WO2023087404A1 - 高速磁悬浮列车通信方法、通信系统及相关装置 - Google Patents

高速磁悬浮列车通信方法、通信系统及相关装置 Download PDF

Info

Publication number
WO2023087404A1
WO2023087404A1 PCT/CN2021/134896 CN2021134896W WO2023087404A1 WO 2023087404 A1 WO2023087404 A1 WO 2023087404A1 CN 2021134896 W CN2021134896 W CN 2021134896W WO 2023087404 A1 WO2023087404 A1 WO 2023087404A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
switch
message
speed maglev
maglev train
Prior art date
Application number
PCT/CN2021/134896
Other languages
English (en)
French (fr)
Inventor
吴陈
于青松
周燕
洛启
Original Assignee
中车长春轨道客车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车长春轨道客车股份有限公司 filed Critical 中车长春轨道客车股份有限公司
Publication of WO2023087404A1 publication Critical patent/WO2023087404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40267Bus for use in transportation systems
    • H04L2012/40293Bus for use in transportation systems the transportation system being a train

Definitions

  • the present application relates to the field of rail transportation, in particular to a communication method, communication system and related devices for high-speed maglev trains.
  • controllers in rail transit can be connected via Ethernet, but there are many controllers in single cars (each compartment) in high-speed maglev trains. If the controllers are connected via Ethernet, each controller An Ethernet cable is required to connect to the switch, which will take up a lot of mezzanine space of the high-speed maglev train.
  • Controllers in rail transit can also be connected through Controller Area Network (CAN), but there are many controllers in high-speed maglev trains, and the CAN network has a long line, requiring a large number of repeaters to ensure CAN The stability of the signal in the network will also occupy a large amount of mezzanine space of the high-speed maglev train.
  • CAN Controller Area Network
  • the application provides a high-speed maglev train communication method, communication system and related devices, which are used to save the interlayer space of the high-speed maglev train on the basis of ensuring the communication of the controller in the high-speed maglev train.
  • An embodiment of the present application provides a communication method for a high-speed maglev train.
  • the method is applied to a high-speed maglev train.
  • the train includes a first compartment and a second compartment; the first compartment includes a first controller, a second controller, and a first switch, and the second
  • the second compartment includes a third controller and a second switch, and the method includes:
  • the first controller receives the first message sent by the second controller through the controller area network CAN;
  • the first controller sends a second message to the third controller through the Ethernet between the first switch and the second switch, and the second message is generated according to the first message.
  • the controller area network includes 8 bus segments, and the 8 bus segments are respectively connected to multiple controllers in the first car, and the multiple controllers include a first controller and a second controller.
  • controller area network CAN includes a vehicle diagnostic computer SDR;
  • the first controller receives the first message sent by the second controller through the controller area network CAN, including:
  • the first controller receives the first message sent by the second controller via the vehicle diagnostic computer SDR.
  • the first controller sends a second message to the third controller through the first switch and the second switch, including:
  • the first controller sends a second message to the first switch
  • the first switch sends the second message to the second switch through the Ethernet, so that the second switch sends the second message to the third controller.
  • controller area network CAN includes a vehicle diagnostic computer SDR;
  • the first controller sends a second message to the first switch, including:
  • the first controller sends a second message to the first switch through the vehicle diagnosis computer SDR;
  • the second switch sends a second message to the third controller, including:
  • the second switch sends a second message to the third controller via the vehicle diagnostic computer SDR.
  • the first compartment further includes a first on-vehicle device and a second on-vehicle device;
  • the first on-vehicle device sends the third message to the second on-vehicle device through the first switch.
  • the embodiment of the present application also provides a high-speed maglev train communication system, the system includes a first controller, a second controller, a third controller, a first switch, and a second controller. Two switches;
  • the train includes a first compartment and a second compartment; the first controller, the second controller and the first switch are located in the first compartment, and the third controller and the second switch are located in the second compartment;
  • the first controller is configured to receive the first message sent by the second controller through the controller area network CAN, and send the second message to the third controller through the Ethernet between the first switch and the second switch, and the second A message is generated based on the first message.
  • the controller area network includes 8 bus segments, and the 8 bus segments are respectively connected to multiple controllers in the first car, and the multiple controllers include a first controller and a second controller.
  • controller area network CAN includes a vehicle diagnostic computer SDR;
  • the first controller is specifically configured to: receive the first message sent by the second controller through the vehicle diagnostic computer SDR.
  • the present application also provides a high-speed maglev train, which includes the above-mentioned high-speed maglev train communication system.
  • An embodiment of the present application provides a high-speed maglev train communication method, the method is applied to a high-speed maglev train, the train includes a first compartment and a second compartment; the first compartment includes a first controller, a second controller and a first switch, The second compartment includes a third controller and a second switch, and the method includes: the first controller receives the first message sent by the second controller through the controller area network CAN; the first controller passes the first switch and the second switch The Ethernet between them sends a second message to the third controller, and the second message is generated according to the first message.
  • the controller in each carriage adopts the CAN network to communicate, and the signals are connected to the Ethernet through the switch to communicate between the carriages.
  • the CAN network can connect multiple controllers in a single car to the bus for communication at the same time, the layout of communication lines in the train is reduced, and because the carriages are connected through Ethernet, the CAN network is only used to connect the carriages.
  • the internal controller shortens the length of the CAN network, reduces the number of repeaters used, and saves the interlayer space of the high-speed maglev train.
  • Fig. 1 is the flowchart of a kind of high-speed maglev train communication method provided by the embodiment of the present application;
  • FIG. 2 is a schematic diagram of a controller local area network in a first compartment provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a high-speed maglev train communication system provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of another high-speed maglev train communication system provided by the embodiment of the present application.
  • controllers in rail transit can be connected via Ethernet, but there are many controllers in single cars (each compartment) in high-speed maglev trains. If the controllers are connected via Ethernet, each controller An Ethernet cable is required to connect to the switch, which will take up a lot of mezzanine space of the high-speed maglev train.
  • Controllers in rail transit can also be connected through Controller Area Network (CAN), but there are many controllers in high-speed maglev trains, and the CAN network has a long line, requiring a large number of repeaters to ensure CAN The stability of the signal in the network will also occupy a large amount of mezzanine space of the high-speed maglev train. Therefore, there is currently a need in the art for a communication method for high-speed maglev trains that can save interlayer space.
  • CAN Controller Area Network
  • the embodiment of the present application provides a high-speed maglev train communication method, the method is applied to a high-speed maglev train, the train includes a first car and a second car; the first car includes a first controller, a second A controller and a first switch, the second compartment includes a third controller and a second switch; the first controller receives the first message sent by the second controller through the controller area network CAN; the first controller passes the first switch and The Ethernet between the second switches sends a second message to the third controller, and the second message is generated according to the first message.
  • the controller in each carriage adopts the CAN network to communicate, and the signals are connected to the Ethernet through the switch to communicate between the carriages.
  • the CAN network can connect multiple controllers in a single car to the bus for communication at the same time, the layout of communication lines in the train is reduced, and because the carriages are connected through Ethernet, the CAN network is only used to connect the carriages.
  • the internal controller shortens the length of the CAN network, reduces the number of repeaters used, and saves the interlayer space of the high-speed maglev train.
  • this figure is a flow chart of a high-speed maglev train communication method provided by an embodiment of the present application.
  • the high-speed maglev train communication method provided in the embodiment of the present application is applied to a high-speed maglev train.
  • the train includes a first compartment and a second compartment; the first compartment includes a first controller, a second controller, and a first switch, and the second compartment includes a first compartment.
  • the high-speed maglev train communication method provided by the embodiment of the present application includes:
  • the first controller receives a first message sent by the second controller through the controller area network CAN.
  • the first controller sends a second message to the third controller through the Ethernet between the first switch and the second switch, where the second message is generated according to the first message.
  • both the first controller and the second controller in the embodiment of the present application are located in the first compartment.
  • the first controller and the second controller may communicate via a controller area network within the first compartment.
  • the second controller is located in the second car. When the second car communicates with the first controller or the second controller in the first car, it needs to pass through the first switch in the first car and the second switch in the second car. Connect to Ethernet for communication.
  • the controller in each car uses a separate CAN network for communication, and the signals between the cars are connected to the Ethernet through a switch for communication.
  • the CAN network can connect multiple controllers in a single vehicle through a CAN bus, the layout of communication lines in the train is reduced.
  • the CAN network is only used to connect the controller in the carriage, which shortens the length of the CAN network, reduces the number of repeaters used, and saves high-speed The mezzanine space of the maglev train.
  • this figure is a schematic diagram of a controller local area network in the first compartment provided by an embodiment of the present application.
  • the controller area network of the first compartment provided by the embodiment of the present application includes a first controller 101 , a second controller 102 , a vehicle diagnostic computer 103 and a first switch 104 .
  • both the first controller 101 and the second controller 102 communicate through the vehicle diagnostic computer.
  • the controller area network CAN includes a vehicle diagnostic computer SDR.
  • the first controller receiving the first message sent by the second controller through the controller area network CAN includes: the first controller receiving the first message sent by the second controller through the vehicle diagnostic computer SDR.
  • the controller local area network summarized in the embodiment of the present application may include 8 bus segments, which are connected to the vehicle diagnostic calculator through 8 interfaces, and each bus terminal in the 8 bus terminals is respectively Connect multiple controllers in the first compartment.
  • the first controller and the second controller provided in the embodiment of the present application may be connected to the same bus segment, or may be connected to different bus segments, which is not limited in the embodiment of the present application.
  • the above describes the schematic diagram of the controller area network CAN in a single vehicle.
  • the following describes the high-speed maglev train communication system composed of multiple single-vehicle controller area networks CAN and Ethernet.
  • the first controller sends the second message to the third controller through the first switch and the second switch, including: the first controller sends the second message to the first switch;
  • the network sends the second message to the second switch, so that the second switch sends the second message to the third controller.
  • this figure is a schematic diagram of a high-speed maglev train communication system provided by an embodiment of the present application.
  • the high-speed maglev train communication system includes a controller area network 1 in the first car and a controller area network 2 in the second car.
  • the controller area network 1 includes the first controller 101, the second controller 102, the vehicle diagnosis computer 1 (103) and the first switch 104;
  • the controller area network 2 includes the third controller 201, the vehicle diagnosis computer 2 (203) and the second switch 204 .
  • both the first controller 101 and the second controller 102 are connected to the vehicle diagnostic computer 1, and the vehicle diagnostic computer 1 is connected to the first switch 104; the third controller 201 is connected to the vehicle diagnostic computer 2, and the vehicle diagnostic computer 2 is connected to the second switch 204:
  • the first switch 104 and the second switch 204 are connected through Ethernet.
  • the controller area network CAN in the embodiment of the present application includes a vehicle diagnostic computer SDR; the first controller sends a second message to the first exchange, including: the first controller sends the first message to the first switch through the vehicle diagnostic computer SDR The switch sends the second message.
  • the second switch in the embodiment of the present application sends the second message to the third controller, including: the second switch sends the second message to the third controller through the vehicle diagnostic computer SDR.
  • the equipment in the high-speed maglev train also includes some on-board equipment, such as in-vehicle air conditioners and in-vehicle automatic doors.
  • the first compartment further includes a first on-vehicle device and a second on-vehicle device.
  • the first on-vehicle device sends the third message to the second on-vehicle device through the first switch.
  • the controller in each car uses the CAN network to communicate, and the signals between the cars are connected to the Ethernet through the switch for communication.
  • the CAN network can connect multiple controllers in a single car to the bus for communication at the same time, the layout of communication lines in the train is reduced, and because the carriages are connected through Ethernet, the CAN network is only used to connect the carriages.
  • the internal controller shortens the length of the CAN network, reduces the number of repeaters used, and saves the interlayer space of the high-speed maglev train.
  • the embodiment of the present application further provides a communication system for the high-speed maglev train.
  • this figure is a schematic diagram of another high-speed maglev train communication system provided by an embodiment of the present application.
  • the high-speed maglev train communication system includes a first controller 101 , a second controller 102 , a third controller 201 , a first switch 104 and a second switch 204 .
  • the train includes a first compartment and a second compartment; the first controller 101, the second controller 102 and the first switch 104 are located in the first compartment, and the third controller 201 and the second switch 204 are located in the second compartment;
  • the first controller 101 is configured to receive the first message sent by the second controller 102 through the controller area network CAN, and send the first message to the third controller 201 through the Ethernet between the first switch 104 and the second switch 204 Two messages, the second message is generated according to the first message.
  • the controller local area network includes 8 bus segments, and the 8 bus segments are respectively connected to a plurality of controllers in the first compartment, and the plurality of controllers include a first controller and a second controller.
  • the controller area network CAN includes a vehicle diagnosis computer SDR; the first controller is specifically configured to: receive a first message sent by the second controller through the vehicle diagnosis computer SDR. For example, the first controller 101 accepts the first message sent by the second controller through the vehicle-end diagnostic computer 1 (103).
  • the embodiment of the present application also provides a high-speed maglev train, which includes the high-speed maglev train communication system in the above-mentioned embodiments.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the differences from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related part, please refer to the description of the system part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Small-Scale Networks (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

本申请公开了一种高速磁悬浮列车通信方法,该方法应用于高速磁悬浮列车,列车包括第一车厢和第二车厢;第一车厢包括第一控制器、第二控制器和第一交换机,第二车厢包括第三控制器和第二交换机,该方法包括:第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息;第一控制器通过第一交换机和第二交换机之间的以太网向第三控制器发送第二消息,第二消息根据第一消息生成。由于CAN网可以将单车内多个控制器同时连接在总线上进行通信,减少了列车内通信线的布置,且由于车厢与车厢之间通过以太网进行连接,CAN网仅用于连接车厢内的控制器,缩短了CAN网走线的长度,减少了中继器的使用个数,节约了高速磁悬浮列车的夹层空间。

Description

高速磁悬浮列车通信方法、通信系统及相关装置
本申请要求于2021年11月19日递交中国国家知识产权局、申请号为202111397809.9,发明名称为“高速磁悬浮列车通信方法、通信系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轨道交通领域,尤其涉及一种高速磁悬浮列车通信方法、通信系统及相关装置。
背景技术
目前,轨道交通中的控制器可以通过以太网来进行连接,但高速磁悬浮列车中单车(每个车厢)中的控制器较多,如果控制器之间通过以太网来连接,每个控制器都需要一根以太网线连接至交换机,将占用高速磁悬浮列车大量的夹层空间。
轨道交通中的控制器还可以通过控制器局域网络(Controller Area Network,CAN)来进行连接,但高速磁悬浮列车中的控制器较多,CAN网的走线较长,需要大量中继器保证CAN网中信号的稳定性,也将占用高速磁悬浮列车大量的夹层空间。
因此,本领域目前需要一种能够节约夹层空间的高速磁悬浮列车通信方法。
发明内容
为了解决上述技术问题,本申请提供了一种高速磁悬浮列车通信方法、通信系统及相关装置,用于在保证高速磁悬浮列车中控制器的通信的基础上,节约高速磁悬浮列车的夹层空间。
为了实现上述目的,本申请实施例提供的技术方案如下:
本申请实施例提供一种高速磁悬浮列车通信方法,该方法应用于高速磁悬浮列车,列车包括第一车厢和第二车厢;第一车厢包括第一控制器、第二控制器和第一交换机,第二车厢包括第三控制器和第二交换机,该方法包括:
第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息;
第一控制器通过第一交换机和第二交换机之间的以太网向第三控制器发送第二消息,第二消息根据第一消息生成。
可选地,控制器局域网包括8路总线段,8路总线段分别连接第一车厢中的多个控制器,多个控制器包括第一控制器和第二控制器。
可选地,控制器局域网络CAN包括车辆诊断计算机SDR;
第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息,包括:
第一控制器接收第二控制器通过车辆诊断计算机SDR发送的第一消息。
可选地,第一控制器通过第一交换机和第二交换机向第三控制器发送第二消息,包括:
第一控制器向第一交换机发送第二消息;
第一交换机通过以太网向第二交换机发送第二消息,以使第二交换机向第三控制器发送第二消息。
可选地,控制器局域网络CAN包括车辆诊断计算机SDR;
第一控制器向第一交换机发送第二消息,包括:
第一控制器通过车辆诊断计算机SDR向第一交换机发送第二消息;
第二交换机向第三控制器发送第二消息,包括:
第二交换机通过车辆诊断计算机SDR向第三控制器发送第二消息。
可选地,第一车厢还包括第一车上设备和第二车上设备;
第一车上设备通过第一交换机向第二车上设备发送第三消息。
根据上述实施例提供的高速磁悬浮列车通信方法,本申请实施例还提供了一种高速磁悬浮列车通信系统,该系统包括第一控制器、第二控制器、第三控制器、第一交换机和第二交换机;
列车包括第一车厢和第二车厢;第一控制器、第二控制器和第一交换机位于第一车厢,第三控制器和第二交换机位于第二车厢;
第一控制器,用于接收第二控制器通过控制器局域网络CAN发送的第一消息,并通过第一交换机和第二交换机之间的以太网向第三控制器发送第二消息,第二消息根据第一消息生成。
可选地,控制器局域网包括8路总线段,8路总线段分别连接第一车厢中的多个控制器,多个控制器包括第一控制器和第二控制器。
可选地,控制器局域网络CAN包括车辆诊断计算机SDR;
第一控制器具体用于:接收第二控制器通过车辆诊断计算机SDR发送的第一消息。
根据上述提供的高速磁悬浮通信方法和高速磁悬浮通信设备,本申请还提供了一种高速磁悬浮列车,该列车包括上述的高速磁悬浮列车通信系统。
通过上述技术方案可知,本申请具有以下有益效果:
本申请实施例提供了一种高速磁悬浮列车通信方法,该方法应用于高速磁悬浮列车,列车包括第一车厢和第二车厢;第一车厢包括第一控制器、第二控制器和第一交换机,第二车厢包括第三控制器和第二交换机,该方法包括:第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息;第一控制器通过第一交换机和第二交换机之间的以太网向第三控制器发送第二消息,第二消息根据第一消息生成。
由此可知,本申请提供的高速磁悬浮列车通信方法,每一个车厢内的控制器采用CAN网进行通信,车厢与车厢之间将信号通过交换机连接以太网进行通信。如此,由于CAN网可以将单车内多个控制器同时连接在总线上进行通信,减少了列车内通信线的布置,且由于车厢与车厢之间通过以太网进行连接,CAN网仅用于连接车厢内的控制器,缩短了CAN网走线的长度,减少了中继器的使用个数,节约了高速磁悬浮列车的夹层空间。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种高速磁悬浮列车通信方法的流程图;
图2为本申请实施例提供的一种第一车厢内的控制器局域网的示意图;
图3为本申请实施例提供的一种高速磁悬浮列车通信系统的示意图;
图4为本申请实施例提供的另一种高速磁悬浮列车通信系统的示意图。
具体实施方式
为了帮助更好地理解本申请实施例提供的方案,在介绍本申请实施例提供的方法之前,先介绍本申请实施例方案的应用的场景。
目前,轨道交通中的控制器可以通过以太网来进行连接,但高速磁悬浮列车中单车(每个车厢)中的控制器较多,如果控制器之间通过以太网来连接,每个控制器都需要一根以太网线连接至交换机,将占用高速磁悬浮列车大量的夹层空间。
轨道交通中的控制器还可以通过控制器局域网络(Controller Area Network,CAN)来进行连接,但高速磁悬浮列车中的控制器较多,CAN网的走线较长,需要大量中继器保证CAN网中信号的稳定性,也将占用高速磁悬浮列车大量的夹层空间。因此,本领域目前需要一种能够节约夹层空间的高速磁悬浮列车通信方法。
为了解决上述的技术问题,本申请实施例提供了一种高速磁悬浮列车通信方法,该方法应用于高速磁悬浮列车,列车包括第一车厢和第二车厢;第一车厢包括第一控制器、第二控制器和第一交换机,第二车厢包括第三控制器和第二交换机;第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息;第一控制器通过第一交换机和第二交换机之间的以太网向第三控制器发送第二消息,第二消息根据第一消息生成。
由此可知,本申请提供的高速磁悬浮列车通信方法,每一个车厢内的控制器采用CAN网进行通信,车厢与车厢之间将信号通过交换机连接以太网进行通信。如此,由于CAN网可以将单车内多个控制器同时连接在总线上进行通信,减少了列车内通信线的布置,且由于车厢与车厢之间通过以太网进行连接,CAN网仅用于连接车厢内的控制器,缩短了CAN网走线的长度,减少了中继器的使用个数,节约了高速磁悬浮列车的夹层空间。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
参见图1,该图为本申请实施例提供的一种高速磁悬浮列车通信方法的流程图。
本申请实施例提供的高速磁悬浮列车通信方法应用于高速磁悬浮列车,列车包括第一车厢和第二车厢;第一车厢包括第一控制器、第二控制器和第一交换机,第二车厢包括第三控制器和第二交换机。如图1所示,本申请实施例提供的高速磁悬浮列车通信方法,包括:
S101:第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息。
S102:第一控制器通过第一交换机和第二交换机之间的以太网向第三控制器发送第二消息,第二消息根据第一消息生成。
需要说明的是,本申请实施例中的第一控制器和第二控制器均位于第一车厢。第一控制器和第二控制器可以通过第一车厢内的控制器局域网络进行通信。第二控制器位于第二车厢,第二车厢与第一车厢内的第一控制器或第二控制器进行通信时,需要通过第一车厢内的第一交换机和第二车厢内的第二交换机连接以太网进行通信。
由此可知,本申请实施例中的每一个车厢内的控制器采用单独的CAN网进行通信,车厢与车厢之间将信号通过交换机连接以太网进行通信。一方面,由于CAN网可以通过一条CAN总线连接单车内多个控制器,减少了列车内通信线的布置。另一方面,由于车厢与车 厢之间通过以太网进行连接,CAN网仅用于连接车厢内的控制器,缩短了CAN网走线的长度,减少了中继器的使用个数,节约了高速磁悬浮列车的夹层空间。
为了更好地理解本申请实施例提供的高速磁悬浮列车通信方法,下面结合控制器局域网对该方法进行介绍。
参见图2,该图为本申请实施例提供的一种第一车厢内的控制器局域网的示意图。
如图2所示,本申请实施例提供的第一车厢的控制器局域网包括第一控制器101、第二控制器102、车辆诊断计算机103和第一交换机104。
其中,第一控制器101和第二控制器102均通过车辆诊断计算机进行通信。在本申请实施例中,控制器局域网络CAN包括车辆诊断计算机SDR。本申请实施例中的第一控制器接收第二控制器通过控制器局域网络CAN发送的第一消息,包括:第一控制器接收第二控制器通过车辆诊断计算机SDR发送的第一消息。
作为一种可能的实施方式,本申请实施例汇总的控制器局域网可以包括8路总线段,8路总线段通过8个接口与车辆诊断计算器连接,8路总线端中的每路总线端分别连接第一车厢中的多个控制器。本申请实施例提供的第一控制器和第二控制器可以连接在同一路总线段上,也可以连接不同总线段上,本申请实施例在此不做限定。
上述介绍了在单车内的控制器局域网络CAN的示意图,下面结合附图介绍多个单车的控制器局域网络CAN和以太网组成的高速磁悬浮列车通信系统。
作为一种可能的实施方式,第一控制器通过第一交换机和第二交换机向第三控制器发送第二消息,包括:第一控制器向第一交换机发送第二消息;第一交换机通过以太网向第二交换机发送第二消息,以使第二交换机向第三控制器发送第二消息。
参见图3,该图为本申请实施例提供的一种高速磁悬浮列车通信系统的示意图。
如图3所示,本申请实施例提供的高速磁悬浮列车通信系统,包括第一车厢内的控制器局域网1,第二车厢内的控制器局域网2。其中,控制器局域网1包括第一控制器101、第二控制器102、车辆诊断计算机1(103)和第一交换机104;控制器局域网2包括第三控制器201、车辆诊断计算机2(203)和第二交换机204。
其中,第一控制器101和第二控制器102均与车辆诊断计算机1连接,车辆诊断计算机1连接第一交换机104;第三控制器201连接车辆诊断计算机2,车辆诊断计算机2连接第二交换机204;第一交换机104和第二交换机204通过以太网连接。
如图3所示,本申请实施例中的控制器局域网络CAN包括车辆诊断计算机SDR;第一控制器向第一交换机发送第二消息,包括:第一控制器通过车辆诊断计算机SDR向第一交换机发送第二消息。相应地,本申请实施例中的第二交换机向第三控制器发送第二消息,包括:第二交换机通过车辆诊断计算机SDR向第三控制器发送第二消息。
高速磁悬浮列中的设备除了上述的车下设备,包括各种控制器外,还包括了一些车上设备,例如车内空调和车内自动门等。作为一种可能的实施方式,第一车厢还包括第一车上设备和第二车上设备。第一车上设备通过第一交换机向第二车上设备发送第三消息。需要说明的是,由于以太网传输的信息量较大,传输信息的实时性较好,车上设备直接连接至交换机利用以太网进行通信可以提高车上设备的灵敏性,从而提高用户的使用体验。
综上所述,本申请提供的高速磁悬浮列车通信方法,每一个车厢内的控制器采用CAN 网进行通信,车厢与车厢之间将信号通过交换机连接以太网进行通信。如此,由于CAN网可以将单车内多个控制器同时连接在总线上进行通信,减少了列车内通信线的布置,且由于车厢与车厢之间通过以太网进行连接,CAN网仅用于连接车厢内的控制器,缩短了CAN网走线的长度,减少了中继器的使用个数,节约了高速磁悬浮列车的夹层空间。
根据上述实施例提供的高速磁悬浮列车通信方法,本申请实施例还提供了一种高速磁悬浮列车通信系统。
参见图4,该图为本申请实施例提供的另一种高速磁悬浮列车通信系统的示意图。
如图4所示,本申请实施例提供的高速磁悬浮列车通信系统包括第一控制器101、第二控制器102、第三控制器201、第一交换机104和第二交换机204。
列车包括第一车厢和第二车厢;第一控制器101、第二控制器102和第一交换机104位于第一车厢,第三控制器201和第二交换机204位于第二车厢;
第一控制器101,用于接收第二控制器102通过控制器局域网络CAN发送的第一消息,并通过第一交换机104和第二交换机204之间的以太网向第三控制器201发送第二消息,第二消息根据第一消息生成。
作为一种可能的实施方式,控制器局域网包括8路总线段,8路总线段分别连接第一车厢中的多个控制器,多个控制器包括第一控制器和第二控制器。作为一种可能的实施方式,控制器局域网络CAN包括车辆诊断计算机SDR;第一控制器具体用于:接收第二控制器通过车辆诊断计算机SDR发送的第一消息。例如,第一控制器101接受第二控制器通过车端诊断计算机1(103)发送的第一消息。
根据上述实施例提供的高速磁悬浮列车通信方法和高速磁悬浮列车通信系统,本申请实施例还提供了一种高速磁悬浮列车,该列车包括上述实施例的高速磁悬浮列车通信系统。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到上述实施例方法中的全部或部分步骤可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者诸如媒体网关等网络通信设备,等等)执行本申请各个实施例或者实施例的某些部分所述的方法。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法而言,由于其与实施例公开的系统相对应,所以描述的比较简单,相关之处参见系统部分说明即可。
还需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原 理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种高速磁悬浮列车通信方法,其特征在于,所述方法应用于高速磁悬浮列车,所述列车包括第一车厢和第二车厢;所述第一车厢包括第一控制器、第二控制器和第一交换机,所述第二车厢包括第三控制器和第二交换机,所述方法包括:
    所述第一控制器接收所述第二控制器通过控制器局域网络CAN发送的第一消息;
    所述第一控制器通过所述第一交换机和所述第二交换机之间的以太网向所述第三控制器发送第二消息,所述第二消息根据所述第一消息生成。
  2. 根据权利要求1所述的方法,其特征在于,所述控制器局域网包括8路总线段,所述8路总线段分别连接所述第一车厢中的多个控制器,所述多个控制器包括所述第一控制器和所述第二控制器。
  3. 根据权利要求2所述的方法,其特征在于,所述控制器局域网络CAN包括车辆诊断计算机SDR;
    所述第一控制器接收所述第二控制器通过控制器局域网络CAN发送的第一消息,包括:
    所述第一控制器接收所述第二控制器通过所述车辆诊断计算机SDR发送的第一消息。
  4. 根据权利要求1所述的方法,其特征在于,所述第一控制器通过所述第一交换机和所述第二交换机向所述第三控制器发送第二消息,包括:
    所述第一控制器向所述第一交换机发送第二消息;
    所述第一交换机通过以太网向所述第二交换机发送第二消息,以使所述第二交换机向所述第三控制器发送第二消息。
  5. 根据权利要求4所述的方法,其特征在于,所述控制器局域网络CAN包括车辆诊断计算机SDR;
    所述第一控制器向所述第一交换机发送第二消息,包括:
    所述第一控制器通过车辆诊断计算机SDR向所述第一交换机发送第二消息;
    所述第二交换机向所述第三控制器发送第二消息,包括:
    所述第二交换机通过车辆诊断计算机SDR所述向所述第三控制器发送第二消息。
  6. 根据权利要求1所述的方法,其特征在于,所述第一车厢还包括第一车上设备和第二车上设备;
    所述第一车上设备通过所述第一交换机向所述第二车上设备发送第三消息。
  7. 一种高速磁悬浮列车通信系统,其特征在于,所述系统包括第一控制器、第二控制器、第三控制器、第一交换机和第二交换机;
    所述列车包括第一车厢和第二车厢;所述第一控制器、第二控制器和第一交换机位于所述第一车厢,第三控制器和第二交换机位于所述第二车厢;
    所述第一控制器,用于接收所述第二控制器通过控制器局域网络CAN发送的第一消息,并通过所述第一交换机和所述第二交换机之间的以太网向所述第三控制器发送第二消息,所述第二消息根据所述第一消息生成。
  8. 根据权利要求7所述的系统,其特征在于,所述控制器局域网包括8路总线段,所述8路总线段分别连接所述第一车厢中的多个控制器,所述多个控制器包括所述第一控制器和所述第二控制器。
  9. 根据权利要求8所述的系统,其特征在于,所述控制器局域网络CAN包括车辆诊断计算机SDR;
    所述第一控制器,具体用于接收所述第二控制器通过所述车辆诊断计算机SDR发送的第一消息。
  10. 一种高速磁悬浮列车,其特征在于,所述列车包括所述权利要求7至9任一项所述的高速磁悬浮列车通信系统。
PCT/CN2021/134896 2021-11-19 2021-12-01 高速磁悬浮列车通信方法、通信系统及相关装置 WO2023087404A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111397809.9 2021-11-19
CN202111397809.9A CN114006786A (zh) 2021-11-19 2021-11-19 高速磁悬浮列车通信方法、通信系统及相关装置

Publications (1)

Publication Number Publication Date
WO2023087404A1 true WO2023087404A1 (zh) 2023-05-25

Family

ID=79930115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134896 WO2023087404A1 (zh) 2021-11-19 2021-12-01 高速磁悬浮列车通信方法、通信系统及相关装置

Country Status (2)

Country Link
CN (1) CN114006786A (zh)
WO (1) WO2023087404A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140156117A1 (en) * 2012-11-30 2014-06-05 Electro-Motive Diesel, Inc. Distributed control system for a locomotive
US20140156122A1 (en) * 2012-11-30 2014-06-05 Electro-Motive Diesel, Inc. Network infrastructure for locomotive distributed control system
CN111717239A (zh) * 2020-07-06 2020-09-29 中车大连机车车辆有限公司 一种磁悬浮列车控制和管理系统及其通信方法
CN112744265A (zh) * 2019-10-31 2021-05-04 株洲中车时代电气股份有限公司 列车通信网络结构的控制装置及方法和列车通信网络系统
CN113071535A (zh) * 2020-01-03 2021-07-06 中车株洲电力机车研究所有限公司 列车及其控制网络结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2450520A (en) * 2007-06-27 2008-12-31 Bombardier Transp Gmbh Communication system transferring information within a railway train
CN105407027B (zh) * 2014-05-28 2018-07-06 中车大连电力牵引研发中心有限公司 列车网络控制系统
CN206374741U (zh) * 2016-12-21 2017-08-04 比亚迪股份有限公司 列车网络控制系统
KR20210120287A (ko) * 2020-03-26 2021-10-07 현대자동차주식회사 진단 시스템 및 차량
CN216016889U (zh) * 2021-11-19 2022-03-11 中车长春轨道客车股份有限公司 高速磁悬浮列车通信系统及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140156117A1 (en) * 2012-11-30 2014-06-05 Electro-Motive Diesel, Inc. Distributed control system for a locomotive
US20140156122A1 (en) * 2012-11-30 2014-06-05 Electro-Motive Diesel, Inc. Network infrastructure for locomotive distributed control system
CN112744265A (zh) * 2019-10-31 2021-05-04 株洲中车时代电气股份有限公司 列车通信网络结构的控制装置及方法和列车通信网络系统
CN113071535A (zh) * 2020-01-03 2021-07-06 中车株洲电力机车研究所有限公司 列车及其控制网络结构
CN111717239A (zh) * 2020-07-06 2020-09-29 中车大连机车车辆有限公司 一种磁悬浮列车控制和管理系统及其通信方法

Also Published As

Publication number Publication date
CN114006786A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN107508617B (zh) 一种450MHz数模兼容的机车综合无线通信设备
CN103023786B (zh) 汽车总线网关动态优先级路由管理方法及其系统
CN103492221B (zh) 用于运行有轨车辆的方法
US8807486B2 (en) Communication network for a railborne vehicle
CN108189870A (zh) 一种基于智轨列车的调度方法和设备
WO2017124867A1 (zh) 汽车电气系统和用于汽车电气系统的隔离系统
CN110920682B (zh) 适用于协同编队折返策略的道岔控制方法及装置
CN112437411B (zh) 一种基于5g的列车通信组网方法及系统
KR20100111225A (ko) 지능형 통합 게이트웨이를 갖는 차량 네트워크 시스템 및 그의 데이터 처리 방법
WO2023087404A1 (zh) 高速磁悬浮列车通信方法、通信系统及相关装置
CN216016889U (zh) 高速磁悬浮列车通信系统及相关装置
CA2442272A1 (en) Communication circuit for a vehicle
CN105539324A (zh) 主副机交互方法、蓝牙网关、副机移动设备及车载终端
CN209870404U (zh) 一种用于至少二节列车重联运营的系统结构
CN113022472B (zh) 一种整车网络架构及汽车
JP2009027245A (ja) 変換ユニット、変換方法及びプログラム
CN112180887A (zh) 基于oled透明车窗显示的控制系统
CN117227789A (zh) 一种车辆报警系统及方法
CN103457655B (zh) 信息传输系统及方法
CN113743718B (zh) 开行跨线列车的运营方法、设备及计算机可读存储介质
JP2008131797A (ja) 鉄道車両用運転操作記録装置
CN102098535A (zh) 列车视频娱乐服务呼叫系统
CN203039724U (zh) 一种基于dlna的车内无线控制系统
CN113085953A (zh) 列车监控系统
CN204906421U (zh) 车载混合网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE