WO2023087648A1 - 非水电解液及含有该非水电解液的高电压锂电池 - Google Patents

非水电解液及含有该非水电解液的高电压锂电池 Download PDF

Info

Publication number
WO2023087648A1
WO2023087648A1 PCT/CN2022/094633 CN2022094633W WO2023087648A1 WO 2023087648 A1 WO2023087648 A1 WO 2023087648A1 CN 2022094633 W CN2022094633 W CN 2022094633W WO 2023087648 A1 WO2023087648 A1 WO 2023087648A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
additive
electrolytic solution
solution according
Prior art date
Application number
PCT/CN2022/094633
Other languages
English (en)
French (fr)
Inventor
陈晓琴
时二波
甘朝伦
惠银银
张力
孙操
Original Assignee
张家港市国泰华荣化工新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港市国泰华荣化工新材料有限公司 filed Critical 张家港市国泰华荣化工新材料有限公司
Priority to EP22894192.8A priority Critical patent/EP4310976A1/en
Publication of WO2023087648A1 publication Critical patent/WO2023087648A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium batteries, in particular to a non-aqueous electrolytic solution and a high-voltage lithium battery containing the non-aqueous electrolytic solution.
  • lithium-ion batteries With the development of emerging consumer fields such as mobile phones, tablet computers, smart wearables, and ETC, lithium-ion batteries have shown great advantages due to their high energy density and long cycle life.
  • the continuous diversification of corresponding equipment functions and the continuous increase of power consumption of power consumption modules it is difficult for conventional lithium-ion batteries to meet the needs of users.
  • the development direction of lithium-ion batteries has become increasingly clear, that is, to increase the energy density as much as possible or to achieve fast charging under safe conditions.
  • the industry In order to improve energy density, the industry is currently developing mainly from three aspects.
  • One is to seek new material systems, such as lithium cobalt oxide, lithium-rich manganese base, ternary high-nickel and other positive electrode materials, silicon carbon and other negative electrode materials, etc.; the second is to increase the cut-off charging voltage of existing materials, such as cobalt acid above 4.4V Lithium batteries, ternary batteries above 4.4V, etc.; the third is to improve the surface density and compaction density or use thinner current collectors, tapes, and aluminum-plastic cases by changing the battery process. On the other hand, in order to further shorten the charging time and reach the rated capacity as soon as possible, fast-charging lithium-ion batteries have emerged, from the initial 0.2C charging, to the later 2C charging, and even 5C charging.
  • new material systems such as lithium cobalt oxide, lithium-rich manganese base, ternary high-nickel and other positive electrode materials, silicon carbon and other negative electrode materials, etc.
  • the second is to increase the cut-off charging voltage of existing materials, such as cobalt acid above 4.4V Lith
  • lithium battery In the digital field that requires high volume energy density, the design idea of lithium battery is high voltage lithium cobalt oxide & silicon carbon negative electrode.
  • the voltage of commercial lithium cobalt oxide has been gradually increased from the initial 4.2V to 4.48V, and at the same time, it has brought certain negative effects, such as the reactivity of the material surface is significantly higher than that of the bulk phase due to the existence of dangling bonds and unsaturated coordination relationships. .
  • the positive electrode material begins to delithiate from the surface; (2) after the delithiation occurs, the oxygen atoms in the Li layer lose barriers and repel, resulting in an unstable surface structure; (3) Continuous delithiation promotes surface lattice activity to cause gas overflow; (4) The overflow gas leads to poor stability and dissolution of surface Co atoms; (5) The dissolved high-valent Co element will also oxidize the electrolyte and participate in the chemical reaction of the electrolyte. Side reactions at the solid-liquid interface are an inevitable problem in the development of lithium batteries.
  • the chemical window of the currently used non-aqueous organic electrolyte is usually lower than 4.4V.
  • the electrolyte When the charge cut-off voltage is higher than 4.4V, the electrolyte will oxidize and decompose on the battery surface. , This process leads to a sharp "diving" of battery capacity. At the same time, the products of oxidation and decomposition also cover the surface of the electrode material to increase the internal resistance of the battery. The boundary of side reaction products on the surface catalyzed by free transition metal elements makes the electrode material maintain a high active state, which brings hidden dangers.
  • the object of the present invention is to provide a non-aqueous electrolyte capable of improving the high-temperature performance and discharge performance of lithium batteries under high voltage.
  • Another object of the present invention is to provide a high-voltage lithium battery containing the non-aqueous electrolyte.
  • the first aspect of the present invention provides a non-aqueous electrolytic solution, which includes a lithium salt, an organic solvent and an additive, and the additive includes an additive A,
  • the additive A is one or more of the substances shown in the following structural formula (1):
  • R 1 and R 2 are the same, and R 1 and R 2 are alkylene, fluoroalkylene, alkyleneoxy or fluoroalkyleneoxy; R 3 and R 4 are the same, and R 3 and R 4 is hydrogen, alkyl, alkoxy, fluoroalkyl or fluoroalkoxy.
  • the additive further includes additive B, and the additive B is a boron-containing lithium salt.
  • R 1 and R 2 are selected from alkylene, fluoroalkylene, alkyleneoxy or fluoroalkylene with 1 to 3 carbon atoms;
  • R 3 and R 4 are selected from hydrogen or carbon Alkyl or fluoroalkyl having 1 to 5 atoms.
  • R 1 and R 2 are selected from alkylene groups with 1 to 3 carbon atoms, and R 3 and R 4 are selected from hydrogen or alkyl groups with 1 to 5 carbon atoms; or R 1 and R 2 are selected from from an alkyleneoxy group with 1 to 3 carbon atoms, and R3 and R4 are selected from hydrogen or an alkyl group with 1 to 5 carbon atoms.
  • the additive A is hept-1,6-diyn-4-one Dipropargyl carbonate Bis(2-ynbutyl)carbonate Bis(3-ynbutyl)carbonate one or more of.
  • the mass of the additive A is 0.01-5% of the total mass of the non-aqueous electrolyte, more preferably 0.1-3%, even more preferably 0.3-2%.
  • the additive B is lithium difluorooxalate borate, lithium tetrafluoroborate, lithium dioxalate borate, lithium tetraborate, triphenyl n-butyl lithium borate, trimethylimidazolium lithium tetrafluoroborate one or more.
  • the mass of the additive B is 0.01-2% of the total mass of the non-aqueous electrolyte, more preferably 0.1-2%, and even more preferably 0.5-1.5%.
  • the mass ratio of the additive A to the additive B is 1:0.5-3.
  • the organic solvent is a mixture of cyclic esters and chain esters, and the cyclic esters are ⁇ -butyrolactone (GBL), vinyl carbonate (EC), propylene carbonate (PC), One or more in fluoroethylene carbonate (FEC); described chain ester is dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), propylene carbonate Methyl propionate (MPC), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl acetate (MA), ethyl acetate (EA), propyl acetate (PA), Methyl butyrate (MB), ethyl butyrate (EB), propyl butyrate (PB), methyl fluoropropionate (FMP), propyl fluoropropionate, ethyl fluoropropionate, fluoropropionate One or more of e
  • the organic solvent is a mixture of ethylene carbonate (EC), propylene carbonate (PC), ethylene glycol monopropyl ether (EP) and propyl propionate (PP).
  • EC ethylene carbonate
  • PC propylene carbonate
  • EP ethylene glycol monopropyl ether
  • PP propyl propionate
  • the volume ratio of vinyl carbonate (EC), propylene carbonate (PC), ethylene glycol monopropyl ether (EP) and propyl propionate (PP) is 1 ⁇ 3:0.5 ⁇ 1.5:1 ⁇ 5:3 ⁇ 6.
  • the lithium salt is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), anhydrous lithium perchlorate (LiClO 4 ), bis(trifluoromethane Lithium sulfonyl imide (LiN(SO 2 CF 3 ) 2 ), lithium difluorooxalate phosphate (LiPF 2 (C 2 O 4 ) 2 ), lithium difluorophosphate (LiPO 2 F 2 ), trifluoro One or more of lithium methanesulfonate (LiSO 3 CF 3 ), lithium difluorooxalate phosphate (LiPO 8 C 4 F 2 ), lithium bisfluorosulfonyl imide (LiN(SO 2 F) 2 ) kind.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetraflu
  • the concentration of the lithium salt is 0.8-1.5 mol/L, more preferably 1-1.5 mol/L, even more preferably 1-1.3 mol/L.
  • the additives also include other additives
  • the other additives are vinylene carbonate, ethylene carbonate, biphenyl, cyclohexylbenzene, trioctyl phosphate, fluoroethylene carbonate, succinonitrile , adiponitrile, 1,3,6-hexanetrinitrile, 1,2-bis(2-cyanoethoxy)ethane, 1,4-dicyano-2-butene, 1,2,3 - one or more of tris(2-cyanoethoxy)propane, sebaconitrile.
  • the mass of the other additives is 5-25% of the total mass of the non-aqueous electrolyte, more preferably 5-20%.
  • said other additives are succinonitrile, fluoroethylene carbonate and 1,3,6-hexanetrinitrile, and the quality of said succinonitrile is 1% of the total mass of said non-aqueous electrolytic solution ⁇ 5%, the quality of the fluoroethylene carbonate is 2 ⁇ 8% of the total mass of the non-aqueous electrolytic solution, and the quality of the 1,3,6-hexanetrinitrile is the non-aqueous electrolytic 2-6% of the total mass of liquid.
  • the second aspect of the present invention provides a high-voltage lithium battery, comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte is the non-aqueous electrolyte.
  • the present invention has the following advantages compared with the prior art:
  • the present invention finds through research that adding the carboxylate derivative additive represented by the general structural formula (1) ensures the high-temperature performance and cycle performance of the lithium battery under normal voltage, and when the voltage is increased to 4.5V or even higher , The lithium battery still has excellent high temperature performance and discharge performance, which ensures the safety performance and electrochemical performance of the high voltage lithium battery.
  • the lithium battery can have more excellent high temperature performance and discharge performance, as well as more excellent safety performance and electrochemical performance.
  • the inventor proposed a non-aqueous electrolyte solution.
  • the battery can not only use sulfur-containing additives and have excellent high-temperature storage performance and cycle performance, but also have both Excellent high temperature performance and discharge performance at high voltage.
  • the additive A is one or more of the substances shown in the following general structural formula (1):
  • R 1 and R 2 are the same, and R 1 and R 2 are alkylene, fluoroalkylene, alkyleneoxy or fluoroalkyleneoxy; R 3 and R 4 are the same, and R 3 and R 4 is hydrogen, alkyl, alkoxy, fluoroalkyl or fluoroalkoxy.
  • the inventors have further studied and found that adding additive A and boron-containing lithium salt to the electrolyte, and through the adjustment of the compounding ratio and the optimization of other components in the electrolyte, the high-temperature performance and discharge performance of the battery can be improved under high voltage conditions. Get further improvement, higher security.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • the electrolyte solutions prepared in the above examples and comparative examples were respectively assembled into lithium cobalt oxide graphite batteries.
  • the capacity retention rate and battery swelling rate of the above-mentioned lithium cobalt oxide graphite battery were tested at a high temperature of 85°C for 4 hours.
  • the test data are shown in Table 1.
  • the test method is: at 25°C, constant current/constant voltage (CC/CV) conditions Charged at 1C to 4.5V, and then placed in an oven at 85°C for 4 hours, then discharged at 1C to 3.0V, and tested the capacity and thickness of the battery after being placed at a high temperature of 85°C for 4 hours; after charging the above batteries under the same conditions, The capacity and thickness of the battery after being discharged under the same conditions without being left at high temperature.
  • CC/CV constant current/constant voltage
  • the capacity retention rate of the above-mentioned battery stored at a high temperature of 85°C for 4 hours is equal to the capacity of the battery stored at a high temperature of 85°C for 4 hours divided by the capacity without high temperature storage.
  • the above-mentioned battery is stored at a high temperature of 85°C for 4 hours.
  • the battery swelling rate is equal to the difference between the thickness of the battery after storage and the thickness of the battery before storage divided by the thickness of the battery before storage.
  • test method for the 45°C 200-cycle capacity retention rate is: at 45°C, constant current/constant voltage ( Under the condition of CC/CV), charge 1C to 4.5V, then discharge 1C to 3.0V, test the battery capacity after the first charge and discharge and the battery capacity after 200 cycles of cycle charge and discharge.
  • the battery capacity after 200 cycles of charge and discharge is divided by the battery capacity after the first charge and discharge; the DCR test method of 50% SCO, 2C10s is: the battery is in the 50% SCO state of charge, the voltage difference and the current of 2C constant current discharge for 10S The test was carried out under the ratio; the relevant experimental data are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种非水电解液及含有该非水电解液的高电压锂电池。为了解决现有含非水电解液的锂电池随电压升高,其高温性能及放电性能下降、安全性不好的问题,本发明提供一种非水电解液,其包括锂盐、有机溶剂和添加剂,添加剂包括结构通式所示物质,其中,R1和R2相同,且R1和R2为亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R3和R4相同,且R3和R4为氢、烷基、烷氧基、氟代烷基或氟代烷氧基。本发明在保证锂电池在常规电压下的高温性能和循环性能的同时,在电压提高至4.5V甚至更高时,锂电池仍然具有优异的高温性能及放电性能,保证了高压锂电池的安全性能及电化学性能。

Description

非水电解液及含有该非水电解液的高电压锂电池 技术领域
本发明属于锂电池技术领域,具体涉及一种非水电解液及含有该非水电解液的高电压锂电池。
背景技术
随着手机、平板电脑、智能穿戴以及ETC等新兴消费领域的发展,锂离子电池凭其高能量密度和长循环寿命显现了极大优势。但随着相应设备功能的不断多样化,用电模块功耗的不断上升,常规的锂离子电池已经很难满足用户的使用需求。为提高用户使用体验,锂离子电池的发展方向已日渐明朗,即在安全的条件下尽可能地提高能量密度或者实现快速充电。为提高能量密度,行业目前主要从三个方面进行开发。一是寻求新的材料体系,如钴酸锂、富锂锰基、三元高镍等正极材料,硅碳等负极材料等;二是提高现有材料的截止充电电压,如4.4V以上钴酸锂电池,4.4V以上三元电池等;三是通过改变电池工艺,提高面密度和压实密度或使用更薄的集流体、胶带和铝塑壳等。另一方面,为了进一步缩短充电时间,尽快达到额定电量,快充型锂离子电池应运而生,从最开始的0.2C充电,到后来的2C充电,甚至5C充电。
在对体积能量密度要求高的数码领域,锂电池的设计思路是高电压钴酸锂&硅碳负极。商用钴酸锂的电压已经由最初的4.2V逐步提升到了4.48V,同时带来了一定负面效果,如材料表面由于存在悬挂键以及不饱和的配位关系会使其反应活性明显高于体相。当对钴酸锂电池充电时,会发生以下反应过程:(1)正极材料自表面开始脱锂;(2)脱锂发生后,Li层氧原子间失去阻隔产生排斥,导致表面结构不稳定;(3)持续脱锂促进表面晶格活性发生气体溢出;(4)溢出气体导致表面Co原子稳定性变差、溶解;(5)溶解的高价Co元素也会氧化电解液参与电解液化学反应。固液界面副反应是锂电池发展不可避免的问题,目前使用的非水有机电解液化学窗口通常低于4.4V,当充电截止电压高于4.4V时,电解液就会在电池表面发生氧化分解,这一过程导致电池容量急剧“跳水”。同时氧化分解的产物也覆盖在电极材料表面增加电池内阻。游离过渡金属元素催化表面副反应产物分界使电极材料维持高位活性状态带来隐患。
同时,随着SVHC清单越来越宽,后期很多含硫化合物都有可能被限制。在之前的研究中,我们开发了一种不含硫且具有优异的循环性能和高温储存性能的非水电解液及锂电池, 详见专利CN112510259A。但是,随着研究的深入,我们发现当专利CN112510259A中锂电池的电压逐步升高至4.5V及以上时,高温性能以及放电性能出现下降,安全性能随之降低。
因此,有必要在专利CN112510259A的基础上,进一步提高电解液和锂电池的性能,在不使用含硫添加剂且具有优异的高温储存性能和循环性能的同时,还能够兼顾高电压条件下的高温性能和放电性能。
发明内容
本发明的目的在于提供一种能够改善锂电池在高电压下的高温性能和放电性能的非水电解液。
本发明的另一目的是提供一种含所述的非水电解液高电压锂电池。
为实现上述目的,本发明采取的技术方案如下:
本发明第一方面提供一种非水电解液,其包括锂盐、有机溶剂和添加剂,所述的添加剂包括添加剂A,
所述的添加剂A为如下结构通式(1)所示物质中的一种或多种:
Figure PCTCN2022094633-appb-000001
其中,R 1和R 2相同,且R 1和R 2为亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4相同,且R 3和R 4为氢、烷基、烷氧基、氟代烷基或氟代烷氧基。
根据一种具体且优选实施方式,所述添加剂还包括添加剂B,所述添加剂B为含硼锂盐。
优选地,R 1和R 2选自碳原子数为1~3的亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4选自氢或碳原子数为1~5的烷基或氟代烷基。
优选地,R 1和R 2选自碳原子数为1~3的亚烷基,且R 3和R 4选自氢或碳原子数为1~5的烷基;或R 1和R 2选自碳原子数为1~3的亚烷氧基,且R 3和R 4选自氢或碳原子数为1~5的烷基。
根据一些实施方式,所述的添加剂A为庚-1,6-二炔-4-酮
Figure PCTCN2022094633-appb-000002
碳酸二炔丙基酯
Figure PCTCN2022094633-appb-000003
碳酸二(2-炔丁基)酯
Figure PCTCN2022094633-appb-000004
碳酸二(3-炔丁基)酯
Figure PCTCN2022094633-appb-000005
中的一种或多种。
优选地,所述的添加剂A的质量为所述的非水电解液总质量的0.01~5%,进一步优选为0.1~3%,再进一步优选为0.3~2%。
进一步优选地,所述的添加剂B为二氟草酸硼酸锂、四氟硼酸锂、二草酸硼酸锂、四硼酸锂、三苯基正丁基硼酸锂、三甲基咪唑鎓四氟硼酸锂中的一种或多种。
进一步优选地,所述的添加剂B的质量为所述的非水电解液总质量的0.01~2%,进一步优选为0.1~2%,再进一步优选为0.5~1.5%。
进一步优选地,所述的添加剂A和所述的添加剂B的质量比为1:0.5~3。
优选地,所述的有机溶剂为环状酯和链状酯的混合物,所述的环状酯为γ-丁内酯(GBL)、碳酸酯乙烯酯(EC)、碳酸丙烯酯(PC)、氟代碳酸乙烯酯(FEC)中的一种或多种;所述的链状酯为碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸甲丙酯(MPC)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丁酸甲酯(MB)、丁酸乙酯(EB)、丁酸丙酯(PB)、氟代丙酸甲酯(FMP)、氟代丙酸丙酯、氟代丙酸乙酯、氟代乙酸乙酯、乙二醇单丙醚(EP)中的一种或多种。
进一步优选地,所述的有机溶剂为碳酸酯乙烯酯(EC)、碳酸丙烯酯(PC)、乙二醇单丙醚(EP)和丙酸丙酯(PP)的混合物。
进一步优选地,碳酸酯乙烯酯(EC)、碳酸丙烯酯(PC)、乙二醇单丙醚(EP)和丙酸丙酯(PP)的体积比为1~3:0.5~1.5:1~5:3~6。
优选地,所述的锂盐为六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、六氟砷酸锂(LiAsF 6)、无水高氯酸锂(LiClO 4)、二(三氟甲基磺酸酰)亚胺锂(LiN(SO 2CF 3) 2)、二氟二草酸磷酸锂(LiPF 2(C 2O 4) 2)、二氟磷酸锂(LiPO 2F 2)、三氟甲基磺酸锂(LiSO 3CF 3)、二氟二草酸磷酸锂 (LiPO 8C 4F 2)、、双氟磺酰亚胺锂(LiN(SO 2F) 2)中的一种或多种。
优选地,所述的锂盐的浓度为0.8~1.5mol/L,进一步优选为1~1.5mol/L,再进一步优选为1~1.3mol/L。
优选地,所述的添加剂还包括其他添加剂,所述的其他添加剂为碳酸亚乙烯酯、碳酸乙烯亚乙酯、联苯、环己基苯、磷酸三辛酯、氟代碳酸乙烯酯、丁二腈、己二腈、1,3,6-己烷三腈、1,2-二(2-氰乙氧基)乙烷、1,4-二氰基-2-丁烯、1,2,3-三(2-氰基乙氧基)丙烷、癸二腈中的一种或多种。
进一步优选地,所述的其他添加剂的质量为所述的非水电解液总质量的5~25%,进一步优选为5~20%。
进一步优选地,所述的其他添加剂为丁二腈、氟代碳酸乙烯酯和1,3,6-己烷三腈,所述丁二腈的质量为所述的非水电解液总质量的1~5%,所述氟代碳酸乙烯酯的质量为所述的非水电解液总质量的2~8%,所述1,3,6-己烷三腈的质量为所述的非水电解液总质量的2~6%。
本发明第二方面提供一种高电压锂电池,包括正极、负极和电解液所述的电解液为所述的非水电解液。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明通过研究发现添加具有结构通式(1)所表示的羧酸酯衍生物添加剂,在保证锂电池在常规电压下的高温性能和循环性能的同时,在电压提高至4.5V甚至更高时,锂电池仍然具有优异的高温性能及放电性能,保证了高压锂电池的安全性能及电化学性能。
进一步优选地,通过结构通式(1)所表示的羧酸酯衍生物添加剂和含硼锂盐添加剂的复配,结合非水电解液中其他组分相协同配合,在保证锂电池在常规电压下的高温性能和循环性能的同时,在电压提高至4.5V甚至更高时,锂电池能够具有更加优异的高温性能及放电性能,以及更加优异的安全性能及电化学性能。
具体实施方式
在之前的研究中,我们开发了一种不含硫且具有优异的循环性能和高温储存性能的非水电解液及锂电池,详见专利CN112510259A。但是,随着研究的深入,我们发现当专利CN112510259A中锂电池的电压逐步升高至4.5V及以上时,高温性能以及放电性能出现下降,安全性能随之明显下降。
因此,有必要在专利CN112510259A的基础上,进一步提高电解液和锂电池的性能,在不使用含硫添加剂且具有优异的高温储存性能和循环性能的同时,还兼具在高电压下的优异的高温性能和放电性能。
发明人经大量的研究,提出一种非水电解液,通过在电解液中添加添加剂A,可以使电池在不使用含硫添加剂且具有优异的高温储存性能和循环性能的同时,还兼具在高电压下的优异的高温性能和放电性能。
其中,所述的添加剂A为如下结构通式(1)所示物质中的一种或多种:
Figure PCTCN2022094633-appb-000006
其中,R 1和R 2相同,且R 1和R 2为亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4相同,且R 3和R 4为氢、烷基、烷氧基、氟代烷基或氟代烷氧基。
发明人进一步研究发现,在电解液中添加添加剂A和含硼锂盐,并通过复配比例的调整以及与电解液中其他组分的优化,在高电压条件下,电池的高温性能以及放电性能得到进一步改善,安全性更高。
下面结合实施例对本发明作进一步描述。但本发明并不限于以下实施例。实施例中采用的实施条件可以根据具体使用的不同要求做进一步调整,未注明的实施条件为本行业中的常规条件。本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
以下实施例和对比例中所使用的试剂等可通过市售获得。
实施例1:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.1wt%的庚-1,6-二炔-4-酮,制得电解液。
实施例2:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的庚-1,6-二炔-4-酮,制得电解液。
实施例3:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、 4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、1wt%的庚-1,6-二炔-4-酮,制得电解液。
实施例4:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、2wt%的庚-1,6-二炔-4-酮,制得电解液。
实施例5:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二炔丙基酯,制得电解液。
实施例6:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二(2-炔丁基)酯,制得电解液。
实施例7:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二(3-炔丁基)酯,制得电解液。
对比例1:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,制得电解液。
对比例2:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈,制得电解液。
对比例3:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的乙酸丙炔酯,制得电解液。
实施例8:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的庚-1,6-二炔-4-酮及0.5wt%的二氟草酸硼酸锂,制得电解液。
实施例9:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的庚-1,6-二炔-4-酮及1wt%的二氟草酸硼酸锂,制得电解液。
实施例10:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的庚-1,6-二炔-4-酮及1.5wt%的二氟草酸硼酸锂,制得电解液。
实施例11:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二炔丙基酯及0.5wt%的二氟草酸硼酸锂,制得电解液。
实施例12:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二炔丙基酯及0.5%wt的四氟硼酸锂,制得电解液。
实施例13:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混 合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二炔丙基酯及0.5wt%的二草酸硼酸锂,制得电解液。
实施例14:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二炔丙基酯及0.5wt%的三苯基正丁基硼酸锂,制得电解液。
实施例15:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%的碳酸二炔丙基酯及0.5wt%的三甲基咪唑鎓四氟硼酸锂,制得电解液。
对比例4:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈及0.5wt%的二氟草酸硼酸锂,制得电解液。
对比例5:
在充氩气的手套箱中(H 2O含量<10ppm),将EC、PC、EP和PP以2:1:3:4的体积比混合均匀,在混合溶液中加入1.2mol/L的LiPF 6,然后向该电解液中分别添加2wt%的丁二腈、4wt%的氟代碳酸乙烯酯、3wt%的1,3,6-己烷三腈、0.5wt%乙酸丙炔酯及0.5wt%的二氟草酸硼酸锂,制得电解液。
将上述实施例以及对比例配制的电解液分别组装成钴酸锂石墨电池。分别测试上述钴酸锂石墨电池在85℃高温搁置4小时的容量保持率以及电池鼓胀率,测试数据见表1,测试方法为:在25℃、恒定电流/恒定电压(CC/CV)条件下以1C充电到4.5V,后在85℃的烘箱中搁置4小时,搁置后分别1C放电至3.0V,测试85℃高温搁置4小时的容量以及电池厚度;分别测试上述电池以相同条件充电后,未经高温搁置并以相同条件放电后的容量以及电池厚度。上述电池在85℃高温搁置4小时的容量保持率等于85℃高温搁置4小时的容量除以未经高温搁置的容量。上述电池在85℃高温搁置4小时电池鼓胀率等于搁置后电池厚度与搁置前 电池厚度差值除以搁置前电池厚度。分别测试上述钴酸锂石墨电池45℃200周循环容量保持率和50%SCO、2C10s的DCR;其中,45℃200周循环容量保持率的测试方法为:在45℃、恒定电流/恒定电压(CC/CV)条件下以1C充电到4.5V,后1C放电至3.0V,分别测试首次充放电后的电池容量以及循环充放电200周后的电池容量,45℃200周循环容量保持率等于循环充放电200周后的电池容量除以首次充放电后的电池容量;50%SCO、2C10s的DCR测试方法为:电池在50%SCO荷电状态下,2C恒电流放电10S的电压差与电流的比值下进行测试;相关实验数据见表1。
表1
Figure PCTCN2022094633-appb-000007
从实施例1~7与对比例1~2的比较可见,本申请通过在电解液中添加添加剂A,使得电池的高温搁置性能和高温下的容量保持率均得以提高,并且使得电池的高温鼓胀率和DCR下降。再从实施例1~7与对比例3的比较可见,电池电解液中使用添加剂A相比于乙酸丙炔酯,在高温搁置性能和高温容量保持率相当或者更好的同时,能够显著减少电池产气以及显著降低电池阻抗。
再从实施例1~7与实施例8~15的比较可见,通过添加剂A与含硼锂盐添加剂的复配使用,可以进一步提高电池在4.5V条件下,85℃高温搁置4H的容量保持率以及45℃200周的循环容量保持率,并且能够进一步降低电池在4.5V条件下,85℃高温搁置4H的电池鼓胀率(%)及50%SCO、2C10s的DCR。说明添加剂A与含硼锂盐添加剂的复配,能够使电池的高温性能和放电性能进一步得到改善,安全性能也进一步得以提高。

Claims (20)

  1. 一种非水电解液,其包括锂盐、有机溶剂和添加剂,其特征在于,所述的添加剂包括添加剂A和添加剂B,
    所述的添加剂A为如下结构通式(1)所示物质中的一种或多种:
    Figure PCTCN2022094633-appb-100001
    其中,R 1和R 2相同,且R 1和R 2为亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4相同,且R 3和R 4为氢、烷基、烷氧基、氟代烷基或氟代烷氧基;
    所述的添加剂B为含硼锂盐。
  2. 根据权利要求1所述的非水电解液,其特征在于,R 1和R 2选自碳原子数为1~3的亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4选自氢或碳原子数为1~5的烷基或氟代烷基。
  3. 根据权利要求1所述的非水电解液,其特征在于,所述的添加剂A为庚-1,6-二炔-4-酮、碳酸二炔丙基酯、碳酸二(2-炔丁基)酯、碳酸二(3-炔丁基)酯中的一种或多种。
  4. 根据权利要求1所述的非水电解液,其特征在于,所述的添加剂A的质量为所述的非水电解液总质量的0.01~5%。
  5. 根据权利要求1所述的非水电解液,其特征在于,所述的添加剂B的质量为所述的非水电解液总质量的0.01~2%。
  6. 根据权利要求1所述的非水电解液,其特征在于,所述的添加剂B为二氟草酸硼酸锂、四氟硼酸锂、二草酸硼酸锂、四硼酸锂、三苯基正丁基硼酸锂、三甲基咪唑鎓四氟硼酸锂中的一种或多种。
  7. 根据权利要求1所述的非水电解液,其特征在于,所述的有机溶剂为环状酯和链状酯的混合物,所述的环状酯为γ-丁内酯、碳酸酯乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯中的一种或多种;所述的链状酯为碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、氟代丙酸甲酯、氟代丙酸乙酯、氟代乙酸乙酯、乙二醇单丙醚中的一种或多种。
  8. 根据权利要求1所述的非水电解液,其特征在于,所述的锂盐为六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂、二(三氟甲基磺酸酰)亚胺锂、二氟二草酸磷酸锂、二氟磷酸锂、三氟甲基磺酸锂、二氟二草酸磷酸锂、单草酸双氟硼酸锂、双氟磺酰亚胺锂中的一种或 多种;
    和/或,所述的锂盐的浓度为0.8~1.5mol/L。
  9. 根据权利要求1所述的非水电解液,其特征在于:所述的添加剂还包括其他添加剂,所述的其他添加剂为碳酸亚乙烯酯、碳酸乙烯亚乙酯、联苯、环己基苯、磷酸三辛酯、氟代碳酸乙烯酯、丁二腈、己二腈、1,3,6-己烷三腈、1,2-二(2-氰乙氧基)乙烷、1,4-二氰基-2-丁烯,1,2,3-三(2-氰基乙氧基)丙烷,癸二腈中的一种或多种;
    和/或,所述的其他添加剂的质量为所述的非水电解液总质量的5~25%。
  10. 一种非水电解液,其包括锂盐、有机溶剂和添加剂,其特征在于,所述的添加剂包括添加剂A,
    所述的添加剂A为如下结构通式(1)所示物质中的一种或多种:
    Figure PCTCN2022094633-appb-100002
    其中,R 1和R 2相同,且R 1和R 2为亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4相同,且R 3和R 4为氢、烷基、烷氧基、氟代烷基或氟代烷氧基。
  11. 根据权利要求10所述的非水电解液,其特征在于,R 1和R 2选自碳原子数为1~3的亚烷基、氟代亚烷基、亚烷氧基或氟代亚烷氧基;R 3和R 4选自氢或碳原子数为1~5的烷基或氟代烷基。
  12. 根据权利要求11所述的非水电解液,其特征在于,所述的添加剂A为庚-1,6-二炔-4-酮、碳酸二炔丙基酯、碳酸二(2-炔丁基)酯、碳酸二(3-炔丁基)酯中的一种或多种。
  13. 根据权利要求10所述的非水电解液,其特征在于,所述的添加剂A的质量为所述的非水电解液总质量的0.01~5%。
  14. 根据权利要求10所述的非水电解液,其特征在于,所述添加剂还包括添加剂B,所述添加剂B为含硼锂盐。
  15. 根据权利要求14所述的非水电解液,其特征在于,所述的添加剂B的质量为所述的非水电解液总质量的0.01~2%。
  16. 根据权利要求10所述的非水电解液,其特征在于,所述的添加剂B为二氟草酸硼酸锂、四氟硼酸锂、二草酸硼酸锂、四硼酸锂、三苯基正丁基硼酸锂、三甲基咪唑鎓四氟硼酸锂中的一种或多种。
  17. 根据权利要求10所述的非水电解液,其特征在于,所述的有机溶剂为环状酯和链状 酯的混合物,所述的环状酯为γ-丁内酯、碳酸酯乙烯酯、碳酸丙烯酯、氟代碳酸乙烯酯中的一种或多种;所述的链状酯为碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、氟代丙酸甲酯、氟代丙酸乙酯、氟代乙酸乙酯、乙二醇单丙醚中的一种或多种。
  18. 根据权利要求10所述的非水电解液,其特征在于,所述的锂盐为六氟磷酸锂、四氟硼酸锂、六氟砷酸锂、高氯酸锂、二(三氟甲基磺酸酰)亚胺锂、二氟二草酸磷酸锂、二氟磷酸锂、三氟甲基磺酸锂、二氟二草酸磷酸锂、单草酸双氟硼酸锂、双氟磺酰亚胺锂中的一种或多种;
    和/或,所述的锂盐的浓度为0.8~1.5mol/L。
  19. 根据权利要求10所述的非水电解液,其特征在于:所述的添加剂还包括其他添加剂,所述的其他添加剂为碳酸亚乙烯酯、碳酸乙烯亚乙酯、联苯、环己基苯、磷酸三辛酯、氟代碳酸乙烯酯、丁二腈、己二腈、1,3,6-己烷三腈、1,2-二(2-氰乙氧基)乙烷、1,4-二氰基-2-丁烯,1,2,3-三(2-氰基乙氧基)丙烷,癸二腈中的一种或多种;
    和/或,所述的其他添加剂的质量为所述的非水电解液总质量的5~25%.
  20. 一种高电压锂电池,包括正极、负极和电解液,其特征在于:所述的电解液为权利要求1至19中任一项所述的非水电解液。
PCT/CN2022/094633 2021-11-22 2022-05-24 非水电解液及含有该非水电解液的高电压锂电池 WO2023087648A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22894192.8A EP4310976A1 (en) 2021-11-22 2022-05-24 Non-aqueous electrolyte solution and high-voltage lithium battery containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111385766.2A CN116154281A (zh) 2021-11-22 2021-11-22 非水电解液及含有该非水电解液的高电压锂电池
CN202111385766.2 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023087648A1 true WO2023087648A1 (zh) 2023-05-25

Family

ID=86354859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094633 WO2023087648A1 (zh) 2021-11-22 2022-05-24 非水电解液及含有该非水电解液的高电压锂电池

Country Status (3)

Country Link
EP (1) EP4310976A1 (zh)
CN (1) CN116154281A (zh)
WO (1) WO2023087648A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256995A (ja) * 2000-03-13 2001-09-21 Denso Corp 非水電解液及び非水電解液二次電池
CN1322027A (zh) * 2000-04-28 2001-11-14 宇部兴产株式会社 用于锂二次电池的电解质和使用该电解质的锂二次电池
JP2002100399A (ja) * 2000-09-20 2002-04-05 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2013239426A (ja) * 2011-11-11 2013-11-28 Mitsubishi Chemicals Corp 非水系電解液二次電池、および非水系電解液
CN103427115A (zh) * 2013-08-29 2013-12-04 嘉德力电源科技(苏州)有限公司 用于4.8v锂离子电池的高电压电解液
CN112510259A (zh) 2020-11-25 2021-03-16 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467209A (zh) * 2019-09-09 2021-03-09 珠海冠宇电池股份有限公司 一种高低温性能兼顾的高电压锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256995A (ja) * 2000-03-13 2001-09-21 Denso Corp 非水電解液及び非水電解液二次電池
CN1322027A (zh) * 2000-04-28 2001-11-14 宇部兴产株式会社 用于锂二次电池的电解质和使用该电解质的锂二次电池
JP2002100399A (ja) * 2000-09-20 2002-04-05 Ube Ind Ltd 非水電解液およびそれを用いたリチウム二次電池
JP2013239426A (ja) * 2011-11-11 2013-11-28 Mitsubishi Chemicals Corp 非水系電解液二次電池、および非水系電解液
CN103427115A (zh) * 2013-08-29 2013-12-04 嘉德力电源科技(苏州)有限公司 用于4.8v锂离子电池的高电压电解液
CN112510259A (zh) 2020-11-25 2021-03-16 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂电池

Also Published As

Publication number Publication date
CN116154281A (zh) 2023-05-23
EP4310976A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
CN109768326B (zh) 电解液及电化学储能装置
WO2021208955A1 (zh) 电解液添加剂、二次电池电解液、二次电池和终端
CN106450438A (zh) 一种锂离子电池电解液及使用该电解液的锂离子电池
CN111653829A (zh) 锂离子电池电解液及锂离子电池
CN112510259B (zh) 一种非水电解液及锂电池
CN105474452A (zh) 电池用非水电解液及锂二次电池
CN109687024B (zh) 一种兼顾高低温优异性能的高电压锂离子非水电解液及锂离子电池
WO2021180135A1 (zh) 锂二次电池电解液及其制备方法、锂二次电池和终端
JP6109746B2 (ja) 有機系電解質および有機系電解質蓄電池
CN112310477B (zh) 一种防过充锂离子电池电解液
CN108288728A (zh) 一种适配硅碳材料的锂离子电池电解液及其应用
WO2023272864A1 (zh) 电解液及其制备方法、锂离子电池
WO2023241349A1 (zh) 一种非水电解液及锂电池
TW201332186A (zh) 有機系電解質及有機系電解質蓄電池
TW201336151A (zh) 有機系電解質及有機系電解質蓄電池
CN113066975B (zh) 锂离子电池
CN111883834B (zh) 一种非水锂离子电池电解液添加剂、包含其的电解液以及锂离子电池
CN110858665B (zh) 一种锂离子电池电解液及其应用
CN106602139A (zh) 一种非水电解液及含有该非水电解液的锂离子电池
CN114447428B (zh) 一种非水电解液及锂电池
WO2023020314A1 (zh) 一种非水电解液及锂电池
CN112038696B (zh) 一种高电压电解液及包括该高电压电解液的锂离子电池
CN111490292B (zh) 非水电解液功能添加剂、非水电解液及锂离子电池
WO2023087648A1 (zh) 非水电解液及含有该非水电解液的高电压锂电池
WO2018196145A1 (zh) 锂离子电池非水电解液和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022894192

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022894192

Country of ref document: EP

Effective date: 20231017