面図である。FIG. 11 is a plan view showing a portion of a semiconductor chip according to a fourth embodiment; 本発明者の検討を説明するための電力変換装置の回路図である。It is a circuit diagram of a power conversion device for explaining the study of the present inventor.
 実施の形態について、図面を参照して説明する。なお、以下に説明する実施の形態は特許請求の範囲に係る発明を限定するものではなく、また実施の形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。
 本発明の実施の形態を説明する前に、図12を参照して、本発明者が検討した電力変換装置についての課題について説明する。
Embodiments will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the scope of claims, and all of the various elements and their combinations described in the embodiments are essential to the solution of the invention. Not necessarily.
Before describing the embodiments of the present invention, the problem of the power conversion device studied by the inventor will be described with reference to FIG. 12 .
 図12は、本発明者の検討を説明するための電力変換装置の回路図である。以下、本明細書では、電力変換装置として、トランスの漏れインダクタおよび励磁インダクタと、トランスに結合されたキャパシタとを用いた、高効率なLLC共振方式の共振型電力変換装置を例として説明する。 FIG. 12 is a circuit diagram of a power conversion device for explaining the inventor's study. Hereinafter, in this specification, a high-efficiency LLC resonance type resonant power converter using a leakage inductor and an exciting inductor of a transformer and a capacitor coupled to the transformer will be described as an example of the power converter.
 図12において、100は電力変換装置(以下、DC/DCコンバータとも称する)を示している。DC/DCコンバータ100は、ゲート駆動回路2と、次に述べる一次側回路および二次側回路とを備え、一次側回路に供給される直流電源Viの電圧を変換して、二次側回路に結合された負荷4に、変換された直流電圧を給電する。一次側回路は、スイッチング素子Q1およびQ2により構成されたハーフブリッジ回路1、共振用キャパシタ(電流共振用キャパシタ)CrおよびトランスTrを備えている。また、二次側回路は、ダイオードD1およびD2と、平滑キャパシタCoにより構成された整流回路3を備えている。 In FIG. 12, 100 denotes a power converter (hereinafter also referred to as a DC/DC converter). The DC/DC converter 100 includes a gate drive circuit 2 and a primary side circuit and a secondary side circuit to be described below, and converts the voltage of the DC power supply Vi supplied to the primary side circuit to the secondary side circuit. The coupled load 4 is fed with the converted DC voltage. The primary side circuit includes a half bridge circuit 1 composed of switching elements Q1 and Q2, a resonance capacitor (current resonance capacitor) Cr, and a transformer Tr. Further, the secondary side circuit includes diodes D1 and D2 and a rectifier circuit 3 configured by a smoothing capacitor Co.
 ハーフブリッジ回路1を構成する2個のスイッチング素子Q1およびQ2は、ゲート駆動回路2によって駆動される。すなわち、ゲート駆動回路2は、スイッチング素子Q1、Q2をデッドタイム(双方のスイッチング素子がともにオフ状態となる時間)を設けつつ、所定の周期で交互にスイッチングさせる。スイッチング素子Q1、Q2が、所定の周期で交互にスイッチングされることで、二次側回路から出力される電圧の値が調整される。この場合、スイッチング素子Q1、Q2を交互にスイッチングさせる所定の周期が、DC/DCコンバータ100の動作周期(言い換えるなら、DC/DCコンバータの動作周波数)である。 The two switching elements Q1 and Q2 that make up the half bridge circuit 1 are driven by the gate drive circuit 2. That is, the gate drive circuit 2 alternately switches the switching elements Q1 and Q2 at a predetermined cycle while providing a dead time (a time during which both switching elements are in an OFF state). By alternately switching the switching elements Q1 and Q2 at a predetermined cycle, the value of the voltage output from the secondary side circuit is adjusted. In this case, the predetermined period for alternately switching the switching elements Q1 and Q2 is the operation period of the DC/DC converter 100 (in other words, the operation frequency of the DC/DC converter).
 LLC共振方式のDC/DCコンバータ100では、共振用キャパシタCrと、トランスTrに含まれる漏れインダクタンス(図示せず)および励磁インダクタンスによって構成される直列共振回路を利用し、スイッチング素子Q1、Q2の電圧もしくは電流の少なくとも一方が、ゼロ(“0”)になる状態のときに、スイッチング素子Q1、Q2のオンオフを切り替えるゼロ電圧(電流)スイッチングが行なわれる。ゼロ電圧スイッチングを行うことで、スイッチング素子のスイッチング時における電力損失やスイッチングノイズの発生の低減を図ることが可能である。 LLC resonance type DC/DC converter 100 utilizes a series resonance circuit composed of a resonance capacitor Cr, a leakage inductance (not shown) included in transformer Tr, and an exciting inductance, and voltages of switching elements Q1 and Q2 are controlled. Alternatively, when at least one of the currents is zero (“0”), zero voltage (current) switching is performed to turn on/off the switching elements Q1 and Q2. By performing zero-voltage switching, it is possible to reduce the power loss and the occurrence of switching noise during switching of the switching element.
 しかしながら、入力側の直流電源Viの電圧値や、出力側の負荷4が設計値より変動すると、前記した直列共振回路の共振周波数が変動し、DC/DCコンバータ100の動作周波数が共振周波数から外れてしまう場合がある。この場合、ゼロ電圧スイッチングが成立しなくなるため、電力損失の増大やスイッチングノイズの発生、スイッチング素子の破壊等が生じることになる。以下の説明では、DC/DCコンバータの動作周波数が、直列共振回路の共振周波数から外れることを、共振外れとも称する。 However, if the voltage value of the DC power supply Vi on the input side or the load 4 on the output side fluctuates from the designed value, the resonance frequency of the series resonance circuit will fluctuate, and the operating frequency of the DC/DC converter 100 will deviate from the resonance frequency. may be lost. In this case, zero voltage switching cannot be achieved, resulting in an increase in power loss, generation of switching noise, destruction of switching elements, and the like. In the following description, the deviation of the operating frequency of the DC/DC converter from the resonance frequency of the series resonance circuit is also referred to as out-of-resonance.
 直列共振回路の共振周波数の変動に対応するための技術が、特許文献1および2に記載されている。例えば特許文献1においては、スイッチング素子を流れる電流値を検出する電流検出回路を設け、スイッチング素子をターンオンする制御信号を出力するタイミングにおける、電流検出回路の検出値がゼロより大きい場合に、共振周波数が変動し異常が発生していると判定している。また、特許文献2では、同じ共振周期内において、共振周期の半周期を中点として対称となる2時点以上の電流値を検出し、その電流値の値が所定値以上異なる場合に、共振周波数が変動し異常が発生していると判定している。 Patent Documents 1 and 2 describe techniques for coping with fluctuations in the resonance frequency of a series resonance circuit. For example, in Patent Document 1, a current detection circuit is provided to detect the value of current flowing through a switching element. is determined to have changed and an abnormality has occurred. Further, in Patent Document 2, in the same resonance period, current values are detected at two or more points in time that are symmetrical about a half period of the resonance period, and if the current values differ by a predetermined value or more, the resonance frequency is detected. is determined to have changed and an abnormality has occurred.
 特許文献1、2に記載の技術によって、異常の発生を検知し、異常発生を検知したときには、例えばスイッチング素子を強制的にオフにして、DC/DCコンバータの動作周波数を上げることにより、共振外れを回避することが可能である。 With the techniques described in Patent Documents 1 and 2, the occurrence of an abnormality is detected, and when the occurrence of an abnormality is detected, for example, the switching element is forcibly turned off, and the operating frequency of the DC/DC converter is increased. can be avoided.
 しかしながら、この場合には、共振外れが発生している期間、すなわち直流電源Viの電圧や出力側の負荷4が高い状態が続いている期間、スイッチング素子を強制的にオフにすることを継続しなければならず、この期間、DC/DCコンバータで適切に電力変換を行うことができないということになる。 However, in this case, the switching element is forced to continue to be turned off during the period in which the resonance out-of-resonance occurs, that is, the period in which the voltage of the DC power supply Vi and the load 4 on the output side continue to be high. During this period, the DC/DC converter cannot perform power conversion properly.
 共振外れを回避するために、スイッチング素子を強制的にオフにするような構成を採用しない場合、電力損失の増大が発生する。すなわち、DC/DCコンバータにおいて、共振外れが発生していると、オンしている一方のスイッチング素子(例えばQ1)を流れる電流が正から負へと反転し、その反転後に、スイッチング素子(Q1)はターンオフするため、スイッチング素子(Q1)が逆導通状態となり、デッドタイム経過後に他方のスイッチング素子(Q2)をターンオンしたときに、リカバリ電流が、スイッチング素子Q1およびQ2を貫通して流れるため、大きな電力損失が発生し、スイッチング素子の破壊が生じることがある。 If a configuration that forcibly turns off the switching element is not adopted in order to avoid out-of-resonance, an increase in power loss will occur. That is, in the DC/DC converter, when out of resonance occurs, the current flowing through one switching element (for example, Q1) that is on is reversed from positive to negative, and after the reversal, the switching element (Q1) is turned off, the switching element (Q1) is in a reverse conducting state, and when the other switching element (Q2) is turned on after the dead time has elapsed, a recovery current flows through the switching elements Q1 and Q2, resulting in a large Power loss occurs and switching element destruction may occur.
 スイッチング素子として、逆導通時のリカバリ電流が小さい素子を用いることで、共振外れが発生した場合の電力損失の増大を抑制し、スイッチング素子の破壊を防ぐことは可能である。逆導通時のリカバリ電流が小さいスイッチング素子の一例として、高速リカバリ型の金属酸化物半導体電界効果型トランジスタ(Metal-Oxide-Semiconductor Field Effect Transistor:MOSFET)や、窒化ガリウム(GaN)系材料を用いた高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)等がある。以下、GaN系材料を用いたHEMTを、GaN-HEMTと称する。 By using an element with a small recovery current in the event of reverse conduction as the switching element, it is possible to suppress the increase in power loss in the event of out-of-resonance and prevent the destruction of the switching element. As an example of a switching element with a small recovery current during reverse conduction, a high-speed recovery metal-oxide-semiconductor field effect transistor (MOSFET) or a gallium nitride (GaN)-based material is used. There is a high electron mobility transistor (High Electron Mobility Transistor: HEMT) and the like. A HEMT using a GaN-based material is hereinafter referred to as a GaN-HEMT.
 特に、GaN-HEMTは、素子内部にボディダイオードを含まないため、原理的にリカバリ電流がゼロとなる。したがって、スイッチング素子としてGaN-HEMTを用いたDC/DCコンバータにおいては、共振外れが発生してもリカバリ電流による損失は発生せず、スイッチング素子の破壊の発生も低減することができるため、直流電源Viの電圧値や出力側の負荷が高い状態においても、DC/DCコンバータを動作させることが可能となる。 In particular, since the GaN-HEMT does not include a body diode inside the element, the recovery current is theoretically zero. Therefore, in a DC/DC converter using a GaN-HEMT as a switching element, loss due to recovery current does not occur even if a resonance out-of-resonance occurs, and the occurrence of destruction of the switching element can be reduced. It is possible to operate the DC/DC converter even when the voltage value of Vi or the load on the output side is high.
 GaN-HEMTをスイッチング素子として用いることにより、ボディダイオードによる前記した影響を除くことが可能であるが、GaN-HEMTにおいても、MOSFETと同様に出力容量は存在するため、GaN-HEMTの出力容量による影響が存在する。すなわち、共振外れが発生した場合、一方のスイッチング素子(例えばQ1)が逆導通状態になると、スイッチング素子(Q1)の出力容量が放電され、他方のスイッチング素子(Q2)をターンオンしたときに、スイッチング素子(Q1)の出力容量が再充電されることになる。このとき、出力容量を再充電するために、スイッチング素子(Q2)とスイッチング素子(Q1)を流れる電流が発生する。 By using a GaN-HEMT as a switching element, it is possible to eliminate the above-described effects of the body diode. Impact exists. That is, when out-of-resonance occurs, when one switching element (for example, Q1) becomes reverse conductive, the output capacitance of the switching element (Q1) is discharged, and when the other switching element (Q2) is turned on, switching The output capacitance of device (Q1) will be recharged. At this time, a current is generated that flows through the switching element (Q2) and the switching element (Q1) in order to recharge the output capacitance.
 GaN-HEMTの出力容量は小さく、リカバリ電流と比べると蓄積電荷量が小さいため、電力損失の増大やスイッチング素子破壊の危険性はわずかである。しかしながら、GaN-HEMTをスイッチング素子として用いた電力変換装置は高周波で動作させる場合が多いため、出力容量の再充電による電流の時間変化量(dI/dt:Iは再充電の際に、出力容量を流れる電流)は大きくなる。この大きな電流の時間変化量(dI/dr)は、サージ電圧やノイズ増大の原因となり、電力変換機器の正常動作の妨げとなる。  The output capacity of GaN-HEMT is small, and the amount of stored charge is small compared to the recovery current, so there is little risk of increased power loss or destruction of switching elements. However, since power converters using GaN-HEMTs as switching elements are often operated at high frequencies, the amount of time change in current due to recharging of the output capacity (dI/dt: I is the output capacity current flowing through ) increases. This large amount of current change over time (dI/dr) causes a surge voltage and an increase in noise, and interferes with normal operation of the power converter.
 特許文献1および2では、共振外れが発生したときに、スイッチング素子の出力容量を再充電する電流の時間変化に起因するサージ電圧やノイズ増大は、記載も認識もされていない。 Patent Documents 1 and 2 do not describe or recognize the surge voltage or noise increase caused by the time change of the current that recharges the output capacitance of the switching element when the resonance out occurs.
 上述のような課題を解決するために、本発明者が鋭意検討を行った末、本実施の形態の構成を案出するに至った。以下、本実施の形態を、図面を用いて説明する。
 (実施の形態1)
 <電力変換装置の全体構成>
In order to solve the problems described above, the present inventors have made intensive studies and have come up with the configuration of the present embodiment. Hereinafter, this embodiment will be described with reference to the drawings.
(Embodiment 1)
<Overall Configuration of Power Converter>
 図1は、実施の形態1に係る電力変換装置の構成を示す回路図である。図1において、101は電力変換装置を示している。電力変換装置101は、2つのスイッチング素子を用いたハーフブリッジ回路1を備える、LLC共振方式のDC/DCコンバータである。 FIG. 1 is a circuit diagram showing the configuration of the power converter according to Embodiment 1. FIG. In FIG. 1, 101 indicates a power converter. The power conversion device 101 is an LLC resonance type DC/DC converter including a half bridge circuit 1 using two switching elements.
 電力変換装置101は、ハーフブリッジ回路1、ゲート駆動回路2、電流検出回路(以下、検出回路とも称する)5、電流極性反転判定回路(以下、判定回路とも称する)6、共振用キャパシタCr、一次巻線Tr1と二次巻線Tr2-1およびTr2-2とで構成されたトランスTr、ダイオードD1およびD2と平滑キャパシタCoとで構成された整流回路3とを備えている。図1において、T1およびT2は、電力変換装置101の入力端子を示し、T3およびT4は、電力変換装置101の出力端子を示している。電力変換装置101の入力端子T1およびT2には、図1に示すように、外部の直流電源Viが接続され、出力端子T3およびT4には、図1に示すように負荷4が接続されている。直流電源Viは、例えばバッテリ、AC/DC(交流/直流)コンバータ等である。 The power conversion device 101 includes a half bridge circuit 1, a gate drive circuit 2, a current detection circuit (hereinafter also referred to as a detection circuit) 5, a current polarity reversal determination circuit (hereinafter also referred to as a determination circuit) 6, a resonance capacitor Cr, a primary It includes a transformer Tr composed of a winding Tr1 and secondary windings Tr2-1 and Tr2-2, and a rectifier circuit 3 composed of diodes D1 and D2 and a smoothing capacitor Co. In FIG. 1, T1 and T2 indicate input terminals of the power conversion device 101, and T3 and T4 indicate output terminals of the power conversion device 101. FIG. Input terminals T1 and T2 of the power converter 101 are connected to an external DC power supply Vi as shown in FIG. 1, and a load 4 is connected to output terminals T3 and T4 as shown in FIG. . The DC power supply Vi is, for example, a battery, an AC/DC (alternating current/direct current) converter, or the like.
 ハーフブリッジ回路1は、図1に示すように、直流電源Viの両端子間に接続されている。ハーフブリッジ回路1は、直流電源Viの両端子間(入力端子T1、T2間)に直列的に接続されたスイッチング素子Q1、Q2を備えている。スイッチング素子Q1、Q2は、特に制限されないが、一つの半導体チップ(同一の半導体チップ)のシリコン基板上に形成されたGaN-HEMTによって構成されている。 The half bridge circuit 1 is connected between both terminals of the DC power source Vi, as shown in FIG. The half bridge circuit 1 includes switching elements Q1 and Q2 connected in series between both terminals (between input terminals T1 and T2) of a DC power supply Vi. The switching elements Q1 and Q2 are composed of GaN-HEMTs formed on a silicon substrate of one semiconductor chip (the same semiconductor chip), although not particularly limited.
 図1において、破線で示したCp1およびCp2は、スイッチング素子Q1およびQ2の寄生キャパシタを示している。寄生キャパシタCp1の一方の端子は、スイッチング素子Q1のソース端子に接続され、他方の端子は、スイッチング素子Q1のドレイン端子に接続されている。この寄生キャパシタCp1が、スイッチング素子Q1の出力容量に該当する。同様に、寄生キャパシタCp2は、スイッチング素子Q2のソース端子とドレイン端子間に接続されており、寄生キャパシタCp2が、スイッチング素子Q2の出力容量に該当する。以下、寄生キャパシタCp1、Cp2は、出力容量Cp1、Cp2とも称する。 In FIG. 1, Cp1 and Cp2 indicated by broken lines indicate parasitic capacitors of switching elements Q1 and Q2. One terminal of the parasitic capacitor Cp1 is connected to the source terminal of the switching element Q1, and the other terminal is connected to the drain terminal of the switching element Q1. This parasitic capacitor Cp1 corresponds to the output capacitance of the switching element Q1. Similarly, the parasitic capacitor Cp2 is connected between the source terminal and the drain terminal of the switching element Q2, and the parasitic capacitor Cp2 corresponds to the output capacitance of the switching element Q2. The parasitic capacitors Cp1 and Cp2 are hereinafter also referred to as output capacitors Cp1 and Cp2.
 ハーフブリッジ回路1において、スイッチング素子Q1のドレイン端子は入力端子T1を介して直流電源Viに接続されている。スイッチング素子Q1のソース端子とスイッチング素子Q2のドレイン端子とが接続されている。スイッチング素子Q2のソース端子は入力端子T2を介して直流電源Viに接続されている。スイッチング素子Q1およびQ2のゲート端子は、ゲート駆動回路2に接続されている。また、スイッチング素子Q1のソース端子とスイッチング素子Q2のドレイン端子とが接続された節点(ノード)と、スイッチング素子Q2のソース端子との間に、検出回路5、共振用キャパシタCrとトランスTrの一次巻線Tr1とが直列的に接続されている。トランスTrの二次側は、二次巻線Tr2-1およびTr2-2で構成されている。特に制限されないが、二次巻線Tr2-1およびTr2-2は、同じ巻き数であり、同じ巻き方向となるように直列に接続されている。なお、図1の●印は、トランスTrの極性を示している。 In the half bridge circuit 1, the drain terminal of the switching element Q1 is connected to the DC power supply Vi through the input terminal T1. A source terminal of the switching element Q1 and a drain terminal of the switching element Q2 are connected. A source terminal of the switching element Q2 is connected to the DC power supply Vi through an input terminal T2. Gate terminals of the switching elements Q1 and Q2 are connected to the gate drive circuit 2 . Between the source terminal of the switching element Q2 and the node where the source terminal of the switching element Q1 and the drain terminal of the switching element Q2 are connected, the detection circuit 5, the resonance capacitor Cr and the primary of the transformer Tr are connected. The winding Tr1 is connected in series. The secondary side of the transformer Tr is composed of secondary windings Tr2-1 and Tr2-2. Although not particularly limited, the secondary windings Tr2-1 and Tr2-2 have the same number of turns and are connected in series so as to have the same winding direction. Note that the ● mark in FIG. 1 indicates the polarity of the transformer Tr.
 整流回路3は、ダイオードD1およびD2と平滑キャパシタCoとで構成され、ダイオードD1およびD2のカソード端子と平滑キャパシタCoの一方の端子とが接続されている。平滑キャパシタCoの他方の端子は、トランスTrの二次巻線Tr2-1およびTr2-2の一方の端子が互いに接続されている節点と接続されている。トランスTrの二次巻線Tr1およびTr2-2の他方の端子は、それぞれダイオードD1およびD2のアノード端子と接続されている。平滑キャパシタCoの端子は、出力端子T3およびT4を介して負荷4に接続されている。 The rectifier circuit 3 is composed of diodes D1 and D2 and a smoothing capacitor Co, and the cathode terminals of the diodes D1 and D2 and one terminal of the smoothing capacitor Co are connected. The other terminal of smoothing capacitor Co is connected to a node at which one terminals of secondary windings Tr2-1 and Tr2-2 of transformer Tr are connected to each other. The other terminals of secondary windings Tr1 and Tr2-2 of transformer Tr are connected to anode terminals of diodes D1 and D2, respectively. The terminals of smoothing capacitor Co are connected to load 4 via output terminals T3 and T4.
 検出回路5は、電流センサによって構成されている。電流センサは、例えばシャント抵抗、ホール素子あるいはロゴスキーコイル等によって構成されている。検出回路5は、スイッチング素子Q1、Q2と、共振用キャパシタCrと、トランスTrの一次巻線Tr1とを含む共振スイッチング回路(以下、単にスイッチング回路とも称する)RSCに流れる電流I1の電流値を検出する。検出回路5によって検出された電流値はアナログ値として、判定回路6に出力される。なお、実施の形態1では、電流I1の電流値を検出するために、検出回路5も共振スイッチング回路RSCに設けられている。 The detection circuit 5 is composed of a current sensor. The current sensor is composed of, for example, a shunt resistor, a Hall element, or a Rogowski coil. The detection circuit 5 detects the current value of the current I1 flowing through the resonance switching circuit RSC (hereinafter simply referred to as the switching circuit) including the switching elements Q1 and Q2, the resonance capacitor Cr, and the primary winding Tr1 of the transformer Tr. do. The current value detected by the detection circuit 5 is output to the determination circuit 6 as an analog value. Note that in the first embodiment, the detection circuit 5 is also provided in the resonant switching circuit RSC in order to detect the current value of the current I1.
 判定回路6は、特に制限されないが、図示しない、比較器とエッジ検出器とによって構成されている。比較器は、例えばコンパレータ等によって構成され、エッジ検出器は、例えばロジック回路を組み合わせることで構成されたエッジ検出回路やマイクロプロセッサを用いたエッジ検出器により構成されている。比較器には、検出回路5からの入力(アナログの電流値)と、電流値“0(ゼロ)”に対応する基準値とが供給され、比較器は、アナログの電流値と基準値とを比較し、比較結果をデジタル値として、エッジ検出器に出力する。エッジ検出器は、入力されているデジタル値の変化を、信号の立下りおよび立ち上がりとして捉え、検出回路5を流れる共振スイッチング回路の電流I1の極性(電流極性)を示す判定信号として、ゲート駆動回路2へ出力する。 The determination circuit 6 is composed of a comparator and an edge detector (not shown), although not particularly limited. The comparator is configured by, for example, a comparator, and the edge detector is configured by, for example, an edge detection circuit configured by combining logic circuits or an edge detector using a microprocessor. The comparator is supplied with the input (analog current value) from the detection circuit 5 and the reference value corresponding to the current value "0 (zero)", and the comparator compares the analog current value and the reference value. A comparison result is output to the edge detector as a digital value. The edge detector captures changes in the input digital value as falling and rising signals, and outputs them as determination signals indicating the polarity (current polarity) of the current I1 of the resonant switching circuit flowing through the detection circuit 5 to the gate drive circuit. Output to 2.
 例えば、検出回路5からのアナログの電流値が、高い電流値から基準値以下に低下した場合、判定回路6における比較器は、デジタル値を“1”から“0”へ変化させる。判定回路6におけるエッジ検出器は、デジタル値“1”から“0”への変化を、信号の立下りとして捉え、共振スイッチング回路RSCの電流I1の電流極性が正から負へ反転したことを示す判定信号を出力する。これに対して、検出回路5からのアナログの電流値が、基準値よりも低い値から基準値を超えた場合、判定回路6における比較器は、デジタル値を“0”から“1”へ変化させる。判定回路6におけるエッジ検出器は、デジタル値“0”から“1”への変化を、信号の立ち上がりとして捉え、共振スイッチング回路RSCの電流I1の電流極性が負から正へ反転したことを示す判定信号を出力する。 For example, when the analog current value from the detection circuit 5 drops from a high current value to a reference value or less, the comparator in the determination circuit 6 changes the digital value from "1" to "0". The edge detector in the determination circuit 6 captures a change from a digital value of "1" to "0" as a signal falling, indicating that the current polarity of the current I1 of the resonant switching circuit RSC has been reversed from positive to negative. Outputs a judgment signal. On the other hand, when the analog current value from the detection circuit 5 exceeds the reference value from a value lower than the reference value, the comparator in the determination circuit 6 changes the digital value from "0" to "1". Let The edge detector in the determination circuit 6 captures the change of the digital value from "0" to "1" as the rise of the signal, and determines that the current polarity of the current I1 of the resonant switching circuit RSC has been reversed from negative to positive. Output a signal.
 判定回路6内の比較器への入力側には、シュミットトリガやローパスフィルタを設けるようにしてもよい。このシュミットトリガやローパスフィルタによって、検出回路5からの出力に含まれるノイズを除去することができる。 A Schmitt trigger or a low-pass filter may be provided on the input side to the comparator in the determination circuit 6. Noise contained in the output from the detection circuit 5 can be removed by this Schmitt trigger or low-pass filter.
 ゲート駆動回路2は、電力変換装置101の動作周波数で定まる動作周期で、スイッチング素子Q1およびQ2を交互にオンオフするように駆動する。スイッチング素子Q1、Q2を駆動する際に、ゲート駆動回路2は、判定回路6からの判定信号に基づいて、駆動能力を調整する。ゲート駆動回路2については、次に図面を参照して詳しく説明する。
 <<ゲート駆動回路の構成>>
The gate drive circuit 2 drives the switching elements Q1 and Q2 so as to alternately turn on and off at an operation cycle determined by the operation frequency of the power converter 101 . When driving the switching elements Q1 and Q2, the gate drive circuit 2 adjusts the drive capability based on the determination signal from the determination circuit 6. FIG. The gate drive circuit 2 will now be described in detail with reference to the drawings.
<<Configuration of Gate Drive Circuit>>
 図2は、実施の形態1に係るゲート駆動回路の構成を示すブロック図である。図2に示すように、ゲート駆動回路2は、制御回路21と、スイッチング素子Q1、Q2に対応する2つのゲート出力回路22とを備えている。 FIG. 2 is a block diagram showing the configuration of the gate drive circuit according to the first embodiment. As shown in FIG. 2, the gate drive circuit 2 includes a control circuit 21 and two gate output circuits 22 corresponding to the switching elements Q1 and Q2.
 制御回路21は、例えばマイクロプロセッサやプログラム可能なゲートアレイ(例えば、いわゆるFPGA)等で構成され、スイッチング素子Q1およびQ2を、電力変換装置101の動作周波数で交互にオンオフ駆動するために必要なゲート信号を生成する。また、制御回路21は、入力端子T21およびT22を介して、判定回路6から出力された判定信号(電流反転正負および電流反転負正)を入力し、スイッチング素子Q1およびQ2のゲート駆動電流を切り替えのための出力切替信号を生成する。ゲート駆動電流を切り替えることで、スイッチング素子Q1およびQ2のゲート駆動電流を調整するため、出力切替信号を生成する制御回路21は、ゲート調整回路と見なすことができる。 The control circuit 21 is composed of, for example, a microprocessor, a programmable gate array (for example, a so-called FPGA), or the like, and includes gates necessary for alternately turning on and off the switching elements Q1 and Q2 at the operating frequency of the power converter 101. Generate a signal. Further, the control circuit 21 inputs the determination signal (current reversal positive/negative and current reversal negative/positive) output from the determination circuit 6 via the input terminals T21 and T22, and switches the gate drive currents of the switching elements Q1 and Q2. to generate an output switching signal for Since the gate drive currents of the switching elements Q1 and Q2 are adjusted by switching the gate drive currents, the control circuit 21 that generates the output switching signal can be regarded as a gate adjustment circuit.
 ゲート出力回路22は、スイッチング素子Q1およびQ2毎に設けられ、制御回路21から入力されるゲート信号と出力切替信号に応じたゲート出力信号を出力する。ゲート出力回路22から出力されたゲート出力信号は、出力端子T23およびT24を介して、スイッチング素子Q1およびQ2のゲート端子に供給される。なお、図2において、符号22-1は、スイッチング素子Q1のゲート端子にゲート出力信号1を供給するゲート出力回路を示し、符号22-2は、スイッチング素子Q2のゲート端子にゲート出力信号2を供給するゲート出力回路を示している。
 <<<ゲート出力回路の構成>>>
The gate output circuit 22 is provided for each of the switching elements Q1 and Q2 and outputs a gate output signal according to the gate signal and the output switching signal input from the control circuit 21 . A gate output signal output from the gate output circuit 22 is supplied to the gate terminals of the switching elements Q1 and Q2 via the output terminals T23 and T24. In FIG. 2, reference numeral 22-1 indicates a gate output circuit that supplies gate output signal 1 to the gate terminal of switching element Q1, and reference numeral 22-2 indicates gate output signal 2 to the gate terminal of switching element Q2. Fig. 3 shows a gate output circuit for supplying;
<<<Configuration of Gate Output Circuit>>>
 次に、ゲート出力回路の構成を、図面を用いて説明する。スイッチング素子Q1に対応するゲート出力回路22-1とスイッチング素子Q2に対応するゲート出力回路22-2は、互いに同様な構成を備えているため、ゲート出力回路22として、以下説明する。
 図3は、実施の形態1に係るゲート出力回路の構成を示す回路図である。
Next, the configuration of the gate output circuit will be described with reference to the drawings. Since the gate output circuit 22-1 corresponding to the switching element Q1 and the gate output circuit 22-2 corresponding to the switching element Q2 have the same configuration, they will be described as the gate output circuit 22 below.
3 is a circuit diagram showing a configuration of a gate output circuit according to Embodiment 1. FIG.
 ゲート出力回路22は、Pチェンネル型電界効果(以下、PMOSとも称する)トランジスタPTr1およびPTr2と、Nチャンネル型電界効果(以下、NMOSとも称する)トランジスタNTrと、抵抗素子Rgon1、Rgon2およびRgoffと、インバータゲートinv1およびinv2と、オア(OR)ゲートor1およびor2とを備えている。ここで、抵抗素子Rgon2の電気抵抗値は、抵抗素子Rgon1の電気抵抗値より大きく設定されている。 The gate output circuit 22 includes P-channel field effect (hereinafter also referred to as PMOS) transistors PTr1 and PTr2, N-channel field effect (hereinafter also referred to as NMOS) transistors NTr, resistance elements Rgon1, Rgon2 and Rgoff, and an inverter. It comprises gates inv1 and inv2 and OR gates or1 and or2. Here, the electrical resistance value of the resistive element Rgon2 is set to be greater than the electrical resistance value of the resistive element Rgon1.
 PMOSトランジスタPTr1およびPTr2のソース端子は、電圧線Vgonに接続されている。電圧線Vgonに印加される電圧(Vg,on)は、スイッチング素子Q1およびQ2をオン状態にするために、スイッチング素子Q1およびQ2のゲート端子に印加する所定の電圧である。NMOSトランジスタNTrのソース端子は、電圧線Vgoffに接続されている。電圧線Vgoffに印加される電圧(Vg,off)は、スイッチング素子Q1およびQ2をオフ状態にするために、スイッチング素子Q1およびQ2のゲート端子に印加する電圧である。電圧(Vg,on)および(Vg,off)は、特に制限されないが、図1に示した直流電源Viから生成されている。 The source terminals of the PMOS transistors PTr1 and PTr2 are connected to the voltage line Vgon. The voltage (Vg,on) applied to the voltage line Vgon is a predetermined voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn on the switching elements Q1 and Q2. A source terminal of the NMOS transistor NTr is connected to the voltage line Vgoff. The voltage (Vg, off) applied to the voltage line Vgoff is the voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn off the switching elements Q1 and Q2. The voltages (Vg, on) and (Vg, off) are generated from the DC power supply Vi shown in FIG. 1, although not particularly limited.
 PMOSトランジスタPTr1およびPTr2のドレイン端子は、それぞれ抵抗素子Rgon1およびRgon2の一方の端子に接続され、抵抗素子Rgon1およびRgon2の他方の端子は、出力端子T223に接続されている。NMOSトランジスタNTrのドレイン端子は抵抗素子Rgoffの一方の端子に接続され、抵抗素子Rgoffの他方の端子は出力端子T223に接続されている。 The drain terminals of the PMOS transistors PTr1 and PTr2 are connected to one terminals of the resistance elements Rgon1 and Rgon2, respectively, and the other terminals of the resistance elements Rgon1 and Rgon2 are connected to the output terminal T223. A drain terminal of the NMOS transistor NTr is connected to one terminal of the resistance element Rgoff, and the other terminal of the resistance element Rgoff is connected to the output terminal T223.
 制御回路21から出力されたゲート信号は、入力端子T222を介して、インバータゲートinv2の入力に供給されている。インバータゲートinv2の出力は、オアゲートor1およびor2の一方の入力に接続され、またNMOSトランジスタNTrのゲート端子に接続されている。制御回路21から出力された出力切替信号は、入力端子T221を介してオアゲートor1の他方の入力に接続され、またインバータゲートinv1を介してオアゲートor2の他方の入力に接続されている。オアゲートor1およびor2の出力は、それぞれPMOSトランジスタPTr1およびPTr2のゲート端子に接続されている。 The gate signal output from the control circuit 21 is supplied to the input of the inverter gate inv2 via the input terminal T222. The output of the inverter gate inv2 is connected to one input of the OR gates or1 and or2, and also connected to the gate terminal of the NMOS transistor NTr. The output switching signal output from the control circuit 21 is connected to the other input of the OR gate or1 via the input terminal T221 and to the other input of the OR gate or2 via the inverter gate inv1. Outputs of OR gates or1 and or2 are connected to gate terminals of PMOS transistors PTr1 and PTr2, respectively.
 したがって、ゲート信号がロウレベル(“0”)の期間では、PMOSトランジスタPTr1およびPTr2はオフ状態にされる。一方、この期間では、NMOSトランジスタNTrはオン状態にされる。この場合、抵抗素子Rgoffが、NMOSトランジスタNTrおよび出力端子T223を介して、電圧線Vgoffとスイッチング素子Q1もしくはQ2のゲート端子との間に接続されることになる。すなわち、抵抗素子Rgoffが、スイッチング素子のゲート抵抗に相当し、ゲート抵抗(抵抗素子Rgoff)を介した電圧(Vg,off)が、スイッチング素子Q1もしくはQ2にゲートオフ電圧として印加されることになり、スイッチング素子Q1もしくはQ2はオフ状態となる。 Therefore, the PMOS transistors PTr1 and PTr2 are turned off while the gate signal is at the low level ("0"). On the other hand, during this period, the NMOS transistor NTr is turned on. In this case, the resistance element Rgoff is connected between the voltage line Vgoff and the gate terminal of the switching element Q1 or Q2 via the NMOS transistor NTr and the output terminal T223. That is, the resistance element Rgoff corresponds to the gate resistance of the switching element, and the voltage (Vg,off) through the gate resistance (resistance element Rgoff) is applied to the switching element Q1 or Q2 as the gate-off voltage. The switching element Q1 or Q2 is turned off.
 一方、ゲート信号がハイレベル(“1”)の期間では、NMOSトランジスタNTrはオフとなる。この期間において、出力切替信号がロウレベル(“0”)の場合は、PMOSトランジスタPTr1がオン状態となり、出力切替信号がハイレベル(“1”)の場合はPMOSトランジスタPTr2がオン状態となる。したがって、ゲート信号がハイレベルの期間では、出力切替信号がロウレベルの場合は、抵抗素子Rgon1がスイッチング素子のゲート抵抗に相当し、スイッチング素子Q1もしくはQ2には、ゲート抵抗(抵抗素子Rgon1)を介した電圧(Vg,on)が、スイッチング素子Q1もしくはQ2にゲートオン電圧として印加され、スイッチング素子Q1もしくはQ2は、オン状態となる。このとき、オン状態となっているスイッチング素子Q1もしくはQ2においては,ゲート抵抗(抵抗素子Rgon1)を介して、スイッチング素子Q1もしくはQ2のゲート端子に供給されるゲート出力信号の電流(高いレベルのゲート駆動電流)に応じたドレイン電流が流れることになる。 On the other hand, the NMOS transistor NTr is turned off while the gate signal is at high level ("1"). During this period, when the output switching signal is low level (“0”), the PMOS transistor PTr1 is turned on, and when the output switching signal is high level (“1”), the PMOS transistor PTr2 is turned on. Therefore, in the period when the gate signal is high level, when the output switching signal is low level, the resistance element Rgon1 corresponds to the gate resistance of the switching element, and the switching element Q1 or Q2 is connected through the gate resistance (resistance element Rgon1). The resulting voltage (Vg,on) is applied to the switching element Q1 or Q2 as a gate-on voltage, and the switching element Q1 or Q2 is turned on. At this time, in the switching element Q1 or Q2 that is in the ON state, the current of the gate output signal (high level gate current) supplied to the gate terminal of the switching element Q1 or Q2 through the gate resistance (resistive element Rgon1). drive current) flows.
 また、ゲート信号がハイレベル(“1”)の期間において、出力切替信号がハイレベル(“1”)”の場合は、抵抗素子Rgon2がスイッチング素子のゲート抵抗に相当することになり、ゲート抵抗(抵抗素子Rgon2)を介した電圧(Vg,on)が、スイッチング素子Q1もしくはQ2にゲートオン電圧として印加される。この場合も、スイッチング素子Q1もしくはQ2がオン状態となる。しかしながら、このとき、スイッチング素子Q1もしくはQ2のゲート端子に供給されるゲート出力信号の電流(ゲート駆動電流)は、抵抗素子Rgon2がゲート抵抗として機能するため、抵抗素子Rgon2によって定まるゲート出力信号の電流(低いレベルのゲート駆動電流)となる。したがって、このとき、オン状態となるスイッチング素子Q1もしくはQ2においては、抵抗素子Rgon2で定まるゲート駆動電流に応じたドレイン電流が流れることになる。 Further, when the output switching signal is at a high level (“1”) while the gate signal is at a high level (“1”), the resistance element Rgon2 corresponds to the gate resistance of the switching element. The voltage (Vg,on) through (resistive element Rgon2) is applied to switching element Q1 or Q2 as a gate-on voltage.In this case also, switching element Q1 or Q2 is turned on.However, at this time, switching The gate output signal current (gate drive current) supplied to the gate terminal of the element Q1 or Q2 is the gate output signal current (low level gate drive current) determined by the resistor element Rgon2 because the resistor element Rgon2 functions as a gate resistor. Therefore, at this time, in the switching element Q1 or Q2 that is turned on, a drain current corresponding to the gate drive current determined by the resistance element Rgon2 flows.
 実施の形態1に係るゲート出力回路22においては、オン状態となるスイッチング素子Q1、Q2のゲート抵抗を、出力切替信号によって切り替えることができる。ゲート抵抗を切り替えることで、スイッチング素子Q1、Q2のゲート端子には、切り替えられたゲート抵抗によって定まるゲート駆動電流が供給され、オン状態となるスイッチング素子においては、供給されているゲート駆動電流に応じたドレイン電流が流れる。すなわち、ゲート抵抗に相当する抵抗素子Rgon1もしくはRgon2に応じたレベルのゲート駆動電流が、スイッチング素子のゲート端子に供給され、ゲート駆動電流に応じたドレイン電流がスイッチング素子から出力されることになる。前記したように、抵抗素子Rgon2の電気抵抗値は、抵抗素子Rgon1の電気抵抗値より大きいため、出力切替信号がハイレベルの場合、ゲート出力回路22は、低いレベルのゲート駆動電流をスイッチング素子Q1、Q2のゲート端子に出力し、スイッチング素子Q1、Q2のドレイン電流を低いレベルに切り替えるような動作を行うことになる。 In the gate output circuit 22 according to Embodiment 1, the gate resistances of the switching elements Q1 and Q2 that are turned on can be switched by the output switching signal. By switching the gate resistance, a gate drive current determined by the switched gate resistance is supplied to the gate terminals of the switching elements Q1 and Q2. drain current flows. That is, a gate drive current having a level corresponding to the resistance element Rgon1 or Rgon2 corresponding to the gate resistance is supplied to the gate terminal of the switching element, and a drain current corresponding to the gate drive current is output from the switching element. As described above, the electrical resistance value of the resistance element Rgon2 is greater than the electrical resistance value of the resistance element Rgon1. Therefore, when the output switching signal is at a high level, the gate output circuit 22 outputs a low level gate drive current to the switching element Q1. , Q2 to switch the drain currents of the switching elements Q1 and Q2 to a low level.
 ゲート信号がハイレベルとなっている期間においては、インバータゲートinv1、オアゲートor1、or2およびPMOSトランジスタPTr1、PTr2によって、抵抗素子Rgon1およびRgon2から、出力信号に従った抵抗素子を選択するスイッチング回路が構成されていると見なすことができる。この場合、選択された抵抗素子が、所定の電圧(Vg,on)とスイッチング素子のゲート端子との間に接続されることになる。
 <電力変換装置の動作>
During the period in which the gate signal is at high level, the inverter gate inv1, the OR gates or1 and or2, and the PMOS transistors PTr1 and PTr2 form a switching circuit that selects a resistance element from the resistance elements Rgon1 and Rgon2 according to the output signal. can be considered to be In this case, the selected resistive element will be connected between the predetermined voltage (Vg,on) and the gate terminal of the switching element.
<Operation of power converter>
 先ず、実施の形態1に係る電力変換装置において実行される制御方法を、図面を用いて説明する。図4は、実施の形態1に係る制御方法を説明するためのフローチャートである。 First, the control method executed in the power converter according to Embodiment 1 will be described using the drawings. FIG. 4 is a flowchart for explaining a control method according to Embodiment 1. FIG.
 ステップS1において、図2に示した制御回路21が、ゲート出力信号1およびゲート出力信号2を出力させ、図1に示したスイッチング素子Q1およびQ2をオンオフさせる。次に、ステップS2、S3およびS4が順次実行されるが、これらのステップS2~S4は、スイッチング素子Q1またはQ2をオン状態にしている期間において実施される。
 ステップS2は、図1の検出回路5が共振スイッチング回路RSCを流れる電流I1を検出する電流検出工程である。
In step S1, the control circuit 21 shown in FIG. 2 outputs the gate output signal 1 and the gate output signal 2 to turn on/off the switching elements Q1 and Q2 shown in FIG. Next, steps S2, S3 and S4 are sequentially executed, and these steps S2 to S4 are executed while switching element Q1 or Q2 is on.
Step S2 is a current detection step in which the detection circuit 5 of FIG. 1 detects the current I1 flowing through the resonant switching circuit RSC.
 ステップS3では、ステップS2で検出された電流I1に基づいて、判定回路6が電流I1の極性を判定し、判定結果を判定信号として制御回路21へ供給する。すなわち、ステップS3は、極性判定工程である。 In step S3, the determination circuit 6 determines the polarity of the current I1 based on the current I1 detected in step S2, and supplies the determination result to the control circuit 21 as a determination signal. That is, step S3 is a polarity determination step.
 ステップS3において、極性が反転していると判定された場合(Y)、制御回路21は、出力切替信号を生成し、スイッチング素子のゲート駆動電流を切り替える。このゲート駆動電流の切り替えによって、ゲート駆動電流が調整されることになるため、ステップS4は、駆動電流の調整工程である。 When it is determined in step S3 that the polarity is reversed (Y), the control circuit 21 generates an output switching signal and switches the gate drive current of the switching element. Since the gate drive current is adjusted by switching the gate drive current, step S4 is a step of adjusting the drive current.
 ステップS3において、極性が反転していないと判定された場合(N)およびステップS4が終了すると、再びステップS1が実行される。すなわち、ステップS1~S3が繰り返されることになる。 When it is determined in step S3 that the polarity is not reversed (N) and when step S4 ends, step S1 is executed again. That is, steps S1 to S3 are repeated.
 実施の形態1に係る電力変換装置においては、ステップS3において極性が反転していると判定され場合、共振外れが発生している場合として処理が行われる。これに対して、ステップS3において極性が反転していないと判定された場合が、共振外れが発生していない場合として処理が行われる。 In the power conversion device according to Embodiment 1, when it is determined in step S3 that the polarity is reversed, processing is performed assuming that out-of-resonance has occurred. On the other hand, when it is determined in step S3 that the polarity is not reversed, the processing is performed assuming that no resonance has occurred.
 特に制限されないが、実施の形態1に係るステップS4(調整工程)は、2つの工程を備えている。すなわち、ステップS4は、極性が反転していると判定されたとき、ゲート駆動電流を低いレベルに調整する(切り替える)工程が実行される。ゲート駆動電流を低いレベルに切り替えてから、所定の期間(出力切替期間)後に、ゲート駆動電流を前記低いレベルよりも高いレベルに調整する(切り替える)工程と、を備えている。
 次に、共振外れが発生していない場合と発生している場合を説明する。
 <<共振外れが発生していない場合>>
Although not particularly limited, step S4 (adjustment step) according to Embodiment 1 includes two steps. That is, in step S4, when it is determined that the polarity is reversed, a step of adjusting (switching) the gate drive current to a low level is performed. and adjusting (switching) the gate drive current to a level higher than the low level after a predetermined period (output switching period) after switching the gate drive current to the low level.
Next, the case where the resonance has not occurred and the case where the resonance has occurred will be described.
<<When no out-of-resonance occurs>>
 先ず、電力変換装置101の負荷が高負荷等でなく、共振外れが発生していない場合を説明する。図5は、実施の形態1に係る電力変換装置の動作を説明するための波形図である。以下、図1~図3および図5を参照して、説明する。 First, the case where the load of the power conversion device 101 is not high and no out-of-resonance has occurred will be described. FIG. 5 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1. FIG. Description will be made below with reference to FIGS. 1 to 3 and 5. FIG.
 図5には、ハーフブリッジ回路1を制御するために、ゲート駆動回路2が出力するゲート出力信号1およびゲート出力信号2の波形と、検出回路5により検出されたトランスTrの一次巻線Tr1を含む共振スイッチング回路RSCを流れる電流I1の波形とが示されている。さらに、図5には、スイッチング素子Q1およびQ2のドレイン端子とソース端子間に印加されている電圧Vds1およびVds2の波形と、スイッチング素子Q1およびQ2のドレイン端子からソース端子の方向に流れる電流(ドレイン電流)Id1およびId2の波形とが示されている。なお、電圧Vds1および電流Id1は、スイッチング素子Q1の電圧および電流であり、電圧Vds2および電流Id2は、スイッチング素子Q2の電圧および電流である。 FIG. 5 shows the waveforms of the gate output signal 1 and the gate output signal 2 output by the gate drive circuit 2 and the primary winding Tr1 of the transformer Tr detected by the detection circuit 5 in order to control the half bridge circuit 1. The waveform of the current I1 flowing through the resonant switching circuit RSC containing is shown. Further, FIG. 5 shows waveforms of voltages Vds1 and Vds2 applied between the drain terminals and the source terminals of the switching elements Q1 and Q2, and a current (drain current) flowing from the drain terminal to the source terminal of the switching elements Q1 and Q2. Current) Id1 and Id2 waveforms are shown. Voltage Vds1 and current Id1 are the voltage and current of switching element Q1, and voltage Vds2 and current Id2 are the voltage and current of switching element Q2.
 検出回路5は、図1において矢印で示されているように、左側から右側に流れる方向を、正(+)極性とした電流を検出する。ゲート駆動回路2から出力されるゲート出力信号1は、スイッチング素子Q1のオンオフを制御する出力信号であり、ゲート出力信号2は、スイッチング素子Q2のオンオフを制御する出力信号である。ゲート駆動回路2を構成する制御回路21は、スイッチング素子Q1およびQ2を、デッドタイムtd1およびtd2を含めて相補的に駆動するようにゲート信号を生成する。なお、デッドタイムtd1およびtd2は、スイッチング素子Q1およびQ2の両方がオフ状態となる期間である。 The detection circuit 5 detects a current with positive (+) polarity in the direction of flow from the left side to the right side, as indicated by the arrow in FIG. A gate output signal 1 output from the gate drive circuit 2 is an output signal for controlling on/off of the switching element Q1, and a gate output signal 2 is an output signal for controlling on/off of the switching element Q2. Control circuit 21 forming gate drive circuit 2 generates gate signals to complementarily drive switching elements Q1 and Q2 including dead times td1 and td2. Dead times td1 and td2 are periods during which both switching elements Q1 and Q2 are in the off state.
 先ず、時刻t1において、ゲート出力信号によって、スイッチング素子Q2がオフ状態でスイッチング素子Q1をオンにすると、直流電源Vi、スイッチング素子Q1、検出回路5、共振用キャパシタCrおよびトランスTrの一次巻線Tr1を含む共振スイッチング回路RSCに、正(+)の極性の電流I1が流れる。 First, at time t1, when the switching element Q2 is turned off and the switching element Q1 is turned on by the gate output signal, the DC power supply Vi, the switching element Q1, the detection circuit 5, the resonance capacitor Cr, and the primary winding Tr1 of the transformer Tr are turned on. A current I1 of positive (+) polarity flows through a resonant switching circuit RSC that includes .
 その後の時刻t2において、スイッチング素子Q1をオフ状態にしてデッドタイムtd1に入ると、スイッチング素子Q2が逆導通して、トランスTrの一次巻線Tr1に流れる電流はスイッチング素子Q2に転流する。その後、スイッチング素子Q2を逆導通状態でオン状態にすることで、スイッチング素子Q2のソース端子とドレイン端子間に印加される電圧がほぼゼロの状態でスイッチングする、いわゆるゼロ電圧スイッチングが行われる。その後、トランスTrに含まれるインダクタンスと共振用キャパシタCrのキャパシタンスによるLC共振により、トランスTrの一次巻線Tr1を含む共振スイッチング回路RSCに流れる電流I1の極性が正(+)から負(-)へと反転する。 At subsequent time t2, when the switching element Q1 is turned off and dead time td1 is entered, the switching element Q2 is reversely conducted, and the current flowing through the primary winding Tr1 of the transformer Tr is commutated to the switching element Q2. After that, by turning on the switching element Q2 in a reverse conducting state, so-called zero voltage switching is performed in which the voltage applied between the source terminal and the drain terminal of the switching element Q2 is substantially zero. After that, due to LC resonance due to the inductance included in the transformer Tr and the capacitance of the resonance capacitor Cr, the polarity of the current I1 flowing through the resonance switching circuit RSC including the primary winding Tr1 of the transformer Tr changes from positive (+) to negative (-). and reverse.
 次に、時刻t3において、スイッチング素子Q2をオフ状態にしてデッドタイムtd2に入ると、スイッチング素子Q1が逆導通して、トランスTrの一次巻線Tr1に流れる電流はスイッチング素子Q1に転流し、その後スイッチング素子Q1を逆導通状態でオン状態にすることでゼロ電圧スイッチングが行われ、その後LC共振により、トランスTrの一次巻線Tr1を含む共振スイッチング回路RSCに流れる電流I1が負(-)から正(+)へと逆転する。 Next, at time t3, when the switching element Q2 is turned off to enter the dead time td2, the switching element Q1 reversely conducts, and the current flowing through the primary winding Tr1 of the transformer Tr is commutated to the switching element Q1. Zero-voltage switching is performed by turning on the switching element Q1 in a reverse conduction state, and thereafter, due to LC resonance, the current I1 flowing through the resonant switching circuit RSC including the primary winding Tr1 of the transformer Tr changes from negative (-) to positive. Reverse to (+).
 前記したゲート出力信号は、電力変換装置101の動作周波数によって定まる周期で、周期的に生成されるため、前記した時刻t1~t3の動作が繰り返される。トランスTrの一次巻線Tr1に流れる電流I1の変化に応じて、二次巻線Tr2-1またはTr2-2に電流が発生し、整流回路3によって直流化され、負荷4に対して供給される。
 <<共振外れが発生している場合>>
Since the gate output signal described above is generated periodically with a period determined by the operating frequency of the power conversion device 101, the operations from times t1 to t3 described above are repeated. A current is generated in the secondary winding Tr2-1 or Tr2-2 according to a change in the current I1 flowing through the primary winding Tr1 of the transformer Tr, converted to a direct current by the rectifying circuit 3, and supplied to the load 4. .
<<When out of resonance occurs>>
 図6は、実施の形態1に係る電力変換装置の動作を説明するための波形図である。図6は、図5と類似しており、図6にも、図5と同様に、ゲート出力信号1およびゲート出力信号2と、共振スイッチング回路RSCを流れる電流I1と、スイッチング素子Q1、Q2のドレイン端子とソース端子間の電圧Vds1、Vds2と、スイッチング素子Q1、Q2のドレイン電流Id1、Id2とが示されている。図6が図5と相違する点は、図6には、電力変換装置101が動作している期間において、負荷4が高負荷に急変し、共振外れが発生した場合が示されていることである。 FIG. 6 is a waveform diagram for explaining the operation of the power converter according to Embodiment 1. FIG. FIG. 6 is similar to FIG. 5, and similarly to FIG. 5, FIG. Voltages Vds1 and Vds2 between the drain and source terminals and drain currents Id1 and Id2 of the switching elements Q1 and Q2 are shown. FIG. 6 is different from FIG. 5 in that it shows a case where the load 4 suddenly changes to a high load and out-of-resonance occurs while the power converter 101 is operating. be.
 高負荷時においては、スイッチング素子Q1がオン状態にある期間(時刻t1~t2)において、ある時刻(例えば時刻t12)で、トランスTrに含まれるインダクタンスと共振用キャパシタCrのキャパシタンスによるLC共振により、トランスTrの一次巻線Tr1を含む共振スイッチング回路RSCに流れる電流の極性が、図6に示すように正から負へと反転して、スイッチング素子Q1が逆導通状態となる。その後、スイッチング素子Q1をオフ状態にして、デッドタイムtd1に入ると、スイッチング素子Q2はオフのため電流が流れず、スイッチング素子Q1が逆導通状態を継続して電流を導通する。この時、スイッチング素子Q1の出力容量Cp1(図1)は放電状態となる。 At high load, during the period (time t1 to t2) in which the switching element Q1 is in the ON state, at a certain time (for example, time t12), LC resonance due to the inductance included in the transformer Tr and the capacitance of the resonance capacitor Cr causes The polarity of the current flowing through the resonant switching circuit RSC including the primary winding Tr1 of the transformer Tr is reversed from positive to negative as shown in FIG. 6, and the switching element Q1 is reversely conducting. After that, when the switching element Q1 is turned off and the dead time td1 is entered, the switching element Q2 is turned off, so that no current flows, and the switching element Q1 continues the reverse conduction state to conduct current. At this time, the output capacitance Cp1 (FIG. 1) of the switching element Q1 is discharged.
 その後の時刻t2において、スイッチング素子Q2をオン状態へ変化(遷移)させると、スイッチング素子Q1に流れていた電流が、スイッチング素子Q2に転流するが、その時にスイッチング素子Q1の出力容量Cp1に再充電が発生する。出力容量Cp1は、スイッチング素子Q1のソース端子とドレイン端子との間に接続されているキャパシタであるため、出力容量Cp1を再充電している再充電期間中においては、スイッチング素子Q1のドレイン端子とソース端子間を電流(出力容量Cp1を再充電するための電流)が流れることになる。このとき、スイッチング素子Q2はオン状態へ遷移するため、スイッチング素子Q1とQ2とを流れる貫通電流が発生する。 At subsequent time t2, when the switching element Q2 is turned on (transitioned), the current flowing through the switching element Q1 is commutated to the switching element Q2. charging occurs. Since the output capacitance Cp1 is a capacitor connected between the source terminal and the drain terminal of the switching element Q1, during the recharging period during which the output capacitance Cp1 is recharged, the drain terminal of the switching element Q1 and the A current (current for recharging the output capacitor Cp1) flows between the source terminals. At this time, since the switching element Q2 transitions to the ON state, a through current is generated that flows through the switching elements Q1 and Q2.
 この貫通電流はスイッチング素子Q1およびQ2を貫通して流れる電流であるため、貫通電流の電流値の時間変化は、スイッチング素子Q2をオン状態に遷移させる速度によって決定されることになる。 Since this through current is a current that flows through the switching elements Q1 and Q2, the time change in the current value of the through current is determined by the speed at which the switching element Q2 is turned on.
 次に、スイッチング素子Q2をオフ状態にして、デッドタイムtd2経過後にスイッチング素子Q1をオンにする動作においては、前記と相補的な動作となる。すなわち、スイッチング素子Q2がオフ状態に遷移する前の時刻(t23)において、前記したLC共振によって、トランスTrの一次巻線Tr1を含む共振スイッチング回路RSCに流れる電流I1の極性が、負から正へと反転する。この場合には、スイッチング素子Q2が逆導通状態となり、スイッチング素子Q2の出力容量Cp2の放電が行われ、スイッチング素子Q1のオン状態への遷移により、出力容量Cp2の再充電が行われる。したがって、スイッチング素子Q1がオン状態に遷移するときに、スイッチング素子Q1とQ2とを流れる貫通電流が発生する。このときの貫通電流の電流値の時間変化も、スイッチング素子Q1をオン状態に遷移させる速度によって決定されることになる。 Next, the operation of turning off the switching element Q2 and turning on the switching element Q1 after the dead time td2 has elapsed is a complementary operation to the above. That is, at the time (t23) before the switching element Q2 transitions to the OFF state, the LC resonance causes the polarity of the current I1 flowing through the resonant switching circuit RSC including the primary winding Tr1 of the transformer Tr to change from negative to positive. and reverse. In this case, the switching element Q2 is in a reverse conducting state, the output capacitance Cp2 of the switching element Q2 is discharged, and the output capacitance Cp2 is recharged by the transition of the switching element Q1 to the ON state. Therefore, when switching element Q1 transitions to the ON state, a through current is generated that flows through switching elements Q1 and Q2. The time change of the current value of the through current at this time is also determined by the speed at which the switching element Q1 is turned on.
 実施の形態1においては、ゲート駆動回路2を構成する制御回路21は、スイッチング素子Q1のオン期間中に、図4に示したステップS2~S4を実行する。すなわち、制御回路21は、判定回路6から、電流I1の極性が反転(この場合、正から負への反転)を示す判定信号が入力されると、オン状態へ遷移させるスイッチング素子Q2に接続されるゲート出力回路22-2に対して出力切替信号を出力する。ゲート出力回路22-2は、出力切替信号を入力すると、スイッチング素子Q2をオン状態に駆動するときのゲート抵抗を、抵抗素子Rgon1から抵抗素子Rgon2に切り替え、ゲート抵抗の値を増大させる。その結果、スイッチング素子Q2に対するゲート駆動電流が低下し、スイッチング素子Q2のドレイン電流も低下し、スイッチング素子Q2の駆動電流が低下するように調整される。 In Embodiment 1, the control circuit 21 forming the gate drive circuit 2 executes steps S2 to S4 shown in FIG. 4 during the ON period of the switching element Q1. That is, the control circuit 21 is connected to the switching element Q2 to be turned on when a determination signal indicating that the polarity of the current I1 is inverted (in this case, from positive to negative) is input from the determination circuit 6. output switching signal to the gate output circuit 22-2. When the output switching signal is input, the gate output circuit 22-2 switches the gate resistance when driving the switching element Q2 to the ON state from the resistance element Rgon1 to the resistance element Rgon2 to increase the value of the gate resistance. As a result, the gate driving current for the switching element Q2 decreases, the drain current of the switching element Q2 also decreases, and the driving current of the switching element Q2 is adjusted to decrease.
 この調整によってドレイン電流が低下することにより、スイッチング素子Q2をオン状態に遷移させる速度が低下する。したがって、スイッチング素子Q1がオン状態となっている期間において、負荷4が高負荷になった場合でも、スイッチング素子Q2をオン状態に遷移させるときに発生する貫通電流の時間変化量を低減させ、サージ電圧やノイズの発生を抑制することが可能となる。 This adjustment lowers the drain current, thereby lowering the speed at which the switching element Q2 is turned on. Therefore, even when the load 4 becomes a high load during the period when the switching element Q1 is in the ON state, the amount of time change in the through current generated when the switching element Q2 is turned on can be reduced, and the surge can be prevented. It is possible to suppress the generation of voltage and noise.
 また、制御回路21は、スイッチング素子Q2のオン期間中にも、図4に示したステップS2~S4を実行する。すなわち、制御回路21は、電流I1の極性が反転(この場合、負から正への反転)を示す判定信号が入力されると、スイッチング素子Q1に接続されるゲート出力回路22-1に対して出力切替信号を出力する。ゲート出力回路22-1は、出力切替信号を入力すると、スイッチング素子Q1をオン状態に駆動するときのゲート抵抗を、抵抗素子Rgon1から抵抗素子Rgon2に切り替え、ゲート抵抗の値を増大させる。その結果、スイッチング素子Q1に対するゲート駆動電流が低下し、スイッチング素子Q1のドレイン電流も低下し、スイッチング素子Q1の駆動電流が低下するように調整される。 The control circuit 21 also executes steps S2 to S4 shown in FIG. 4 during the ON period of the switching element Q2. That is, when the control circuit 21 receives a determination signal indicating that the polarity of the current I1 is inverted (in this case, the polarity is inverted from negative to positive), the control circuit 21 controls the gate output circuit 22-1 connected to the switching element Q1. Outputs the output switching signal. When the output switching signal is input, the gate output circuit 22-1 switches the gate resistance when driving the switching element Q1 to the ON state from the resistance element Rgon1 to the resistance element Rgon2 to increase the value of the gate resistance. As a result, the gate driving current for the switching element Q1 decreases, the drain current of the switching element Q1 also decreases, and the driving current of the switching element Q1 is adjusted to decrease.
 調整によってドレイン電流が低下することにより、スイッチング素子Q1をオン状態に遷移させる速度が低下する。したがって、スイッチング素子Q2がオン状態となっている期間において、負荷4が高負荷になった場合でも、スイッチング素子Q1をオン状態に遷移させるときに発生する貫通電流の時間変化量を低減させ、サージ電圧やノイズの発生を抑制することが可能となる。 As the drain current decreases due to the adjustment, the speed at which the switching element Q1 transitions to the ON state decreases. Therefore, even when the load 4 becomes a high load during the period when the switching element Q2 is in the ON state, the amount of time change in the through current generated when the switching element Q1 is turned on can be reduced and the surge can be prevented. It is possible to suppress the generation of voltage and noise.
 図6において、破線で示したドレイン電流変化Id_1は、抵抗素子を切り替えずに、ゲート抵抗として抵抗素子Rgon1を用いた場合のドレイン電流の変化を示しており、実線で示したドレイン電流変化Id_2は、実施の形態1に従ってゲート抵抗を抵抗素子Rgon2に切り替えた場合のドレイン電流の変化を示している。また、破線で示した電圧変化Vsg_1は、抵抗素子を切り替えずに、ゲート抵抗として抵抗素子Rgon1を用いた場合の電圧Vds1、Vds2の変化を示しており、実線で示した電圧変化Vsg_2は、実施の形態1に従ってゲート抵抗を抵抗素子Rgon2に切り替えた場合の電圧Vds1、Vds2の変化を示している。この電圧変化Vsg_1およびVsg_2が、サージ電圧とノイズとなる。 In FIG. 6, the drain current change Id_1 indicated by the dashed line indicates the change in the drain current when the resistive element Rgon1 is used as the gate resistance without switching the resistive element, and the drain current change Id_2 indicated by the solid line is 4 shows changes in drain current when the gate resistance is switched to the resistance element Rgon2 according to the first embodiment. A voltage change Vsg_1 indicated by a dashed line indicates changes in the voltages Vds1 and Vds2 when the resistive element Rgon1 is used as the gate resistance without switching the resistive elements. 1 shows changes in voltages Vds1 and Vds2 when the gate resistance is switched to the resistance element Rgon2 according to the first form of FIG. These voltage changes Vsg_1 and Vsg_2 become surge voltage and noise.
 実施の形態1によれば、ドレイン電流変化が発生している時間が長くなるが、そのピーク値を低下させることができる。その結果、図6に示すように、電圧変化Vsg_2は、電圧変化Vsg_1を比べて小さくなり、発生するサージ電圧やノイズを小さく抑制することができる。 According to Embodiment 1, the time during which the drain current change occurs becomes longer, but the peak value can be reduced. As a result, as shown in FIG. 6, the voltage change Vsg_2 becomes smaller than the voltage change Vsg_1, and the generated surge voltage and noise can be suppressed.
 実施の形態1に係る制御回路21には、ゲート出力回路22(22-1、22-2)に対して、出力切替信号を出力している期間(出力切替期間)が予め設定されている。この設定されている出力切替期間の間、ゲート出力回路22は、ゲート抵抗として、抵抗素子Rgonを用い、低いゲート駆動電流を出力する。実施の形態1においては、出力切替期間は、電流I1の極性の反転が判定されてから、スイッチング素子Q1およびQ2をオンオフするまでの時間よりも長く、かつスイッチング素子Q1およびQ2がオンオフする周期の半分(半周期)よりも短く設定されている。 In the control circuit 21 according to the first embodiment, a period (output switching period) during which the output switching signal is output to the gate output circuits 22 (22-1, 22-2) is set in advance. During this set output switching period, the gate output circuit 22 uses the resistance element Rgon as the gate resistance and outputs a low gate drive current. In the first embodiment, the output switching period is longer than the period from when it is determined that the polarity of the current I1 is reversed to when the switching elements Q1 and Q2 are turned on and off, and is the period during which the switching elements Q1 and Q2 are turned on and off. It is set shorter than half (half cycle).
 図6を例にして述べると、出力切替期間は、時刻t12から時刻t2までの時間よりも長く、時刻t1から時刻t2までの時間よりも短く設定されている。出力切替期間を設定することによって、負荷4が高負荷となっていることを電流I1の極性反転として検知した周期においては、スイッチング素子をオン状態に遷移させるときに、出力回路から出力されるゲート駆動電流を低い値(低いレベル)に抑制し、次にスイッチング素子をオンオフさせる際には、ゲート抵抗として抵抗素子Rgon1を用いて、ゲート駆動電流を高いレベルにし、高速にスイッチングさせることが可能となる。
 <<スイッチング素子の構造>>
Taking FIG. 6 as an example, the output switching period is set longer than the time from time t12 to time t2 and shorter than the time from time t1 to time t2. By setting the output switching period, the gate output from the output circuit when transitioning the switching element to the ON state is performed in the cycle in which the high load of the load 4 is detected as the polarity reversal of the current I1. When the drive current is suppressed to a low value (low level) and the switching element is next turned on and off, the resistance element Rgon1 is used as the gate resistor to raise the gate drive current to a high level, enabling high-speed switching. Become.
<<Structure of Switching Element>>
 実施の形態1においては、スイッチング素子Q1およびQ2として、前記したようにGaN-HEMTが用いられている。ここで、GaN-HEMTの一例を説明しておく。図7は、実施の形態1に係る電力変換装置で用いられているGaN-HEMTの構造を示す断面図である。 In Embodiment 1, GaN-HEMTs are used as the switching elements Q1 and Q2 as described above. Here, an example of GaN-HEMT will be explained. FIG. 7 is a cross-sectional view showing the structure of the GaN-HEMT used in the power converter according to the first embodiment.
 図7において、500はGaN-HEMTを示している。GaN-HEMTは、基板501と、基板501上に形成されたバッファ層502と、バッファ層502上に形成された窒化ガリウム(GaN)層503と、窒化ガリウム層503上に形成された窒化アルミニウムガリウム(AlGaN)層504と、窒化アルミニウムガリウム層504上の所定の位置にP型窒化ガリウム(P-GaN)層505を介して形成されたゲート電極507と、窒化アルミニウムガリウム層504上であって、ゲート電極507と分離された位置に形成されたソース電極506およびドレイン電極508とを備えている。 In FIG. 7, 500 indicates the GaN-HEMT. The GaN-HEMT includes a substrate 501, a buffer layer 502 formed on the substrate 501, a gallium nitride (GaN) layer 503 formed on the buffer layer 502, and an aluminum gallium nitride layer 503 formed on the gallium nitride layer 503. (AlGaN) layer 504, a gate electrode 507 formed at a predetermined position on the aluminum gallium nitride layer 504 via a P-type gallium nitride (P-GaN) layer 505, and on the aluminum gallium nitride layer 504, It has a gate electrode 507 and a source electrode 506 and a drain electrode 508 formed at separated positions.
 ゲート電極507が、スイッチング素子Q1およびQ2のゲート端子に該当し、ソース電極506およびドレイン電極508は、スイッチング素子Q1およびQ2のソース端子およびドレイン端子と該当している。また、スイッチング素子(例えばQ1)の出力容量(Cp1)は、ソース電極506を一方の端子とし、ドレイン電極508を他方の端子とした寄生キャパシタである。すなわち、出力容量(Cp1)は、スイッチング素子(Q1)のソース端子とドレイン端子との間に接続されている。 The gate electrode 507 corresponds to the gate terminals of the switching elements Q1 and Q2, and the source electrode 506 and drain electrode 508 correspond to the source terminals and drain terminals of the switching elements Q1 and Q2. Also, the output capacitance (Cp1) of the switching element (for example, Q1) is a parasitic capacitor with the source electrode 506 as one terminal and the drain electrode 508 as the other terminal. That is, the output capacitor (Cp1) is connected between the source terminal and the drain terminal of the switching element (Q1).
 図7に示したように、GaN-HEMTでは、ボディダイオードが形成されないため、ボディダイオードを流れるリカバリ電流による損失が発生するのを防ぐことが可能である。したがって、実施の形態1によれば、負荷4が高負荷になって、共振外れが発生しても、リカバリ電流による損失が発生しないため、素子(GaN-HEMT)が破壊される可能性を低減することができる。 As shown in FIG. 7, since no body diode is formed in the GaN-HEMT, it is possible to prevent loss due to recovery current flowing through the body diode. Therefore, according to Embodiment 1, even if the load 4 becomes a high load and out of resonance occurs, loss due to recovery current does not occur, so the possibility of breaking down the element (GaN-HEMT) is reduced. can do.
 実施の形態1によれば、負荷4が高負荷状態になり、共振外れが発生しても、ハーフブリッジ回路1を構成するスイッチング素子Q1、Q2を貫通して流れる電流の時間変化dI/dtを抑制し、サージ電圧やノイズの増大を抑えることができる。したがって、電力変換装置101の安定動作が可能となる。 According to the first embodiment, even if the load 4 is in a high load state and out of resonance occurs, the time change dI/dt of the current flowing through the switching elements Q1 and Q2 forming the half bridge circuit 1 is It is possible to suppress surge voltage and increase noise. Therefore, stable operation of the power converter 101 is possible.
 実施の形態1では、ゲート出力回路22として、図3に示したように電界効果型トランジスタを用いた構成を説明したが、電界効果型トランジスタの代わりに、スイッチング素子と同様にGaN-HEMTを用いるようにしてもよい。
 また、スイッチング素子Q1、Q2を構成するGaN-HEMTと、検出回路5とは、同一の半導体チップの半導体基板上に形成してもよい。
 (実施の形態2)
In the first embodiment, the configuration using field effect transistors as shown in FIG. 3 has been described as the gate output circuit 22, but instead of the field effect transistors, GaN-HEMTs are used similarly to the switching elements. You may do so.
Also, the GaN-HEMTs forming the switching elements Q1 and Q2 and the detection circuit 5 may be formed on the semiconductor substrate of the same semiconductor chip.
(Embodiment 2)
 実施の形態2においては、図2に示したゲート出力回路22が変更される。図8は、実施の形態2に係るゲート出力回路の構成を示す回路図である。実施の形態2に係る電力変換装置が実施の形態1に係る電力変換装置と異なる点は、ゲート出力回路の構成が図3に示されたものから図8に示されているものに変更されている点である。したがって、以下では、説明上必要がない限り、ゲート出力回路のみを説明する。
 実施の形態2に係るゲート出力回路は、実施の形態1と異なり、ゲート駆動電流を切り替えるのにカレントミラー回路が用いられている。
In the second embodiment, gate output circuit 22 shown in FIG. 2 is modified. FIG. 8 is a circuit diagram showing the configuration of the gate output circuit according to the second embodiment. The power converter according to the second embodiment differs from the power converter according to the first embodiment in that the configuration of the gate output circuit is changed from that shown in FIG. 3 to that shown in FIG. This is the point. Therefore, only the gate output circuit will be described below unless necessary for the description.
Unlike the first embodiment, the gate output circuit according to the second embodiment uses a current mirror circuit to switch the gate driving current.
 図8において、22aは、ゲート出力回路を示している。ゲート出力回路22aは、PMOSトランジスタPTr1と、PMOSトランジスタPTr-CM1およびPTr-CM2により構成されたカレントミラー回路CMと、入力に応じた電圧値を出力する電圧生成回路Vrefと、オペアンプOPrefと、NMOSトランジスタNTrおよびNTr-refと、抵抗素子RrefおよびRgoffと、インバータゲートinvとを備えている。 In FIG. 8, 22a indicates a gate output circuit. The gate output circuit 22a includes a PMOS transistor PTr1, a current mirror circuit CM configured by PMOS transistors PTr-CM1 and PTr-CM2, a voltage generation circuit Vref that outputs a voltage value corresponding to an input, an operational amplifier OPref, and an NMOS transistor. It includes transistors NTr and NTr-ref, resistance elements Rref and Rgoff, and an inverter gate inv.
 カレントミラー回路CMを構成するPMOSトランジスタPTr-CM1およびPTr-CM2タのソース端子は、電圧線Vgonに接続されている。電圧線Vgonに印加される電圧は、スイッチング素子Q1およびQ2(図1)をオン状態にするために、スイッチング素子Q1およびQ2のゲート端子に印加する電圧である。PMOSトランジスタPTr-CM1およびPTr-CM2のゲート端子は互いに接続され、またPMOSトランジスタPTr-CM1のドレイン端子と接続されている。PMOSトランジスタPTr-CM1のドレイン端子はNOMSトランジスタNTr-refのドレイン端子と接続されている。PMOSトランジスタPTr-CM2のドレイン端子は出力端子T223に接続されている。 The source terminals of the PMOS transistors PTr-CM1 and PTr-CM2 forming the current mirror circuit CM are connected to the voltage line Vgon. The voltage applied to the voltage line Vgon is the voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn on the switching elements Q1 and Q2 (FIG. 1). Gate terminals of the PMOS transistors PTr-CM1 and PTr-CM2 are connected to each other and to the drain terminal of the PMOS transistor PTr-CM1. The drain terminal of the PMOS transistor PTr-CM1 is connected to the drain terminal of the NOMS transistor NTr-ref. A drain terminal of the PMOS transistor PTr-CM2 is connected to the output terminal T223.
 PMOSトランジスタPTr1のソース端子は電圧線Vgonに接続され、そのドレイン端子はNMOSトランジスタNTr-refのドレイン端子と接続される。NMOSトランジスタNTrのソース端子は、電圧線Vgoffに接続されている。電圧線Vgoffに印加される電圧は、スイッチング素子Q1およびQ2をオフ状態にするために、スイッチング素子Q1およびQ2のゲート端子に印加する電圧である。NMOSトランジスタNTrのドレイン端子は抵抗素子Rgoffの一方の端子に接続され、抵抗素子Rgoffの他方の端子は出力端子T223に接続されている。 The source terminal of the PMOS transistor PTr1 is connected to the voltage line Vgon, and its drain terminal is connected to the drain terminal of the NMOS transistor NTr-ref. A source terminal of the NMOS transistor NTr is connected to the voltage line Vgoff. The voltage applied to the voltage line Vgoff is the voltage applied to the gate terminals of the switching elements Q1 and Q2 to turn off the switching elements Q1 and Q2. A drain terminal of the NMOS transistor NTr is connected to one terminal of the resistance element Rgoff, and the other terminal of the resistance element Rgoff is connected to the output terminal T223.
 電圧生成回路Vrefの出力はオペアンプOPrefの非反転入力端子(+)に接続されている。オペアンプOPrefの反転入力端子(-)は、NMOSトランジスタNTr-refのソース端子に接続され、その出力端子は、NMOSトランジスタNT-refのゲート端子に接続されている。また、NMOSトランジスタNTr-refのソース端子は抵抗素子Rrefの一方の端子に接続され、抵抗素子Rrefの他方の端子は電圧線Vgoffに接続されている。したがって、NMOSトランジスタNTr-refのドレイン端子からソース端子に流れる電流は、電圧生成回路Vrefの出力電圧と抵抗素子Rrefの抵抗値との比(出力電圧/Rref)と等しくなる。抵抗素子Rrefの抵抗値が固定であるため、NMOSトランジスタNTr-refのドレイン端子からソース端子に流れる電流は、電圧生成回路Vrefの出力電圧に比例した値となる。 The output of the voltage generating circuit Vref is connected to the non-inverting input terminal (+) of the operational amplifier OPref. The inverting input terminal (-) of the operational amplifier OPref is connected to the source terminal of the NMOS transistor NTr-ref, and its output terminal is connected to the gate terminal of the NMOS transistor NT-ref. A source terminal of the NMOS transistor NTr-ref is connected to one terminal of the resistance element Rref, and the other terminal of the resistance element Rref is connected to the voltage line Vgoff. Therefore, the current flowing from the drain terminal to the source terminal of the NMOS transistor NTr-ref is equal to the ratio (output voltage/Rref) of the output voltage of the voltage generation circuit Vref and the resistance value of the resistance element Rref. Since the resistance value of the resistance element Rref is fixed, the current flowing from the drain terminal to the source terminal of the NMOS transistor NTr-ref has a value proportional to the output voltage of the voltage generation circuit Vref.
 制御回路21(図2)から出力されたゲート信号は、入力端子T222を介してPMOSトランジスタPTr1のゲート端子に供給され、また、インバータゲートinvの入力に供給される。インバータゲートinvの出力は、NMOSトランジスタNTrのゲート端子に接続される。制御回路21から出力された出力切替信号は、入力端子T221を介して、電圧生成回路Vrefに入力として供給される。出力切替信号が入力として供給されるため、電圧生成回路Vrefは、出力切替信号がハイレベル(“1”)の場合、出力切替信号がロウレベル(“0”)の場合に比べて、低い電圧を出力するように動作する。 A gate signal output from the control circuit 21 (FIG. 2) is supplied to the gate terminal of the PMOS transistor PTr1 via the input terminal T222 and to the input of the inverter gate inv. The output of the inverter gate inv is connected to the gate terminal of the NMOS transistor NTr. The output switching signal output from the control circuit 21 is supplied as an input to the voltage generation circuit Vref via the input terminal T221. Since the output switching signal is supplied as an input, the voltage generation circuit Vref generates a lower voltage when the output switching signal is at high level (“1”) than when the output switching signal is at low level (“0”). It works to output.
 制御回路21(図2)から出力されたゲート信号がロウレベル(“0”)の期間では、PMOSトランジスタPTr1がオン状態となるため、PMOSトランジスタPTr-CM1のドレイン端子とソース端子間の電圧はほとんどゼロとなる。PMOSトランジスタPTr-CM1のドレイン端子とゲート端子は接続されているため、PMOSトランジスタPTr-CM1はオフ状態となり、カレントミラー回路CMを構成するPMOSトランジスタPTr-CM2のソース端子とドレイン端子間には電流が流れない。このとき、インバータゲートinvの出力はハイレベル(“1”)となるため、NMOSトランジスタNTrはオン状態となる。したがって、抵抗素子Rgoffがゲート抵抗として機能し、スイッチング素子Q1もしくはQ2に、それをオフ状態にするゲートオフ電圧が出力されることになる。 When the gate signal output from the control circuit 21 (FIG. 2) is at the low level (“0”), the PMOS transistor PTr1 is turned on, so the voltage between the drain terminal and the source terminal of the PMOS transistor PTr-CM1 is almost zero. becomes zero. Since the drain terminal and gate terminal of the PMOS transistor PTr-CM1 are connected to each other, the PMOS transistor PTr-CM1 is turned off, and a current flows between the source terminal and the drain terminal of the PMOS transistor PTr-CM2 that constitutes the current mirror circuit CM. does not flow. At this time, the output of the inverter gate inv becomes high level (“1”), so the NMOS transistor NTr is turned on. Therefore, the resistance element Rgoff functions as a gate resistance, and a gate-off voltage is output to the switching element Q1 or Q2 to turn it off.
 一方、制御回路21から出力されたゲート信号がハイレベル(“1”)の期間では、インバータゲートinvの出力はロウレベル(“0”)となるため、NMOSトランジスタNTrはオフ状態となる。このとき、ハイレベルのゲート信号によって、PMOSトランジスタPTrがオフ状態となるため、カレントミラー回路CMが動作し、PMOSトランジスタPTr-CM1のソース端子からドレイン端子に流れる電流に比例した電流が、PMOSトランジスタPTr-CM2のソース端子からドレイン端子に流れる。PMOSトランジスタPTr-CM1とNMOSトランジスタNTr-refとは直列に接続されているため、PMOSトランジスタPTr-CM1のソース端子からドレイン端子に流れる電流は、NMOSトランジスタNTr-refのドレイン端子からソース端子に流れる電流と等しくなる。したがって、電圧生成回路Vrefの出力電圧に比例した電流が、出力端子T223を介してスイッチング素子Q1もしくはQ2のゲート端子に出力される。出力切替信号がハイレベル(“1”)の場合、電圧生成回路Vrefの出力電圧は、出力切替信号がロウレベル(“0”)の場合に比べて低くなるため、実施の形態2に係るゲート出力回路22aを備えたゲート駆動回路2(図2)から出力されるゲート駆動電流の出力は、低いレベルに切り替わる動作となる。 On the other hand, while the gate signal output from the control circuit 21 is at high level ("1"), the output of the inverter gate inv is at low level ("0"), so the NMOS transistor NTr is turned off. At this time, the high-level gate signal turns off the PMOS transistor PTr, so that the current mirror circuit CM operates, and a current proportional to the current flowing from the source terminal to the drain terminal of the PMOS transistor PTr-CM1 flows to the PMOS transistor PTr-CM1. It flows from the source terminal of PTr-CM2 to the drain terminal. Since the PMOS transistor PTr-CM1 and the NMOS transistor NTr-ref are connected in series, the current flowing from the source terminal to the drain terminal of the PMOS transistor PTr-CM1 flows from the drain terminal to the source terminal of the NMOS transistor NTr-ref. equal to the current. Therefore, a current proportional to the output voltage of the voltage generation circuit Vref is output to the gate terminal of the switching element Q1 or Q2 via the output terminal T223. When the output switching signal is at a high level (“1”), the output voltage of the voltage generation circuit Vref is lower than when the output switching signal is at a low level (“0”). The gate drive current output from the gate drive circuit 2 (FIG. 2) including the circuit 22a is switched to a low level.
 図8においては、電圧生成回路Vrefと、オペアンプOPrefと、NMOSトランジスタNTr-refと、抵抗素子Rrefとによって、入力端子T221に供給される出力切替信号のレベルに従った電流を出力する電流回路が構成されていると見なすことができる。この場合、電流回路から出力された電流に比例した電流が、スイッチング素子Q1またはQ2のゲート端子にゲート駆動電流として、カレントミラー回路CMから出力されることになる。 In FIG. 8, a current circuit that outputs a current according to the level of the output switching signal supplied to the input terminal T221 is formed by the voltage generation circuit Vref, the operational amplifier OPref, the NMOS transistor NTr-ref, and the resistance element Rref. can be considered configured. In this case, a current proportional to the current output from the current circuit is output from the current mirror circuit CM as a gate drive current to the gate terminal of the switching element Q1 or Q2.
 実施の形態2によれば、ゲート出力回路22aから出力されるゲート駆動電流のレベルを、出力切替信号に応じて切り替えることができる。実施の形態1と同様に、電力変換装置において共振外れが発生した場合、判定回路6(図1)の出力に応じて、ゲート駆動回路2の制御回路21が、出力切替信号を生成することで、貫通電流の時間変化量を抑制し、サージ電圧やノイズの発生を抑えることが可能となる。さらに、実施の形態2によれば、図3に示した抵抗素子Rgon1およびRgon2に対応する抵抗素子が必要となくなり、これらの抵抗素子での電力損失の発生を低減することができる。 According to the second embodiment, the level of the gate driving current output from the gate output circuit 22a can be switched according to the output switching signal. As in the first embodiment, when out-of-resonance occurs in the power converter, the control circuit 21 of the gate drive circuit 2 generates an output switching signal according to the output of the determination circuit 6 (FIG. 1). , it is possible to suppress the amount of change in the through current with time, suppressing the occurrence of surge voltage and noise. Furthermore, according to the second embodiment, resistance elements corresponding to resistance elements Rgon1 and Rgon2 shown in FIG. 3 are not required, and power loss in these resistance elements can be reduced.
 また、ゲート出力回路から出力するゲート駆動電流のレベルを、2段階よりも増やす場合、図3に示したゲート出力回路22では、ゲート駆動電流のレベルの数に応じて、ゲートオン時の出力を駆動するPMOSトランジスタ(図3のPTr1、PTr2に相当)と、抵抗素子(Rgon1、Rgon2に相当)と、PMOSトランジスタのゲートを制御するオアゲート(or1、or2に相当)を増やす必要がある。これに対して、実施の形態2によれば、電圧生成回路Vrefの出力電圧を多段(3段以上)にするだけで良いため、簡単な構成で実現することが可能となる。また、出力切替信号に応じて、ゲート駆動電流の出力を速やかに切り替えることが可能となり、電力変換装置を高い動作周波数で動作させることが可能となる。なお、実施の形態2においても、ゲート出力回路22aを構成するトランジスタは、電界効果トランジスタに限定されず、例えばGaN-HEMTであってもよい。
 (実施の形態3)
When the level of the gate drive current output from the gate output circuit is increased more than two levels, the gate output circuit 22 shown in FIG. It is necessary to increase PMOS transistors (corresponding to PTr1 and PTr2 in FIG. 3), resistance elements (corresponding to Rgon1 and Rgon2), and OR gates (corresponding to or1 and or2) controlling the gates of the PMOS transistors. In contrast, according to the second embodiment, the output voltage of the voltage generating circuit Vref can be multi-staged (three or more stages), so that it can be realized with a simple configuration. In addition, it becomes possible to quickly switch the output of the gate drive current according to the output switching signal, and it becomes possible to operate the power converter at a high operating frequency. Also in the second embodiment, the transistors forming the gate output circuit 22a are not limited to field effect transistors, and may be GaN-HEMTs, for example.
(Embodiment 3)
 図9は、実施の形態3に係る電力変換装置の構成を示す回路図である。図9は、図1と類似しているので、相違点を主に説明する。主な相違点は、図9に示されている電力変換装置では、ハーフブリッジ回路の代わりにフルブリッジ回路が用いられている点である。 FIG. 9 is a circuit diagram showing the configuration of the power converter according to Embodiment 3. FIG. Since FIG. 9 is similar to FIG. 1, differences will be mainly described. The main difference is that the power converter shown in FIG. 9 uses a full bridge circuit instead of a half bridge circuit.
 図9において、101aは実施の形態3に係る電力変換装置を示している。電力変換装置101aは、ハーフブリッジ回路1(図1)の代わりにフルブリッジ回路7を備えている。すなわち、電力変換装置101aは、フルブリッジ回路7、ゲート駆動回路2、検出回路5、判定回路6、共振用キャパシタCr、一次巻線Tr1と二次巻線Tr2-1およびTr2-2とで構成されるトランスTr、ダイオードD1およびD2と平滑キャパシタCoとで構成される整流回路3を備えている。入力端子T1およびT2には、外部の直流電源Viが接続され、出力端子T3およびT4には負荷4が接続される。実施の形態3においても、直流電源Viは、例えばバッテリやAC/DCコンバータ等の直流電源を供給する装置である。 In FIG. 9, 101a indicates the power converter according to the third embodiment. The power converter 101a includes a full bridge circuit 7 instead of the half bridge circuit 1 (FIG. 1). That is, the power conversion device 101a includes a full bridge circuit 7, a gate drive circuit 2, a detection circuit 5, a determination circuit 6, a resonance capacitor Cr, a primary winding Tr1 and secondary windings Tr2-1 and Tr2-2. A rectifier circuit 3 including a transformer Tr, diodes D1 and D2, and a smoothing capacitor Co is provided. An external DC power supply Vi is connected to input terminals T1 and T2, and a load 4 is connected to output terminals T3 and T4. Also in Embodiment 3, the DC power source Vi is a device that supplies a DC power source, such as a battery or an AC/DC converter.
 直流電源Viの両端子間には、入力端子T1およびT2を介して、フルブリッジ回路7が接続されている。フルブリッジ回路7においては、スイッチング素子Q1とQ2とが直列に接続され、スイッチング素子Q3とQ4とが直列に接続されている。スイッチング素子Q1~Q4は、例えば半導体チップのシリコン基板上に形成されたGaN-HEMTによって構成されている。フルブリッジ回路7において、スイッチング素子Q1およびQ3のドレイン端子は、入力端子T1を介して直流電源Viに接続されている。スイッチング素子Q1のソース端子とスイッチング素子Q2のドレイン端子とが接続され、またスイッチング素子Q3のソース端子とスイッチング素子Q4のドレイン端子とが接続されている。スイッチング素子Q2およびQ4のソース端子は入力端子T2を介して直流電源Viに接続されている。 A full bridge circuit 7 is connected between both terminals of the DC power supply Vi via input terminals T1 and T2. In the full bridge circuit 7, the switching elements Q1 and Q2 are connected in series, and the switching elements Q3 and Q4 are connected in series. The switching elements Q1 to Q4 are composed of, for example, GaN-HEMTs formed on a silicon substrate of a semiconductor chip. In the full bridge circuit 7, the drain terminals of the switching elements Q1 and Q3 are connected to the DC power source Vi through the input terminal T1. A source terminal of the switching element Q1 and a drain terminal of the switching element Q2 are connected, and a source terminal of the switching element Q3 and a drain terminal of the switching element Q4 are connected. Source terminals of the switching elements Q2 and Q4 are connected to the DC power supply Vi through the input terminal T2.
 スイッチング素子Q1およびQ4のゲート端子は、ゲート駆動回路2の一方のゲート出力、例えば図2のT23に接続されている。スイッチング素子Q2およびQ3のゲート端子は、ゲート駆動回路2の他方のゲート出力(図2のT24)に接続されている。また、スイッチング素子Q1のソース端子とスイッチング素子Q2のドレイン端子とが接続された節点(ノード)と、スイッチング素子Q3のソース端子とスイッチング素子Q4のドレイン端子とが接続された節点との間に、検出回路5と、共振用キャパシタCrと、トランスTrの一次巻線Tr1とが直列的に接続されている。したがって、フルブリッジ回路7においては、対角に位置するスイッチング素子(スイッチング素子対)Q1およびQ4が同時にオンオフし、また同様に対角に位置するスイッチング素子(スイッチング素子対)Q2およびQ3が同時にオンオフする。 The gate terminals of the switching elements Q1 and Q4 are connected to one gate output of the gate drive circuit 2, eg, T23 in FIG. Gate terminals of switching elements Q2 and Q3 are connected to the other gate output of gate drive circuit 2 (T24 in FIG. 2). Between a node where the source terminal of the switching element Q1 and the drain terminal of the switching element Q2 are connected and a node where the source terminal of the switching element Q3 and the drain terminal of the switching element Q4 are connected, A detection circuit 5, a resonance capacitor Cr, and a primary winding Tr1 of a transformer Tr are connected in series. Therefore, in the full bridge circuit 7, the diagonally positioned switching elements (switching element pair) Q1 and Q4 are simultaneously turned on and off, and similarly the diagonally positioned switching elements (switching element pair) Q2 and Q3 are simultaneously turned on and off. do.
 スイッチング素子Q1およびQ4がオンする期間の動作については、スイッチング素子Q4のドレイン端子とソース端子間の電圧がほとんどゼロであるため、実施の形態1である、ハーフブリッジ回路1を用いた回路と同等となり、実施の形態1と同等の動作が行われる。すなわち、直流電源Vi、スイッチング素子Q1およびQ4、検出回路5、共振用キャパシタCr、トランスTrの一次巻線Tr1を含む共振スイッチング回路に電流I1が流れる。 Since the voltage between the drain terminal and the source terminal of the switching element Q4 is almost zero, the operation during the ON period of the switching elements Q1 and Q4 is the same as the circuit using the half bridge circuit 1 of the first embodiment. As a result, the same operation as in the first embodiment is performed. That is, the current I1 flows through the resonance switching circuit including the DC power source Vi, the switching elements Q1 and Q4, the detection circuit 5, the resonance capacitor Cr, and the primary winding Tr1 of the transformer Tr.
 一方、スイッチング素子Q2およびQ3がオンする期間の動作については、実施の形態1と異なり、トランスTrの一次巻線Tr1を含む共振スイッチング回路を流れる電流I2の経路に直流電源Viが含まれるようになる。したがって、フルブリッジ回路7を用いる実施の形態3によれば、スイッチング素子Q1およびQ4がオンする期間に加えて、スイッチング素子Q2およびQ3がオンする期間においても、直流電源Viから電流の供給を行う動作となるため、スイッチング素子Q1~Q4に、実施の形態1のスイッチング素子と同じ電流量を流した場合に比べて、電力変換装置101aから出力することが可能な電流を増大させることができる。したがって、大電流を出力する電力変換装置に適した動作が可能となる。 On the other hand, unlike the first embodiment, the operation during the ON period of the switching elements Q2 and Q3 is such that the DC power source Vi is included in the path of the current I2 flowing through the resonant switching circuit including the primary winding Tr1 of the transformer Tr. Become. Therefore, according to the third embodiment using the full bridge circuit 7, the current is supplied from the DC power supply Vi not only during the ON period of the switching elements Q1 and Q4 but also during the ON period of the switching elements Q2 and Q3. Since it operates, the current that can be output from the power conversion device 101a can be increased compared to the case where the same amount of current as the switching element of the first embodiment flows through the switching elements Q1 to Q4. Therefore, an operation suitable for a power conversion device that outputs a large current becomes possible.
 実施の形態3においても、負荷4が例えば高負荷となった場合には、実施の形態1と同様に、スイッチング素子Q1とQ4との間およびスイッチング素子Q3とQ2との間を流れる貫通電流の時間変化量を抑制し、サージ電圧やノイズの発生を抑えることが可能となる。
 なお、実施の形態3においても、ゲート出力回路は、実施の形態2で述べた構成を採用するようにしてもよい。
 (実施の形態4)
In the third embodiment as well, when the load 4 becomes, for example, a high load, the through current flowing between the switching elements Q1 and Q4 and between the switching elements Q3 and Q2 is reduced as in the first embodiment. It is possible to suppress the amount of change over time and suppress the occurrence of surge voltage and noise.
Also in the third embodiment, the configuration described in the second embodiment may be adopted for the gate output circuit.
(Embodiment 4)
 図10は、実施の形態4に係る電力変換装置の構成を示す回路図である。図10は、図1と類似しているので、以下、相違点を主に説明する。主な相違点は、図10では、2つのセンス素子が追加され、検知回路として、センス素子に対応する2つの検知回路が設けられ、2つの検知回路の出力が判定回路に供給されている点である。 FIG. 10 is a circuit diagram showing the configuration of the power converter according to Embodiment 4. FIG. Since FIG. 10 is similar to FIG. 1, differences will be mainly described below. The main difference is that in FIG. 10, two sense elements are added, two detection circuits corresponding to the sense elements are provided as detection circuits, and the outputs of the two detection circuits are supplied to the determination circuit. is.
 図10において、101bは、実施の形態4に係る電力変換装置を示している。電力変換装置101bは、ハーフブリッジ回路1a、ゲート駆動回路2、2つの検出回路5-1および5-2、判定回路6a、共振用キャパシタCr、一次巻線Tr1と二次巻線Tr2-1およびTr2-2とで構成されたトランスTr、ダイオードD1およびD2と平滑キャパシタCoとで構成された整流回路3を備えている。入力端子T1およびT2には、外部の直流電源Viが接続され、出力端子T3およびT4には負荷4が接続される。 In FIG. 10, 101b indicates the power converter according to the fourth embodiment. The power converter 101b includes a half bridge circuit 1a, a gate drive circuit 2, two detection circuits 5-1 and 5-2, a determination circuit 6a, a resonance capacitor Cr, a primary winding Tr1, a secondary winding Tr2-1 and Tr2-2, a transformer Tr, and a rectifier circuit 3, which is composed of diodes D1 and D2 and a smoothing capacitor Co. An external DC power supply Vi is connected to input terminals T1 and T2, and a load 4 is connected to output terminals T3 and T4.
 ハーフブリッジ回路1aは、互いに直列的に接続されたスイッチング素子Q1aおよびQ2aを備えている。スイッチング素子Q1aおよびQ2aは、例えば半導体チップのシリコン基板上に形成されたGaN-HEMTによって構成されている。スイッチング素子Q1aおよびQ2aは、主な電流を流すスイッチング素子(主スイッチング素子)Q1a-fおよびQ2a-fと、スイッチング素子Q1aおよびQ2aに流れる電流を分流して流すスイッチング素子(センス用スイッチング素子)Q1a-sおよびQ2a-sと、を備えている。 The half bridge circuit 1a includes switching elements Q1a and Q2a connected in series with each other. The switching elements Q1a and Q2a are composed of, for example, GaN-HEMTs formed on a silicon substrate of a semiconductor chip. The switching elements Q1a and Q2a include switching elements (main switching elements) Q1a-f and Q2a-f through which the main current flows, and a switching element (switching element for sensing) Q1a through which the current flowing through the switching elements Q1a and Q2a is split. -s and Q2a-s.
 スイッチング素子Q1a-fおよびQ1a-sのそれぞれのドレイン端子は互いに接続されており、またスイッチング素子Q1a-fおよびQ1a-sのそれぞれのゲート端子も互いに接続されている。同様に、スイッチング素子Q2a-fおよびQ2a-sのそれぞれのドレイン端子は互いに接続されており、またスイッチング素子Q2a-fおよびQ2a-sのそれぞれのゲート端子も互いに接続されている。 The drain terminals of the switching elements Q1a-f and Q1a-s are connected to each other, and the gate terminals of the switching elements Q1a-f and Q1a-s are also connected to each other. Similarly, respective drain terminals of switching elements Q2a-f and Q2a-s are connected together, and respective gate terminals of switching elements Q2a-f and Q2a-s are also connected together.
 実施の形態4で用いられる主スイッチング素子とセンス用スイッチング素子は、同一の半導体チップの半導体基板(シリコン基板)上に形成されている。図11は、実施の形態4に係る半導体チップの一部分を示す平面図である。図11には、半導体チップの半導体基板(シリコン基板)上に形成されたスイッチング素子Q1aの部分が示されている。 The main switching element and the sensing switching element used in Embodiment 4 are formed on the semiconductor substrate (silicon substrate) of the same semiconductor chip. FIG. 11 is a plan view showing part of a semiconductor chip according to the fourth embodiment. FIG. 11 shows a portion of the switching element Q1a formed on the semiconductor substrate (silicon substrate) of the semiconductor chip.
 スイッチング素子Q1aに含まれているスイッチング素子Q1a-fおよびQ1a-sは、同一基板上に集積されている。図11において、符号Q1a-Tdは、スイッチング素子Q1a-fおよびQ1a-sの共通のドレイン端子を示している。符号Q1a-Tgは、スイッチング素子Q1a-fおよびQ1a-sの共通のゲート端子を示している。また、符号Q1a-Ts-fは、スイッチング素子Q1a-fのソース端子を示し、符号Q1a-Ts-sは、スイッチング素子Q1a-sのソース端子を示している。スイッチング素子Q1a-fおよびQ1a-sのそれぞれのドレイン端子とゲート端子を互いに接続して、スイッチング素子Q1a-fおよびQ1a-sを並列的に接続し、スイッチング素子Q1a-fおよびQ1a-sを並列的に動作させることで、スイッチング素子Q1aに流れる電流の一部を、スイッチング素子Q1a-sに分流することで、スイッチング素子Q1a-sをセンス素子として用いている。 The switching elements Q1a-f and Q1a-s included in the switching element Q1a are integrated on the same substrate. In FIG. 11, symbols Q1a-Td indicate common drain terminals of switching elements Q1a-f and Q1a-s. References Q1a-Tg indicate common gate terminals of switching elements Q1a-f and Q1a-s. Reference characters Q1a-Ts-f indicate source terminals of the switching elements Q1a-f, and reference characters Q1a-Ts-s indicate source terminals of the switching elements Q1a-s. The respective drain terminals and gate terminals of switching elements Q1a-f and Q1a-s are connected to each other, switching elements Q1a-f and Q1a-s are connected in parallel, and switching elements Q1a-f and Q1a-s are connected in parallel. The switching element Q1a-s is used as a sense element by shunting part of the current flowing through the switching element Q1a to the switching element Q1a-s.
 図11に示されているように、スイッチング素子Q1a-sのデバイス面積は、スイッチング素子Q1a-fのデバイス面積よりも小さくされている。図11には、スイッチング素子Q1aのみが示されているが、スイッチング素子Q2aについても、スイッチング素子Q1aと同様に構成されている。また、実施の形態4においては、スイッチング素子Q1aおよびQ2aは、同一の半導体基板上に形成されている。 As shown in FIG. 11, the device area of the switching elements Q1a-s is made smaller than the device area of the switching elements Q1a-f. Although only the switching element Q1a is shown in FIG. 11, the switching element Q2a is configured similarly to the switching element Q1a. Further, in the fourth embodiment, switching elements Q1a and Q2a are formed on the same semiconductor substrate.
 図10に戻って説明する。スイッチング素子Q1a-fのソース端子とスイッチング素子Q2aのドレイン端子とが接続されている。スイッチング素子Q2a-fのソース端子は入力端子T2を介して直流電源Viに接続されている。スイッチング素子Q1aおよびQ2aのゲート端子は、ゲート駆動回路2に接続されている。スイッチング素子Q1a-fのソース端子とスイッチング素子Q2aのドレイン端子とが接続された節点と、スイッチング素子Q2a-fのソース端子との間に、共振用キャパシタCrとトランスTrの一次巻線Tr1とが直列に接続されている。 Returning to Fig. 10, explanation will be given. The source terminals of the switching elements Q1a-f and the drain terminal of the switching element Q2a are connected. The source terminals of the switching elements Q2a-f are connected to the DC power source Vi through the input terminal T2. Gate terminals of the switching elements Q1a and Q2a are connected to the gate drive circuit 2 . A resonance capacitor Cr and a primary winding Tr1 of a transformer Tr are connected between the node where the source terminals of the switching elements Q1a-f and the drain terminals of the switching elements Q2a are connected and the source terminals of the switching elements Q2a-f. connected in series.
 また、スイッチング素子Q1a-fおよびQ1a-sのソース端子の間に、検出回路5-1が接続され、スイッチング素子Q2a-fおよびQ2a-sのソース端子の間に、検出回路5-2が接続されている。検出回路5-1および5-2は、例えばシャント抵抗、ホール素子、ロゴスキーコイル等を用いた電流センサである。検出回路5-1および5-2のそれぞれによって、スイッチング素子Q1a-sおよびQ2a-sに流れる電流の電流値が検出される。検出回路5-1および5-2によって検出された電流値はアナログ値として、判定回路6aに出力される。 A detection circuit 5-1 is connected between the source terminals of the switching elements Q1a-f and Q1a-s, and a detection circuit 5-2 is connected between the source terminals of the switching elements Q2a-f and Q2a-s. It is The detection circuits 5-1 and 5-2 are current sensors using, for example, shunt resistors, Hall elements, Rogowski coils, or the like. Detecting circuits 5-1 and 5-2 detect current values of currents flowing through switching elements Q1a-s and Q2a-s, respectively. The current values detected by the detection circuits 5-1 and 5-2 are output as analog values to the determination circuit 6a.
 判定回路6aは、例えばコンパレータ等の比較器と、例えばエッジ検出回路やマイクロプロセッサを用いたエッジ検出器により構成される。比較器は、電流検出回路5-1および5-2からの入力と、電流値がゼロの場合の検出値との大小を比較し、デジタル値として出力する。比較器から出力された信号はエッジ検出器に入力され、エッジ検出器は、比較器からの信号の立下りに対応した信号をゲート駆動回路2に出力する。 The determination circuit 6a is composed of a comparator such as a comparator and an edge detector using an edge detection circuit or a microprocessor, for example. The comparator compares the magnitude of the input from the current detection circuits 5-1 and 5-2 with the detected value when the current value is zero, and outputs the result as a digital value. The signal output from the comparator is input to the edge detector, and the edge detector outputs to the gate drive circuit 2 a signal corresponding to the falling edge of the signal from the comparator.
 実施の形態1で説明したスイッチング素子Q1およびQ2は、実施の形態4におけるスイッチング素子Q1aおよびQ2aに対応するため、検出回路5-1および5-2からの出力される電流は、図5および図6に示した電流Id1およびId2に対応することになる。したがって、トランスTrの一次巻線Tr1に流れる電流I1の極性が、正から負へ反転する場合の判定信号として、検出回路5-1から出力される電流を用いている。すなわち、判定回路6aは、検出回路5-1から出力されている電流が、正から負へ反転したとき、電流I1の極性が正から負に反転したことを示す判定信号として出力される。 Since the switching elements Q1 and Q2 described in the first embodiment correspond to the switching elements Q1a and Q2a in the fourth embodiment, the currents output from the detection circuits 5-1 and 5-2 are shown in FIGS. 6 correspond to the currents Id1 and Id2 shown in FIG. Therefore, the current output from the detection circuit 5-1 is used as the determination signal when the polarity of the current I1 flowing through the primary winding Tr1 of the transformer Tr is reversed from positive to negative. That is, when the current output from the detection circuit 5-1 is inverted from positive to negative, the judgment circuit 6a outputs a judgment signal indicating that the polarity of the current I1 is inverted from positive to negative.
 一方、トランスTrの一次巻線Tr1に流れる電流I1の極性が、負から正へ反転する場合の判定信号として、検出回路5-2から出力されている電流を用いている。すなわち、判定回路6aは、検出回路5-2から出力されている電流が、正から負へ反転したとき、電流I1の極性が負から正に反転したことを示す判定信号として出力される。ゲート駆動回路2は、判定回路6aからの判定信号を基にして、実施の形態1と同様の動作を行う。 On the other hand, the current output from the detection circuit 5-2 is used as the determination signal when the polarity of the current I1 flowing through the primary winding Tr1 of the transformer Tr is reversed from negative to positive. That is, when the current output from the detection circuit 5-2 is inverted from positive to negative, the judgment circuit 6a outputs a judgment signal indicating that the polarity of the current I1 is inverted from negative to positive. The gate drive circuit 2 performs the same operation as in the first embodiment based on the determination signal from the determination circuit 6a.
 実施の形態4によれば、スイッチング素子Q1aおよびQ2aを流れる電流を分流した電流を、それぞれ検出回路5-1および5-2により検出するため、検出される電流の絶対値の大きさは、トランスTrの一次巻線Tr1に流れる電流I1の絶対値よりも小さくなる。したがって、検出回路5-1および5-2を小型化することが可能となる。 According to the fourth embodiment, the detection circuits 5-1 and 5-2 detect the currents obtained by shunting the currents flowing through the switching elements Q1a and Q2a. It is smaller than the absolute value of the current I1 flowing through the primary winding Tr1 of Tr. Therefore, it is possible to downsize the detection circuits 5-1 and 5-2.
 また、実施の形態4によれば、大電流の流れる経路である、トランスTrの一次巻線Tr1を含む共振スイッチング回路とは別の箇所に検出回路5-1および5-2を設けるため、共振スイッチング回路の寄生インダクタンスを小さくすることが可能となる。 Further, according to the fourth embodiment, since the detection circuits 5-1 and 5-2 are provided at locations other than the resonance switching circuit including the primary winding Tr1 of the transformer Tr, which is a path through which a large current flows, the resonance It becomes possible to reduce the parasitic inductance of the switching circuit.
 また、一般にセンス素子を集積したスイッチング素子を用いる場合、素子内部の温度分布等の影響により、電流センス比率は変動する。しかしながら、実施の形態4によれば、センス素子は、電流の極性(正、負)の反転を判定するために用いているだけであるため、センス素子によって検知された電流の比率(電流センス比率)の変動は、電力変換装置の動作に影響せずに、集積化したセンス素子を用いることが可能である。 Also, in general, when using a switching element in which sensing elements are integrated, the current sensing ratio fluctuates due to the influence of the temperature distribution inside the element. However, according to the fourth embodiment, the sense element is only used to determine the reversal of the polarity (positive, negative) of the current. ) can be used with integrated sense elements without affecting the operation of the power converter.
 図10に示した検出回路5-1は、スイッチング素子Q1aと同一の半導体基板上に形成してもよいし、検出回路5-2も、スイッチング素子Q2aと同一の半導体基板上に形成してもよい。 The detection circuit 5-1 shown in FIG. 10 may be formed on the same semiconductor substrate as the switching element Q1a, and the detection circuit 5-2 may also be formed on the same semiconductor substrate as the switching element Q2a. good.
 なお、実施の形態4では、実施の形態1で説明した電力変換装置を基にした例を説明したが、これに限定されるものではない。すなわち、実施の形態2および実施の形態3で説明した電力変換装置を基にしてもよい。 In addition, in Embodiment 4, an example based on the power converter described in Embodiment 1 has been described, but it is not limited to this. That is, it may be based on the power converters described in the second and third embodiments.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 The invention made by the present inventor has been specifically described above based on the embodiments, but the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. Needless to say.
1 ハーフブリッジ回路
2 ゲート駆動回路
3 整流回路
4 負荷
5、5-1、5-2 検出回路
6 判定回路
7 フルブリッジ回路
100、101、101a、101b 電力変換装置
Cp1、Cp2 出力容量
Q1、Q2、Q3、Q4、Q1a、Q2a スイッチング素子
RSC スイッチング回路
1 half bridge circuit 2 gate drive circuit 3 rectifier circuit 4 load 5, 5-1, 5-2 detection circuit 6 determination circuit 7 full bridge circuit 100, 101, 101a, 101b power conversion device Cp1, Cp2 output capacitance Q1, Q2, Q3, Q4, Q1a, Q2a switching element RSC switching circuit

Claims (12)

  1.  複数のスイッチング素子と、キャパシタと、前記キャパシタと直列接続された一次巻線とを備えたトランスと、を備えるスイッチング回路と、
     前記スイッチング素子のゲートに対してゲート駆動電流を出力して、前記スイッチング素子のオンオフを制御するゲート駆動回路と、
     前記スイッチング回路に流れる電流を検出する検出回路と、
     前記検出回路が検出した電流の極性の反転を判定する判定回路と、
    を備え、
     前記ゲート駆動回路は、前記判定回路による判定の結果に基づいて、前記ゲート駆動電流を調整するゲート調整回路を備える、
     電力変換装置。
    a switching circuit comprising a plurality of switching elements, a capacitor, and a transformer comprising a primary winding connected in series with the capacitor;
    a gate drive circuit that outputs a gate drive current to the gate of the switching element to control on/off of the switching element;
    a detection circuit that detects current flowing through the switching circuit;
    a determination circuit that determines polarity reversal of the current detected by the detection circuit;
    with
    The gate drive circuit includes a gate adjustment circuit that adjusts the gate drive current based on the determination result of the determination circuit.
    Power converter.
  2.  請求項1に記載の電力変換装置において、
     前記ゲート調整回路は、前記ゲート駆動電流を、少なくとも2つのレベルの間で切り替える出力切替信号を出力し、
     前記ゲート調整回路は、前記判定回路によって前記極性の反転が判定されたとき、前記ゲート駆動回路が出力する前記ゲート駆動電流を低いレベルに切り替える前記出力切替信号を出力し、
     前記ゲート調整回路は、前記ゲート駆動電流を低いレベルに切り替えてから、所定の期間後に、前記ゲート駆動電力を高いレベルに切り替える前記出力切替信号を出力する、
     電力変換装置。
    In the power converter according to claim 1,
    the gate adjustment circuit outputs an output switching signal that switches the gate drive current between at least two levels;
    the gate adjustment circuit outputs the output switching signal for switching the gate drive current output by the gate drive circuit to a low level when the determination circuit determines that the polarity is inverted;
    The gate adjustment circuit outputs the output switching signal for switching the gate drive power to a high level after a predetermined period of time after switching the gate drive current to a low level.
    Power converter.
  3.  請求項2に記載の電力変換装置において、
     前記ゲート駆動回路は、互いに抵抗値が異なる複数のゲート抵抗と、前記複数のゲート抵抗から、前記出力切替信号に応じたゲート抵抗を選択し、選択されたゲート抵抗を所定の電圧と前記スイッチング素子のゲート端子との間に接続するスイッチ回路を備える、
     電力変換装置。
    In the power converter according to claim 2,
    The gate drive circuit selects a gate resistor corresponding to the output switching signal from a plurality of gate resistors having different resistance values and the plurality of gate resistors. comprising a switch circuit connected between the gate terminal of
    Power converter.
  4.  請求項2に記載の電力変換装置において、
     前記ゲート駆動回路は、前記出力切替信号に応じて電流値が変化する電流回路と、前記電流回路に流れる電流に比例した電流を出力するカレントミラー回路とを備える、
     電力変換装置。
    In the power converter according to claim 2,
    The gate drive circuit includes a current circuit whose current value changes according to the output switching signal, and a current mirror circuit that outputs a current proportional to the current flowing through the current circuit.
    Power converter.
  5.  請求項1から4のいずれか1項に記載の電力変換装置において、
     前記複数のスイッチング素子は、2つのスイッチング素子を備え、
     前記ゲート調整回路は、前記2つのスイッチング素子のうちの一方のスイッチング素子がオン状態のとき、他方のスイッチング素子のゲート駆動電流を低いレベルに調整する、
     電力変換装置。
    In the power converter according to any one of claims 1 to 4,
    The plurality of switching elements comprises two switching elements,
    When one switching element of the two switching elements is in an ON state, the gate adjustment circuit adjusts the gate drive current of the other switching element to a low level.
    Power converter.
  6.  請求項1から4のいずれか1項に記載の電力変換装置において、
     前記複数のスイッチング素子は、対角上に位置する2つのスイッチング素子対を備え、
     前記ゲート調整回路は、前記スイッチング素子対のうちの一方のスイッチング素子がオン状態のとき、他方のスイッチング素子のゲート駆動電流を低いレベルに調整する、
     電力変換装置。
    In the power converter according to any one of claims 1 to 4,
    The plurality of switching elements comprise two pairs of switching elements positioned diagonally,
    The gate adjustment circuit adjusts the gate drive current of the other switching element to a low level when one switching element of the switching element pair is in an ON state.
    Power converter.
  7.  請求項1から6のいずれか1項に記載の電力変換装置において、
     前記複数のスイッチング素子のうちの少なくとも1つのスイッチング素子は、オン状態のとき、前記キャパシタと、前記キャパシタと直列的に接続された一次巻線とに電流を供給する主スイッチング素子と、前記1つのスイッチング素子を流れる電流の一部を分流するセンス素子とを備え、
     前記検出回路は、前記センス素子を流れる電流を検出し、
     前記主スイッチング素子と前記センス素子は、同一の半導体チップに形成されている、
     電力変換装置。
    In the power converter according to any one of claims 1 to 6,
    at least one switching element among the plurality of switching elements, when in an ON state, supplies a current to the capacitor and a primary winding connected in series with the capacitor; a sense element that shunts a portion of the current flowing through the switching element,
    the detection circuit detects a current flowing through the sense element;
    The main switching element and the sense element are formed on the same semiconductor chip,
    Power converter.
  8.  請求項7に記載の電力変換装置において、
     前記検出回路は、前記複数のスイッチング素子のうちの少なくとも1つのスイッチング素子と、同一の半導体チップに形成されている、
     電力変換装置。
    In the power conversion device according to claim 7,
    The detection circuit is formed on the same semiconductor chip as at least one switching element among the plurality of switching elements,
    Power converter.
  9.  請求項1から8のいずれか1項に記載の電力変換装置において、
     前記複数のスイッチング素子のうち少なくとも1つのスイッチング素子は、窒化ガリウム系材料を用いている、
     電力変換装置。
    In the power converter according to any one of claims 1 to 8,
    At least one switching element among the plurality of switching elements uses a gallium nitride-based material,
    Power converter.
  10.  複数のスイッチング素子と、キャパシタと、前記キャパシタと直列的に接続された一次巻線とを備えたトランスと、を備えるスイッチング回路と、
     前記スイッチング素子のゲート端子に対してゲート駆動電流を出力して、前記スイッチング素子のオンオフを制御するゲート駆動回路と、
     を備える電力変換装置の制御方法であって、
     前記スイッチング回路を流れる電流を検出し、
     検出された電流の極性が反転したか否かを判定し、
     前記極性が反転したと判定された場合、前記ゲート駆動電流を調整する、
     電力変換装置の制御方法。
    a switching circuit comprising a plurality of switching elements, a capacitor, and a transformer comprising a primary winding connected in series with the capacitor;
    a gate drive circuit that outputs a gate drive current to a gate terminal of the switching element to control on/off of the switching element;
    A control method for a power conversion device comprising
    detecting the current flowing through the switching circuit;
    determining whether the polarity of the detected current is reversed;
    adjusting the gate drive current if the polarity is determined to be reversed;
    A control method for a power converter.
  11.  請求項10に記載の電力変換装置の制御方法において、
     前記極性が反転したと判定された場合、ゲート駆動電流を低いレベルに切り替え、
     前記ゲート駆動電流を低いレベルに切り替えてから、所定の期間後に、前記ゲート駆動電流を高いレベルに切り替える、
     電力変換装置の制御方法。
    In the control method of the power converter according to claim 10,
    if the polarity is determined to be reversed, switching the gate drive current to a lower level;
    switching the gate drive current to a high level after a predetermined period of time after switching the gate drive current to a low level;
    A control method for a power converter.
  12.  請求項11に記載の電力変換装置の制御方法において、
     前記所定の期間は、前記極性が反転したと判定されてから前記スイッチング素子のオンオフ状態が切り替わるまでの時間よりも長く、前記スイッチング素子がオンオフする周期の半分よりも短い期間である、
     電力変換装置の制御方法。
    In the control method of the power converter according to claim 11,
    The predetermined period is longer than the time from when it is determined that the polarity has been reversed to when the on/off state of the switching element is switched, and is shorter than half the cycle in which the switching element turns on and off.
    A control method for a power converter.
PCT/JP2022/033287 2021-11-22 2022-09-05 Power conversion device and control method for power conversion device WO2023089916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189484 2021-11-22
JP2021189484A JP2023076204A (en) 2021-11-22 2021-11-22 Power conversion device and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2023089916A1 true WO2023089916A1 (en) 2023-05-25

Family

ID=86396683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033287 WO2023089916A1 (en) 2021-11-22 2022-09-05 Power conversion device and control method for power conversion device

Country Status (2)

Country Link
JP (1) JP2023076204A (en)
WO (1) WO2023089916A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198457A (en) * 2004-01-09 2005-07-21 Shindengen Electric Mfg Co Ltd Resonant circuit
WO2013114758A1 (en) * 2012-02-03 2013-08-08 富士電機株式会社 Control device for resonance-type dc-dc converter
JP2014187787A (en) * 2013-03-22 2014-10-02 Sanken Electric Co Ltd Ldmosfet surge current protection circuit
JP2017038186A (en) * 2015-08-07 2017-02-16 新電元工業株式会社 Drive circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198457A (en) * 2004-01-09 2005-07-21 Shindengen Electric Mfg Co Ltd Resonant circuit
WO2013114758A1 (en) * 2012-02-03 2013-08-08 富士電機株式会社 Control device for resonance-type dc-dc converter
JP2014187787A (en) * 2013-03-22 2014-10-02 Sanken Electric Co Ltd Ldmosfet surge current protection circuit
JP2017038186A (en) * 2015-08-07 2017-02-16 新電元工業株式会社 Drive circuit

Also Published As

Publication number Publication date
JP2023076204A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP5541044B2 (en) Gate drive circuit and switching power supply device
JP5616980B2 (en) Driving device for semiconductor switch element
EP2688208B1 (en) Gate drive device
JP2011166949A (en) Power-supply device, hard disk drive, and switching method of power-supply device
US10833584B2 (en) Boot-strapping systems and techniques for circuits
US9042140B2 (en) Bridge-less step-up switching power supply device
CN108141131B (en) Multi-phase converter
CN111665891A (en) System and method for controlling a low dropout regulator
WO2014167938A1 (en) Power device drive circuit
JP2018133892A (en) Gate driving device and gate driving method of power semiconductor
US10461632B1 (en) Current sensing for bridgeless PFC converters
US10381941B2 (en) Switching power supply device and synchronous rectifier circuit
JP5177019B2 (en) Switching power supply
WO2023089916A1 (en) Power conversion device and control method for power conversion device
US20110181218A1 (en) Semiconductor apparatus
US9178445B2 (en) Power conversion apparatus
JP5527187B2 (en) Semiconductor device
US11742774B2 (en) Switch driving device and switching power supply using the same
US20190386574A1 (en) Power supply and power supply unit
US20190097517A1 (en) Adaptive drive strength switching converter
US10461662B1 (en) AC/DC converter
TW202130102A (en) Method and apparatus for generating control signal and charging dc supply in a secondary synchronous rectifier
WO2007116444A1 (en) Power supply apparatus and power supply control method
JP7251429B2 (en) power supply
WO2021156981A1 (en) Switching converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895204

Country of ref document: EP

Kind code of ref document: A1