WO2023085171A1 - 組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置 - Google Patents

組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置 Download PDF

Info

Publication number
WO2023085171A1
WO2023085171A1 PCT/JP2022/040871 JP2022040871W WO2023085171A1 WO 2023085171 A1 WO2023085171 A1 WO 2023085171A1 JP 2022040871 W JP2022040871 W JP 2022040871W WO 2023085171 A1 WO2023085171 A1 WO 2023085171A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituent
carbon atoms
ring
Prior art date
Application number
PCT/JP2022/040871
Other languages
English (en)
French (fr)
Inventor
英貴 五郎丸
英司 小松
延軍 李
大輔 弘
宏一朗 飯田
祥匡 坂東
優記 大嶋
一毅 岡部
司 長谷川
麻未 山下
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2023559581A priority Critical patent/JPWO2023085171A1/ja
Priority to KR1020247015192A priority patent/KR20240108395A/ko
Priority to CN202280074703.1A priority patent/CN118235538A/zh
Publication of WO2023085171A1 publication Critical patent/WO2023085171A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/55Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the present invention relates to a composition, an organic electroluminescent element and its manufacturing method, a display device, and a lighting device.
  • OLED organic electroluminescent device
  • An organic electroluminescent device usually has a charge injection layer, a charge transport layer, an organic light emitting layer, an electron transport layer, etc. between an anode and a cathode, and materials suitable for each layer are being developed. Emission colors are also being developed into red, green, and blue.
  • Methods for forming the organic layer of the organic electroluminescence device include a vacuum deposition method and a wet film forming method (coating method).
  • the vacuum vapor deposition method facilitates lamination, and thus has the advantage of improving charge injection from the anode and/or cathode and facilitating confinement of excitons in the light-emitting layer.
  • the wet film-forming method does not require a vacuum process and can easily be applied to a large area. There is an advantage that a layer containing the material can be formed. Therefore, in recent years, research and development of organic electroluminescence elements by film formation by a coating method have been vigorously carried out.
  • Patent Document 1 describes an organic electroluminescence device having a polymer containing a cross-linking group and an electron-accepting compound containing a cross-linking group as a charge injection material.
  • Patent Document 2 describes an organic electroluminescent device having a composition comprising a fluorene aryldiamine compound containing a bridging group and an electron-accepting compound.
  • Patent Document 3 describes an organic electroluminescent device having a composition comprising a carbazole arylamine compound containing a bridging group and an electron-accepting compound.
  • Patent Document 4 discloses an organic electroluminescence device containing a compound having one or more polymerizable substituents and two or more carbazole groups in the molecule.
  • an arylamine organic electron donor and an organic electron acceptor are mixed in an appropriate ratio, and when the N atoms of the arylamine partially form an ionic complex with the organic electron acceptor, this ionic complex
  • an ionic complex is formed from an organic electron donor of an arylamine polymer, an arylamine low-molecular-weight compound, or an arylamine compound of carbazole, and an organic electron acceptor. , the driving voltage of the organic electroluminescence device is insufficiently reduced.
  • Patent Document 4 discloses a biscarbazole compound containing an oxetane cross-linking group, but an organic electron acceptor containing no cross-linking group is used as a photopolymerization initiator, and diffusion of the organic electron acceptor to the light-emitting layer The prevention was insufficient, and the luminous efficiency and driving life could not be improved.
  • An object of the present invention is to provide an organic electroluminescence device with a low drive voltage, high luminous efficiency, and a long drive life.
  • the present inventors have found that the above problems can be solved by using a hole injection layer and/or a hole transport layer containing a cross-linking reaction product of a carbazole compound having a cross-linking group and an electron-accepting compound having a cross-linking group. and completed the present invention.
  • the gist of the present invention is as follows [1] to [45].
  • Ar 621 represents an optionally substituted C 6-50 divalent aromatic hydrocarbon group.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom and/or a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group , or a bridging group.
  • n621, n622, n623 and n624 are each independently an integer of 0-4. However, the sum of n621, n622, n633 and n624 is 1 or more.
  • the compound represented by formula (71) has at least two cross-linking groups. )
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • Each of R 611 and R 612 is independently a deuterium atom, a halogen atom, a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group, or a bridging group.
  • G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • n 611 and n 612 are each independently an integer of 0-4.
  • the compound represented by formula (72) has at least two cross-linking groups. )
  • R 81 , 5 R 82 , 5 R 83 and 5 R 84 are each independently, and R 81 to R 84 are each independently hydrogen atom, deuterium Atoms, halogen atoms, aromatic hydrocarbon groups having 6 to 50 carbon atoms which may have substituents and/or crosslinking groups, and 3 to 50 carbon atoms which may have substituents and/or crosslinking groups represents an aromatic heterocyclic group, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, or a bridging group.
  • Ph 1 , Ph 2 , Ph 3 and Ph 4 are symbols indicating four benzene rings.
  • the compound represented by formula (81) has a cross-linking group.
  • X + represents a counter cation.
  • Ar 621 in the formula (71) is selected from a benzene ring optionally having 1 to 4 substituents and a fluorene ring optionally having 1 or 2 substituents
  • the composition according to [1], wherein a plurality of structures are a divalent group formed by chain-like or branched binding in any order.
  • Ar 621 in the formula (71) has at least one partial structure selected from the following formulas (71-1) to (71-11) and (71-21) to (71-24), The composition according to [1] or [2].
  • R 625 and R 626 each independently represent an alkyl group having 6 to 12 carbon atoms, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, a cyano group, an aralkyl group, or a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • R 625 and R 626 may combine together to form a ring.
  • R 621 , R 622 , R 623 and R 624 in the above formula (71) are each independently an aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a cross-linking group, or a cross-linking group;
  • n 621 and n 623 are 1, n 622 and n 624 are 0, and R 621 and R 623 are each independently the number of carbon atoms substituted by a bridging group.
  • Ar 611 and Ar 612 in the formula (72) are each independently a phenyl group having a cross-linking group, or a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner; and a group having a cross-linking group, the composition according to any one of [1] to [5].
  • At least one of Ar 611 and Ar 612 in formula (72) has at least one partial structure selected from the following formulas (72-1) to (72-6), [1] to [ 6].
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • R85 represents an aromatic hydrocarbon group which may have a substituent and/or a bridging group, or a bridging group.
  • Ar 51 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which a plurality of groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are linked.
  • Ar 52 is at least selected from the group consisting of a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group One group represents a divalent group in which a plurality of groups are linked directly or via a linking group.
  • Ar 51 and Ar 52 may form a ring via a single bond or a linking group.
  • Ar 51 and Ar 52 may have a substituent and/or a bridging group.
  • Q represents a direct bond or a linking group. * represents a binding position.
  • R 110 in formula (X4), formula (X5), formula (X6) and formula (X10) represents a hydrogen atom or an optionally substituted alkyl group.
  • the benzene ring and naphthalene ring may have a substituent. Also, the substituents may be combined with each other to form a ring.
  • the cyclobutene ring may have a substituent.
  • cross-linking group possessed by the compound represented by the formula (71) or the formula (72), the cross-linking group possessed by the compound represented by the formula (81), and the polymer having the arylamine structure as a repeating unit The composition according to [14], wherein each of the cross-linking groups possessed by the combination is independently selected from formulas (X1) to (X4) in the above-mentioned cross-linking group group T.
  • the repeating unit represented by the formula (50) is a repeating unit represented by the following formula (54), formula (55), formula (56), or formula (57), [12]-[ 15].
  • Ar 51 is the same as Ar 51 in the formula (50).
  • X is -C(R 207 )(R 208 )-, -N(R 209 )- or -C(R 211 )(R 212 )-C(R 213 )(R 214 )-.
  • R 201 , R 202 , R 221 and R 222 are each independently an alkyl group optionally having a substituent and/or a bridging group.
  • R 207 to R 209 and R 211 to R 214 are each independently a hydrogen atom, an alkyl group optionally having a substituent and/or a bridging group, optionally having a substituent and/or a bridging group It is an aralkyl group or an aromatic hydrocarbon group which may have a substituent and/or a bridging group.
  • a and b are each independently an integer of 0 to 4; c is an integer from 0 to 3; d is an integer from 0 to 4; i and j are each independently an integer of 0 to 3; )
  • R 303 and R 306 each independently represent an alkyl group optionally having a substituent and/or a bridging group.
  • R 304 and R 305 are each independently an alkyl group optionally having a substituent and/or a bridging group, an alkoxy group optionally having a substituent and/or a bridging group or a substituent and/or represents an aralkyl group which may have a cross-linking group.
  • l is 0 or 1;
  • m is 1 or 2;
  • n is 0 or 1;
  • p is 0 or 1; q is 0 or 1;
  • Ar 51 is the same as Ar 51 in the formula (54).
  • Ar 41 is an optionally substituted divalent aromatic hydrocarbon group, an optionally substituted divalent aromatic heterocyclic group, or the aforementioned divalent aromatic hydrocarbon group and a divalent group in which at least one group selected from the group consisting of the above divalent aromatic heterocyclic groups is linked directly or via a linking group.
  • R 441 and R 442 each independently represent an optionally substituted alkyl group.
  • t is 1 or 2;
  • u is 0 or 1;
  • r and s are each independently an integer of 0-4. However, r ⁇ t+s ⁇ u is 1 when the aforementioned twisted structure is essential.
  • R 517 to R 519 are each independently an alkyl group optionally having a substituent and/or a cross-linking group, an alkoxy group optionally having a substituent and/or a cross-linking group, a substituent and/or An aralkyl group optionally having a bridging group, an aromatic hydrocarbon group optionally having a substituent and/or a bridging group, or an aromatic heterocyclic ring optionally having a substituent and/or a bridging group represents a group.
  • f, g, and h each independently represent an integer of 0 to 4; e represents an integer of 0 to 3; However, when g is 1 or more, e is 1 or more. In addition, f+exg+h is 1 or more. )
  • Ar 51 is the same as Ar 51 in the formula (50).
  • n 60 represents an integer of 1-5.
  • a composition comprising a carbazole compound having a cross-linking group represented by the following formula (71) or the following formula (72) and a polymer having an arylamine structure as a repeating unit, wherein the arylamine structure is
  • the polymer having a repeating unit has a structure represented by the following formula (50) as a repeating unit and has a cross-linking group, and the structure represented by the formula (50) is represented by the following formula (63)
  • Ar 621 represents an optionally substituted C 6-50 divalent aromatic hydrocarbon group.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom and/or a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group , or a bridging group.
  • n621, n622, n623 and n624 are each independently an integer of 0-4. However, the sum of n621, n622, n633 and n624 is 1 or more.
  • the compound represented by formula (71) has at least two cross-linking groups. )
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • Each of R 611 and R 612 is independently a deuterium atom, a halogen atom, a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group, or a bridging group.
  • G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • n 611 and n 612 are each independently an integer of 0-4.
  • the compound represented by formula (72) has at least two cross-linking groups. )
  • Ar 51 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which a plurality of groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are linked.
  • Ar 52 is at least selected from the group consisting of a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group One group represents a divalent group in which a plurality of groups are linked directly or via a linking group.
  • Ar 51 and Ar 52 may form a ring via a single bond or a linking group.
  • Ar 51 and Ar 52 may have a substituent and/or a bridging group.
  • Ar 52 has a partial structure represented by the following formula (63). )
  • R 601 represents an alkyl group optionally having a substituent or a bridging group.
  • Ar 621 represents a divalent aromatic hydrocarbon group which may have a substituent and/or a bridging group, a divalent aromatic heterocyclic group which may have a substituent and/or a bridging group.
  • Ring Ar represents an aromatic hydrocarbon structure which may have a substituent and/or a bridging group, or a bivalent aromatic heterostructure which may have a substituent and/or a bridging group. * represents a bonding position with an adjacent atom.
  • repeating unit represented by the formula (50) is a repeating unit represented by the following formula (54), formula (55), formula (56), or formula (57) composition.
  • Ar 51 is the same as Ar 51 in the formula (50).
  • X is -C(R 207 )(R 208 )-, -N(R 209 )- or -C(R 211 )(R 212 )-C(R 213 )(R 214 )-.
  • R 201 , R 202 , R 221 and R 222 are each independently an alkyl group optionally having a substituent and/or a bridging group.
  • R 207 to R 209 and R 211 to R 214 are each independently a hydrogen atom, an alkyl group optionally having a substituent and/or a bridging group, optionally having a substituent and/or a bridging group It is an aralkyl group or an aromatic hydrocarbon group which may have a substituent and/or a bridging group.
  • a and b are each independently an integer of 0 to 4; c is an integer from 0 to 3; d is an integer from 0 to 4; i and j are each independently an integer of 0 to 3; However, a*c+b*d+i+j is 1 or more. )
  • R 303 and R 306 each independently represent an alkyl group optionally having a substituent and/or a bridging group.
  • R 304 and R 305 are each independently an alkyl group optionally having a substituent and/or a bridging group, an alkoxy group optionally having a substituent and/or a bridging group or a substituent and/or represents an aralkyl group which may have a cross-linking group.
  • l is 0 or 1;
  • m is 1 or 2;
  • n is 0 or 1;
  • p is 0 or 1; q is 0 or 1;
  • Ar 51 is the same as Ar 51 in the formula (54).
  • Ar 41 is an optionally substituted divalent aromatic hydrocarbon group, an optionally substituted divalent aromatic heterocyclic group, or the aforementioned divalent aromatic hydrocarbon group and a divalent group in which at least one group selected from the group consisting of the above divalent aromatic heterocyclic groups is linked directly or via a linking group.
  • R 441 and R 442 each independently represent an optionally substituted alkyl group.
  • t is 1 or 2;
  • u is 0 or 1;
  • r and s are each independently an integer of 0-4. However, r ⁇ t+s ⁇ u is 1 when the aforementioned twisted structure is essential.
  • R 517 to R 519 are each independently an alkyl group optionally having a substituent and/or a cross-linking group, an alkoxy group optionally having a substituent and/or a cross-linking group, a substituent and/or An aralkyl group optionally having a bridging group, an aromatic hydrocarbon group optionally having a substituent and/or a bridging group, or an aromatic heterocyclic ring optionally having a substituent and/or a bridging group represents a group.
  • f, g, and h each independently represent an integer of 0 to 4; e represents an integer of 0 to 3; However, when g is 1 or more, e is 1 or more. In addition, f+exg+h is 1 or more. )
  • Ar 51 , X, R 201 , R 202 , R 221 , R 222 , a, b, c, d, i, and j are Ar 51 , X, R 201 , R 202 , R 221 , Same as R 222 , a, b, i, j. c is an integer of 1-3. d is an integer of 1-4. a 1 , a 2 , b 1 , b 2 , i 1 , i 2 , j 1 and j 2 are each independently 0 or 1; However, it satisfies either of the following conditions (1) and (2).
  • Ring A1 refers to a divalent benzene ring that may have R 201 at a specific position
  • Ring A3 refers to a divalent condensed ring in which a biphenyl structure is further linked by X
  • Ring A5 refers to a divalent benzene ring
  • the polymer having the arylamine structure as a repeating unit is represented by the formula (54), the formula (55), the formula (56), or the formula (57) as the repeating unit represented by the formula (50)
  • Ar 51 is the same as Ar 51 in the formula (50).
  • n 60 represents an integer of 1-5.
  • Ar 621 in the formula (71) is selected from a benzene ring optionally having 1 to 4 substituents and a fluorene ring optionally having 1 or 2 substituents
  • Ar 621 in the formula (71) has at least one partial structure selected from the following formulas (71-1) to (71-11) and (71-21) to (71-24), The composition according to any one of [20] to [24].
  • R 625 and R 626 each independently represent an alkyl group having 6 to 12 carbon atoms, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, a cyano group, an aralkyl group, or a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • R 625 and R 626 may combine together to form a ring.
  • R 621 , R 622 , R 623 and R 624 are each independently an aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group, or a bridging group; The composition according to any one of [20] to [25].
  • n 621 and n 623 are 1, n 622 and n 624 are 0, and R 621 and R 623 are each independently the number of carbon atoms substituted by a bridging group.
  • Ar 611 and Ar 612 in the formula (72) are each independently a phenyl group having a cross-linking group, or a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner; and a group having a cross-linking group, the composition according to any one of [20] to [27].
  • At least one of Ar 611 and Ar 612 in formula (72) has at least one partial structure selected from the following formulas (72-1) to (72-6), [20] to [ 28].
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • R 81 , 5 R 82 , 5 R 83 and 5 R 84 are each independently, and R 81 to R 84 are each independently hydrogen atom, deuterium Atoms, halogen atoms, aromatic hydrocarbon groups having 6 to 50 carbon atoms which may have substituents and/or crosslinking groups, and 3 to 50 carbon atoms which may have substituents and/or crosslinking groups represents an aromatic heterocyclic group, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, or a bridging group.
  • Ph 1 , Ph 2 , Ph 3 and Ph 4 are symbols indicating four benzene rings.
  • the compound represented by formula (81) has a cross-linking group.
  • X + represents a counter cation.
  • R85 represents an aromatic hydrocarbon group which may have a substituent and/or a bridging group, or a bridging group.
  • cross-linking group possessed by the compound represented by the formula (71) or the formula (72), the cross-linking group possessed by the compound represented by the formula (81), and the polymer having the arylamine structure as a repeating unit The composition according to any one of [20] to [34], wherein the cross-linking groups possessed by the combination are each independently selected from formulas (X1) to (X18) in the following cross-linking group group T.
  • Q represents a direct bond or a linking group. * represents a binding position.
  • R 110 in formula (X4), formula (X5), formula (X6) and formula (X10) represents a hydrogen atom or an optionally substituted alkyl group.
  • the benzene ring and naphthalene ring may have a substituent. Also, the substituents may be combined with each other to form a ring.
  • the cyclobutene ring may have a substituent.
  • cross-linking group possessed by the compound represented by the formula (71) or the formula (72), the cross-linking group possessed by the compound represented by the formula (81), and the polymer having the arylamine structure as a repeating unit The composition according to [35], wherein each of the cross-linking groups possessed by the combination is independently selected from formulas (X1) to (X4) in the above-mentioned cross-linking group group T.
  • a polymer having a substituent possessed by the compound represented by the formula (71) or the formula (72), a substituent possessed by the compound represented by the formula (81), or the arylamine structure as a repeating unit and the substituents possessed by the bridging group group T are each independently selected from the following substituent group Z.
  • a method for producing an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, wherein the organic layer is A method for producing an organic electroluminescence device, comprising a step of forming the composition by a wet film-forming method.
  • An organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, wherein the organic layer is represented by the following formula (71) or the following formula (72) and an electron-accepting compound containing a cross-linking group represented by the following formula (81).
  • Ar 621 represents an optionally substituted C 6-50 divalent aromatic hydrocarbon group.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom and/or a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group , or a bridging group.
  • n621, n622, n623 and n624 are each independently an integer of 0-4. However, the sum of n621, n622, n633 and n624 is 1 or more.
  • the compound represented by formula (71) has at least two cross-linking groups. )
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • Each of R 611 and R 612 is independently a deuterium atom, a halogen atom, a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group, or a bridging group.
  • G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • n 611 and n 612 are each independently an integer of 0-4.
  • the compound represented by formula (72) has at least two cross-linking groups. )
  • R 81 , 5 R 82 , 5 R 83 and 5 R 84 are each independently, and R 81 to R 84 are each independently hydrogen atom, deuterium Atoms, halogen atoms, aromatic hydrocarbon groups having 6 to 50 carbon atoms which may have substituents and/or crosslinking groups, and 3 to 50 carbon atoms which may have substituents and/or crosslinking groups represents an aromatic heterocyclic group, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, or a bridging group.
  • Ph 1 , Ph 2 , Ph 3 and Ph 4 are symbols indicating four benzene rings.
  • the compound represented by formula (81) has a cross-linking group.
  • X + represents a counter cation.
  • An organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, wherein the organic layer is represented by the following formula (71) or the following formula (72)
  • An organic electroluminescence device containing a cross-linking reaction product with a polymer having a partial structure represented by the following formula (63) in which the structure represented by the formula (50) is formed.
  • Ar 621 represents an optionally substituted C 6-50 divalent aromatic hydrocarbon group.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom and/or a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group , or a bridging group.
  • n621, n622, n623 and n624 are each independently an integer of 0-4. However, the sum of n621, n622, n633 and n624 is 1 or more.
  • the compound represented by formula (71) has at least two cross-linking groups. )
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • Each of R 611 and R 612 is independently a deuterium atom, a halogen atom, a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group, or a bridging group.
  • G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • n 611 and n 612 are each independently an integer of 0-4.
  • the compound represented by formula (72) has at least two cross-linking groups. )
  • Ar 51 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which a plurality of groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are linked.
  • Ar 52 is at least selected from the group consisting of a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group One group represents a divalent group in which a plurality of groups are linked directly or via a linking group.
  • Ar 51 and Ar 52 may form a ring via a single bond or a linking group.
  • Ar 51 and Ar 52 may have a substituent and/or a bridging group.
  • Ar 52 has a partial structure represented by the following formula (63). )
  • R 601 represents an alkyl group optionally having a substituent or a bridging group.
  • Ar 621 represents a divalent aromatic hydrocarbon group which may have a substituent and/or a bridging group, a divalent aromatic heterocyclic group which may have a substituent and/or a bridging group.
  • Ring Ar represents an aromatic hydrocarbon structure which may have a substituent and/or a bridging group, or a bivalent aromatic heterostructure which may have a substituent and/or a bridging group. * represents a bonding position with an adjacent atom.
  • a display device comprising the organic electroluminescence device according to any one of [41] to [43].
  • an organic electroluminescent device with low driving voltage, high luminous efficiency, and long driving life is provided.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of the organic electroluminescence device of the present invention.
  • the aromatic hydrocarbon group refers to a monovalent, divalent, or trivalent or higher aromatic hydrocarbon ring structure depending on the bonding state in the structure of the compound to be described later.
  • the number of carbon atoms is usually not limited, but preferably 6 or more and 60 or less, and the upper limit of the carbon number is more preferably 48 or less, more preferably 48 or less. It has 30 or less carbon atoms.
  • six-membered rings such as benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene ring.
  • a monocyclic or 2 to 5 condensed ring group, or a structure in which a plurality of groups selected from these are linked together may be mentioned.
  • aromatic hydrocarbon ring structures include a benzene ring, a biphenyl ring, i.e., a structure in which two benzene rings are linked, a terphenyl ring, i.e., a structure in which three benzene rings are linked, a quaterphenyl ring, i.e., a structure in which four benzene rings are linked, and a naphthalene ring.
  • the aromatic heterocyclic group refers to a monovalent, divalent, or trivalent or higher aromatic heterocyclic structure depending on the bonding state in the structure of the compound to be described later.
  • the number of carbon atoms is generally not limited, but preferably 3 or more and 60 or less, and more preferably 48 or less as the upper limit of the carbon number, more preferably 48 or less. It has 30 or less carbon atoms.
  • aromatic heterocycles When a plurality of aromatic heterocycles are linked, the same structure may be linked, or different structures may be linked. When a plurality of aromatic heterocycles are linked, a structure in which 2 to 10 are linked is usually mentioned, and a structure in which 2 to 5 are linked is preferable.
  • Preferred aromatic heterocyclic structures are thiophene ring, benzothiophene ring, pyrimidine ring, triazine ring, carbazole ring, dibenzofuran ring and dibenzothiophene ring.
  • a cross-linking group is a group that reacts with another cross-linking group located in the vicinity of the cross-linking group by heat and/or irradiation with an active energy ray to generate a new chemical bond.
  • the reactive group may be the same group as the bridging group or a different group.
  • cross-linking groups include, but are not limited to, alkenyl group-containing groups, conjugated diene structure-containing groups, alkynyl group-containing groups, oxirane structure-containing groups, oxetane structure-containing groups, aziridine structure-containing groups, azide groups, anhydrous Examples thereof include a group containing a maleic acid structure, a group containing an alkenyl group bonded to an aromatic ring, and a cyclobutene ring condensed to an aromatic ring.
  • Specific examples of preferred cross-linking groups include groups represented by the following formulas (X1) to (X18) in the following cross-linking group group T.
  • Q represents a direct bond or a linking group. * represents a binding position.
  • R 110 in formula (X4), formula (X5), formula (X6) and formula (X10) represents a hydrogen atom or an optionally substituted alkyl group.
  • the benzene ring and naphthalene ring may have a substituent. Also, the substituents may be combined with each other to form a ring.
  • the cyclobutene ring may have a substituent.
  • the linking group is not particularly limited, but is preferably an alkylene group, a divalent oxygen atom, or a divalent aromatic hydrocarbon group which may have a substituent.
  • the alkylene group is generally an alkylene group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the divalent aromatic hydrocarbon group usually has 6 or more carbon atoms and usually 36 or less, preferably 30 or less, more preferably 24 or less carbon atoms.
  • the structure of the aromatic hydrocarbon ring is preferably a benzene ring, and the substituents that may be present can be selected from the group of substituents Z described below.
  • Q is preferably a divalent aromatic hydrocarbon group which may have a substituent because it can maintain the device performance while increasing the reactivity of the cross-linking group.
  • the alkyl group represented by R 110 has a linear, branched or cyclic structure and has 1 or more carbon atoms, preferably 24 or less, more preferably 12 or less, and still more preferably 8 or less.
  • Benzene rings and naphthalene rings of formulas (X1) to (X4) and substituents that R 110 of formulas (X4), (X6) and (X10) may have are preferably alkyl groups and aromatic hydrocarbons. group, alkyloxy group, and aralkyl group.
  • the alkyl group as a substituent has a linear, branched or cyclic structure, and preferably has 24 or less carbon atoms, more preferably 12 or less carbon atoms, still more preferably 8 or less carbon atoms, and preferably 1 or more carbon atoms.
  • the number of carbon atoms in the aromatic hydrocarbon group as a substituent is preferably 24 or less, more preferably 18 or less, still more preferably 12 or less, and preferably 6 or more.
  • the aromatic hydrocarbon group may further have the aforementioned alkyl group as a substituent.
  • the number of carbon atoms in the alkyloxy group as a substituent is preferably 24 or less, more preferably 12 or less, still more preferably 8 or less, and preferably 1 or more.
  • the number of carbon atoms in the aralkyl group as a substituent is preferably 30 or less, more preferably 24 or less, even more preferably 14 or less, and preferably 7 or more.
  • the alkylene group contained in the aralkyl group preferably has a linear or branched structure.
  • the aryl group contained in the aralkyl group may further have the aforementioned alkyl group as a substituent.
  • the substituent that the cyclobutene ring of formulas (X1), (X2) and (X3) may have is preferably an alkyl group.
  • the alkyl group as a substituent has a linear, branched or cyclic structure, and preferably has 24 or less carbon atoms, more preferably 12 or less carbon atoms, still more preferably 8 or less carbon atoms, and preferably 1 or more carbon atoms.
  • cross-linking group a cross-linking group represented by any one of the formulas (X1) to (X3) is preferable because the cross-linking reaction proceeds only with heat, the polarity is small, and the effect on charge transport is small.
  • the cyclobutene ring is opened by heat, and the ring-opened groups bond to each other to form a bridging structure, as shown in the following formula.
  • the linking group Q in formulas (X1) to (X4) and the like is omitted.
  • the cyclobutene ring of the bridging group represented by formula (X2) is opened by heat, and the ring-opened groups bond to each other to form a bridging structure.
  • the cyclobutene ring of the bridging group represented by formula (X3) is opened by heat, and the ring-opened groups bond to each other to form a bridging structure.
  • the cyclobutene ring is opened by heat, and the ring-opened group reacts with the double bond when a double bond exists nearby. to form a crosslinked structure.
  • An example in which the cross-linking group represented by the formula (X1) and the cross-linking group represented by the formula (X4) having a double bond site form a cross-linked structure is shown below.
  • the group containing a double bond capable of reacting with the cross-linking group represented by any one of formulas (X1) to (X3) includes, in addition to the cross-linking group represented by formula (X4), formula (X5), Cross-linking groups represented by any one of (X6), (X12), (X15), (X16), (X17) and (X18) can be mentioned.
  • a group containing these double bonds is used as a cross-linking group in an electron-accepting compound, other components forming a hole-injecting layer and/or a hole-transporting layer, such as a hole-transporting compound, are added with the formula (X1 ) to (X3) is preferable because the possibility of forming a crosslinked structure increases.
  • cross-linking group a radically polymerizable cross-linking group represented by any one of the formulas (X4), (X5), and (X6) is preferable because it has a small polarity and does not easily interfere with charge transport.
  • the cross-linking group represented by the formula (X7) is preferable from the viewpoint of enhancing the electron-accepting property.
  • the cross-linking group represented by formula (X7) is used, the following cross-linking reaction proceeds.
  • a cross-linking group represented by either formula (X8) or (X9) is preferable in terms of high reactivity.
  • the cross-linking group represented by formula (X8) and the cross-linking group represented by formula (X9) are used, the following cross-linking reaction proceeds.
  • cross-linking group a cationic polymerizable cross-linking group represented by any one of the formulas (X10), (X11), and (X12) is preferable because of its high reactivity.
  • At least one of the carbazole compound, charge-transporting polymer compound or polymer, and electron-accepting compound, which are contained in the composition of the present invention has the formula (X1) It preferably has a cross-linking group represented by the formula (X4), and more preferably has a cross-linking group represented by the formula (X2) or (X4).
  • R 110 is preferably a substituent, and preferred substituents are as described above.
  • the substituent is an arbitrary group, preferably a group selected from the following substituent group Z. Further, when it is described that the substituent that may be present is selected from the substituent group Z, or that the substituent that may be present is preferably selected from the substituent group Z, the preferred substituent is also It is as described in Substituent Group Z below.
  • Substituent group Z includes an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, a dialkylamino group, a diarylamino group, an arylalkylamino group, an acyl group, a halogen atom, A group consisting of haloalkyl groups, alkylthio groups, arylthio groups, silyl groups, siloxy groups, cyano groups, aromatic hydrocarbon groups and aromatic heterocyclic groups. These substituents may contain any structure of linear, branched and cyclic.
  • Substituent group Z preferably has the following structure. an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, an alkynyl group having 2 to 24 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, an aryloxy group or heteroaryloxy group having 4 to 36 carbon atoms, an alkoxycarbonyl group having 2 to 24 carbon atoms, a dialkylamino group having 2 to 24 carbon atoms, a diarylamino group having 10 to 36 carbon atoms, an arylalkylamino group having 7 or more and 36 or less carbon atoms, an acyl group having 2 to 24 carbon atoms, halogen atom, a haloalkyl group having 1 to 12 carbon atoms, an alkylthio group having 1 to 24 carbon atoms, an arylthio group having 4 to 36 carbon atoms, a silyl group having 2
  • substituent group Z include the following structures. linear, branched, or cyclic alkyl having 1 or more carbon atoms, preferably 4 or more carbon atoms, 24 or less, preferably 12 or less, more preferably 8 or less, and more preferably 6 or less Base. Specific examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group and dodecyl group. etc.
  • Specific examples include a diphenylamino group, a ditolylamino group, an N-carbazolyl group and the like. an arylalkylamino group having 7 or more and 36 or less, preferably 24 or less carbon atoms;
  • a specific example is a phenylmethylamino group.
  • Specific examples include an acetyl group and a benzoyl group.
  • halogen atoms such as fluorine and chlorine atoms; A fluorine atom is preferred.
  • the above substituents may have any structure of linear, branched or cyclic. When the above substituents are adjacent to each other, the adjacent substituents may be combined to form a ring.
  • Preferred ring sizes are 4-, 5-, and 6-membered rings, and specific examples include cyclobutane, cyclopentane, and cyclohexane rings.
  • alkyl groups alkyl groups, alkoxy groups, aromatic hydrocarbon groups, and aromatic heterocyclic groups are preferred.
  • each substituent in the substituent group Z may further have a substituent.
  • substituents include the same as those in the above-mentioned substituent group Z or a bridging group.
  • it has no further substituents, or an alkyl group with up to 8 carbon atoms, an alkoxy group with up to 8 carbon atoms, or a phenyl group, more preferably an alkyl group with up to 6 carbon atoms, or an alkoxy group with up to 6 carbon atoms. or a phenyl group. From the viewpoint of charge transport properties, it is more preferable not to have additional substituents.
  • the crosslinkable group is preferably a crosslinkable group selected from the above crosslinked group T.
  • a substituent that preferably further has a bridging group is an alkyl group or an aromatic hydrocarbon group.
  • a charge transport material according to the present invention is a material capable of transporting holes and/or electrons. Both the carbazole compound having a cross-linking group and the charge-transporting polymer compound according to the present invention are charge-transporting materials. Also, the charge transport material according to the present invention is preferably hole transporting, and is preferably a material that is oxidized by an electron-accepting compound to form a cation radical. In the present invention, the charge-transporting polymer compound is preferably a hole-transporting polymer compound, and preferably a polymer containing an arylamine structure as a repeating unit. In this case, the charge is usually holes, the charge transport is the transport of holes, the charge transport film is the hole transport film, and the charge injection layer is the hole injection layer.
  • composition of the present invention includes a carbazole compound having a cross-linking group represented by the following formula (71) or the following formula (72) (hereinafter sometimes referred to as “the carbazole compound of the present invention") and A composition containing an electron-accepting compound having a cross-linking group represented by the following formula (81) (hereinafter sometimes referred to as "the electron-accepting compound of the present invention”).
  • the composition of aspect 2 of the present invention is a composition containing a carbazole compound having a cross-linking group represented by the following formula (71) or the following formula (72) and a polymer having an arylamine structure as a repeating unit.
  • the polymer having the arylamine structure as a repeating unit has a structure represented by the following formula (50) as a repeating unit and has a cross-linking group, and the structure represented by the formula (50) is represented by the formula A composition having a partial structure represented by (63).
  • Aspect 3 of the present invention is an organic electroluminescence device having an anode and a cathode on a substrate, and an organic layer between the anode and the cathode, wherein the organic layer is represented by the following formula (71) or An organic electroluminescence device containing a cross-linking reaction product of a carbazole compound containing a cross-linking group represented by formula (72) and an electron-accepting compound having a cross-linking group represented by formula (81) below.
  • Aspect 4 of the present invention is an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, wherein the organic layer is represented by the following formula (71) or A carbazole compound containing a cross-linking group represented by formula (72) and a polymer having an arylamine structure as a repeating unit, which has a repeating unit represented by the following formula (50) and has a cross-linking group It is an organic electroluminescence device containing a cross-linking reaction product with a polymer.
  • Ar 621 represents an optionally substituted C 6-50 divalent aromatic hydrocarbon group.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom and/or a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group , or a bridging group.
  • n621, n622, n623 and n624 are each independently an integer of 0-4. However, the sum of n621, n622, n633 and n624 is 1 or more.
  • the compound represented by formula (71) has at least two cross-linking groups. )
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • Each of R 611 and R 612 is independently a deuterium atom, a halogen atom, a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group, or a bridging group.
  • G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • n 611 and n 612 are each independently an integer of 0-4.
  • the compound represented by formula (72) has at least two cross-linking groups. )
  • R 81 , 5 R 82 , 5 R 83 and 5 R 84 are each independently, and R 81 to R 84 are each independently hydrogen atom, deuterium Atoms, halogen atoms, aromatic hydrocarbon groups having 6 to 50 carbon atoms which may have substituents and/or crosslinking groups, and 3 to 50 carbon atoms which may have substituents and/or crosslinking groups represents an aromatic heterocyclic group, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, or a bridging group.
  • Ph 1 , Ph 2 , Ph 3 and Ph 4 are symbols indicating four benzene rings.
  • the compound represented by formula (81) has a cross-linking group.
  • X + is a counter cation, preferably a counter cation having the structure of formula (83) below.
  • Ar 81 and Ar 82 are each independently an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • Ar 51 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which a plurality of groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are linked.
  • Ar 52 is at least selected from the group consisting of a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group One group represents a divalent group in which a plurality of groups are linked directly or via a linking group.
  • Ar 51 and Ar 52 may form a ring via a single bond or a linking group.
  • Ar 51 and Ar 52 may have a substituent and/or a bridging group.
  • Ar 52 has a partial structure represented by the following formula (63). )
  • R 601 represents an alkyl group optionally having a substituent or a bridging group.
  • Ar 621 represents a divalent aromatic hydrocarbon group which may have a substituent and/or a bridging group, a divalent aromatic heterocyclic group which may have a substituent and/or a bridging group.
  • Ring Ar represents an aromatic hydrocarbon structure which may have a substituent and/or a bridging group, or a bivalent aromatic heterostructure which may have a substituent and/or a bridging group. * represents a bonding position with an adjacent atom.
  • the carbazole compound of the invention is a compound represented by the following formula (71) or (72), and is contained in the composition of the invention as a charge transport material.
  • the carbazole compounds of the invention have at least two bridging groups.
  • the carbazole compound of the present invention may be referred to as a carbazole compound having a cross-linking group.
  • Ar 621 represents an optionally substituted C 6-50 divalent aromatic hydrocarbon group.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom and/or a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group , or a bridging group.
  • the compound represented by formula (71) has at least two cross-linking groups. n621, n622, n623 and n624 are each independently an integer of 0-4. However, the sum of n621, n622, n633 and n624 is 1 or more.
  • Ar 621 represents an optionally substituted divalent aromatic hydrocarbon, and Ar 621 has 6 to 50 carbon atoms.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-50, more preferably 6-30, still more preferably 6-18.
  • Specific examples of aromatic hydrocarbon groups include benzene ring, naphthalene ring, fluorene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, or perylene ring.
  • a structure in which 2 to 8 rings are linked is usually mentioned, and a structure in which 2 to 5 rings are linked is preferable.
  • a plurality of aromatic hydrocarbon rings are linked, the same structure may be linked, or different structures may be linked.
  • the aromatic hydrocarbon group preferably has 1 to 4 benzene rings, 1 or 2 naphthalene rings, 1 or 2 fluorene rings, 1 or 2 plural phenanthrene rings, and 1 tetra A divalent group formed by chaining or branching multiple structures selected from phenylene rings in any order, or a 1,4-phenylene group, a 1,3-phenylene group, and a 2,7 - A fluorenylene group, a divalent spirofluorene group, more preferably a plurality of structures selected from 1 to 4 benzene rings and 1 or 2 fluorene rings are chained or branched in any order particularly preferably 1 or 2 phenylene groups, 2,7-fluorenylene groups, and 1 or 2 phenylene groups bonded in a chain in this order.
  • the fluorene structure may have substituents at the 9 and 9′ positions, and the substituents that may have are preferably groups selected from the substituent group Z described above.
  • These aromatic hydrocarbon structures may have substituents.
  • Substituents which may be present are as described above, and specifically can be selected from the substituent group Z. Preferred substituents are the preferred substituents of the substituent group Z described above.
  • Ar 621 is at least one selected from the following formulas (71-1) to (71-11) and (71-21) to (71-24), from the viewpoint of improving the stability of the compound against charge. It preferably has two partial structures, and more preferably has at least one partial structure selected from the following formulas (71-1) to (71-7) from the viewpoint of compound solubility and durability.
  • R 625 and R 626 each independently represent an alkyl group having 6 to 12 carbon atoms, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, a cyano group, an aralkyl group, or a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • R 625 and R 626 may combine together to form a ring.
  • a phenyl group or a group in which a plurality of phenyl groups are linked is more preferable. These groups may have a substituent.
  • the substituents that may be present are as described above, and specifically, they can be selected from the substituent group Z described above. Preferred substituents are the preferred substituents of the substituent group Z described above.
  • the partial structure is more preferably a structure selected from formulas (71-1) to (71-7), more preferably a structure selected from formulas (71-1) to (71-5), Structures selected from formulas (71-1) to (71-4) are particularly preferred. It is most preferable to have a partial structure represented by formula (71-3) because of excellent charge transport properties.
  • a 1,3-phenylene group or a 1,4-phenylene group is preferred as the formula (71-1).
  • Formula (71-2) is preferably the following formula (71-2-2).
  • the formula (71-2) is more preferably the following formula (71-2-3).
  • Ar 621 preferably has a partial structure represented by formula (71-1) and a partial structure represented by formula (71-2).
  • the partial structure represented by formula (71-1) and the partial structure represented by formula (71-2) As the partial structure having the partial structure represented by formula (71-1) and the partial structure represented by formula (71-2), the partial structure represented by formula (71-1) and the partial structure represented by formula (71-2 A partial structure represented by at least one selected from the formulas (71-8) to (71-11), which is a structure containing a plurality of structures selected from the partial structures represented by the formulas (71-8) to (71-11), is more preferable. .
  • the partial structure represented by formula (71-1) and the partial structures represented by formulas (71-3) and (71-4) the partial structure represented by formula (71-1) and a structure including a plurality of structures selected from the partial structures represented by formulas (71-3) and (71-4), selected from the above formulas (71-21) to (71-24)
  • a partial structure represented by at least one is more preferable.
  • a compound containing a fluorene ring having a substituent with excellent charge-transporting properties between carbazole rings is particularly preferred, and Ar 621 preferably contains a fluorene ring.
  • R 621 , R 622 , R 623 and R 624 are each independently a deuterium atom, a halogen atom, a monovalent aromatic carbon having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group represents a hydrogen group or a bridging group.
  • a fluorine atom is particularly preferable as the halogen atom.
  • R 621 , R 622 , R 623 and R 624 is independently a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group
  • Each of R 621 , R 622 , R 623 and R 624 may independently be an aromatic hydrocarbon group having 6 to 50 carbon atoms having both a substituent and a bridging group.
  • R 621 , R 622 , R 623 and R 624 are preferably each independently an aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a bridging group, or a bridging group.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-50, more preferably 6-30, still more preferably 6-18.
  • a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, or perylene ring having usually 6 or more carbon atoms and usually 30 or less carbon atoms, preferably is 18 or less, more preferably 14 or less. groups.
  • aromatic hydrocarbon groups may have substituents and/or bridging groups.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z described above. Preferred substituents are the preferred substituents of the substituent group Z described above.
  • the cross-linking group and cross-linking group that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the cross-linking group T described above.
  • a preferable cross-linking group is a preferable cross-linking group of the above-mentioned cross-linking group T.
  • R 621 , R 622 , R 623 and R 624 may have at least one partial structure selected from the above formulas (71-1) to (71-3) from the viewpoint of compound solubility and durability.
  • it has at least one partial structure selected from a 1,3-phenylene group, a 1,4-phenylene group, the above formula (71-1) or (71-2), and 1,3-phenylene group, 1,4-phenylene group, or a partial structure represented by the above formula (71-2-2) is particularly preferred.
  • crosslinking group The compound represented by formula (71) has at least two cross-linking groups.
  • the cross-linking group is as described above, and specifically can be selected from the cross-linking group T described above.
  • a preferable cross-linking group is a preferable cross-linking group of the above-mentioned cross-linking group T.
  • At least one R 621 and at least one R 623 are preferably substituted with a cross-linking group or are the cross-linking group itself, and one R It is further preferred that only two of 621 and one R 623 are substituted by a bridging group or are the bridging group itself.
  • n621, n622, n623, n624) are each independently an integer of 0-4. However, n621+n622+n623+n624 is 1 or more. Each of n621, n622, n623 and n624 is preferably independently an integer of 0 to 2, more preferably 0 or 1.
  • n621 and n623 are preferably 1 or more, preferably 2 or less, more preferably 1, and particularly preferably n621 and n623. is 1 and n622 and n624 are 0.
  • the compound represented by the formula (71) is particularly preferred, wherein n621 and n623 are 1, n622 and n624 are 0, and R621 and R623 are each independently substituted by a bridging group. 50 aromatic hydrocarbon groups or bridging groups are preferred.
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • Each of R 611 and R 612 is independently a deuterium atom, a halogen atom, a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms optionally having a substituent and/or a bridging group, or a bridging group.
  • G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • the compound represented by formula (72) has at least two cross-linking groups. n 611 and n 612 are each independently an integer of 0-4. )
  • Ar 611 and Ar 612 each independently represent a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-50, more preferably 6-30, still more preferably 6-18.
  • Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, and the like, which usually have 6 carbon atoms.
  • Ar 611 and Ar 612 are preferably each independently a phenyl group, a monovalent group in which one or more benzene rings and at least one naphthalene ring are linked in a chain or branched manner; a monovalent group in which one or more benzene rings and at least one phenanthrene ring are linked in a chain or branch, or a monovalent group in which one or more benzene rings and at least one tetraphenylene ring are linked in a chain or branched manner; and more preferably a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and in any case, the order of bonding does not matter.
  • the number of bonded benzene rings, naphthalene rings, phenanthrene rings and tetraphenylene rings is usually 2-8, preferably 2-5, as described above.
  • a monovalent structure in which 1 to 4 benzene rings are connected a monovalent structure in which 1 to 4 benzene rings and a naphthalene ring are connected, 1 in which 1 to 4 benzene rings and a phenanthrene ring are connected
  • aromatic hydrocarbon groups may have substituents and/or bridging groups.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z described above. Preferred substituents are the preferred substituents of the substituent group Z described above.
  • the cross-linking group and cross-linking group that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the cross-linking group T described above.
  • a preferable cross-linking group is a preferable cross-linking group of the above-mentioned cross-linking group T.
  • Ar 611 and Ar 612 are each independently a phenyl group having a cross-linking group, or a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and A group having a cross-linking group is preferred.
  • At least one of Ar 611 and Ar 612 preferably has at least one partial structure selected from the following formulas (72-1) to (72-6) from the viewpoint of compound solubility and durability. .
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure. .
  • At least one of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-4). More preferably, each of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-3). Particularly preferably, each of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-2).
  • Formula (72-2) is preferably the following formula (72-2-2).
  • the formula (72-2) is more preferably the following formula (72-2-3).
  • the partial structure that at least one of Ar 611 and Ar 612 preferably has is the partial structure represented by formula (72-1) and the partial structure represented by formula (72-2).
  • R611 , R612 are each independently a monovalent aromatic hydrocarbon having 6 to 30 carbon atoms which may have a deuterium atom, a halogen atom such as a fluorine atom, a substituent and/or a bridging group.
  • the aromatic hydrocarbon group includes a monovalent group having an aromatic hydrocarbon structure preferably having 6 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, more preferably 6 to 10 carbon atoms. These aromatic hydrocarbon groups may have substituents and/or bridging groups.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z described above.
  • Preferred substituents are the preferred substituents of the substituent group Z described above.
  • the cross-linking group and the cross-linking group that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the cross-linking group T described above.
  • a preferable cross-linking group is a preferable cross-linking group of the above-mentioned cross-linking group T.
  • n 611 and n 612 are each independently an integer of 0-4. It is preferably 0 to 2, more preferably 0 or 1.
  • the cross-linking group that may be present is preferably a cross-linking group selected from the cross-linking group T described above.
  • the position having a cross-linking group includes at least one structure selected from Ar 611 and R 611 when Ar 611 and n 611 are 1 or more, and Ar 612 and R 612 when Ar 612 and n 612 are 1 or more. It is preferred to have at least one in a structure selected from and more preferably have at least one each in Ar 611 and Ar 612 .
  • the number of cross-linking groups possessed by the compound represented by formula (72) is preferably 2 or more and 4 or less, more preferably 2 or more and 3 or less, and most preferably 2.
  • (G) G represents a single bond or a divalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent and/or a bridging group.
  • the aromatic hydrocarbon group preferably has 6 to 50 carbon atoms, more preferably 6 to 30 carbon atoms, and more preferably 6 to 18 carbon atoms.
  • Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, and the like, which usually have 6 carbon atoms.
  • G is preferably single bond, a phenylene group, a divalent group in which a plurality of benzene rings are bonded in a chain or branched manner; a divalent group in which one or more benzene rings and at least one naphthalene ring are linked in a chain or branched manner; a divalent group in which one or more benzene rings and at least one phenanthrene ring are linked in a chain or branched manner, or a divalent group in which one or more benzene rings and at least one tetraphenylene ring are linked in a chain or branched manner; and more preferably a divalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and in any case, the order of bonding does not matter.
  • the number of bonded benzene rings, naphthalene rings, phenanthrene rings and tetraphenylene rings is usually 2-8, preferably 2-5, as described above.
  • a bivalent structure in which 1 to 4 benzene rings are linked a bivalent structure in which 1 to 4 benzene rings and a naphthalene ring are linked, 1 to 4 benzene rings and a phenanthrene ring are linked It is a bivalent structure, or a bivalent structure in which 1 to 4 benzene rings and a tetraphenylene ring are linked.
  • aromatic hydrocarbon groups may have substituents and/or bridging groups.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z described above. Preferred substituents are the preferred substituents of the substituent group Z described above.
  • the cross-linking group and the cross-linking group that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the cross-linking group T described above.
  • a preferable cross-linking group is a preferable cross-linking group of the above-mentioned cross-linking group T.
  • G is preferably a single bond because it has excellent stability during charge transport and improves device performance.
  • the molecular weight of the carbazole compound of the present invention is preferably 600 or more, more preferably 800 or more, still more preferably 1000 or more, particularly preferably 1200 or more, and preferably 5000 or less. It is preferably 4,000 or less, more preferably 3,000 or less, and particularly preferably 2,500 or less.
  • a hole injection layer or a hole In order to improve the hole injection property from the anode to the hole injection layer or the hole transport layer, or to improve the charge transport property in the hole injection layer or the hole transport layer, a hole injection layer or a hole
  • the charge transport material contained in the transport layer preferably contains cation radical sites.
  • An electron-accepting compound is used when forming a hole-injecting layer or a hole-transporting layer in order to convert the charge-transporting material into cation radicals.
  • an ionic compound composed of a tetraarylborate ion, which is an anion having an ion valence of 1, and a counter cation, which will be described later, is preferable because of its high stability.
  • Cation radicalization of the charge transport material is carried out as follows.
  • a compound having a carbazole structure is used as the charge-transporting material
  • a tetraarylborate having a diaryliodonium as a counter cation is used as the electron-accepting compound
  • the hole-injecting layer or the hole-transporting layer is formed, the following formula
  • the counter cation can change from a diaryliodonium to a carbazole cation.
  • Ar, Ar 1′ to Ar 4′ each independently represent an optionally substituted aromatic hydrocarbon group, an optionally substituted aromatic heterocyclic group, or a substituent It is a monovalent group in which a plurality of structures selected from an optionally substituted aromatic hydrocarbon ring group and an optionally substituted aromatic heterocyclic group are linked.
  • the carbazole cation produced in the above reaction has a semi-occupied orbital (SOMO) that can accept electrons, so the tetraarylborate used as the carbazole ion counter cation is an electron-accepting compound.
  • SOMO semi-occupied orbital
  • a compound composed of tetraarylborate ions, which are cations and anions of the charge-transporting material is referred to as a charge-transporting ionic compound. Details will be described later.
  • the hole injection layer and/or the hole transport layer of the organic electroluminescent device of the present invention is preferably obtained by wet film formation of the composition for forming a charge transport film of the present invention.
  • the composition for forming a charge transport film is preferably a composition obtained through a step of dissolving or dispersing an electron-accepting compound having a tetraarylborate ion structure described later and a charge transport material described later in an organic solvent. .
  • a charge-transporting ionic compound having the tetraarylborate ion structure of the present invention described later as an anion and the cation of the charge transport material of the present invention as a counter cation is used. preferably included.
  • the cross-linking reaction product with the electron-accepting compound having a cross-linking group includes the following cross-linking reaction products.
  • - A compound in which electron-accepting compounds are cross-linked.
  • - A compound in which an electron-accepting compound and a charge-transporting material are crosslinked.
  • A compound in which an electron-accepting compound and a tetraarylborate ion in the present invention are crosslinked.
  • a compound in which a tetraarylborate ion and a charge-transporting material are crosslinked in the present invention.
  • the “tetraarylborate ion in the present invention” refers to the case where it exists as an electron-accepting compound that is an ionic compound consisting of a tetraarylborate ion and a counter cation described later, and a tetraarylborate ion described later. and the cation of the charge-transporting material as a charge-transporting ionic compound.
  • the two cross-linking groups that undergo a cross-linking reaction may be the same cross-linking group or different cross-linking groups as long as they are cross-linkable.
  • the electron-accepting compound which is an ionic compound composed of a tetraarylborate ion and a counter cation, is an electron-accepting ionic compound composed of a counter anion, which is a non-coordinating anion represented by the following formula (81), and a counter cation.
  • Formula (82) below has formula (83), which will be described later, as an anion as a tetraarylborate ion.
  • the electron-accepting compound according to the present invention may be called an electron-accepting ion compound.
  • R 81 , 5 R 82 , 5 R 83 and 5 R 84 are each independently, and R 81 to R 84 are each independently hydrogen atom, deuterium Atoms, halogen atoms, aromatic hydrocarbon groups having 6 to 50 carbon atoms which may have substituents and/or crosslinking groups, and 3 to 50 carbon atoms which may have substituents and/or crosslinking groups represents an aromatic heterocyclic group, a fluorine-substituted alkyl group having 1 to 12 carbon atoms, or a bridging group.
  • Ph 1 , Ph 2 , Ph 3 and Ph 4 are symbols indicating four benzene rings.
  • X + represents a counter cation.
  • the halogen atoms of R 81 to R 84 are selected from iodine, boron, chlorine and fluorine atoms.
  • the electron-accepting compound represented by formula (81) preferably has a cross-linking group, and more preferably has two or more cross-linking groups.
  • the bridging group is preferably included in the anion portion of the electron-accepting compound represented by the formula (81), that is, the tetraarylborate ion, which is the formula (82) described later.
  • a tetraarylborate ion is an anion of the above formula (81) represented by the following formula (82).
  • R 81 to R 84 are the same as R 81 to R 84 in formula (81).
  • Ph 1 to Ph 4 are the same as Ph 1 to Ph 4 in formula (81), and are symbols indicating four benzene rings.
  • the aromatic hydrocarbon group used for R 81 to R 84 preferably has 6 to 50 carbon atoms.
  • As the aromatic hydrocarbon ring structure a single ring, 2 to 6 condensed rings, and a structure in which 2 to 8 of these are linked are preferred.
  • aromatic hydrocarbon groups include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene
  • a single monovalent group having a ring, biphenyl structure, terphenyl structure, or quaterphenyl structure, and a monovalent group in which 2 to 8 of these are linked are included.
  • the aromatic heterocyclic group used for R 81 to R 84 preferably has 3 to 50 carbon atoms.
  • the aromatic heterocyclic ring structure a single ring, 2 to 6 condensed rings, and a structure in which 2 to 8 of these are linked are preferred.
  • aromatic heterocyclic groups include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, a single monovalent group of triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinox
  • the aromatic heterocyclic group referred to herein may contain at least one of these independent structures, and the connecting structure may contain an aromatic hydrocarbon ring structure.
  • the connecting structure may contain an aromatic hydrocarbon ring structure.
  • it may have a structure in which 2 to 8 of the above aromatic heterocycles and aromatic hydrocarbon rings are combined.
  • the aromatic hydrocarbon ring a single structure of the aromatic hydrocarbon ring used for R 81 to R 84 can be used.
  • monovalent groups such as benzene, naphthalene, fluorene, pyridine or carbazole rings, or biphenyl groups in which 2 to 5 of these groups are linked. groups are more preferred.
  • a monovalent group of a benzene ring or a group in which 2 to 5 benzene rings are linked is particularly preferred, and specific examples thereof include a phenyl group, a biphenyl group and a terphenyl group.
  • the aromatic hydrocarbon group is a biphenyl group, a terphenyl group, or a quaterphenyl group, it is regarded as a structure in which two, three, or four phenyl groups are linked, respectively.
  • R 81 to R 84 may have, a group selected from the substituent group Z, particularly the substituent group X is preferable.
  • R 81 to R 84 are preferably fluorine atoms or fluorine-substituted alkyl groups from the viewpoint of increasing the stability of anions and enhancing the effect of stabilizing cations. Moreover, it preferably contains two or more fluorine atoms or fluorine-substituted alkyl groups, more preferably three or more, and most preferably four.
  • the fluorine-substituted alkyl group used for R 81 to R 84 is preferably a linear or branched alkyl group having 1 to 12 carbon atoms and is substituted with a fluorine atom, more preferably a perfluoroalkyl group.
  • a linear or branched perfluoroalkyl group having 1 to 5 carbon atoms is more preferable, a linear or branched perfluoroalkyl group having 1 to 3 carbon atoms is particularly preferable, and a perfluoromethyl group is most preferable. This is because the charge injection layer containing the crosslinked product of the electron-accepting compound having a crosslinkable group and the coating film laminated thereon are stabilized.
  • the fluorine-substituted alkyl group is preferably attached to the para-position of the boron atom.
  • the tetraarylborate ion further increases the stability of the anion and further improves the effect of stabilizing the cation .
  • 82 ) 5 , —Ph 3 —(R 83 ) 5 , and —Ph 4 —(R 84 ) 5 at least one of which is a group represented by the following formula (84) having four fluorine atoms;
  • at least two groups represented by the same formula (84) are more preferable from the viewpoint of improving the stability of the anion, and at least three groups represented by the same formula are further preferable from the viewpoint of further improving the stability of the anion.
  • a group represented by (84) is most preferred.
  • R85 represents an aromatic hydrocarbon group which may have a substituent and/or a bridging group, or a bridging group.
  • the aromatic hydrocarbon group that can be used for R 85 preferably has 3 to 40 carbon atoms.
  • the aromatic hydrocarbon ring structure a single ring, 2 to 6 condensed rings, and a structure in which 2 to 5 of these are linked are preferable.
  • the cross-linking group which the aromatic hydrocarbon group may have is a cross-linking group selected from the cross-linking group T described above.
  • the cross-linking group that can be used for R 85 is a cross-linking group selected from the above-described cross-linking group T.
  • the aromatic hydrocarbon group and the substituent that the aromatic hydrocarbon group may have are preferably substituents selected from the substituent group Z, particularly the substituent group X, and among these, the aromatic hydrocarbon group is stable. from the point of view of solubility, and an alkyl group is preferred from the point of view of solubility.
  • a tetraarylborate ion is preferably used as an electron-accepting ion compound consisting of an anion comprising a tetraarylborate ion and a countercation.
  • the counter cation is preferably an iodonium cation, a sulfonium cation, a carbocation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptyltrienyl cation or a ferrocenium cation having a transition metal. Ammonium cations are more preferred, and iodonium cations are particularly preferred.
  • the structure represented by the following formula (83) is preferable as the iodonium cation, and the more preferable structure is the same.
  • iodonium cations include diphenyliodonium cation, bis(4-tert-butylphenyl)iodonium cation, 4-tert-butoxyphenylphenyliodonium cation, 4-methoxyphenylphenyliodonium cation, 4-isopropylphenyl-4-methyl Phenyliodonium cations and the like are preferred.
  • sulfonium cations include triphenylsulfonium cation, 4-hydroxyphenyldiphenylsulfonium cation, 4-cyclohexylphenyldiphenylsulfonium cation, 4-methanesulfonylphenyldiphenylsulfonium cation, (4-tert-butoxyphenyl)diphenylsulfonium cation, Bis(4-tert-butoxyphenyl)phenylsulfonium cation, 4-cyclohexylsulfonylphenyldiphenylsulfonium cation and the like are preferred.
  • trisubstituted carbocations such as triphenyl carbocation, tri(methylphenyl) carbocation, and tri(dimethylphenyl) carbocation are preferred as carbocations.
  • ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, tri(n-butyl)ammonium cation; N,N-diethylanilinium cation, N , N-2,4,6-pentamethylanilinium cation; and dialkylammonium cations such as di(isopropyl)ammonium cation and dicyclohexylammonium cation.
  • phosphonium cations include tetraarylphosphonium cations such as tetraphenylphosphonium cations, tetrakis(methylphenyl)phosphonium cations and tetrakis(dimethylphenyl)phosphonium cations; tetraalkylphosphonium cations such as tetrabutylphosphonium cations and tetrapropylphosphonium cations. etc. are preferred.
  • iodonium cations iodonium cations, carbocations, and sulfonium cations are preferred, and iodonium cations are more preferred, in terms of film stability of the compound.
  • the counter cation X + in formula (81) is preferably an iodonium cation having the structure of formula (83) below.
  • Ar 81 and Ar 82 are each independently an optionally substituted aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms, more preferably 6 to 12 carbon atoms, and most preferably a phenyl group.
  • the substituent which may be present is a group selected from the above-described substituent group Z, most preferably an alkyl group.
  • the aromatic hydrocarbon group is preferably a phenyl group, a biphenyl group, a terphenyl group, a quaterphenyl group, a naphthyl group, a phenanthrenyl group, a triphenylene group, a naphthylphenyl group, etc., and a phenyl group is most preferable from the viewpoint of compound stability. .
  • the molecular weight of the electron-accepting ion compound having a tetraarylborate ion is usually 900 or more, preferably 1000 or more, more preferably 1200 or more, and usually 10000 or less, preferably 5000 or less, more preferably 3000 or less. be. If the molecular weight is too small, the electron-accepting ability may decrease due to insufficient delocalization of positive and negative charges. If the molecular weight is too large, it may interfere with charge transport.
  • the composition of the present invention preferably contains a hole-transporting polymer compound as the charge-transporting polymer compound.
  • a hole-transporting polymer compound is usually used to form a hole-injecting layer or a hole-transporting layer, and is included in the composition for forming a charge-transporting film, which will be described later.
  • the composition of the invention can be used to form a hole injection layer or a hole transport layer.
  • the hole-transporting polymer compound is preferably a polymer containing the following arylamine structure as a repeating unit. More preferably, it has a cross-linking group.
  • a repeating unit of an arylamine structure of a polymer having an arylamine structure as a repeating unit is represented by the following formula (50).
  • Ar 51 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which a plurality of groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are linked.
  • Ar 52 is at least selected from the group consisting of a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group One group represents a divalent group in which a plurality of groups are linked directly or via a linking group.
  • Ar 51 and Ar 52 do not form a ring via a single bond or a linking group.
  • Ar 51 and Ar 52 may have a substituent and/or a bridging group.
  • the substituent that Ar 51 and Ar 52 may have is preferably a substituent selected from the substituent group Z described above.
  • the cross-linking group that Ar 51 and Ar 52 may have is preferably a cross-linking group selected from the above-described cross-linking group group T.
  • the polymer having repeating units of an arylamine structure represented by formula (50) preferably has a cross-linking group.
  • a polymer having a repeating unit of an arylamine structure represented by the formula (50) has a cross-linking group means that at least one of the repeating units of the arylamine structure represented by the formula (50) is contained in the polymer.
  • a repeating unit other than the repeating unit of formula (50) contained in the polymer may have a crosslinking group.
  • it is a polymer in which at least one repeating unit of the arylamine structure represented by formula (50) contained in the polymer has a cross-linking group.
  • Ar 51 and/or Ar 52 has a cross-linking group.
  • Ar 51 has a bridging group.
  • terminal group refers to the terminal structure of a polymer formed by an endcapping agent used to terminate polymerization of the polymer.
  • the terminal group of the polymer containing repeating units represented by formula (50) is preferably a hydrocarbon group.
  • the hydrocarbon group is preferably a hydrocarbon group having 1 to 60 carbon atoms, more preferably a hydrocarbon group having 1 to 40 carbon atoms, and even more preferably a hydrocarbon group having 1 to 30 carbon atoms.
  • hydrocarbon group examples include carbon, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group, dodecyl group
  • a linear, branched or cyclic alkyl group whose number is usually 1 or more, preferably 4 or more, usually 24 or less, preferably 12 or less
  • an aromatic hydrocarbon group having usually 6 or more and 36 or less carbon atoms, preferably 24 or less, such as a pheny
  • hydrocarbon groups may further have a substituent, and the substituent that may further have is preferably an alkyl group or an aromatic hydrocarbon group. Further, when there are a plurality of substituents which may be possessed, they may be combined with each other to form a ring.
  • the substituent may further have a cross-linking group selected from the above-described cross-linking group T as a substituent.
  • the terminal group is preferably an alkyl group, an aromatic hydrocarbon group, or a cross-linking group that is a hydrocarbon group in the cross-linking group group T, more preferably an aromatic It is a hydrocarbon group.
  • the terminal group is not a cross-linking group, it is also preferable to further have a cross-linking group selected from the cross-linking group T as a substituent.
  • Ar 52 is at least selected from the group consisting of a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group
  • One group represents a divalent group in which a plurality of groups are linked directly or via a linking group.
  • the aromatic hydrocarbon group and the aromatic heterocyclic group may have a substituent and/or a bridging group.
  • the substituent that may be present is preferably a substituent selected from the substituent group Z described above.
  • the cross-linking group that may have is preferably a cross-linking group selected from the cross-linking group T.
  • R 601 represents an alkyl group optionally having a substituent or a bridging group.
  • Ar 621 represents a divalent aromatic hydrocarbon group which may have a substituent and/or a bridging group, a divalent aromatic heterocyclic group which may have a substituent and/or a bridging group.
  • Ring Ar represents an aromatic hydrocarbon structure which may have a substituent and/or a bridging group, or a bivalent aromatic heterostructure which may have a substituent and/or a bridging group. * represents a bonding position with an adjacent atom.
  • Ar 51 represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which a plurality of groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group are linked, and the aromatic hydrocarbon group and the
  • the aromatic heterocyclic group may have substituents and/or bridging groups.
  • the substituent that may be present is preferably a substituent selected from the substituent group Z, particularly the substituent group X.
  • the cross-linking group that may have is preferably a cross-linking group selected from the cross-linking group T. From the viewpoint of improving film stability, Ar 51 preferably has a cross-linking group.
  • Ar 51 When Ar 51 has a cross-linking group, Ar 51 preferably has a cross-linking selected from the cross-linking group group T at the end of a monovalent group in which 2 to 5 optionally substituted benzene rings are linked. A structure having a group is preferred. Ar 51 more preferably has a structure having a cross-linking group selected from the cross-linking group T at the end of a monovalent group in which 2 to 5 unsubstituted benzene rings are linked.
  • Ar 51 is preferably an aromatic hydrocarbon group from the viewpoint of excellent charge transport properties and excellent durability, and among them, a benzene ring (phenyl group), a group in which 2 to 5 benzene rings are linked, or a fluorene ring.
  • a valent group (fluorenyl group) is more preferred, a fluorenyl group is even more preferred, and a 2-fluorenyl group is particularly preferred.
  • These may have substituents and/or bridging groups.
  • the substituent is preferably a group selected from the substituent group Z, and the cross-linking group is preferably a cross-linking group selected from the cross-linking group T.
  • the substituents that the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 51 may have are not particularly limited as long as they do not significantly reduce the properties of the present polymer.
  • the substituent is preferably a group selected from the substituent group Z, more preferably an alkyl group, an alkoxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group, and still more preferably an alkyl group.
  • Ar 51 is preferably a fluorenyl group substituted with an alkyl group having 1 to 24 carbon atoms, particularly preferably a 2-fluorenyl group substituted with an alkyl group having 4 to 12 carbon atoms, from the viewpoint of solubility in a solvent. . Furthermore, a 9-alkyl-2-fluorenyl group in which the 9-position of the 2-fluorenyl group is substituted with an alkyl group is preferred, and a 9,9′-dialkyl-2-fluorenyl group in which the 9-position is substituted with an alkyl group is particularly preferred.
  • Ar 51 is a fluorenyl group in which at least one of the 9-position and 9'-position is substituted with an alkyl group
  • the solubility in solvents and the durability of the fluorene ring tend to be improved.
  • both the 9- and 9'-positions are alkyl-substituted fluorenyl groups, the solubility in solvents and the durability of the fluorene ring tend to be further improved.
  • Ar 51 is also preferably a spirobifluorenyl group from the viewpoint of solubility in solvents.
  • Ar 51 in the repeating unit represented by the formula (50) is a group represented by the following formula (51), or a repeating unit that is a group represented by the following formula (53).
  • Ar 53 and Ar 54 are each independently a divalent aromatic hydrocarbon group optionally having a substituent and/or a bridging group, an aromatic optionally having a substituent and/or a bridging group A heterocyclic group, or an aromatic hydrocarbon group which may have a substituent and/or a bridging group or an aromatic heterocyclic group which may have a substituent and/or a bridging group directly or through a linking group represents a divalent group in which a plurality of groups are linked via Ar 55 is an aromatic hydrocarbon group optionally having a substituent and/or a bridging group, an aromatic heterocyclic group optionally having a substituent and/or a bridging group, or a substituent and/or a bridging represents a monovalent group in which a plurality of optionally substituted aromatic hydrocarbon groups or aromatic heterocyclic groups are linked directly or via a linking group; Ar 56 represents a hydrogen
  • each aromatic hydrocarbon group and each aromatic heterocyclic group may have a substituent and/or a bridging group.
  • the substituent that may be present is preferably a group selected from the substituent group Z described above.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T.
  • Ar 53 is preferably a group in which 1 to 6 divalent aromatic hydrocarbon groups are linked, more preferably a group in which 2 to 4 divalent aromatic hydrocarbon groups are linked, especially 1 to 4 phenylene rings A group in which two phenylene rings are linked is more preferable, and a biphenylene group in which two phenylene rings are linked is particularly preferable.
  • These groups may have a substituent and/or a bridging group.
  • the substituent that may be present is preferably a group selected from the substituent group Z described above.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T.
  • Ar 53 has no substituents or bridging groups.
  • divalent aromatic hydrocarbon groups or divalent aromatic heterocyclic groups When a plurality of these divalent aromatic hydrocarbon groups or divalent aromatic heterocyclic groups are linked, it is preferably a group in which the multiple linked divalent aromatic hydrocarbon groups are bonded so as not to be conjugated. Specifically, it preferably contains a 1,3-phenylene group or a group that has a substituent and becomes a twisted structure due to the steric effect of the substituent, more preferably 1 that does not have a substituent and a bridging group ,3-phenylene groups or groups in which a plurality of 1,3-phenylene groups having no substituents and no bridging groups are linked.
  • Ar 54 is preferably a group in which one or more divalent aromatic hydrocarbon groups, which may be the same or different, are linked, from the viewpoint of excellent charge transportability and excellent durability.
  • the divalent aromatic hydrocarbon group may have a substituent.
  • the number of linked groups is preferably 2 to 10, more preferably 6 or less, and particularly preferably 3 or less from the viewpoint of film stability.
  • Preferred aromatic hydrocarbon ring structures are benzene ring, naphthalene ring, anthracene ring and fluorene ring, and more preferred are benzene ring and fluorene ring.
  • a group in which 1 to 4 phenylene rings are linked or a group in which a phenylene ring and a fluorene ring are linked are preferable as the group in which a plurality of rings are linked.
  • a biphenylene group in which two phenylene rings are linked is particularly preferable from the viewpoint of expanding LUMO.
  • These groups may have substituents and/or bridging groups.
  • the substituent that may be present is preferably a group selected from the substituent group Z described above.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T.
  • Preferred substituents are phenyl, naphthyl and fluorenyl groups. Moreover, it is also preferable not to have a substituent.
  • Ar 55 is an aromatic hydrocarbon group optionally having a substituent and/or a bridging group, an aromatic heterocyclic group optionally having a substituent and/or a bridging group, or a substituent and/or It is a monovalent group in which a plurality of aromatic hydrocarbon groups or aromatic heterocyclic groups which may have a bridging group are linked directly or via a linking group.
  • Ar 55 is preferably a monovalent aromatic hydrocarbon group or a group in which a plurality of monovalent aromatic hydrocarbon groups are linked.
  • the substituent that may be present is preferably a group selected from the substituent group Z, particularly the substituent group X.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T.
  • these groups are monovalent groups in which 2 to 10 are linked, preferably monovalent groups in which 2 to 5 are linked.
  • aromatic hydrocarbon group and aromatic heterocyclic group the same aromatic hydrocarbon group and aromatic heterocyclic group as those for Ar 51 can be used.
  • Ar 55 preferably has a structure represented by any one of Schemes 2A, 2B and 2C below.
  • * represents the binding position to Ar 54 , and when there are multiple *s, any one of them represents the binding position to Ar 54 .
  • These structures may have substituents and/or bridging groups.
  • a substituent which these structures may have a group selected from the substituent group Z is preferable.
  • the cross-linking group that may be present is preferably a group selected from the cross-linking group T described above.
  • R 31 and R 32 in Schemes 2A and 2B are each independently an optionally substituted linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, in order to maintain the solubility of the polymer, the number of carbon atoms is preferably 1 or more and 6 or less, more preferably 3 or less, and more preferably a methyl group or an ethyl group. .
  • R 31 and R 32 may be the same or different, but all R 31 and R 32 are are preferably the same groups.
  • Ar d18 in Scheme 2B is independently an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • Ar d18 is preferably an aromatic hydrocarbon group, more preferably a phenyl group, from the viewpoint of stability. These groups may further have a substituent or a bridging group.
  • the substituent that may be present is preferably a group selected from the substituent group Z described above.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T.
  • Ar 55 includes the above a-1 to a-4, b-1 to b-9, c-1 to c-4, d-1 to d-18, and e- Structures selected from 1 to e-4 are preferred. Furthermore, from the viewpoint of promoting the spread of the LUMO of the molecule by having an electron-withdrawing group, a-1 to a-4, b-1 to b-9, d-1 to d-12, d-17, Structures selected from d-18, and e-1 through e-4 are preferred.
  • a-1 to a-4, d-1 to d-12, d-17, d-18, and e-1 Structures selected from ⁇ e-4 are preferred.
  • d-1, d-10, d-17, d-18 and e-1 are more preferable, d-1 benzene ring structure, d-6 fluorene A ring structure or a d-17 carbazole structure is particularly preferred.
  • a 2-fluorenyl group is preferred.
  • the 2-fluorenyl group may have substituents and/or bridging groups at the 9 and 9′ positions, and the substituents that may have are preferably groups selected from the substituent group Z described above.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T. Among these substituents, an alkyl group is preferable.
  • Ar 56 represents a hydrogen atom, a substituent or a bridging group.
  • Ar 56 is a substituent, it is not particularly limited, but is preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, and further a substituent selected from substituent group Z and/or a bridging group It may have a bridging group selected from T.
  • the cross-linking group is preferably a cross-linking group selected from the above-described cross-linking group T.
  • Ar 56 is a substituent, it is preferably bonded to the 3-position of the carbazole structure to which Ar 56 is bonded in formula (51) from the viewpoint of improving durability.
  • Ar 56 is preferably an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group from the viewpoint of durability improvement and charge transport property. , is more preferably an aromatic hydrocarbon group which may have a substituent.
  • Ar 56 is preferably a hydrogen atom from the viewpoint of ease of synthesis and charge transport properties.
  • Ar 61 and Ar 62 are each independently a divalent aromatic hydrocarbon group optionally having a substituent and/or a bridging group, a divalent optionally having a substituent and/or a bridging group of the aromatic heterocyclic group, or an aromatic hydrocarbon group which may have a substituent and/or a bridging group or an aromatic heterocyclic group which may have a substituent or a bridging group, directly or through a linking group represents a divalent group in which a plurality of groups are linked via Ar 63 to Ar 65 are each independently a hydrogen atom, a substituent or a bridging group. * represents the bonding position to the nitrogen atom of the main chain in formula (50). )
  • each aromatic hydrocarbon group may have, the substituents that each aromatic heterocyclic group may have, and Ar 63 to Ar 65 when they are substituents are the substituent group Z, A group selected from the substituent group X is particularly preferred.
  • the substituent that each aromatic hydrocarbon group may have, the bridging group that each aromatic heterocyclic group may have, and Ar 63 to Ar 65 in the case of a bridging group are selected from the bridging group group T Selected groups are preferred.
  • Ar 63 to Ar 65 are each independently the same as Ar 56 above.
  • Ar 63 to Ar 64 are preferably hydrogen atoms.
  • Ar 62 is a divalent aromatic hydrocarbon group optionally having a substituent and/or a bridging group, a divalent aromatic heterocyclic group optionally having a substituent and/or a bridging group, or an aromatic hydrocarbon group which may have a substituent and/or a bridging group or an aromatic heterocyclic group which may have a substituent and/or a bridging group directly or through a linking group; It is a linked divalent group.
  • the substituents that the aromatic hydrocarbon group may have and the substituents that the aromatic heterocyclic group may have are preferably the same groups as those in the substituent group Z, particularly those in the substituent group X.
  • the cross-linking group which the aromatic hydrocarbon group may have and the cross-linking group which the aromatic heterocyclic group may have a group selected from the above-mentioned cross-linking group T is preferable.
  • a specific structure of Ar 62 is similar to that of Ar 54 .
  • a specific preferred group for Ar 62 is a divalent group of a benzene ring, a naphthalene ring, anthracene ring, or a fluorene ring, or a group in which a plurality of these are linked, more preferably a divalent group of a benzene ring or a plurality of these It is a linked group, and particularly preferably a 1,4-phenylene group in which benzene rings are linked at the 1,4-position divalents, a 2,7-fluorenylene group in which the 2,7-positions of a fluorene ring are linked at a divalence, Or a group in which a plurality of these are linked, most preferably a group containing "1,4-phenylene group-2,7-fluorenylene group-1,4-phenylene group-".
  • the phenylene group does not have a substituent or a cross-linking group other than the linking position, so that Ar 62 is not twisted due to the steric effect of the substituent.
  • the fluorenylene group preferably has substituents or cross-linking groups at the 9 and 9′ positions from the viewpoint of improving solubility and durability of the fluorene structure.
  • the substituent is preferably a substituent selected from the substituent group Z, particularly the substituent group X, and more preferably an alkyl group. These substituents may be further substituted with a bridging group.
  • the cross-linking group a cross-linking group selected from the cross-linking group T is preferable. A substituent is preferred.
  • Ar61 Ar 61 is the same group as Ar 53 , and the preferred structure is also the same.
  • Ar 71 represents a divalent aromatic hydrocarbon group.
  • Ar 72 and Ar 73 are each independently an aromatic hydrocarbon group, an aromatic heterocyclic group, or two or more groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group directly or via a linking group represents a monovalent group in which a plurality of groups are linked by These groups may have a substituent and/or a bridging group.
  • Ring HA is an aromatic heterocycle containing a nitrogen atom.
  • X 2 and Y 2 each independently represent a carbon atom or a nitrogen atom. When at least one of X 2 and Y 2 is a carbon atom, the carbon atom may have a substituent and/or a bridging group.
  • the substituents that may be present are preferably groups selected from the substituent group Z, particularly the substituent group X.
  • the cross-linking group that may have is preferably a group selected from the above-mentioned cross-linking group T.
  • Ar 71 is the same group as Ar 53 above.
  • Ar 71 is particularly preferably a group in which 2 to 6 optionally substituted benzene rings are linked, most preferably a quaterphenylene group in which 4 optionally substituted benzene rings are linked. preferable.
  • Ar 71 preferably contains at least one, more preferably two or more, benzene rings linked at the 1,3 positions, which are non-conjugated sites.
  • Ar 71 is a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked, from the viewpoint of charge transport property or durability, it is preferable that all of them are directly linked and linked. .
  • any one of the substituent group Z, especially the substituent group X, or a combination thereof can be used.
  • the preferred range of the substituent that Ar 71 may have is the same as the substituent that Ar 53 may have when it is an aromatic hydrocarbon group.
  • X2 and Y2 > X2 and Y2 each independently represent a C (carbon) atom or an N (nitrogen) atom.
  • X 2 and Y 2 When at least one of X 2 and Y 2 is a C atom, it may have a substituent.
  • Both X 2 and Y 2 are preferably N atoms from the viewpoint of facilitating the localization of LUMO around ring HA.
  • any one of the substituent group Z, especially the substituent group X, or a combination thereof can be used as the substituent that may be possessed.
  • X 2 and Y 2 more preferably have no substituents.
  • Ar 72 and Ar 73 are each independently an aromatic hydrocarbon group, an aromatic heterocyclic group, or two or more groups selected from an aromatic hydrocarbon group and an aromatic heterocyclic group directly or via a linking group. is a monovalent group in which a plurality of groups are linked by These groups may have a substituent and/or a bridging group, and the substituent that may have is preferably a group selected from the substituent group Z, particularly the substituent group X.
  • the cross-linking group that may be present is preferably a group selected from the cross-linking group T described above.
  • Ar 72 and Ar 73 are each independently a-1 to a-4, b-1 to b-9, c-1 to c-4 shown in Schemes 2A to 2C above. , d-1 to d-16, and e-1 to e-4. Furthermore, from the viewpoint of promoting the spread of the LUMO of the molecule by having an electron-withdrawing group, a-1 to a-4, b-1 to b-9, c-1 to c-5, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred.
  • a-1 to a-4 d-1 to d-12, and e-1 to e-4 from the viewpoint of the effect of confining excitons formed in the light-emitting layer, which have a higher triplet level Structure is preferred.
  • Structures selected from d-1 to d-12 and e-1 to e-4 are more preferred to prevent aggregation of molecules.
  • the repeating unit represented by the formula (50) is preferably a repeating unit represented by the following formula (54), a repeating unit represented by the following formula (55), or a repeating unit represented by the following formula (56). , a repeating unit represented by the following formula (57), and a repeating unit represented by the following formula (60).
  • a repeating unit represented by the following formula (54) is preferable because it has a structure in which aromatic hydrocarbon rings are condensed, and thus has high heat resistance.
  • the phenylene ring having R 304 and R 305 has a twisted structure relative to the adjacent phenylene rings, so that the conjugation of the polymer spreads. It is preferable because it is suppressed and the T1 level of the polymer is improved.
  • a repeating unit represented by the following formula (56) is preferable because it has a carbazole structure and thus has high heat resistance.
  • a repeating unit represented by the following formula (57) is preferable because it tends to increase the LUMO of the polymer and thus tends to increase the electronic durability.
  • a repeating unit represented by the following formula (60) is preferable because of its excellent hole-transporting properties.
  • the polymer of the present invention includes a repeating unit represented by the following formula (54), a repeating unit represented by the following formula (55), a repeating unit represented by the following formula (56), and a repeating unit represented by the following formula (57). It preferably contains a repeating unit selected from repeating units represented by the following formula, and more preferably contains a repeating unit represented by the following formula (54) or a repeating unit represented by the following formula (57).
  • the polymer of the present invention includes a repeating unit represented by the following formula (54), a repeating unit represented by the following formula (55), a repeating unit represented by the following formula (56), and a repeating unit represented by the following formula (57) ), in addition to containing one or more repeating units selected from repeating units represented by the following formula (60):
  • a repeating unit represented by the following formula (57) or a repeating unit represented by the following formula (57) it is more preferable to further contain a repeating unit represented by the following formula (60).
  • Ar 51 is the same as Ar 51 in the formula (50).
  • X is -C(R 207 )(R 208 )-, -N(R 209 )- or -C(R 211 )(R 212 )-C(R 213 )(R 214 )-.
  • R 201 , R 202 , R 221 and R 222 are each independently an alkyl group optionally having a substituent and/or a bridging group.
  • R 207 to R 209 and R 211 to R 214 are each independently a hydrogen atom, an alkyl group optionally having a substituent and/or a bridging group, optionally having a substituent and/or a bridging group It is an aralkyl group or an aromatic hydrocarbon group which may have a substituent and/or a bridging group.
  • a and b are each independently an integer of 0 to 4; c is an integer from 0 to 3; d is an integer from 0 to 4; i and j are each independently an integer of 0 to 3; However, when the aforementioned twisted structure is essential, a ⁇ c+b ⁇ d+i+j is 1 or more. )
  • R201 , R202 , R221 , R222 are each independently an alkyl group optionally having a substituent and/or a bridging group.
  • the alkyl group is a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, but in order to maintain the solubility of the polymer, it is preferably 1 or more and 8 or less, more preferably 6 or less, and even more preferably 3 or less. More preferably, the alkyl group is a methyl group or an ethyl group.
  • the multiple R 201 may be the same or different.
  • the multiple R 202 may be the same or different. All R 201 and R 202 are preferably the same group because the charge can be uniformly distributed around the nitrogen atom and the synthesis is easy.
  • the multiple R 221 may be the same or different.
  • the multiple R 222 may be the same or different. All R 221 and R 222 are preferably the same group for ease of synthesis.
  • R 207 to R 209 and R 211 to R 214 each independently have a hydrogen atom, an alkyl group optionally having a substituent and/or a bridging group, a substituent and/or a bridging group; aralkyl group, or an aromatic hydrocarbon group which may have a substituent and/or a bridging group.
  • the alkyl group is not particularly limited, it has a carbon number of 1 or more, preferably 24 or less, more preferably 8 or less, and even more preferably 6 or less, because it tends to improve the solubility of the polymer. Also, the alkyl group may have a linear, branched or cyclic structure.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group and n-hexyl group. , n-octyl group, cyclohexyl group, dodecyl group and the like.
  • the aralkyl group is not particularly limited, the number of carbon atoms is preferably 5 or more, preferably 60 or less, and more preferably 40 or less, because it tends to improve the solubility of the polymer.
  • aralkyl group examples include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, 1,1-di(n-hexyl)- 1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-butyl group , 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7-phenyl-1- n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like.
  • the aromatic hydrocarbon group is not particularly limited, the number of carbon atoms is preferably 6 or more, preferably 60 or less, and more preferably 30 or less, because it tends to improve the solubility of the polymer.
  • aromatic hydrocarbon group examples include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene.
  • a 6-membered monocyclic or 2-5 condensed monovalent group such as a ring, or a group in which a plurality of these are linked, and the like can be mentioned.
  • R 207 and R 208 are preferably methyl groups or aromatic hydrocarbon groups, R 207 and R 208 are more preferably methyl groups, and R 209 is a phenyl group. is more preferable.
  • the alkyl groups of R 201 , R 202 , R 221 and R 222 , the alkyl groups, aralkyl groups and aromatic hydrocarbon groups of R 207 to R 209 and R 211 to R 214 have substituents and/or bridging groups.
  • Substituents include the groups exemplified as preferred groups of the alkyl groups, aralkyl groups and aromatic hydrocarbon groups of R 207 to R 209 and R 211 to R 214 .
  • Examples of the cross-linking group include cross-linking groups selected from the cross-linking group T described above.
  • the alkyl groups represented by R 201 , R 202 , R 221 and R 222 , the alkyl groups represented by R 207 to R 209 and R 211 to R 214 , the aralkyl groups and the aromatic hydrocarbon groups are substituents from the viewpoint of voltage reduction. and most preferably have no cross-linking groups.
  • a and b are each independently an integer of 0-4. It is preferable that a+b is 1 or more, more preferably each of a and b is 2 or less, and more preferably both a and b are 1.
  • b is 1 or more
  • d is also 1 or more.
  • c is 2 or more
  • a plurality of a's may be the same or different
  • d is 2 or more
  • a plurality of b's may be the same or different.
  • c is an integer of 0-3 and d is an integer of 0-4.
  • Each of c and d is preferably 2 or less, more preferably c and d are equal, and it is particularly preferable that both c and d are 1 or both c and d are 2.
  • both c and d in the repeating unit represented by the above formula (54) are 1 or both c and d are 2 and both a and b are 2 or 1, R 201 and R 202 are most preferably bonded at symmetrical positions.
  • the binding of R 201 and R 202 at symmetrical positions means that the binding positions of R 201 and R 202 with respect to the fluorene ring, carbazole ring or 9,10-dihydrophenanthrene derivative structure in formula (54) is symmetrical. At this time, 180° rotation around the main chain is regarded as the same structure.
  • R 221 and R 222 are each independently preferably present at the 1-, 3-, 6-, or 8-position relative to the carbon atom of the benzene ring to which X is bonded. Due to the presence of R 221 and / or R 222 at this position, the condensed ring to which R 221 and / or R 222 is bonded and the adjacent benzene ring on the main chain are twisted due to steric hindrance, resulting in a polymer is excellent in solubility in a solvent, and a coating film formed by a wet film-forming method and then heat-treated tends to be excellent in solubility in a solvent, which is preferable.
  • i and j are each independently an integer of 0-3.
  • i and j are each independently preferably an integer of 0 to 2, more preferably 0 or 1;
  • i and j are preferably the same integer.
  • i and j are preferably 1 or 2 so that the main chain of the polymer is twisted, and R 221 and/or R 222 are preferably bonded to the 1- and/or 3-positions of the benzene ring .
  • i and j are preferably 0 for ease of synthesis.
  • the bonding position of the benzene ring is the carbon atom adjacent to the carbon atom to which X is bonded, and the carbon atom to which R 221 or R 222 can be bonded is the 1st position, and is bonded to the adjacent structure as the main chain.
  • the carbon atom is the 2nd position.
  • (X) X in the formula (54) is preferably -C(R 207 )(R 208 )- or -N(R 209 )- because of its high stability during charge transport, and -C(R 207 )(R 208 )— is more preferred.
  • X has a bridging group
  • at least one of R 207 and R 208 , R 209 , or at least one of R 211 to R 214 is an alkyl group having a bridging group, an aralkyl group having a bridging group, or a bridging group.
  • An aromatic hydrocarbon group is preferred because it tends to suppress aggregation between polymer molecules.
  • the repeating unit represented by the above formula (54) is particularly preferably a repeating unit represented by any one of the following formulas (54-1) to (54-8).
  • R 201 and R 202 are the same, and R 201 and R 202 are bonded at symmetrical positions.
  • main chain of repeating unit represented by formula (54) Although the main chain structure excluding the nitrogen atom in the above formula (54) is not particularly limited, for example, the following structure is preferable.
  • R 303 and R 306 each independently represent an alkyl group optionally having a substituent and/or a bridging group.
  • R 304 and R 305 are each independently an alkyl group optionally having a substituent and/or a bridging group, an alkoxy group optionally having a substituent and/or a bridging group or a substituent and/or represents an aralkyl group which may have a cross-linking group.
  • l is 0 or 1;
  • m is 1 or 2;
  • n is 0 or 1;
  • p is 0 or 1; q is 0 or 1;
  • R303 , R306 R 303 and R 306 in the repeating unit represented by formula (55) are each independently an alkyl group optionally having a substituent and/or a bridging group.
  • alkyl group examples include those similar to R 201 and R 202 in the formula (54), and the substituents, bridging groups and preferred structures which may be included are similar to those of R 201 and R 202 . be done.
  • the multiple R 303 may be the same or different.
  • the multiple R 306 may be the same or different.
  • R304 , R305 ) R 304 and R 305 in the repeating unit represented by the formula (55) each independently represent an alkyl group optionally having a substituent and/or a bridging group, a substituent and/or a bridging group. It is an alkoxy group which may have or an aralkyl group which may have a substituent and/or a bridging group. An alkyl group optionally having a substituent and/or a cross-linking group is preferred. R 304 and R 304 are preferably the same.
  • the alkyl group is a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, it is 1 or more and preferably 24 or less, more preferably 8 or less, and even more preferably 6 or less, because it tends to improve the solubility of the polymer.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group and n-hexyl. group, n-octyl group, cyclohexyl group, dodecyl group and the like.
  • the alkoxy group is not particularly limited, and the alkyl group represented by R 10 of the alkoxy group (-OR 10 ) may have any structure of linear, branched or cyclic, and improves the solubility of the polymer. Therefore, the number of carbon atoms is preferably 1 or more, preferably 24 or less, more preferably 12 or less.
  • alkoxy group examples include methoxy group, ethoxy group, n-propoxy group, n-butoxy group, hexyloxy group, 1-methylpentyloxy group, cyclohexyloxy group and the like.
  • the aralkyl group is not particularly limited, it preferably has 5 or more carbon atoms, preferably 60 or less, and more preferably 40 or less, because it tends to improve the solubility of the polymer.
  • aralkyl group examples include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, 1,1-di(n-hexyl) -1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7-phenyl-1 -n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like.
  • the substituents that the alkyl group, alkoxy group and aralkyl group of R 304 and R 305 may have are the preferred groups of the alkyl group, aralkyl group and aromatic hydrocarbon group of R 207 to R 209 and R 211 to R 214 The group mentioned as is mentioned.
  • Examples of the cross-linking group that may be possessed include cross-linking groups selected from the above-described cross-linking group group T.
  • the alkyl group, alkoxy group and aralkyl group of R 304 and R 305 most preferably do not have a substituent or a cross-linking group from the viewpoint of voltage reduction.
  • the cross-linking group is preferably bonded to R 304 and R 305 .
  • l and n are each independent, and l+n is preferably 1 or more, more preferably 1 or 2, and still more preferably 2.
  • l+n is within the above range, the solubility of the polymer tends to be high and precipitation from the composition of the present invention containing the polymer can be suppressed.
  • n 1 or 2
  • the organic electroluminescent device manufactured using the composition of the present invention can be driven at a low voltage, and the hole injection ability, transport ability, and durability tend to be improved. is preferred.
  • (p and q) p represents 0 or 1; q represents 0 or 1;
  • l 2 or more, multiple p's may be the same or different.
  • n 2 or more, multiple qs may be the same or different.
  • p and q are not 0 at the same time, the solubility of the polymer is increased, and precipitation from the composition of the present invention containing the polymer tends to be suppressed.
  • main chain of repeating unit represented by formula (55) Although the main chain structure excluding the nitrogen atom in formula (55) is not particularly limited, examples thereof include the following structures.
  • Ar 51 is the same as Ar 51 in the formula (54).
  • Ar 41 is an optionally substituted divalent aromatic hydrocarbon group, an optionally substituted divalent aromatic heterocyclic group, or the aforementioned divalent aromatic hydrocarbon group and a divalent group in which at least one group selected from the group consisting of the above divalent aromatic heterocyclic groups is linked directly or via a linking group.
  • R 441 and R 442 each independently represent an optionally substituted alkyl group.
  • t is 1 or 2;
  • u is 0 or 1;
  • r and s are each independently an integer of 0-4. However, r ⁇ t+s ⁇ u is 1 when the aforementioned twisted structure is essential.
  • R441 , R442 ) R 441 and R 442 in the repeating unit represented by formula (56) are each independently an optionally substituted alkyl group.
  • the alkyl group is a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, but in order to maintain the solubility of the polymer, the number of carbon atoms is preferably 1 or more, preferably 10 or less, more preferably 8 or less, and more preferably 6 or less. More preferably, the alkyl group is a methyl group or a hexyl group.
  • the plurality of R 441 and R 442 may be the same or different.
  • r and s are each independently an integer of 0-4.
  • t is 2 or more, multiple r's may be the same or different.
  • u is 2 or more, multiple s may be the same or different.
  • r+s is preferably 1 or more, and r and s are each preferably 2 or less.
  • r+s is 1 or more, the drive life of the organic electroluminescence device is considered to be longer for the same reason as a and b in the formula (54).
  • t is 1 or 2.
  • u is preferably 1.
  • Ar 41 is an optionally substituted divalent aromatic hydrocarbon group, an optionally substituted divalent aromatic heterocyclic group, or the aforementioned divalent aromatic hydrocarbon group and a divalent group in which at least one group selected from the group consisting of the above divalent aromatic heterocyclic groups is linked directly or via a linking group.
  • the aromatic hydrocarbon group and aromatic hydrocarbon group for Ar 41 include the same groups as for Ar 52 in the formula (50).
  • the aromatic hydrocarbon group and the substituent that the aromatic hydrocarbon group may have are preferably groups selected from the substituent group Z, and the substituent that may further be the same as the substituent group Z is preferred.
  • repeating unit represented by formula (56) is not particularly limited, examples thereof include the following structures.
  • R 517 to R 519 are each independently an alkyl group optionally having a substituent and/or a cross-linking group, an alkoxy group optionally having a substituent and/or a cross-linking group, a substituent and/or An aralkyl group optionally having a bridging group, an aromatic hydrocarbon group optionally having a substituent and/or a bridging group, or an aromatic heterocyclic ring optionally having a substituent and/or a bridging group represents a group.
  • f, g, and h each independently represent an integer of 0 to 4; e represents an integer of 0 to 3; However, when g is 1 or more, e is 1 or more. However, f+e ⁇ g+h is 1 when the aforementioned twisted structure is essential. )
  • R 517 to R 519 The aromatic hydrocarbon group and aromatic heterocyclic group in R 517 to R 519 are each independently the same groups as those described above for Ar 51 .
  • the substituents that these groups may have are preferably the same groups as in the substituent group Z described above.
  • As the cross-linking group a cross-linking group selected from the cross-linking group T is preferable.
  • the alkyl group and aralkyl group for R 517 to R 519 are preferably the same groups as those mentioned for R 207 above, and the substituents which may be further optionally possessed are preferably the same groups as those for R 207 above .
  • the alkoxy group in R 517 to R 519 is preferably the alkoxy group listed in the substituent group Z, particularly the alkoxy group listed in the substituent group X, and the substituent that may be further included in the substituent group Z, preferably substituted Group X is preferred.
  • a cross-linking group selected from the cross-linking group T is preferable.
  • (f, g, h) f, g, and h each independently represent an integer of 0-4.
  • e is 2 or more, multiple g's may be the same or different.
  • f+g+h is preferably 1 or more.
  • f + h is preferably 1 or more, f + h is 1 or more, and f, g and h are more preferably 2 or less, It is more preferable that f+h is 1 or more, and f and h are 1 or less, Most preferably, both f and h are 1.
  • R 517 and R 519 are preferably bonded at symmetrical positions.
  • R 517 and R 519 are preferably the same,
  • g is two.
  • the two R 518 are most preferably attached to each other in the para position.
  • the two R 518 are most preferably identical.
  • binding positions of R 517 and R 519 that are symmetrical to each other refer to the following binding positions. However, for notation, 180° rotation about the main chain is regarded as the same structure.
  • the ratio of (the number of moles of the repeating unit represented by the formula (57))/(the number of moles of the repeating unit represented by the formula (54)) is preferably 0.1 or more, and 0.1 or more. 3 or more is more preferable, 0.5 or more is more preferable, 0.9 or more is still more preferable, and 1.0 or more is particularly preferable. Moreover, the ratio is preferably 2.0 or less, more preferably 1.5 or less, and even more preferably 1.2 or less.
  • repeating unit represented by the formula (57) is preferably a repeating unit represented by the following formula (58).
  • the binding positions are the 2nd and 5th positions.
  • g 0, i.e., when there is no steric hindrance by R 518
  • R 517 and R 519 can be bonded at symmetrical positions.
  • the binding positions are the 2nd and 5th positions.
  • g 0, i.e., when there is no steric hindrance by R 518
  • R 517 and R 519 can be combined at symmetrical positions.
  • main chain of repeating unit represented by formula (57) is not particularly limited, and examples thereof include the following structures.
  • the repeating units represented by the above formulas (50) to (59) do not have a cross-linking group.
  • it does not have a cross-linking group, it is preferable because the polymer chain is less likely to be distorted by heat drying or baking (heat baking) after wet film formation. This is because when the cross-linking group reacts, a volume change may occur, resulting in distortion of the polymer chain. Also, this is because the distortion of the polymer chain occurs even if the volume change does not occur.
  • Ar 51 is the same as Ar 51 in the formula (50).
  • n 60 represents an integer of 1-5.
  • n60 represents an integer of 1-5, preferably an integer of 1-4, more preferably an integer of 1-3.
  • the charge-transporting polymer compound used in the composition of the present invention is a polymer having a repeating unit represented by the formula (50)
  • the repeating unit represented by the formula (50) is more preferably represented by the formula ( 54), the repeating unit represented by the formula (55), the repeating unit represented by the formula (56), or the repeating unit represented by the formula (57).
  • the partial structure represented by the formula (63) is preferably a partial structure represented by the following formula (63A) or (63B).
  • a repeating unit represented by the formula (50) containing a partial structure represented by the following formula (63A) or (63B) as a main chain structure
  • a repeating unit represented by the above formula (55) containing a partial structure represented by the following formula (63A) or (63B) as a main chain structure
  • a partial structure represented by the following formula (63A) or (63B) A repeating unit represented by the above formula (56) containing as a main chain structure, or a repeating unit represented by the above formula (57) containing a partial structure represented by the following formula (63A) or (63B) as a main chain structure is preferred.
  • R 601 is R 601 in formula (63)
  • Ring A is a partial structure of ring Ar or ring Ar in formula (63)
  • Ring B is a partial structure of Ar 621 or ring Ar 621 in formula (63).
  • R 601 is R 201 , R 202 , R 221 or R 222 in formula (54), R 303 , R 304 , R 305 or R 406 in formula (55), R 441 or R 442 in formula (56), represents R 517 , R 518 or R 519 in formula (57); * represents a bond with an adjacent atom.
  • Ring B may be part of a condensed ring.
  • the partial structures represented by formulas (63A) and (62B) include, in addition to R 601 , Ring A and Ring B, In the case of the partial structure of formula (54), R 201 , R 202 , R 221 , or R 222 In the case of the partial structure of formula (55), R 303 , R 304 , R 305 or R 306 In the case of the partial structure of formula (56), R 441 or R 442 , The partial structure of formula (57) may have R 517 , R 518 or R 519 . )
  • Ar 51 , X, R 201 , R 202 , R 221 , R 222 , a, b, c, d, i, and j are Ar 51 , X, R 201 , R 202 , R 221 , Same as R 222 , a, b, i, j. c is an integer of 1-3. d is an integer of 1-4. a 1 , a 2 , b 1 , b 2 , i 1 , i 2 , j 1 and j 2 are each independently 0 or 1; However, it satisfies either of the following conditions (1) and (2).
  • Ring A1 refers to a divalent benzene ring that may have R 201 at a specific position
  • Ring A3 refers to a divalent condensed ring in which a biphenyl structure is further linked by X
  • Ring A5 refers to a divalent benzene ring
  • a in formula (54) is 1 or more is synonymous with at least one of a 1 , a 2 and a in formula (62) being 1 or more. That b in formula (54) is 1 or more is synonymous with that at least one of b 1 , b 2 and b in formula (62) is 1 or more.
  • the formula (62) includes the formula (63A) or the formula (63B) as a partial structure.
  • a 1 , a 2 and a is 1 or more
  • Ring A1 and Ring A2 when at least one of a 1 or a 2 is 1, when c is 2 or more, Ring A1 and Ring A2, when c is 1, Ring A1 and Ring A3,
  • Ring A2 and Ring A1, or Ring A2 and Ring A3 contain formula (63A) or formula (63B) as a partial structure.
  • b 1 , b 2 and b is 1 or more, it can be seen that the above formula (63A) or the above formula (63B) is included as a partial structure.
  • the weight average molecular weight (Mw) of the polymer having the above-mentioned arylamine structure as a repeating unit is usually 1,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less, and still more preferably 70,000. 50,000 or less is particularly preferable. Moreover, the weight average molecular weight is usually 5,000 or more, preferably 10,000 or more, more preferably 12,000 or more, and particularly preferably 15,000 or more.
  • the weight-average molecular weight of the polymer having the above-mentioned arylamine structure as a repeating unit is equal to or less than the above upper limit, solubility in a solvent can be obtained, and film-forming properties tend to be excellent. Further, when the weight average molecular weight of the polymer is at least the above lower limit, the decrease in the glass transition temperature, melting point and vaporization temperature of the polymer may be suppressed, and the heat resistance may be improved. In addition, in some cases, the coating film after the cross-linking reaction is sufficiently insoluble in organic solvents.
  • the number average molecular weight (Mn) of the polymer having the above-described arylamine structure as a repeating unit is usually 750,000 or less, preferably 250,000 or less, more preferably 100,000 or less, and particularly preferably 50,000. It is below. Also, the number average molecular weight is usually 2,000 or more, preferably 4,000 or more, more preferably 6,000 or more, and still more preferably 8,000 or more.
  • the polydispersity (Mw/Mn) of the polymer having the above-mentioned arylamine structure as a repeating unit is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less.
  • the lower limit value is ideally 1 because the smaller the value of the degree of dispersion, the better.
  • the weight average molecular weight and number average molecular weight of a polymer are usually determined by SEC (size exclusion chromatography) measurement. In SEC measurement, the higher the molecular weight, the shorter the elution time, and the lower the molecular weight, the longer the elution time. By conversion, the weight average molecular weight and number average molecular weight are calculated.
  • the content of the repeating unit represented by formula (50) is not particularly limited, but the repeating unit represented by formula (50) is usually 10 mol% or more in 100 mol% of the total repeating units of the polymer.
  • the content is preferably 30 mol% or more, more preferably 40 mol% or more, and even more preferably 50 mol% or more.
  • the polymer may be composed only of repeating units represented by formula (50), but for the purpose of balancing various performances when used as an organic electroluminescent device, It may have a repeating unit different from the repeating unit that is used.
  • the content of the repeating unit represented by formula (50) in the polymer is usually 99 mol % or less, preferably 95 mol % or less.
  • the polymer containing an arylamine structure as a repeating unit of the present invention may further contain a structure represented by the following formula (61) in its main chain.
  • R 81 and R 82 independently represents a hydrogen atom, an alkyl group, an aromatic hydrocarbon group, or an aromatic heterocyclic group. When a plurality of R 81 and R 82 are present, they may be the same or different.
  • p 80 represents an integer of 1-5.
  • the alkyl group is a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, but in order to maintain the solubility of the polymer, it is preferably 1 or more and 8 or less, more preferably 6 or less, and even more preferably 3 or less. More preferably, the alkyl group is a methyl group or an ethyl group.
  • R 81 and R 82 are an aromatic hydrocarbon group or an aromatic heterocyclic group, the structures described in the "Definition" section above are preferred.
  • R 81 and R 82 may have a substituent and/or a bridging group.
  • the substituent is preferably a substituent selected from the substituent group Z, particularly the substituent group X.
  • the cross-linking group is preferably a cross-linking group selected from the cross-linking group Z.
  • p80 is preferably 3 or less, more preferably 2 or less, and most preferably 1.
  • the conjugation of the main chain of the polymer is cut, and the S1 energy level and T1 energy level of the polymer are increased. Therefore, when a composition containing this polymer is used in a hole transport layer of an organic electroluminescence device, excitons in the light-emitting layer are less likely to be deactivated, and luminous efficiency is considered to be high, which is preferable.
  • a specific structure is referred to as a "repeating unit structure".
  • a specific structure is a structure obtained by applying specific structures or numerical values to all the symbols in the general formula. That is, the polymer having an arylamine structure as a repeating unit includes the repeating unit structure included in the formula (54), the repeating unit structure included in the formula (55), the repeating unit structure included in the formula (56), Of the repeating unit structure contained in the formula (57) and the repeating unit structure contained in the formula (60), only one repeating unit structure may be included, or two or more repeating unit structures may be included. good.
  • these two or more repeating unit structures may be repeating unit structures contained in the same above formula or repeating unit structures contained in different above formulas.
  • the polymer having an arylamine structure as a repeating unit is a polymer containing one or two specific repeating unit structures represented by these formulas and containing no other repeating unit structure. More preferably, it is a coalescence.
  • the method for producing the polymer contained in the composition of the present invention is not particularly limited and is arbitrary. Examples thereof include a polymerization method by Suzuki reaction, a polymerization method by Grignard reaction, a polymerization method by Yamamoto reaction, a polymerization method by Ullmann reaction, a polymerization method by Buchwald-Hartwig reaction, and the like. Moreover, it can be manufactured by the manufacturing method similar to the manufacturing method of the polymer as described in WO2019/177175, WO2020/171190, and WO2021/125011.
  • an aryl dihalide represented by the following formula (2a) Z represents a halogen atom such as I, Br, Cl, F
  • a polymer containing a repeating unit represented by the formula (54) is synthesized by reacting it with a primary aminoaryl represented by the formula (2b).
  • an aryl dihalide represented by the formula (3a) Z represents a halogen atom such as I, Br, Cl, F
  • a polymer containing a repeating unit represented by the formula (55) is synthesized by reacting it with a primary aminoaryl represented by the formula (3b).
  • the reaction to form an N-aryl bond is usually carried out in the presence of a base such as potassium carbonate, sodium tert-butoxy, triethylamine.
  • a base such as potassium carbonate, sodium tert-butoxy, triethylamine.
  • the polymerization process described above can also be carried out in the presence of a transition metal catalyst such as copper or a palladium complex.
  • the content of the carbazole compound of the present invention is preferably 10% by weight or more, more preferably 25% by weight or more, and 30% by weight. Weight % or more is more preferable.
  • the content of the carbazole compound of the present invention in the composition of the present invention is 99% by weight or less in terms of the composition ratio of the solid components of the composition. , more preferably 90% by weight or less, and even more preferably 80% by weight or less.
  • the content of the carbazole compound of the present invention is preferably 99% by weight or less, preferably 97% by weight, based on the total amount of the carbazole compound of the present invention and the electron-accepting compound of the present invention. It is more preferably 95% by weight or less, more preferably 95% by weight or less. Moreover, it is preferably 50% by weight or more, more preferably 70% by weight or more, and even more preferably 80% by weight or more.
  • the film formed using the composition of the present invention is sufficiently crosslinked to be insolubilized, and the film formed using the composition of the present invention can be directly wet-coated to form a film.
  • the film formed using the composition of the present invention is used as a charge injection film, the injection barrier in the charge transport layer is reduced, the charge transport property is excellent, and the stability during charge transport is improved. It is believed that the durability of the device containing the film formed using the composition of the present invention is improved.
  • ⁇ Content of charge-transporting polymer compound> In order to improve the charge transport properties of the film formed with the ionic compound of the carbazole compound of the present invention having a thermally crosslinkable group and the iodonium cation of the electron-accepting compound of the present invention, these compounds are added to a charge-transporting polymer. It is preferably used in combination with a compound.
  • the content of the charge-transporting polymer compound in the composition of the present invention is preferably 10% by weight or more in terms of charge-transporting properties in terms of the composition ratio of the solid components of the composition of the present invention. Preferably, it is more preferably 20% by weight or more.
  • the content is preferably 95% by weight or less, more preferably 90% by weight or less. % by weight or less is more preferable.
  • composition of the present invention may further contain solvents, polymerization initiators, additives and the like.
  • composition of the present invention preferably further contains a solvent in addition to the carbazole compound of the present invention and the electron-accepting compound and/or the charge-transporting polymer compound.
  • a solvent in addition to the carbazole compound of the present invention and the electron-accepting compound and/or the charge-transporting polymer compound.
  • the carbazole compound of the present invention, the electron-accepting compound of the present invention, and the high charge-transporting compound are mixed using a solvent. It is preferable that the molecular compound is dissolved.
  • the type thereof is It is not particularly limited.
  • the carbazole compound of the present invention and the solvent for dissolving the electron-accepting compound of the present invention contain preferably 0.005% by weight or more, more preferably 0.5% by weight or more, and still more preferably is a solvent that dissolves 1% by weight or more.
  • the solvent preferably dissolves the electron-accepting compound in an amount of 0.001% by weight or more, more preferably 0.1% by weight or more, and still more preferably 0.2% by weight or more.
  • the solvent preferably dissolves the charge-transporting polymer compound in an amount of 0.005% by weight or more, more preferably 0.5% by weight or more, and still more preferably 1% by weight or more.
  • Preferred solvents include, for example, aromatic hydrocarbon solvents, ether solvents and ester solvents.
  • aromatic hydrocarbon solvents include toluene, xylene, mesitylene, tetralin, and cyclohexylbenzene.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole , phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole
  • ester solvents include aliphatic esters such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, benzoic acid; aromatic esters such as n-butyl; Any one of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene have low ability to dissolve electron-accepting compounds and free carriers (cation radicals), so they can be used by mixing with ether solvents and ester solvents. preferable.
  • the solvent concentration relative to the composition of the present invention is preferably 10% by weight or more, more preferably 30% by weight or more, and even more preferably 50% by mass or more.
  • the concentration of the solvent in the composition is preferably 99.999% by weight or less, more preferably 99.99% by weight or less, and even more preferably 99.9% by weight or less.
  • the total of these solvents should satisfy this range.
  • each layer is required to be a uniform layer because the organic electroluminescent element is formed by laminating a large number of layers composed of organic compounds.
  • a layer is formed by a wet film-forming method, if water is present in the solution (composition) for thin film formation, the water will be mixed in the coating film and the uniformity of the film will be impaired. Less is better.
  • organic electroluminescence elements use many materials such as cathodes that are significantly deteriorated by moisture. Therefore, the presence of moisture is not preferable from the viewpoint of deterioration of the elements.
  • the amount of water contained in the composition of the present invention is preferably suppressed to 1% by weight or less, especially 0.1% by weight or less, and more preferably 0.05% by weight or less.
  • Methods for reducing the amount of water in the composition include, for example, blanketing with nitrogen gas, using a desiccant, dehydrating the solvent in advance, and using a solvent with low water solubility. Among them, it is preferable to use a solvent with low water solubility from the viewpoint of preventing the solution coating film from whitening due to absorption of moisture in the atmosphere during the coating process.
  • the composition of the present invention is a solvent with low water solubility, specifically, water solubility at 25 ° C. is 1% by weight or less, preferably 0.1% by weight. % or less, preferably 10% by weight or more, more preferably 30% by weight or more, particularly preferably 50% by weight or more, based on the total composition.
  • composition for charge transport film When the electron-accepting compound is the above-described electron-accepting ionic compound, a composition containing the electron-accepting ionic compound and the carbazole compound of the present invention (hereinafter referred to as “charge-transporting film composition (A)" as appropriate) ), or a composition containing a charge-transporting ionic compound (hereinafter referred to as “charge It is preferably used as a transport film composition (B).
  • charge transport film composition (A) and the charge transport film composition (B) will be described separately.
  • compositions containing a carbazole compound and a charge-transporting ionic compound described below which consists of a cation radical of the carbazole compound of the present invention and a counter anion that is part of the electron-accepting ionic compound.
  • the carbazole compound of the present invention is a carbazole compound having the cross-linking group.
  • compositions (A) and (B) are compositions (compositions for charge transport materials) that can be widely used as charge transport materials. However, since this is usually formed into a film and used as a hole injection layer and/or a hole transport layer, that is, as a "charge transport film” that transports holes that are charges, in this specification, the term “charge transport film will be referred to as the "composition for
  • the charge-transporting film composition (A) contains the carbazole compound of the present invention, the electron-accepting compound having a cross-linking group, and a solvent.
  • the carbazole compound of the present invention may be contained singly or in combination of two or more. Furthermore, the hole-transporting polymer compound may be contained.
  • composition (A) for charge transport film is prepared by mixing at least the electron-accepting compound and the carbazole compound of the present invention. At this time, it is preferable that the charge-transporting film composition (A) contains a solvent, and the electron-accepting compound and the carbazole compound of the present invention are dissolved in the solvent and mixed.
  • the content of the electron-accepting compound in the charge-transporting film composition (A) is usually 0.1% by weight or more, preferably 1% by weight or more, and usually 100% by weight, based on the carbazole compound of the present invention. Below, preferably 40% by weight or less. If the content of the electron-accepting compound is at least the above lower limit, free carriers (cation radicals of the carbazole compound of the present invention) can be sufficiently generated, which is preferable. If the content of the electron-accepting compound is equal to or less than the above upper limit, sufficient charge transportability can be ensured, which is preferable. When two or more electron-accepting compounds are used in combination, the total content of these should be within the above range. The same applies to charge-transporting compounds.
  • the charge-transporting film composition (B) is, as described above, a composition containing a charge-transporting ionic compound comprising a cation radical of the carbazole compound of the present invention and a counter anion of the electron-accepting ionic compound.
  • the cation radical of the carbazole compound of the present invention which is the cation of the charge-transporting ionic compound, is a chemical species obtained by removing one electron from the electrically neutral compound represented by the carbazole compound of the present invention.
  • the cation radical of the carbazole compound of the present invention represented by formula (71) is an aromatic carbazole compound having a structure represented by formula (110) below.
  • Ar 621 , R 621 , R 622 , R 623 , R 624 , n621, n622, n623 and n624 are Ar 621 , R 621 , R 622 and R 623 in formula (71) above, respectively. , R 624 , n621, n622, n623, and n624.
  • the aromatic carbazole compound having a structure represented by formula (110) is particularly an aromatic carbazole compound having a structure represented by formula (110-2) below, which has an appropriate oxidation-reduction potential. , is preferred from the viewpoint that a stable charge-transporting ionic compound can be obtained.
  • w represents an integer of 1 to 6;
  • Ar 81 to Ar 84 are each independently a hydrogen atom, a deuterium atom, a halogen atom (specifically I, Br, Cl, F atom), or an optionally substituted aromatic having 6 to 30 carbon atoms It represents a hydrocarbon group or an aromatic heterocyclic group having 3 to 30 single atoms which may have a substituent.
  • Each of R 81 to R 84 independently represents a substituent and may be bonded between adjacent phenylene substituents.
  • Ar 81 to Ar 84 are preferably aromatic hydrocarbon groups having substituents, and specific examples thereof, preferred groups, examples of optionally substituted ), and particularly preferably an aromatic hydrocarbon group having 6 to 14 carbon atoms which may have a substituent .
  • Preferred substituents and preferred R 81 to R 84 are groups selected from the above-described substituent group Z, and are preferably unsubstituted, alkyl groups of the substituent group Z, and aromatic hydrocarbon groups.
  • w is preferably 6 or less, more preferably 5 or less, and particularly preferably 4 from the viewpoint of charge transport and that the partial structure represented by formula (110-2) is likely to become a cation radical.
  • the aromatic carbazole compound having the structure represented by formula (110-2) may be a low-molecular-weight compound having only one or more structures represented by formula (110-2) as the aromatic carbazole structure. .
  • the cation radical of the carbazole compound of the present invention represented by formula (72) is an aromatic carbazole compound having a structure represented by formula (120) below.
  • Ar 611 , Ar 612 , R 611 , R 612 , G, n 611 , n 612 are respectively Ar 611 , Ar 612 , R 611 , R 612 , G, n 611 in formula (72) , n 612 ).
  • the aromatic carbazole compound having a structure represented by formula (120) is particularly an aromatic carbazole compound having a structure represented by formula (120-2) below, which has an appropriate redox potential. , is preferred from the viewpoint that a stable charge-transporting ionic compound can be obtained.
  • Ar 611 , R 611 , R 612 , G, n 611 , n 612 are respectively Ar 611 , R 611 , R 612 , G, n 611 , n in the above formula (72) Similar to 612 .
  • Ar 613 is a residue obtained by removing the phenylene group from Ar 612 in the above formula (72) when Ar 612 has a structure capable of binding to the carbazole structure via phenylene.
  • the charge-transporting ionic compound is a compound in which the cation radical of the carbazole compound of the present invention and a counter anion that is part of the electron-accepting ionic compound are ionically bonded.
  • a charge-transporting ionic compound can be obtained by mixing an electron-accepting ionic compound and the carbazole compound of the present invention, and is easily dissolved in various solvents. Specifically, it can be obtained by the method described in ⁇ Method for preparing composition (B) for charge transport film> described below.
  • the molecular weight of the charge-transporting ionic compound is usually 1000 or more, preferably 1200 or more, more preferably 1400 or more, and usually 9000 or less, preferably 5000 or less, more preferably 5000 or less, except when the cation radical is a polymer compound. is in the range of 4000 or less.
  • the charge-transporting ionic compound (B) is preferably prepared by dissolving and mixing an electron-accepting ionic compound and the carbazole compound of the present invention in a solvent.
  • the carbazole compound of the present invention is oxidized by the electron-accepting ionic compound to form a cation radical, and an ionic compound of the counter anion of the electron-accepting ionic compound and the cation radical of the carbazole compound of the present invention.
  • a transport ionic compound is formed.
  • the electron-accepting ion compound exists in the vicinity of the nitrogen atom of the carbazole, which is the easily oxidizable site of the carbazole compound of the present invention.
  • the probability increases, the carbazole of the carbazole compound of the present invention is oxidized by the electron-accepting ionic compound to form a cation radical, and an ionic compound of the counter anion of the electron-accepting ionic compound and the cation radical of the carbazole compound of the present invention is generated. easier to do.
  • the charge-transporting film composition (B) by heating a mixture of the electron-accepting ion compound and the carbazole compound of the present invention.
  • This mixture is preferably a film formed by coating and drying a solution obtained by dissolving a mixture of an electron-accepting ion compound and the carbazole compound of the present invention in a solvent.
  • the electron-accepting ion compound and the carbazole compound of the present invention diffuse into each other in the mixture, and the electron-accepting compound is formed near the nitrogen atom of carbazole, which is the easily oxidizable site of the carbazole compound of the present invention.
  • the heating temperature at this time is preferably a temperature at which the cross-linking groups of the composition do not undergo a cross-linking reaction. It is formed.
  • the charge-transporting film composition (B) may contain one of the charge-transporting ionic compounds described above, or may contain two or more of them. It is preferable to contain one or two types of charge-transporting ionic compounds, and it is more preferable to contain one type alone. This is because the ionization potential of the charge-transporting ionic compound has little variation and the hole-transporting property is excellent.
  • a composition containing one or two charge-transporting ionic compounds is a composition prepared using only two or three types of electron-accepting ionic compounds and the carbazole compound of the present invention in total. A composition prepared using at least one electron-accepting ionic compound and at least one carbazole compound of the present invention.
  • the composition (B) for charge-transporting film preferably contains a charge-transporting compound in addition to the charge-transporting ionic compound.
  • a charge-transporting compound a polymer containing the arylamine structure as a repeating unit having the repeating unit represented by the formula (50), which is the hole-transporting polymer compound, is particularly preferable.
  • the content of the carbazole compound of the present invention as a charged amount is preferably 10% by weight or more, more preferably 20% by weight, based on the charge-transporting ionic compound. or more, more preferably 30% by weight or more. Also, it is preferably 10000% by weight or less, more preferably 1000% by weight or less.
  • the charge-transporting film formed from the charge-transporting-film composition (B) exhibits a high hole injection/transport capability due to positive charge transfer from the charge-transporting ionic compound to a nearby neutral charge-transporting compound. Therefore, the mass ratio of the charge-transporting ionic compound and the neutral carbazole compound of the present invention is preferably about 1:100 to 100:1, more preferably about 1:20 to 20:1. It is even more preferable to have
  • composition for charge transport film (A) and (B) The charge transport film formed from the charge transport film composition (A) has excellent heat resistance and high hole injection/transport capability. The reason why such excellent properties are obtained will be explained below.
  • the charge-transporting film composition (A) contains the electron-accepting compound and the charge-transporting compound described above.
  • the cation in the electron-accepting ionic compound has a hypervalent central atom and its positive charge is widely delocalized, so it has a high electron-accepting property.
  • electron transfer occurs from the charge-transporting compound to the cation of the electron-accepting ionic compound, and a charge-transporting ionic compound composed of the cation radical of the charge-transporting compound and the counter anion is generated. Since the cation radicals of the charge-transporting compound serve as charge carriers, the electrical conductivity of the charge-transporting film can be increased. That is, it is considered that when the charge transport film composition (A) is prepared, a charge transporting ionic compound at least partially composed of the cation radical of the charge transporting compound and the counter anion of the electron accepting ion compound is produced.
  • the charge-transporting compound represented by the formula (9) A charge-transporting ionic compound consisting of a cation radical and a counter-anion J- is produced.
  • the composition of the present invention is prepared by mixing a functional material containing the carbazole compound of the present invention, the electron-accepting compound, and/or the polymer with a solvent, and heating for a certain period of time to dissolve or disperse.
  • the heating temperature is usually room temperature or higher, preferably 80°C or higher, more preferably 90°C or higher, and 100°C or higher, for example, 100°C or higher. ⁇ 115°C is more preferred.
  • the heating time is preferably 30 minutes or longer, more preferably 45 minutes or longer, and more preferably 60 minutes or longer, for example, 60 to 180 minutes.
  • the composition after heating should be filtered using a membrane filter, depth filter, etc. to remove coarse particles before use.
  • the pore size of the filter is preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the composition of the present invention is preferably a solution containing a solvent, and the composition of the present invention is preferably used for wet film formation.
  • the wet film formation method is a method in which a composition containing a solvent is applied onto a substrate and the solvent is removed by drying to form a film.
  • the coating method is not particularly limited, but for example, spin coating, dip coating, die coating, bar coating, blade coating, roll coating, spray coating, capillary coating, inkjet, screen printing, A gravure printing method, a flexographic printing method, and the like can be mentioned.
  • heat drying is usually performed.
  • heating means used in the heating step include clean ovens, hot plates, and infrared heating.
  • infrared heating a halogen heater, a ceramic-coated halogen heater, a ceramic heater, or the like can be used. Heating by infrared rays gives heat energy directly to the substrate or film, so drying can be done in a short time compared to heating using an oven or a hot plate. Therefore, the influence of gases (moisture and oxygen) in the heating atmosphere and the influence of fine dust can be minimized, and productivity is improved, which is preferable.
  • the heating temperature is generally 80° C. or higher, preferably 100° C. or higher, more preferably 150° C. or higher, and generally 300° C. or lower, preferably 280° C. or lower, more preferably 260° C. or lower.
  • the heating time is usually 10 seconds or more, preferably 60 seconds or more, more preferably 90 seconds or more, and usually 120 minutes or less, preferably 60 minutes or less, more preferably 30 minutes or less. It is also preferable to perform vacuum drying before heat drying.
  • the film thickness of the organic layer formed by forming the composition of the present invention by a wet film-forming method is usually 5 nm or more, preferably 10 nm or more, and more preferably 20 nm or more.
  • the film thickness is usually 1000 nm or less, preferably 500 nm or less, more preferably 300 nm or less.
  • a film using the composition of the present invention and a film formed using the composition of the present invention can be suitably used as a charge transport layer.
  • This charge transport layer is particularly preferably used as a charge transport film of an organic electroluminescence device.
  • FIG. 1 shows a schematic diagram (cross section) of a structural example of the organic electroluminescence device 8 .
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • the substrate 1 serves as a support for the organic electroluminescence element, and is usually made of a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like. Among these, glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are preferred.
  • the substrate is preferably made of a material having a high gas barrier property because deterioration of the organic electroluminescence element due to outside air is unlikely to occur. Therefore, especially when using a material having low gas barrier properties such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate to improve the gas barrier properties.
  • the anode 2 has the function of injecting holes into the layer on the light-emitting layer 5 side.
  • Anode 2 is typically made of metals such as aluminum, gold, silver, nickel, palladium, platinum; metal oxides such as indium and/or tin oxide; metal halides such as copper iodide; carbon black and poly(3 -methylthiophene), polypyrrole, and polyaniline.
  • metals such as aluminum, gold, silver, nickel, palladium, platinum
  • metal oxides such as indium and/or tin oxide
  • metal halides such as copper iodide
  • the formation of the anode 2 is usually carried out by dry methods such as sputtering and vacuum deposition.
  • metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • they are dispersed in an appropriate binder resin solution. It can also be formed by coating on the substrate.
  • a conductive polymer a thin film can be formed directly on a substrate by electrolytic polymerization, or an anode can be formed by coating a conductive polymer on a substrate (Appl. Phys. Lett., Vol. 60, 2711, 1992).
  • the anode 2 usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first layer of the anode.
  • the thickness of the anode 2 may be determined according to the required transparency and material. When particularly high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably the thickness is such that the visible light transmittance is 80% or more.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 may be arbitrarily set according to the required strength, etc. In this case, the thickness of the anode 2 may be the same as that of the substrate.
  • the impurity on the anode 2 is removed and its ionization potential is changed by treating with ultraviolet rays/ozone, oxygen plasma, argon plasma, etc. before the film formation. is preferably adjusted to improve the hole injection property.
  • a layer that functions to transport holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode side may be called the hole injection layer 3 .
  • the hole injection layer 3 is preferably formed in order to enhance the function of transporting holes from the anode 2 to the light emitting layer 5 side.
  • the hole injection layer 3 is usually formed on the anode 2 .
  • the hole injection layer 3 formed using the composition of the present invention contains a crosslinked reaction product of the carbazole compound of the present invention and the electron-accepting compound described above.
  • the method for forming the hole injection layer 3 is not particularly limited, and examples thereof include a vacuum deposition method and a wet film formation method.
  • the composition of the present invention is prepared, applied onto the anode 2 by a wet film-forming method such as a spin coating method or a dip coating method, and dried to form a hole injection layer 3. form.
  • a composition containing the carbazole compound of the present invention and the above-described electron-accepting compound is used, and a film formed using a composition containing the carbazole compound of the present invention and the above-described electron-accepting compound.
  • the film thickness of the hole injection layer 3 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • a method for forming the hole injection layer may be a vacuum deposition method or a wet film formation method. From the viewpoint of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
  • the solvent include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents, and the like.
  • ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • 1,2-dimethoxybenzene 1,3-dimethoxybenzen
  • ester-based solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvents examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. be done.
  • amide-based solvents examples include N,N-dimethylformamide and N,N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used.
  • Formation of the hole injection layer 3 by a wet film-forming method is usually carried out by preparing a composition for forming a hole injection layer and then applying it on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2). It is carried out by coating and forming a film on the surface and drying it.
  • the coating film is usually dried by heating, drying under reduced pressure, or the like.
  • the hole transport layer 4 is a layer that functions to transport holes from the anode 2 side to the light emitting layer 5 side.
  • the hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to form this layer in terms of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5. .
  • the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5 . If the hole-injection layer 3 described above is present, the hole-transport layer 4 is formed between the hole-injection layer 3 and the light-emitting layer 5 .
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • a material that forms the hole transport layer 4 is preferably a material that has a high hole transport property and can efficiently transport the injected holes. Therefore, it is preferable that the ionization potential is low, the transparency to visible light is high, the hole mobility is high, the stability is excellent, and impurities that act as traps are less likely to occur during manufacture or use.
  • the hole-transporting layer 4 is in contact with the light-emitting layer 5, so that the hole-transporting layer 4 does not quench light emitted from the light-emitting layer 5 or form an exciplex with the light-emitting layer 5 to reduce efficiency. preferable.
  • the material for such a hole transport layer 4 may be any material that is conventionally used as a constituent material for a hole transport layer. Examples of compounds include those exemplified. Also, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatic group derivatives, metal complexes, and the like.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes. derivatives, poly(p-phenylene vinylene) derivatives and the like.
  • These may be alternating copolymers, random polymers, block polymers or graft copolymers.
  • a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer may be used.
  • polyarylamine derivatives and polyarylene derivatives are preferred.
  • a polymer containing a repeating unit represented by the following formula (I) is preferred.
  • a polymer composed of repeating units represented by the following formula (I) is preferred.
  • Ar a ' or Ar b ' may be different in each repeating unit.
  • Ar a ' and Ar b ' are each independently an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group represents.
  • polyarylene derivatives include polymers having arylene groups such as optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups in their repeating units.
  • polystyrene resin a polymer having repeating units represented by the following formula (II-1) and/or the following formula (II-2) is preferable.
  • R a , R b , R c and R d are each independently an alkyl group, an alkoxy group, a phenylalkyl group, a phenylalkoxy group, a phenyl group, a phenoxy group, an alkylphenyl group, represents an alkoxyphenyl group, an alkylcarbonyl group, an alkoxycarbonyl group or a carboxy group, x11 and x12 each independently represent an integer of 0 to 3. When x11 or x12 is 2 or more, a plurality of groups contained in one molecule may be the same or different, and adjacent Ra or Rb may form a ring. )
  • R e and R f are each independently synonymous with R a , R b , R c or R d in formula (II-1) above.
  • x13 and x14 are each Each independently represents an integer of 0 to 3.
  • a plurality of R e and R f contained in one molecule may be the same or different.
  • R f may form a ring together, and L represents an atom or a group of atoms constituting a 5- or 6-membered ring.
  • L is an oxygen atom, an optionally substituted boron atom, an optionally substituted nitrogen atom, an optionally substituted silicon atom, and an optionally substituted an optionally substituted phosphorus atom, an optionally substituted sulfur atom, an optionally substituted carbon atom, or a group formed by combining these.
  • the polyarylene derivative preferably has a repeating unit represented by the following formula (III-3) in addition to the repeating unit represented by the above formula (II-1) and/or the above formula (II-2). .
  • Ar c to Ar i each independently represent an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group; x15 and x16 each independently represent 0 or 1.
  • a composition for forming a hole transport layer is prepared in the same manner as in the formation of the hole injection layer 3, and after wet film formation, heat drying is performed. .
  • the hole-transporting layer-forming composition contains a solvent in addition to the hole-transporting compound described above.
  • the solvent to be used is the same as that used for the composition for forming the hole injection layer.
  • the film formation conditions, heat drying conditions, and the like are the same as in the case of forming the hole injection layer 3 .
  • the film forming conditions and the like are the same as in the case of forming the hole injection layer 3 described above.
  • the hole-transporting layer 4 may contain various light-emitting materials, electron-transporting compounds, binder resins, coatability improvers, etc., in addition to the above hole-transporting compounds.
  • the hole transport layer 4 may be a layer formed by cross-linking a cross-linkable compound.
  • the crosslinkable compound is a compound having a crosslinkable group, and forms a network polymer compound by crosslinking.
  • crosslinkable groups include groups derived from cyclic ethers such as oxetane and epoxy; groups derived from unsaturated double bonds such as vinyl, trifluorovinyl, styryl, acryl, methacryloyl, and cinnamoyl; Examples thereof include groups derived from cyclobutene.
  • the crosslinkable compound may be a monomer, oligomer, or polymer.
  • the crosslinkable compound may have only one type, or may have two or more types in any combination and ratio.
  • a hole-transporting compound having a crosslinkable group is preferably used as the crosslinkable compound.
  • the hole-transporting compound include those exemplified above.
  • the crosslinkable compound include those in which a crosslinkable group is bonded to the main chain or side chain of these hole transport compounds.
  • the crosslinkable group is preferably bonded to the main chain via a linking group such as an alkylene group.
  • the hole-transporting compound is preferably a polymer containing a repeating unit having a crosslinkable group. Alternatively, it is preferably a polymer having repeating units bonded via a linking group.
  • a composition for forming a hole transport layer is usually prepared by dissolving or dispersing the cross-linking compound in a solvent, and the film is formed by wet film formation. to cross-link.
  • the film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 150 nm or less.
  • the light-emitting layer 5 is a layer that functions to emit light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 7 when an electric field is applied between a pair of electrodes. .
  • the light-emitting layer 5 is a layer formed between the anode 2 and the cathode 7, and the light-emitting layer is formed between the hole-injection layer and the cathode, if there is a hole-injection layer on the anode. If there is a hole-transporting layer over the anode, the light-emitting layer is formed between the hole-transporting layer and the cathode.
  • the organic electroluminescent element in the present invention preferably contains a light-emitting layer-forming material suitable for the light-emitting layer.
  • the film thickness of the light-emitting layer 5 is arbitrary as long as it does not significantly impair the effects of the present invention. On the other hand, the thinner one is preferable because it is easier to achieve a low drive voltage. Therefore, the film thickness of the light-emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, and usually preferably 200 nm or less, more preferably 100 nm or less.
  • the light-emitting layer 5 contains at least a material having light-emitting properties (light-emitting material), and preferably contains one or more host materials.
  • the light-emitting layer of the present invention comprises a light-emitting material and a charge transport material.
  • the luminescent material may be a phosphorescent luminescent material or a fluorescent luminescent material.
  • the red emitting material and the green emitting material are phosphorescent emitting materials and the blue emitting material is fluorescent emitting material.
  • a phosphorescent material is a material that emits light from an excited triplet state.
  • metal complex compounds containing Ir, Pt, Eu, etc. are typical examples, and materials containing metal complexes are preferable as the structure of the material.
  • the long-period periodic table (unless otherwise specified, the long-period periodic table ) include Werner-type complexes or organometallic complex compounds containing a metal selected from Groups 7 to 11 as a central metal.
  • phosphorescent materials include those described in International Publication No. 2014/024889, International Publication No. 2015-087961, International Publication No. 2016/194784, and JP-A-2014-074000.
  • a compound represented by the following formula (201) or a compound represented by the following formula (205) is preferable, and a compound represented by the following formula (201) is more preferable.
  • ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ring A2 represents an aromatic heterocyclic structure which may have a substituent.
  • R 101 and R 102 are each independently a structure represented by formula (202). * represents the bonding position with ring A1 or ring A2.
  • R 101 and R 102 may be the same or different, and when multiple R 101 and R 102 are present, they may be the same or different.
  • Ar 201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents The substituents bonded to ring A1, the substituents bonded to ring A2, or the substituents bonded to ring A1 and the substituents bonded to ring A2 may be bonded to each other to form a ring.
  • B 201 -L 200 -B 202 represents an anionic bidentate ligand.
  • B 201 and B 202 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • L 200 represents a single bond or an atomic group forming a bidentate ligand together with B 201 and B 202 .
  • B 201 -L 200 -B 202 When there are multiple groups of B 201 -L 200 -B 202 , they may be the same or different.
  • i1 and i2 each independently represent an integer of 0 or more and 12 or less.
  • i3 represents an integer of 0 or more, the upper limit of which is the number that can be substituted for Ar 202 .
  • i4 represents an integer of 0 or more, the upper limit of which is the number that can be substituted for Ar 201 .
  • k1 and k2 each independently represent an integer of 0 or more, with the upper limit being the number that can be substituted on ring A1 and ring A2.
  • z represents an integer of 1 to 3;
  • substituent is preferably a group selected from the following substituent group S.
  • An alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and still more preferably an alkoxy group having 1 to 6 carbon atoms.
  • an aryloxy group preferably an aryloxy group having 6 to 20 carbon atoms, more preferably an aryloxy group having 6 to 14 carbon atoms, still more preferably an aryloxy group having 6 to 12 carbon atoms, particularly preferably an aryloxy group having 6 carbon atoms; aryloxy group.
  • a heteroaryloxy group preferably a heteroaryloxy group having 3 to 20 carbon atoms, more preferably a heteroaryloxy group having 3 to 12 carbon atoms.
  • an alkylamino group preferably an alkylamino group having 1 to 20 carbon atoms, more preferably an alkylamino group having 1 to 12 carbon atoms;
  • An arylamino group preferably an arylamino group having 6 to 36 carbon atoms, more preferably an arylamino group having 6 to 24 carbon atoms.
  • an aralkyl group preferably an aralkyl group having 7 to 40 carbon atoms, more preferably an aralkyl group having 7 to 18 carbon atoms, and still more preferably an aralkyl group having 7 to 12 carbon atoms;
  • - a heteroaralkyl group preferably a heteroaralkyl group having 7 to 40 carbon atoms, more preferably a heteroaralkyl group having 7 to 18 carbon atoms, - an alkenyl group, preferably an alkenyl group having 2 to 20 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, still more preferably an alkenyl group having 2 to 8 carbon atoms, particularly preferably an alkenyl group having 2 to 6 carbon atoms .
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms;
  • An aryl group preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 24 carbon atoms, still more preferably an aryl group having 6 to 18 carbon atoms, particularly preferably an aryl group having 6 to 14 carbon atoms .
  • a heteroaryl group preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 24 carbon atoms, still more preferably a heteroaryl group having 3 to 18 carbon atoms, particularly preferably 3 to 3 carbon atoms 14 heteroaryl groups.
  • An alkylsilyl group preferably an alkylsilyl group having 1 to 20 carbon atoms, more preferably an alkylsilyl group having 1 to 12 carbon atoms.
  • An arylsilyl group preferably an arylsilyl group in which the aryl group has 6 to 20 carbon atoms, more preferably an arylsilyl group in which the aryl group has 6 to 14 carbon atoms.
  • an alkylcarbonyl group preferably an alkylcarbonyl group having 2 to 20 carbon atoms;
  • an arylcarbonyl group preferably an arylcarbonyl group having 7 to 20 carbon atoms;
  • one or more hydrogen atoms may be replaced with fluorine atoms, or one or more hydrogen atoms may be replaced with deuterium atoms.
  • aryl is an aromatic hydrocarbon ring and heteroaryl is a heteroaromatic ring.
  • substituent group S preferably an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and groups thereof a group in which one or more hydrogen atoms of is replaced with a fluorine atom, a fluorine atom, a cyano group, or -SF5 , More preferred are alkyl groups, arylamino groups, aralkyl groups, alkenyl groups, aryl groups, heteroaryl groups, and groups in which one or more hydrogen atoms of these groups are replaced with fluorine atoms, fluorine atoms, cyano a group, or —SF 5 , more preferably an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alken
  • substituent groups S may further have a substituent selected from the substituent group S as a substituent.
  • Preferred groups, more preferred groups, further preferred groups, particularly preferred groups, and most preferred groups of the substituents which may be present are the same as the preferred groups in the substituent group S.
  • Ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • the aromatic hydrocarbon ring is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms. Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, and fluorene ring are preferred.
  • an aromatic heterocyclic ring having 3 to 30 carbon atoms containing any one of a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom is preferable.
  • furan ring benzofuran ring, thiophene ring and benzothiophene ring.
  • Ring A1 is more preferably a benzene ring, a naphthalene ring or a fluorene ring, particularly preferably a benzene ring or a fluorene ring, most preferably a benzene ring.
  • Ring A2 represents an aromatic heterocyclic structure which may have a substituent.
  • the aromatic heterocyclic ring is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing a nitrogen atom, an oxygen atom or a sulfur atom as a heteroatom.
  • Ring A1 and Ring A2 Preferred combinations of ring A1 and ring A2 are represented by (ring A1-ring A2), (benzene ring-pyridine ring), (benzene ring-quinoline ring), (benzene ring-quinoxaline ring), (benzene ring- quinazoline ring), (benzene ring-benzothiazole ring), (benzene ring-imidazole ring), (benzene ring-pyrrole ring), (benzene ring-diazole ring), and (benzene ring-thiophene ring).
  • Ring A1 and the ring A2 may have may be optionally selected, but one or more substituents selected from the substituent group S are preferable.
  • Ar201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents
  • the aromatic hydrocarbon ring structure is preferably an aromatic ring structure having 6 to 30 carbon atoms. is a group hydrocarbon ring. Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring and fluorene ring are preferred, benzene ring, naphthalene ring and fluorene ring are more preferred, and benzene ring is most preferred.
  • Ar 201 or Ar 202 is an optionally substituted benzene ring
  • at least one benzene ring is preferably bonded to the adjacent structure at the ortho- or meta-position. More preferably, one benzene ring is attached to the adjacent structure at the meta position.
  • Ar 201 , Ar 202 and Ar 203 is a fluorene ring optionally having a substituent
  • the 9- and 9′-positions of the fluorene ring have a substituent or are bonded to the adjacent structure. preferably.
  • Ar 201 , Ar 202 and Ar 203 is an aromatic heterocyclic structure which may have a substituent
  • the aromatic heterocyclic structure preferably contains a nitrogen atom, an oxygen atom, or It is an aromatic heterocyclic ring having 3 to 30 carbon atoms containing either a sulfur atom.
  • Ar 201 , Ar 202 and Ar 203 is a carbazole ring optionally having a substituent
  • the N-position of the carbazole ring may have a substituent or be bonded to an adjacent structure. preferable.
  • Ar 202 is an optionally substituted aliphatic hydrocarbon structure, it is an aliphatic hydrocarbon structure having a linear, branched or cyclic structure, preferably having 1 to 24 carbon atoms. more preferably 1 or more and 12 or less carbon atoms, more preferably 1 or more and 8 or less carbon atoms.
  • i1 and i2 each independently represent an integer of 0-12, preferably 1-12, more preferably 1-8, still more preferably 1-6. Within this range, an improvement in solubility and an improvement in charge transport properties can be expected.
  • i3 preferably represents an integer of 0 to 5, more preferably 0 to 2, still more preferably 0 or 1.
  • i4 preferably represents an integer of 0 to 2, more preferably 0 or 1.
  • Each of k1 and k2 independently represents an integer of preferably 0 to 3, more preferably 1 to 3, still more preferably 1 or 2, and particularly preferably 1.
  • the substituents that Ar 201 , Ar 202 and Ar 203 may have can be arbitrarily selected, but are preferably one or more substituents selected from the above substituent group S, and preferred groups are also the above substituents.
  • Group S but more preferably unsubstituted (hydrogen atom), alkyl group or aryl group, particularly preferably unsubstituted (hydrogen atom) or alkyl group, most preferably unsubstituted (hydrogen atom ) or a tertiary butyl group.
  • the tertiary butyl group preferably substitutes for Ar 203 when Ar 203 exists, for Ar 202 when Ar 203 does not exist, and for Ar 201 when Ar 202 and Ar 203 do not exist.
  • the compound represented by the formula (201) is preferably a compound satisfying any one or more of the following (I) to (IV).
  • the structure represented by formula (202) is a structure having a group to which benzene rings are linked, that is, a benzene ring structure, i1 is 1 to 6, and at least one of the benzene rings is in the ortho or meta position. It is preferred that the sites are linked to adjacent structures. Such a structure is expected to improve the solubility and the charge transport property.
  • Ar 201 is an aromatic hydrocarbon structure or an aromatic heterocyclic structure, i1 is 1 ⁇ 6, Ar 202 is an aliphatic hydrocarbon structure, i2 is 1 to 12, preferably 3 to 8, Ar 203 is a benzene ring structure, i3 is 0 or 1, preferably Ar 201 is the aromatic hydrocarbon structure It is a hydrogen structure, more preferably a structure in which 1 to 5 benzene rings are linked, more preferably one benzene ring. Such a structure is expected to improve the solubility and the charge transport property.
  • B 201 -L 200 -B 202 The structure represented by B 201 -L 200 -B 202 is preferably a structure represented by the following formula (203) or the following formula (204).
  • R 211 , R 212 and R 213 each independently represent a substituent.
  • ring B3 represents an aromatic heterocyclic structure containing a nitrogen atom, which may have a substituent. Ring B3 is preferably a pyridine ring.
  • phosphorescent material represented by the formula (201) is not particularly limited, the following are preferred.
  • a phosphorescent material represented by the following formula (205) is also preferable.
  • M2 represents a metal
  • T represents a carbon atom or a nitrogen atom.
  • R 92 to R 95 each independently represent a substituent. However, when T is a nitrogen atom, there are no R94 and R95 . ]
  • M 2 in formula (205) include metals selected from Groups 7 to 11 of the periodic table. Among them, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold are preferred, and divalent metals such as platinum and palladium are particularly preferred.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, an alkoxy group. , an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • R94 and R95 each independently represent a substituent represented by the same examples as R92 and R93 . Also, when T is a nitrogen atom, there is no R94 or R95 directly bonded to said T. R 92 to R 95 may further have a substituent. The substituents may be the substituents described above. Furthermore, any two or more groups selected from R 92 to R 95 may be linked together to form a ring.
  • the molecular weight of the phosphorescent material is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Also, the molecular weight of the phosphorescent material is preferably 800 or more, more preferably 1000 or more, and even more preferably 1200 or more. It is believed that within this molecular weight range, the phosphorescent light-emitting material is not agglomerated and uniformly mixed with the charge-transporting material, making it possible to obtain a light-emitting layer with high light-emitting efficiency.
  • the molecular weight of the phosphorescent light-emitting material has a high Tg, melting point, decomposition temperature, etc., and the phosphorescent light-emitting material and the formed light-emitting layer have excellent heat resistance, and the film quality due to gas generation, recrystallization, molecular migration, etc. A large value is preferable from the viewpoint that it is difficult to cause a decrease in the concentration of impurities and an increase in the concentration of impurities due to thermal decomposition of the material.
  • the molecular weight of the phosphorescent light-emitting material is preferably small in terms of facilitating purification of the organic compound.
  • the charge-transporting material used in the light-emitting layer is a material having a skeleton with excellent charge-transporting properties, and may be selected from electron-transporting materials, hole-transporting materials, and bipolar materials capable of transporting both electrons and holes. preferable.
  • skeletons with excellent charge transport properties include aromatic structures, aromatic amine structures, triarylamine structures, dibenzofuran structures, naphthalene structures, phenanthrene structures, phthalocyanine structures, porphyrin structures, thiophene structures, benzylphenyl structures, fluorene structure, quinacridone structure, triphenylene structure, carbazole structure, pyrene structure, anthracene structure, phenanthroline structure, quinoline structure, pyridine structure, pyrimidine structure, triazine structure, oxadiazole structure, imidazole structure, and the like.
  • a compound having a pyridine structure, a pyrimidine structure, or a triazine structure is more preferable, and a compound having a pyrimidine structure or a triazine structure, from the viewpoint of being a material having excellent electron-transporting properties and a relatively stable structure. is more preferred.
  • a hole-transporting material is a compound having a structure having excellent hole-transporting properties.
  • a pyrene structure is preferable as a structure having excellent hole transport properties, and a carbazole structure, a dibenzofuran structure, or a triarylamine structure is more preferable.
  • the charge-transporting material used in the light-emitting layer preferably has a condensed ring structure of three or more rings, and is a compound having two or more condensed ring structures of three or more rings or a compound having at least one condensed ring of five or more rings. is more preferred. These compounds increase the rigidity of the molecules, making it easier to obtain the effect of suppressing the degree of molecular motion in response to heat. Furthermore, the 3 or more condensed rings and the 5 or more condensed rings preferably have an aromatic hydrocarbon ring or an aromatic heterocyclic ring from the viewpoint of charge transportability and material durability.
  • condensed ring structures having three or more rings include anthracene structure, phenanthrene structure, pyrene structure, chrysene structure, naphthacene structure, triphenylene structure, fluorene structure, benzofluorene structure, indenofluorene structure, indolofluorene structure, Carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, dibenzothiophene structure and the like.
  • a carbazole structure or an indolocarbazole structure is more preferred from the viewpoint of durability against electric charges.
  • At least one of the charge-transporting materials in the light-emitting layer is preferably a material having a pyrimidine skeleton or a triazine skeleton, from the viewpoint of the durability of the organic electroluminescent device against charges.
  • the charge-transporting material of the light-emitting layer is preferably a polymeric material from the viewpoint of excellent flexibility.
  • a light-emitting layer formed using a material having excellent flexibility is preferable as a light-emitting layer of an organic electroluminescent device formed on a flexible substrate.
  • the charge-transporting material contained in the light-emitting layer is a polymeric material, the molecular weight is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 500,000 or less, and still more preferably 10,000 or less. 000 or more and 100,000 or less.
  • the charge-transporting material for the light-emitting layer is Low molecular weight materials are preferred.
  • the molecular weight is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2 ,000 or less, preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
  • the fluorescent light-emitting material is not particularly limited, but a compound represented by the following formula (211) is preferable.
  • Ar 241 represents an aromatic hydrocarbon condensed ring structure which may have a substituent.
  • Ar 242 and Ar 243 each independently represent an optionally substituted alkyl group, aromatic hydrocarbon group, heteroaromatic group, or a group in which these are bonded.
  • n41 is an integer of 1-4.
  • Ar 241 preferably represents an aromatic hydrocarbon condensed ring structure having 10 to 30 carbon atoms, and specific ring structures include naphthalene, acenaphthene, fluorene, anthracene, phenathrene, fluoranthene, pyrene, tetracene, chrysene, perylene and the like. mentioned. Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 12 to 20 carbon atoms, and specific ring structures include acenaphthene, fluorene, anthracene, phenathrene, fluoranthene, pyrene, tetracene, chrysene, and perylene. . Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 16 to 18 carbon atoms, and specific ring structures include fluoranthene, pyrene and chrysene.
  • n41 is 1-4, preferably 1-3, more preferably 1-2, most preferably 2.
  • the alkyl group for Ar 242 and Ar 243 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
  • the aromatic hydrocarbon group for Ar 242 and Ar 243 is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 24 carbon atoms, most preferably a phenyl group. , is a naphthyl group.
  • the heteroaromatic group for Ar 242 and Ar 243 is preferably a heteroaromatic group having 3 to 30 carbon atoms, more preferably an aromatic hydrocarbon group having 5 to 24 carbon atoms, specifically a carbazolyl group, A dibenzofuranyl group and a dibenzothiophenyl group are preferred, and a dibenzofuranyl group is more preferred.
  • the substituent that Ar 241 , Ar 242 , and Ar 243 may have is preferably a group selected from the substituent group S, more preferably a hydrocarbon group included in the substituent group S, and still more preferably is a hydrocarbon group among preferred groups for the group S of substituents.
  • the charge-transporting material used together with the fluorescent light-emitting material is not particularly limited, but is preferably represented by the following formula (212).
  • R 251 and R 252 each independently represent a structure represented by formula (213).
  • R 253 represents a substituent, and when there are a plurality of R 253 , they may be the same or different.
  • n43 is an integer of 0-8.
  • Ar 254 and Ar 255 each independently represent an optionally substituted aromatic hydrocarbon structure or an optionally substituted heteroaromatic ring structure. Ar 254 and Ar 255 may be the same or different when a plurality of Ar 254 and Ar 255 are present.
  • n44 is an integer of 1-5
  • n45 is an integer of 0-5.
  • Ar 254 is preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 30 carbon atoms, more preferably optionally substituted , is a monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 12 carbon atoms.
  • Ar 255 is preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 30 carbon atoms, or an optionally substituted carbon number of 6 to 30 is an aromatic heterocyclic ring structure that is a condensed ring of Ar 255 is more preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 12 carbon atoms, or an optionally substituted C 12 It is an aromatic heterocyclic ring structure that is a condensed ring.
  • n44 is preferably an integer of 1-3, more preferably 1 or 2.
  • n45 is preferably an integer of 0-3, more preferably 0-2.
  • the substituent that the substituents R 253 , Ar 254 and Ar 255 may have is preferably a group selected from the substituent group S described above. More preferably, it is a hydrocarbon group contained in the substituent group S, and more preferably a hydrocarbon group among groups preferable as the substituent group S.
  • the molecular weights of the fluorescence-emitting material and charge-transporting material are preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2,000 or less. Also, it is preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
  • a hole-blocking layer may be provided between the light-emitting layer 5 and an electron-injecting layer, which will be described later.
  • the hole-blocking layer is a layer laminated on the light-emitting layer 5 so as to be in contact with the interface of the light-emitting layer 5 on the cathode 7 side.
  • This hole-blocking layer has the role of blocking holes moving from the anode 2 from reaching the cathode 7 and the role of efficiently transporting electrons injected from the cathode 7 toward the light-emitting layer 5.
  • Physical properties required for the material constituting the hole blocking layer include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and an excited triplet level (T 1 ). is high.
  • Examples of materials for the hole blocking layer that satisfy these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum, bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum, and the like.
  • mixed ligand complexes bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolato) aluminum binuclear metal complexes such as metal complexes, distyrylbiphenyl derivatives and the like Styryl compounds (JP-A-11-242996), triazole derivatives such as 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole (JP-A-11-242996) 7-41759), phenanthroline derivatives such as bathocuproine (JP-A-10-79297), and the like.
  • the compound having at least one pyridine ring substituted at the 2,4,6 positions described in WO 2005/022962 is also preferable as a material for the hole blocking layer.
  • the hole blocking layer There are no restrictions on the method of forming the hole blocking layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
  • the film thickness of the hole blocking layer is arbitrary as long as it does not significantly impair the effects of the present invention.
  • the film thickness of the hole blocking layer is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 6 is provided between the light emitting layer 5 and the cathode 7 for the purpose of further improving the current efficiency of the device.
  • the electron transport layer 6 is made of a compound that can efficiently transport electrons injected from the cathode 7 toward the light emitting layer 5 between electrodes to which an electric field is applied.
  • the electron-transporting compound used in the electron-transporting layer 6 is a compound that has high electron injection efficiency from the cathode 7, high electron mobility, and can efficiently transport the injected electrons. is necessary.
  • Examples of the electron-transporting compound used in the electron-transporting layer include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, Azole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No.
  • quinoxaline compound JP-A-6-207169
  • phenanthroline derivative JP-A-5-331459
  • n-type hydrogenated amorphous Examples include silicon carbide, n-type zinc sulfide, n-type zinc selenide, and the like.
  • the thickness of the electron transport layer 6 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 6 is formed on the hole blocking layer by a wet film forming method or a vacuum vapor deposition method in the same manner as described above.
  • a vacuum deposition method is usually used.
  • the electron-transporting layer can be formed on the light-emitting layer containing a suitable material for forming the light-emitting layer by a wet film-forming method.
  • the electron injection layer may be provided to efficiently inject electrons injected from the cathode 7 into the electron transport layer 6 or the light emitting layer 5 .
  • the material forming the electron injection layer be a metal with a low work function.
  • examples thereof include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like.
  • the film thickness of the electron injection layer is preferably 0.1 nm or more and 5 nm or less.
  • an organic electron-transporting material typified by a nitrogen-containing heterocyclic compound such as bathophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.) also improves the electron injection and transport properties and makes it possible to achieve both excellent film quality. preferable.
  • a nitrogen-containing heterocyclic compound such as bathophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline
  • an alkali metal such as sodium, potassium, cesium, lithium or rubidium
  • the thickness of the electron injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer is formed by laminating the light emitting layer 5 or the hole blocking layer or the electron transport layer 6 thereon by a wet film forming method or a vacuum deposition method.
  • the details of the wet film formation method are the same as those of the light-emitting layer described above.
  • the hole-blocking layer, electron-transporting layer, and electron-injecting layer are formed into a single layer by co-doping the electron-transporting material and the lithium complex.
  • the cathode 7 plays a role of injecting electrons into a layer (an electron injection layer, a light-emitting layer, or the like) on the light-emitting layer 5 side.
  • the material used for the cathode 7 can be used.
  • a metal with a low work function as the material of the cathode 7.
  • metals such as tin, magnesium, indium, calcium, aluminum, and silver, or alloys thereof are used. be done.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy and aluminum-lithium alloy.
  • the cathode made of a metal with a low work function by stacking a metal layer that has a high work function and is stable against the atmosphere on the cathode.
  • Metals to be laminated include, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the film thickness of the cathode is usually the same as that of the anode.
  • the organic electroluminescence device of the present invention may further have other layers as long as they do not significantly impair the effects of the present invention. That is, it may have any of the other layers described above between the anode and cathode.
  • the organic electroluminescence device of the present invention has a structure opposite to that described above. It is also possible to laminate the injection layer and the anode in this order.
  • the organic electroluminescent element of the present invention When the organic electroluminescent element of the present invention is applied to an organic electroluminescent device, it may be used as a single organic electroluminescent element or may be used in a configuration in which a plurality of organic electroluminescent elements are arranged in an array. A configuration in which anodes and cathodes are arranged in an XY matrix may be used.
  • the display device (organic electroluminescent element display device) of the present invention comprises the organic electroluminescent element of the present invention.
  • the device can be assembled according to a conventional method using the organic electroluminescence device of the present invention.
  • the organic EL display device of the present invention can be manufactured by the method described in "Organic EL Display” (Ohmsha, August 20, 2004, by Shizuo Tokito, Chihaya Adachi, and Hideyuki Murata). can be formed.
  • the lighting device (organic electroluminescent element lighting device) of the present invention comprises the organic electroluminescent element of the present invention.
  • the device can be assembled using the organic electroluminescence device of the present invention in a conventional manner.
  • compound 1 (6.4 g, 14.28 mmol), 9,9-dihexylfluorene-2,7-diboronic acid (3.0 g, 7.14 mmol), potassium phosphate (2 M aqueous solution, 20 ml), and toluene ( 40 ml) and ethanol (20 ml) were introduced into a flask, the inside of the system was sufficiently replaced with nitrogen, and heated to 60°C.
  • Bis(triphenylphosphine)palladium(II) dichloride (0.050 g, 0.071 mmol) was added and stirred at 60° C. for 3 hours. Water was added to the reaction solution, and extraction was performed with toluene.
  • a glass substrate on which an indium tin oxide (ITO) transparent conductive film is deposited to a thickness of, for example, 50 nm can be used.
  • ITO indium tin oxide
  • a composition for forming a hole injection layer 1.3% by weight of a hole-transporting polymer compound having a repeating structure of formula (P-1) and a hole-transporting compound 1 having a structure of formula (M-1)
  • a composition of .3% by weight and 0.4% by weight of the electron-accepting compound (HI-1) dissolved in anisole can be prepared.
  • This solution is spin-coated on the substrate in the atmosphere and dried on a hot plate in the atmosphere at 230° C. for 30 minutes to form a hole injection layer with a thickness of 50 nm, for example.
  • a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are formed on the substrate on which the hole injection layer has been coated, and finally sealed to produce an organic electroluminescence device.
  • a device fabricated in this manner is expected to exhibit good device characteristics.
  • Example 1 An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate to a thickness of 50 nm (manufactured by Geomatec, a sputter-deposited product) was subjected to a 2 mm-wide stripe using ordinary photolithography and etching with hydrochloric acid. was patterned to form an anode.
  • the substrate on which the ITO pattern is formed in this manner is washed with ultrasonic waves using an aqueous solution of surfactant, washed with ultrapure water, ultrasonically washed with ultrapure water, and washed with ultrapure water in this order, and then dried with compressed air. , and finally performed ultraviolet ozone cleaning.
  • composition for forming a hole injection layer 1.3% by weight of a hole-transporting polymer compound having a repeating structure of the following formula (P-2) and a hole-transporting polymer having a structure of the following formula (M-2)
  • P-2 a hole-transporting polymer compound having a repeating structure of the following formula
  • M-2 a hole-transporting polymer having a structure of the following formula
  • This solution was spin-coated on the substrate in the atmosphere and dried on a hot plate in the atmosphere at 230° C. for 30 minutes to form a uniform thin film with a thickness of 50 nm, which was used as a hole injection layer.
  • a charge-transporting polymer compound having the following structural formula (HT-1) was dissolved in 1,3,5-trimethylbenzene to prepare a 2.0% by weight solution.
  • This solution was spin-coated on the substrate on which the hole injection layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 230° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm. was formed to form a hole transport layer.
  • a host compound having the following structural formula (BH-1) and a dopant compound having the following structural formula (BD-1) were dissolved in cyclohexylbenzene in parts by weight of 100:10 to give 4.2% by weight. was prepared.
  • a uniform thin film of 40 nm was formed by spin coating in a nitrogen glove box on the substrate on which the film up to the hole transport layer had been applied and formed as a light-emitting layer. It was dried on a hot plate in a nitrogen glove box at 120° C. for 20 minutes to form a light-emitting layer.
  • the substrate on which up to the light-emitting layer was formed was placed in a vacuum deposition apparatus, and the inside of the apparatus was evacuated to 2 ⁇ 10 ⁇ 4 Pa or less.
  • a striped shadow mask with a width of 2 mm was adhered to the substrate so as to be orthogonal to the ITO stripes of the anode as a mask for cathode evaporation, and aluminum was heated by a molybdenum boat by vacuum evaporation to obtain a film thickness of 80 nm. was formed to form a cathode.
  • an organic electroluminescence device having a light-emitting area of 2 mm ⁇ 2 mm was obtained.
  • a moisture and oxygen adsorbent is attached to the inside of a glass substrate having a hollow structure, and the surface of the glass substrate having the organic electroluminescent element and the moisture and oxygen adsorbent of the hollow glass are provided.
  • the surfaces were made to face each other, and an ultraviolet curable resin was applied so as to surround the outer periphery of the organic electroluminescence element portion, and the surfaces were bonded to each other. Further, a structure was formed in which the ultraviolet curable resin portion was irradiated with ultraviolet rays to isolate the organic electroluminescence element portion from the external space.
  • the surface of the organic electroluminescent device can be isolated from moisture and oxygen without any structure directly touching it, and the performance of the organic electroluminescent device can be evaluated by excluding the influence of moisture and oxygen. be able to.
  • Example 2 As the composition for forming a hole injection layer, only 2.6% by weight of the hole-transporting carbazole compound having the structure of the formula (M-2) and 0.4% by weight of the electron-accepting compound (HI-1) are used. A device was fabricated in the same manner as in Example 1, except that a composition dissolved in anisole was prepared and used.
  • Example 3 As a composition for forming a hole injection layer, 1.3% by weight of a hole-transporting polymer compound having a repeating structure of the following formula (P-3) and a hole-transporting polymer having a structure of the formula (M-2) A device was prepared in the same manner as in Example 1, except that a composition was prepared by dissolving 1.3% by weight of the carbazole compound and 0.4% by weight of the electron-accepting compound (HI-1) in anisole. was made.
  • Example 4 As a composition for forming a hole injection layer, 1.3% by weight of a hole-transporting polymer compound having a repeating structure of the following formula (P-4) and a hole-transporting polymer having a structure of the formula (M-2) A composition was prepared by dissolving 1.3% by weight of the carbazole compound and 0.4% by weight of the electron-accepting compound (HI-1) in butyl benzoate, and vacuum drying was performed after spin coating. prepared a device in the same manner as in Example 1.
  • Comparative Example 1 As a composition for forming a hole injection layer, 1.3% by weight of a hole-transporting polymer compound having a repeating structure of the formula (P-2) and a hole-transporting polymer having a structure of the following formula (M-3) A device was fabricated in the same manner as in Example 1, except that a composition was prepared by dissolving 1.3% by weight of the compound and 0.4% by weight of the electron-accepting compound (HI-1) in anisole. made.
  • composition for forming a hole injection layer 1.3% by weight of a hole-transporting polymer compound having a repeating structure of formula (P-2) and a hole-transporting polymer having a structure of formula (M-2)
  • a composition was prepared by dissolving 1.3% by weight of a carbazole compound and 0.4% by weight of the following electron-accepting compound (HI-2) in anisole.
  • HI-2 electron-accepting compound
  • Example 5 As a composition for forming a hole injection layer, 2.6% by weight of a hole-transporting carbazole compound having the structure of formula (M-1) and 0.4% by weight of the electron-accepting compound (HI-1). was dissolved in anisole to prepare and use a composition.
  • Example 6 As a composition for forming a hole injection layer, 1.3% by weight of a hole-transporting polymer compound having a repeating structure of formula (P-1) and a hole-transporting polymer having a structure of formula (M-1) A composition was prepared by dissolving 1.3% by weight of the carbazole compound and 0.4% by weight of the electron-accepting compound (HI-1) in butyl benzoate, and vacuum drying was performed after spin coating. Other than that, the device was produced in the same manner as in Example 1.
  • Example 7 As the composition for forming a hole injection layer, 1.3% by weight of a hole-transporting polymer compound having a repeating structure of formula (P-3) and a hole-transporting polymer having a structure of formula (M-1) In the same manner as in Example 1, except that a composition was prepared by dissolving 1.3% by weight of the carbazole compound and 0.4% by weight of the electron-accepting compound (HI-1) in anisole. A device was produced.
  • Example 8 As a composition for forming a hole injection layer, 1.3% by weight of a hole-transporting polymer compound having a repeating structure of the following formula (P-5) and a hole-transporting polymer having a structure of the formula (M-1) A composition was prepared by dissolving 1.3% by weight of the carbazole compound and 0.4% by weight of the electron-accepting compound (HI-1) in butyl benzoate, and vacuum drying was performed after spin coating. Other than that, the device was produced in the same manner as in Example 1.
  • the voltage of the organic electroluminescence device of Example 1 was obtained as the "voltage difference" and shown in Table 2.
  • the ratio of the current luminescence efficiency of the organic electroluminescence devices of the other examples and the comparative examples to the current luminescence efficiency (cd/A) of the organic electroluminescence device of Comparative Example 1 being 1.00, that is, " The current luminescence efficiency of each organic electroluminescence device other than Comparative Example 1/the current luminescence efficiency of the organic electroluminescence device of Comparative Example 1 was determined as the "relative current luminescence efficiency" and shown in Table 1.
  • the ratio of LT90 of the organic electroluminescent devices of other examples and comparative examples, that is, “each organic electroluminescent device other than Comparative Example 1 The LT90 of the device/LT90 of the organic electroluminescence device of Comparative Example 1 was obtained as the "relative life" and shown in Table 2.
  • Example 9 As a composition for forming a hole injection layer, 2.6% by weight of a hole-transporting polymer compound having a repeating structure of the formula (P-1) and 0.4% by weight of the electron-accepting compound (HI-2). % was dissolved in anisole, and a hole injection layer was formed in the same manner as in Example 1.
  • the host compound having the following structural formula (GH-1), the charge-transporting low-molecular-weight compound (M-3), and the dopant compound having the following structural formula (GD-1) were mixed at a ratio of 50:50:42. was dissolved in cyclohexylbenzene at a weight ratio of 7.1% by weight to prepare a 7.1% by weight solution.
  • a uniform thin film of 60 nm was formed by spin-coating this solution onto the substrate on which the film was formed up to the hole transport layer in a nitrogen glove box, and dried on a hot plate in a nitrogen glove box at 120° C. for 20 minutes. was used as a light-emitting layer. After that, devices were fabricated in the same manner as in Example 1.
  • the ratio of the LT90 of the organic electroluminescent element of Example 9 when the LT90 of the organic electroluminescent element of Comparative Example 6 is 1.0 that is, "LT90 of the organic electroluminescent element of Example 9/comparative example The LT90 of the organic electroluminescence device of No. 1 was determined as the “relative lifetime” and shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物、および下記式(81)で表される、架橋基を有する電子受容性化合物を含む組成物。

Description

組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置
 本発明は、組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置に関する。
 近年、薄膜型の電界発光素子としては、無機材料を用いたものに代わり、有機薄膜を用いた有機電界発光素子の開発が行われるようになっている。有機電界発光素子(OLED)は、通常、陽極と陰極の間に、電荷注入層、電荷輸送層、有機発光層、電子輸送層などを有し、この各層に適した材料が開発されつつあり、発光色も赤、緑、青と、それぞれに開発が進んでいる。
 有機電界発光素子の有機層の形成方法としては、真空蒸着法と湿式成膜法(塗布法)が挙げられる。真空蒸着法は積層化が容易であるため、陽極及び/又は陰極からの電荷注入の改善、励起子の発光層封じ込めが容易であるという利点を有する。一方で、湿式成膜法は真空プロセスが要らず、大面積化が容易で、様々な機能をもった複数の材料を混合した塗布液を用いることにより、容易に、様々な機能をもった複数の材料を含有する層を形成できる等の利点がある。そのため、近年では塗布法での製膜による有機電界発光素子の研究開発が精力的に行われている。
 特許文献1には、電荷注入材料として架橋基を含む重合体と架橋基を含む電子受容性化合物を有する有機電界発光素子が記載されている。特許文献2には、架橋基を含むフルオレンのアリールジアミン化合物と電子受容性化合物を含む組成物を有する有機電界発光素子が記載されている。特許文献3には、架橋基を含むカルバゾールのアリールアミン化合物と電子受容性化合物を含む組成物を有する有機電界発光素子が記載されている。特許文献4には、分子内に、1つ以上の重合可能な置換基と2つ以上のカルバゾール基とを有する化合物を含む有機電界発光素子が開示されている。
国際公開第2019/059331号 国際公開第2019/231257号 米国特許出願公開第2021/0151685号明細書 特開2008-244471号公報
 一般的に、アリールアミン類の有機電子供与体と有機電子受容体とを適切な比率で混合し、アリールアミンの有するN原子が部分的に有機電子受容体とイオン錯体を形成すると、このイオン錯体が形成されることで陽極からの正孔注入障壁が低減するので、安定なイオン錯体を形成する材料が注目されている。
 特許文献1~3に開示された材料や技術では、アリールアミン重合体やアリールアミン低分子化合物やカルバゾールのアリールアミン化合物の有機電子供与体と、有機電子受容体からイオン錯体を形成させているが、有機電界発光素子の駆動電圧の低減が不十分である。
 特許文献4には、オキセタン架橋基を含むビスカルバゾール化合物が開示されているが、架橋基を含まない有機電子受容体が光重合開始剤として使用されており、発光層まで有機電子受容体の拡散防止が不十分であり、発光効率及び駆動寿命を向上させることができなかった。
 本発明は、駆動電圧が低く、発光効率が高く、駆動寿命が長い有機電界発光素子を提供することを課題とする。
 本発明者は、架橋基を有するカルバゾール化合物および架橋基を有する電子受容性化合物の架橋反応物を含有する正孔注入層及び/又は正孔輸送層を用いることで、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 即ち、本発明の要旨は、次の[1]~[45]のとおりである。
[1] 下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物、および下記式(81)で表される、架橋基を有する電子受容性化合物を含む組成物。
Figure JPOXMLDOC01-appb-C000036
(式(71)中、
 Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
 n621、n622、n623、n624は各々独立に、0~4の整数である。
 但し、n621とn622とn633とn624の合計は1以上である。
 式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000037
(式(72)中、
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 n611、n612は各々独立に0~4の整数である。
 式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000038
(式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
 Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
 式(81)で表される化合物は、架橋基を有する。
 Xは対カチオンを表す。)
[2] 前記式(71)におけるAr621が、1~4個の置換基を有していてもよいベンゼン環、及び、1又は2個の置換基を有していてもよいフルオレン環から選択される複数の構造が任意の順序で鎖状又は分岐して結合して形成された2価の基である、[1]に記載の組成物。
[3] 前記式(71)におけるAr621が、下記式(71-1)~(71-11)、(71-21)~(71-24)から選択される少なくとも1つの部分構造を有する、[1]又は[2]に記載の組成物。
Figure JPOXMLDOC01-appb-C000039
(上記式(71-1)~(71-11)、(71-21)~(71-24)それぞれにおいて、
 *は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表し、4つ存在する*の任意2つ*少なくとも一方は隣接する構造との結合位置を表す。
 R625、R626は、各々独立に、炭素数6~12のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、アラルキル基、又は炭素数6~30の1価の芳香族炭化水素基を表す。R625、R626は共に結合して環を形成してもよい。)
[4] 前記式(71)における、R621、R622、R623及びR624がそれぞれ独立に、架橋基を有してもよい炭素数6~50の芳香族炭化水素基、又は架橋基である、[1]~[3]のいずれかに記載の組成物。
[5] 前記式(71)における、n621及びn623が1であり、n622及びn624が0であり、R621及びR623が、各々独立に、架橋基によって置換されている炭素数6~50の芳香族炭化水素基又は架橋基である、[1]~[4]のいずれかに記載の組成物。
[6] 前記式(72)における、Ar611、Ar612が、各々独立に、架橋基を有するフェニル基、又は、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であってかつ架橋基を有する基である、[1]~[5]のいずれかに記載の組成物。
[7] 前記式(72)における、Ar611、Ar612の少なくとも一方が、下記式(72-1)~(72-6)から選択される少なくとも1つの部分構造を有する、[1]~[6]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000040
(上記式(72-1)~式(72-6)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。)
[8] 前記式(72)において、n611及びn612が0である、[1]~[7]のいずれかに記載の組成物。
[9] 前記式(72)において、Gが単結合である、[1]~[8]のいずれかに記載の組成物。
[10] 前記式(81)における、-Ph-(R81、-Ph-(R82、-Ph-(R83、及び-Ph-(R84の内、少なくとも1つが4つのフッ素原子を有する下記式(84)で表される基である、[1]~[9]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000041
(式(84)中、*は式(81)のホウ素Bとの結合を表す。
 Fはフッ素原子が4個置換していることを表す。
 R85は、置換基及び/又は架橋基を有してもよい芳香族炭化水素基、又は架橋基を表す。)
[11] 前記式(81)で表される電子受容性化合物が少なくとも2つの架橋基を有する、[1]~[10]のいずれかに記載の組成物。
[12] 更に、アリールアミン構造を繰り返し単位として有する重合体であって、下記式(50)で表される繰り返し単位を有する重合体を含む、[1]~[11]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000042
(式(50)中、
 Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
 Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
 Ar51、Ar52は置換基及び/又は架橋基を有してもよい。)
[13] 前記重合体が架橋基を有する、[12]に記載の組成物。
[14] 前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記式(50)で表される繰返し単位を有する重合体が有する架橋基が、各々独立に、下記架橋基群Tにおける式(X1)~式(X18)から選ばれる、[1]~[13]のいずれかに記載の組成物。
<架橋基群T>
Figure JPOXMLDOC01-appb-C000043
(式(X1)~式(X18)中、Qは直接結合又は連結基を表す。
 *は結合位置を表す。
 式(X4)、式(X5)、式(X6)及び式(X10)中のR110は水素原子又は置換基を有していてもよいアルキル基を表す。
 式(X1)~(X4)中、ベンゼン環及びナフタレン環は置換基を有していてもよい。また、置換基は互いに結合して環を形成してもよい。
 式(X1)~(X3)中、シクロブテン環は置換基を有していてもよい。)
[15] 前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記アリールアミン構造を繰り返し単位として有する重合体が有する架橋基が、各々独立に、前記架橋基群Tにおける式(X1)~式(X4)から選ばれる、[14]に記載の組成物。
[16] 前記式(50)で表される繰り返し単位が下記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位である、[12]~[15]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000044
(式(54)中、
 Ar51は、前記式(50)におけるAr51と同様である。
 Xは、-C(R207)(R208)-、-N(R209)-又は-C(R211)(R212)-C(R213)(R214)-である。
 R201、R202、R221及びR222は、各々独立に置換基及び/又は架橋基を有していてもよいアルキル基である。
 R207~R209及びR211~R214は、各々独立に水素原子、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアラルキル基、又は、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基である。
 a及びbは、各々独立に0~4の整数である。
 cは、0~3の整数である。
 dは、0~4の整数である。
 i及びjは、各々独立に0~3の整数である。)
Figure JPOXMLDOC01-appb-C000045
(式(55)中、
 Ar51は前記式(54)におけるAr51と同様である。
 R303及びR306は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基を表す。
 R304及びR305は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基又は置換基及び/又は架橋基を有していてもよいアラルキル基を表す。
 lは、0又は1である。
 mは、1又は2である。
 nは、0又は1である。
 pは、0又は1である。
 qは、0又は1である。)
Figure JPOXMLDOC01-appb-C000046
(式(56)中、
 Ar51は前記式(54)におけるAr51と同様である。
 Ar41は、置換基を有していてもよい2価の芳香族炭化水素基、置換基を有していてもよい2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 R441及びR442は、各々独立に、置換基を有していてもよいアルキル基を表す。
 tは、1又は2である。
 uは、0又は1である。
 r及びsは、各々独立に、0~4の整数である。
 但し、前述の捻れ構造を必須とする場合、r×t+s×uは1である。)
Figure JPOXMLDOC01-appb-C000047
(式(57)中、
 Ar51は前記式(50)におけるAr51と同様である。
 R517~R519は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基、置換基及び/又は架橋基を有していてもよいアラルキル基、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基又は置換基及び/又は架橋基を有していてもよい芳香族複素環基を表す。
 f、g、hは、各々独立に0~4の整数を表す。
 eは0~3の整数を表す。
 ただし、gが1以上の場合、eは1以上である。
 また、f+e×g+hは1以上である。)
[17] 前記アリールアミン構造を繰り返し単位として有する重合体が、前記式(50)で表される繰り返し単位として前記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位に加え、下記式(60)で表される繰り返し単位をさらに含む、[16]に記載の組成物。
Figure JPOXMLDOC01-appb-C000048
(式(60)中、
 Ar51は前記式(50)におけるAr51と同様である。
 n60は1~5の整数を表す。)
[18] 前記式(71)又は前記式(72)で表される化合物が有する置換基、前記式(81)で表される化合物が有する置換基、前記式(50)で表される繰り返し単位を有する重合体が有する置換基、前記架橋基群Tが有する置換基が、各々独立に、下記置換基群Zから選ばれる、[1]~[17]のいずれかに記載の組成物。
<置換基群Z>
炭素数1以上24以下のアルキル基、
炭素数2以上24以下のアルケニル基、
炭素数2以上24以下のアルキニル基、
炭素数1以上24以下のアルコキシ基、
炭素数4以上36以下のアリールオキシ基又はヘテロアリールオキシ基、
炭素数2以上24以下のアルコキシカルボニル基、
炭素数2以上24以下のジアルキルアミノ基、
炭素数10以上36以下のジアリールアミノ基、
炭素数7以上36以下のアリールアルキルアミノ基、
炭素数2以上24以下のアシル基、
ハロゲン原子、
炭素数1以上12以下のハロアルキル基、
炭素数1以上24以下のアルキルチオ基、
炭素数4以上36以下のアリールチオ基、
炭素数2以上36以下のシリル基、
炭素数2以上36以下のシロキシ基、
シアノ基、
炭素数6以上36以下の芳香族炭化水素基、
炭素数4以上36以下の芳香族複素環基。
 上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよく、上記置換基が隣接する場合、隣接した置換基同士が結合して環を形成してもよい。
[19] 更に溶媒を含有する、[1]~[18]のいずれかに記載の組成物。
[20] 下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物、およびアリールアミン構造を繰返し単位として有する重合体を含む組成物であって、該アリールアミン構造を繰返し単位として有する重合体は、下記式(50)で表される構造を繰返し単位として有し、かつ、架橋基を有し、前記式(50)で表される構造は下記式(63)で表される部分構造を有する、組成物。
Figure JPOXMLDOC01-appb-C000049
(式(71)中、
 Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
 n621、n622、n623、n624は各々独立に、0~4の整数である。
 但し、n621とn622とn633とn624の合計は1以上である。
 式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000050
(式(72)中、
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 n611、n612は各々独立に0~4の整数である。
 式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000051
(式(50)中、
 Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
 Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
 Ar51、Ar52は置換基及び/又は架橋基を有してもよい。
 但し、Ar52は下記式(63)で表される部分構造を有する。)
Figure JPOXMLDOC01-appb-C000052
(式(63)において、
 R601は置換基又は架橋基を有していてもよいアルキル基を表す。
 Ar621は、置換基及び/又は架橋基を有してもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有してもよい2価の芳香族複素環基を表す。
 環Arは置換基及び/又は架橋基を有してもよい芳香族炭化水素構造、置換基及び/又は架橋基を有してもよい2価の芳香族複素構造を表す。
 *は隣の原子との結合位置を表す。)
[21] 前記式(50)で表される繰り返し単位が下記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位である、[20]に記載の組成物。
Figure JPOXMLDOC01-appb-C000053
(式(54)中、
 Ar51は、前記式(50)におけるAr51と同様である。
 Xは、-C(R207)(R208)-、-N(R209)-又は-C(R211)(R212)-C(R213)(R214)-である。
 R201、R202、R221及びR222は、各々独立に置換基及び/又は架橋基を有していてもよいアルキル基である。
 R207~R209及びR211~R214は、各々独立に水素原子、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアラルキル基、又は、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基である。
 a及びbは、各々独立に0~4の整数である。
 cは、0~3の整数である。
 dは、0~4の整数である。
 i及びjは、各々独立に0~3の整数である。
 但し、a×c+b×d+i+jは1以上である。)
Figure JPOXMLDOC01-appb-C000054
(式(55)中、
 Ar51は前記式(54)におけるAr51と同様である。
 R303及びR306は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基を表す。
 R304及びR305は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基又は置換基及び/又は架橋基を有していてもよいアラルキル基を表す。
 lは、0又は1である。
 mは、1又は2である。
 nは、0又は1である。
 pは、0又は1である。
 qは、0又は1である。)
Figure JPOXMLDOC01-appb-C000055
(式(56)中、
 Ar51は前記式(54)におけるAr51と同様である。
 Ar41は、置換基を有していてもよい2価の芳香族炭化水素基、置換基を有していてもよい2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 R441及びR442は、各々独立に、置換基を有していてもよいアルキル基を表す。
 tは、1又は2である。
 uは、0又は1である。
 r及びsは、各々独立に、0~4の整数である。
 但し、前述の捻れ構造を必須とする場合、r×t+s×uは1である。)
Figure JPOXMLDOC01-appb-C000056
(式(57)中、
 Ar51は前記式(50)におけるAr51と同様である。
 R517~R519は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基、置換基及び/又は架橋基を有していてもよいアラルキル基、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基又は置換基及び/又は架橋基を有していてもよい芳香族複素環基を表す。
 f、g、hは、各々独立に0~4の整数を表す。
 eは0~3の整数を表す。
 ただし、gが1以上の場合、eは1以上である。
 また、f+e×g+hは1以上である。)
[22] 前記式(54)で表される繰返し単位が下記式(62)で表される繰り返し単位である、[21]に記載の組成物。
Figure JPOXMLDOC01-appb-C000057
(式(62)中、
 Ar51、X、R201、R202、R221、R222、a、b、c、d、i、jは、前記式(54)におけるAr51、X、R201、R202、R221、R222、a、b、i、jと同じである。
 cは、1~3の整数である。
 dは、1~4の整数である。
 a、a、b、b、i、i、j、jはそれぞれ独立に0又は1である。但し、下記条件(1)、(2)のいずれかを満たす。
 (1)a、a、a、b、b及びbの少なくとも一つは1以上である。ただし、cが1の場合はaは定義されず、dが1の場合はbは定義されない。
 (2)i、i、j及びjの少なくとも1つは1である。
 Ring A1はR201を特定の位置に有してよい2価のベンゼン環を指し、
 Ring A2はR201を有してよいc-1個のベンゼン環が連結した2価の基、ただしc=2の場合は単環の2価のベンゼン環を指し、
 Ring A3はビフェニル構造がXで更に結合した2価の縮合環を指し、
 Ring A4はR202を有してよいd-1個のベンゼン環が連結した2価の基、ただしd=2の場合は単環の2価のベンゼン環を指し、
 Ring A5はR202を特定の位置に有してよい2価のベンゼン環を指す。)
[23] 前記アリールアミン構造を繰り返し単位として有する重合体が、前記式(50)で表される繰り返し単位として前記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位に加え、下記式(60)で表される繰り返し単位をさらに含む、[20]~[22]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000058
(式(60)中、
 Ar51は前記式(50)におけるAr51と同様である。
 n60は1~5の整数を表す。)
[24] 前記式(71)におけるAr621が、1~4個の置換基を有していてもよいベンゼン環、及び、1又は2個の置換基を有していてもよいフルオレン環から選択される複数の構造が任意の順序で鎖状又は分岐して結合して形成された2価の基である、[20]~[23]のいずれかに記載の組成物。
[25] 前記式(71)におけるAr621が、下記式(71-1)~(71-11)、(71-21)~(71-24)から選択される少なくとも1つの部分構造を有する、[20]~[24]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000059
(上記式(71-1)~(71-11)、(71-21)~(71-24)それぞれにおいて、
 *は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表し、4つ存在する*の任意2つ*少なくとも一方は隣接する構造との結合位置を表す。
 R625、R626は、各々独立に、炭素数6~12のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、アラルキル基、又は炭素数6~30の1価の芳香族炭化水素基を表す。R625、R626は共に結合して環を形成してもよい。)
[26] 前記式(71)における、R621、R622、R623及びR624がそれぞれ独立に、架橋基を有してもよい炭素数6~50の芳香族炭化水素基、又は架橋基である、[20]~[25]のいずれかに記載の組成物。
[27] 前記式(71)における、n621及びn623が1であり、n622及びn624が0であり、R621及びR623が、各々独立に、架橋基によって置換されている炭素数6~50の芳香族炭化水素基又は架橋基である、[20]~[26]のいずれかに記載の組成物。
[28] 前記式(72)における、Ar611、Ar612が、各々独立に、架橋基を有するフェニル基、又は、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であってかつ架橋基を有する基である、[20]~[27]のいずれかに記載の組成物。
[29] 前記式(72)における、Ar611、Ar612の少なくとも一方が、下記式(72-1)~(72-6)から選択される少なくとも1つの部分構造を有する、[20]~[28]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000060
(上記式(72-1)~式(72-6)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。)
[30] 前記式(72)において、n611及びn612が0である、[20]~[29]のいずれかに記載の組成物。
[31] 前記式(72)において、Gが単結合である、[20]~[30]のいずれかに記載の組成物。
[32] さらに下記式(81)で表される、架橋基を有する電子受容性化合物を含む、[20]~[31]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000061
(式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
 Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
 式(81)で表される化合物は、架橋基を有する。
 Xは対カチオンを表す。)
[33] 前記式(81)における、-Ph-(R81、-Ph-(R82、-Ph-(R83、及び-Ph-(R84の内、少なくとも1つが4つのフッ素原子を有する下記式(84)で表される基である、[32]に記載の組成物。
Figure JPOXMLDOC01-appb-C000062
(式(84)中、*は式(81)のホウ素Bとの結合を表す。
 Fはフッ素原子が4個置換していることを表す。
 R85は、置換基及び/又は架橋基を有してもよい芳香族炭化水素基、又は架橋基を表す。)
[34] 前記式(81)で表される電子受容性化合物が少なくとも2つの架橋基を有する、[32]又は[33]に記載の組成物。
[35] 前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記アリールアミン構造を繰返し単位として有する重合体が有する架橋基が、各々独立に、下記架橋基群Tにおける式(X1)~式(X18)から選ばれる、[20]~[34]のいずれかに記載の組成物。
<架橋基群T>
Figure JPOXMLDOC01-appb-C000063
(式(X1)~式(X18)中、Qは直接結合又は連結基を表す。
 *は結合位置を表す。
 式(X4)、式(X5)、式(X6)及び式(X10)中のR110は水素原子又は置換基を有していてもよいアルキル基を表す。
 式(X1)~(X4)中、ベンゼン環及びナフタレン環は置換基を有していてもよい。また、置換基は互いに結合して環を形成してもよい。
 式(X1)~(X3)中、シクロブテン環は置換基を有していてもよい。)
[36] 前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記アリールアミン構造を繰返し単位として有する重合体が有する架橋基が、各々独立に、前記架橋基群Tにおける式(X1)~式(X4)から選ばれる、[35]に記載の組成物。
[37] 前記式(71)又は前記式(72)で表される化合物が有する置換基、前記式(81)で表される化合物が有する置換基、前記アリールアミン構造を繰り返し単位として有する重合体が有する置換基、前記架橋基群Tが有する置換基が、各々独立に、下記置換基群Zから選ばれる、[20]~[36]のいずれかに記載の組成物。
<置換基群Z>
炭素数1以上24以下のアルキル基、
炭素数2以上24以下のアルケニル基、
炭素数2以上24以下のアルキニル基、
炭素数1以上24以下のアルコキシ基、
炭素数4以上36以下のアリールオキシ基又はヘテロアリールオキシ基、
炭素数2以上24以下のアルコキシカルボニル基、
炭素数2以上24以下のジアルキルアミノ基、
炭素数10以上36以下のジアリールアミノ基、
炭素数7以上36以下のアリールアルキルアミノ基、
炭素数2以上24以下のアシル基、
ハロゲン原子、
炭素数1以上12以下のハロアルキル基、
炭素数1以上24以下のアルキルチオ基、
炭素数4以上36以下のアリールチオ基、
炭素数2以上36以下のシリル基、
炭素数2以上36以下のシロキシ基、
シアノ基、
炭素数6以上36以下の芳香族炭化水素基、
炭素数4以上36以下の芳香族複素環基。
 上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよく、上記置換基が隣接する場合、隣接した置換基同士が結合して環を形成してもよい。
[38] 更に溶媒を含有する、[20]~[37]のいずれかに記載の組成物。
[39] 基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子の製造方法であって、該有機層を、[19]又は[38]に記載の組成物を用いて湿式成膜法にて形成する工程を有する、有機電界発光素子の製造方法。
[40] 前記有機層が陽極と発光層の間にある有機層である、[39]に記載の有機電界発光素子の製造方法。
[41] [39]又は[40]に記載の有機電界発光素子の製造方法で製造された有機電界発光素子。
[42] 基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、下記式(71)又は下記式(72)で表される架橋基を含むカルバゾール化合物と、下記式(81)で表される架橋基を含む電子受容性化合物との架橋反応物を含有する有機電界発光素子。
Figure JPOXMLDOC01-appb-C000064
(式(71)中、
 Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
 n621、n622、n623、n624は各々独立に、0~4の整数である。
 但し、n621とn622とn633とn624の合計は1以上である。
 式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000065
(式(72)中、
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 n611、n612は各々独立に0~4の整数である。
 式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000066
(式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
 Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
 式(81)で表される化合物は、架橋基を有する。
 Xは対カチオンを表す。)
[43] 基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、下記式(71)又は下記式(72)で表される架橋基を含むカルバゾール化合物と、アリールアミン構造を繰り返し単位として有する重合体であって、下記式(50)で表される繰り返し構造を単位として有し、かつ架橋基を有し、前記式(50)で表される構造は下記式(63)で表される部分構造を有する重合体との架橋反応物を含む有機電界発光素子。
Figure JPOXMLDOC01-appb-C000067
(式(71)中、
 Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
 n621、n622、n623、n624は各々独立に、0~4の整数である。
 但し、n621とn622とn633とn624の合計は1以上である。
 式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000068
(式(72)中、
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 n611、n612は各々独立に0~4の整数である。
 式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000069
(式(50)中、
 Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
 Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
 Ar51、Ar52は置換基及び/又は架橋基を有してもよい。
 但し、Ar52は下記式(63)で表される部分構造を有する。)
Figure JPOXMLDOC01-appb-C000070
(式(63)において、
 R601は置換基又は架橋基を有していてもよいアルキル基を表す。
 Ar621は、置換基及び/又は架橋基を有してもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有してもよい2価の芳香族複素環基を表す。
 環Arは置換基及び/又は架橋基を有してもよい芳香族炭化水素構造、置換基及び/又は架橋基を有してもよい2価の芳香族複素構造を表す。
 *は隣の原子との結合位置を表す。)
[44] [41]~[43]のいずれかに記載の有機電界発光素子を有する表示装置。
[45] [41]~[43]のいずれかに記載の有機電界発光素子を有する照明装置。
 本発明によれば、駆動電圧が低く、発光効率が高く、駆動寿命が長い有機電界発光素子が提供される。
図1は、本発明の有機電界発光素子の構造例を示す断面模式図である。
 以下に、本発明の一実施形態である組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置の実施態様を詳細に説明する。以下の説明は、本発明の実施態様の一例(代表例)である第一の実施形態であるが、本発明は、その要旨を超えない限り、これらの内容に特定されない。
 本発明において、「置換基を有していてもよい」とは、置換基を1以上有していてもよいことを意味するものとする。
[定義]
 以下、本発明に係る架橋基を有するカルバゾール化合物、架橋基を有する電子受容性化合物及び電荷輸送性高分子化合物ないしは重合体の構造を詳細に説明するにあたり、共通する部分構造は特段の断りが無い限り、以下の構造であるとする。
<芳香族炭化水素基>
 芳香族炭化水素基とは、後述の説明対象となる化合物の構造の中での結合状態に応じて、芳香族炭化水素環構造の1価、2価、又は3価以上の構造を指す。
 芳香族炭化水素環の構造において、通常、炭素数は制限されるものではないが、好ましくは炭素数6以上、60以下であり、炭素数の上限としてさらに好ましくは炭素数48以下、より好ましくは炭素数30以下である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等の、6員環の単環若しくは2~5縮合環の基、又はこれらから選択される複数の基が複数連結した構造が挙げられる。
 芳香族炭化水素環が複数個連結する場合は、通常、2~10連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数個連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
 芳香族炭化水素環構造として好ましくは、ベンゼン環、ビフェニル環すなわちベンゼン環が2連結した構造、ターフェニル環すなわちベンゼン環が3連結した構造、クォーターフェニル環すなわちベンゼン環が4連結した構造、ナフタレン環、フルオレン環である。
<芳香族複素環基>
 芳香族複素環基とは、後述の説明対象となる化合物の構造の中での結合状態に応じて、芳香族複素環構造の1価、2価、又は3価以上構造を指す。
 芳香族複素環の構造において、通常、炭素数は制限されるものではないが、好ましくは、炭素数3以上、60以下であり、炭素数の上限としてさらに好ましくは炭素数48以下、より好ましくは炭素数30以下である。具体的には、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ベンゾイミダゾール環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の、5~6員環の単環若しくは2~4縮合環の2価の基又はこれらが複数連結した基が挙げられる。芳香族複素環が複数個連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
 芳香族複素環が複数個連結される場合は、通常、2~10連結した構造が挙げられ、2~5個連結した構造であることが好ましい。
 芳香族複素環構造として好ましくは、チオフェン環、ベンゾチオフェン環、ピリミジン環、トリアジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環である。
<架橋基>
 架橋基とは、熱及び/又は活性エネルギー線の照射により、該架橋基の近傍に位置する他の架橋基と反応して、新規な化学結合を生成する基のことをいう。この場合、反応する基は架橋基と同一の基あるいは異なった基の場合もある。
 架橋基としては、限定されないが、アルケニル基を含む基、共役ジエン構造を含む基、アルキニル基を含む基、オキシラン構造を含む基、オキセタン構造を含む基、アジリジン構造を含む基、アジド基、無水マレイン酸構造を含む基、芳香族環に結合したアルケニル基を含む基、芳香族環に縮環したシクロブテン環などが挙げられる。好ましい架橋基の具体例としては下記架橋基群Tにおける下記式(X1)~(X18)で表される基が挙げられる。
<架橋基群T>
Figure JPOXMLDOC01-appb-C000071
(式(X1)~(X18)中、Qは直接結合又は連結基を表す。
 *は結合位置を表す。
 式(X4)、式(X5)、式(X6)及び式(X10)中のR110は水素原子又は置換基を有していてもよいアルキル基を表す。
 式(X1)~(X4)中、ベンゼン環及びナフタレン環は置換基を有していてもよい。また、置換基は互いに結合して環を形成してもよい。
 式(X1)~(X3)中、シクロブテン環は置換基を有していてもよい。)
 Qが連結基である場合、連結基は特に限定はされないが、好ましくは、アルキレン基、2価の酸素原子又は置換基を有してもよい2価の芳香族炭化水素基である。
 該アルキレン基としては、通常、炭素数1~12、好ましくは炭素数1~8、さらに好ましくは炭素数1~6のアルキレン基である。
 該2価の芳香族炭化水素基としては、通常、炭素数6以上であり、通常炭素数36以下、好ましくは30以下、さらに好ましくは24以下である。芳香族炭化水素環の構造としてはベンゼン環が好ましく、有してもよい置換基は、後述の置換基群Zから選択することが出来る。
 Qは、架橋基の反応性をあげつつ、素子性能を保てることから、置換基を有してもよい2価の芳香族炭化水素基が好ましい。
 R110で表されるアルキル基は直鎖、分岐又は環状構造であり、炭素数は1以上であり、好ましくは24以下、より好ましくは12以下、さらに好ましくは8以下である。
 式(X1)~(X4)のベンゼン環及びナフタレン環、式(X4)、(X6)、(X10)のR110が有していてもよい置換基として好ましくは、アルキル基、芳香族炭化水素基、アルキルオキシ基、アラルキル基である。
 置換基としてのアルキル基は直鎖、分岐又は環状構造であり、炭素数は好ましくは24以下、より好ましくは12以下、さらに好ましくは8以下であり、好ましくは1以上である。
 置換基としての芳香族炭化水素基の炭素数は、好ましくは24以下、より好ましくは18以下、さらに好ましくは12以下であり、好ましくは6以上である。芳香族炭化水素基はさらに前記アルキル基を置換基として有してもよい。
 置換基としてのアルキルオキシ基の炭素数は、好ましくは炭素数24以下、より好ましくは12以下、さらに好ましくは8以下であり、好ましくは1以上である。
 置換基としてのアラルキル基の炭素数は、好ましくは炭素数30以下、より好ましくは24以下、さらに好ましくは14以下であり、好ましくは7以上である。アラルキル基に含まれるアルキレン基は直鎖又は分岐構造が好ましい。アラルキル基に含まれるアリール基はさらに前記アルキル基を置換基として有してもよい。
 式(X1)、(X2)、(X3)のシクロブテン環が有していてもよい置換基として好ましくは、アルキル基である。置換基としてのアルキル基は直鎖、分岐又は環状構造であり、炭素数は好ましくは24以下、より好ましくは12以下、さらに好ましくは8以下であり、好ましくは1以上である。
 架橋基としては、式(X1)~(X3)のいずれかで表される架橋基が、熱のみで架橋反応が進行し、極性が小さく、電荷輸送に影響が小さい点で好ましい。
 式(X1)で表される架橋基は下記式のように、熱によりシクロブテン環が開環し、開環した基同士で結合し、架橋構造を形成する。なお、以下において、式(X1)~式(X4)等における連結基Qは記載を省略している。
Figure JPOXMLDOC01-appb-C000072
 式(X2)で表される架橋基は下記式のように、熱によりシクロブテン環が開環し、開環した基同士で結合し、架橋構造を形成する。
Figure JPOXMLDOC01-appb-C000073
 式(X3)で表される架橋基は下記式のように、熱によりシクロブテン環が開環し、開環した基同士で結合し、架橋構造を形成する。
Figure JPOXMLDOC01-appb-C000074
 式(X1)~(X3)のいずれかで表される架橋基は、熱によりシクロブテン環が開環し、開環した基は、近傍に二重結合が存在する場合は、二重結合と反応して架橋構造を形成する。
 下記に、式(X1)で表される架橋基が開環した基と二重結合部位を有する式(X4)で表される架橋基が架橋構造を形成する例を示す。
Figure JPOXMLDOC01-appb-C000075
 式(X1)~(X3)のいずれかで表される架橋基と反応し得る二重結合を含有する基としては、式(X4)で表される架橋基の他に、式(X5)、(X6)、(X12)、(X15)、(X16)、(X17)、(X18)のいずれかで表される架橋基が挙げられる。これらの二重結合を含有する基を電子受容性化合物における架橋基として用いる場合、正孔輸送性化合物などの正孔注入層及び、又は正孔輸送層を形成する他の成分に、式(X1)~(X3)のいずれかで表される架橋基を含有させることが、架橋構造を形成する可能性が高まり、好ましい。
 架橋基としては、ラジカル重合性の式(X4)、(X5)、(X6)のいずれかで表される架橋基が、極性が小さく、電荷輸送の妨げとなりにくいため、好ましい。
 架橋基としては、式(X7)で表される架橋基が、電子受容性を高める点で好ましい。なお、式(X7)で表される架橋基を用いると、下記のような架橋反応が進行する。
Figure JPOXMLDOC01-appb-C000076
 式(X8)、(X9)のいずれかで表される架橋基は、反応性が高い点で好ましい。なお、式(X8)で表される架橋基、及び式(X9)で表される架橋基を用いると、下記のような架橋反応が進行する。
Figure JPOXMLDOC01-appb-C000077
 架橋基としては、カチオン重合性の式(X10)、(X11)、(X12)のいずれかで表される架橋基が、反応性が高い点で好ましい。
 架橋後の安定性及び素子特性を向上させる観点から、本発明の組成物に含まれる後述のカルバゾール化合物、電荷輸送性高分子化合物ないしは重合体及び電子受容性化合物の少なくとも一つは式(X1)~式(X4)で表される架橋基を有することが好ましく、式(X2)又は式(X4)で表される架橋基を有することがさらに好ましい。式(X4)は、R110が置換基であることが好ましく、好ましい置換基は前述の通りである。
<置換基>
 特に断りの無い場合、置換基とは任意の基であるが、好ましくは、下記置換基群Zから選択される基である。また、有してよい置換基が置換基群Zから選択される、又は、有してよい置換基が置換基群Zから選択されることが好ましい、と記されている場合、好ましい置換基も下記置換基群Zに記されている通りである。
 置換基群Zは、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アリールアルキルアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素基、及び芳香族複素環基よりなる群である。これらの置換基は直鎖、分岐及び環状のいずれの構造を含んでいてもよい。
<置換基群Z>
置換基群Zは、以下の構造が好ましい。
炭素数1以上24以下のアルキル基、
炭素数2以上24以下のアルケニル基、
炭素数2以上24以下のアルキニル基、
炭素数1以上24以下のアルコキシ基、
炭素数4以上36以下のアリールオキシ基又はヘテロアリールオキシ基、
炭素数2以上24以下のアルコキシカルボニル基、
炭素数2以上24以下のジアルキルアミノ基、
炭素数10以上36以下のジアリールアミノ基、
炭素数7以上36以下のアリールアルキルアミノ基、
炭素数2以上24以下のアシル基、
ハロゲン原子、
炭素数1以上12以下のハロアルキル基、
炭素数1以上24以下のアルキルチオ基、
炭素数4以上36以下のアリールチオ基、
炭素数2以上36以下のシリル基、
炭素数2以上36以下のシロキシ基、
シアノ基、
炭素数6以上36以下の芳香族炭化水素基、
炭素数4以上36以下の芳香族複素環基。
 上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよく、上記置換基が隣接する場合、隣接した置換基同士が結合して環を形成してもよい。
 置換基群Zとして、より具体的な例としては、以下の構造が挙げられる。
 炭素数が1以上であり、好ましくは4以上であり、24以下、好ましくは12以下であり、さらに好ましくは8以下であり、より好ましくは6以下である、直鎖、分岐、又は環状のアルキル基。具体例としてはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、ドデシル基等が挙げられる。
 炭素数が通常2以上であり、通常24以下、好ましくは12以下である、直鎖、分岐、又は環状のアルケニル基;具体例としては、ビニル基等が挙げられる。
 炭素数が通常2以上であり、通常24以下、好ましくは12以下である、直鎖又は分岐のアルキニル基;具体例としては、エチニル基等が挙げられる。
 炭素数が1以上、24以下、好ましくは12以下であるアルコキシ基。具体例としては、メトキシ基、エトキシ基等が挙げられる。
 炭素数4以上、好ましくは5以上であり、36以下、好ましくは24以下である、アリールオキシ基若しくはヘテロアリールオキシ基。具体例としては、フェノキシ基、ナフトキシ基、ピリジルオキシ基等が挙げられる。
 炭素数2以上、24以下、好ましくは12以下であるアルコキシカルボニル基。具体例としては、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
 炭素数2以上、24以下、好ましくは12以下であるジアルキルアミノ基。具体例としては、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。
 炭素数10以上、好ましくは12以上であり、36以下、好ましくは24以下のジアリールアミノ基。具体例としては、ジフェニルアミノ基、ジトリルアミノ基、N-カルバゾリル基等が挙げられる。
 炭素数7以上、36以下、好ましくは24以下であるアリールアルキルアミノ基。具体例としては、フェニルメチルアミノ基が挙げられる。
 炭素数2以上、24以下、好ましくは12以下であるアシル基。具体例としては、アセチル基、ベンゾイル基が挙げられる。
 フッ素原子、塩素原子等のハロゲン原子。好ましくはフッ素原子である。;
 炭素数1以上、12以下、好ましくは6以下のハロアルキル基。具体例としては、トリフルオロメチル基等が挙げられる。
 炭素数1以上であり、通常24以下、好ましくは12以下のアルキルチオ基。具体例としては、メチルチオ基、エチルチオ基等が挙げられる。
 炭素数4以上、好ましくは5以上であり、36以下、好ましくは24以下であるアリールチオ基。具体的には、フェニルチオ基、ナフチルチオ基、ピリジルチオ基等が挙げられる。
 炭素数が通常2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシリル基。具体例としては、トリメチルシリル基、トリフェニルシリル基等が挙げられる。
 炭素数2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシロキシ基。具体例としては、トリメチルシロキシ基、トリフェニルシロキシ基等が挙げられる。
 シアノ基。
 炭素数6以上、36以下、好ましくは24以下である芳香族炭化水素基。具体例としては、フェニル基、ナフチル基、複数のフェニル基が連結した基、等が挙げられる。
 炭素3以上、好ましくは4以上であり、36以下、好ましくは24以下である芳香族複素環基。具体例としては、チエニル基、ピリジル基等が挙げられる。
 上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよい。
 上記置換基が隣接する場合、隣接した置換基同士が結合して環を形成してもよい。好ましい環の大きさは、4員環、5員環、6員環であり、具体例としては、シクロブタン環、シクロペンタン環、シクロヘキサン環である。
 上記の置換基群Zの中でも、好ましくは、アルキル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基である。
 また、上記置換基群Zの各置換基は更に置換基を有していてもよい。それら置換基としては、上記置換基群Zと同じのもの又は架橋基が挙げられる。好ましくは、更なる置換基は有さないか、炭素数8以下のアルキル基、炭素数8以下のアルコキシ基、またはフェニル基、より好ましくは炭素数6以下のアルキル基、炭素数6以下のアルコキシ基、またはフェニル基である。電荷輸送性の観点からは、さらなる置換基を有さないことがより好ましい。
 上記置換基群Zの各置換基が更に有してよい置換基が架橋基である場合の架橋基は、前記架橋基群Tから選択される架橋基が好ましい。架橋基を更に有することが好ましい置換基は、アルキル基又は芳香族炭化水素基である。
<電荷輸送材料>
 本発明に係る電荷輸送材料とは、正孔及び/又は電子を輸送することのできる材料である。本発明に係る、後述する架橋基を有するカルバゾール化合物及び電荷輸送性高分子化合物はいずれも電荷輸送材料である。また、本発明に係る電荷輸送材料は正孔輸送性であることが好ましく、電子受容性化合物によって酸化され、カチオンラジカル化する材料であることが好ましい。本発明においては、電荷輸送性高分子化合物としては正孔輸送高分子化合物が好ましく、アリールアミン構造を繰返し単位として含む重合体が好ましい。この場合、電荷とは通常正孔であり、電荷を輸送するとは正孔を輸送することであり、電荷輸送膜とは正孔輸送膜であり、電荷注入層とは正孔注入層である。
[本発明の組成物]
 本発明の態様1の組成物は、下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物(以下、「本発明のカルバゾール化合物」と称す場合がある。)および下記式(81)で表される、架橋基を有する電子受容性化合物(以下、「本発明の電子受容性化合物」と称す場合がある。)を含む組成物である。
 本発明の態様2の組成物は、下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物、およびアリールアミン構造を繰返し単位として有する重合体を含む組成物であって、該アリールアミン構造を繰返し単位として有する重合体は下記式(50)で表される構造を繰返し単位として有し、かつ、架橋基を有し、式(50)で表される構造は式(63)で表される部分構造を有する、組成物である。
 本発明の態様3は、基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、下記式(71)又は下記式(72)で表される架橋基を含むカルバゾール化合物と下記式(81)で表される架橋基を有する電子受容性化合物との架橋反応物を含有する有機電界発光素子である。
 本発明の態様4は、基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、下記式(71)又は下記式(72)で表される架橋基を含むカルバゾール化合物と、アリールアミン構造を繰り返し単位として有する重合体であって、下記式(50)で表される繰り返し単位を有し、かつ架橋基を有する重合体との架橋反応物を含む有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000078
(式(71)中、
 Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
 n621、n622、n623、n624は各々独立に、0~4の整数である。
 但し、n621とn622とn633とn624の合計は1以上である。
 式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000079
(式(72)中、
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 n611、n612は各々独立に0~4の整数である。
 式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
Figure JPOXMLDOC01-appb-C000080
(式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
 Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
 式(81)で表される化合物は、架橋基を有する。
 Xは対カチオンであり、好ましくは下記式(83)の構造を有する対カチオンを表す。)
Figure JPOXMLDOC01-appb-C000081
(式(83)中、Ar81、Ar82は各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基である。)
Figure JPOXMLDOC01-appb-C000082
(式(50)中、
 Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
 Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
 Ar51、Ar52は置換基及び/又は架橋基を有してもよい。
 但し、Ar52は下記式(63)で表される部分構造を有する。)
Figure JPOXMLDOC01-appb-C000083
(式(63)において、
 R601は置換基又は架橋基を有していてもよいアルキル基を表す。
 Ar621は、置換基及び/又は架橋基を有してもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有してもよい2価の芳香族複素環基を表す。
 環Arは置換基及び/又は架橋基を有してもよい芳香族炭化水素構造、置換基及び/又は架橋基を有してもよい2価の芳香族複素構造を表す。
 *は隣の原子との結合位置を表す。)
<架橋基を有するカルバゾール化合物>
 本発明のカルバゾール化合物は、下記式(71)又は下記式(72)で表される化合物であり、本発明の組成物中に電荷輸送材料として含有される。本発明のカルバゾール化合物は、少なくとも2つの架橋基を有する。
 本明細書において、本発明のカルバゾール化合物は、架橋基を有するカルバゾール化合物と称する場合がある。
<式(71)で表されるカルバゾール化合物>
Figure JPOXMLDOC01-appb-C000084
(式(71)中、
 Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
 式(71)で表される化合物は、少なくとも2つ架橋基を有する。
 n621、n622、n623、n624は各々独立に、0~4の整数である。
 但し、n621とn622とn633とn624の合計は1以上である。)
(Ar621
 Ar621は、置換基を有していてもよい2価の芳香族炭化水素を表し、Ar621の炭素数は6~50である。
 芳香族炭化水素基の炭素数は、好ましくは6~50、より好ましくは6~30、さらに好ましくは6~18である。芳香族炭化水素基としては、具体的には、ベンゼン環、ナフタレン環、フルオレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは14以下である芳香族炭化水素環構造の2価の基、又は、これらの構造から選択された複数の構造が鎖状に又は分岐して結合した構造の2価の基が挙げられる。芳香族炭化水素環が複数個連結する場合は、通常、2~8個連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数個連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
 芳香族炭化水素基としては、好ましくは、1~4個のベンゼン環、1又は2個のナフタレン環、1又は2個のフルオレン環、1又は2個の複数のフェナントレン環、及び、1つのテトラフェニレン環から選択される複数の構造が任意の順序で鎖状又は分岐して結合して形成された2価の基、又は、1,4-フェニレン基、1,3-フェニレン基、2,7-フルオレニレン基、2価のスピロフルオレン基であり、さらに好ましくは、1~4個のベンゼン環、及び、1又は2個のフルオレン環から選択される複数の構造が任意の順序で鎖状又は分岐して結合して形成された2価の基であり、特に好ましくは、1又は2個のフェニレン基、2,7-フルオレニレン基、1又は2個のフェニレン基がこの順に鎖状に結合した2価の基、フェニレン基、ビフェニレン基、パラターフェニレン基、又は2,7-フルオレニレン基である。フルオレン構造は、9,9’位に置換基を有してよく、有してよい置換基は前記置換基群Zから選択される基が好ましい。
 これらの芳香族炭化水素構造は置換基を有してもよい。有してよい置換基は前述の通りであり、具体的には置換基群Zから選択することが出来る。好ましい置換基は前記置換基群Zの好ましい置換基である。
(Ar621の部分構造)
 Ar621は、化合物の電荷に対する安定性が向上する傾向にある観点から、下記式(71-1)~(71-11)、(71-21)~(71-24)から選択される少なくとも1つの部分構造を有することが好ましく、化合物の溶解性及び耐久性の観点から、下記式(71-1)~(71-7)から選択される少なくとも1つの部分構造を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000085
(上記式(71-1)~(71-11)、(71-21)~(71-24)それぞれにおいて、
 *は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表し、4つ存在する*の任意2つ*少なくとも一方は隣接する構造との結合位置を表す。
 R625、R626は、各々独立に、炭素数6~12のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、アラルキル基、又は炭素数6~30の1価の芳香族炭化水素基を表す。R625、R626は共に結合して環を形成してもよい。)
 R625、R626の芳香族炭化水素環構造としてはフェニル基又はフェニル基が複数連結した基がさらに好ましい。
 これらの基は置換基を有してもよい。有してよい置換基は前述の通りであり、具体的には前記置換基群Zから選択することが出来る。好ましい置換基は前記置換基群Zの好ましい置換基である。
 部分構造として、より好ましくは式(71-1)~(71-7)から選択される構造であり、さらに好ましくは式(71-1)~(71-5)から選択される構造であり、特に好ましくは式(71-1)~(71-4)から選択される構造である。電荷輸送性が優れることから、式(71-3)で表される部分構造を有することが最も好ましい。
 式(71-1)として好ましくは、1,3-フェニレン基又は1,4-フェニレン基である。
 式(71-2)として好ましくは下記式(71-2-2)である。
Figure JPOXMLDOC01-appb-C000086
 式(71-2)としてよりさらに好ましくは、下記式(71-2-3)である。
Figure JPOXMLDOC01-appb-C000087
 また、化合物の溶解性及び耐久性の観点からAr621は部分構造として、式(71-1)で表される部分構造及び式(71-2)で表される部分構造を有することが好ましい。
 式(71-1)で表される部分構造及び式(71-2)で表される部分構造を有する部分構造としては、式(71-1)で表される部分構造及び式(71-2)で表される部分構造から選択される構造を複数含む構造である、前記式(71-8)~前記式(71-11)から選択される少なくとも1つで表される部分構造がさらに好ましい。
 式(71-1)で表される部分構造及び式(71-3)、(71-4)で表される部分構造を有する部分構造としては、式(71-1)で表される部分構造及び式(71-3)、(71-4)で表される部分構造から選択される構造を複数含む構造である、前記式(71-21)~前記式(71-24)から選択される少なくとも1つで表される部分構造がさらに好ましい。
 本発明では特に、カルバゾール環の間に電荷輸送性が優れる置換基を有するフルオレン環を含む化合物が好ましく、Ar621としてはフルオレン環を含むことが好ましい。
(R621、R622、R623、R624
 R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基を表す。
 ハロゲン原子としては特にフッ素原子が好ましい。
 なお、R621、R622、R623、R624が各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基であるとき、R621、R622、R623、R624が各々独立に置換基及び架橋基の両方を有する炭素数6~50の芳香族炭化水素基であってもよい。
 R621、R622、R623、R624は、好ましくは、それぞれ独立に、架橋基を有してもよい炭素数6~50の芳香族炭化水素基、又は架橋基である。
 該芳香族炭化水素基の炭素数は、好ましくは6~50、より好ましくは6~30、さらに好ましくは6~18である。具体的には例えば、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは14以下である芳香族炭化水素環構造の1価の基、又は、これらの構造から選択された複数の構造が鎖状に又は分岐して結合した構造の1価の基が挙げられる。芳香族炭化水素環が複数個連結する場合は、通常、2~8個連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数個連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
 これら芳香族炭化水素基は、置換基及び/又は架橋基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には前記置換基群Zから選択することが出来る。好ましい置換基は前記置換基群Zの好ましい置換基である。芳香族炭化水素基が有してよい架橋基及び架橋基は前述の通りであり、具体的には前記架橋基群Tから選択することが出来る。好ましい架橋基は前記架橋基群Tの好ましい架橋基である。
 R621、R622、R623、R624は、化合物の溶解性及び耐久性の観点から、前記式(71-1)~(71-3)から選択される少なくとも1つの部分構造を有することが好ましく、1,3-フェニレン基、1,4-フェニレン基、前記式(71-1)又は(71-2)から選択される少なくとも1つの部分構造を有することがさらに好ましく、1,3-フェニレン基、1,4-フェニレン基、又は前記式(71-2-2)で表される部分構造を有することが特に好ましい。
(架橋基)
 式(71)で表される化合物は少なくとも2つの架橋基を有する。架橋基は前述の通りであり、具体的には前記架橋基群Tから選択することが出来る。好ましい架橋基は前記架橋基群Tの好ましい架橋基である。
 式(71)で表される化合物が有する架橋基の位置としては、少なくとも1つのR621及び少なくとも1つのR623が架橋基によって置換されているか又は架橋基そのものであることが好ましく、1つのR621及び1つのR623の2つのみが架橋基によって置換されているか又は架橋基そのものであることがさらに好ましい。
 なお、式(71)で表される化合物の対称性から、R621及びR623が架橋基を有する構造は、R622及びR624が架橋基を有する構造と同義である。
(n621、n622、n623、n624)
 n621、n622、n623、n624は各々独立に、0~4の整数である。但し、n621+n622+n623+n624は1以上である。
 n621、n622、n623、n624は好ましくは各々独立に、0~2の整数であり、さらに好ましくは0又は1である。
 式(71)で表される化合物が架橋基を有することから、n621及びn623は1以上であることが好ましく、好ましくは2以下であり、さらに好ましくは1であり、特に好ましくは、n621及びn623が1であり、かつ、n622及びn624が0である。
 前記式(71)で表される化合物は、特に、n621及びn623が1であり、n622及びn624が0であり、R621及びR623が、各々独立に、架橋基によって置換されている炭素数6~50の芳香族炭化水素基又は架橋基であることが好ましい。
<式(72)で表されるカルバゾール化合物>
Figure JPOXMLDOC01-appb-C000088
(式(72)中、
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 式(72)で表される化合物は、少なくとも2つ架橋基を有する。
 n611、n612は各々独立に0~4の整数である。)
(Ar611、Ar612
 Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 該芳香族炭化水素基の炭素数としては、好ましくは6~50、より好ましくは6~30、さらに好ましくは6~18である。芳香族炭化水素基としては、具体的には、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは14以下である芳香族炭化水素構造の1価の基、又は、これらの構造から選択された複数の構造が鎖状に又は分岐して結合した構造の1価の基が挙げられる。芳香族炭化水素環が複数個連結する場合は、通常、2~8個連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数個連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
 Ar611、Ar612は好ましくは、各々独立に
 フェニル基、
 1つ又は複数のベンゼン環及び少なくとも1つのナフタレン環が鎖状又は分岐して結合した1価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのフェナントレン環が鎖状又は分岐して結合した1価の基、又は、
 1つ又は複数のベンゼン環及び少なくとも1つのテトラフェニレン環が鎖状又は分岐して結合した1価の基、
であり、さらに好ましくは、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であり、いずれの場合も結合の順序は問わない。
 結合するベンゼン環、ナフタレン環、フェナントレン環及びテトラフェニレン環の数は前記の通り、通常2~8であり、2~5が好ましい。中でも好ましくは、ベンゼン環が1~4個連結した1価の構造、ベンゼン環が1~4個及びナフタレン環が連結した1価の構造、ベンゼン環が1~4個及びフェナントレン環が連結した1価の構造、又は、ベンゼン環が1~4個及びテトラフェニレン環が連結した1価の構造である。
 これら芳香族炭化水素基は、置換基及び/又は架橋基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には前記置換基群Zから選択することが出来る。好ましい置換基は前記置換基群Zの好ましい置換基である。芳香族炭化水素基が有してよい架橋基及び架橋基は前述の通りであり、具体的には前記架橋基群Tから選択することが出来る。好ましい架橋基は前記架橋基群Tの好ましい架橋基である。
 膜質の安定性に優れるため、Ar611、Ar612は、各々独立に、架橋基を有するフェニル基、又は、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であってかつ架橋基を有する基であることが好ましい。
 また、Ar611、Ar612の少なくとも一方は、化合物の溶解性及び耐久性の観点から、下記式(72-1)~(72-6)から選択される少なくとも1つの部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000089
(上記式(72-1)~式(72-6)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。)
 なお、以降の記載においても、特に断りの無い限り*の定義は同様である。
 より好ましくは、Ar611、Ar612の少なくとも一方は、式(72-1)~(72-4)から選択される少なくとも1つの部分構造を有する。
 さらに好ましくは、Ar611、Ar612がそれぞれ、式(72-1)~(72-3)から選択される少なくとも1つの部分構造を有する。
 特に好ましくは、Ar611、Ar612がそれぞれ、式(72-1)~(72-2)から選択される少なくとも1つの部分構造を有する。
 式(72-2)として好ましくは、下記式(72-2-2)である。
Figure JPOXMLDOC01-appb-C000090
 式(72-2)としてよりさらに好ましくは、下記式(72-2-3)である。
Figure JPOXMLDOC01-appb-C000091
 また、化合物の溶解性及び耐久性の観点からAr611、Ar612の少なくとも1つが有することが好ましい部分構造として、式(72-1)で表される部分構造及び式(72-2)で表される部分構造を有する部分構造が挙げられる。
(R611、R612
 R611、R612は各々独立に、重水素原子、フッ素原子等のハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~30の1価の芳香族炭化水素である。
 芳香族炭化水素基としては、好ましくは炭素数6~30、さらに好ましくは6~18、より好ましくは6~10である芳香族炭化水素構造の1価の基が挙げられる。
 これら芳香族炭化水素基は、置換基及び/又は架橋基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には前記置換基群Zから選択することが出来る。好ましい置換基は前記置換基群Zの好ましい置換基である。芳香族炭化水素基が有してよい架橋基及び架橋基は前述の通りであり、具体的には前記架橋基群Tから選択することが出来る。好ましい架橋基は前記架橋基群Tの好ましい架橋基である。
(n611、n612
 n611、n612は各々独立に、0~4の整数である。好ましくは0~2であり、さらに好ましくは0又は1である。
(置換基、架橋基)
 Ar611、Ar612、R611、R612が1価又は2価の芳香族炭化水素基である場合、有してよい置換基は前記置換基群Zから選択される置換基が好ましい。有してよい架橋基は前記架橋基群Tから選択される架橋基が好ましい。架橋基を有する位置としては、Ar611及びn611が1以上の場合のAr611、R611から選択される構造に少なくとも1つと、Ar612及びn612が1以上の場合のAr612、R612から選択される構造に少なくとも1つ有することが好ましく、Ar611及びAr612にそれぞれ少なくとも1つ有することがさらに好ましい。式(72)で表される化合物が有する架橋基の数は、2以上4以下が好ましく、2以上3以下が更に好ましく、2が最も好ましい。
(G)
 Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
 該芳香族炭化水素基の炭素数は、好ましくは6~50、さらに好ましくは6~30、より好ましくは6~18である。芳香族炭化水素基としては、具体的には、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは14以下である芳香族炭化水素構造の2価の基、又は、これらの構造から選択された複数の構造が鎖状に又は分岐して結合した構造の2価の基が挙げられる。芳香族炭化水素環が複数個連結する場合は、通常、2~8個連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数個連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
 Gは、好ましくは、
 単結合、
 フェニレン基、
 複数のベンゼン環が複数鎖状又は分岐して結合した2価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのナフタレン環が鎖状又は分岐して結合した2価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのフェナントレン環が鎖状又は分岐して結合した2価の基、又は、
 1つ又は複数のベンゼン環及び少なくとも1つのテトラフェニレン環が鎖状又は分岐して結合した2価の基、
であり、さらに好ましくは、複数のベンゼン環が複数鎖状又は分岐して結合した2価の基であり、いずれの場合も結合の順序は問わない。
 結合するベンゼン環、ナフタレン環、フェナントレン環及びテトラフェニレン環の数は前記の通り、通常2~8であり、2~5が好ましい。中でもさらに好ましくは、ベンゼン環が1~4個連結した2価の構造、ベンゼン環が1~4個及びナフタレン環が連結した2価の構造、ベンゼン環が1~4個及びフェナントレン環が連結した2価の構造、又は、ベンゼン環が1~4個及びテトラフェニレン環が連結した2価の構造である。
 これら芳香族炭化水素基は、置換基及び/又は架橋基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には前記置換基群Zから選択することが出来る。好ましい置換基は前記置換基群Zの好ましい置換基である。芳香族炭化水素基が有してよい架橋基及び架橋基は前述の通りであり、具体的には前記架橋基群Tから選択することが出来る。好ましい架橋基は前記架橋基群Tの好ましい架橋基である。
 電荷輸送時の安定性に優れ、素子性能が向上するため、Gは単結合であることが好ましい。
(分子量)
 本発明のカルバゾール化合物の分子量は、熱安定性の観点から600以上が好ましく、より好ましくは800以上であり、さらに好ましくは1000以上であり、特に好ましくは1200以上であり、5000以下が好ましく、より好ましくは4000以下であり、さらに好ましくは3000以下であり、特に好ましくは2500以下である。
(具体例)
 以下に、本発明のカルバゾール化合物の具体例を示す。本発明はこれらに限定されるものではない。
:式(71)で表されるカルバゾール化合物の具体例:
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
:式(72)で表されるカルバゾール化合物の具体例:
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
 
[電子受容性化合物]
 陽極から正孔注入層又は正孔輸送層への正孔注入性を向上させるため、若しくは正孔注入層又は正孔輸送層内での電荷輸送性を向上させるため、正孔注入層又は正孔輸送層に含まれる電荷輸送材料はカチオンラジカル部位を含むことが好ましい。電荷輸送材料をカチオンラジカル化させるため、正孔注入層又は正孔輸送層を形成する場合に電子受容性化合物を用いる。電子受容性化合物の母骨格としては、後述するイオン価1のアニオンであるテトラアリールホウ酸イオンと対カチオンからなるイオン化合物が高い安定性を有するため好ましい。
(電荷輸送材料のカチオンラジカル化)
 電荷輸送材料のカチオンラジカル化は次のように行われる。
 電荷輸送材料としてカルバゾール構造を有する化合物を用いた場合、ジアリールヨードニウムを対カチオンとするテトラアリールホウ酸塩を電子受容性化合物として用いると、正孔注入層又は正孔輸送層形成時に、下記式のように対カチオンはジアリールヨードニウムからカルバゾールカチオンに変わり得る。
Figure JPOXMLDOC01-appb-C000098
(例えば、Ar、Ar1’~Ar4’は各々独立に、置換基を有してもよい芳香族炭化水素基、置換基を有していてもよい芳香族複素環基、又は置換基を有していてもよい芳香族炭化水素環基及び置換基を有していてもよい芳香族複素環基から選択される構造が複数連結した1価の基である。)
 上記反応で生成したカルバゾールカチオンは電子を受容し得る半占軌道(SOMO)を有しているため、カルバゾールイオン対カチオンとするテトラアリールホウ酸塩は、電子受容性化合物である。
 本発明においては、この電荷輸送材料のカチオンとアニオンであるテトラアリールホウ酸イオンからなる化合物を、電荷輸送性イオン化合物と称する。詳細は後述する。
 後述するように、本発明の有機電界発光素子の正孔注入層及び/又は正孔輸送層は、本発明の電荷輸送膜形成用組成物を湿式成膜して得ることが好ましく、本発明の電荷輸送膜形成用組成物は、後述するテトラアリールホウ酸イオン構造を有する電子受容性化合物及び後述する電荷輸送材料を有機溶剤に溶解又は分散させる工程を経て得られた組成物であることが好ましい。そして、本発明の有機電界発光素子の電荷輸送層中では、後述する本発明におけるテトラアリールホウ酸イオン構造をアニオンとし、本発明の電荷輸送材料のカチオンを対カチオンとする電荷輸送性イオン化合物を含むことが好ましい。
(架橋反応物)
 本発明に係る電荷輸送材料が架橋基を有する場合、架橋基を有する電子受容性化合物との架橋反応物とは、次の架橋反応物である場合を含む。
・電子受容性化合物同士が架橋した化合物。
・電子受容性化合物と電荷輸送材料とが架橋した化合物。
・電子受容性化合物と本発明におけるテトラアリールホウ酸イオンが架橋した化合物。
・本発明におけるテトラアリールホウ酸イオン同士が架橋した化合物。
・本発明におけるテトラアリールホウ酸イオンと電荷輸送材料が架橋した化合物。
 ここで、“本発明におけるテトラアリールホウ酸イオン”とは、後述するテトラアリールホウ酸イオンと対カチオンとからなるイオン化合物である電子受容性化合物として存在する場合、及び後述するテトラアリールホウ酸イオンと電荷輸送材料のカチオンとからなる電荷輸送性イオン化合物として存在する場合を含む。
 架橋反応する2つの架橋基は、架橋反応可能であれば同じ架橋基であっても異なる架橋基であってもよい。
[電子受容性化合物]
 テトラアリールホウ酸イオンと対カチオンからなるイオン化合物である電子受容性化合物は、下記式(81)で表わされる非配位性アニオンである対アニオンと対カチオンからなる電子受容性イオン化合物である。下記式(82)はアニオンとして後述する式(83)をテトラアリールホウ酸イオンとして有する。尚、本発明に係る電子受容性化合物は電子受容性イオン化合物と称することがある。
Figure JPOXMLDOC01-appb-C000099
(式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
 Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
 Xは対カチオンを表す。)
 上記R81~R84のハロゲン原子としては、ヨウ素原子、ホウ素原子、塩素原子、フッ素原子から選択される。
 前記式(81)で表される電子受容性化合物は架橋基を有することが好ましく、架橋基は2以上であることが更に好ましい。架橋基は、前記式(81)で表される電子受容性化合物のアニオン部すなわち、テトラアリールホウ酸イオンである後述の式(82)に有することが好ましい。
[テトラアリールホウ酸イオン]
 上述の電子受容性化合物の母骨格としては、ホウ素原子に、4つの、置換基を有していてもよい芳香族炭化水素環又は置換基を有していてもよい芳香族複素環が置換した、イオン価1のアニオンであるテトラアリールホウ酸イオンと対カチオンからなるイオン化合物が、高い安定性を有するため好ましい。
 テトラアリールホウ酸イオンは、下記式(82)で表される、前記式(81)のアニオン体である。
Figure JPOXMLDOC01-appb-C000100
(式(82)中、R81~R84はそれぞれ式(81)のR81~R84と同じである。
 Ph~Phはそれぞれ式(81)のPh~Phと同じで4つのベンゼン環を指す符号である。)
 R81~R84に用いられる芳香族炭化水素基の炭素数は6~50が好ましい。芳香族炭化水素環構造としては、単環又は2~6縮合環、及びこれらが2~8個連結した構造が好ましい。芳香族炭化水素基としては、具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環、ビフェニル構造、テルフェニル構造、又はクォーターフェニル構造の単独の1価の基、及び、これらが2~8個連結した1価の基が挙げられる。
 R81~R84に用いられる芳香族複素環基の炭素数は3~50が好ましい。芳香族複素環構造としては、単環又は2~6縮合環、及びこれらが2~8個連結した構造が好ましい。芳香族複素環基としては、具体的には、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、又はアズレン環の単独の1価の基、及び、これらが2~8個連結した1価の基が挙げられる。さらに、ここで言う芳香族複素環基としては、これら単独の構造を少なくとも1つ含んでいればよく、連結する構造としては芳香族炭化水素環構造を含んでもよい。芳香族炭化水素環構造を含む場合は、前記芳香族複素環及び芳香族炭化水素環を合わせて、2~8個連結した構造で有り得る。ここで、芳香族炭化水素環としては、前記R81~R84に用いられる芳香族炭化水素環の単独の構造を用いることが出来る。
 中でも、安定性、耐熱性に優れることから、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環もしくはカルバゾール環の1価の基、又はこれらの基が2~5個連結したビフェニル基等の1価の基がより好ましい。特に好ましくはベンゼン環の1価の基又はベンゼン環が2~5個連結した基が好ましく、具体的にはフェニル基、ビフェニル基、ターフェニル基等である。
 置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基から選択される構造が複数連結した1価の基に含まれる芳香族炭化水素基および芳香族複素環基の数は2以上であり、8以下が好ましく、4以下がさらに好ましく、3以下がより好ましい。ただし、芳香族炭化水素基がビフェニル基、ターフェニル基、クォーターフェニル基の場合は、それぞれフェニル基が2個連結した構造、3個連結した構造、4個連結した構造であるとみなす。
 R81~R84が有してもよい置換基としては、前記置換基群Z、特に前記置換基群Xから選択される基が好ましい。
 R81~R84は、アニオンの安定性が増し、カチオンを安定させる効果が向上する点から、フッ素原子又はフッ素置換されたアルキル基が好ましい。また、フッ素原子又はフッ素置換されたアルキル基は、2つ以上含むことが好ましく、3つ以上含むことがより好ましく、4つ含むことが最も好ましい。
 R81~R84に用いられるフッ素置換されたアルキル基としては、炭素数1~12の直鎖又は分岐のアルキル基であってフッ素原子が置換している基が好ましく、パーフルオロアルキル基がより好ましく、炭素数1~5の直鎖又は分岐のパーフルオロアルキル基がさらに好ましく、炭素数1~3の直鎖又は分岐のパーフルオロアルキル基が特に好ましく、パーフルオロメチル基が最も好ましい。この理由は、架橋基を有する電子受容性化合物の架橋物を含む電荷注入層や、その上層に積層される塗布膜が安定になるためである。フッ素置換されたアルキル基は、ホウ素原子のパラ位に結合することが好ましい。
 テトラアリールホウ酸イオンは、アニオンの安定性がさらに増し、カチオンを安定させる効果がさらに向上する点で、前記式(82)における、-Ph-(R81、-Ph-(R82、-Ph-(R83、及び-Ph-(R84の内、少なくとも1つが4つのフッ素原子を有する下記式(84)で表される基であることが好ましく、アニオンの安定性が向上する点で、少なくとも2つが同一の式(84)で表される基であることがさらに好ましく、アニオンの安定性がさらに向上する点で、少なくとも3つが同一の式(84)で表される基であることが最も好ましい。
Figure JPOXMLDOC01-appb-C000101
(式(84)中、*は式(81)のホウ素Bとの結合を表す。
 Fはフッ素原子が4個置換していることを表す。
 R85は、置換基及び/又は架橋基を有してもよい芳香族炭化水素基、又は架橋基を表す。)
 R85に用いることのできる芳香族炭化水素基の炭素数は3~40が好ましい。芳香族炭化水素環構造としては、単環又は2~6縮合環、及びこれらが2~5個連結した構造が好ましい。具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環、ビフェニル構造、テルフェニル構造、又はクォーターフェニル構造の単独の1価の基、及び、これらが2~6連結した1価の基が挙げられる。芳香族炭化水素基が有してよい架橋基は前記架橋基群Tから選択される架橋基である。
 R85に用いることのできる架橋基は、前記架橋基群Tから選択される架橋基である。
 前記芳香族炭化水素基及び前記芳香族炭化水素基が有してよい置換基は前記置換基群Z、特に前記置換基群Xから選択される置換基が好ましく、中でも芳香族炭化水素基が安定性の観点から好ましく、アルキル基が溶解性の観点から好ましい。
<テトラアリールホウ酸イオンを含む電子受容性イオン化合物>
 テトラアリールホウ酸イオンは、好ましくはテトラアリールホウ酸イオンからなるアニオンと対カチオンからなる電子受容性イオン化合物として用いられる。
(対カチオン)
 対カチオンとしては、ヨードニウムカチオン、スルホニウムカチオン、カルボカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオンまたは遷移金属を有するフェロセニウムカチオンが好ましく、ヨードニウムカチオン、スルホニウムカチオン、カルボカチオン、アンモニウムカチオンがより好ましく、ヨードニウムカチオンが特に好ましい。
 ヨードニウムカチオンとして好ましくは、下記式(83)で表される構造であり、さらに好ましい構造も同様である。
 ヨードニウムカチオンとして具体的には、ジフェニルヨードニウムカチオン、ビス(4-tert-ブチルフェニル)ヨードニウムカチオン、4-tert-ブトキシフェニルフェニルヨードニウムカチオン、4-メトキシフェニルフェニルヨードニウムカチオン、4-イソプロピルフェニル-4-メチルフェニルヨードニウムカチオン等が好ましい。
 スルホニウムカチオンとして具体的には、トリフェニルスルホニウムカチオン、4-ヒドロキシフェニルジフェニルスルホニウムカチオン、4-シクロヘキシルフェニルジフェニルスルホニウムカチオン、4-メタンスルホニルフェニルジフェニルスルホニウムカチオン、(4-tert-ブトキシフェニル)ジフェニルスルホニウムカチオン、ビス(4-tert-ブトキシフェニル)フェニルスルホニウムカチオン、4-シクロヘキシルスルホニルフェニルジフェニルスルホニウムカチオン等が好ましい。
 カルボカチオンとして具体的には、トリフェニルカルボカチオン、トリ(メチルフェニル)カルボカチオン、トリ(ジメチルフェニル)カルボカチオンなどの三置換カルボカチオン等が好ましい。
 アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオン等が好ましい。
 ホスホニウムカチオンとして具体的には、テトラフェニルホスホニウムカチオン、テトラキス(メチルフェニル)ホスホニウムカチオン、テトラキス(ジメチルフェニル)ホスホニウムカチオンなどのテトラアリールホスホニウムカチオン;テトラブチルホスホニウムカチオン、テトラプロピルホスホニウムカチオンなどのテトラアルキルホスホニウムカチオン等が好ましい。
 これらの中では、化合物の膜安定性の点でヨードニウムカチオン、カルボカチオン、スルホニウムカチオンが好ましく、ヨードニウムカチオンがより好ましい。
(X:(ヨードニウムカチオン))
 前記式(81)における対カチオンであるXは下記式(83)の構造を有するヨードニウムカチオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000102
 式(83)中、Ar81、Ar82は各々独立に、置換基を有していてもよい炭素数6~30の芳香族炭化水素基である。
 芳香族炭化水素基としては炭素数6~18の芳香族炭化水素基が好ましく、さらに好ましくは炭素数6~12であり、最も好ましくはフェニル基である。有してよい置換基は前記置換基群Zから選択される基であり、その中で最も好ましくはアルキル基である。
 芳香族炭化水素基として好ましくは、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基、ナフチル基、フェナントレニル基、トリフェニレン基、ナフチルフェニル基等が挙げられ、フェニル基が化合物の安定性から最も好ましい。
(分子量)
 テトラアリールホウ酸イオンを有する電子受容性イオン化合物の分子量は、通常900以上、好ましくは1000以上、より好ましくは1200以上、また、通常10000以下、好ましくは5000以下、より好ましくは3000以下の範囲である。分子量が小さすぎると、正電荷及び負電荷の非局在化が不十分なため、電子受容能が低下するおそれがある。分子量が大きすぎると、電荷輸送の妨げとなるおそれがある。
(具体例)
 以下に式(81)で表される電子受容性イオン化合物として、ヨードニウムカチオンとのイオン化合物の具体例を挙げる。本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
[電荷輸送性高分子化合物]
 本発明の組成物は、電荷輸送性高分子化合物として正孔輸送高分子化合物を含むことが好ましい。正孔輸送高分子化合物は通常、正孔注入層、又は正孔輸送層を形成するために用いられ、後述の電荷輸送膜形成用組成物に含まれる。この場合、本発明の組成物は、正孔注入層、又は正孔輸送層を形成するために用いることができる。
[アリールアミン構造を繰返し単位として含む重合体]
 正孔輸送高分子化合物として好ましくは、以下に記すアリールアミン構造を繰返し単位として含む重合体である。さらに好ましくは、架橋基を有する。
 アリールアミン構造を繰り返し単位として有する重合体のアリールアミン構造の繰返し単位は下記式(50)で表される。
Figure JPOXMLDOC01-appb-C000106
(式(50)中、
 Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
 Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar51とAr52は単結合又は連結基を介して環を形成しない。
 Ar51、Ar52は置換基及び/又は架橋基を有してもよい。)
 Ar51、Ar52が有していてもよい置換基は、前記置換基群Zから選択される置換基が好ましい。
 Ar51、Ar52が有していてもよい架橋基は、前記架橋基群Tから選択される架橋基が好ましい。
 式(50)で表されるアリールアミン構造の繰返し単位を有する重合体は、架橋基を有することが好ましい。式(50)で表されるアリールアミン構造の繰返し単位を有する重合体が架橋基を有するとは、該重合体に含まれる、式(50)で表されるアリールアミン構造の繰返し単位の少なくとも一つが架橋基を有する場合、及び、又は、該重合体に含まれる式(50)の繰返し単位以外の繰返し単位が架橋基を有する場合であってよい。
 好ましくは、該重合体に含まれる式(50)で表されるアリールアミン構造の繰返し単位の少なくとも一つが架橋基を有する、重合体である。
 式(50)で表されるアリールアミン構造の繰返し単位が架橋基を有する場合、Ar51、及び、又は、Ar52が架橋基を有する。好ましくは、Ar51が架橋基を有する。
(末端基)
 本明細書において、末端基とは、重合体の重合終了時に用いるエンドキャップ剤によって形成された、重合体の末端部の構造のことを指す。本発明の組成物において、式(50)で表される繰り返し単位を含む重合体の末端基は炭化水素基であることが好ましい。炭化水素基としては、電荷輸送性の観点から、炭素数1以上60以下の炭化水素基が好ましく、1以上40以下の炭化水素基がより好ましく、1以上30以下の炭化水素基がさらに好ましい。
 該炭化水素基としては、例えば、
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、ドデシル基等の、炭素数が通常1以上であり、好ましくは4以上であり、通常24以下であり、好ましくは12以下である、直鎖、分岐、又は環状のアルキル基;
 ビニル基等の、炭素数が通常2以上、24以下であり、好ましくは12以下である、直鎖、分岐、又は環状のアルケニル基;
 エチニル基等の、炭素数が通常2以上、24以下であり、好ましくは12以下である、直鎖又は分岐のアルキニル基;
 フェニル基、ナフチル基等の、炭素数が通常6以上、36以下であり、好ましくは24以下である芳香族炭化水素基;
 前記架橋基群Tの中の炭化水素基である架橋基;好ましくは前記式(X1)~式(X4)で表される架橋基;が挙げられる。
 これら炭化水素基はさらに置換基を有していてもよく、さらに有していてもよい置換基はアルキル基又は芳香族炭化水素基が好ましい。さらに有していてもよい置換基が複数ある場合は、互いに結合して環を形成していてもよい。これら炭化水素基が架橋基以外の基である場合、置換基はさらに前記架橋基群Tから選択される架橋基を置換基として有してもよい。
 末端基は、好ましくは、電荷輸送性及び耐久性の観点から、アルキル基、芳香族炭化水素基、又は前記架橋基群Tの中の炭化水素基である架橋基であり、より好ましくは芳香族炭化水素基である。末端基が架橋基でない場合はさらに前記架橋基群Tから選択される架橋基を置換基として有することも好ましい。
(Ar52
 Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。該芳香族炭化水素基及び該芳香族複素環基は置換基及び/又は架橋基を有してもよい。
 有してもよい置換基は、前記置換基群Zから選択される置換基が好ましい。有してもよい架橋基は、前記架橋基群Tから選択される架橋基が好ましい。
(捻れた構造)
 前記式(50)で表される繰り返し単位としては、下記式(63)で表される部分構造をAr52で表される主鎖構造に含むことが、主鎖が捻じれた構造となり、共役を阻害し、好ましい。
Figure JPOXMLDOC01-appb-C000107
(式(63)において、
 R601は置換基又は架橋基を有していてもよいアルキル基を表す。
 Ar621は、置換基及び/又は架橋基を有してもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有してもよい2価の芳香族複素環基を表す。
 環Arは置換基及び/又は架橋基を有してもよい芳香族炭化水素構造、置換基及び/又は架橋基を有してもよい2価の芳香族複素構造を表す。
 *は隣の原子との結合位置を表す。)
(Ar51
 Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表し、該芳香族炭化水素基及び該芳香族複素環基は置換基及び/又は架橋基を有してもよい。
 有してもよい置換基は、前記置換基群Z、特に前記置換基群Xから選択される置換基が好ましい。有してもよい架橋基は、前記架橋基群Tから選択される架橋基が好ましい。
 膜の安定性を向上させる観点から、Ar51は架橋基を有することが好ましい。
(架橋基を有するAr51の好ましい構造)
 Ar51が架橋基を有する場合、Ar51は好ましくは、置換基を有していてもよいベンゼン環が2~5個連結した1価の基の末端に前記架橋基群Tから選択される架橋基を有する構造が好ましい。Ar51はより好ましくは、置換基を有さないベンゼン環が2~5個連結した1価の基の末端に前記架橋基群Tから選択される架橋基を有する構造である。
<好ましいAr51
 Ar51は、電荷輸送性が優れる点、耐久性に優れる点から、芳香族炭化水素基が好ましく、中でもベンゼン環(フェニル基)、ベンゼン環が2~5個連結した基、又はフルオレン環の1価の基(フルオレニル基)がより好ましく、フルオレニル基がさらに好ましく、2-フルオレニル基が特に好ましい。これらは置換基及び/又は架橋基を有してもよい。置換基としては前記置換基群Zから選択される基が好ましく、架橋基としては前記架橋基群Tから選択される架橋基が好ましい。
 Ar51の芳香族炭化水素基及び芳香族複素環基が有してもよい置換基としては、本重合体の特性を著しく低減させないものであれば、特に制限はない。当該置換基は、好ましくは前記置換基群Zから選ばれる基が挙げられ、アルキル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基がより好ましく、アルキル基がさらに好ましい。
 Ar51は、溶媒への溶解性の点から、炭素数1~24のアルキル基で置換されたフルオレニル基が好ましく、特に、炭素数4~12のアルキル基で置換された2-フルオレニル基が好ましい。さらに、2-フルオレニル基の9位がアルキル基で置換された9-アルキル-2-フルオレニル基が好ましく、特に、アルキル基で2置換された9,9’-ジアルキル-2-フルオレニル基が好ましい。
 Ar51が、9位及び9’位の少なくとも一方がアルキル基で置換されたフルオレニル基であることにより、溶媒に対する溶解性及びフルオレン環の耐久性が向上する傾向にある。さらに、9位及び9’位の両方がアルキル基で置換されたフルオレニル基であることにより、溶媒に対する溶解性及びフルオレン環の耐久性がさらに向上する傾向にある。
 Ar51は、溶媒への溶解性の点から、スピロビフルオレニル基であることも好ましい。
 前記式(50)で表される繰り返し単位を含む重合体としては、前記式(50)で表される繰り返し単位におけるAr51が、下記式(51)で表される基、下記式(52)で表される基、又は下記式(53)で表される基である繰返し単位を含むことが好ましい。
<式(51)で表される基>
Figure JPOXMLDOC01-appb-C000108
(式(51)中、
 *は式(50)の主鎖の窒素原子との結合を表す。
 Ar53、Ar54は、各々独立に、置換基及び/又は架橋基を有していてもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい芳香族複素環基、又は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基若しくは置換基及び/又は架橋基を有していてもよい芳香族複素環基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar55は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい芳香族複素環基、又は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基若しくは芳香族複素環基が直接若しくは連結基を介して複数個連結した1価の基を表す。
 Ar56は水素原子、置換基又は架橋基を表す。)
 ここで、各芳香族炭化水素基及び各芳香族複素環基は、置換基及び/又は架橋基を有してもよい。有してもよい置換基は前記置換基群Zから選択される基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。
(Ar53
 Ar53は、2価の芳香族炭化水素基が1~6個連結した基が好ましく、2価の芳香族炭化水素基が2~4個連結した基がさらに好ましく、中でもフェニレン環が1~4個連結した基がより好ましく、フェニレン環が2個連結したビフェニレン基が特に好ましい。
 これらの基は置換基及び/又は架橋基を有していてもよい。有していてもよい置換基は、前記置換基群Zから選ばれる基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。好ましくは、Ar53は置換基及び架橋基を有さない。
 これら2価の芳香族炭化水素基又は2価の芳香族複素環基が複数連結する場合、好ましくは複数連結した2価の芳香族炭化水素基が共役しないように結合した基である。具体的には、1,3-フェニレン基、又は置換基を有し置換基の立体効果によって捻じれ構造となる基を含むことが好ましく、さらに好ましくは、置換基及び架橋基を有さない1,3-フェニレン基又は置換基及び架橋基を有さない1,3-フェニレン基が複数連結した基である。
(Ar54
 Ar54は電荷輸送性が優れる点、耐久性に優れる点から、同一であっても異なっていてもよい2価の芳香族炭化水素基が1または複数連結した基が好ましい。該2価の芳香族炭化水素基は置換基を有していてもよい。複数連結する場合、連結する基の数は、2~10が好ましく、6以下がさらに好ましく、3以下が膜の安定性の観点からは特に好ましい。好ましい芳香族炭化水素環構造としては、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環であり、より好ましくはベンゼン環およびフルオレン環である。複数連結した基としては、フェニレン環が1~4個連結した基、または、フェニレン環とフルオレン環が連結した基が好ましい。LUMOが広がる観点からフェニレン環が2個連結したビフェニレン基が特に好ましい。
 これらの基は置換基及び/又は架橋基を有していてもよい。有していてもよい置換基は、前記置換基群Zから選ばれる基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。より好ましい置換基としては、フェニル基、ナフチル基、フルオレニル基である。また、置換基を有さないことも好ましい。
(Ar55
 Ar55は、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい芳香族複素環基、又は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基若しくは芳香族複素環基が直接若しくは連結基を介して複数個連結した1価の基である。好ましくは、Ar55は、1価の芳香族炭化水素基又は1価の芳香族炭化水素基が複数連結した基である。
 これらの基は置換基及び/又は架橋基を有していてもよい。有していてもよい置換基は、前記置換基群Z、特に前記置換基群Xから選ばれる基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。
 これらの基が複数個連結する場合は、2~10個連結した1価の基であり、2~5個連結した1価の基であることが好ましい。芳香族炭化水素基、芳香族複素環基としては、前記Ar51と同様の芳香族炭化水素基及び芳香族複素環基を用いることが出来る。
 Ar55としては、下記スキーム2A,2B,2Cのいずれかで表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
 上記スキーム2A~2Cにおいて、*はAr54との結合位置を表し、*が複数ある場合はいずれか1つがAr54との結合位置を表す。
 これらの構造は、置換基及び/又は架橋基を有していてもよい。これらの構造が有していてもよい置換基としては、前記置換基群Zから選択される基が好ましい。有していてもよい架橋基は前記架橋基群Tから選択される基が好ましい。
(R31及びR32
 スキーム2A,2BのR31及びR32は、各々独立に、置換基を有していてもよい直鎖、分岐又は環状のアルキル基であることが好ましい。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、炭素数が1以上、6以下が好ましく、3以下がより好ましく、メチル基又はエチル基であることが更に好ましい。
 R31及びR32は同一であっても異なっていてもよいが、電荷を均一的に窒素原子の周りに分布することができ、更に合成も容易であることから、全てのR31及びR32は同一の基であることが好ましい。
(Ard18
 スキーム2BのArd18は、各々独立に、芳香族炭化水素基又は芳香族複素環基である。Ard18は、安定性の観点から芳香族炭化水素基が好ましく、さらに好ましくはフェニル基である。これらの基はさらに置換基又は架橋基を有してもよい。有していてもよい置換基は、前記置換基群Zから選ばれる基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。
 分子のLUMOを分布させる観点から、Ar55としては、上記a-1~a-4、b-1~b-9、c-1~c-4、d-1~d-18、及びe-1~e-4から選択される構造が好ましい。更に電子求引性基を有することにより分子のLUMOが広がることを促進する観点から、a-1~a-4、b-1~b-9、d-1~d-12、d-17、d-18、及びe-1~e-4から選択される構造が好ましい。更に三重項レベルが高い、発光層に形成された励起子を閉じ込める効果の観点から、a-1~a-4、d-1~d-12、d-17、d-18、及びe-1~e-4から選択される構造が好ましい。また、簡易に合成でき、安定性に優れる観点から、d-1、d-10、d-17、d-18及びe-1がさらに好ましく、d-1のベンゼン環構造、d-6のフルオレン環構造又はd-17のカルバゾール構造が特に好ましい。
 Ar55がd-6で表されるフルオレン構造の場合、2-フルオレニル基が好ましい。2-フルオレニル基の9,9’位には置換基及び/又は架橋基を有してもよく、有してよい置換基は、前記置換基群Zから選ばれる基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。置換基としては中でもアルキル基が好ましい。
(Ar56
 Ar56は、水素原子、置換基又は架橋基を表す。Ar56が置換基である場合、特に限定はされないが、好ましくは芳香族炭化水素基又は芳香族複素環基であり、更に置換基群Zから選択される置換基、及び/又は、架橋基群Tから選択される架橋基を有していてもよい。Ar56が架橋基の場合の架橋基は、好ましくは前記架橋基群Tから選択される架橋基である。
 Ar56が置換基である場合、式(51)においてAr56が結合しているカルバゾール構造の3位に結合していることが、耐久性向上の観点から好ましい。Ar56は、耐久性向上及び電荷輸送性の観点からは、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基であることが好ましく、置換基を有していてもよい芳香族炭化水素基であることがさらに好ましい。
 Ar56は、合成のし易さ及び電荷輸送性の観点からは、水素原子であることが好ましい。
(式(51)で表される基の具体例)
 式(51)で表される基の具体例を以下に挙げる。式(51)で表される基はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000112
<式(52)で表される基>
Figure JPOXMLDOC01-appb-C000113
(式(52)中、
 Ar61及びAr62は、各々独立に、置換基及び/又は架橋基を有していてもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい2価の芳香族複素環基、又は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基若しくは置換基又は架橋基を有してもよい芳香族複素環基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 Ar63~Ar65は、各々独立に、水素原子、置換基又は架橋基である。
 *は式(50)中の主鎖の窒素原子への結合位置を表す。)
 各芳香族炭化水素基が有してもよい置換基及び各芳香族複素環基が有してもよい置換基、並びに置換基である場合のAr63~Ar65は、前記置換基群Z、特に前記置換基群Xから選ばれる基が好ましい。
 各芳香族炭化水素基が有してもよい置換基及び各芳香族複素環基が有してもよい架橋基、並びに架橋基である場合のAr63~Ar65は、前記架橋基群Tから選ばれる基が好ましい。
(Ar63~Ar65
 Ar63~Ar65は、それぞれ独立して、前記Ar56と同様である。
 Ar63~Ar64は、好ましくは水素原子である。
(Ar62
 Ar62は、置換基及び/又は架橋基を有していてもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい2価の芳香族複素環基、又は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基若しくは置換基及び/又は架橋基を有していてもよい芳香族複素環基が直接若しくは連結基を介して複数個連結した2価の基である。好ましくは、置換基及び/又は架橋基を有していてもよい2価の芳香族炭化水素基又は置換基及び/又は架橋基を有していてもよい2価の芳香族炭化水素基が複数連結した基である。ここで、芳香族炭化水素基が有してもよい置換基及び芳香族複素環基が有してもよい置換基は前記置換基群Z、特に前記置換基群Xと同様の基が好ましい。芳香族炭化水素基が有してもよい架橋基及び芳香族複素環基が有してもよい架橋基としては、前記架橋基群Tから選ばれる基が好ましい。
 Ar62の具体的な構造は、Ar54と同様である。
 Ar62の具体的な好ましい基は、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環の2価の基又はこれらが複数連結した基であり、より好ましくは、ベンゼン環の2価の基又はこれが複数連結した基であり、特に好ましくは、ベンゼン環が1,4位の2価で連結した1,4-フェニレン基、フルオレン環の2,7位の2価で連結した2,7-フルオレニレン基、又はこれらが複数連結した基であり、最も好ましくは、“1,4-フェニレン基-2,7-フルオレニレン基-1,4-フェニレン基-”を含む基である。
 Ar62のこれら好ましい構造において、フェニレン基は連結位置以外に置換基及び架橋基を有さないことが、置換基の立体効果によるAr62のねじれが生じず好ましい。また、フルオレニレン基は、9,9’位に置換基又は架橋基を有している方が、溶解性及びフルオレン構造の耐久性向上の観点から好ましい。置換基としては前記置換基群Z、特に前記置換基群Xから選択される置換基が好ましく、中でもアルキル基がより好ましい。これら置換基はさらに架橋基で置換されていてもよい。架橋基としては前記架橋基群Tから選択される架橋基が好ましい。好ましくは置換基である。
(Ar61
 Ar61は、前記Ar53と同様の基であり、好ましい構造も同様である。
(式(52)で表される基の具体例)
 式(52)で表される基の具体例を以下に挙げる。式(52)で表される基は以下のものに限定されるものではない。
Figure JPOXMLDOC01-appb-C000114
<式(53)で表される基>
Figure JPOXMLDOC01-appb-C000115
(式(53)中、
 *は式(50)の主鎖の窒素原子との結合を表す。
 Ar71は、2価の芳香族炭化水素基を表す。
 Ar72及びAr73は、各々独立に、芳香族炭化水素基、芳香族複素環基、或いは、芳香族炭化水素基及び芳香族複素環基から選ばれる2以上の基が直接若しくは連結基を介して複数個連結した1価の基を表す。これらの基は置換基及び/又は架橋基を有していてもよい。
 環HAは窒素原子を含む芳香族複素環である。
 X、Yは、それぞれ独立に、炭素原子又は窒素原子を表す。X及びYの少なくとも一方が、炭素原子の場合は、当該炭素原子は置換基及び/又は架橋基を有していてもよい。)
 上記有していてもよい置換基は、前記置換基群Z、特に前記置換基群Xから選ばれる基が好ましい。有してもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。
<Ar71
 Ar71は、前記Ar53と同様の基である。
 Ar71としては、特に、置換基を有していてもよいベンゼン環が2~6個連結した基が好ましく、置換基を有していてもよいベンゼン環が4個連結したクォーターフェニレン基が最も好ましい。
 Ar71は非共役部位である1,3位で連結したベンゼン環を少なくとも1つ含むことが好ましく、2以上含むことが更に好ましい。
 Ar71が置換基を有していてもよい2価の芳香族炭化水素基が複数連結した基の場合、電荷輸送性又は耐久性の観点から、全て直接結合して連結していることが好ましい。
 このため、Ar71として、重合体の主鎖の窒素原子と前記式(53)中の環HAとの間を繋ぐ好ましい構造は、下記のスキーム2-1及びスキーム2-2に挙げられる通りである。下記のスキーム2-1及びスキーム2-2において、*は、重合体の主鎖の窒素原子又は前記式(53)の環HAとの結合部位を表す。2つの*のうち、いずれかが重合体の主鎖の窒素原子と結合していても、環HAと結合していてもよい。
Figure JPOXMLDOC01-appb-C000116
 Ar71が有していてもよい置換基としては、前記置換基群Z、特に前記置換基群Xのいずれか又はこれらの組み合わせを用いることができる。Ar71が有していてもよい置換基の好ましい範囲は、前述のAr53が芳香族炭化水素基である場合に有してもよい置換基と同様である。
<X及びY
 X及びYは、それぞれ独立に、C(炭素)原子又はN(窒素)原子を表す。X及びYの少なくとも一方が、C原子の場合は、置換基を有していてもよい。
 環HAの周辺にLUMOをより局在化させやすい観点からX及びYはいずれもN原子であることが好ましい。
 X及びYの少なくとも一方がC原子の場合に有していてもよい置換基としては、前記置換基群Z、特に前記置換基群Xのいずれか又はこれらの組み合わせを用いることができる。電荷輸送性の観点からは、X及びYは置換基を有さないことが更に好ましい。
<Ar72及びAr73
 Ar72及びAr73は、それぞれ独立に、芳香族炭化水素基、芳香族複素環基、或いは、芳香族炭化水素基及び芳香族複素環基から選ばれる2以上の基が直接若しくは連結基を介して複数個連結した1価の基である。これらの基は置換基及び/又は架橋基を有していてもよく、有していてもよい置換基は前記置換基群Z、特に前記置換基群Xから選ばれる基が好ましい。有していてもよい架橋基は、前記架橋基群Tから選ばれる基が好ましい。
 分子のLUMOを分布させる観点から、Ar72及びAr73は、それぞれ独立に、前記スキーム2A~2Cに示すa-1~a-4、b-1~b-9、c-1~c-4、d-1~d-16、及びe-1~e-4から選択される構造を有することが好ましい。
 更に電子求引性基を有することにより分子のLUMOが広がることを促進する観点から、a-1~a-4、b-1~b-9、c-1~c-5、d-1~d-12、及びe-1~e-4から選択される構造が好ましい。
 更に三重項レベルが高い、発光層に形成された励起子を閉じ込める効果の観点から、a-1~a-4、d-1~d-12、及びe-1~e-4から選択される構造が好ましい。
 分子の凝集を防ぐため、d-1~d-12、及びe-1~e-4から選択される構造が更に好ましい。簡易に合成でき、安定性に優れる観点からAr72=Ar73=d-1又はd-10が好ましく、d-1のベンゼン環構造が特に好ましい。
 またこれら構造に置換基を有していてもよい。
(式(53)で表される基の具体例)
 式(53)で表される基の具体例を以下に挙げる。式(53)で表される基としてはこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000117
(好ましい式(50)で表される繰り返し単位)
 前記式(50)で表される繰り返し単位として好ましくは、下記式(54)で表される繰り返し単位、下記式(55)で表される繰り返し単位、下記式(56)で表される繰り返し単位、下記式(57)で表される繰り返し単位、及び下記式(60)で表される繰り返しから選択される繰返し単位である。
 特に、下記式(54)で表される繰り返し単位は、芳香族炭化水素環が縮合した構造を有するために耐熱性が高くなり好ましい。
 特に、下記式(55)で表される繰り返し単位は、R304及びR305を有するフェニレン環が、隣接するフェニレン環に対して相対的にねじれた構造を有するため、重合体の共役の広がりが抑制され、重合体のT1レベルが向上するため好ましい。
 特に、下記式(56)で表される繰り返し単位は、カルバゾール構造を有するため耐熱性が高くなり好ましい。
 特に、下記式(57)で表される繰り返し単位は、重合体のLUMOを広げやすく、そのため電子耐久性を高くしやすい傾向にあることから好ましい。
 特に、下記式(60)で表される繰り返し単位は、正孔輸送性が優れるため好ましい。
 本発明の重合体は、下記式(54)で表される繰り返し単位、下記式(55)で表される繰り返し単位、下記式(56)で表される繰り返し単位、及び下記式(57)で表される繰り返し単位から選択される繰返し単位を含むことが好ましく、中でも、下記式(54)で表される繰り返し単位又は下記式(57)で表される繰り返し単位を含むことが更に好ましい。
 さらに、本発明の重合体は、下記式(54)で表される繰り返し単位、下記式(55)で表される繰り返し単位、下記式(56)で表される繰り返し単位、及び下記式(57)で表される繰り返し単位から選択される繰返し単位のうちの1種以上を含むことに加え、下記式(60)で表される繰返し単位をさらに含むことが好ましく、中でも、下記式(54)で表される繰り返し単位又は下記式(57)で表される繰り返し単位を含むことに加え、下記式(60)で表される繰返し単位をさらに含むことがより好ましい。
<式(54)で表される繰り返し単位>
Figure JPOXMLDOC01-appb-C000118
(式(54)中、
 Ar51は、前記式(50)におけるAr51と同様である。
 Xは、-C(R207)(R208)-、-N(R209)-又は-C(R211)(R212)-C(R213)(R214)-である。
 R201、R202、R221及びR222は、各々独立に置換基及び/又は架橋基を有していてもよいアルキル基である。
 R207~R209及びR211~R214は、各々独立に水素原子、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアラルキル基、又は、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基である。
 a及びbは、各々独立に0~4の整数である。
 cは、0~3の整数である。
 dは、0~4の整数である。
 i及びjは、各々独立に0~3の整数である。
 但し、前述の捻れ構造を必須とする場合、a×c+b×d+i+jは1以上である。)
(R201、R202、R221、R222
 上記式(54)で表される繰り返し単位中のR201、R202、R221及びR222は、それぞれ独立して、置換基及び/又は架橋基を有していてもよいアルキル基である。
 該アルキル基は、直鎖、分岐又は環状のアルキル基である。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、1以上であって、8以下が好ましく、6以下がより好ましく、3以下がさらに好ましい。該アルキル基は、メチル基又はエチル基であることがさらに好ましい。
 R201が複数ある場合は、複数のR201は同一であっても異なっていてもよい。R202が複数ある場合は、複数のR202は同一であっても異なっていてもよい。電荷を均一的に窒素原子の周りに分布することができ、さらに合成も容易であることから、全てのR201とR202は同一の基であることが好ましい。
 R221が複数ある場合は、複数のR221は同一であっても異なっていてもよい。R222が複数ある場合は、複数のR222は同一であっても異なっていてもよい。合成が容易であることから、全てのR221とR222は同一の基であることが好ましい。
(R207~R209及びR211~R214
 R207~R209及びR211~R214は、それぞれ独立して、水素原子、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアラルキル基、又は置換基及び/又は架橋基を有していてもよい芳香族炭化水素基である。
 該アルキル基は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は1以上であって、24以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。また、該アルキル基は直鎖、分岐又は環状の各構造であってもよい。
 該アルキル基として、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、シクロヘキシル基、ドデシル基等が挙げられる。
 該アラルキル基は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は5以上が好ましく、また、60以下が好ましく、40以下がより好ましい。
 該アラルキル基として、具体的には、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基等が挙げられる。
 該芳香族炭化水素基としては特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は6以上が好ましく、また、60以下が好ましく、30以下がより好ましい。
 該芳香族炭化水素基として、具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等の、6員環の単環若しくは2~5縮合環の1価の基、又はこれらが複数連結した基等が挙げられる。
 電荷輸送性及び耐久性向上の観点から、R207及びR208はメチル基又は芳香族炭化水素基が好ましく、R207及びR208はメチル基であることがより好ましく、R209はフェニル基であることがより好ましい。
 R201、R202、R221、R222のアルキル基、R207~R209及びR211~R214のアルキル基、アラルキル基及び芳香族炭化水素基は、置換基及び/又は架橋基を有していてもよい。置換基は、前記R207~R209及びR211~R214のアルキル基、アラルキル基及び芳香族炭化水素基の好ましい基として挙げた基が挙げられる。架橋基としては、前記架橋基群Tから選択される架橋基が挙げられる。
 R201、R202、R221、R222のアルキル基、R207~R209及びR211~R214のアルキル基、アラルキル基及び芳香族炭化水素基は、低電圧化の観点からは、置換基及び架橋基を有さないことが最も好ましい。
 式(54)で表される繰返し単位の主鎖構造に架橋基が結合する場合、架橋基は、アルキル基、アラルキル基または芳香族炭化水素基である場合の、R207~R209、R211~R213、又はR214に結合していることが好ましい。
(a、b、c及びd)
 上記式(54)で表される繰り返し単位中において、a及びbはそれぞれ独立して、0~4の整数である。a+bは1以上であることが好ましく、さらに、a及びbは、各々2以下であることが好ましく、aとbの両方が1であることがより好ましい。ここで、bが1以上である場合、dも1以上である。また、cが2以上の場合、複数のaは同じであっても異なってもよく、dが2以上の場合、複数のbは同じであっても異なってもよい。
 a+bが1以上であると、主鎖の芳香環が立体障害により捻じれ、重合体の溶媒への溶解性が優れると共に、湿式成膜法で形成し加熱処理された塗膜は溶媒への不溶性に優れる傾向にある。したがって、a+bが1以上であると、この塗膜上へ湿式成膜法で別の有機層(例えば発光層)を形成する場合には、有機溶媒を含む該別の有機層形成用組成物への重合体の溶出が抑えられる。
 上記式(54)で表される繰り返し単位中において、cは0~3の整数であり、dは0~4の整数である。c及びdは、各々2以下であることが好ましく、cとdは等しいことがさらに好ましく、cとdの両方が1であるか、又はcとdの両方が2であることが特に好ましい。
 上記式(54)で表される繰り返し単位中のcとdの両方が1であるか又はcとdの両方が2であり、且つ、aとbの両方が2又は1である場合、R201とR202は、互いに対称な位置に結合していることが最も好ましい。
 ここで、R201とR202とが互いに対称な位置に結合するとは、式(54)におけるフルオレン環、カルバゾール環又は9,10-ジヒドロフェナントレン誘導体構造に対して、R201とR202の結合位置が対称であることをいう。このとき、主鎖を軸とする180度回転は同一構造とみなす。
 R221とR222は存在する場合それぞれ独立に、Xが結合しているベンゼン環の炭素原子を基準として、1位、3位、6位、又は8位に存在することが好ましい。この位置にR221及び/又はR222が存在することで、R221及び/又はR222が結合している縮合環と、主鎖上の隣のベンゼン環とが立体障害により捻じれ、重合体の溶媒への溶解性が優れると共に、湿式成膜法で形成し加熱処理された塗膜は溶媒への不溶性に優れる傾向にあり、好ましい。
(i、j)
 上記式(54)で表される繰り返し単位中において、i及びjはそれぞれ独立して、0~3の整数である。i及びjはそれぞれ独立して、0~2の整数であることが好ましく、0又は1であることが更に好ましい。i及びjは同じ整数であることが好ましい。i及びjは、重合体の主鎖を捻れされるためには、1又は2が好ましく、かつ、R221及び/又はR222がベンゼン環の1位及び/又は3位に結合することが好ましい。合成のしやすさからはi及びjは0であることが好ましい。尚、前記ベンゼン環の結合位は、Xが結合している炭素原子の隣の炭素原子でR221又はR222が結合可能な炭素原子を1位、主鎖として隣の構造と結合している炭素原子を2位とする。
(X)
 前記式(54)におけるXは、電荷輸送時の安定性が高いことから、-C(R207)(R208)-又は-N(R209)-であることが好ましく、-C(R207)(R208)-であることがより好ましい。
 Xが架橋基を有する場合、R207及びR208の少なくとも一方、R209、又はR211~R214の少なくとも一つが、架橋基を有するアルキル基、架橋基を有するアラルキル基、又は架橋基を有する芳香族炭化水素基であることが、重合体分子間の凝集を抑制する傾向にあるため好ましい。
(好ましい繰り返し単位)
 上記式(54)で表される繰り返し単位は、下記式(54-1)~(54-8)のいずれかで示される繰り返し単位であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
 上記式において、R201及びR202は同一であり、且つ、R201とR202は互いに対称な位置に結合している。
<式(54)で表される繰り返し単位の主鎖の好ましい例>
 上記式(54)中の窒素原子を除いた主鎖構造は特に限定されないが、例えば以下のような構造が好ましい。
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
<式(55)で表される繰り返し単位>
Figure JPOXMLDOC01-appb-C000129
(式(55)中、
 Ar51は前記式(54)におけるAr51と同様である。
 R303及びR306は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基を表す。
 R304及びR305は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基又は置換基及び/又は架橋基を有していてもよいアラルキル基を表す。
 lは、0又は1である。
 mは、1又は2である。
 nは、0又は1である。
 pは、0又は1である。
 qは、0又は1である。)
(R303、R306
 上記式(55)で表される繰り返し単位中のR303及びR306は、それぞれ独立して、置換基及び/又は架橋基を有していてもよいアルキル基である。
 アルキル基としては、前記式(54)におけるR201及びR202と同様のものが挙げられ、有していてもよい置換基、架橋基及び好ましい構造もR201及びR202と同様のものが挙げられる。
 R303が複数ある場合は、複数のR303は同一であっても異なっていてもよい。R306が複数ある場合は、複数のR306は同一であっても異なっていてもよい。
(R304、R305
 上記式(55)で表される繰り返し単位中のR304及びR305は、それぞれ独立して、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基又は置換基及び/又は架橋基を有していてもよいアラルキル基である。好ましくは置換基及び/又は架橋基を有していてもよいアルキル基である。
 R304とR304は同一であることが好ましい。
 該アルキル基は、直鎖、分岐又は環状のアルキル基である。該アルキル基の炭素数は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、1以上であって、24以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。
 該アルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、シクロヘキシル基、ドデシル基等が挙げられる。
 該アルコキシ基は特に限定されず、アルコキシ基(-OR10)のR10で表されるアルキル基は、直鎖、分岐又は環状のいずれの構造であってもよく、重合体の溶解性を向上できる傾向にあるため、炭素数は、1以上であって、24以下が好ましく、12以下がより好ましい。
 該アルコキシ基としては、具体的には、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、ヘキシロキシ基、1-メチルペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 該アラルキル基は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数5以上が好ましく、また、60以下が好ましく、40以下がより好ましい。
 該アラルキル基としては、具体的には、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基などが挙げられる。
 R304、R305のアルキル基、アルコキシ基及びアラルキル基が有してよい置換基は、前記R207~R209及びR211~R214のアルキル基、アラルキル基及び芳香族炭化水素基の好ましい基として挙げた基が挙げられる。有してよい架橋基は前記架橋基群Tから選択される架橋基が挙げられる。
 R304、R305のアルキル基、アルコキシ基及びアラルキル基は、低電圧化の観点からは、置換基及び架橋基を有さないことが最も好ましい。
 式(55)で表される繰返し単位の主鎖構造に架橋基が結合する場合、架橋基は、R304及びR305に結合していることが好ましい。
(l、m及びn)
 lは0又は1を表す。nは0又は1を表す。
 l及びnは各々独立であり、l+nは1以上が好ましく、1又は2がより好ましく、2がさらに好ましい。l+nが上記範囲であることで、該重合体の溶解性を高くし、該重合体を含有する本発明の組成物からの析出も抑制できる傾向にある。
 mは1又は2を表し、本発明の組成物を用いて製造される有機電界発光素子を低電圧で駆動でき、正孔注入能、輸送能、耐久性も向上する傾向にあることから、1であることが好ましい。
(p及びq)
 pは0又は1を表す。qは0又は1を表す。lが2以上の場合、複数のpは同じであっても異なってもよい。nが2以上の場合、複数のqは同じであっても異なってもよい。l=n=1の場合、pとqは同時に0となることはない。pとqが同時に0とならないことで、該重合体の溶解性を高くし、該重合体を含有する本発明の組成物からの析出も抑制できる傾向にある。また、前記a及びbと同様の理由により、p+qが1以上であると主鎖の芳香環が立体障害により捻じれ、重合体の溶媒への溶解性が優れると共に、湿式成膜法で形成し加熱処理された塗膜は溶媒への不溶性に優れる傾向にある。したがって、p+qが1以上であると、この塗膜上へ湿式成膜法で別の有機層(例えば発光層)を形成する場合には、有機溶媒を含む該別の有機層形成用組成物への重合体の溶出が抑えられる。
<式(55)で表される繰り返し単位の主鎖の具体例>
 式(55)中の窒素原子を除いた主鎖構造は特に限定されないが、例えば以下のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
<式(56)で表される繰り返し単位>
Figure JPOXMLDOC01-appb-C000138
(式(56)中、
 Ar51は前記式(54)におけるAr51と同様である。
 Ar41は、置換基を有していてもよい2価の芳香族炭化水素基、置換基を有していてもよい2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
 R441及びR442は、各々独立に、置換基を有していてもよいアルキル基を表す。
 tは、1又は2である。
 uは、0又は1である。
 r及びsは、各々独立に、0~4の整数である。
 但し、前述の捻れ構造を必須とする場合、r×t+s×uは1である。)
(R441、R442
 上記式(56)で表される繰り返し単位中のR441、R442は、それぞれ独立して、置換基を有していてもよいアルキル基である。
 該アルキル基は、直鎖、分岐又は環状のアルキル基である。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、炭素数1以上であって、10以下が好ましく、8以下がより好ましく、6以下がより好ましい。該アルキル基はメチル基又はヘキシル基であることがさらに好ましい。
 R441及びR442が上記式(56)で表される繰り返し単位中に複数ある場合は、複数のR441及びR442は同一であっても異なっていてもよい。
(r、s、t及びu)
 式(56)で表される繰り返し単位中において、r及びsはそれぞれ独立して、0~4の整数である。tが2以上の場合、複数のrは同じであっても異なってもよい。uが2以上の場合、複数のsは同じであっても異なってもよい。r+sは1以上であることが好ましく、さらに、r及びsは、各々2以下であることが好ましい。r+sが1以上であると、前記式(54)におけるa及びbと同様の理由により、有機電界発光素子の駆動寿命はさらに長くなると考えられる。
 上記式(56)で表される繰り返し単位中において、tは1又は2である。uは0又は1である。tは1が好ましい。uは1が好ましい。
(Ar41
 Ar41は、置換基を有していてもよい2価の芳香族炭化水素基、置換基を有していてもよい2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基である。
 Ar41における芳香族炭化水素基及び芳香族炭化水素基としては、前記式(50)におけるAr52と同様の基が挙げられる。芳香族炭化水素基及び芳香族炭化水素基が有していてもよい置換基は、前記置換基群Zから選ばれる基が好ましく、さらに有していてよい置換基も前記置換基群Zと同様であることが好ましい。
<式(56)で表される繰り返し単位の具体例>
 式(56)で表される繰り返し単位は特に限定されないが、例えば以下のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000139
<式(57)で表される繰り返し単位>
Figure JPOXMLDOC01-appb-C000140
(式(57)中、
 Ar51は前記式(50)におけるAr51と同様である。
 R517~R519は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基、置換基及び/又は架橋基を有していてもよいアラルキル基、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基又は置換基及び/又は架橋基を有していてもよい芳香族複素環基を表す。
 f、g、hは、各々独立に0~4の整数を表す。
 eは0~3の整数を表す。
 ただし、gが1以上の場合、eは1以上である。
 但し、前述の捻れ構造を必須とする場合、f+e×g+hは1である。)
(R517~R519
 R517~R519における芳香族炭化水素基、芳香族複素環基は、各々独立に、前記Ar51で挙げたものと同様の基である。これらの基が有していてもよい置換基は、前記置換基群Zと同様の基が好ましい。架橋基としては前記架橋基群Tから選択される架橋基が好ましい。
 R517~R519におけるアルキル基及びアラルキル基は、前記R207で挙げたものと同様の基が好ましく、さらに有していてもよい置換基は前記R207と同様の基が好ましく、架橋基としては前記架橋基群Tから選択される架橋基が好ましい。
 R517~R519におけるアルコキシ基は、前記置換基群Z、特に前記置換基群Xで挙げたアルコキシ基が好ましく、さらに有していてもよい置換基は前記置換基群Zが、好ましくは置換基群X好ましい。さらに有していてもよい架橋基としては前記架橋基群Tから選択される架橋基が好ましい。
(f、g、h)
 f、g、hは、各々独立して、0~4の整数を表す。
 eが2以上の場合、複数のgは同じであっても異なってもよい。
 f+g+hは1以上であることが好ましい。
 f+hは1以上であることが好ましく、
 f+hは1以上、且つ、f、g及びhは2以下であることがより好ましく、
 f+hは1以上、且つ、f、hは1以下であることがさらに好ましく、
 f、hはいずれも1であることが最も好ましい。
 f及びhがいずれも1である場合、R517とR519は互いに対称な位置に結合していることが好ましい。
 R517とR519とは同一であることが好ましく、
 gは2であることがより好ましい。
 gが2である場合、2つのR518は互いにパラ位に結合していることが最も好ましい。
 gが2である場合、2つのR518は同一であることが最も好ましい。
 ここで、R517とR519が互いに対称な位置に結合するとは、下記の結合位置のことを言う。ただし、表記上、主鎖を軸とする180度回転は同一構造とみなす。
Figure JPOXMLDOC01-appb-C000141
 本実施形態の重合体が式(54)で表される繰り返し単位と式(57)で表される繰り返し単位を含む場合、式(54)で表される繰り返し単位と式(57)で表される繰り返し単位との割合は、(式(57)で表される繰り返し単位のモル数)/(式(54)で表される繰り返し単位のモル数)が、0.1以上が好ましく、0.3以上がより好ましく、0.5以上がさらに好ましく、0.9以上がよりさらに好ましく、1.0以上が特に好ましい。また、当該割合は、2.0以下が好ましく、1.5以下がより好ましく、1.2以下がさらに好ましい。
 また、前記式(57)で表される繰り返し単位は、下記式(58)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000142
 前記式(58)で表される繰り返し単位の場合、g=0または2であることが好ましい。g=2の場合、結合位置は2位と5位である。g=0の場合、すなわちR518による立体障害が無い場合、及びg=2であり結合位置は2位と5位である場合、すなわち立体障害が2つのR518が結合するベンゼン環の対角位置となる場合は、R517とR519とが互いに対称な位置に結合することが可能である。
 また、前記式(58)で表される繰り返し単位は、e=3である下記式(59)で示される繰り返し単位であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000143
 前記式(59)で表される繰り返し単位の場合、g=0または2であることが好ましい。g=2の場合、結合位置は2位と5位である。g=0の場合、すなわちR518による立体障害が無い場合、及びg=2であり結合位置は2位と5位である場合、すなわち、立体障害が2つのR518が結合するベンゼン環の対角位置となる場合は、R517とR519とが互いに対称な位置に結合することが可能である。
<式(57)で表される繰り返し単位の主鎖の具体例>
 式(57)で表される繰り返し単位の主鎖構造は特に限定されないが、例えば以下のような構造が挙げられる。
Figure JPOXMLDOC01-appb-C000144
 上記式(50)~(59)で表される繰り返し単位には、架橋基を有していないことが好ましい。架橋基を有していない場合、湿式成膜後の加熱乾燥またはベーク(加熱焼成)によって、ポリマー鎖の歪みが生じにくく好ましい。架橋基が反応する際に、体積変化が生じることがあり、ポリマー鎖の歪みが生じる為である。また、体積変化が生じなくてもポリマー鎖の歪みが生じるためである。
<式(60)で表される繰り返し単位>
Figure JPOXMLDOC01-appb-C000145
(式(60)中、
 Ar51は前記式(50)におけるAr51と同様である。
 n60は1~5の整数を表す。)
(n60
 n60は1~5の整数を表し、好ましくは1~4の整数であり、さらに好ましくは1~3の整数である。
(共役を阻害する捻れた構造)
 本発明の組成物に用いる電荷輸送性高分子化合物が前記式(50)で表される繰り返し単位を有する重合体の場合、式(50)で表される繰返し単位としてさらに好ましくは、前記式(54)で表される繰り返し単位、前記式(55)で表される繰り返し単位、前記式(56)で表される繰り返し単位又は前記式(57)で表される繰り返し単位である。また、前記式(63)で表される部分構造は、下記式(63A)又は(63B)で表される部分構造であることが好ましい。そのため、前記式(50)で表される繰返し単位としてさらに好ましくは、下記式(63A)又は(63B)で表される部分構造を主鎖構造として含む前記式(54)で表される繰り返し単位、下記式(63A)又は(63B)で表される部分構造を主鎖構造として含む前記式(55)で表される繰り返し単位、下記式(63A)又は(63B)で表される部分構造を主鎖構造として含む前記式(56)で表される繰り返し単位、又は下記式(63A)又は(63B)で表される部分構造を主鎖構造として含む前記式(57)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000146
(式(63A)及び式(63B)において、
 R601は式(63)におけるR601であり、
 Ring Aは式(63)における環Arの部分構造又は環Arであり、
 Ring Bは式(63)におけるAr621の部分構造又は環Ar621である。
 R601は式(54)におけるR201、R202、R221、又はR222、式(55)におけるR303、R304、R305、又はR406、式(56)におけるR441又はR442、式(57)におけるR517、R518又はR519を表す。
 *は隣の原子との結合を表す。
 式(63A)が式(54)の部分構造または式(56)の部分構造である場合、Ring Bは縮合環の一部であってもよい。
 式(63A)及び式(62B)で表される部分構造は、R601の他に、Ring A及びRing Bに、
式(54)の部分構造である場合はR201、R202、R221、又はR222を、
式(55)の部分構造である場合はR303、R304、R305、又はR306を、
式(56)の部分構造である場合はR441又はR442を、
式(57)の部分構造である場合はR517、R518又はR519を、有していてもよい。)
<式(62)で表される繰返し単位>
 前記式(50)で表される繰返し単位として特に好ましくは、前記式(63A),(63B)で表される部分構造を主鎖構造として含む前記式(54)で表される繰り返し単位である、下記式(62)で表される繰返し単位を含む重合体である。
Figure JPOXMLDOC01-appb-C000147
(式(62)中、
 Ar51、X、R201、R202、R221、R222、a、b、c、d、i、jは、前記式(54)におけるAr51、X、R201、R202、R221、R222、a、b、i、jと同じである。
 cは、1~3の整数である。
 dは、1~4の整数である。
 a、a、b、b、i、i、j、jはそれぞれ独立に0又は1である。但し、下記条件(1)、(2)のいずれかを満たす。
 (1)a、a、a、b、b及びbの少なくとも一つは1以上である。ただし、cが1の場合はaは定義されず、dが1の場合はbは定義されない。
 (2)i、i、j及びjの少なくとも1つは1である。
 Ring A1はR201を特定の位置に有してよい2価のベンゼン環を指し、
 Ring A2はR201を有してよいc-1個のベンゼン環が連結した2価の基、ただしc=2の場合は単環の2価のベンゼン環を指し、
 Ring A3はビフェニル構造がXで更に結合した2価の縮合環を指し、
 Ring A4はR202を有してよいd-1個のベンゼン環が連結した2価の基、ただしd=2の場合は単環の2価のベンゼン環を指し、
 Ring A5はR202を特定の位置に有してよい2価のベンゼン環を指す。)
 ここで、式(54)におけるaが1以上であるとは、式(62)において、a、a及びaの少なくとも一つは1以上であることと同義である。式(54)におけるbが1以上であるとは、式(62)において、b、b及びbの少なくとも一つは1以上であることと同義である。
 以下の通り、式(62)は、前記式(63A)または前記式(63B)を部分構造として含む。
 a、a及びaの少なくとも一つは1以上である場合、
 aまたはaの少なくとも一方が1の場合、cが2以上の場合はRing A1とRing A2とが、cが1の場合はRing A1とRing A3とが、
 aが1の場合、Ring A2とRing A1とが、又は、Ring A2とRing A3とが、前記式(63A)または前記式(63B)を部分構造として含む。
 同様に、b、b及びbの少なくとも一つは1以上である場合も前記式(63A)または前記式(63B)を部分構造として含むことがわかる。
 また、i、i、j及びjの少なくとも1つは1である場合は、
 i及びiの一方又は両方が1の場合、Ring A3のR221が結合している環とRing A2のベンゼン環とで、部分構造として式(63B)が形成され、
 j及びjの一方又は両方が1の場合、Ring A3のR222が結合している環とRing A4のベンゼン環とで、部分構造として式(63A)が形成されることが分かる。
 すなわち、Ring A3とRing A2とが、又は、Ring A3とRing A4とが捻じれた構造であることが分かる
 したがって、式(62)は主鎖の芳香環が捻れた構造を含むため、共役を阻害する捻れた構造であり好ましい。
 好ましくは、a1及びa2の少なくとも一方と、b1及びb2の少なくとも一方が1である構造、i1及びj1が1である構造、i2及びj2が1である構造、又は、i1、j1、i2及びj2が1である構造である。
[重合体の分子量]
 以下、本発明の組成物に含まれる重合体の分子量について記す。
 上述のアリールアミン構造を繰返し単位として有する重合体の重量平均分子量(Mw)は、通常1,000,000以下、好ましくは500,000以下、より好ましくは100,000以下、さらに好ましくは70,000以下、特に好ましくは50,000以下である。また、当該重量平均分子量は、通常5,000以上、好ましくは10,000以上、さらに好ましくは12,000以上、特に好ましくは15,000以上である。
 上述のアリールアミン構造を繰返し単位として有する重合体の重量平均分子量が上記上限値以下であることで、溶媒に対する溶解性が得られ、成膜性に優れる傾向にある。また、該重合体の重量平均分子量が上記下限値以上であることで、重合体のガラス転移温度、融点及び気化温度の低下が抑制され、耐熱性が向上する場合がある。加えて、架橋反応後の塗膜の有機溶媒に対する不溶性が十分である場合がある。
 また、上述のアリールアミン構造を繰返し単位として有する重合体における数平均分子量(Mn)は、通常750,000以下、好ましくは250,000以下、より好ましくは100,000以下、特に好ましくは50,000以下である。また、当該数平均分子量は、通常2,000以上、好ましくは4,000以上、より好ましくは6,000以上、さらに好ましくは8,000以上である。
 さらに、上述のアリールアミン構造を繰返し単位として有する重合体における分散度(Mw/Mn)は、好ましくは3.5以下、さらに好ましくは2.5以下、特に好ましくは2.0以下である。なお、分散度は値が小さい程よいため、下限値は理想的には1である。当該重合体の分散度が、上記上限値以下であると、精製が容易で、また溶媒に対する溶解性や電荷輸送能が良好である。
 通常、重合体の重量平均分子量及び数平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び数平均分子量が算出される。
<式(50)で表される繰り返し単位の含有量>
 重合体において、式(50)で表される繰り返し単位の含有量は特に制限されないが、式(50)で表される繰り返し単位は重合体の全繰り返し単位100モル%中に通常10モル%以上含まれ、30モル%以上含まれることが好ましく、40モル%以上含まれることがより好ましく、50モル%以上含まれることがさらに好ましい。
 重合体は、繰り返し単位が、式(50)で表される繰り返し単位のみから構成されていてもよいが、有機電界発光素子とした場合の諸性能をバランスさせる目的から、式(50)で表される繰り返し単位とは別の繰り返し単位を有していてもよい。その場合、重合体中の式(50)で表される繰り返し単位の含有量は、通常、99モル%以下、好ましくは95モル%以下である。
<式(61)で表される繰り返し単位>
 本発明のアリールアミン構造を繰返し単位として含む重合体は、さらに下記式(61)で表される構造を主鎖に含んでいてもよい。
Figure JPOXMLDOC01-appb-C000148
(式(61)中、
 R81、R82は、各々独立して、水素原子、アルキル基、芳香族炭化水素基、又は芳香族複素環基を表す。R81、R82が複数個存在する場合、同じであっても異なっていてもよい。
 p80は1~5の整数を表す。)
 R81、R82がアルキル基である場合、アルキル基としては、直鎖、分岐又は環状のアルキル基である。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、1以上であって、8以下が好ましく、6以下がより好ましく、3以下がさらに好ましい。該アルキル基は、メチル基又はエチル基であることがさらに好ましい。
 R81、R82が芳香族炭化水素基、又は芳香族複素環基である場合は、前述の「定義」の項目にて述べた構造が好ましい。
 R81、R82は、置換基及び/又は架橋基を有していてもよい。置換基は前記置換基群Z、特に前記置換基群Xから選択される置換基が好ましい。架橋基は前記架橋基群Zから選択される架橋基が好ましい。
 重合体の耐久性及び電荷輸送性の観点から、p80は3以下が好ましく、2以下が更に好ましく、1が最も好ましい。
 式(61)で表される構造を含むことにより、重合体の主鎖の共役が切られ、重合体のS1エネルギー準位及びT1エネルギー準位が高くなる。このため、この重合体を含む組成物を有機電界発光素子の正孔輸送層に用いた場合、発光層の励起子を失活させにくくなり、発光効率が高くなると考えられ、好ましい。
<重合体の好ましい繰返し単位構造>
 ここで、各式で表される繰返し単位において、具体的な構造のことを、「繰返し単位構造」と称することとする。具体的な構造とは、一般式において、全ての符号にそれぞれ具体的な構造または数値を当てはめて得られる構造である。すなわち、アリールアミン構造を繰り返し単位として有する重合体は、前記式(54)に含まれる繰返し単位構造、前記式(55)に含まれる繰返し単位構造、前記式(56)に含まれる繰返し単位構造、前記式(57)に含まれる繰返し単位構造、及び前記式(60)に含まれる繰返し単位構造の内、1つのみの繰返し単位構造を含んでもよく、2以上の複数の繰返し単位構造を含んでもよい。2以上の複数の繰返し単位構造を含む場合、これら2以上の複数の繰返し単位は、同一の前記式に含まれる繰返し単位構造であってもよいし、異なる前記式に含まれる繰返し単位構造であってもよい。電荷輸送性及び耐久性の観点から、アリールアミン構造を繰り返し単位として有する重合体は、これらの各式で表される具体的繰返し単位構造を1又は2含み、他の繰返し単位構造を含まない重合体であることがさらに好ましい。
<具体例>
 前記の重合体の具体例を以下に示す。前記の重合体はこれらに限定されるものではない。なお、化学式中の数字は繰返し単位のモル比を表す。
 これらの重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、又はグラフト共重合体等のいずれでもよく、単量体の配列順序には限定されない。
Figure JPOXMLDOC01-appb-C000149
<重合体の製造方法>
 本発明の組成物が含有する重合体の製造方法は特には制限されず任意である。例えば、Suzuki反応による重合方法、Grignard反応による重合方法、Yamamoto反応による重合方法、Ullmann反応による重合方法、Buchwald-Hartwig反応による重合方法等などが挙げられる。また、国際公開第2019/177175号、国際公開第2020/171190号、国際公開第2021/125011号に記載の重合体の製造方法と同様の製造方法にて製造できる。
 Ullmann反応による重合方法及びBuchwald-Hartwig反応による重合方法の場合、例えば、下記式(2a)で表されるジハロゲン化アリール(ZはI、Br、Cl、F等のハロゲン原子を表す。)と下記式(2b)で表される1級アミノアリールとを反応させることにより、前記式(54)で表される繰り返し単位を含む重合体が合成される。
Figure JPOXMLDOC01-appb-C000150
(上記反応式中、Ar51、R201、R202、X、a~dは前記式(54)における定義と同義である。)
 また、Ullmann反応による重合方法及びBuchwald-Hartwig反応による重合方法の場合、例えば、式(3a)で表されるジハロゲン化アリール(ZはI、Br、Cl、F等のハロゲン原子を表す。)と式(3b)で表される1級アミノアリールとを反応させることにより、前記式(55)で表される繰り返し単位を含む重合体が合成される。
Figure JPOXMLDOC01-appb-C000151
(上記反応式中、Ar51、R303~R306、n、m、l、p、qは前記式(55)における定義と同義である。)
 上記の重合方法において、通常、N-アリール結合を形成する反応は、例えば炭酸カリウム、tert-ブトキシナトリウム、トリエチルアミン等の塩基存在下で行う。上記の重合方法はまた、例えば銅やパラジウム錯体等の遷移金属触媒存在下で行うこともできる。
[本発明の組成物中の各化合物の含有量]
<本発明のカルバゾール化合物の含有量>
 本発明の組成物の固形分成分の組成比率において電荷輸送層に注入障壁を低減する観点から、本発明のカルバゾール化合物の含有量は10重量%以上が好ましく、25重量%以上がより好ましく、30重量%以上がさらに好ましい。一方、電荷輸送層内の電荷輸送性を維持するの観点から、本発明の組成物中の本発明のカルバゾール化合物の含有量は、組成物の固形分成分の組成比率において99重量%以下であることが好ましく、90重量%以下であることがより好ましく、80重量%以下であることがさらに好ましい。
<組成物中のカルバゾール化合物と電子受容性化合物の組成比率・含有量>
 本発明の組成物において、本発明のカルバゾール化合物と本発明の電子受容性化合物の合計量に対して、本発明のカルバゾール化合物の含有量は、99重量%以下であることが好ましく、97重量%以下であることがより好ましく、95重量%以下であることがさらに好ましい。また、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、80重量%以上であることがさらに好ましい。これらの範囲であることで、本発明の組成物を用いて形成された膜が十分架橋して不溶化し、本発明の組成物を用いて形成された膜に直接湿式塗布成膜することが可能であり、かつ、本発明の組成物を用いて形成された膜を電荷注入膜として用いた場合、電荷輸送層に注入障壁が低減して電荷輸送性優れ、電荷輸送時の安定性が向上し、本発明の組成物を用いて形成された膜を含む素子の耐久性が向上すると考えられる。
<電荷輸送性高分子化合物の含有量>
 熱による架橋基を有する本発明のカルバゾール化合物と本発明の電子受容性化合物のヨードニウムカチオンとのイオン化合物と形成される膜の電荷輸送性を向上させるため、これらの化合物は、電荷輸送性高分子化合物と組み合わせて用いることが好ましい。この場合、本発明の組成物中の電荷輸送性高分子化合物の含有量は、本発明の組成物の固形分成分の組成比率において、電荷輸送性の観点から、10重量%以上であることが好ましく、20重量%以上であることがさらに好ましい。一方、電荷注入層と電荷注入層に隣接する電荷輸送層との間の電荷注入障壁を低減する観点から、95重量%以下であることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましい。
 本発明の組成物は、更に、溶媒、重合開始剤、添加剤等を含んでいてもよい。
[溶媒]
 本発明の組成物は、本発明のカルバゾール化合物と前述の電子受容性化合物及び/又は前述の電荷輸送性高分子化合物に加えて、さらに溶媒を含むことが好ましい。特に、本発明の組成物を用いて、湿式成膜法により電荷輸送膜を形成する場合には、溶媒を用いて本発明のカルバゾール化合物と本発明の電子受容性化合物、また前記電荷輸送性高分子化合物を溶解させた状態とすることが好ましい。
 本発明の組成物に含まれる溶媒としては、本発明のカルバゾール化合物と本発明の電子受容性化合物、また前記電荷輸送性高分子化合物をともに溶解することが可能な溶媒であれば、その種類は特に限定されない。ここで、本発明のカルバゾール化合物と本発明の電子受容性化合物を溶解する溶媒とは、本発明のカルバゾール化合物を好ましくは0.005重量%以上、より好ましくは0.5重量%以上、更に好ましくは1重量%以上溶解する溶媒である。また、前記電子受容性化合物を好ましくは0.001重量%以上、より好ましくは0.1重量%以上、更に好ましくは0.2重量%以上溶解する溶媒である。また、前記電荷輸送性高分子化合物を好ましくは0.005重量%以上、より好ましくは0.5重量%以上、更に好ましくは1重量%以上溶解する溶媒である。
 好ましい溶媒としては、例えば、芳香族炭化水素系溶媒、エーテル系溶媒及びエステル系溶媒が挙げられる。
 具体的には、芳香族炭化水素系溶媒としては、トルエン、キシレン、メシチレン、テトラリン、シクロヘキシルベンゼンが挙げられる。
 エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶媒としては、例えば、酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 これらは何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
 上述のエーテル系溶媒及びエステル系溶媒以外に使用可能な溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、ジメチルスルホキシド等が挙げられる。これらは何れか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。また、これらの溶媒のうち1種又は2種以上を、上述のエーテル系溶媒及びエステル系溶媒のうちの1種又は2種以上と組み合わせて用いてもよい。特に、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒は、電子受容性化合物、フリーキャリア(カチオンラジカル)を溶解する能力が低いため、エーテル系溶媒及びエステル系溶媒と混合して用いることが好ましい。
 溶媒を使用する場合、本発明の組成物に対する溶媒の濃度は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50%質量以上である。また、組成物に対する溶媒の濃度は、好ましくは99.999重量%以下、より好ましくは99.99重量%以下、更に好ましくは99.9重量%以下の範囲である。なお、2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。
 本発明の組成物を有機電界発光素子に用いる場合、有機電界発光素子は多数の有機化合物からなる層を積層して形成するため、各層がいずれも均一な層であることが要求される。湿式成膜法で層形成する場合、薄膜形成用の溶液(組成物)に水分が存在すると、塗膜に水分が混入して膜の均一性が損なわれるため、溶液中の水分含有量はできるだけ少ない方が好ましい。一般に有機電界発光素子は、陰極等の水分により著しく劣化する材料が多く使用されているため、素子の劣化の観点からも水分の存在は好ましくない。
 具体的に、本発明の組成物に含まれる水分量は、好ましくは1重量%以下、中でも0.1重量%以下、更には0.05重量%以下に抑えることが好ましい。
 組成物中の水分量を低減する方法としては、例えば、窒素ガスシール、乾燥剤の使用、溶媒を予め脱水する、水の溶解度が低い溶媒を使用する等が挙げられる。中でも、塗布工程中に溶液塗膜が大気中の水分を吸収して白化する現象を防ぐという観点からは、水の溶解度が低い溶媒を使用することが好ましい。
 湿式成膜法により成膜する用途に用いる場合、本発明の組成物は、水の溶解度が低い溶媒、具体的には、25℃における水の溶解度が1重量%以下、好ましくは0.1重量%以下である溶媒を、組成物全体に対して好ましくは10重量%以上、中でも30重量%以上、特に50重量%以上の濃度で含有することが好ましい。
[電荷輸送膜用組成物]
 電子受容性化合物が前記の電子受容性イオン化合物である場合、該電子受容性イオン化合物と前記本発明のカルバゾール化合物とを含有する組成物(以下、適宜「電荷輸送膜用組成物(A)」という。)、又は、前記本発明のカルバゾール化合物のカチオンラジカルと該電子受容性イオン化合物の一部である対アニオンからなる、後記の電荷輸送性イオン化合物を含有する組成物(以下、適宜「電荷輸送膜用組成物(B)」という。)として用いることが好ましい。ここで、便宜上、電荷輸送膜用組成物(A)と電荷輸送膜用組成物(B)に分けて説明するが、電荷輸送膜用組成物は、前記電子受容性イオン化合物、前記本発明のカルバゾール化合物及び、前記本発明のカルバゾール化合物のカチオンラジカルと前記電子受容性イオン化合物の一部である対アニオンからなる、後記の電荷輸送性イオン化合物とを含む組成物も含む。なお、前記本発明のカルバゾール化合物は、前記架橋基を有するカルバゾール化合物である。
 なお、前記電荷輸送膜用組成物(A)及び(B)は、電荷輸送材料の用途に広く用いることが可能な組成物(電荷輸送材料用組成物)である。但し、通常はこれを成膜し、正孔注入層及び、又は正孔輸送層として、即ち電荷である正孔を輸送する「電荷輸送膜」として用いるため、本明細書では特に「電荷輸送膜用組成物」と呼ぶことにする。
<電荷輸送膜用組成物(A)>
 電荷輸送膜用組成物(A)は、前記本発明のカルバゾール化合物、前記架橋基を有する電子受容性化合物、及び溶媒を含む。前記本発明のカルバゾール化合物は1種単独で含んでもよく2種以上の複数種含んでもよい。さらに前記正孔輸送高分子化合物を含有してもよい。
<電荷輸送膜用組成物(A)の調製方法>
 電荷輸送膜用組成物(A)は、少なくとも、前記電子受容性化合物と、本発明のカルバゾール化合物とを混合することで調製される。この時、電荷輸送膜用組成物(A)は溶剤を含み、前記電子受容性化合物と、本発明のカルバゾール化合物とを溶剤に溶解して混合することが好ましい。
 電荷輸送膜用組成物(A)における前記電子受容性化合物の含有量は、本発明のカルバゾール化合物に対する値で、通常0.1重量%以上、好ましくは1重量%以上、また、通常100重量%以下、好ましくは40重量%以下である。電子受容性化合物の含有量が上記下限以上であれば、フリーキャリア(本発明のカルバゾール化合物のカチオンラジカル)が十分に生成でき好ましい。電子受容性化合物の含有量が上記上限以下であれば、十分な電荷輸送能が確保でき好ましい。2種以上の電子受容性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。電荷輸送性化合物についても同様である。
<電荷輸送膜用組成物(B)>
 電荷輸送膜用組成物(B)は、前記の通り、本発明のカルバゾール化合物のカチオンラジカルと前記電子受容性イオン化合物の対アニオンからなる電荷輸送性イオン化合物を含有する組成物である。
 電荷輸送性イオン化合物のカチオンである本発明のカルバゾール化合物のカチオンラジカルは、本発明のカルバゾール化合物に示す電気的に中性の化合物から、一電子取り除いた化学種である。
 前記式(71)で表される本発明のカルバゾール化合物のカチオンラジカルは、下記式(110)で表される構造を有する芳香族カルバゾール化合物である。
Figure JPOXMLDOC01-appb-C000152
(上記式(110)中、Ar621、R621、R622、R623、R624、n621、n622、n623、n624は、それぞれ前記式(71)におけるAr621、R621、R622、R623、R624、n621、n622、n623、n624と同様である。)
 式(110)で表される構造を有する芳香族カルバゾール化合物としては特に、下記式(110-2)で表される構造を有する芳香族カルバゾール化合物であることが、適度な酸化還元電位を有する点、安定な電荷輸送性イオン化合物が得られる点から好ましい。
Figure JPOXMLDOC01-appb-C000153
[上記式(110-2)中、
 wは1~6の整数を表す。
 Ar81~Ar84は各々独立に、水素原子、重水素原子、ハロゲン原子(具体的にはI、Br、Cl、F原子)、置換基を有してもよい炭素数6~30の芳香族炭化水素基又は置換基を有してもよい単素数3~30の芳香族複素環基を表す。
 R81~R84は各々独立に置換基を表し、相隣のフェニレンの置換基の間に結合しでもよい。]
 Ar81~Ar84は好ましくは置換基を有する芳香族炭化水素基であり、その具体例、好ましい基、有していてもよい置換基の例及び好ましい置換基の例は、前記の式(71)におけるR621~R624と同様であり、特に好ましくは置換基を有していてもよい炭素数6~14の芳香族炭化水素基である。
 好ましい置換基及び好ましいR81~R84は、前記の置換基群Zから選ばれる基であり、好ましくは、無置換であるか、置換基群Zのアルキル基、芳香族炭化水素基である。
 wは、式(110-2)で表される部分構造がカチオンラジカルになりやすいおよび電荷輸送の観点から、好ましくは6以下であり、さらに好ましくは5以下であり、4であることが特に好ましい。
 式(110-2)で表される構造を有する芳香族カルバゾール化合物は、芳香族カルバゾール構造として式(110-2)で表される構造を1つのみ又は複数有する低分子化合物であってもよい。
 前記式(72)で表される本発明のカルバゾール化合物のカチオンラジカルは、下記式(120)で表される構造を有する芳香族カルバゾール化合物である。
Figure JPOXMLDOC01-appb-C000154
(式(120)中、Ar611、Ar612、R611、R612、G、n611、n612は、それぞれ式(72)におけるAr611、Ar612、R611、R612、G、n611、n612と同様である。)
 式(120)で表される構造を有する芳香族カルバゾール化合物としては特に、下記式(120-2)で表される構造を有する芳香族カルバゾール化合物であることが、適度な酸化還元電位を有する点、安定な電荷輸送性イオン化合物が得られる点から好ましい。
Figure JPOXMLDOC01-appb-C000155
(上記式(120-2)中、Ar611、R611、R612、G、n611、n612は、それぞれ前記式(72)におけるAr611、R611、R612、G、n611、n612と同様である。
 Ar613は前記式(72)におけるAr612がフェニレンを介してカルバゾール構造に結合可能な構造である場合のAr612から当該フェニレン基を除いた残基である。)
<電荷輸送性イオン化合物>
 電荷輸送性イオン化合物は、本発明のカルバゾール化合物のカチオンラジカルと、電子受容性イオン化合物の一部である対アニオンとがイオン結合した化合物である。
 電荷輸送性イオン化合物は、電子受容性イオン化合物と、本発明のカルバゾール化合物とを混合することによって得ることができ、種々の溶媒に容易に溶解する。具体的には、後述の、<電荷輸送膜用組成物(B)の調製方法>にて記した方法で得ることが出来る。
 電荷輸送性イオン化合物の分子量は、カチオンラジカルが高分子化合物である場合を除いて、通常1000以上、好ましくは1200以上、更に好ましくは1400以上、また、通常9000以下、好ましくは5000以下、更に好ましくは4000以下の範囲である。
<電荷輸送膜用組成物(B)の調製方法>
 電荷輸送性イオン化合物(B)は、電子受容性イオン化合物と、本発明のカルバゾール化合物とを溶媒に溶解して混合して調製して得ることが好ましい。この溶液中で、電子受容性イオン化合物によって本発明のカルバゾール化合物が酸化されてカチオンラジカル化し、電子受容性イオン化合物の対アニオンと、本発明のカルバゾール化合物のカチオンラジカルとのイオン化合物である、電荷輸送性イオン化合物が生成する。
 このとき、本発明のカルバゾール化合物と電子受容性イオン化合物とを溶液中で混合することにより、本発明のカルバゾール化合物の酸化されやすい部位であるカルバゾールの窒素原子近傍に電子受容性イオン化合物が存在する確率が高くなり、電子受容性イオン化合物によって本発明のカルバゾール化合物のカルバゾールが酸化されてカチオンラジカル化し、電子受容性イオン化合物の対アニオンと、本発明のカルバゾール化合物のカチオンラジカルとのイオン化合物が生成しやすくなる。このとき、溶液を加熱することが、前記反応を促進する観点で好ましい。
 電子受容性イオン化合物と、本発明のカルバゾール化合物との混合物を加熱して電荷輸送膜用組成物(B)を調製することも好ましい。この混合物は、電子受容性イオン化合物と、本発明のカルバゾール化合物との混合物を溶媒に溶解した溶液を塗布乾燥して成膜した膜であることが好ましい。混合物を加熱することにより、混合物中で電子受容性イオン化合物と本発明のカルバゾール化合物とが互いに拡散し、本発明のカルバゾール化合物の酸化されやすい部位であるカルバゾールの窒素原子近傍に電子受容性化合物が存在する確率が高くなり、電子受容性イオン化合物の対アニオンと、本発明のカルバゾール化合物のカチオンラジカルとのイオン化合物が生成しやすくなる。この時の加熱温度は、組成物の架橋基が架橋反応しない温度が好ましいが、架橋基が架橋反応する温度であっても、架橋反応も拡散しながら起こるため、電子受容性イオン化合物は問題なく形成される。
 電荷輸送膜用組成物(B)は、前記した電荷輸送性イオン化合物1種を単独で含有していてもよく、2種以上を含有していてもよい。電荷輸送性イオン化合物は1種又は2種含有することが好ましく、1種を単独で含有することがより好ましい。電荷輸送性イオン化合物のイオン化ポテンシャルのばらつきが少なく、正孔輸送性が優れるためである。
 電荷輸送性イオン化合物1種を単独で、又は2種含有する組成物とは、電子受容性イオン化合物と本発明のカルバゾール化合物を合計で2種のみ又は3種のみ用いて調製された組成物であって、少なくとも1つの電子受容性イオン化合物と少なくとも1つの本発明のカルバゾール化合物とを用いて調製された組成物である。
 電荷輸送膜用組成物(B)には、電荷輸送性イオン化合物の他に、電荷輸送性化合物を含有することも好ましい。電荷輸送性化合物としては、前記正孔輸送高分子化合物である、前記式(50)で表される繰返し単位を有する、前記アリールアミン構造を繰返し単位として含む重合体が特に好ましい。
 電荷輸送膜用組成物(B)を調製する場合、仕込み量としての本発明のカルバゾール化合物の含有量は、電荷輸送性イオン化合物に対する値で、好ましくは10重量%以上、更に好ましくは20重量%以上であり、より好ましくは30重量%以上である。また、10000重量%以下であることが好ましく、1000重量%以下であることがさらに好ましい。
 電荷輸送膜用組成物(B)から形成される電荷輸送膜は、電荷輸送性イオン化合物から近傍の中性の電荷輸送性化合物に正電荷が移動することにより、高い正孔注入・輸送能を発揮することから、電荷輸送性イオン化合物と中性の本発明のカルバゾール化合物とが、質量比で1:100~100:1程度であることが好ましく、1:20~20:1程度の割合であることが更に好ましい。
<電荷輸送膜用組成物(A)と(B)の関係>
 電荷輸送膜用組成物(A)により形成される電荷輸送膜は、耐熱性に優れるとともに、高い正孔注入・輸送能を有する。この様な優れた特性が得られる理由を以下に説明する。
 電荷輸送膜用組成物(A)は、前述した電子受容性化合物と電荷輸送性化合物とを含有している。電子受容性イオン化合物中のカチオンは、超原子価の中心原子を有し、その正電荷が広く非局在化しているため、高い電子受容性を有している。これによって、電荷輸送性化合物から電子受容性イオン化合物のカチオンへと電子移動が起こり、電荷輸送性化合物のカチオンラジカルと対アニオンとからなる電荷輸送性イオン化合物が生成する。この電荷輸送性化合物のカチオンラジカルが電荷のキャリアとなるため、電荷輸送膜の電気伝導度を高めることができる。すなわち、電荷輸送膜用組成物(A)を調製すると、少なくとも一部は電荷輸送性化合物のカチオンラジカルと電子受容性イオン化合物の対アニオンとからなる電荷輸送性イオン化合物が生成すると考えられる。
 例えば、下記の式(7)で表される電荷輸送性化合物から式(6)で表される電子受容性化合物へ電子移動が起きる場合、式(9)で表される、電荷輸送性化合物のカチオンラジカルと対アニオンJ-からなる電荷輸送性イオン化合物が生成する。
Figure JPOXMLDOC01-appb-C000156
[組成物の調製]
 本発明の組成物は、前記本発明のカルバゾール化合物及び、前記電子受容性化合物、及び/又は、前記重合体、を含む機能性材料と溶媒を混合し、一定時間加温して溶解または分散させることで調製することができる。機能性材料を溶媒内に均一に溶解または分散させるためには、加温する温度は通常、室温又は室温以上であり、80℃以上が好ましく、90℃以上がより好ましく、100℃以上、例えば100~115℃がさらに好ましい。また、加温時間は30分以上が好ましく45分以上がより好ましく、60分以上、例えば60~180分がさらに好ましい。
 加温後の組成物は、メンブレンフィルタやデプスフィルタ等を用いて濾過し、粗大な粒子を取り除いてから使用する。インクジェットヘッドのノズルから吐出して組成物を塗布することを考慮すると、フィルタの孔径は0.5μm以下が好ましく、0.2μm以下がより好ましく、0.1μm以下がさらに好ましい。
[組成物を用いた成膜方法]
 本発明の組成物を用いて膜を形成する場合、本発明の組成物は溶媒を含む溶液であることが好ましく、本発明の組成物を湿式成膜することが好ましい。
 湿式成膜法とは、基板上に溶媒を含む組成物を塗布し、溶媒を乾燥除去して膜を形成する方法をいう。塗布方法としては、特に限定はされないが、例えばスピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等が挙げられる。
 溶媒を乾燥除去する方法としては、通常、加熱乾燥を行う。加熱工程において使用する加熱手段の例としては、クリーンオーブン、ホットプレート、赤外線加熱が挙げられる。赤外線加熱としては、ハロゲンヒーターやセラミックコートしたハロゲンヒーター、セラミックヒーター等が使用できる。
 赤外線による加熱は基板あるいは膜に直接熱エネルギーを与えるため、オーブンやホットプレートを用いた加熱と比べて短時間での乾燥が可能となる。そのため加熱雰囲気のガス(水分や酸素)の影響や、微小なごみの影響を最小限に抑えることができ、生産性が向上し、好ましい。
 加熱温度は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上であり、通常300℃以下、好ましくは280℃以下、より好ましくは260℃以下である。
 加熱時間は、通常10秒以上、好ましくは60秒以上、より好ましくは90秒以上であり、通常120分以下、好ましくは60分以下、より好ましくは30分以下である。
 加熱乾燥の前に真空乾燥を行うことも好ましい。
 本発明の組成物を湿式成膜法にて成膜した有機層の膜厚は、通常5nm以上、好ましくは10nm以上、さらに好ましくは20nm以上である。膜厚は、通常1000nm以下、好ましくは500nm以下、さらに好ましくは300nm以下である。
[有機電界発光素子]
 本発明の組成物を用いた膜及び本発明の組成物を用いて形成された膜は、電荷輸送層として好適に用いることができる。この電荷輸送層は、特に好ましくは、有機電界発光素子の電荷輸送膜として用いられる。
 本発明の有機電界発光素子の構造の一例として、図1に有機電界発光素子8の構造例の模式図(断面)を示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表す。
[基板]
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
[陽極]
 陽極2は、発光層5側の層に正孔を注入する機能を担う。
 陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック及びポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。
 陽極2の厚みは、必要とされる透明性と材質等に応じて決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、可視光の透過率が80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、通常1000nm以下、好ましくは500nm以下である。透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極2は基板と同一の厚みでもよい。
 陽極2の表面に他の層を成膜する場合は、成膜前に、紫外線/オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極2上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくことが好ましい。
[正孔注入層]
 陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、形成されることが好ましい。正孔注入層3を形成する場合、通常、正孔注入層3は、陽極2上に形成される。
 本発明の組成物を用いて成膜された正孔注入層3は、本発明のカルバゾール化合物と前述の電子受容性化合物との架橋反応物を含む。
 正孔注入層3の形成方法は特に制限されず、真空蒸着法、湿式成膜法等が挙げられる。湿式成膜法による層形成の場合は、本発明の組成物を調製し、スピンコート法やディップコート法等の湿式成膜法により陽極2上に塗布し、乾燥して、正孔注入層3を形成させる。
 特に好ましくは、本発明のカルバゾール化合物と前述の電子受容性化合物とを含む組成物を用いること、及び本発明のカルバゾール化合物と前述の電子受容性化合物とを含む組成物を用いて形成された膜を用いることである。
 このようにして形成される正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。
 正孔注入層の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 これらの他、ジメチルスルホキシド等も用いることができる。
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。
 正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。
[正孔輸送層]
 正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を形成することが好ましい。正孔輸送層4を形成する場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。上述の正孔注入層3がある場合は、正孔輸送層4は、正孔注入層3と発光層5の間に形成される。
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、通常300nm以下、好ましくは100nm以下である。
 正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。多くの場合、正孔輸送層4は、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。
 このような正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前記の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。
 また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
 中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体としては、下記式(I)で表される繰り返し単位を含む重合体が好ましい。特に、下記式(I)で表される繰り返し単位からなる重合体が好ましい。この場合、繰り返し単位それぞれにおいて、Ar’又はAr’が異なっているものであってもよい。
Figure JPOXMLDOC01-appb-C000157
(式(I)中、Ar’及びAr’は、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。)
 ポリアリーレン誘導体としては、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。
 ポリアリーレン誘導体としては、下記式(II-1)及び/又は下記式(II-2)からなる繰り返し単位を有する重合体が好ましい。
Figure JPOXMLDOC01-appb-C000158
(式(II-1)中、R、R、R及びRは、それぞれ独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基又はカルボキシ基を表す。x11及びx12は、それぞれ独立に、0~3の整数を表す。x11又はx12が2以上の場合、一分子中に含まれる複数のRa又はRは同一であっても異なっていてもよい。隣接するR又はR同士で環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000159
(式(II-2)中、R及びRは、それぞれ独立に、上記式(II-1)におけるR、R、R又はRと同義である。x13及びx14は、それぞれ独立に、0~3の整数を表す。x13又はx14が2以上の場合、一分子中に含まれる複数のR及びRは同一であっても異なっていてもよい。隣接するR又はR同士で環を形成していてもよい。Lは、5員環又は6員環を構成する原子又は原子群を表す。)
 Lの具体例は、酸素原子、置換基を有していてもよいホウ素原子、置換基を有していてもよい窒素原子、置換基を有していてもよいケイ素原子、置換基を有していてもよいリン原子、置換基を有していてもよいイオウ原子、置換基を有していてもよい炭素原子又はこれらが結合してなる基である。
 ポリアリーレン誘導体としては、上記式(II-1)及び/又は上記式(II-2)からなる繰り返し単位に加えて、さらに下記式(III-3)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000160
(式(III-3)中、Ar~Arは、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。x15及びx16は、それぞれ独立に0又は1を表す。)
 上記式(III-1)~(III-3)の具体例及びポリアリーレン誘導体の具体例等は、特開2008-98619号公報に記載のものなどが挙げられる。
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。
 正孔輸送層形成用組成物は、上述の正孔輸送性化合物の他、溶剤を含有する。用いる溶剤は上記正孔注入層形成用組成物に用いたものと同様である。成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。
 真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。
 正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。
 正孔輸送層4は、架橋性化合物を架橋して形成される層であってもよい。架橋性化合物は、架橋性基を有する化合物であって、架橋することにより網目状高分子化合物を形成する。
 この架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブテン由来の基などが挙げられる。
 架橋性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。架橋性化合物は1種のみを有していてもよく、2種以上を任意の組み合わせ及び比率で有していてもよい。
 架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物としては、上記の例示したものが挙げられる。架橋性化合物としては、これら正孔輸送性化合物に対して、架橋性基が主鎖又は側鎖に結合しているものが挙げられる。特に架橋性基は、アルキレン基等の連結基を介して、主鎖に結合していることが好ましい。特に正孔輸送性化合物としては、架橋性基を有する繰り返し単位を含む重合体であることが好ましく、上記式(I)や式(II-1)~(III-3)に架橋性基が直接又は連結基を介して結合した繰り返し単位を有する重合体であることが好ましい。
 架橋性化合物を架橋して正孔輸送層4を形成するには、通常、架橋性化合物を溶剤に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して架橋させる。
 このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、通常300nm以下、好ましくは150nm以下である。
[発光層]
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極7から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層5は、陽極2と陰極7の間に形成される層であり、発光層は、陽極の上に正孔注入層がある場合は、正孔注入層と陰極の間に形成される。陽極の上に正孔輸送層がある場合は、発光層は正孔輸送層と陰極の間に形成される。
 本発明における有機電界発光素子は、発光層として好適な発光層形成材料を含むことが好ましい。
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましい。一方、薄い方が低駆動電圧としやすい点で好ましい。このため、発光層5の膜厚は、3nm以上であるのが好ましく、5nm以上であるのがより好ましく、通常200nm以下であるのが好ましく、100nm以下であるのがより好ましい。
 発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含み、好ましくは、1つまたは複数のホスト材料を含む。
[好適な発光層形成材料]
 本発明の発光層は、発光材料と電荷輸送材料を含む。発光材料は燐光発光材料でもよいし、蛍光発光材料でもよい。好ましくは、赤発光材料と緑発光材料は燐光発光材料であり、青発光材料は蛍光発光材料である。
<燐光発光材料>
 燐光発光材料とは、励起三重項状態から発光を示す材料をいう。例えば、Ir、Pt、Euなどを有する金属錯体化合物がその代表例であり、材料の構造として、金属錯体を含むものが好ましい。
 金属錯体の中でも、三重項状態を経由して発光する燐光発光性有機金属錯体として、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を中心金属として含むウェルナー型錯体又は有機金属錯体化合物が挙げられる。このような燐光発光材料としては、例えば、国際公開第2014/024889号、国際公開第2015-087961号、国際公開第2016/194784、特開2014-074000号に記載の燐光発光材料が挙げられる。好ましくは、下記式(201)で表される化合物、又は下記式(205)で表される化合物が好ましく、より好ましくは下記式(201)で表される化合物である。
Figure JPOXMLDOC01-appb-C000161
 式(201)において、環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。
 環A2は置換基を有していてもよい芳香族複素環構造を表す。
 R101、R102は各々独立に式(202)で表される構造である。
 *は環A1又は環A2との結合位置を表す。
 R101、R102は同じであっても異なっていてもよく、R101、R102がそれぞれ複数存在する場合、それらは同じであっても異なっていてもよい。
 Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。
 環A1に結合する置換基同士、環A2に結合する置換基同士、又は環A1に結合する置換基と環A2に結合する置換基同士は、互いに結合して環を形成してもよい。
 B201-L200-B202は、アニオン性の2座配位子を表す。B201及びB202は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。L200は、単結合、又は、B201及びB202とともに2座配位子を構成する原子団を表す。B201-L200-B202が複数存在する場合、それらは同一でも異なっていてもよい。
 式(201)、(202)において、
 i1、i2はそれぞれ独立に、0以上12以下の整数を表す。
 i3は、Ar202に置換可能な数を上限とする0以上の整数を表す。
 i4は、Ar201に置換可能な数を上限とする0以上の整数を表す。
 k1及びk2はそれぞれ独立に、環A1、環A2に置換可能な数を上限とする0以上の整数を表す。
 zは1~3の整数を表す。
(置換基)
 特に断りのない場合、置換基としては、次の置換基群Sから選ばれる基が好ましい。
<置換基群S>
・アルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~12のアルキル基、さらに好ましくは炭素数1~8のアルキル基、特に好ましくは炭素数1~6のアルキル基。
・アルコキシ基、好ましくは炭素数1~20のアルコキシ基、より好ましくは炭素数1~12のアルコキシ基、さらに好ましくは炭素数1~6のアルコキシ基。
・アリールオキシ基、好ましくは炭素数6~20のアリールオキシ基、より好ましくは炭素数6~14のアリールオキシ基、さらに好ましくは炭素数6~12のアリールオキシ基、特に好ましくは炭素数6のアリールオキシ基。
・ヘテロアリールオキシ基、好ましくは炭素数3~20のヘテロアリールオキシ基、より好ましくは炭素数3~12のヘテロアリールオキシ基。
・アルキルアミノ基、好ましくは炭素数1~20のアルキルアミノ基、より好ましくは炭素数1~12のアルキルアミノ基。
・アリールアミノ基、好ましくは炭素数6~36のアリールアミノ基、より好ましくは炭素数6~24のアリールアミノ基。
・アラルキル基、好ましくは炭素数7~40のアラルキル基、より好ましくは炭素数7~18のアラルキル基、さらに好ましくは炭素数7~12のアラルキル基。
・ヘテロアラルキル基、好ましくは炭素数7~40のヘテロアラルキル基、より好ましくは炭素数7~18のヘテロアラルキル基、
・アルケニル基、好ましくは炭素数2~20のアルケニル基、より好ましくは炭素数2~12のアルケニル基、さらに好ましくは炭素数2~8のアルケニル基、特に好ましくは炭素数2~6のアルケニル基。
・アルキニル基、好ましくは炭素数2~20のアルキニル基、より好ましくは炭素数2~12のアルキニル基。
・アリール基、好ましくは炭素数6~30のアリール基、より好ましくは炭素数6~24のアリール基、さらに好ましくは炭素数6~18のアリール基、特に好ましくは炭素数6~14のアリール基。
・ヘテロアリール基、好ましくは炭素数3~30のヘテロアリール基、より好ましくは炭素数3~24のヘテロアリール基、さらに好ましくは炭素数3~18のヘテロアリール基、特に好ましくは炭素数3~14のヘテロアリール基。
・アルキルシリル基、好ましくはアルキル基の炭素数が1~20であるアルキルシリル基、より好ましくはアルキル基の炭素数が1~12であるアルキルシリル基。
・アリールシリル基、好ましくはアリール基の炭素数が6~20であるアリールシリル基、より好ましくはアリール基の炭素数が6~14であるアリールシリル基。
・アルキルカルボニル基、好ましくは炭素数2~20のアルキルカルボニル基。
・アリールカルボニル基、好ましくは炭素数7~20のアリールカルボニル基。
 以上の基は1つ以上の水素原子がフッ素原子で置き換えられているか、若しくは1つ以上の水素原子が重水素原子で置き換えらえられていてもよい。
 特に断りのない限り、アリールは芳香族炭化水素環であり、ヘテロアリールは芳香族複素環である。
・水素原子、重水素原子、フッ素原子、シアノ基、又は、-SF
 上記置換基群Sのうち、好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基、及びこれらの基の1つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、
 より好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、及びこれらの基の1つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、
 さらに好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基であり、
 特に好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、
 最も好ましくはアルキル基、アリールアミノ基、アラルキル基、アリール基、ヘテロアリール基である。
 これら置換基群Sにはさらに置換基群Sから選ばれる置換基を置換基として有していてもよい。有していてもよい置換基の好ましい基、より好ましい基、さらに好ましい基、特に好ましい基、最も好ましい基は置換基群Sの中の好ましい基と同様である。
(環A1)
 環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。
 芳香族炭化水素環としては、好ましくは炭素数6~30の芳香族炭化水素環である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましい。
 芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環が好ましい。さらに好ましくは、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環である。
 環A1としてより好ましくは、ベンゼン環、ナフタレン環、フルオレン環であり、特に好ましくはベンゼン環又はフルオレン環であり、最も好ましくはベンゼン環である。
(環A2)
 環A2は置換基を有していてもよい芳香族複素環構造を表す。
 芳香族複素環としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環である。具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環が挙げられ、好ましくは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、より好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、最も好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、キノキサリン環、キナゾリン環である。
(環A1と環A2との組み合わせ)
 環A1と環A2の好ましい組み合せとしては、(環A1-環A2)と表記すると、(ベンゼン環-ピリジン環)、(ベンゼン環-キノリン環)、(ベンゼン環-キノキサリン環)、(ベンゼン環-キナゾリン環)、(ベンゼン環-ベンゾチアゾール環)、(ベンゼン環-イミダゾール環)、(ベンゼン環-ピロール環)、(ベンゼン環-ジアゾール環)、及び(ベンゼン環-チオフェン環)である。
(環A1、環A2の置換基)
 環A1、環A2が有していてもよい置換基は任意に選択できるが、好ましくは前記置換基群Sから選ばれる1種又は複数種の置換基である。
(Ar201、Ar202、Ar203
 Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族炭化水素環構造である場合、該芳香族炭化水素環構造としては、好ましくは炭素数6~30の芳香族炭化水素環である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましく、より好ましくはベンゼン環、ナフタレン環、フルオレン環が好ましく、最も好ましくはベンゼン環である。
 Ar201、Ar202のいずれかが置換基を有していてもよいベンゼン環である場合、少なくとも1つのベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましく、少なくとも1つのベンゼン環がメタ位で隣接する構造と結合していることがより好ましい。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいフルオレン環である場合、フルオレン環の9位及び9’位は、置換基を有するか又は隣接する構造と結合していることが好ましい。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族複素環構造である場合、芳香族複素環構造としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環である。具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環が挙げられ、好ましくは、ピリジン環、ピリミジン環、トリアジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環である。
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいカルバゾール環である場合、カルバゾール環のN位は、置換基を有するか又は隣接する構造と結合していることが好ましい。
 Ar202が置換基を有していてもよい脂肪族炭化水素構造である場合、直鎖、分岐鎖、又は環状構造を有する脂肪族炭化水素構造であり、好ましくは炭素数が1以上24以下であり、さらに好ましくは炭素数が1以上12以下であり、より好ましくは炭素数が1以上8以下である。
(i1、i2、i3、i4、k1、k2)
 i1、i2はそれぞれ独立に、0~12の整数を表し、好ましくは1~12、より好ましくは1~8、さらに好ましくは1~6である。この範囲であることにより、溶解性向上や電荷輸送性向上が見込まれる。
 i3は好ましくは0~5の整数を表し、より好ましくは0~2、さらに好ましくは0又は1である。
 i4は好ましくは0~2の整数を表し、より好ましくは0又は1である。
 k1、k2はそれぞれ独立に、好ましくは0~3の整数を表し、より好ましくは1~3であり、さらに好ましくは1又は2であり、特に好ましくは1である。
(Ar201、Ar202、Ar203の好ましい置換基)
 Ar201、Ar202、Ar203が有していてもよい置換基は任意に選択できるが、好ましくは前記置換基群Sから選ばれる1種又は複数種の置換基であり、好ましい基も前記置換基群Sの通りであるが、より好ましくは無置換(水素原子)、アルキル基、アリール基であり、特に好ましくは無置換(水素原子)、アルキル基であり、最も好ましくは無置換(水素原子)またはターシャリーブチル基である。ターシャリーブチル基はAr203が存在する場合はAr203に、Ar203が存在しない場合はAr202に、Ar202とAr203が存在しない場合はAr201に置換していることが好ましい。
(式(201)で表される化合物の好ましい態様)
 前記式(201)で表される化合物は、下記(I)~(IV)のうちのいずれか1以上を満たす化合物であることが好ましい。
(I)フェニレン連結式
 式(202)で表される構造はベンゼン環が連結した基を有する構造、すなわち、ベンゼン環構造、i1が1~6で、少なくとも1つの前記ベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましい。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(II)(フェニレン)-アラルキル(アルキル)
 環A1又は環A2に、アルキル基若しくはアラルキル基が結合した芳香族炭化水素基若しくは芳香族複素環基を有する構造、すなわち、Ar201が芳香族炭化水素構造又は芳香族複素環構造、i1が1~6、Ar202が脂肪族炭化水素構造、i2が1~12、好ましくは3~8、Ar203がベンゼン環構造、i3が0又は1である構造、好ましくは、Ar201は前記芳香族炭化水素構造であり、さらに好ましくはベンゼン環が1~5連結した構造であり、より好ましくはベンゼン環1つである。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(III)デンドロン
 環A1又は環A2に、デンドロンが結合した構造、例えば、Ar201、Ar202がベンゼン環構造、Ar203がビフェニル又はターフェニル構造、i1、i2が1~6、i3が2、jが2である。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(IV)B201-L200-B202
 B201-L200-B202で表される構造は下記式(203)又は下記式(204)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000162
 式(203)中、R211、R212、R213はそれぞれ独立に置換基を表す。
 式(204)中、環B3は、置換基を有していてもよい、窒素原子を含む芳香族複素環構造を表す。環B3は好ましくはピリジン環である。
(好ましい燐光発光材料)
 前記式(201)で表される燐光発光材料としては特に限定はされないが、好ましいものとして以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
 また、下記式(205)で表される燐光発光材料も好ましい。
Figure JPOXMLDOC01-appb-C000165
[式(205)中、Mは金属を表し、Tは炭素原子又は窒素原子を表す。R92~R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94及びR95は無い。]
 式(205)中、Mの具体例としては、周期表第7~11族から選ばれる金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。
 式(205)において、R92及びR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基又は芳香族複素環基を表す。
 Tが炭素原子の場合、R94及びR95は、それぞれ独立に、R92及びR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は該Tに直接結合するR94又はR95は存在しない。R92~R95は、更に置換基を有していてもよい。置換基としては、前記の置換基とすることができる。更に、R92~R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。
(分子量)
 燐光発光材料の分子量は、好ましくは5000以下、更に好ましくは4000以下、特に好ましくは3000以下である。また、燐光発光材料の分子量は、好ましくは800以上、より好ましくは1000以上、更に好ましくは1200以上である。この分子量範囲であることによって、燐光発光材料同士が凝集せず電荷輸送材料と均一に混合し、発光効率の高い発光層を得ることができると考えられる。
 燐光発光材料の分子量は、Tgや融点、分解温度等が高く、燐光発光材料及び形成された発光層の耐熱性に優れる点、及び、ガス発生、再結晶化及び分子のマイグレーション等に起因する膜質の低下や材料の熱分解に伴う不純物濃度の上昇等が起こり難い点では大きいことが好ましい。一方、燐光発光材料の分子量は、有機化合物の精製が容易である点では小さいことが好ましい。
<電荷輸送材料>
 発光層に用いる電荷輸送材料は、電荷輸送性に優れる骨格を有する材料であり、電子輸送性材料、正孔輸送性材料及び電子と正孔の両方を輸送可能な両極性材料から選ばれることが好ましい。
 電荷輸送性に優れる骨格としては、具体的には、芳香族構造、芳香族アミン構造、トリアリールアミン構造、ジベンゾフラン構造、ナフタレン構造、フェナントレン構造、フタロシアニン構造、ポルフィリン構造、チオフェン構造、ベンジルフェニル構造、フルオレン構造、キナクリドン構造、トリフェニレン構造、カルバゾール構造、ピレン構造、アントラセン構造、フェナントロリン構造、キノリン構造、ピリジン構造、ピリミジン構造、トリアジン構造、オキサジアゾール構造又はイミダゾール構造等が挙げられる。
 電子輸送性材料としては、電子輸送性に優れ構造が比較的安定な材料である観点から、ピリジン構造、ピリミジン構造、トリアジン構造を有する化合物がより好ましく、ピリミジン構造、トリアジン構造を有する化合物であることがさらに好ましい。
 正孔輸送性材料は、正孔輸送性に優れた構造を有する化合物であり、前記電荷輸送性に優れた中心骨格の中でも、カルバゾール構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造又はピレン構造が正孔輸送性に優れた構造として好ましく、カルバゾール構造、ジベンゾフラン構造又はトリアリールアミン構造がさらに好ましい。
 発光層に用いる電荷輸送材料は、3環以上の縮合環構造を有することが好ましく、3環以上の縮合環構造を2以上有する化合物又は5環以上の縮合環を少なくとも1つ有する化合物であることがさらに好ましい。これらの化合物であることで、分子の剛直性が増し、熱に応答する分子運動の程度を抑制する効果が得られ易くなる。さらに、3環以上の縮合環及び5環以上の縮合環は、芳香族炭化水素環又は芳香族複素環を有することが電荷輸送性及び材料の耐久性の点で好ましい。
 3環以上の縮合環構造としては、具体的には、アントラセン構造、フェナントレン構造、ピレン構造、クリセン構造、ナフタセン構造、トリフェニレン構造、フルオレン構造、ベンゾフルオレン構造、インデノフルオレン構造、インドロフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造、ジベンゾチオフェン構造等が挙げられる。電荷輸送性ならびに溶解性の観点から、フェナントレン構造、フルオレン構造、インデノフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造及びジベンゾチオフェン構造からなる群より選択される少なくとも1つが好ましく、電荷に対する耐久性の観点からカルバゾール構造又はインドロカルバゾール構造がさらに好ましい。
 本発明においては、有機電界発光素子の電荷に対する耐久性の観点から、発光層の電荷輸送材料の内、少なくとも1つはピリミジン骨格又はトリアジン骨格を有する材料であることが好ましい。
 発光層の電荷輸送材料は、可撓性に優れる観点では高分子材料であることが好ましい。可撓性に優れる材料を用いて形成された発光層は、フレキシブル基板上に形成された有機電界発光素子の発光層として好ましい。発光層に含まれる電荷輸送材料が高分子材料である場合、分子量は、好ましくは5,000以上1,000,000以下、より好ましくは10,000以上、500,000以下、さらに好ましくは10,000以上100,000以下である。
 また、発光層の電荷輸送材料は、合成及び精製のしやすさ、電子輸送性能及び正孔輸送性能の設計のしやすさ、溶媒に溶解した時の粘度調整のしやすさの観点からは、低分子材料であることが好ましい。発光層に含まれる電荷輸送材料が低分子材料である場合、分子量は、5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下であり、好ましくは300以上、より好ましくは350以上、さらに好ましくは400以上である。
<蛍光発光材料>
 蛍光発光材料としては特に限定されないが、下記式(211)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000166
 上記式(211)において、Ar241は置換基を有していてもよい芳香族炭化水素縮合環構造を表す。Ar242、Ar243は各々独立に置換基を有していてもよいアルキル基、芳香族炭化水素基、芳香族複素基又はこれらが結合した基を表す。n41は1~4の整数である。
 Ar241は好ましくは炭素数10~30の芳香族炭化水素縮合環構造を表し、具体的な環構造としては、ナフタレン、アセナフテン、フルオレン、アントラセン、フェナトレン、フルオランテン、ピレン、テトラセン、クリセン、ペリレン等が挙げられる。
 Ar241はより好ましくは炭素数12~20の芳香族炭化水素縮合環構造であり、具体的な環構造としては、アセナフテン、フルオレン、アントラセン、フェナトレン、フルオランテン、ピレン、テトラセン、クリセン、ペリレンが挙げられる。
 Ar241はさらに好ましくは炭素数16~18の芳香族炭化水素縮合環構造であり、具体的な環構造としては、フルオランテン、ピレン、クリセンが挙げられる。
 n41は1~4であり、好ましくは1~3、さらに好ましくは1~2、最も好ましくは2である。
 Ar242、Ar243のアルキル基としては、炭素数1~12のアルキル基が好ましく、より好ましくは炭素数1~6のアルキル基である。
 Ar242、Ar243の芳香族炭化水素基としては、炭素数6~30の芳香族炭化水素基が好ましく、より好ましくは炭素数6~24の芳香族炭化水素基であり、最も好ましくはフェニル基、ナフチル基である。
 Ar242、Ar243の芳香族複素基としては、炭素数3~30の芳香族複素基が好ましく、より好ましくは炭素数5~24の芳香族炭化水素基であり、具体的にはカルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基が好ましく、ジベンゾフラニル基がより好ましい。
 Ar241、Ar242、Ar243が有していてもよい置換基は、前記置換基群Sから選ばれる基が好ましく、より好ましくは置換基群Sに含まれる、炭化水素基であり、さらに好ましくは置換基群Sとして好ましい基の中の炭化水素基である。
 上記蛍光発光材料と共に用いる電荷輸送材料としては特に限定されないが、下記式(212)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000167
 上記式(212)において、R251、R252はそれぞれ独立に式(213)で表される構造である。R253は置換基を表し、R253が複数ある場合、同一であっても異なっていてもよい。n43は0~8の整数である。
Figure JPOXMLDOC01-appb-C000168
 上記式(213)において、*は式(212)のアントラセン環との結合手を表す。Ar254、Ar255はそれぞれ独立に、置換基を有していてもよい芳香族炭化水素構造、又は置換基を有していてもよい複素芳香環構造を表す。Ar254、Ar255はそれぞれ複数存在する場合、同一であっても異なっていてもよい。n44は1~5の整数、n45は0~5の整数である。
 Ar254は好ましくは、置換基を有していてもよい、炭素数6~30の単環又は縮合環である芳香族炭化水素構造であり、より好ましくは、置換基を有していてもよい、炭素数6~12の単環又は縮合環である芳香族炭化水素構造である。
 Ar255は好ましくは、置換基を有していてもよい、炭素数6~30の単環もしくは縮合環である芳香族炭化水素構造、又は置換基を有していてもよい炭素数6~30の縮合環である芳香族複素環構造である。Ar255はより好ましくは、置換基を有していてもよい、炭素数6~12の単環もしくは縮合環である芳香族炭化水素構造、又は置換基を有していてもよい炭素数12の縮合環である芳香族複素環構造である。
 n44は好ましくは1~3の整数であり、より好ましくは1又は2である。
 n45は好ましくは0~3の整数であり、より好ましくは0~2である。
 置換基であるR253、Ar254及びAr255が有していてもよい置換基は、前記置換基群Sから選ばれる基が好ましい。より好ましくは置換基群Sに含まれる炭化水素基であり、さらに好ましくは置換基群Sとして好ましい基の中の炭化水素基である。
 蛍光発光材料及び電荷輸送材料の分子量は5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下である。また、好ましくは300以上であり、より好ましくは350以上、さらに好ましくは400以上である。
[正孔阻止層]
 発光層5と後述の電子注入層との間に、正孔阻止層を設けてもよい。正孔阻止層は、発光層5の上に、発光層5の陰極7側の界面に接するように積層される層である。
 この正孔阻止層は、陽極2から移動してくる正孔を陰極7に到達するのを阻止する役割と、陰極7から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T)が高いことが挙げられる。
 このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10-79297号公報)等が挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。
 正孔阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。
 正孔阻止層の膜厚は、本発明の効果を著しく損なわない限り任意である。正孔阻止層の膜厚は、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。
[電子輸送層]
 電子輸送層6は素子の電流効率をさらに向上させることを目的として、発光層5と陰極7との間に設けられる。
 電子輸送層6は、電界を与えられた電極間において陰極7から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層6に用いられる電子輸送性化合物としては、陰極7からの電子注入効率が高く、かつ、高い電子移動度を有し、注入された電子を効率よく輸送することができる化合物であることが必要である。
 電子輸送層に用いる電子輸送性化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-tert-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛等が挙げられる。
 電子輸送層6の膜厚は、通常1nm以上、好ましくは5nm以上で、通常300nm以下、好ましくは100nm以下である。
 電子輸送層6は、前記と同様にして湿式成膜法、或いは真空蒸着法により正孔阻止層上に積層することにより形成される。通常は、真空蒸着法が用いられる。
 本発明においては、前記のように、好適な発光層形成材料を含む発光層上に、湿式成膜法にて電子輸送層を形成することが出来る。
[電子注入層]
 電子注入層は、陰極7から注入された電子を効率よく、電子輸送層6又は発光層5へ注入するために設けられてもよい。
 電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウム等のアルカリ土類金属等が用いられる。電子注入層の膜厚は通常0.1nm以上、5nm以下が好ましい。
 更に、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報等に記載)ことも、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。
 電子注入層の膜厚は、通常5nm以上、好ましくは10nm以上で、通常200nm以下、好ましくは100nm以下の範囲である。
 電子注入層は、湿式成膜法或いは真空蒸着法により、発光層5又はその上の正孔阻止層や電子輸送層6上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層の場合と同様である。
 正孔阻止層、電子輸送層、電子注入層を電子輸送材料とリチウム錯体共ドープの操作で一層にする場合もある。
[陰極]
 陰極7は、発光層5側の層(電子注入層又は発光層など)に電子を注入する役割を果たす。
 陰極7の材料としては、前記の陽極2に使用される材料を用いることが可能である。効率良く電子注入を行なう上では、陰極7の材料としては、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金等が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極等が挙げられる。
 有機電界発光素子の安定性の点では、陰極の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極を保護することが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
 陰極の膜厚は通常、陽極と同様である。
[その他の層]
 本発明の有機電界発光素子は、本発明の効果を著しく損なわなければ、更に他の層を有していてもよい。すなわち、陽極と陰極との間に、上述の他の任意の層を有していてもよい。
[その他の素子構成]
 本発明の有機電界発光素子は、上述の説明とは逆の構造、即ち、例えば、基板上に陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に積層することも可能である。
 本発明の有機電界発光素子を有機電界発光装置に適用する場合は、単一の有機電界発光素子として用いても、複数の有機電界発光素子がアレイ状に配置された構成にして用いても、陽極と陰極がX-Yマトリックス状に配置された構成にして用いてもよい。
[表示装置]
 本発明の表示装置(有機電界発光素子表示装置)は、本発明の有機電界発光素子を備える。本発明の表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。
[照明装置]
 本発明の照明装置(有機電界発光素子照明装置)は、本発明の有機電界発光素子を備える。本発明の照明装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 以下、実施例を示して本発明について更に具体的に説明する。本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
<中間体の合成>
[化合物1の合成]
Figure JPOXMLDOC01-appb-C000169
 窒素気流下、1-フルオロ-4-ヨードベンゼン(25.0g、112.6mmol)、3-ブロモカルバゾール(6.93g、28.15mmol)、炭酸セシウム(36.7g、112.6mmol)、脱水N,N-ジメチルホルムアミド(100ml)をフラスコに仕込み、系内を十分に窒素置換して150℃まで加温した。この温度で12時間攪拌した。室温で反応液に水を加え、15分間攪拌後、100mlの塩化メチレンで抽出を行った。有機層を無水硫酸マグネシウムで乾燥した。粗精製品をカラムクロマトグラフィー(展開液:ヘキサン:塩化メチレン=700:300)により精製し、化合物1(6.4g、収率50.7%)を得た。
[化合物2の合成]
Figure JPOXMLDOC01-appb-C000170
 次いで、化合物1(6.4g、14.28mmol)、9,9-ジヘキシルフルオレン-2,7-ジボロン酸(3.0g、7.14mmol)、リン酸カリウム(2M水溶液、20ml)、及びトルエン(40ml)、エタノール(20ml)をフラスコに仕込み、系内を十分に窒素置換して60℃まで加温した。ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.050g、0.071mmol)を加え、60℃で3時間攪拌した。反応液に水を加え、トルエンで抽出を行った。有機層を無水硫酸マグネシウムで乾燥して活性白土より粗精製した。粗精製品をカラムクロマトグラフィー(展開液:ヘキサン:塩化メチレン=750:250)により精製し、化合物2(5.5g、収率39.5%)を得た。
[化合物3の合成]
Figure JPOXMLDOC01-appb-C000171
 窒素気流下、200mlのフラスコに60mlのジメチルスルホンキシド、化合物2(5.5g、5.64mmol)、ビス(ピナコラト)ジボロン(4.3g、16.92mmol)、酢酸カリウム(3.3g、33.84mmol)を入れ、60℃で30分間攪拌した。その後、1,1’-ビス(ジフェニルホスフィノ)フェロセン-パラジウム(II)ジクロリド-ジクロロメタン〔PdCl(dppf)CHCl〕(0.92g、1.13mmol)を加え、95℃で4時間反応した。
 室温で純水を滴下して析出物を減圧濾過し、ろ取物をトルエンで溶解し、無水硫酸マグネシウムで乾燥して活性白土により粗精製した。減圧濾過し、ろ液を濃縮してから塩化メチレンに溶解してメタノールに再沈した。析出物を減圧濾過して化合物3(4.4g、収率73.0%)を得た。
[化合物4の合成]
Figure JPOXMLDOC01-appb-C000172
 窒素気流下、200mlのフラスコに100mlのジメチルスルホンキシド、4-ブロモ-1,2-ジヒドロシクロブタ[α]ナフタレン(15.0g、64.35mmol)、ビス(ピナコラト)ジボロン(19.6g、77.22mmol)、酢酸カリウム(18.9g、193.05mmol)を入れ、60℃で30分間攪拌した。その後、1,1’-ビス(ジフェニルホスフィノ)フェロセン-パラジウム(II)ジクロリド-ジクロロメタン〔PdCl(dppf)CHCl〕(2.6g、3.22mmol)を加え、95℃で5時間反応した。
 室温で純水を滴下して析出物を減圧濾過し、ろ取物をトルエンで溶解し、無水硫酸マグネシウムで乾燥して活性白土により粗精製した。減圧濾過し、ろ液を濃縮してからアセトンニトリルで再結晶した。減圧濾過し、ろ取物を乾燥して化合物4(10.3g、収率57.0%)を得た。
[化合物5の合成]
Figure JPOXMLDOC01-appb-C000173
 次いで、1-ブロモ-3-ヨードベンゼン(7.5g、26.51mmol)、化合物4(6.19g、22.09mmol)、リン酸カリウム(2M水溶液、30ml)、及びトルエン(60ml)、エタノール(30ml)をフラスコに仕込み、系内を十分に窒素置換して60℃まで加温した。ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.078g、0.11mmol)を加え、60℃で3時間攪拌した。反応液に水を加え、トルエンで抽出を行った。有機層を無水硫酸マグネシウムで乾燥して活性白土より粗精製した。粗精製品をカラムクロマトグラフィー(展開液:ヘキサン:塩化メチレン=980:20)により精製し、化合物5(4.4g、収率64.4%)を得た。
[化合物7の合成]
Figure JPOXMLDOC01-appb-C000174
 1-ブロモ-3-ヨードベンゼン(17.4g、61.5mmol)、市販品の化合物6(10.0g、41.0mmol)、リン酸カリウム(2M水溶液、62ml)、及びトルエン(120ml)、エタノール(60ml)をフラスコに仕込み、系内を十分に窒素置換して60℃まで加温した。ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(0.147g、0.21mmol)を加え、60℃で4.5時間攪拌した。反応液に水を加え、トルエンで抽出を行った。有機層を無水硫酸マグネシウムで乾燥して活性白土より粗精製した。粗精製品をカラムクロマトグラフィー(展開液:ヘキサン)により精製し、化合物7(9.0g、収率80.4%)を得た。
[化合物8の合成]
Figure JPOXMLDOC01-appb-C000175
 窒素気流下、200mlのフラスコに100mlのジメチルスルホンキシド、化合物7(9.0g、32.9mmol)、ビス(ピナコラト)ジボロン(12.5g、49.4mmol)、酢酸カリウム(9.7g、98.7mmol)を入れ、60℃で30分間攪拌した。その後、1,1’-ビス(ジフェニルホスフィノ)フェロセン-パラジウム(II)ジクロリド-ジクロロメタン〔PdCl(dppf)CHCl〕(1.3g、1.6mmol)を加え、95℃で5時間反応した。
室温で純水を滴下して析出物を減圧濾過し、ろ取物をトルエンで溶解し、無水硫酸マグネシウムで乾燥して活性白土により粗精製した。乾燥して化合物8(8.9g、収率90.5%)を得た。
[HI-52の合成]
Figure JPOXMLDOC01-appb-C000176
 化合物2(2.8g、2.87mmol)、化合物8(2.8g、8.61mmol)、リン酸カリウム(2M水溶液、9ml)、及びトルエン(18ml)、エタノール(90ml)をフラスコに仕込み、系内を十分に窒素置換して60℃まで加温した。テトラキス(トリフェニルホスフィン)パラジウム(0)(0.196g、0.17mmol)を加え、95℃で4.5時間攪拌した。反応液に水を加え、トルエンで抽出を行った。有機層を無水硫酸マグネシウムで乾燥して活性白土より粗精製した。粗精製品をカラムクロマトグラフィー(展開液:ヘキサン:塩化メチレン=750:250)により精製し、目的物のHI-52(2.5g、収率72.0%)を得た。
[HI-53の合成]
Figure JPOXMLDOC01-appb-C000177
 化合物3(1.47g、1.38mmol)、化合物5(1.3g、4.14mmol)、炭酸ナトリウム(2M水溶液、4.2ml)、及びトルエン(20ml)、エタノール(10ml)をフラスコに仕込み、系内を十分に窒素置換して60℃まで加温した。テトラキス(トリフェニルホスフィン)パラジウム(0)(0.064g、0.055mmol)を加え、85℃で7時間攪拌した。反応液に水を加え、トルエンで抽出を行った。有機層を無水硫酸マグネシウムで乾燥して活性白土より粗精製した。粗精製品をカラムクロマトグラフィー(展開液:ヘキサン:塩化メチレン=750:250)により精製し、目的物のHI-53(0.82g、収率46.8%)を得た。
<化合物Iの合成>
Figure JPOXMLDOC01-appb-C000178
 500mLナスフラスコに、ビカルバゾール(7.39g)、3-ブロモフルオロベンゼン(24.9g)、炭酸セシウム(101g)、N,N-ジメチルホルムアミド(100mL)を入れ、窒素雰囲気下、150℃で16時間撹拌した。室温まで冷却後、反応溶液を水(800mL)に注ぎ、吸引ろ過した。ろ取物をジクロロメタン(500mL)と酢酸エチル(100mL)とエタノール(50mL)で洗浄し、乾燥させることで、白色固体として中間体1を10.1g得た。
Figure JPOXMLDOC01-appb-C000179
 窒素雰囲気下、200mLフラスコに、中間体1(2.01g)、中間体2(1.52g)、トルエン(55mL)、エタノール(30mL)および2mol/Lりん酸三カリウム水溶液(8mL)を入れ、100℃で3.5時間攪拌した。室温まで冷却後、水(100mL)および酢酸エチル(100mL)を加えて分液洗浄した。油相を回収し、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(中性シリカゲル、ヘキサン/ジクロロメタン=4/1)で精製したところ、白色固体として化合物Iを1.46g得た。
[実施形態例]
 基板としては、ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を例えば50nmの厚さに堆積したものを用いることが出来る。
 正孔注入層形成用組成物として、式(P-1)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と式(M-1)の構造を有する正孔輸送性化合物1.3重量%、電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製することが出来る。
 この溶液を、大気中で上記基板上にスピンコートし、大気中ホットプレートで230℃、30分乾燥させ、例えば膜厚50nmの正孔注入層を形成することが出来る。
Figure JPOXMLDOC01-appb-C000180
 次に、正孔注入層を塗布成膜した基板上に、正孔輸送層、発光層、電子輸送層、陰極を形成し、最後に封止して有機電界発光素子を作製することが出来る。
 このようにして作成された素子は、良好な素子特性を示すことが見込まれる。
〔有機電界発光素子実施例〕
[実施例1]
 ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を50nmの厚さに堆積したもの(ジオマテック社製、スパッタ成膜品)を通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。このようにITOをパターン形成した基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
 正孔注入層形成用組成物として、下記式(P-2)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と下記式(M-2)の構造を有する正孔輸送性カルバゾール化合物(前記HI-53)1.3重量%、下記電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製した。
Figure JPOXMLDOC01-appb-C000181
 この溶液を、大気中で上記基板上にスピンコートし、大気中ホットプレートで230℃、30分乾燥させ、膜厚50nmの均一な薄膜を形成し、正孔注入層とした。
 次に、下記の構造式(HT-1)を有する電荷輸送性高分子化合物100重量部を、1,3,5-トリメチルベンゼンに溶解させ、2.0重量%の溶液を調製した。
Figure JPOXMLDOC01-appb-C000182
 この溶液を、上記正孔注入層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで230℃、30分間乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔輸送層とした。
 次に、下記構造式(BH-1)を有するホスト化合物と下記構造式(BD-1)を有するドーパント化合物を100:10となるような重量部でシクロヘキシルベンゼンに溶解させ、4.2重量%の溶液を調製した。
Figure JPOXMLDOC01-appb-C000183
 上記正孔輸送層までを塗布成膜した基板上に、窒素グローブボックス中でスピンコートし40nmの均一な薄膜を形成し、発光層とした。窒素グローブボックス中のホットプレートで120℃、20分間乾燥させて発光層とした。
 発光層までを成膜した基板を真空蒸着装置に設置し、装置内を2×10-4Pa以下になるまで排気した。
 次に、下記の構造式(ET-1)および8-ヒドロキシキノリノラトリチウムを2:3の膜厚比で、発光層上に真空蒸着法にて共蒸着し、膜厚30nmの電子輸送層を形成した。
Figure JPOXMLDOC01-appb-C000184
 続いて、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように基板に密着させて、真空蒸着法によりアルミニウムをモリブデンボートにより加熱して、膜厚80nmのアルミニウム層を形成して陰極を形成した。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
 窒素で充填された空間内で、中空構造を有するガラス基板の内側に、水分および酸素吸着剤を貼り合わせ、ガラス基板の有機電界発光素子を有する面と、中空ガラスの水分・酸素吸着剤を有する面を対向させ、有機電界発光素子部の外周を囲うように紫外線硬化樹脂を塗布して、互いの面を接着した。さらに、紫外線硬化樹脂部に紫外線を照射し、有機電界発光素子部を外部空間と隔離する構造を形成した。これにより、直接有機電界発光素子面にはどのような構造物も触れない形で、水分や酸素から隔離することができ、水分や酸素の影響を除外して有機電界発光素子の性能を評価することができる。
[実施例2]
 正孔注入層形成用組成物として、前記式(M-2)の構造を有する正孔輸送性カルバゾール化合物2.6重量%と前記電子受容性化合物(HI-1)0.4重量%のみを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
[実施例3]
 正孔注入層形成用組成物として、下記式(P-3)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と前記式(M-2)の構造を有する正孔輸送性カルバゾール化合物1.3重量%、前記電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000185
[実施例4]
 正孔注入層形成用組成物として、下記式(P-4)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と前記式(M-2)の構造を有する正孔輸送性カルバゾール化合物1.3重量%、前記電子受容性化合物(HI-1)0.4重量%とを、安息香酸ブチルに溶解させた組成物を調製して用い、スピンコート後に真空乾燥を実施したほかは、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000186
[比較例1]
 正孔注入層形成用組成物として、前記式(P-2)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と下記式(M-3)の構造を有する正孔輸送性化合物1.3重量%、前記電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000187
[比較例2]
 正孔注入層形成用組成物として、前記式(P-2)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と前記式(M-2)の構造を有する正孔輸送性カルバゾール化合物1.3重量%と、下記電子受容性化合物(HI-2)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000188
[比較例3]
 正孔注入層形成用組成物として、前記式(M-2)の構造を有する正孔輸送性カルバゾール化合物2.6重量%と、前記電子受容性化合物(HI-2)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
[比較例4]
 正孔注入層形成用組成物として、下記式(M-4)の構造を有する正孔輸送性カルバゾール化合物2.6重量%と、前記電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
 しかしながら、正孔輸送層を形成する工程にて正孔注入層が溶解してしまい素子を作成することはできなかった。
Figure JPOXMLDOC01-appb-C000189
[素子の評価]
 実施例1~4および比較例1~3で得られた有機電界発光素子を発光させると、ピーク波長468nmの青色発光が得られた。
 素子を1,000cd/mで発光させた際の電流効率(cd/A)を測定した。また、素子に20mA/cmの電流密度で通電し続けた際の輝度低下寿命(輝度低下90%)を測定した。この値をLT90とする。
 比較例1の有機電界発光素子の電流発光効率(cd/A)を1.00としたときの、他の実施例及び比較例の有機電界発光素子の電流発光効率の比、すなわち、「比較例1以外の各有機電界発光素子の電流発光効率/比較例1の有機電界発光素子の電流発光効率」(以下「相対電流発光効率」と称す)を表1に記した。
 また、比較例1の有機電界発光素子のLT90を1.0とした場合の、他の実施例及び比較例の有機電界発光素子のLT90の比、すなわち、「比較例1以外の各有機電界発光素子のLT90/比較例1の有機電界発光素子のLT90」(以下「相対寿命」と称す)を求め、表1に記した。
Figure JPOXMLDOC01-appb-T000190
 表1において、各種材料の下に記載されている〇および×の記号については、架橋基を有する材料を〇、架橋基を持たない材料を×と表示している。
 表1の結果から、架橋基を有するカルバゾール化合物と架橋基を有する電子受容性化合物を含む本発明の組成物を用いて作製した有機電界発光素子であれば、電流発光効率及び寿命が良好であることが判った。
[実施例5]
 正孔注入層形成用組成物として、前記式(M-1)の構造を有する正孔輸送性カルバゾール化合物2.6重量%と、前記電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
[実施例6]
 正孔注入層形成用組成物として、前記式(P-1)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と前記式(M-1)の構造を有する正孔輸送性カルバゾール化合物1.3重量%と、前記電子受容性化合物(HI-1)0.4重量%とを、安息香酸ブチルに溶解させた組成物を調製して用い、スピンコート後に真空乾燥を実施したほかは、実施例1と同様にして素子を作製した。
[実施例7]
 正孔注入層形成用組成物として、前記式(P-3)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と前記式(M-1)の構造を有する正孔輸送性カルバゾール化合物1.3重量%と、前記電子受容性化合物(HI-1)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
[実施例8]
 正孔注入層形成用組成物として、下記式(P-5)の繰り返し構造を有する正孔輸送性高分子化合物1.3重量%と前記式(M-1)の構造を有する正孔輸送性カルバゾール化合物1.3重量%と、前記電子受容性化合物(HI-1)0.4重量%とを、安息香酸ブチルに溶解させた組成物を調製して用い、スピンコート後に真空乾燥を実施したほかは、実施例1と同様にして素子を作製した。
Figure JPOXMLDOC01-appb-C000191
[比較例5]
 正孔注入層形成用組成物として、前記式(M-1)の構造を有する正孔輸送性カルバゾール化合物2.6重量%と、前記電子受容性化合物(HI-2)0.4重量%とを、アニソールに溶解させた組成物を調製して用いたほかは、実施例1と同様にして素子を作製した。
[素子の評価]
 実施例5~8および比較例1、5で得られた有機電界発光素子を発光させると、ピーク波長468nmの青色発光が得られた。
 素子を1,000cd/mで発光させた際の電圧(V)及び電流効率(cd/A)を測定した。また、素子に20mA/cmの電流密度で通電し続けた際の輝度低下寿命(輝度低下90%)を測定した。この値をLT90とする。
 比較例1以外の有機電界発光素子の電圧(V)から比較例1の有機電界発光素子の電圧(V)を引いた値、すなわち、「比較例1以外の各有機電界発光素子の電圧-比較例1の有機電界発光素子の電圧」を「電圧差」として求め、表2に記した。
 また、比較例1の有機電界発光素子の電流発光効率(cd/A)を1.00としたときの、他の実施例及び比較例の有機電界発光素子の電流発光効率の比、すなわち、「比較例1以外の各有機電界発光素子の電流発光効率/比較例1の有機電界発光素子の電流発光効率」を「相対電流発光効率」として求め、表1に記した。
 さらに、比較例1の有機電界発光素子のLT90を1.0とした場合の、他の実施例及び比較例の有機電界発光素子のLT90の比、すなわち、「比較例1以外の各有機電界発光素子のLT90/比較例1の有機電界発光素子のLT90」を「相対寿命」として求め、表2に記した。
Figure JPOXMLDOC01-appb-T000192
 表2において、各種材料の下に記載されている〇および×の記号については、架橋基を有する材料を〇、架橋基を持たない材料を×と表示している。
 表2の結果から、架橋基を有するカルバゾール化合物と架橋基を有する電子受容性化合物を含む本発明の組成物を用いて作製した有機電界発光素子であれば、電圧、電流発光効率及び寿命が良好であることが判った。
[実施例9]
 正孔注入層形成用組成物として、前記式(P-1)の繰り返し構造を有する正孔輸送性高分子化合物2.6重量%と、前記電子受容性化合物(HI-2)0.4重量%とを、アニソールに溶解させた組成物を調製し、実施例1と同様にして正孔注入層を形成した。
 次に、前記式(P-5)の繰り返し構造を有する正孔輸送性高分子化合物1.5重量%と前記式(M-1)の構造を有する正孔輸送性カルバゾール化合物1.5重量%とを、安息香酸ブチルに溶解させた組成物を調製し、この溶液を、上記正孔注入層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、その後に真空乾燥を実施し、窒素グローブボックス中のホットプレートで230℃、30分間乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔輸送層とした。
 次に、下記の構造式(GH-1)を有するホスト化合物と前記電荷輸送性低分子化合物(M-3)、下記構造式(GD-1)を有するドーパント化合物を50:50:42となるよう重量比でシクロヘキシルベンゼンに溶解させ、7.1重量%の溶液を調製した。
Figure JPOXMLDOC01-appb-C000193
 この溶液を上記正孔輸送層までを塗布成膜した基板上に、窒素グローブボックス中でスピンコートし60nmの均一な薄膜を形成し、窒素グローブボックス中のホットプレートで120℃、20分間乾燥させて発光層とした。
 これ以降は実施例1と同様の方法で素子を作成した。
[比較例6]
 前記式(P-5)の繰り返し構造を有する正孔輸送性高分子化合物1.5重量%と前記式(M-3)の構造を有する正孔輸送性化合物1.5重量%とを、安息香酸ブチルに溶解させた組成物を調製し、実施例9と同様に正孔輸送層とした以外は、実施例9と同様の方法で素子を作成した。
[素子の評価]
 実施例9、比較例6で得られた有機電界発光素子を発光させると、ピーク波長523nmの緑色発光が得られた。
 素子を1,000cd/mで発光させた際の電圧(V)、電流効率(cd/A)を測定した。また、素子に20mA/cmの電流密度で通電し続けた際の輝度低下寿命(輝度低下90%)を測定した。この値をLT90とする。
 比較例6の有機電界発光素子の電圧と、実施例9の有機電界発光素子の電圧差、すなわち、「実施例9の有機電界発光素子の電圧-比較例6の有機電界発光素子の電圧」の値を「電圧差」として求め、表3に記した。
 また、比較例6の有機電界発光素子の電流発光効率(cd/A)を1.00としたときの、実施例9の有機電界発光素子の電流発光効率の比、すなわち、「実施例9の有機電界発光素子の電流発光効率/比較例6の有機電界発光素子の電流発光効率」を「相対電流発光効率」として求め、表3に記した。
 さらに、比較例6の有機電界発光素子のLT90を1.0とした場合の、実施例9の有機電界発光素子のLT90の比、すなわち、「実施例9の有機電界発光素子のLT90/比較例1の有機電界発光素子のLT90」を「相対寿命」として求め、表2に記した。
Figure JPOXMLDOC01-appb-T000194
 表3において、各種材料の下に記載されている〇および×の記号については、架橋基を有する材料を〇、架橋基を持たない材料を×と表示している。
 表3の結果から、架橋基を有するカルバゾール化合物と架橋基を有する電子受容性化合物を含む本発明の組成物を用いて作製した有機電界発光素子であれば、電圧、電流発光効率及び寿命が良好であることが判った。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年11月12日付で出願された日本特許出願2021-184743及び、2021年11月12日付で出願された日本特許出願2021-184745に基づいており、その全体が引用により援用される。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極
 8 有機電界発光素子

 

Claims (45)

  1.  下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物、および下記式(81)で表される、架橋基を有する電子受容性化合物を含む組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(71)中、
     Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
     n621、n622、n623、n624は各々独立に、0~4の整数である。
     但し、n621とn622とn633とn624の合計は1以上である。
     式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000002
    (式(72)中、
     Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
     Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     n611、n612は各々独立に0~4の整数である。
     式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000003
    (式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
     Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
     式(81)で表される化合物は、架橋基を有する。
     Xは対カチオンを表す。)
  2.  前記式(71)におけるAr621が、1~4個の置換基を有していてもよいベンゼン環、及び、1又は2個の置換基を有していてもよいフルオレン環から選択される複数の構造が任意の順序で鎖状又は分岐して結合して形成された2価の基である、請求項1に記載の組成物。
  3.  前記式(71)におけるAr621が、下記式(71-1)~(71-11)、(71-21)~(71-24)から選択される少なくとも1つの部分構造を有する、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(71-1)~(71-11)、(71-21)~(71-24)それぞれにおいて、
     *は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表し、4つ存在する*の任意2つ*少なくとも一方は隣接する構造との結合位置を表す。
     R625、R626は、各々独立に、炭素数6~12のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、アラルキル基、又は炭素数6~30の1価の芳香族炭化水素基を表す。R625、R626は共に結合して環を形成してもよい。)
  4.  前記式(71)における、R621、R622、R623及びR624がそれぞれ独立に、架橋基を有してもよい炭素数6~50の芳香族炭化水素基、又は架橋基である、請求項1に記載の組成物。
  5.  前記式(71)における、n621及びn623が1であり、n622及びn624が0であり、R621及びR623が、各々独立に、架橋基によって置換されている炭素数6~50の芳香族炭化水素基又は架橋基である、請求項1に記載の組成物。
  6.  前記式(72)における、Ar611、Ar612が、各々独立に、架橋基を有するフェニル基、又は、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であってかつ架橋基を有する基である、請求項1に記載の組成物。
  7.  前記式(72)における、Ar611、Ar612の少なくとも一方が、下記式(72-1)~(72-6)から選択される少なくとも1つの部分構造を有する、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(72-1)~式(72-6)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。)
  8.  前記式(72)において、n611及びn612が0である、請求項1に記載の組成物。
  9.  前記式(72)において、Gが単結合である、請求項1に記載の組成物。
  10.  前記式(81)における、-Ph-(R81、-Ph-(R82、-Ph-(R83、及び-Ph-(R84の内、少なくとも1つが4つのフッ素原子を有する下記式(84)で表される基である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(84)中、*は式(81)のホウ素Bとの結合を表す。
     Fはフッ素原子が4個置換していることを表す。
     R85は、置換基及び/又は架橋基を有してもよい芳香族炭化水素基、又は架橋基を表す。)
  11.  前記式(81)で表される電子受容性化合物が少なくとも2つの架橋基を有する、請求項1に記載の組成物。
  12.  更に、アリールアミン構造を繰り返し単位として有する重合体であって、下記式(50)で表される繰り返し単位を有する重合体を含む、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(50)中、
     Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
     Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
     Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
     Ar51、Ar52は置換基及び/又は架橋基を有してもよい。)
  13.  前記重合体が架橋基を有する、請求項12に記載の組成物。
  14.  前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記式(50)で表される繰返し単位を有する重合体が有する架橋基が、各々独立に、下記架橋基群Tにおける式(X1)~式(X18)から選ばれる、請求項12に記載の組成物。
    <架橋基群T>
    Figure JPOXMLDOC01-appb-C000008
    (式(X1)~式(X18)中、Qは直接結合又は連結基を表す。
     *は結合位置を表す。
     式(X4)、式(X5)、式(X6)及び式(X10)中のR110は水素原子又は置換基を有していてもよいアルキル基を表す。
     式(X1)~(X4)中、ベンゼン環及びナフタレン環は置換基を有していてもよい。また、置換基は互いに結合して環を形成してもよい。
     式(X1)~(X3)中、シクロブテン環は置換基を有していてもよい。)
  15.  前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記アリールアミン構造を繰り返し単位として有する重合体が有する架橋基が、各々独立に、前記架橋基群Tにおける式(X1)~式(X4)から選ばれる、請求項14に記載の組成物。
  16.  前記式(50)で表される繰り返し単位が下記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位である、請求項12に記載の組成物。
    Figure JPOXMLDOC01-appb-C000009
    (式(54)中、
     Ar51は、前記式(50)におけるAr51と同様である。
     Xは、-C(R207)(R208)-、-N(R209)-又は-C(R211)(R212)-C(R213)(R214)-である。
     R201、R202、R221及びR222は、各々独立に置換基及び/又は架橋基を有していてもよいアルキル基である。
     R207~R209及びR211~R214は、各々独立に水素原子、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアラルキル基、又は、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基である。
     a及びbは、各々独立に0~4の整数である。
     cは、0~3の整数である。
     dは、0~4の整数である。
     i及びjは、各々独立に0~3の整数である。)
    Figure JPOXMLDOC01-appb-C000010
    (式(55)中、
     Ar51は前記式(54)におけるAr51と同様である。
     R303及びR306は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基を表す。
     R304及びR305は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基又は置換基及び/又は架橋基を有していてもよいアラルキル基を表す。
     lは、0又は1である。
     mは、1又は2である。
     nは、0又は1である。
     pは、0又は1である。
     qは、0又は1である。)
    Figure JPOXMLDOC01-appb-C000011
    (式(56)中、
     Ar51は前記式(54)におけるAr51と同様である。
     Ar41は、置換基を有していてもよい2価の芳香族炭化水素基、置換基を有していてもよい2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
     R441及びR442は、各々独立に、置換基を有していてもよいアルキル基を表す。
     tは、1又は2である。
     uは、0又は1である。
     r及びsは、各々独立に、0~4の整数である。
     但し、前述の捻れ構造を必須とする場合、r×t+s×uは1である。)
    Figure JPOXMLDOC01-appb-C000012
    (式(57)中、
     Ar51は前記式(50)におけるAr51と同様である。
     R517~R519は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基、置換基及び/又は架橋基を有していてもよいアラルキル基、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基又は置換基及び/又は架橋基を有していてもよい芳香族複素環基を表す。
     f、g、hは、各々独立に0~4の整数を表す。
     eは0~3の整数を表す。
     ただし、gが1以上の場合、eは1以上である。
     また、f+e×g+hは1以上である。)
  17.  前記アリールアミン構造を繰り返し単位として有する重合体が、前記式(50)で表される繰り返し単位として前記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位に加え、下記式(60)で表される繰り返し単位をさらに含む、請求項16に記載の組成物。
    Figure JPOXMLDOC01-appb-C000013
    (式(60)中、
     Ar51は前記式(50)におけるAr51と同様である。
     n60は1~5の整数を表す。)
  18.  前記式(71)又は前記式(72)で表される化合物が有する置換基、前記式(81)で表される化合物が有する置換基、前記式(50)で表される繰り返し単位を有する重合体が有する置換基、前記架橋基群Tが有する置換基が、各々独立に、下記置換基群Zから選ばれる、請求項14に記載の組成物。
    <置換基群Z>
    炭素数1以上24以下のアルキル基、
    炭素数2以上24以下のアルケニル基、
    炭素数2以上24以下のアルキニル基、
    炭素数1以上24以下のアルコキシ基、
    炭素数4以上36以下のアリールオキシ基又はヘテロアリールオキシ基、
    炭素数2以上24以下のアルコキシカルボニル基、
    炭素数2以上24以下のジアルキルアミノ基、
    炭素数10以上36以下のジアリールアミノ基、
    炭素数7以上36以下のアリールアルキルアミノ基、
    炭素数2以上24以下のアシル基、
    ハロゲン原子、
    炭素数1以上12以下のハロアルキル基、
    炭素数1以上24以下のアルキルチオ基、
    炭素数4以上36以下のアリールチオ基、
    炭素数2以上36以下のシリル基、
    炭素数2以上36以下のシロキシ基、
    シアノ基、
    炭素数6以上36以下の芳香族炭化水素基、
    炭素数4以上36以下の芳香族複素環基。
     上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよく、上記置換基が隣接する場合、隣接した置換基同士が結合して環を形成してもよい。
  19.  更に溶媒を含有する、請求項1に記載の組成物。
  20.  下記式(71)又は下記式(72)で表される、架橋基を有するカルバゾール化合物、およびアリールアミン構造を繰返し単位として有する重合体を含む組成物であって、該アリールアミン構造を繰返し単位として有する重合体は、下記式(50)で表される構造を繰返し単位として有し、かつ、架橋基を有し、前記式(50)で表される構造は下記式(63)で表される部分構造を有する、組成物。
    Figure JPOXMLDOC01-appb-C000014
    (式(71)中、
     Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
     n621、n622、n623、n624は各々独立に、0~4の整数である。
     但し、n621とn622とn633とn624の合計は1以上である。
     式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000015
    (式(72)中、
     Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
     Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     n611、n612は各々独立に0~4の整数である。
     式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000016
    (式(50)中、
     Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
     Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
     Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
     Ar51、Ar52は置換基及び/又は架橋基を有してもよい。
     但し、Ar52は下記式(63)で表される部分構造を有する。)
    Figure JPOXMLDOC01-appb-C000017
    (式(63)において、
     R601は置換基又は架橋基を有していてもよいアルキル基を表す。
     Ar621は、置換基及び/又は架橋基を有してもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有してもよい2価の芳香族複素環基を表す。
     環Arは置換基及び/又は架橋基を有してもよい芳香族炭化水素構造、置換基及び/又は架橋基を有してもよい2価の芳香族複素構造を表す。
     *は隣の原子との結合位置を表す。)
  21.  前記式(50)で表される繰り返し単位が下記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位である、請求項20に記載の組成物。
    Figure JPOXMLDOC01-appb-C000018
    (式(54)中、
     Ar51は、前記式(50)におけるAr51と同様である。
     Xは、-C(R207)(R208)-、-N(R209)-又は-C(R211)(R212)-C(R213)(R214)-である。
     R201、R202、R221及びR222は、各々独立に置換基及び/又は架橋基を有していてもよいアルキル基である。
     R207~R209及びR211~R214は、各々独立に水素原子、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアラルキル基、又は、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基である。
     a及びbは、各々独立に0~4の整数である。
     cは、0~3の整数である。
     dは、0~4の整数である。
     i及びjは、各々独立に0~3の整数である。
     但し、a×c+b×d+i+jは1以上である。)
    Figure JPOXMLDOC01-appb-C000019
    (式(55)中、
     Ar51は前記式(54)におけるAr51と同様である。
     R303及びR306は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基を表す。
     R304及びR305は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基又は置換基及び/又は架橋基を有していてもよいアラルキル基を表す。
     lは、0又は1である。
     mは、1又は2である。
     nは、0又は1である。
     pは、0又は1である。
     qは、0又は1である。)
    Figure JPOXMLDOC01-appb-C000020
    (式(56)中、
     Ar51は前記式(54)におけるAr51と同様である。
     Ar41は、置換基を有していてもよい2価の芳香族炭化水素基、置換基を有していてもよい2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
     R441及びR442は、各々独立に、置換基を有していてもよいアルキル基を表す。
     tは、1又は2である。
     uは、0又は1である。
     r及びsは、各々独立に、0~4の整数である。
     但し、前述の捻れ構造を必須とする場合、r×t+s×uは1である。)
    Figure JPOXMLDOC01-appb-C000021
    (式(57)中、
     Ar51は前記式(50)におけるAr51と同様である。
     R517~R519は、各々独立に、置換基及び/又は架橋基を有していてもよいアルキル基、置換基及び/又は架橋基を有していてもよいアルコキシ基、置換基及び/又は架橋基を有していてもよいアラルキル基、置換基及び/又は架橋基を有していてもよい芳香族炭化水素基又は置換基及び/又は架橋基を有していてもよい芳香族複素環基を表す。
     f、g、hは、各々独立に0~4の整数を表す。
     eは0~3の整数を表す。
     ただし、gが1以上の場合、eは1以上である。
     また、f+e×g+hは1以上である。)
  22.  前記式(54)で表される繰返し単位が下記式(62)で表される繰り返し単位である、請求項21に記載の組成物。
    Figure JPOXMLDOC01-appb-C000022
    (式(62)中、
     Ar51、X、R201、R202、R221、R222、a、b、c、d、i、jは、前記式(54)におけるAr51、X、R201、R202、R221、R222、a、b、i、jと同じである。
     cは、1~3の整数である。
     dは、1~4の整数である。
     a、a、b、b、i、i、j、jはそれぞれ独立に0又は1である。但し、下記条件(1)、(2)のいずれかを満たす。
     (1)a、a、a、b、b及びbの少なくとも一つは1以上である。ただし、cが1の場合はaは定義されず、dが1の場合はbは定義されない。
     (2)i、i、j及びjの少なくとも1つは1である。
     Ring A1はR201を特定の位置に有してよい2価のベンゼン環を指し、
     Ring A2はR201を有してよいc-1個のベンゼン環が連結した2価の基、ただしc=2の場合は単環の2価のベンゼン環を指し、
     Ring A3はビフェニル構造がXで更に結合した2価の縮合環を指し、
     Ring A4はR202を有してよいd-1個のベンゼン環が連結した2価の基、ただしd=2の場合は単環の2価のベンゼン環を指し、
     Ring A5はR202を特定の位置に有してよい2価のベンゼン環を指す。)
  23.  前記アリールアミン構造を繰り返し単位として有する重合体が、前記式(50)で表される繰り返し単位として前記式(54)、式(55)、式(56)、又は式(57)で表される繰り返し単位に加え、下記式(60)で表される繰り返し単位をさらに含む、請求項21に記載の組成物。
    Figure JPOXMLDOC01-appb-C000023
    (式(60)中、
     Ar51は前記式(50)におけるAr51と同様である。
     n60は1~5の整数を表す。)
  24.  前記式(71)におけるAr621が、1~4個の置換基を有していてもよいベンゼン環、及び、1又は2個の置換基を有していてもよいフルオレン環から選択される複数の構造が任意の順序で鎖状又は分岐して結合して形成された2価の基である、請求項20に記載の組成物。
  25.  前記式(71)におけるAr621が、下記式(71-1)~(71-11)、(71-21)~(71-24)から選択される少なくとも1つの部分構造を有する、請求項20に記載の組成物。
    Figure JPOXMLDOC01-appb-C000024
    (上記式(71-1)~(71-11)、(71-21)~(71-24)それぞれにおいて、
     *は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表し、4つ存在する*の任意2つ*少なくとも一方は隣接する構造との結合位置を表す。
     R625、R626は、各々独立に、炭素数6~12のアルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、アラルキル基、又は炭素数6~30の1価の芳香族炭化水素基を表す。R625、R626は共に結合して環を形成してもよい。)
  26.  前記式(71)における、R621、R622、R623及びR624がそれぞれ独立に、架橋基を有してもよい炭素数6~50の芳香族炭化水素基、又は架橋基である、請求項20に記載の組成物。
  27.  前記式(71)における、n621及びn623が1であり、n622及びn624が0であり、R621及びR623が、各々独立に、架橋基によって置換されている炭素数6~50の芳香族炭化水素基又は架橋基である、請求項20に記載の組成物。
  28.  前記式(72)における、Ar611、Ar612が、各々独立に、架橋基を有するフェニル基、又は、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であってかつ架橋基を有する基である、請求項20に記載の組成物。
  29.  前記式(72)における、Ar611、Ar612の少なくとも一方が、下記式(72-1)~(72-6)から選択される少なくとも1つの部分構造を有する、請求項20に記載の組成物。
    Figure JPOXMLDOC01-appb-C000025
    (上記式(72-1)~式(72-6)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。)
  30.  前記式(72)において、n611及びn612が0である、請求項20に記載の組成物。
  31.  前記式(72)において、Gが単結合である、請求項20に記載の組成物。
  32.  さらに下記式(81)で表される、架橋基を有する電子受容性化合物を含む、請求項20に記載の組成物。
    Figure JPOXMLDOC01-appb-C000026
    (式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
     Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
     式(81)で表される化合物は、架橋基を有する。
     Xは対カチオンを表す。)
  33.  前記式(81)における、-Ph-(R81、-Ph-(R82、-Ph-(R83、及び-Ph-(R84の内、少なくとも1つが4つのフッ素原子を有する下記式(84)で表される基である、請求項32に記載の組成物。
    Figure JPOXMLDOC01-appb-C000027
    (式(84)中、*は式(81)のホウ素Bとの結合を表す。
     Fはフッ素原子が4個置換していることを表す。
     R85は、置換基及び/又は架橋基を有してもよい芳香族炭化水素基、又は架橋基を表す。)
  34.  前記式(81)で表される電子受容性化合物が少なくとも2つの架橋基を有する、請求項32に記載の組成物。
  35.  前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記アリールアミン構造を繰返し単位として有する重合体が有する架橋基が、各々独立に、下記架橋基群Tにおける式(X1)~式(X18)から選ばれる、請求項32に記載の組成物。
    <架橋基群T>
    Figure JPOXMLDOC01-appb-C000028
    (式(X1)~式(X18)中、Qは直接結合又は連結基を表す。
     *は結合位置を表す。
     式(X4)、式(X5)、式(X6)及び式(X10)中のR110は水素原子又は置換基を有していてもよいアルキル基を表す。
     式(X1)~(X4)中、ベンゼン環及びナフタレン環は置換基を有していてもよい。また、置換基は互いに結合して環を形成してもよい。
     式(X1)~(X3)中、シクロブテン環は置換基を有していてもよい。)
  36.  前記式(71)又は前記式(72)で表される化合物が有する架橋基、前記式(81)で表される化合物が有する架橋基、及び前記アリールアミン構造を繰返し単位として有する重合体が有する架橋基が、各々独立に、前記架橋基群Tにおける式(X1)~式(X4)から選ばれる、請求項35に記載の組成物。
  37.  前記式(71)又は前記式(72)で表される化合物が有する置換基、前記式(81)で表される化合物が有する置換基、前記アリールアミン構造を繰り返し単位として有する重合体が有する置換基、前記架橋基群Tが有する置換基が、各々独立に、下記置換基群Zから選ばれる、請求項35に記載の組成物。
    <置換基群Z>
    炭素数1以上24以下のアルキル基、
    炭素数2以上24以下のアルケニル基、
    炭素数2以上24以下のアルキニル基、
    炭素数1以上24以下のアルコキシ基、
    炭素数4以上36以下のアリールオキシ基又はヘテロアリールオキシ基、
    炭素数2以上24以下のアルコキシカルボニル基、
    炭素数2以上24以下のジアルキルアミノ基、
    炭素数10以上36以下のジアリールアミノ基、
    炭素数7以上36以下のアリールアルキルアミノ基、
    炭素数2以上24以下のアシル基、
    ハロゲン原子、
    炭素数1以上12以下のハロアルキル基、
    炭素数1以上24以下のアルキルチオ基、
    炭素数4以上36以下のアリールチオ基、
    炭素数2以上36以下のシリル基、
    炭素数2以上36以下のシロキシ基、
    シアノ基、
    炭素数6以上36以下の芳香族炭化水素基、
    炭素数4以上36以下の芳香族複素環基。
     上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよく、上記置換基が隣接する場合、隣接した置換基同士が結合して環を形成してもよい。
  38.  更に溶媒を含有する、請求項20に記載の組成物。
  39.  基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子の製造方法であって、該有機層を、請求項19又は38に記載の組成物を用いて湿式成膜法にて形成する工程を有する、有機電界発光素子の製造方法。
  40.  前記有機層が陽極と発光層の間にある有機層である、請求項39に記載の有機電界発光素子の製造方法。
  41.  請求項39に記載の有機電界発光素子の製造方法で製造された有機電界発光素子。
  42.  基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、下記式(71)又は下記式(72)で表される架橋基を含むカルバゾール化合物と、下記式(81)で表される架橋基を含む電子受容性化合物との架橋反応物を含有する有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000029
    (式(71)中、
     Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
     n621、n622、n623、n624は各々独立に、0~4の整数である。
     但し、n621とn622とn633とn624の合計は1以上である。
     式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000030
    (式(72)中、
     Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
     Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     n611、n612は各々独立に0~4の整数である。
     式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000031
    (式(81)中、5つのR81、5つのR82、5つのR83、5つのR84はそれぞれにおいて独立であり、かつ、R81~R84は、各々独立に水素原子、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の芳香族炭化水素基、置換基及び/又は架橋基を有していてもよい炭素数3~50の芳香族複素環基、フッ素置換された炭素数1~12のアルキル基、又は架橋基を表す。
     Ph、Ph、Ph、Phは4つのベンゼン環を指す符号である。
     式(81)で表される化合物は架橋基を有する。
     Xは対カチオンを表す。)
  43.  基板上に、陽極及び陰極を有し、該陽極と該陰極の間に有機層を有する有機電界発光素子であって、該有機層が、下記式(71)又は下記式(72)で表される架橋基を含むカルバゾール化合物と、アリールアミン構造を繰り返し単位として有する重合体であって、下記式(50)で表される繰り返し構造を単位として有し、かつ架橋基を有し、前記式(50)で表される構造は下記式(63)で表される部分構造を有する重合体との架橋反応物を含む有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000032
    (式(71)中、
     Ar621は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R621、R622、R623、R624は、各々独立に、重水素原子、ハロゲン原子、及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は架橋基である。
     n621、n622、n623、n624は各々独立に、0~4の整数である。
     但し、n621とn622とn633とn624の合計は1以上である。
     式(71)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000033
    (式(72)中、
     Ar611、Ar612は各々独立に、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     R611、R612は各々独立に、重水素原子、ハロゲン原子、置換基及び/又は架橋基を有していてもよい炭素数6~50の1価の芳香族炭化水素基、又は、架橋基である。
     Gは、単結合、又は、置換基及び/又は架橋基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
     n611、n612は各々独立に0~4の整数である。
     式(72)で表される化合物は、少なくとも2つの架橋基を有する。)
    Figure JPOXMLDOC01-appb-C000034
    (式(50)中、
     Ar51は、芳香族炭化水素基、芳香族複素環基、又は芳香族炭化水素基及び芳香族複素環基から選択される複数の基が連結した基を表す。
     Ar52は、2価の芳香族炭化水素基、2価の芳香族複素環基、又は前記2価の芳香族炭化水素基及び前記2価の芳香族複素環基からなる群から選択される少なくとも1つの基が直接若しくは連結基を介して複数個連結した2価の基を表す。
     Ar51とAr52は単結合又は連結基を介して環を形成していてもよい。
     Ar51、Ar52は置換基及び/又は架橋基を有してもよい。
     但し、Ar52は下記式(63)で表される部分構造を有する。)
    Figure JPOXMLDOC01-appb-C000035
    (式(63)において、
     R601は置換基又は架橋基を有していてもよいアルキル基を表す。
     Ar621は、置換基及び/又は架橋基を有してもよい2価の芳香族炭化水素基、置換基及び/又は架橋基を有してもよい2価の芳香族複素環基を表す。
     環Arは置換基及び/又は架橋基を有してもよい芳香族炭化水素構造、置換基及び/又は架橋基を有してもよい2価の芳香族複素構造を表す。
     *は隣の原子との結合位置を表す。)
  44.  請求項42又は43のいずれかに記載の有機電界発光素子を有する表示装置。
  45.  請求項42又は43のいずれかに記載の有機電界発光素子を有する照明装置。

     
PCT/JP2022/040871 2021-11-12 2022-11-01 組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置 WO2023085171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023559581A JPWO2023085171A1 (ja) 2021-11-12 2022-11-01
KR1020247015192A KR20240108395A (ko) 2021-11-12 2022-11-01 조성물, 유기 전계 발광 소자 및 그 제조 방법, 표시 장치, 그리고 조명 장치
CN202280074703.1A CN118235538A (zh) 2021-11-12 2022-11-01 组合物、有机电致发光元件和其制造方法、显示设备及照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-184745 2021-11-12
JP2021184743 2021-11-12
JP2021184745 2021-11-12
JP2021-184743 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085171A1 true WO2023085171A1 (ja) 2023-05-19

Family

ID=86335969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040871 WO2023085171A1 (ja) 2021-11-12 2022-11-01 組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置

Country Status (4)

Country Link
JP (1) JPWO2023085171A1 (ja)
KR (1) KR20240108395A (ja)
TW (1) TW202330870A (ja)
WO (1) WO2023085171A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097008A (ja) * 2004-08-31 2006-04-13 Sumitomo Chemical Co Ltd 高分子発光体組成物および高分子発光素子
JP2011176326A (ja) * 2007-03-07 2011-09-08 Mitsubishi Chemicals Corp 有機デバイス用組成物、高分子膜および有機電界発光素子
JP2015181168A (ja) * 2009-12-25 2015-10-15 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
WO2019059331A1 (ja) * 2017-09-22 2019-03-28 三菱ケミカル株式会社 電荷輸送性化合物、電荷輸送性化合物を含む組成物及び該組成物を用いた有機電界発光素子
JP2020053671A (ja) * 2018-09-21 2020-04-02 三菱ケミカル株式会社 組成物、電荷輸送膜及び有機電界発光素子
JP2020537826A (ja) * 2018-05-24 2020-12-24 エルジー・ケム・リミテッド 有機発光素子
KR20210022420A (ko) * 2019-08-20 2021-03-03 주식회사 엘지화학 유기 발광 소자
KR20210024966A (ko) * 2019-08-26 2021-03-08 주식회사 엘지화학 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244471A (ja) 2007-03-01 2008-10-09 Hitachi Chem Co Ltd 有機エレクトロニクス用材料、並びにこれを用いた薄膜、有機エレクトロニクス素子及び有機エレクトロルミネセンス素子
CN111247125B (zh) 2018-05-23 2023-09-08 株式会社Lg化学 化合物、包含其的涂覆组合物和有机发光器件
CN111094465B (zh) 2018-05-30 2022-08-09 株式会社Lg化学 涂覆组合物、使用其的有机发光二极管及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097008A (ja) * 2004-08-31 2006-04-13 Sumitomo Chemical Co Ltd 高分子発光体組成物および高分子発光素子
JP2011176326A (ja) * 2007-03-07 2011-09-08 Mitsubishi Chemicals Corp 有機デバイス用組成物、高分子膜および有機電界発光素子
JP2015181168A (ja) * 2009-12-25 2015-10-15 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
WO2019059331A1 (ja) * 2017-09-22 2019-03-28 三菱ケミカル株式会社 電荷輸送性化合物、電荷輸送性化合物を含む組成物及び該組成物を用いた有機電界発光素子
JP2020537826A (ja) * 2018-05-24 2020-12-24 エルジー・ケム・リミテッド 有機発光素子
JP2020053671A (ja) * 2018-09-21 2020-04-02 三菱ケミカル株式会社 組成物、電荷輸送膜及び有機電界発光素子
KR20210022420A (ko) * 2019-08-20 2021-03-03 주식회사 엘지화학 유기 발광 소자
KR20210024966A (ko) * 2019-08-26 2021-03-08 주식회사 엘지화학 유기 발광 소자

Also Published As

Publication number Publication date
JPWO2023085171A1 (ja) 2023-05-19
KR20240108395A (ko) 2024-07-09
TW202330870A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
JP5793878B2 (ja) 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2018184603A (ja) ポリマーおよびデバイス
JP5742092B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP7306345B2 (ja) 芳香族化合物
WO2022071542A1 (ja) 有機電界発光素子用溶媒化合物、これを用いた組成物、及び有機電界発光素子の製造方法
JP7513069B2 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
JP7310605B2 (ja) 電荷輸送性化合物、電荷輸送性化合物を含む組成物及び該組成物を用いた有機電界発光素子
JP5617202B2 (ja) 有機化合物、電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2021125011A1 (ja) 重合体、有機電界発光素子用組成物、正孔輸送層又は正孔注入層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2023085171A1 (ja) 組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置
JPWO2021166900A5 (ja)
JP2021147325A (ja) 芳香族化合物
WO2023189861A1 (ja) 組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置
WO2024177081A1 (ja) 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2023085170A1 (ja) 組成物、および有機電界発光素子の製造方法
WO2023163001A1 (ja) 組成物、有機電界発光素子及びその製造方法、表示装置、並びに照明装置
WO2022255403A1 (ja) 化合物及び有機電界発光素子
CN118235538A (zh) 组合物、有机电致发光元件和其制造方法、显示设备及照明装置
JP2023086108A (ja) 化合物及び有機電界発光素子
JP2023051507A (ja) 有機電界発光素子用組成物、及び有機電界発光素子の製造方法
JPWO2023085171A5 (ja)
JP2022136017A (ja) 芳香族化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559581

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280074703.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE