WO2023087587A1 - 一种光模块散热装置及通讯设备 - Google Patents

一种光模块散热装置及通讯设备 Download PDF

Info

Publication number
WO2023087587A1
WO2023087587A1 PCT/CN2022/081726 CN2022081726W WO2023087587A1 WO 2023087587 A1 WO2023087587 A1 WO 2023087587A1 CN 2022081726 W CN2022081726 W CN 2022081726W WO 2023087587 A1 WO2023087587 A1 WO 2023087587A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical module
heat dissipation
heat
circuit board
guide rail
Prior art date
Application number
PCT/CN2022/081726
Other languages
English (en)
French (fr)
Inventor
肖凯元
魏传达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023087587A1 publication Critical patent/WO2023087587A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the embodiments of the present application relate to the field of electronic equipment, and in particular to a cooling device for an optical module and communication equipment.
  • the purpose of the embodiments of the present application is to provide a heat dissipation device for an optical module and a communication device, which can realize the installation of the heat dissipation device when the ports on the panel side are arranged in high density, and meet the heat dissipation requirements of a small heat dissipation height space.
  • the embodiment of the present application provides a heat dissipation device for an optical module, including: a circuit board for placing the guide rail of the optical module, a heat dissipation structure, an installation structure and a fixed support structure; the heat dissipation structure includes a heat sink, and a heat conduction medium attached to the side of the heat sink close to the circuit board, the mounting structure rotatably connects the heat sink to the circuit board, and the fixed support structure connects the heat sink to the circuit board A circuit board is fixed to compress the thermally conductive medium.
  • the embodiment of the present application also provides a communication device, including: the above-mentioned optical module heat dissipation device, and the optical module guide rail; the circuit board includes a first surface and a second surface oppositely arranged, and the heat dissipation structure is located The first surface, the optical module guide rail is located on the second surface.
  • the embodiment of the present application uses the mounting structure to rotatably connect the heat sink to the circuit board, and the fixed support structure fixes the heat sink to the circuit board to compress the heat sink.
  • the above heat conduction medium after the installation is completed, supports the whole heat dissipation device through the resilience of the heat conduction medium, and realizes the installation of the heat dissipation device when the ports on the panel side are arranged in high density, so as to meet the heat dissipation requirements of a small heat dissipation height space.
  • the installation structure includes: a snap-in hook and a snap-in hole matched with the snap-in hook, any one of the snap-in hook and the snap-in hole is located on the heat sink, The other is located on the circuit board.
  • heat dissipation vias are provided on the circuit board, and the heat conduction medium is disposed facing the heat dissipation vias.
  • a metal heat conduction part is disposed in the heat dissipation via, and the metal heat conduction part and the heat sink jointly compress the heat conduction medium. Since the heat conduction coefficient of the metal heat conduction part is relatively large, it is favorable for the heat generated in the optical module to be quickly transferred to the heat conduction medium.
  • the fixed support structure includes: a rivet nut column pressure riveted on the heat sink, and a pan head screw matched with the rivet nut, one end of the pan head screw is clamped on the The other end of the circuit board is fixed in the rivet nut column.
  • the circuit board includes a body for arranging the optical module guide rail, and an extension disposed around the body, and the fixing support structure is fixed on the extension.
  • the heat sink includes a first side and a second side opposite to each other, the mounting structure is located on the first side, and a notch is provided on the second side.
  • the number of the optical module guide rails is multiple, the multiple optical module guide rails are arranged side by side, and the installation structure is located between adjacent optical module guide rails.
  • the optical module guide rail is a double-layer multi-port optical module guide rail
  • the double-layer multi-port optical module guide rail includes an upper layer optical module guide rail and a lower layer optical module guide rail
  • the lower layer optical module guide rail is located on the first Two surfaces.
  • Fig. 1 is a schematic diagram of a heat dissipation structure provided by some embodiments of the present application provided with snap hooks and rivet nuts;
  • Fig. 2 is a schematic side view of the assembly process of the optical module cooling device provided by some embodiments of the present application;
  • Fig. 3 is a schematic side view of the assembly process of the optical module cooling device provided by some embodiments of the present application.
  • Fig. 4 is a schematic diagram of the optical module cooling device provided by some embodiments of the present application after installation;
  • Fig. 5 is a schematic diagram of laying copper through holes on the circuit board after the installation of the optical module cooling device provided by some embodiments of the present application is completed;
  • Fig. 6 is a schematic diagram of another perspective after the installation of the optical module cooling device provided by some embodiments of the present application.
  • Fig. 7 is a sectional view of installing a panel on the basis of Fig. 6;
  • Fig. 8 is a schematic diagram of a communication device provided by other embodiments of the present application without a panel;
  • Fig. 9 is a schematic diagram of communication equipment provided by other embodiments of the present application.
  • the integrated heat sink is fixed on the circuit board, which requires a large space for fixing the circuit board.
  • the inventors provide a solution to solve the problems of high-density arrangement of ports, double-layer optical module guide rails, and the difficulty in heat dissipation of the bottom optical module and the small space without fixed space.
  • the new optical module cooling device solves the high cooling requirements for power dissipation.
  • the first embodiment of the present application relates to a heat dissipation device for an optical module, as shown in FIGS.
  • the heat dissipation structure 12 includes a heat sink 121 and a heat conduction medium 122 attached to the side of the heat sink 121 close to the circuit board 11.
  • the mounting structure 13 rotatably connects the heat sink 121 to the circuit board 11, and the fixed support structure 14 connects the heat sink 121 to the circuit board 11.
  • the circuit board 11 is fixed to compress the heat-conducting medium 122 .
  • the heat sink 121 is rotatably connected to the circuit board 11 through the installation structure 13, and the fixed support structure 14 fixes the heat sink 121 and the circuit board 11 to compress the heat conduction medium 122.
  • the plate 11 is directly in contact with the snap-fit, positioning the heat dissipation structure 12, and performing a page-turning installation, which avoids the problem of "the heat conduction medium 122 cannot be compressed during front and rear installation".
  • the heat dissipation device is supported by the resilience of the heat conduction medium 122 , increasing the contact area between the heat conduction medium 122, the heat sink 121 and the circuit board 11, realizing the installation of the heat sink when the ports on the panel side are arranged in high density, and improving the heat dissipation capacity of the bottom layer of the high-density optical module, so as to meet the requirements of smaller The heat dissipation requirements of the heat dissipation height space.
  • heat dissipation teeth can be added on the heat sink 121 to enhance the heat dissipation capability.
  • the installation structure 13 can include: a snap hook 131, and a snap hole 132 matched with the snap hook 131, and the snap hook 131 and the snap hook Either one of the holes 132 is located on the heat sink 121, and the other is located on the circuit board 11.
  • the installation improves the versatility of the installation of the cooling device, and the installation can be realized by inserting the snap-in hook 131 into the snap-in hole 132, and the installation method is simple and convenient.
  • the installation structure 13 can also adopt other structures that can be clamped with the circuit board 11 without being fixed, which is not limited here.
  • the circuit board 11 may be provided with a heat dissipation via hole 15, and the heat conduction medium 122 is arranged facing the heat dissipation via hole 15.
  • the heat generated in the optical module can be transferred to the heat conduction medium 122 through the heat dissipation via hole 15, thereby improving The heat dissipation capability of the optical module heat dissipation device is ensured.
  • a metal heat conduction part 16 may be provided in the heat dissipation via hole 15, and the metal heat conduction part 16 and the heat sink 121 jointly compress the heat conduction medium 122.
  • the material of the metal heat conduction part 16 may be copper, silver, etc., for example, in the heat dissipation via hole 15
  • the metal heat conduction part 16 can be made in the same process as the conductive metal on the circuit board 11. Since the heat conduction coefficient of the metal heat conduction part 16 is relatively large, it is conducive to the rapid transfer of heat generated in the optical module to the heat conduction medium 122. Since the heat conduction medium 122 is interposed between the metal heat conduction portion 16 and the heat sink 121 , effective heat transfer is ensured.
  • the heat dissipation device for the optical module can be applied to the equipment where the wind is forward and the air is out, and the heat dissipation-enhanced optical module guide rail 20 can be used, that is, the optical module guide rail 20 with heat dissipation ventilation holes in the middle of the double layer, so that the cold air can pass through the double-layer optical module
  • the middle of the upper and lower layers of the guide rail 20 takes away heat and enhances heat dissipation.
  • the heat dissipation vias 15 allow the incoming air to directly blow the bottom surface of the circuit board 11 to take away heat.
  • the metal heat conducting part 16 can realize heat transfer.
  • the fixed support structure 14 may include: a rivet nut column 141 that is pressure riveted on the heat sink 121 , and a pan head screw 142 that cooperates with the rivet nut, and one end of the pan head screw 142 is clamped on the circuit board 11 , the other end is fixed in the rivet nut column 141, so that the fixing of the heat sink 121 and the circuit board 11 can be realized, and the distance between the heat sink 121 and the circuit board 11 can be fixed, so as to realize the extrusion of the heat-conducting medium 122, It is beneficial for the heat-conducting medium 122 to reach a compression ratio, so as to transfer heat better.
  • a boss can also be formed on the heat sink 121, and the boss is drilled and tapped with an internal thread.
  • One end of the pan head screw 142 is clamped on the circuit board 11, and the other end is fixed to the boss with the internal thread.
  • a boss that is tapped with an internal thread can play the same role as the standoff 141 .
  • the circuit board 11 may include a main body 111 for placing the optical module guide rail 20, and an extension 112 arranged around the main body 111, and the fixed support structure 14 is fixed on the extension 112, so that the optical module and the optical module are realized. Reliable contact of the heat sink.
  • the heat sink 121 may include a first side and a second side that are oppositely arranged, the mounting structure 13 is located on the first side, and the second side is provided with a notch 17.
  • the circuit board 11 is provided with Sliding area 18, no device is arranged on the sliding area 18, and the bottom shell (can use an integrated panel to cover the top surface and the bottom surface, then the bottom shell is a part of the panel) avoids the bottom shell through the gap 17 and the sliding area 18. 11 to avoid knocking off the components on the circuit board.
  • FIG. 1 it is a schematic diagram of snap hooks 131 and rivet nut posts 141 disposed on the heat dissipation structure 12 .
  • FIG. 2 it is a schematic side view of the assembly process of the optical module cooling device provided in this application.
  • the installation structure 13 of the optical module heat sink is clamped between the optical module guide rails 20, and is closed in place by means of a page-turning installation.
  • FIG. 3 it is a schematic side view of the assembly process of the optical module cooling device provided in the present application.
  • the heat sink 121 is rotated along the X direction until it is closed and fixed by a fixing support device.
  • FIG. 4 it is a schematic diagram of the optical module cooling device provided in this application after installation. After the standoff 141 is aligned with the hole on the circuit board 11 , it is locked by the pan head screw 142 and the heat conducting medium 122 is compressed.
  • FIG. 5 it is a schematic diagram of laying copper on the through holes of the circuit board 11 after the optical module cooling device provided in the present application is installed. After being installed in place, the heat conduction medium 122 is located just in the copper-clad area of the heat dissipation via 15 of the circuit board 11 (the heat conduction medium 122 faces the metal heat conduction part 16 ), so as to transfer heat.
  • FIG. 6 it is a schematic diagram of another perspective after the installation of the optical module cooling device provided by the present application is completed.
  • the notch 17 is to avoid the sliding area 18 where the circuit board 11 is installed in the panel 19 .
  • FIG. 7 it is a cross-sectional view of installing the panel on the basis of FIG. 6 .
  • the height of the optical module cooling device cannot exceed the bottom shell of the panel, so it can be seen that the installation space of the optical module cooling device is limited.
  • FIG. 8 it is a schematic diagram of a heat dissipation-enhanced optical module guide rail 20 .
  • the optical module cooling device provided in this embodiment is suitable for scenarios where 1U has high-density double-layer multi-port optical modules, and has high speed and long distance, resulting in increased power consumption, and furthermore, the lower-layer optical modules have difficulty in heat dissipation or even overheating scenarios.
  • other scenarios with small heat dissipation height space are also applicable.
  • it can be applied to box devices with high-density double-layer multi-port optical modules, single boards with high-density double-layer multi-port optical modules, and other scenarios that require bottom heat dissipation devices due to space constraints.
  • the embodiment of the present application has (1) enhanced the upper limit of the device: it solves the problem of heat dissipation of the optical module at the bottom of the optical module guide rail 20, enabling the device to use a higher rate and a longer distance; (2) ) provides a convenient installation method: the page-turning installation method is adopted, the installation is simple, the steps are few, and it saves trouble and effort; (3) It has high protection: because the cooling device is integrally placed on the bottom surface of the circuit board 11, it can protect the circuit The devices on the bottom surface of the board 11 play an effective protective role to prevent the failure of the impactor from occurring. (4) Strong scalability: it can be applied not only to box devices with high-density double-layer multi-port optical modules, but also to single boards in similar situations.
  • the second embodiment of the present application relates to a communication device, as shown in FIG. 8 and FIG. 9 , including: the above-mentioned optical module heat dissipation device and the optical module guide rail 20, the circuit board 11 includes a first surface 113 and a On the second surface 114 , the heat dissipation structure 12 is located on the first surface 113 , and the optical module guide rail 20 is located on the second surface 114 .
  • the number of optical module guide rails 20 can be multiple, and the front end of each optical module guide rail 20 can be provided with cooling holes, and multiple optical module guide rails 20 are arranged side by side, and the mounting structure 13 is located on the adjacent optical module
  • the problem that the heat sink 121 and the circuit board 11 cannot be closely attached due to the obstruction of the installation structure 13 is avoided, and at the same time, the heat sink 121 and the circuit board 11 are fixed by the cooperation of the pressure riveting nut 141 and the pan head screw 142 , realizing the extrusion of the heat-conducting medium 122, and improving the heat dissipation effect.
  • the optical module guide rail 20 is located in the panel 19, and the circuit board 11 and the heat dissipation structure 12 are sequentially located on the lower surface of the optical module guide rail 20, wherein the optical module guide rail 20 can be a double-layer multi-port optical module guide rail, double-layer
  • the multi-port optical module guide rail includes an upper layer optical module guide rail and a lower layer optical module guide rail.
  • the lower layer optical module guide rail is located on the second surface 114. This arrangement solves the problem of heat dissipation due to insufficient heat dissipation height space of the lower layer optical module.
  • the first embodiment corresponds to this embodiment, this embodiment can be implemented in cooperation with the first embodiment.
  • the relevant technical details mentioned in the first embodiment are still valid in this embodiment, and the technical effects that can be achieved in the first embodiment can also be achieved in this embodiment, and in order to reduce repetition, details are not repeated here.
  • the relevant technical details mentioned in this implementation manner can also be applied in the first implementation manner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种光模块散热装置及通讯设备,其中光模块散热装置包括:用于安置光模块导轨(20)的电路板(11)、散热结构(12)、安装结构(13)和固定支撑结构(14);散热结构(12)包括散热片(121)、以及贴附于散热片(121)靠近电路板(11)一侧的导热介质(122),安装结构(13)将散热片(121)与电路板(11)可转动连接,固定支撑结构(14)将散热片(121)与电路板(11)固定以压缩导热介质(122)。光模块散热装置及通讯设备,能够实现在面板侧端口高密排布时的散热装置安装,满足较小的散热高度空间的散热需求。

Description

一种光模块散热装置及通讯设备
交叉引用
本申请引用于2021年11月16日递交的名称为“一种光模块散热装置及通讯设备”的第202111357283.1号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及电子设备领域,特别涉及一种光模块散热装置及通讯设备。
背景技术
近些年来,大流量移动宽带业务需求剧增,通讯设备需要支撑更高速率和更远距离的光模块用于网络业务的传输,随着多口多层连体光模块导轨被大量应用于接入层设备,功耗高、散热难成为光模块应用的显著特点,然而,接入层设备提供给光模块的散热高度空间非常小,例如,多层光模块中的下层光模块的散热高度空间更加小。
因此,有必要提供一种新的光模块散热装置能够满足较小的散热高度空间的散热需求。
申请内容
本申请实施方式的目的在于提供一种光模块散热装置及通讯设备,能够实现在面板侧端口高密排布时的散热装置安装,满足较小的散热高度空间的散热需求。
为解决上述技术问题,本申请的实施方式提供了一种光模块散热装置,包括:用于安置光模块导轨的电路板、散热结构、安装结构和固定支撑结构;所述散热结构包括散热片、以及贴附于所述散热片靠近所述电路板一侧的导热介质,所述安装结构将所述散热片与所述电路板可转动连接,所述固定支撑结构将所述散热片与所述电路板固定以压缩所述导热介质。
本申请的实施方式还提供了一种通讯设备,包括:如上述的光模块散热装置、以及光模块导轨;所述电路板包括相对设置的第一表面和第二表面,所述散热结构位于所述第一表面,所述光模块导轨位于所述第二表面。
本申请实施方式相对于现有技术而言,通过所述安装结构将所述散热片与所述电路板可转动连接,所述固定支撑结构将所述散热片与所述电路板固定以压缩所述导热介质,在安装 完成后通过导热介质的回弹力支撑散热装置整体,实现了在面板侧端口高密排布时的散热装置安装,从而能够满足较小的散热高度空间的散热需求。
在一些实施例中,所述安装结构包括:卡接钩、以及与所述卡接钩配合的卡接孔,所述卡接钩和所述卡接孔中任一者位于所述散热片上、另一者位于所述电路板上。如此设置,实现了无螺钉空间时的安装,并且卡接钩插入卡接孔即可实现安装,安装方式简单、便捷。
在一些实施例中,所述电路板上设置有散热过孔,所述导热介质正对所述散热过孔设置。如此设置,光模块中产生的热量能够经由散热过孔传递到导热介质上,提高了光模块散热装置的散热能力。
在一些实施例中,所述散热过孔内设置有金属导热部,所述金属导热部和所述散热片共同压缩所述导热介质。由于金属导热部的导热系数较大,有利于光模块中产生的热量快速传递至导热介质上。
在一些实施例中,所述固定支撑结构包括:压铆在所述散热片上的压铆螺母柱,以及与所述压铆螺母配合的盘头螺钉,所述盘头螺钉的一端卡持于所述电路板上、另一端固定于所述压铆螺母柱内。如此设置,既可实现散热片和电路板的固定,又可以定距散热片和电路板之间的距离。
在一些实施例中,所述电路板包括用于安置所述光模块导轨的本体、以及环绕所述本体设置的延伸部,固定支撑结构固定于所述延伸部上。如此设置,实现了光模块与光模块散热装置的可靠接触,提升了散热效果。
在一些实施例中,所述散热片包括相对设置的第一侧边和第二侧边,所述安装结构位于所述第一侧边,所述第二侧边设置有缺口。
在一些实施例中,所述光模块导轨的数量为多个,多个所述光模块导轨并排设置,所述安装结构位于相邻所述光模块导轨之间。如此设置,避免了因安装结构的阻碍使得散热片和电路板不能紧密贴附的问题,提升了散热效果。
在一些实施例中,所述光模块导轨为双层多口光模块导轨,所述双层多口光模块导轨包括上层光模块导轨和下层光模块导轨,所述下层光模块导轨位于所述第二表面上。如此设置,解决了下层光模块的散热高度空间不足导致散热难的问题。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别 申明,附图中的图不构成比例限制。
图1是本申请一些实施例提供的散热结构上设置有卡接钩和压铆螺母柱的示意图;
图2是本申请一些实施例提供的光模块散热装置的装配过程侧视示意图;
图3是本申请一些实施例提供的光模块散热装置的装配过程侧视示意图;
图4是本申请一些实施例提供的光模块散热装置安装完成后的示意图;
图5是本申请一些实施例提供的光模块散热装置安装完成后电路板过孔铺铜的示意图;
图6是本申请一些实施例提供的光模块散热装置安装完成后另一视角的示意图;
图7是在图6的基础上安装面板的截面图;
图8是本申请另一些实施例提供的通讯设备除去面板的示意图;
图9是本申请另一些实施例提供的通讯设备的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
发明人发现,对于多层自带散热器的光模块导轨,其散热器结构复杂、需要占用较大的电路板空间;对于外加散热器的多层光模块导轨,一般外加定制一体式散热器,一体式散热器固定在电路板,需要较大的电路板固定空间。在双层高密度、高速率、远距离、散热高度空间小等场景下,针对端口高密排布双层光模块导轨底层光模块散热困难与空间小无固定空间的问题,发明人提供了一种新的光模块散热装置,通过翻页式的安装方式(可转动连接)、卡接式的安装结构(卡接钩配合卡接孔)、固定散热器的支撑结构,解决了多层光模块高功耗的散热需求。
本申请的第一实施方式涉及一种光模块散热装置,如图1至7所示,包括:用于安置光模块导轨20的电路板11、散热结构12、安装结构13和固定支撑结构14,散热结构12包括散热片121、以及贴附于散热片121靠近电路板11一侧的导热介质122,安装结构13将散热片121与电路板11可转动连接,固定支撑结构14将散热片121与电路板11固定以压缩导热介质122。
通过安装结构13将散热片121与电路板11可转动连接,固定支撑结构14将散热片121与电路板11固定以压缩导热介质122,散热结构12通过安装结构13在光模块导轨20间隙 与电路板11直接接触卡接,定位散热结构12,进行翻页式安装,避免了“前后安装时无法对导热介质122进行压缩”的问题,在安装完成后通过导热介质122的回弹力支撑散热装置整体,增大了导热介质122与散热片121、电路板11的接触面积,实现了在面板侧端口高密排布时的散热装置安装,并提升了高密度光模块底层散热能力,从而能够满足较小的散热高度空间的散热需求。
换句话说,通过翻页式安装,取得了高密度光模块底层散热能力的提升,解决了高密度需求无法固定散热装置、双层多口光模块导轨20尤其是下层散热能力不足等问题,基于极小的空间优化了散热装置安装的可行性。
本实施方式中,散热片121上可以加散热齿,以增强散热能力,安装结构13可以包括:卡接钩131、以及与卡接钩131配合的卡接孔132,卡接钩131和卡接孔132中任一者位于散热片121上、另一者位于电路板11上,通过卡接式的安装结构13,解决了由于空间限制散热装置无法固定安装的情况,实现了无螺钉空间时的安装,提升了散热装置安装的通用性,并且卡接钩131插入卡接孔132即可实现安装,安装方式简单、便捷。当然,安装结构13也可以采用其他可以与电路板11不需要固定即可进行卡接的结构,此处不做限定。
可选的,电路板11上可以设置有散热过孔15,导热介质122正对散热过孔15设置,如此设置,光模块中产生的热量能够经由散热过孔15传递到导热介质122上,提高了光模块散热装置的散热能力。
进一步的,散热过孔15内可以设置有金属导热部16,金属导热部16和散热片121共同压缩导热介质122,金属导热部16的材料可以为铜、银等,例如,在散热过孔15内进行铺铜,金属导热部16可以与电路板11上的导电金属同一道工序制成,由于金属导热部16的导热系数较大,有利于光模块中产生的热量快速传递至导热介质122上,由于导热介质122夹设于金属导热部16与散热片121之间,确保了热的有效传递。
可选的,光模块散热装置可以应用于前进风后出风的设备,可以采用增强散热型光模块导轨20,即双层中间带散热通风孔的光模块导轨20,使冷风通过双层光模块导轨20上下层中间,带走热量,起到增强散热的作用,同时,散热过孔15可以使进风直接吹电路板11底面,带走热量,金属导热部16可以实现传递热量。
实际应用中,固定支撑结构14可以包括:压铆在散热片121上的压铆螺母柱141,以及与压铆螺母配合的盘头螺钉142,盘头螺钉142的一端卡持于电路板11上、另一端固定于压铆螺母柱141内,从而既可实现散热片121和电路板11的固定,又可以定距散热片121和电路板11之间的距离,实现导热介质122的挤压,有利于导热介质122达到压缩率,更好的传 递热量。
可以理解的是,也可以是在散热片121上形成凸台,凸台打孔并且攻内螺纹,盘头螺钉142一端卡持于电路板11上、另一端固定于攻有内螺纹的凸台内,即,攻有内螺纹的凸台可以起到与压铆螺母柱141一样的作用。
进一步的,电路板11可以包括用于安置光模块导轨20的本体111、以及环绕本体111设置的延伸部112,固定支撑结构14固定于延伸部112上,如此设置,实现了光模块与光模块散热装置的可靠接触。
具体的说,散热片121可以包括相对设置的第一侧边和第二侧边,安装结构13位于第一侧边,第二侧边设置有缺口17,可选的,电路板11上设置有滑动区域18,滑动区域18上不设置器件,通过缺口17和滑动区域18避让底壳(可以采用一体式面板覆盖顶面和底面,则底壳为面板的一部分)上压铆螺母柱在电路板11上滑动的作用,以避免撞掉电路板上的器件。
下面结合附图进行具体的说明:
如图1所示,为散热结构12上设置有卡接钩131和压铆螺母柱141的示意图。
如图2所示,为本申请提供的光模块散热装置的装配过程侧视示意图。光模块散热装置的安装结构13卡在光模块导轨20之间,并采用翻页式安装合上到位。
如图3所示,为本申请提供的光模块散热装置的装配过程侧视示意图。散热片121沿X方向旋转,直至合上后利用固定支撑装置固定。
如图4所示,为本申请提供的光模块散热装置安装完成后的示意图。压铆螺母柱141与电路板11上的孔位对齐后,由盘头螺钉142锁紧,并压缩导热介质122。
如图5所示,为本申请提供的光模块散热装置安装完成后电路板11过孔铺铜的示意图。安装到位后,导热介质122位置恰好在电路板11的散热过孔15的铺铜区域(导热介质122正对金属导热部16),达到传到热量的作用。
如图6所示,为本申请提供的光模块散热装置安装完成后另一视角的示意图。其中,缺口17为避让电路板11安装在面板19中的滑动区域18。
如图7所示,为在图6的基础上安装面板的截面图。由于光模块插入导轨后,光模块散热装置高度不能超过面板的底壳,从而能够看出光模块散热装置的安装空间受限。
如图8所示,为增强散热型光模块导轨20的示意图。
本实施方式提供的光模块散热装置,适用于1U具有高密排布双层多口光模块,并且具有高速率、长距离导致的功耗增加,进而有下层光模块散热困难甚至超温的场景,当然,其他散热高度空间小的场景同样适用。具体的,可以应用于具有高密排布双层多口光模块的盒 体设备、具有高密排布双层多口光模块的单板、以及其他由于空间限制,具有需要底层散热器件的场景。
本申请实施方式相对于现有技术而言,(1)增强了设备的上限:解决光模块导轨20底层光模块散热困难的问题,可以使设备使用更高的速率、更远的距离;(2)提供了便利的安装方式:采用翻页式的安装方式,安装简单,步骤少,省事、省力;(3)具有较高的防护性:由于散热装置整体在电路板11的底面,可以对电路板11底面的器件起到有效的防护作用,防止撞件的失效情况发生。(4)具有较强的可扩展性:不止可以应用于具有高密排布双层多口光模块的盒体设备,也可应用于类似情况的单板中。
本申请的第二实施方式涉及一种通讯设备,如图8、图9所示,包括:如上述的光模块散热装置、以及光模块导轨20,电路板11包括相对设置的第一表面113和第二表面114,散热结构12位于第一表面113,光模块导轨20位于第二表面114。
如图8所示,具体的,光模块导轨20的数量可以为多个,每个光模块导轨20的前端可以开设散热孔,多个光模块导轨20并排设置,安装结构13位于相邻光模块导轨20之间,避免了因安装结构13的阻碍使得散热片121和电路板11不能紧密贴附的问题,同时利用压铆螺母柱141和盘头螺钉142配合以固定散热片121和电路板11,实现导热介质122的挤压,提升了散热效果。
如图9所示,光模块导轨20位于面板19内,电路板11和散热结构12依次位于光模块导轨20的下表面,其中,光模块导轨20可以为双层多口光模块导轨,双层多口光模块导轨包括上层光模块导轨和下层光模块导轨,下层光模块导轨位于第二表面114上,如此设置,解决了下层光模块的散热高度空间不足导致散热难的问题。
由于第一实施方式与本实施方式相互对应,因此本实施方式可与第一实施方式互相配合实施。第一实施方式中提到的相关技术细节在本实施方式中依然有效,在第一实施方式中所能达到的技术效果在本实施方式中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一实施方式中。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种光模块散热装置,其中,包括:用于安置光模块导轨的电路板、散热结构、安装结构和固定支撑结构;
    所述散热结构包括散热片、以及贴附于所述散热片靠近所述电路板一侧的导热介质,所述安装结构将所述散热片与所述电路板可转动连接,所述固定支撑结构将所述散热片与所述电路板固定以压缩所述导热介质。
  2. 根据权利要求1所述的光模块散热装置,其中,所述安装结构包括:卡接钩、以及与所述卡接钩配合的卡接孔,所述卡接钩和所述卡接孔中任一者位于所述散热片上、另一者位于所述电路板上。
  3. 根据权利要求1所述的光模块散热装置,其中,所述电路板上设置有散热过孔,所述导热介质正对所述散热过孔设置。
  4. 根据权利要求3所述的光模块散热装置,其中,所述散热过孔内设置有金属导热部,所述金属导热部和所述散热片共同压缩所述导热介质。
  5. 根据权利要求1所述的光模块散热装置,其中,所述固定支撑结构包括:压铆在所述散热片上的压铆螺母柱,以及与所述压铆螺母配合的盘头螺钉,所述盘头螺钉的一端卡持于所述电路板上、另一端固定于所述压铆螺母柱内。
  6. 根据权利要求1所述的光模块散热装置,其中,所述电路板包括用于安置所述光模块导轨的本体、以及环绕所述本体设置的延伸部,固定支撑结构固定于所述延伸部上。
  7. 根据权利要求1所述的光模块散热装置,其中,所述散热片包括相对设置的第一侧边和第二侧边,所述安装结构位于所述第一侧边,所述第二侧边设置有缺口。
  8. 一种通讯设备,其中,包括:如权利要求1至7任一项所述的光模块散热装置、以及光模块导轨;
    所述电路板包括相对设置的第一表面和第二表面,所述散热结构位于所述第一表面,所 述光模块导轨位于所述第二表面。
  9. 根据权利要求8所述的通讯设备,其中,所述光模块导轨的数量为多个,多个所述光模块导轨并排设置,所述安装结构位于相邻所述光模块导轨之间。
  10. 根据权利要求8所述的通讯设备,其中,所述光模块导轨为双层多口光模块导轨,所述双层多口光模块导轨包括上层光模块导轨和下层光模块导轨,所述下层光模块导轨位于所述第二表面上。
PCT/CN2022/081726 2021-11-16 2022-03-18 一种光模块散热装置及通讯设备 WO2023087587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111357283.1 2021-11-16
CN202111357283.1A CN116136618A (zh) 2021-11-16 2021-11-16 一种光模块散热装置及通讯设备

Publications (1)

Publication Number Publication Date
WO2023087587A1 true WO2023087587A1 (zh) 2023-05-25

Family

ID=86334158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081726 WO2023087587A1 (zh) 2021-11-16 2022-03-18 一种光模块散热装置及通讯设备

Country Status (2)

Country Link
CN (1) CN116136618A (zh)
WO (1) WO2023087587A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094349A (en) * 1997-08-07 2000-07-25 Robert Bosch Gmbh Electrical device having a printed-circuit board and method for assembling the device
CN202256790U (zh) * 2011-07-20 2012-05-30 深圳市晟科通信技术有限公司 一种全介质翻页层叠式光纤直熔盘
CN102565960A (zh) * 2012-01-11 2012-07-11 聚信科技有限公司 一种连接器,一种通信设备
CN103747608A (zh) * 2013-12-13 2014-04-23 深圳市同为数码科技股份有限公司 一种防脱落可活动导热结构
CN203722989U (zh) * 2014-01-17 2014-07-16 加弘科技咨询(上海)有限公司 一种双层光模块的散热装置
CN204887856U (zh) * 2015-08-27 2015-12-16 南京南瑞继保电气有限公司 双层光模块散热结构
JP2017067854A (ja) * 2015-09-28 2017-04-06 日立金属株式会社 光モジュール、光通信装置および情報処理装置
CN109565930A (zh) * 2018-10-31 2019-04-02 北京比特大陆科技有限公司 电路板以及超算设备
CN208805597U (zh) * 2018-10-16 2019-04-30 上海欣诺通信技术股份有限公司 具有散热结构的光传输设备
CN212301981U (zh) * 2020-04-16 2021-01-05 尚宁光电无锡有限公司 一种双层光模块的散热装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094349A (en) * 1997-08-07 2000-07-25 Robert Bosch Gmbh Electrical device having a printed-circuit board and method for assembling the device
CN202256790U (zh) * 2011-07-20 2012-05-30 深圳市晟科通信技术有限公司 一种全介质翻页层叠式光纤直熔盘
CN102565960A (zh) * 2012-01-11 2012-07-11 聚信科技有限公司 一种连接器,一种通信设备
CN103747608A (zh) * 2013-12-13 2014-04-23 深圳市同为数码科技股份有限公司 一种防脱落可活动导热结构
CN203722989U (zh) * 2014-01-17 2014-07-16 加弘科技咨询(上海)有限公司 一种双层光模块的散热装置
CN204887856U (zh) * 2015-08-27 2015-12-16 南京南瑞继保电气有限公司 双层光模块散热结构
JP2017067854A (ja) * 2015-09-28 2017-04-06 日立金属株式会社 光モジュール、光通信装置および情報処理装置
CN208805597U (zh) * 2018-10-16 2019-04-30 上海欣诺通信技术股份有限公司 具有散热结构的光传输设备
CN109565930A (zh) * 2018-10-31 2019-04-02 北京比特大陆科技有限公司 电路板以及超算设备
CN212301981U (zh) * 2020-04-16 2021-01-05 尚宁光电无锡有限公司 一种双层光模块的散热装置

Also Published As

Publication number Publication date
CN116136618A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
US7724521B2 (en) Systems and methods for Venturi fan-assisted cooling
US20080278912A1 (en) Thermal management systems and methods for electronic components in a sealed enclosure
US20080084667A1 (en) Hybrid cooling system and method for a multi-component electronics system
US9408308B2 (en) Heat dissipating high power systems
US20080239679A1 (en) Heat dissipation device having metal die-casting component and metal-extrusion component
WO2023087587A1 (zh) 一种光模块散热装置及通讯设备
JP3569451B2 (ja) 放熱装置を備える電子機器
CN203523231U (zh) 一种合体散热器
TWI607675B (zh) Dc/dc電源模組及dc/dc電源系統組裝結構
US20040190249A1 (en) Communication device
US11647609B2 (en) Multisided heat spreader
CN115379729A (zh) 散热模块、装置、刀片服务器及电子设备
JPH066064A (ja) 高密度実装装置
WO2016058396A1 (zh) 通信系统及其通信设备
CN211128733U (zh) 散热装置及用户驻地设备
US11317539B2 (en) Hybrid heat sink
CN114640730A (zh) 摄像模组及电子设备
CN114115470A (zh) 硬盘托架、硬盘组件及主机装置
CN219496740U (zh) 一种高散热率的光通信模块
CN220915655U (zh) 一种封闭式静音散热的通信机箱设备
JP4858428B2 (ja) 実装部品の冷却方法
CN218831108U (zh) 一种便于快速降温的家电pcb板
JP2012243798A (ja) シェルフ構造体および無線基地局装置
CN217283539U (zh) 一种散热效果好的刚性电路板
CN217064428U (zh) 一种带接触散热接口的机架式电子设备机箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894133

Country of ref document: EP

Kind code of ref document: A1