WO2023087809A1 - 一种电致变色器件及其制备、控制方法 - Google Patents

一种电致变色器件及其制备、控制方法 Download PDF

Info

Publication number
WO2023087809A1
WO2023087809A1 PCT/CN2022/112547 CN2022112547W WO2023087809A1 WO 2023087809 A1 WO2023087809 A1 WO 2023087809A1 CN 2022112547 W CN2022112547 W CN 2022112547W WO 2023087809 A1 WO2023087809 A1 WO 2023087809A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
electrochromic
electrochromic device
color
Prior art date
Application number
PCT/CN2022/112547
Other languages
English (en)
French (fr)
Inventor
杨兰兰
樊聪聪
穆琳佳
金南德
赵康
达仕勋
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111370733.0A external-priority patent/CN116136633A/zh
Priority claimed from CN202210182183.8A external-priority patent/CN116699915A/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2023087809A1 publication Critical patent/WO2023087809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect

Definitions

  • the present application relates to the field of display technology, in particular to an electrochromic device and its preparation and control methods.
  • Electrochromism refers to a phenomenon in which a material undergoes a reversible change between a colored state and a bleached state by injecting or extracting charges (ions or electrons) under the action of an external electric field, and is manifested as a reversible change in color and transparency in appearance.
  • electrochromic materials materials with electrochromic properties are called electrochromic materials, and devices made of electrochromic materials are called electrochromic devices (Electrochromic Device, ECD for short).
  • Electrochromic devices have the advantages of low manufacturing cost, low driving voltage, and bistable state. When using electrochromic devices to make displays, they have the advantages of ignoring blind angles and not requiring backlights. It can not only solve the damage to readers' eyes caused by the emitted light of the current display, but also play a role in saving energy.
  • the electrode layer of the traditional electrochromic device is easily damaged, and the service life of the electrochromic device is short.
  • the steady-state time of the current ECD is limited by the electrochromic material and device structure, and cannot reach a very stable state.
  • An embodiment of the present application provides an electrochromic device, which includes a first electrode layer, a second electrode layer, a color-changing functional layer, and an intermediate layer.
  • the second electrode layer is disposed on one side of the first electrode layer and opposite to the first electrode layer.
  • the color-changing functional layer is disposed between the first electrode layer and the second electrode layer.
  • the intermediate layer is disposed between the first electrode layer and the second electrode layer. Wherein, the intermediate layer is configured to capture at least part of the electronic charges transferred between the electrode layer and the color-changing functional layer, or, when the electrochromic device is pressed, deformation occurs in the pressed area, and when the deformation occurs, Color develops or fades in place.
  • An embodiment of the present application provides a method for preparing an electrochromic device, the method for preparing an electrochromic device includes: preparing a first substrate, the first substrate includes a first substrate, a first electrode layer, A first buffer layer, an electrochromic layer and an electrolyte layer.
  • the first buffer layer is configured to capture at least part of the electronic charges transferred from the electrochromic layer to the first electrode layer.
  • a second substrate is prepared, and the second substrate includes a second substrate, a second electrode layer, a second buffer layer and an ion storage layer stacked in sequence.
  • the second substrate is located on a side of the electrolyte layer away from the first substrate, and the electrolyte layer is attached to the ion storage layer.
  • the second buffer layer is configured to trap at least part of the electron charge transferred from the ion storage layer to the second electrode layer.
  • FIG. 1 is a schematic structural view of an electrochromic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • Figure 7 is a molecular structure diagram of PEDOT:PSS according to the embodiment of the application.
  • Figure 8 is a molecular structure diagram of PProDOT according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the principle of an electrochromic device according to an embodiment of the present application.
  • 13a-13d are one of the schematic diagrams of the working principle according to the embodiment of the present application.
  • FIG. 14 is one of the structural schematic diagrams of an electrochromic device according to an embodiment of the present application.
  • 15a-15d are the second schematic diagrams of the working principle according to the embodiment of the present application.
  • FIG. 16 is the second structural schematic diagram of an electrochromic device according to an embodiment of the present application.
  • 17a-17d are the third schematic diagrams of the working principle according to the embodiment of the present application.
  • FIG. 18 is a flow chart 1 of steps of a method for manufacturing an electrochromic device according to an embodiment of the present application.
  • FIG. 19 is a flow chart 2 of the steps of the method for preparing an electrochromic device according to an embodiment of the present application.
  • FIG. 20 is a flow chart three of steps of a method for manufacturing an electrochromic device according to an embodiment of the present application.
  • FIG. 21 is a flow chart 4 of the steps of the method for manufacturing an electrochromic device according to an embodiment of the present application.
  • Fig. 22 is a flowchart of a control method of an electrochromic device according to an embodiment of the present application.
  • 100-electrochromic device 1-first electrode layer; 2-second electrode layer; 3-color-changing functional layer; 31-electrochromic layer; 32-electrolyte layer; 33-ion storage layer; 4-buffer layer; 41-first buffer layer; 42-second buffer layer; 5-first substrate; 6-second substrate, 11-first substrate, 12-second substrate, 16-press conductive layer, 161-elastic substrate , 162-conductive particles.
  • electrochromic devices are widely used in architectural glass, automotive color-changing smart windows, Aircraft portholes, automobile anti-glare rearview mirrors, color-changing glasses box displays and other fields.
  • the electrochromic device includes two electrode layers, and an electrochromic layer, an electrolyte layer and an ion storage layer arranged in sequence between the two electrode layers.
  • the electrochromic layer undergoes an oxidation or reduction reaction, causing a color change;
  • a negative voltage is applied to the electrochromic device, the electrochromic layer undergoes a reduction or oxidation reaction, and the electrochromic layer undergoes a reduction or oxidation reaction.
  • a chromogenic device changes its own color. It should be noted that the directions of the positive voltage and the negative voltage are opposite.
  • the base material used for the electrode layer plays a supporting role, and the electrode layer is electrically connected to an external power source to provide positive or negative voltage to the electrochromic device.
  • the electrolyte layer is used to realize the transport of ions inside the electrochromic device, and also provides anions and cations for the electrochromic layer to maintain the electrical neutrality of the electrochromic layer.
  • the role of the ion storage layer is to store counter ions to realize the memory effect of the device.
  • electrodes of electrochromic devices are prone to electrochemical corrosion during operation, resulting in a short service life of electrochromic devices.
  • FIG. 1 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • an embodiment of the present application provides an electrochromic device, comprising: a first electrode layer; a second electrode layer disposed on one side of the first electrode layer and opposite to the first electrode layer
  • the color-changing functional layer is arranged between the first electrode layer and the second electrode layer
  • the intermediate layer is arranged between the first electrode layer and the second electrode layer
  • the intermediate layer is configured To capture at least part of the electronic charge transferred between the electrode layer and the color-changing functional layer, or, when the electrochromic device is pressed, deformation occurs in the pressed area, and color develops or fades at the position where the deformation occurs.
  • the intermediate layer is disposed between the first electrode layer and the second electrode layer, and may be configured to capture at least part of the electronic charge transferred between the electrode layer and the color-changing functional layer, or to capture at least part of the electronic charge transferred between the electrode layer and the color-changing functional layer, or to capture the electrochromic device when it is pressed. Deformation occurs in the pressed area, and color develops or fades where the deformation occurs.
  • the intermediate layer includes: a buffer layer.
  • the embodiment of the present application provides an electrochromic device 100 , which can reduce the risk of electrochemical corrosion of the electrode layer of the electrochromic device 100 , thereby prolonging the service life of the electrochromic device 100 .
  • the above-mentioned electrochromic device 100 includes a first electrode layer 1 , a second electrode layer 2 , a color-changing functional layer 3 and a buffer layer 4 .
  • the second electrode layer 2 is disposed on one side of the first electrode layer 1 and opposite to the first electrode layer 1 .
  • the color-changing functional layer 3 is disposed between the first electrode layer 1 and the second electrode layer 2 .
  • the first electrode layer 1 and the second electrode layer 2 are used for connecting power supply. And, when the first electrode layer 1 is connected to the positive pole of the power supply, the second electrode layer 2 is connected to the negative pole of the power supply; when the first electrode layer 1 is connected to the negative pole of the power supply, the second electrode layer 2 is connected to the positive pole of the power supply.
  • the color-changing functional layer 3 can undergo an oxidation or reduction reaction when the first electrode layer 1 and the second electrode layer 2 are connected to a power source, thereby realizing a color change.
  • the materials of the first electrode layer 1 and the second electrode layer 2 can be any one of ITO, IZO, TCO, FTO, metal or carbon black electrodes.
  • first electrode layer 1 and the second electrode layer 2 may be the same or different.
  • the buffer layer 4 is disposed between the first electrode layer 1 and the second electrode layer 2, and is configured to capture at least part of the electron charges transferred from the color-changing functional layer 3 to the first electrode layer 1, or to capture At least part of the electronic charges transferred from the color-changing functional layer 3 to the second electrode layer 2 .
  • the buffer layer 4 when the buffer layer 4 is configured to capture at least part of the electron charges transferred from the color-changing functional layer 3 to the first electrode layer 1, when the electrochromic device 100 is working, the buffer layer 4 can reduce the electron charges reaching the first electrode layer 1. the amount of electron charge. In this way, the risk of electrochemical corrosion of the first electrode layer 1 can be reduced, and the service life of the first electrode layer 1 can be prolonged, thereby prolonging the service life of the electrochromic device 100 .
  • the buffer layer 4 when the buffer layer 4 is configured to capture at least part of the electron charge transferred from the color-changing functional layer 3 to the second electrode layer 2, when the electrochromic device 100 is working, the buffer layer 4 can reduce the electron charge reaching the second electrode layer 2 quantity. In this way, the risk of electrochemical corrosion of the second electrode layer 2 can be reduced, and the service life of the second electrode layer 2 can be prolonged, thereby prolonging the service life of the electrochromic device 100 .
  • Fig. 3 is a schematic structural diagram of an electrochromic device according to an embodiment of the present application.
  • the electrochromic device 100 includes two buffer layers 4 , and the two buffer layers 4 include a first buffer layer 41 and a second buffer layer 42 .
  • the first buffer layer 4 is disposed between the first electrode layer 1 and the color-changing functional layer 3, and is configured to capture at least part of the electron charges transferred from the color-changing functional layer 3 to the first electrode layer 1.
  • the second buffer layer 4 is disposed between the second electrode layer 2 and the color-changing functional layer 3 , and is configured to capture at least part of electron charges transferred from the color-changing functional layer 3 to the second electrode layer 2 .
  • the first buffer layer 41 can reduce the amount of electron charges reaching the first electrode layer 1, thereby reducing the risk of electrochemical corrosion of the first electrode layer 1 and extending the length of the first electrode layer.
  • the service life of the layer 1 is extended, thereby prolonging the service life of the electrochromic device 100 .
  • the second buffer layer 42 can reduce the number of electron charges reaching the second electrode layer 2, thereby reducing the risk of electrochemical corrosion of the second electrode layer 2, prolonging the service life of the second electrode layer 2, thereby prolonging the electrochromic device 100 service life.
  • the first electrode layer 1 can be protected to reduce the risk of electrochemical corrosion of the first electrode layer 1; Risk of chemical corrosion. In this way, the service life of the electrochromic device 100 can be further extended.
  • the buffer layer 4 is further configured to, under the first condition, store the electronic charges transferred from the color-changing functional layer 3 to the buffer layer 4; under the second condition, the buffer layer 4 stores Electronic charges are transferred from the buffer layer 4 to the color-changing functional layer 3 .
  • the first condition is that one of the oxidation reaction and the reduction reaction occurs in the color-changing functional layer 3
  • the second condition is that the other one of the oxidation reaction and the reduction reaction occurs in the color-changing functional layer 3 .
  • the first condition is that the color-changing functional layer 3 undergoes a reduction reaction, the first electrode layer 1 is connected to the positive pole of the power supply, the second electrode layer 2 is connected to the negative pole of the power supply, and the color-changing functional layer 3 fades gradually.
  • the second condition is that the color-changing functional layer 3 undergoes an oxidation reaction, the first electrode layer 1 is connected to the negative pole of the power supply, the second electrode layer 2 is connected to the positive pole of the power supply, and the color-changing functional layer 3 is gradually colored.
  • the color-changing functional layer 3 includes an electrochromic layer 31 , and the coloring and fading of the color-changing functional layer 3 mentioned above are the coloring and fading of the electrochromic layer 31 .
  • the above first condition can also be that the color-changing functional layer 3 undergoes an oxidation reaction, the first electrode layer 1 is connected to the negative pole of the power supply, the second electrode layer 2 is connected to the positive pole of the power supply, and the color-changing functional layer 3 is gradually colored.
  • the second condition is that the color-changing functional layer 3 undergoes a reduction reaction, and the first electrode layer 1 is connected to the positive pole of the power supply, and the second electrode layer 2 is connected to the negative pole of the power supply, and the color-changing functional layer 3 fades gradually.
  • the material of the buffer layer 4 includes a conjugated polymer, and the ground state of the conjugated polymer is neutral.
  • the ground state of the conjugated polymer is neutral means that the conjugated polymer itself is not charged and electrically conductive. That is to say, the material of the buffer layer 4 can be a conjugated polymer that is uncharged and non-conductive in a natural state.
  • the conjugated polymer includes at least one of polypyrrole, polyaniline, polythiophene and derivatives thereof.
  • conjugated polymer can be any one of polypyrrole, polyaniline, polythiophene and its derivatives, or any of polypyrrole, polyaniline, polythiophene and its derivatives. combination.
  • the buffer layer 4 has a thickness of 0.5 ⁇ m ⁇ 5 ⁇ m. In this way, on the one hand, it can avoid that the thickness of the buffer layer 4 is too small, and the electronic charge breaks through the barrier of the buffer layer 4 and is transmitted to the first electrode layer 1 or the second electrode layer 2, causing the first electrode layer 1 or the second electrode layer The electrochemical corrosion of the layer 2 shortens the service life of the first electrode layer 1 or the second electrode layer 2 , thereby shortening the service life of the electrochromic device 100 . On the other hand, excessive thickness of the buffer layer 4 can be avoided, affecting the conductivity of the electrochromic device 100 and reducing the performance of the electrochromic device 100; at the same time, material waste can also be avoided.
  • the thickness of the buffer layer 4 is any one of 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m and 5 ⁇ m.
  • Figure 4 is a schematic structural view of an electrochromic device according to an embodiment of the present application
  • Figure 5 is a schematic structural view of an electrochromic device according to an embodiment of the present application
  • Figure 6 is a schematic structural view of an electrochromic device according to an embodiment of the present application .
  • the color-changing functional layer 3 includes an electrochromic layer 31 , an electrolyte layer 32 and an ion storage layer 33 stacked in sequence.
  • the electrochromic layer 31 is used for reduction or oxidation reaction to realize the color change of the electrochromic device 100 .
  • the electrolyte layer 32 is used to realize the transport of ions inside the electrochromic device 100 .
  • the ion storage layer 33 is used to store counter ions to realize the memory effect of the electrochromic device 100 .
  • the material of the electrochromic layer 31 includes a color-changing material, and the material of the electrochromic layer 31 includes a metal oxide or a conductive polymer.
  • the material of the electrochromic layer 31 can be any one of transition metal oxide, polymer polypyrrole, polythiophene, polyaniline, viologen, Prussian blue and its derivatives, and can also be transition metal oxide , Polymer polypyrrole, polythiophene, polyaniline, viologen, Prussian blue and various combinations thereof.
  • FIG. 7 is a molecular structure diagram of PEDOT:PSS according to an embodiment of the present application
  • FIG. 8 is a molecular structure diagram of PProDOT according to an embodiment of the present application.
  • both the electrochromic layer 31 and the buffer layer 4 use polythiophene polymers, but the polythiophene polymers used in the electrochromic layer 31 have conductivity, for example, what the electrochromic layer 31 uses is PEDOT:PSS, wherein , the molecular structure of PEDOT:PSS is shown in Figure 7. And the polythiophene polymer that buffer layer 4 adopts does not have conductivity, for example, what buffer layer 4 adopts is PProDOT, and wherein, the molecular structure of PProDOT is as shown in Figure 8, and R in the figure refers to 2-ethyl Hexanol.
  • the material of the ion storage layer 33 can be any one of transition metal oxide, polymer polypyrrole, polythiophene, polyaniline, viologen, Prussian blue and its derivatives , can also be a combination of transition metal oxides, polymer polypyrrole, polythiophene, polyaniline, viologen, Prussian blue and its derivatives, which can be selected according to actual conditions.
  • Figure 9 is a schematic structural view of an electrochromic device according to an embodiment of the present application
  • Figure 10 is a schematic structural view of an electrochromic device according to an embodiment of the present application
  • Figure 11 is a schematic structural view of an electrochromic device according to an embodiment of the present application .
  • the electrochromic device 100 further includes a first substrate 5 and a second substrate 6 .
  • the first substrate 5 is arranged on the side of the first electrode layer 1 away from the color-changing functional layer 3
  • the second substrate 6 is arranged on the side of the second electrode layer 2 away from the color-changing functional layer 3 .
  • the first substrate 5 can provide support and protection for the first electrode layer 1, thereby prolonging the service life of the first electrode layer 1;
  • the second substrate 6 can provide support and protection for the second electrode layer 2, thereby prolonging the service life of the first electrode layer 1.
  • the service life of the second electrode layer 2. In this way, the service life of the electrochromic device 100 can be further extended.
  • the material of at least one of the first substrate 5 and the second substrate 6 is transparent. Wherein, both can be that the material of the first substrate 5 is transparent, the material of the second substrate 6 is non-transparent; also can be that the material of the first substrate 5 is non-transparent, the material of the second substrate 6 is transparent It is also possible that the materials of the first substrate 5 and the second substrate 6 are both transparent.
  • the material of the first substrate 5 is any one of PET, PI, PEN, glass and sapphire.
  • the material of the second substrate 6 is any one of PET, PI, PEN, glass and sapphire.
  • the material of the first substrate 5 may be the same as that of the second substrate 6 , or may be different from that of the second substrate 6 , which may be selected according to actual conditions.
  • the steady-state time of the current ECD is limited by the electrochromic material and device structure, and cannot reach a very stable state. Therefore, how to increase the steady-state time and achieve more energy-saving purposes is a problem that needs to be solved.
  • Electrochromic materials refer to materials whose optical properties (such as reflectivity, transmittance, absorptivity, etc.) change under the action of an applied electric field, and appear as changes in color or transparency in appearance.
  • Devices made of electrochromic materials are called electrochromic devices (Electrochromic Device, referred to as ECD).
  • ECD is an optoelectronic device that combines optical thin film and electrical thin film, and realizes reversible color change through low external drive.
  • ECD can be regarded as an electrochemical battery, and redox reactions can occur to achieve the purpose of coloring when electricity is applied. In the case of cutting off the current without redox reaction, the colored state can be maintained, thus having the advantage of bistability.
  • ECD can be used in many fields such as monitors, car windows, anti-glare rearview mirrors, electronic tags, and handwriting tablets.
  • electrochromic devices When using electrochromic devices to make displays, it has the advantages of ignoring blind angles and no need for backlights. It can not only solve the damage to readers' eyes caused by the emitted light of the current display, but also play a role in saving energy.
  • the steady-state time of the current ECD is limited by the electrochromic material and device structure, and cannot reach a very stable state. Therefore, how to increase the steady-state time and achieve more energy-saving is a problem that needs to be solved.
  • FIG. 12 is a schematic diagram of the principle of the electrochromic device provided in the embodiment of the present application.
  • the electrochromic device includes: a first substrate 11 , a second substrate 12 , an electrochromic layer 31 , an electrolyte layer 32 , an ion storage layer 33 and a pressing conductive layer 16 .
  • the first substrate 11 and the second substrate 12 are arranged opposite to each other. There is a certain distance between the first substrate 11 and the second substrate 12 , and the first substrate 11 and the second substrate 12 serve as supporting components of the electrochromic device.
  • Both the first substrate 11 and the second substrate 12 generally adopt a block structure, for example, may adopt a rectangle or a square.
  • the size of the first substrate 11 and the second substrate 12 may be the same.
  • the first substrate 11 includes the first substrate 5 and the first electrode layer 1
  • the second substrate 12 includes the second substrate 6 and the second electrode layer 2 .
  • the first substrate 5 and the second substrate 6 are arranged oppositely, the first electrode layer 1 is located on the surface of the first substrate 5 facing the second substrate 6, and the second electrode layer 2 is located on the second substrate 6 facing the first The surface on one side of the substrate 5.
  • the shape and size of the first substrate 5 and the second substrate 6 can be the same, the shape and size of the first electrode layer 1 and the first substrate 5 are the same, and the shape and size of the second electrode layer 2 and the second substrate 6 same.
  • the first substrate 5 and the second substrate 6 can be made of transparent materials, for example, can be made of flexible transparent materials such as PET, PI, and PEN.
  • the first electrode layer 1 and the second electrode layer 2 can be made of transparent conductive materials, for example, transparent conductive materials such as ITO, IZO, TCO, FTO can be used, and one or more of Ag, Cu, Ni can also be used. Alloy metal grid.
  • the electrochromic layer 31 is located between the first substrate 11 and the second substrate 12 .
  • the electrochromic layer 31 is provided on the whole layer, and its shape and size can be the same as that of the first substrate 11 and the second substrate 12 .
  • the electrochromic layer 31 can use transition metal oxides, such as WO 3 , MnO 3 , BiO 3 , etc., can also use polymers, such as polypyrrole, polythiophene, polyaniline, etc., and can also use violin, Prussian blue and Its derivatives and other materials are used for production.
  • transition metal oxides such as WO 3 , MnO 3 , BiO 3 , etc.
  • polymers such as polypyrrole, polythiophene, polyaniline, etc.
  • violin, Prussian blue and Its derivatives and other materials are used for production.
  • the electrochromic layer 31 is the core layer of the electrochromic device.
  • the electrochromic material can undergo redox reaction under the action of an electric field, so as to realize the change of color and/or transparency, and this change is reversible.
  • the electrolyte layer 32 is located between the first substrate 11 and the second substrate 12 .
  • the electrolyte layer 32 is provided as a whole layer, and its shape and size may be the same as that of the electrochromic layer 31 .
  • the electrolyte in the electrolyte layer 32 may be a gel or a solid material, and the electrolyte layer 32 functions as a transmission channel.
  • the electrolyte layer 32 can be located on the side close to the first substrate, and the electrochromic layer 31 can be located on the side of the electrolyte layer away from the first substrate; or, the electrolyte layer 32 can also be located on the side close to the second substrate, and the electrochromic layer 31 may be located on the side of the electrolyte layer away from the second substrate.
  • the ion storage layer 33 is located on the side of the electrolyte layer 32 away from the electrochromic layer 31 .
  • the ion storage layer 33 is provided as a whole layer, and its shape and size may be the same as that of the electrolyte layer 32 .
  • the ion storage layer 33 has the functions of storing ions and balancing charges.
  • the electrochromic device When an electric signal is applied to the first electrode layer 1 and the second electrode layer 2 to form an electric field between the first electrode layer 1 and the second electrode layer 2, the ions in the ion storage layer 33 pass through the electrolyte under the action of the electric field layer and the electrochromic material in the electrochromic layer 31 produce a redox reaction, so that the electrochromic device develops or changes color.
  • the electrochromic device When opposite electrical signals are applied to the first electrode layer 1 and the second electrode layer 2, the electrochromic device can be restored to its original state.
  • electrochromic devices can only develop or fade colors at the same time, and cannot achieve color development or fading only at a set position.
  • at least one of the first substrate 11 and the second substrate 12 is a flexible substrate, and the substrate and the electrode layer on one side of the flexible substrate are made of flexible materials, so that the electrochromic device is an object contactor. After touching, deformation occurs under pressure.
  • the pressing conductive layer 16 is set between the electrochromic layer 31 and the electrolyte layer 32, and the pressing conductive layer 16 deforms in the pressed area when the electrochromic device is pressed, so that the electric current in the pressed area
  • the chromic layer 31 and the electrolyte layer 32 are electrically connected. Therefore, when the electrochromic device is electrified, it can develop color or fade at the position where deformation occurs, so as to achieve the effects of color development and color fading by pressing.
  • 13a-13d are one of the schematic diagrams of the working principle according to the embodiment of the present application. For specific description, only important film layers are shown in the figure, while other film layers are omitted.
  • the electrochromic device when the electrochromic device is required to develop color at the set position (A), the electrochromic device is pressed under the condition of applying the first electrical signal to the first electrode layer and the second electrode layer , then under the action of an external force, the conductive layer 16 is pressed and deformed, so that the electrochromic layer 31 and the electrolyte layer 32 in the pressed area are conducted.
  • the electrochromic layer 31 and the electrolyte layer 32 in this region can be conducted only when deformation occurs, while the electrochromic layer in other regions 31 and the electrolyte layer 32 remain separated from each other. Therefore, only the electrochromic material in the pressed area A can change color under the action of the electric field, while the original state is still maintained in the non-pressed area.
  • the pressed conductive layer 16 returns to its original state, so that the electrochromic layer 31 and the electrolyte layer 32 that were originally conducted in the pressed area A are separated from each other, due to the bistable state of the electrochromic material effect, which can make the electrochromic layer in the area A that was pressed before remain in the state of color development.
  • the power supply to the first electrode layer and the second electrode layer can be stopped, because the electrochromic layer in the state of no power 31 and the electrolyte layer 32 are separated from each other, so the state of the electrochromic material is more stable, so that the time of steady state can be increased, and the purpose of energy saving and color development can be achieved.
  • a second electrical signal can be applied to the first electrode layer and the second electrode layer, and the second electrical signal is opposite to the above-mentioned first electrical signal electric signal.
  • Apply an external force in the color developing area i.e., the previously pressed area A
  • the pressing conductive layer 16 conducts the electrochromic layer 31 and the electrolyte layer 32 in the color developing area, so that the electrochromic layer is under the action of an electric field Restores the original state in previously colored areas.
  • the electrochromic device can be applied to scenes such as labels and drawing boards. Taking the drawing board as an example, it can develop color at the position where the picture is written. And when you want to eliminate writing marks, you can press the position where there are writing marks in a large area to eliminate the marks.
  • one of the substrates of the electrochromic device can be set as a flexible substrate, so that color development or fading can be realized by pressing the flexible substrate.
  • the substrates on both sides can be configured as flexible substrates, so that the electrochromic device can be pressed on either side to achieve color development or color fading.
  • FIG. 14 is one of the structural schematic diagrams of an electrochromic device according to an embodiment of the present application.
  • the pressurized conductive layer 16 is an air gap layer. A certain distance is kept between the electrochromic layer 31 and the electrolyte layer 32 so that there is an air gap between the two, so that the two can maintain an insulated state when they are not pressed. And when some positions of the electrochromic device are pressed, the electrochromic layer 31 and the electrolyte layer 32 can be in contact at the pressed positions, so that the color can be developed or faded under the condition of electrification.
  • 15a-15d are the second schematic diagrams of the working principle according to the embodiment of the present application.
  • the electrochromic device when the electrochromic device is required to display color at the set position (A), the first electrical signal is first applied to the first electrode layer and the second electrode layer, and the electrochromic device is pressed. Under the action of external force, the electrochromic layer 31 in the pressed area A is in contact with the electrolyte layer 32, so that the electrochromic material in the pressed area can change color under the action of an electric field, while in the non-pressed area it remains Preserved in pristine condition.
  • the electrochromic layer 31 and the electrolyte layer 32 return to the state of being separated from each other, there is an air gap between the two, and the electrochromic layer 31 and the electrolyte layer 32 are insulated from each other, due to the electric
  • the bistable effect of the chromogenic material can make the electrochromic layer in the area A that was pressed before remain in a color-developing state, and at this time, the power supply to the first electrode layer and the second electrode layer can be stopped. Since the electrochromic layer 31 and the electrolyte layer 32 are separated from each other in the state of no power applied, the state of the electrochromic material is more stable, thereby increasing the steady state time and achieving the purpose of energy saving and color development.
  • a second electrical signal can be applied to the first electrode layer and the second electrode layer, and the second electrical signal is opposite to the above-mentioned first electrical signal electric signal.
  • An external force is applied to the color-developing area (i.e., the previously pressed area A), and the electrochromic layer 31 in the pressed area A is in contact with the electrolyte layer 32 under the action of the external force, so that the electrochromic layer is under the action of the electric field.
  • the colored areas are restored to their original state.
  • the electrochromic layer 31 and the electrolyte layer 32 return to the state of being separated from each other, and there is a layer of air gap between them. Due to the bistable effect of the electrochromic material, the recovery The faded position remains unchanged, and at this time, the power supply to the first electrode layer and the second electrode layer can be stopped, so that the electrochromic device remains in its original state.
  • the thickness of the air gap layer is not more than 1 mm, so as to ensure that when the electrochromic device is pressed, the deformation generated can make the electrochromic layer and the electrolyte layer fully contact.
  • FIG. 16 is the second structural schematic diagram of an electrochromic device according to an embodiment of the present application.
  • the pressing conductive layer 16 includes: an elastic base 161 and conductive particles 162 dispersed in the elastic base.
  • the elastic base 161 can be made of elastic transparent insulating material, such as phenolic resin, epoxy resin, PP, PC, PVC and other resin materials.
  • the conductive particles 162 are dispersed in the elastic substrate, and the conductive particles are located in the middle of the elastic substrate 161.
  • the thickness of the elastic substrate 161 is greater than the size of the conductive particles 162, and it is not in contact with the electrochromic layer 31 and the electrolyte layer 32 in the state of no external force.
  • the conductive particles 162 can be metal particles, carbon particles, metal-coated particles, etc., which are not limited here.
  • the size of the conductive particles 162 is 1 ⁇ m ⁇ 50 ⁇ m. In a possible implementation, the conductive particles 162 may be of other sizes, which is not limited in this application.
  • the electrochromic layer 31 and the electrolyte layer 32 are separated from each other by the elastic substrate 161 , and neither the electrochromic layer 31 nor the electrolyte layer 32 contacts the conductive particles in the elastic substrate 161 .
  • the elastic substrate will deform at the pressed position, and the electrochromic layer 31 and the electrolyte layer 32 will be in contact with the conductive particles 162 at the pressed position, thereby making the electrochromic layer 31 and the electrolyte layer 32 conduct, and can develop color or fade under the condition of electrification.
  • 17a-17d are the third schematic diagrams of the working principle according to the embodiment of the present application.
  • the electrochromic device when the electrochromic device is required to develop color at the set position (A), the first electrical signal is first applied to the first electrode layer and the second electrode layer, and the electrochromic device is pressed. , the elastic substrate 161 is deformed under the action of an external force, and the electrochromic layer 31 and the electrolyte layer 32 in the pressed area A are in contact with the conductive particles 162 and conduct in the pressed area A, so that the electricity in the pressed area
  • the color-changing material can change color under the action of an electric field, while maintaining the original state in the non-pressed area.
  • the elastic substrate 161 returns to its original shape, the electrochromic layer 31 and the electrolyte layer 32 return to the state of being separated from each other, and are not in contact with the conductive particles 162, the electrochromic layer 31 and the electrolyte layer 32 Insulated from each other, due to the bistable effect of the electrochromic material, the electrochromic layer in the previously pressed area A can still maintain the state of color development, and at this time, the power supply to the first electrode layer and the second electrode layer can be stopped . Since the electrochromic layer 31 and the electrolyte layer 32 are separated from each other in the state of no power applied, the state of the electrochromic material is more stable, thereby increasing the steady state time and achieving the purpose of energy saving and color development.
  • a second electrical signal can be applied to the first electrode layer and the second electrode layer, and the second electrical signal is opposite to the above-mentioned first electrical signal electric signal.
  • An external force is applied to the color-developing area (that is, the previously pressed area A), and the elastic substrate 161 deforms under the action of the external force, so that the electrochromic layer 31 and the electrolyte layer 32 in the pressed area A are in contact with the conductive particles 162, thereby making the electrochromic
  • the color-changing layer 31 and the electrolyte layer 32 are turned on, and the electrochromic layer returns to the original state in the previously colored region under the action of the electric field.
  • the elastic substrate 161 returns to its original shape, and the electrochromic layer 31 and the electrolyte layer 32 return to the state of being separated from each other, and are not in contact with the conductive particles 162, due to the bistability of the electrochromic material effect, the faded position can be restored to maintain the faded state, and at this time, the power supply to the first electrode layer and the second electrode layer can be stopped, so that the electrochromic device remains in its original state.
  • FIG. 11 and FIG. 18 are a flow chart 1 of steps of a method for manufacturing an electrochromic device according to an embodiment of the present application.
  • the first substrate includes the first substrate 5 , the first electrode layer 1 , the first buffer layer 41 , the electrochromic layer 31 and the electrolyte layer 32 stacked in sequence.
  • the first buffer layer 41 is configured to capture at least part of the electronic charges transferred from the electrochromic layer 31 to the first electrode layer 1 .
  • FIG. 19 is a flow chart II of steps of a method for manufacturing an electrochromic device according to an embodiment of the present application. Referring to Fig. 19, the above S100 includes S110-S150.
  • the first substrate 5 is used to support and protect the first electrode layer 1 .
  • the material of the first substrate 5 can be referred to above, and will not be repeated here.
  • the first electrode layer 1 is used to connect to the positive pole or the negative pole of the power supply, for example, the first electrode layer 1 is used to connect to the positive pole of the power supply.
  • the material of the first electrode layer 1 can be referred to above, and will not be repeated here.
  • the first buffer layer 41 is used to block the transmission of electron charges from the electrochromic layer 31 to the first electrode layer 1 .
  • the manufacturing method of the first buffer layer 41 is not unique.
  • the first buffer layer 41 can be produced by solution methods such as spin coating, doctor blade coating, screen printing, and inkjet printing. In this way, a first buffer layer 41 with a uniform thickness can be formed on the first electrode layer 1 , so as to better protect the first electrode layer 1 .
  • S140 Fabricate the electrochromic layer 31 on the side of the first buffer layer 41 away from the first electrode layer 1 .
  • the electrochromic layer 31 is used for oxidation or reduction reaction to realize the color change of the electrochromic device 100 .
  • the electrolyte layer 32 is used to realize the transmission of ions inside the electrochromic device 100 .
  • the electrolyte layer 32 can be either a gel electrolyte or a solid electrolyte, which can be selected according to actual conditions.
  • the second substrate includes a second substrate 6, a second electrode layer 2, a second buffer layer 42 and an ion storage layer 33 stacked in sequence.
  • the second substrate is located on the side of the electrolyte layer 32 away from the first substrate, and the electrolyte layer 32 is attached to the ion storage layer 33 .
  • the second buffer layer 42 is configured to trap at least part of the electron charges transferred from the ion storage layer 33 to the second electrode layer 2 .
  • FIG. 20 is a flowchart three of steps of a method for manufacturing an electrochromic device according to an embodiment of the present application
  • FIG. 21 is a flowchart four of steps of a method for manufacturing an electrochromic device according to an embodiment of the present application.
  • the above S200 includes S210 or S220.
  • S210 sequentially fabricate the ion storage layer 33, the second buffer layer 42, the second electrode layer 2 and the second substrate 6 on the electrolyte layer 32 of the first substrate along a direction away from the electrochromic layer 31.
  • the functions and materials of the ion storage layer 33 , the second buffer layer 42 , the second electrode layer 2 and the second substrate 6 can be referred to above, and will not be repeated here.
  • the manufacturing method of the second buffer layer 42 is not unique.
  • the second buffer layer 42 can be produced by solution methods such as spin coating, blade coating, screen printing, and inkjet printing. In this way, a second buffer layer 42 with uniform thickness can be formed between the second electrode layer 2 and the ion storage layer 33 , so as to better protect the second electrode layer 2 .
  • S220 Fabricate the second electrode layer 2, the second buffer layer 42, and the ion storage layer 33 sequentially on the second substrate 6, and attach the ion storage layer 33 to the electrolyte layer 32 of the first substrate.
  • the manufacturing method of the second buffer layer 42 is not unique.
  • the second buffer layer 42 can be produced by solution methods such as spin coating, doctor blade coating, screen printing, and inkjet printing. In this way, a second buffer layer 42 with a uniform thickness can be formed on the second electrode layer 2, thereby better protecting the second electrode layer 2.
  • FIG. 22 is a flow chart of the method for controlling an electrochromic device according to an embodiment of the present application.
  • control method of the electrochromic device includes:
  • control method of the electrochromic device also includes:
  • a second electrical signal is applied to the first electrode layer and the second electrode layer; the second electrical signal is an electrical signal opposite to the first electrical signal; the color development of the electrochromic device The position is pressed, so that the pressed area is deformed, the electrochromic layer and the electrolyte layer in the pressed area are turned on, and the electrochromic device fades; the application of electrical signals to the first electrode layer and the second electrode layer is stopped.
  • the electrochromic device when the electrochromic device is required to develop color at a set position, the electrochromic device is pressed under the condition of applying a first electrical signal to the first electrode layer and the second electrode layer, then under the action of an external force , pressing and pressing the conductive layer produces deformation, so that the electrochromic layer and the electrolyte layer in the pressed area are conducted.
  • the electrochromic layer and the electrolyte layer in this region can be connected only when deformation occurs, while the electrochromic layer and the electrolyte layer in other regions remain separated from each other. Therefore, only the electrochromic material in the pressed area can change color under the action of the electric field, while the original state is still preserved in the non-pressed area.
  • the pressed conductive layer After the external force is removed, the pressed conductive layer returns to its original state, so that the electrochromic layer and the electrolyte layer that were originally connected in the pressed area are separated from each other. Due to the bistable effect of the electrochromic material, the electrochromic layer in the previously pressed area can The electrochromic layer still maintains the state of developing color. At this time, the power supply to the first electrode layer and the second electrode layer can be stopped. Since the electrochromic layer and the electrolyte layer are separated from each other in the state of no power supply, the electrochromic material The state is more stable, which can increase the time of steady state and achieve the purpose of energy saving and color development.
  • a second electrical signal can be applied to the first electrode layer and the second electrode layer, and the second electrical signal is an electrical signal opposite to the above-mentioned first electrical signal.
  • the position where the conductive layer is pressed and deformed is restored, and the electrochromic layer and the electrolyte layer return to a state of being separated from each other. Due to the bistable effect of the electrochromic material, the restored faded position can remain in a faded state. At this time, the power supply to the first electrode layer and the second electrode layer can be stopped to keep the electrochromic device in its original state.
  • the pressing area of the electrochromic device When controlling the fading of the electrochromic device to return to its original state, the pressing area of the electrochromic device only needs to cover the coloring area, and does not need to be completely consistent with the coloring area, thus simplifying the restriction on the pressing area.
  • the electrochromic device includes a first electrode layer and a second electrode layer, an electrochromic layer and an electrolyte layer located between the first electrode layer and the second electrode layer, an ion storage layer close to the electrolyte layer, and a pressed conductive layer between the electrochromic layer and the electrolyte layer.
  • the pressing conductive layer deforms in the pressed area when the electrochromic device is pressed, so as to conduct the electrochromic layer and the electrolyte layer in the pressed area. Therefore, when the electrochromic device is powered on, it can develop color or fade at the pressed position, so as to achieve the effects of color development and fading when pressed.
  • the electrochromic device when the electrochromic device is required to develop color at the set position, the electrochromic device is pressed under the condition of applying the first electrical signal to the first electrode layer and the second electrode layer, then in Under the action of external force, the conductive layer is pressed and deformed, so that the electrochromic layer and the electrolyte layer in the pressed area are conducted.
  • the electrochromic layer and the electrolyte layer in this region can be connected only when deformation occurs, while the electrochromic layer and the electrolyte layer in other regions remain separated from each other.
  • the electrochromic material in the pressed area can change color under the action of the electric field, while the original state is still preserved in the non-pressed area.
  • the pressed conductive layer returns to its original state, so that the electrochromic layer and the electrolyte layer that were originally connected in the pressed area are separated from each other. Due to the bistable effect of the electrochromic material, the electrochromic layer in the previously pressed area can The electrochromic layer still maintains the state of developing color.
  • the power supply to the first electrode layer and the second electrode layer can be stopped. Since the electrochromic layer and the electrolyte layer are separated from each other in the state of no power supply, the electrochromic material The state is more stable, which can increase the time of steady state and achieve the purpose of energy saving and color development.
  • a second electrical signal can be applied to the first electrode layer and the second electrode layer, and the second electrical signal is opposite to the above-mentioned first electrical signal. electric signal.
  • Apply an external force to the color-developing area that is, the previously pressed area
  • pressing the conductive layer conducts the electrochromic layer and the electrolyte layer in the color-developing area, so that the electrochromic layer develops color before the action of the electric field
  • the area is restored to its original state. After the external force is removed, the position where the conductive layer is pressed and deformed is restored, and the electrochromic layer and the electrolyte layer return to a state of being separated from each other.
  • the restored faded position can remain in a faded state.
  • the power supply to the first electrode layer and the second electrode layer can be stopped to keep the electrochromic device in its original state.
  • the pressing area of the electrochromic device only needs to cover the coloring area, and does not need to be completely consistent with the coloring area, thus simplifying the restriction on the pressing area.
  • one electrode layer among the first electrode layer and the second electrode layer is set as a flexible electrode layer, and color development or fading is realized by pressing the flexible electrode layer.
  • both the first electrode layer and the second electrode layer can be set as flexible electrode layers, so that pressing the electrochromic device on either side can realize color development or color fading.
  • the pressing conductive layer is an air gap layer. Keeping a certain distance between the electrochromic layer and the electrolyte layer, so that there is an air gap between the two, can keep the two in an insulated state when they are not pressed. And when some positions of the electrochromic device are pressed, the electrochromic layer and the electrolyte layer can be in contact at the pressed positions, so that color development or fading can be carried out under the condition of electrification.
  • the thickness of the air gap layer is not more than 1mm, which can ensure that when the electrochromic device is pressed, the deformation generated can make the electrochromic layer and the electrolyte layer fully contact.
  • the pressing conductive layer includes: an elastic base and conductive particles dispersed in the elastic base.
  • the conductive particles are located in the middle of the elastic base, and are not in contact with the electrochromic layer and the electrolyte layer when no external force is applied, and the electrochromic layer and the electrolyte layer are separated from each other by the elastic base.
  • the elastic substrate When certain positions of the electrochromic device are pressed, the elastic substrate will deform at the pressed position, and the electrochromic layer and the electrolyte layer will be in contact with the conductive particles at the pressed position, thereby making the electrochromic layer and the electrolyte layer It is turned on, and it can be colored or faded when it is powered on.
  • the elastic base can be made of elastic transparent insulating material, such as phenolic resin, epoxy resin, PP, PC, PVC and other resin materials.
  • phenolic resin epoxy resin
  • PP polymethyl methacrylate
  • PC polymethyl methacrylate
  • PVC polymethyl methacrylate
  • conductive particles metal particles, carbon particles, and metal-plated particles can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种电致变色器件(100)及其制备、控制方法,电致变色器件(100)包括第一电极层(1)、第二电极层(2)、变色功能层(3)和中间层(4,16)。第二电极层(2)设置于第一电极层(1)的一侧,且与第一电极层(1)相对设置。变色功能层(3)设置于第一电极层(1)和第二电极层(2)之间。中间层(4,16)设置于第一电极层(1)和第二电极层(2)之间。其中,中间层(4,16)被配置为捕获电极层(1,2)与变色功能层(3)之间传输的至少部分电子电荷,或,在电致变色器件(100)被按压时在被按压区域产生形变,在产生形变的位置显色或褪色。

Description

一种电致变色器件及其制备、控制方法
相关申请的交叉引用
本申请要求在2021年11月18日提交、申请号为202111370733.0;在2022年02月25日提交、申请号为202210182183.8的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种电致变色器件及其制备、控制方法。
背景技术
电致变色是指材料在外电场的作用下,通过注入或抽取电荷(离子或电子),从而在着色态和漂白态之间产生可逆变化的现象,在外观上表现为颜色和透明度的可逆变化。其中,具有电致变色性能的材料称为电致变色材料,采用电致变色材料制作而成的器件为电致变色器件(Electrochromic Device,简称ECD)。
电致变色器件具有制造成本低、驱动电压低、双稳态等优点,当利用电致变色器件制作显示器时,具有无视盲角、不需要背光等优势。既可以解决现在显示器的发射光对读者眼睛的损伤,也可以起到节约能源的作用。
但是,传统的电致变色器件的电极层易损坏,电致变色器件的使用寿命较短。目前的ECD的稳态时间受限于电致变色材料和器件结构,无法达到十分稳定的状态。
发明内容
本申请实施方式提供一种电致变色器件,该电致变色器件包括第一电极层、第二电极层、变色功能层和中间层。所述第二电极层设置于所述第一电极层的一侧,且与所述第一电极层相对设置。所述变色功能层设置于所述第一电极层和所述第二电极层之间。所述中间层设置于所述第一电极层和所述第二电极层之间。其中,所述中间层被配置为捕获电极层与所述变色功能层之间传输的至少部分电子电荷,或,在所述电致变色器件被按压时在被按压区域产生形变,在产生形变的位置显色或褪色。
本申请实施方式提供一种电致变色器件的制备方法,该电致变色器件的制备方法包括:制备第一基板,所述第一基板包括依次叠置的第一衬底、第一电极层、第一缓冲层、电致变色层和电解质层。其中,所述第一缓冲层被配置为,捕获从所述电致变色层向所述第一电极层传输的至少部分电子电荷。制备第二基板,所述第二基板包括依次叠置的第二衬底、第二电极层、第二缓冲层和离子存储层。其中,所述第二基板位于所述电解质层远离所述第一基板的一侧,且所述电解质层与所述离子存储层贴合。所述第二缓冲层被配置为,捕获从所述离子存储层向所述第二电极层传输的至少部分电子电荷。
附图说明
图1为根据本申请实施例的电致变色器件的结构示意图;
图2为根据本申请实施例的电致变色器件的结构示意图;
图3为根据本申请实施例的电致变色器件的结构示意图;
图4为根据本申请实施例的电致变色器件的结构示意图;
图5为根据本申请实施例的电致变色器件的结构示意图;
图6为根据本申请实施例的电致变色器件的结构示意图;
图7为根据本申请实施例的PEDOT:PSS的分子结构图;
图8为根据本申请实施例的PProDOT的分子结构图;
图9为根据本申请实施例的电致变色器件的结构示意图;
图10为根据本申请实施例的电致变色器件的结构示意图;
图11为根据本申请实施例的电致变色器件的结构示意图;
图12为根据本申请实施例的电致变色器件的原理示意图;
图13a-13d为根据本申请实施例的工作原理示意图之一;
图14为根据本申请实施例的电致变色器件的结构示意图之一;
图15a-15d为根据本申请实施例的工作原理示意图之二;
图16为根据本申请实施例的电致变色器件的结构示意图之二;
图17a-17d为根据本申请实施例的工作原理示意图之三;
图18为根据本申请实施例的电致变色器件的制备方法的步骤流程图一;
图19为根据本申请实施例的电致变色器件的制备方法的步骤流程图二;
图20为根据本申请实施例的电致变色器件的制备方法的步骤流程图三;
图21为根据本申请实施例的电致变色器件的制备方法的步骤流程图四;
图22为根据本申请实施例的电致变色器件的控制方法的流程图。
附图标记:
100-电致变色器件;1-第一电极层;2-第二电极层;3-变色功能层;31-电致变色层;32-电解质层;33-离子存储层;4-缓冲层;41-第一缓冲层;42-第二缓冲层;5-第一衬底;6-第二衬底,11-第一基板,12-第二基板,16-按压导电层,161-弹性基底,162-导电粒子。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
随着电致变色技术的发展,电致变色器件以无视盲角、制造成本底、工作温度范围宽、驱动电压低、色彩丰富等优点,被广泛的应用于建筑玻璃、车用变色智能窗、飞机舷窗、汽车防眩目后视镜、变色眼镜盒显示器等领域。
其中,电致变色器件包括两个电极层、和在两个电极层之间依次设置的电致变色层、电解质层和离子存储层。当给电致变色器件施加正向电压后,电致变色层发生氧化或还原反应,引起颜色的变化;当给电致变色器件施加负向电压后,电致变色层发生还原或氧化反应,电致变色器件变化自身颜色。需要说明的是,正向电压和负向电压的方向相反。
在变色和褪色过程中,电极层所使用的基材起支撑作用,且电极层与外部电源电连接,以对电致变色器件提供正向电压或负向电压。电解质层用于实现电致变色器件内部离子的传输,同时也为电致变色层提供阴阳离子,以维持电致变色层的电 中性。离子存储层的作用是储存反离子,实现器件的记忆效应。
目前,电致变色器件的电极在工作时易发生电化学腐蚀,从而导致电致变色器件的使用寿命较短。
图1为根据本申请实施例的电致变色器件的结构示意图,图2为根据本申请实施例的电致变色器件的结构示意图。
针对上述问题,本申请实施例提供一种电致变色器件,包括:第一电极层;第二电极层,设置于所述第一电极层的一侧,且与所述第一电极层相对设置;变色功能层,设置于所述第一电极层和所述第二电极层之间;中间层,设置于所述第一电极层和所述第二电极层之间;所述中间层被配置为捕获电极层与所述变色功能层之间传输的至少部分电子电荷,或,在所述电致变色器件被按压时在被按压区域产生形变,在产生形变的位置显色或褪色。中间层设置在第一电极层和第二电极层之间,可以被配置为捕获电极层与所述变色功能层之间传输的至少部分电子电荷,或者,在电致变色器件被按压时在被按压区域产生形变,在产生形变的位置显色或褪色。在一些实施例中,所述中间层包括:缓冲层。
参见图1和图2,本申请实施例提供一种电致变色器件100,能够降低电致变色器件100的电极层发生电化学腐蚀的风险,从而延长电致变色器件100的使用寿命。
上述电致变色器件100包括第一电极层1、第二电极层2、变色功能层3和缓冲层4。第二电极层2设置于第一电极层1的一侧,且与第一电极层1相对设置。变色功能层3设置于第一电极层1和第二电极层2之间。
其中,第一电极层1和第二电极层2用于连接电源。并且,当第一电极层1与电源的正极连接时,第二电极层2与电源的负极连接;当第一电极层1与电源的负极连接时,第二电极层2与电源的正极连接。变色功能层3能够在第一电极层1和第二电极层2连通电源时,发生氧化或还原反应,实现颜色的变化。
参见图1,第一电极层1和第二电极层2的材料均可以是ITO、IZO、TCO、FTO、金属或碳黑电极中的任意一种。
需要说明的是,第一电极层1和第二电极层2的材料可以相同,也可以不同。
在此基础上,缓冲层4设置于第一电极层1和第二电极层2之间,且被配置为捕获从变色功能层3向第一电极层1传输的至少部分电子电荷,或捕获从变色功能层3向第二电极层2传输的至少部分电子电荷。
基于此,当缓冲层4被配置为捕获从变色功能层3向第一电极层1传输的至少部分电子电荷时,在电致变色器件100工作时,缓冲层4能够减少到达第一电极层1的电子电荷的数量。这样一来,能够降低第一电极层1发生电化学腐蚀的风险,延长第一电极层1的使用寿命,从而延长电致变色器件100的使用寿命。当缓冲层4被配置为捕获从变色功能层3向第二电极层2传输的至少部分电子电荷时,在电致变色器件100工作时,缓冲层4能够减少到达第二电极层2的电子电荷的数量。这样一来,能够降低第二电极层2发生电化学腐蚀的风险,延长第二电极层2的使用寿命,从而延长电致变色器件100的使用寿命。
图3为根据本申请实施例的电致变色器件的结构示意图。
在一些实施例中,参见图3,电致变色器件100包括两个缓冲层4,两个缓冲层4包括第一缓冲层41和第二缓冲层42。其中,第一缓冲层4设置于第一电极层1和变色 功能层3之间,且被配置为捕获从变色功能层3向第一电极层1传输的至少部分电子电荷。第二缓冲层4设置于第二电极层2和变色功能层3之间,且被配置为捕获从变色功能层3向第二电极层2传输的至少部分电子电荷。
这样一来,在电致变色器件100工作时,第一缓冲层41能够减少到达第一电极层1的电子电荷的数量,从而降低第一电极层1发生电化学腐蚀的风险,延长第一电极层1的使用寿命,从而延长电致变色器件100的使用寿命。第二缓冲层42能够减少到达第二电极层2的电子电荷的数量,从而降低第二电极层2发生电化学腐蚀的风险,延长第二电极层2的使用寿命,从而延长电致变色器件100的使用寿命。
综上,通过设置两个缓冲层4,既能够保护第一电极层1,降低第一电极层1发生电化学腐蚀的风险;也能够保护第二电极层2,降低第二电极层2发生电化学腐蚀的风险。如此,可进一步延长电致变色器件100的使用寿命。
在一些实施例中,参见图2,缓冲层4还被配置为,在第一条件下,存储从变色功能层3传输至缓冲层4的电子电荷;在第二条件下,缓冲层4存储的电子电荷从缓冲层4传输至变色功能层3。其中,第一条件为变色功能层3发生氧化反应和还原反应中的一者,第二条件为变色功能层3发生氧化反应和还原反应中的另一者。
参见图1,第一条件为变色功能层3发生还原反应,第一电极层1与电源的正极连接,第二电极层2与电源的负极连接,变色功能层3逐渐褪色。第二条件为变色功能层3发生氧化反应,第一电极层1与电源的负极连接,第二电极层2与电源的正极连接,变色功能层3逐渐着色。
需要说明的是,变色功能层3包括电致变色层31,上文所提到的变色功能层3的着色与褪色均为电致变色层31的着色与褪色。
在变色功能层3褪色的过程中,电子电荷能够从变色功能层3进入到缓冲层4中发生掺杂;在变色功能层3着色的过程中,掺杂在缓冲层4中的电子电荷能够从缓冲层4进入到变色功能层3中去掺杂。这样的话,一方面能够使电流正常传输至变色功能层3,使变色功能层3发生氧化或还原反应,实现颜色的改变;另一方面,还能够防止电子电荷传输至电极,从而降低电极发生电化学腐蚀的风险,延长电致变色器件100的使用寿命。
需要说明的是,上述第一条件还可以为变色功能层3发生氧化反应,第一电极层1与电源的负极连接,第二电极层2与电源的正极连接,变色功能层3逐渐着色。第二条件为变色功能层3发生还原反应,且第一电极层1与电源的正极连接,第二电极层2与电源的负极连接,变色功能层3逐渐褪色。本申请对此不做具体限定。在一些实施例中,参见图3,缓冲层4的材料包括共轭聚合物,共轭聚合物的基态为中性。需要说明的是,共轭聚合物的基态为中性是指,共轭聚合物本身不带电且不导电。也就是说,缓冲层4的材料可以选择在自然状态下不带电且不导电的共轭聚合物。
共轭聚合物包括聚吡咯、聚苯胺、聚噻吩及其衍生物中的至少一种。
需要说明的是,共轭聚合物既可以是聚吡咯、聚苯胺、聚噻吩及其衍生物中的任意一种,也可以是聚吡咯、聚苯胺、聚噻吩及其衍生物中任意多种的组合。
在一些实施例中,参见图3,缓冲层4的厚度为0.5μm~5μm。这样的话,一方面,可以避免缓冲层4的厚度过小,电子电荷冲破缓冲层4的阻挡,传输至第一电极层1或第二电极层2处,导致第一电极层1或第二电极层2发生电化学腐蚀,缩短第一 电极层1或第二电极层2的使用寿命,进而缩短电致变色器件100的使用寿命。另一方面,可以避免缓冲层4的厚度过大,影响电致变色器件100的导电性,降低电致变色器件100的性能;同时,还能够避免造成材料的浪费。
参见图3,缓冲层4的厚度为0.5μm、1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm和5μm中的任意一者。
图4为根据本申请实施例的电致变色器件的结构示意图,图5为根据本申请实施例的电致变色器件的结构示意图,图6为根据本申请实施例的电致变色器件的结构示意图。
在一些实施例中,参见图4、图5和图6,变色功能层3包括依次叠置的电致变色层31、电解质层32和离子存储层33。
其中,电致变色层31用于发生还原或氧化反应,以实现电致变色器件100颜色的改变。电解质层32用于实现电致变色器件100内部离子的传输。离子存储层33用于储存反离子,以实现电致变色器件100的记忆效应。
参见图6,电致变色层31的材料包括变色材料,电致变色层31的材料包括金属氧化物或导电聚合物。例如,电致变色层31的材料可以是过渡金属氧化物、聚合物聚吡咯、聚噻吩、聚苯胺、紫罗精、普鲁士蓝及其衍生物中的任意一种,也可以是过渡金属氧化物、聚合物聚吡咯、聚噻吩、聚苯胺、紫罗精、普鲁士蓝及其衍生物中多种的组合。
图7为根据本申请实施例的PEDOT:PSS的分子结构图,图8为根据本申请实施例的PProDOT的分子结构图。
需要说明的是,归属于同一类的两种聚合物,由于聚合方式的不同,会具有不同的性质。电致变色层31和缓冲层4均采用聚噻吩类聚合物,但是电致变色层31所采用的聚噻吩类聚合物具有导电性,例如,电致变色层31采用的是PEDOT:PSS,其中,PEDOT:PSS的分子结构如图7所示。而缓冲层4所采用的聚噻吩类聚合物不具有导电性,例如,缓冲层4所采用的是PProDOT,其中,PProDOT的分子结构如图8所示,图中的R是指2-乙基己醇。
在一些实施例中,参见图6,电离子存储层33的材料可以是过渡金属氧化物、聚合物聚吡咯、聚噻吩、聚苯胺、紫罗精、普鲁士蓝及其衍生物中的任意一种,也可以是过渡金属氧化物、聚合物聚吡咯、聚噻吩、聚苯胺、紫罗精、普鲁士蓝及其衍生物中多种的组合,具体可以根据实际情况进行选择。
图9为根据本申请实施例的电致变色器件的结构示意图,图10为根据本申请实施例的电致变色器件的结构示意图,图11为根据本申请实施例的电致变色器件的结构示意图。
在一些实施例中,参见图9、图10和图11,电致变色器件100还包括第一衬底5和第二衬底6。其中,第一衬底5设置于第一电极层1远离变色功能层3的一侧,第二衬底6设置于第二电极层2远离变色功能层3的一侧。
其中,第一衬底5能够为第一电极层1提供支撑和保护,从而延长第一电极层1的使用寿命;第二衬底6能够为第二电极层2提供支撑和保护,从而延长第二电极层2的使用寿命。如此,可进一步延长电致变色器件100的使用寿命。
需要说明的是,第一衬底5和第二衬底6中至少一者的材质是透明的。其中,既 可以是第一衬底5的材质是透明的,第二衬底6的材质是非透明的;也可以是第一衬底5的材质是非透明的,第二衬底6的材质是透明的;还可以是第一衬底5和第二衬底6的材质均是透明的。
参见图11,第一衬底5的材质为PET、PI、PEN、玻璃和蓝宝石中的任意一种。相同的,第二衬底6的材质为PET、PI、PEN、玻璃和蓝宝石中的任意一种。其中,第一衬底5的材质可以与第二衬底6的材质相同,也可以与第二衬底6的材质不同,具体可以根据实际情况进行选择。
目前的ECD的稳态时间受限于电致变色材料和器件结构,无法达到十分稳定的状态,因此如何增加稳态时间,达到更加节能的目的是需要解决的问题。
电致变色材料是指材料的光学属性(如反射率、透过率、吸收率等)在外加电场的作用下发生变化的材料,在外观上表现为颜色或透明度的变化。采用电致变色材料制作而成的器件为电致变色器件(Electrochromic Device,简称ECD)。
ECD是将光学薄膜和电学薄膜相结合的光电子器件,通过外界较低的驱动来实现可逆的颜色变化。ECD可视为电化学电池,在加电情况下可以发生氧化还原反应达到着色的目的。在切断电流而不发生氧化还原反应的情况下,可以保持着色状态,因此具有双稳态的优势。
ECD可以应用于显示器、车窗、防炫目后视镜、电子标签、手写板等诸多领域。当利用电致变色器件制作显示器时,具有无视盲角、不需要背光等优势。既可以解决现在显示器的发射光对读者眼睛的损伤,也可以起到节约能源的作用。
然而,目前的ECD的稳态时间受限于电致变色材料和器件结构,无法达到十分稳定的状态,因此如何增加稳态时间,达到更加节能的目的是需要解决的问题。
有鉴于此,本申请实施例还提供一种电致变色器件,图12为本申请实施例提供的电致变色器件的原理示意图。
如图12所示,电致变色器件包括:第一基板11、第二基板12、电致变色层31、电解质层32、离子存储层33和按压导电层16。
第一基板11和第二基板12相对设置。第一基板11和第二基板12之间相距一定的距离,第一基板11和第二基板12作为电致变色器件的支撑部件。
第一基板11和第二基板12通常均采用块状结构,例如,可以采用矩形或方形。第一基板11和第二基板12的尺寸可以相同。
在本申请实施例中,第一基板11包括第一衬底5和第一电极层1,第二基板12包括第二衬底6和第二电极层2。第一衬底5和第二衬底6相对设置,第一电极层1位于第一衬底5面向第二衬底6一侧的表面,第二电极层2位于第二衬底6面向第一衬底5一侧的表面。
第一衬底5和第二衬底6的形状和尺寸可以相同,第一电极层1和第一衬底5的形状和尺寸相同,第二电极层2和第二衬底6的形状和尺寸相同。第一衬底5和第二衬底6可以采用透明材料进行制作,例如,可以采用PET、PI、PEN等柔性透明材料进行制作。第一电极层1和第二电极层2可以采用透明导电材料进行制作,例如,可以采用ITO、IZO、TCO、FTO等透明导电材料,也可以采用Ag、Cu、Ni中的一种或几种合金的金属网格。
电致变色层31位于第一基板11和第二基板12之间。电致变色层31整层设置,其形状和尺寸可以与第一基板11和第二基板12相同。
电致变色层31可以采用过渡金属氧化物,如WO 3、MnO 3、BiO 3等,还可以采用聚合物,如聚吡咯、聚噻吩、聚苯胺等,还可以采用紫罗精、普鲁士蓝及其衍生物等材料进行制作。
电致变色层31为电致变色器件中的核心层,电致变色材料在电场作用下可以发生氧化还原反应,从而实现颜色和/或透明度的变化,且这种变化是可逆的。
电解质层32位于第一基板11和第二基板12之间。电解质层32整层设置,其形状和尺寸可以与电致变色层31相同。电解质层32中的电解质可以是凝胶或固体材料,电解质层32具有传输通道的作用。
电解质层32可以位于靠近第一基板的一侧,电致变色层31可以位于电解质层背离第一基板的一侧;或者,电解质层32也可以位于靠近第二基板的一侧,电致变色层31可以位于电解质层背离第二基板的一侧。
离子存储层33位于电解质层32背离电致变色层31的一侧。离子存储层33整层设置,其形状和尺寸可以与电解质层32相同。离子存储层33具有存储离子和平衡电荷的作用。
当对第一电极层1和第二电极层2施加电信号,以使第一电极层1和第二电极层2之间形成电场之后,离子存储层33中的离子在电场的作用下通过电解质层与电致变色层31中的电致变色材料产生氧化还原反应,以使电致变色器件显色或变色。当对第一电极层1和第二电极层2施加相反的电信号时,可以使电致变色器件恢复原始状态。
在相关技术中,电致变色器件只能同时显色或同时褪色,无法实现仅在设定的位置发生显色或褪色。在本申请实施例中,第一基板11和第二基板12中的至少一个基板采用柔性基板,柔性基板一侧的衬底和电极层均采用柔性材料进行制作,这样电致变色器件是物体触碰之后,在按压的情况下产生形变。与此同时,在电致变色层31与电解质层32之间设置按压导电层16,按压导电层16在电致变色器件被按压时在被按压区域产生形变,以使在被按压区域内的电致变色层31和电解质层32导通。从而使得在电致变色器件在加电的情况下,在产生形变的位置可以进行显色或褪色,达到按压显色和按压褪色的效果。
图13a-13d为根据本申请实施例的工作原理示意图之一。为了进行具体说明,在图中仅体现了重要膜层,而省略了其它膜层。
如图13a所示,当需要电致变色器件在设定位置(A)显色时,在对第一电极层和第二电极层施加第一电信号的情况下,对电致变色器件进行按压,那么在外力作用下,压迫按压导电层16产生形变,从而使得被按压区域内的电致变色层31和电解质层32导通。在本申请实施例中,按照导电层16本身并不导电,只有在产生形变的情况下才可以使该区域内的电致变色层31和电解质层32导通,而其它区域的电致变色层31和电解质层32仍然保持相互分离的状态。由此仅在被按压区域A内的电致变色材料才能在电场的作用下发生变色,而在非按压区域仍然保护原始状态。
如图13b所示,在撤去外力之后,按压导电层16恢复原始状态,使得原本在被按压区域A导通的电致变色层31和电解质层32相互分离,由于电致变色材料的双稳态效应,可以使得之前被按压区域A内的电致变色层仍保持显色的状态,此时可以停止对第一电极层和第二电极层加电,由于在不加电的状态电致变色层31和电解质层32相互分离,因此电致变色材料的状态更加稳定,从而可以增加稳态的时间,达到节能显色的目的。
如图13c所示,当需要将电致变色器件恢复为原始状态时,可以对第一电极层和第二电极层施加第二电信号,该第二电信号与上述第一电信号为相反的电信号。在显色区域(即 之前被按压区域A)施加外力,以使按压导电层16将显色区域内的电致变色层31和电解质层32导通,从而使得电致变色层在电场的作用下在之前显色的区域恢复原始状态。
如图13d所示,在撤去外力之后,按压导电层16产生形变的位置得以恢复,电致变色层31和电解质层32恢复相互分离的状态,由于电致变色材料的双稳态效应,可以使得恢复褪色的位置保持褪色的状态不变,此时可以停止对第一电极层和第二电极层加电,使电致变色器件保持原始状态。
根据本申请实施例的电致变色器件可以应用于标签、画板等场景中,以画板为例,可以在对画面进行书写的位置显色。而要消掉书写痕迹的时候,可以大面积对存在书写痕迹的位置按压即可消除痕迹。
在具体实施时可以将电致变色器件的其中一侧基板设置成柔性基板,这样可以通过按压柔性基板来实现显色或褪色。或者也可以将两侧基板均设置为柔性基板,使得在任一侧按压电致变色器件均可以实现显色或褪色。
图14为根据本申请实施例的电致变色器件的结构示意图之一。
如图14所示,在一些实施例中,按压导电层16为空气间隙层。将电致变色层31和电解质层32之间保持一定的距离,使得两者之间存在一个空气缝隙,可以使得两者在未被按压的情况下保持绝缘的状态。而当电致变色器件的某些位置被按压后,则在被按压的位置电致变色层31和电解质层32可以接触,从而在加电的情况下可以进行显色或褪色。
图15a-15d为根据本申请实施例的工作原理示意图之二。
具体地,如图15a所示,在需要电致变色器件在设定位置(A)显色时,首先对第一电极层和第二电极层施加第一电信号,对电致变色器件进行按压,在外力作用下使得被按压区域A内的电致变色层31和电解质层32接触,从而在被按压的区域内的电致变色材料才能在电场的作用下发生变色,而在非按压区域仍然保护原始状态。
如图15b所示,在撤去外力之后,电致变色层31和电解质层32恢复相互分离的状态,两者之间存在一层空气间隙,电致变色层31和电解质层32相互绝缘,由于电致变色材料的双稳态效应,可以使得之前被按压区域A内的电致变色层仍保持显色的状态,此时可以停止对第一电极层和第二电极层加电。由于在不加电的状态电致变色层31和电解质层32相互分离,因此电致变色材料的状态更加稳定,从而可以增加稳态的时间,达到节能显色的目的。
如图15c所示,当需要将电致变色器件恢复为原始状态时,可以对第一电极层和第二电极层施加第二电信号,该第二电信号与上述第一电信号为相反的电信号。在显色区域(即之前被按压区域A)施加外力,在外力作用下使得被按压区域A内的电致变色层31和电解质层32接触,从而使得电致变色层在电场的作用下在之前显色的区域恢复原始状态。
如图15d所示,在撤去外力之后,电致变色层31和电解质层32恢复相互分离的状态,两者之间存在一层空气间隙,由于电致变色材料的双稳态效应,可以使得恢复褪色的位置保持褪色的状态不变,此时可以停止对第一电极层和第二电极层加电,使电致变色器件保持原始状态。
在具体实施时,空气间隙层的厚度不超过1mm,这样可以保证当按压电致变色器件时,产生的形变可以使电致变色层和电解质层可以充分接触。
图16为根据本申请实施例的电致变色器件的结构示意图之二。
如图16所示,在一些实施例中,按压导电层16包括:弹性基底161以及分散在弹性 基底中的导电粒子162。弹性基底161可以采用具有弹性的透明绝缘材料进行制作,例如可以采用酚醛树脂、环氧树脂、PP、PC、PVC等树脂材料进行制作。导电粒子162分散在弹性基底中,并且导电粒子位于弹性基底161的中间位置,弹性基底161的厚度大于导电粒子162的尺寸,在未受外力状态下不与电致变色层31和电解质层32接触。导电粒子162可以采金属粒子、碳微粒和镀金属颗粒等,在此不做限定。导电粒子162的尺寸为1μm~50μm,在一种可能的实施方式中,导电粒子162可以为其他尺寸,本申请对此不做限定。
在未实施外力的情况下,电致变色层31和电解质层32被弹性基底161相互分隔开,且电致变色层31和电解质层32均不会接触到弹性基底161中的导电粒子。当电致变色器件的某些位置被按压后,则在被按压的位置弹性基底产生形变,在被按压位置电致变色层31和电解质层32会与导电粒子162接触,从而使得电致变色层31和电解质层32导通,在加电的情况下可以进行显色或褪色。
图17a-17d为根据本申请实施例的工作原理示意图之三。
具体地,如图17a所示,在需要电致变色器件在设定位置(A)显色时,首先对第一电极层和第二电极层施加第一电信号,对电致变色器件进行按压,在外力作用下使得弹性基底161变形,被按压区域A内的电致变色层31和电解质层32与导电粒子162接触后在被按压区域A内导通,从而在被按压的区域内的电致变色材料才能在电场的作用下发生变色,而在非按压区域仍然保护原始状态。
如图17b所示,在撤去外力之后,弹性基底161恢复原始形状,电致变色层31和电解质层32恢复相互分离的状态,且不与导电粒子162接触,电致变色层31和电解质层32相互绝缘,由于电致变色材料的双稳态效应,可以使得之前被按压区域A内的电致变色层仍保持显色的状态,此时可以停止对第一电极层和第二电极层加电。由于在不加电的状态电致变色层31和电解质层32相互分离,因此电致变色材料的状态更加稳定,从而可以增加稳态的时间,达到节能显色的目的。
如图17c所示,当需要将电致变色器件恢复为原始状态时,可以对第一电极层和第二电极层施加第二电信号,该第二电信号与上述第一电信号为相反的电信号。在显色区域(即之前被按压区域A)施加外力,在外力作用下弹性基底161变形,使得被按压区域A内的电致变色层31和电解质层32与导电粒子162接触,从而使得电致变色层31和电解质层32导通,电致变色层在电场的作用下在之前显色的区域恢复原始状态。
如图17d所示,在撤去外力之后,弹性基底161恢复原始形状,电致变色层31和电解质层32恢复相互分离的状态,且不与导电粒子162接触,由于电致变色材料的双稳态效应,可以使得恢复褪色的位置保持褪色的状态不变,此时可以停止对第一电极层和第二电极层加电,使电致变色器件保持原始状态。
本申请一些实施例提供一种电致变色器件100的制备方法,参见图11和图18,该电致变色器件100的制备方法包括S100~S200。其中,图18为根据本申请实施例的电致变色器件的制备方法的步骤流程图一。
S100:制备第一基板。
上述步骤中,第一基板包括依次叠置的第一衬底5、第一电极层1、第一缓冲层41、电致变色层31和电解质层32。其中,第一缓冲层41被配置为,捕获从电致变色层31向第一电极层1传输的至少部分电子电荷。
其中,第一基板的制备方式并不唯一。图19为根据本申请实施例的电致变色器件的制备方法的步骤流程图二。参见图19,上述S100包括S110~S150。
S110:提供第一衬底5。
上述步骤中,第一衬底5用于支撑和保护第一电极层1。
需要说明的,第一衬底5的材料可参考上文,在此不做赘述。
S120:在第一衬底5上制作第一电极层1。
上述步骤中,第一电极层1用于连接电源的正极或负极,示例性地,第一电极层1用于连接电源的正极。
需要说明的,第一电极层1的材料可参考上文,在此不做赘述。
S130:在第一电极层1远离第一衬底5的一侧制作第一缓冲层4。
上述步骤中,第一缓冲层41用于阻挡电子电荷从电致变色层31传输至第一电极层1。
可以理解的是,第一缓冲层41的制作方式并不唯一。示例性地,可以采用旋涂、刮涂、丝网印刷、喷墨打印等溶液法来制作第一缓冲层41。如此,可在第一电极层1上制作出厚度均匀的第一缓冲层41,从而更好地保护第一电极层1。
S140:在第一缓冲层41远离第一电极层1的一侧制作电致变色层31。
上述步骤中,电致变色层31用于发生氧化或还原反应,实现电致变色器件100颜色的变化。
S150:在电致变色层31远离第一缓冲层41的一侧制作电解质层32。
上述步骤中,电解质层32用于实现电致变色器件100内部离子的传输。
电解质层32既可以是凝胶电解质,也可以是固体电解质,具体可以根据实际情况进行选择。
S200:制备第二基板,第二基板包括依次叠置的第二衬底6、第二电极层2、第二缓冲层42和离子存储层33。其中,第二基板位于电解质层32远离第一基板的一侧,且电解质层32与离子存储层33贴合。第二缓冲层42被配置为,捕获从离子存储层33向第二电极层2传输的至少部分电子电荷。
其中,第二基板的制备方式并不唯一。图20为根据本申请实施例的电致变色器件的制备方法的步骤流程图三,图21为根据本申请实施例的电致变色器件的制备方法的步骤流程图四。在一些实施例中,参见图20和图21,上述S200包括S210或S220。
S210:在第一基板的电解质层32上沿远离电致变色层31的方向依次制作离子存储层33、第二缓冲层42、第二电极层2和第二衬底6。
上述步骤中,离子存储层33、第二缓冲层42、第二电极层2和第二衬底6的作用和材料可以参考上文,在此不做赘述。
其中,第二缓冲层42的制作方式并不唯一。可以采用旋涂、刮涂、丝网印刷、喷墨打印等溶液法来制作第二缓冲层42。如此,可在第二电极层2与离子存储层33之间制作出厚度均匀的第二缓冲层42,从而更好地保护第二电极层2。
S220:在第二衬底6上依次叠加制作第二电极层2、第二缓冲层42和离子存储层33,并将离子存储层33与第一基板的电解质层32贴合。
其中,第二缓冲层42的制作方式并不唯一。可以采用旋涂、刮涂、丝网印刷、喷墨打印等溶液法来制作第二缓冲层42。如此,可在第二电极层2上制作出厚度均 匀的第二缓冲层42,从而更好地保护第二电极层2。
本申请实施例的另一方面提供一种电致变色器件的控制方法,图22为根据本申请实施例的电致变色器件的控制方法的流程图。
如图22所示,电致变色器件的控制方法,包括:
S10、在电致变色器件需要显色时,对第一电极层和第二电极层施加第一电信号;
S20、对电致变色器件进行按压,以使被按压区域产生形变,在被按压区域内的电致变色层和电解质层导通,电致变色器件显色;
S30、停止对第一电极层和第二电极层施加电信号。
进一步地,电致变色器件的控制方法,还包括:
在电致变色器件需要恢复原始状态时,对第一电极层和第二电极层施加第二电信号;第二电信号为与第一电信号相反的电信号;对电致变色器件的显色位置进行按压,以使被按压区域产生形变,在被按压区域内的电致变色层和电解质层导通,电致变色器件褪色;停止对第一电极层和第二电极层施加电信号。
具体地,当需要电致变色器件在设定位置显色时,在对第一电极层和第二电极层施加第一电信号的情况下,对电致变色器件进行按压,那么在外力作用下,压迫按压导电层产生形变,从而使得被按压区域内的电致变色层和电解质层导通。按照导电层本身并不导电,只有在产生形变的情况下才可以使该区域内的电致变色层和电解质层导通,而其它区域的电致变色层和电解质层仍然保持相互分离的状态。由此仅在被按压区域内的电致变色材料才能在电场的作用下发生变色,而在非按压区域仍然保护原始状态。
在撤去外力之后,按压导电层恢复原始状态,使得原本在被按压区域导通的电致变色层和电解质层相互分离,由于电致变色材料的双稳态效应,可以使得之前被按压区域内的电致变色层仍保持显色的状态,此时可以停止对第一电极层和第二电极层加电,由于在不加电的状态电致变色层和电解质层相互分离,因此电致变色材料的状态更加稳定,从而可以增加稳态的时间,达到节能显色的目的。
当需要将电致变色器件恢复为原始状态时,可以对第一电极层和第二电极层施加第二电信号,该第二电信号与上述第一电信号为相反的电信号。在显色区域(即之前被按压区域)施加外力,以使按压导电层将显色区域内的电致变色层和电解质层导通,从而使得电致变色层在电场的作用下在之前显色的区域恢复原始状态。
在撤去外力之后,按压导电层产生形变的位置得以恢复,电致变色层和电解质层恢复相互分离的状态,由于电致变色材料的双稳态效应,可以使得恢复褪色的位置保持褪色的状态不变,此时可以停止对第一电极层和第二电极层加电,使电致变色器件保持原始状态。
在控制电致变色器件褪色恢复原始状态时,按压电致变色器件的区域只要覆盖显色的区域即可,不需要与显色区域完全一致,由此可以简化对按压区域的限制。
本申请实施方式中,电致变色器件包括第一电极层和第二电极层,位于第一电极层和第二电极层之间的电致变色层和电解质层,靠近电解质层的离子存储层,以及位于电致变色层和电解质层之间的按压导电层。按压导电层在电致变色器件被按压时在被按压区域产生形变,以使在被按压区域内的电致变色层和电解质层导通。从而使得在电致变色器件在加电的情况下,在被按压的位置可以进行显色或褪色,达到按压显色和按压褪色的效果。
本申请实施方式中,当需要电致变色器件在设定位置显色时,在对第一电极层和第二电极层施加第一电信号的情况下,对电致变色器件进行按压,那么在外力作用下,压迫按 压导电层产生形变,从而使得被按压区域内的电致变色层和电解质层导通。按照导电层本身并不导电,只有在产生形变的情况下才可以使该区域内的电致变色层和电解质层导通,而其它区域的电致变色层和电解质层仍然保持相互分离的状态。由此仅在被按压区域内的电致变色材料才能在电场的作用下发生变色,而在非按压区域仍然保护原始状态。在撤去外力之后,按压导电层恢复原始状态,使得原本在被按压区域导通的电致变色层和电解质层相互分离,由于电致变色材料的双稳态效应,可以使得之前被按压区域内的电致变色层仍保持显色的状态,此时可以停止对第一电极层和第二电极层加电,由于在不加电的状态电致变色层和电解质层相互分离,因此电致变色材料的状态更加稳定,从而可以增加稳态的时间,达到节能显色的目的。
本申请实施方式中,当需要将电致变色器件恢复为原始状态时,可以对第一电极层和第二电极层施加第二电信号,该第二电信号与上述第一电信号为相反的电信号。在显色区域(即之前被按压区域)施加外力,以使按压导电层将显色区域内的电致变色层和电解质层导通,从而使得电致变色层在电场的作用下在之前显色的区域恢复原始状态。在撤去外力之后,按压导电层产生形变的位置得以恢复,电致变色层和电解质层恢复相互分离的状态,由于电致变色材料的双稳态效应,可以使得恢复褪色的位置保持褪色的状态不变,此时可以停止对第一电极层和第二电极层加电,使电致变色器件保持原始状态。在控制电致变色器件褪色恢复原始状态时,按压电致变色器件的区域只要覆盖显色的区域即可,不需要与显色区域完全一致,由此可以简化对按压区域的限制。
本申请实施方式中,第一电极层和第二电极层中的一个电极层设置成柔性电极层,通过按压柔性电极层来实现显色或褪色。或者也可以将第一电极层和第二电极层均设置为柔性电极层,使得在任一侧按压电致变色器件均可以实现显色或褪色。
在本申请实施方式中,按压导电层为空气间隙层。将电致变色层和电解质层之间保持一定的距离,使得两者之间存在一个空气缝隙,可以使得两者在未被按压的情况下保持绝缘的状态。而当电致变色器件的某些位置被按压后,则在被按压的位置电致变色层和电解质层可以接触,从而在加电的情况下可以进行显色或褪色。
在本申请实施方式中,空气间隙层的厚度不超过1mm,这样可以保证当按压电致变色器件时,产生的形变可以使电致变色层和电解质层可以充分接触。
在本申请实施方式中,按压导电层包括:弹性基底以及分散在弹性基底中的导电粒子。导电粒子位于弹性基底的中间位置,在未受外力状态下不与电致变色层和电解质层接触,电致变色层和电解质层被弹性基底相互分隔开。当电致变色器件的某些位置被按压后,则在被按压的位置弹性基底产生形变,在被按压位置电致变色层和电解质层会与导电粒子接触,从而使得电致变色层和电解质层导通,在加电的情况下可以进行显色或褪色。
在本申请实施方式中,弹性基底可以采用具有弹性的透明绝缘材料进行制作,例如可以采用酚醛树脂、环氧树脂、PP、PC、PVC等树脂材料进行制作。导电粒子可以采用金属粒子、碳微粒和镀金属颗粒等。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。

Claims (20)

  1. 一种电致变色器件,包括:
    第一电极层;
    第二电极层,设置于所述第一电极层的一侧,且与所述第一电极层相对设置;
    变色功能层,设置于所述第一电极层和所述第二电极层之间;
    中间层,设置于所述第一电极层和所述第二电极层之间;所述中间层被配置为捕获电极层与所述变色功能层之间传输的至少部分电子电荷,或,在所述电致变色器件被按压时在被按压区域产生形变,在产生形变的位置显色或褪色。
  2. 根据权利要求1所述的电致变色器件,
    所述中间层包括:缓冲层;
    所述缓冲层被配置为,捕获从所述变色功能层向所述第一电极层传输的至少部分电子电荷;或,捕获从所述变色功能层向所述第二电极层传输的至少部分电子电荷。
  3. 根据权利要求2所述的电致变色器件,所述缓冲层还被配置为,在第一条件下,存储从所述变色功能层传输至所述缓冲层的电子电荷;在第二条件下,所述缓冲层存储的电子电荷从所述缓冲层传输至所述变色功能层;
    其中,所述第一条件为所述变色功能层发生氧化反应和还原反应中的一者,所述第二条件为所述变色功能层发生氧化反应和还原反应中的另一者。
  4. 根据权利要求2或3所述的电致变色器件,包括两个缓冲层,所述两个缓冲层包括:
    第一缓冲层,设置于所述第一电极层和所述变色功能层之间;所述第一缓冲层被配置为,捕获从所述变色功能层向所述第一电极层传输的至少部分电子电荷;
    第二缓冲层,设置于所述第二电极层和所述变色功能层之间;所述第二缓冲层被配置为,捕获从所述变色功能层向所述第二电极层传输的至少部分电子电荷。
  5. 根据权利要求2所述的电致变色器件,所述缓冲层的材料包括共轭聚合物,所述共轭聚合物的基态为中性。
  6. 根据权利要求5所述的电致变色器件,所述共轭聚合物包括聚吡咯、聚苯胺、聚噻吩及其衍生物中的至少一种。
  7. 根据权利要求2所述的电致变色器件,所述缓冲层的厚度为0.5μm~5μm。
  8. 根据权利要求1所述的电致变色器件,所述变色功能层包括依次叠置的电致变色层、电解质层和离子存储层。
  9. 根据权利要求8所述的电致变色器件,所述电致变色层的材料包括金属氧化物或导电聚合物。
  10. 根据权利要求1所述的电致变色器件,所述变色功能层包括:
    电致变色层,位于所述第一电极层和所述第二电极层之间;
    电解质层,位于所述第一电极层和所述第二电极层之间;
    离子存储层,位于所述电解质层背离所述电致变色层的一侧;
    所述中间层包括:
    按压导电层,位于所述电致变色层与所述电解质层之间,所述按压导电层在所述电致变色器件被按压时在被按压区域产生形变,以使在被按压区域内的所述电致变色层和所述 电解质层导通。
  11. 根据权利要求1所述的电致变色器件,还包括:
    第一衬底,位于所述第一电极层背离所述电致变色层的一侧;
    第二衬底,位于所述第二电极层背离所述电致变色层的一侧。
  12. 根据权利要求11所述的电致变色器件,所述第一衬底为柔性衬底,所述第一电极层为柔性电极层;和/或,所述第二衬底为柔性衬底,所述第二电极层为柔性电极层。
  13. 根据权利要求10-12任一项所述的电致变色器件,所述按压导电层为空气间隙层。
  14. 根据权利要求13所述的电致变色器件,所述空气间隙层的厚度不超过1mm。
  15. 根据权利要求10-12任一项所述的电致变色器件,所述按压导电层包括:弹性基底以及分散在所述弹性基底中的导电粒子;
    所述电致变色器件在未被按压时,所述导电粒子不与所述电致变色层及所述电解质层接触;所述电致变色器件被按压时,在被按压区域内的所述导电粒子与所述电致变色层及所述电解质层接触。
  16. 根据权利要求15所述的电致变色器件,所述弹性基底采用树脂材料;所述导电粒子采用金属粒子、碳微粒或镀金属颗粒;
    所述导电粒子的尺寸为1μm~50μm,所述弹性基底的厚度大于所述导电粒子的尺寸。
  17. 一种电致变色器件的制备方法,包括:
    制备第一基板;所述第一基板包括依次叠置的第一衬底、第一电极层、第一缓冲层、电致变色层和电解质层;所述第一缓冲层被配置为,捕获从所述电致变色层向所述第一电极传输的至少部分电子电荷;
    制备第二基板;所述第二基板包括依次叠置的第二衬底、第二电极层、第二缓冲层和离子存储层;所述第二基板位于所述电解质层远离所述第一基板的一侧,且所述电解质层与所述离子存储层贴合;所述第二缓冲层被配置为,捕获从所述离子存储层向所述第二电极传输的至少部分电子电荷。
  18. 一种基于权利要求1,10-16任一项所述的电致变色器件的控制方法,包括:
    在电致变色器件需要显色时,对第一电极层和第二电极层施加第一电信号;
    对所述电致变色器件进行按压,以使被按压区域产生形变,在被按压区域内的电致变色层和电解质层导通,所述电致变色器件显色;
    停止对所述第一电极层和所述第二电极层施加电信号。
  19. 根据权利要求18所述的控制方法,还包括:
    在电致变色器件需要恢复原始状态时,对所述第一电极层和所述第二电极层施加第二电信号;所述第二电信号为与所述第一电信号相反的电信号;
    对所述电致变色器件的显色位置进行按压,以使被按压区域产生形变,在被按压区域内的电致变色层和电解质层导通,所述电致变色器件恢复原始状态;
    停止对所述第一电极层和所述第二电极层施加电信号。
  20. 根据权利要求19所述的控制方法,对所述电致变色器件的被按压区域完全覆盖显色区域。
PCT/CN2022/112547 2021-11-18 2022-08-15 一种电致变色器件及其制备、控制方法 WO2023087809A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111370733.0A CN116136633A (zh) 2021-11-18 2021-11-18 一种电致变色器件及其控制方法
CN202111370733.0 2021-11-18
CN202210182183.8 2022-02-25
CN202210182183.8A CN116699915A (zh) 2022-02-25 2022-02-25 一种电致变色器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2023087809A1 true WO2023087809A1 (zh) 2023-05-25

Family

ID=86396212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112547 WO2023087809A1 (zh) 2021-11-18 2022-08-15 一种电致变色器件及其制备、控制方法

Country Status (1)

Country Link
WO (1) WO2023087809A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089716A (zh) * 2006-06-16 2007-12-19 达信科技股份有限公司 压感电致变色组件及其制造方法
US20100085629A1 (en) * 2008-10-08 2010-04-08 Samsung Electronics Co., Ltd. Electro-optic display apparatus
JP2016024253A (ja) * 2014-07-17 2016-02-08 パナソニックIpマネジメント株式会社 調光素子、及び調光素子の製造方法
US20170329199A1 (en) * 2016-05-13 2017-11-16 Tohru Yashiro Electrochromic device
US10996535B1 (en) * 2018-11-07 2021-05-04 Eclipse Energy Systems, Inc. Electrochromic device with buffer layer(s)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089716A (zh) * 2006-06-16 2007-12-19 达信科技股份有限公司 压感电致变色组件及其制造方法
US20100085629A1 (en) * 2008-10-08 2010-04-08 Samsung Electronics Co., Ltd. Electro-optic display apparatus
JP2016024253A (ja) * 2014-07-17 2016-02-08 パナソニックIpマネジメント株式会社 調光素子、及び調光素子の製造方法
US20170329199A1 (en) * 2016-05-13 2017-11-16 Tohru Yashiro Electrochromic device
US10996535B1 (en) * 2018-11-07 2021-05-04 Eclipse Energy Systems, Inc. Electrochromic device with buffer layer(s)

Similar Documents

Publication Publication Date Title
US7301687B2 (en) Electrochemical device
US9897887B2 (en) Electrochromic device capable of preventing damage of electrode
CN100460974C (zh) 压感电致变色组件及其制造方法
KR20150087012A (ko) 전기변색 디바이스
CN114467054A (zh) 具有低电阻透明电极结构的电致变色器件
US9323126B2 (en) Electrophoretic particles, method for manufacturing electrophoretic particles, electrophoresis dispersion, display device, and electronic apparatus
WO2011021470A1 (ja) 透明導電性基板の製造方法、透明導電性基板、及び電気化学表示素子
KR102101866B1 (ko) 플랙서블 전기변색소자의 제조방법
JP2007178733A (ja) エレクトロクロミック表示素子及びその製造方法
CN113376889A (zh) 基于聚合物分散液晶的电致变色装置、制备方法及电子设备
JP5374468B2 (ja) 表示装置
WO2023087809A1 (zh) 一种电致变色器件及其制备、控制方法
KR102108828B1 (ko) 전극기판 및 이를 포함하는 전기변색미러
CN102708758B (zh) 显示装置、双面显示器件及其制造方法
US20200272013A1 (en) Electrochromic device based on three-dimensional motion of lithium ions and application thereof
CN107991820A (zh) 一种可独立控制电致变色层的电致变色器件
CN208580288U (zh) 电致变色器件
CN116136633A (zh) 一种电致变色器件及其控制方法
CN219872055U (zh) 一种紫精增强的电致变色器件及电致变色装置
KR20200025615A (ko) 전기 변색 장치 및 이를 포함하는 표시 장치
KR20140024642A (ko) 고분자 분산형 액정 필름을 이용한 시인성이 우수한 투명 디스플레이
JP2004333753A (ja) 表示装置
KR102358895B1 (ko) 전기변색소자
JP5343427B2 (ja) 表示素子の製造方法
JP2009145461A (ja) 電気化学表示素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894352

Country of ref document: EP

Kind code of ref document: A1