WO2023083068A1 - 唤醒对齐方法、系统及相关装置 - Google Patents

唤醒对齐方法、系统及相关装置 Download PDF

Info

Publication number
WO2023083068A1
WO2023083068A1 PCT/CN2022/129213 CN2022129213W WO2023083068A1 WO 2023083068 A1 WO2023083068 A1 WO 2023083068A1 CN 2022129213 W CN2022129213 W CN 2022129213W WO 2023083068 A1 WO2023083068 A1 WO 2023083068A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
node device
time
sub
period
Prior art date
Application number
PCT/CN2022/129213
Other languages
English (en)
French (fr)
Inventor
赵凡凡
郭玉华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023083068A1 publication Critical patent/WO2023083068A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of terminal and communication technologies, and in particular to a wake-up alignment method, system and related devices.
  • the present application provides a wake-up alignment method, system and related devices.
  • the wake-up alignment method can unify the working rhythm of each electronic device in a communication system, so that each electronic device can wake up at a unified wake-up time, and shorten the battery life of the electronic device.
  • the embodiment of the present application provides a wake-up alignment method, the method is applied to the first sub-node device, the method includes: the first sub-node device sends a first period to the central node device, the first period is the first sub-node The wake-up cycle of the node device; the first sub-node device receives the second cycle and the reference time, and the second cycle is determined by the central node device according to the first cycle; the first sub-node device sets the first sub-node device according to the second cycle and the reference time The first original wake-up time of the node device is adjusted to the first wake-up time, the difference between the first original wake-up time and the first wake-up time is not greater than the threshold, the first wake-up time is the reference time, and the sum of N times of the second cycle , N is an integer greater than or equal to 0.
  • the sub-node device can adjust its wake-up time according to the optimal wake-up cycle sent by the central node device, that is, the second cycle, so that the sub-node device can wake up at a unified wake-up time.
  • the difference between the wake-up time and the original wake-up time is small, which can reduce the adjustment range of the wake-up time of the child node device as much as possible, and reduce the impact of the wake-up time adjustment on the work of the child node device.
  • the threshold is half of the second period.
  • the first sub-node device adjusts the wake-up time of the first sub-node device to the first wake-up time, specifically including: the first sub-node device and the second sub-node device and/or the central node Device communication.
  • the wake-up of the sub-node device specifically means that the sub-node device communicates with other devices when the wake-up time is reached, and the other devices here may refer to the central node device or other sub-node devices.
  • the method further includes: the first sub-node device powers on the CPU at the first wake-up time.
  • the child node device Before the child node device wakes up, the child node device may be in a sleep state. When the child node device needs to communicate with other devices, the child node device needs to power on the CPU to switch itself from the sleep state to the working state.
  • the wake-up of the first sub-node device is heartbeat wake-up or non-real-time service wake-up.
  • waking up may include heartbeat waking up, non-real-time service waking up and real-time service waking up.
  • the wake-up alignment method provided by the embodiment of the present application only changes the wake-up time of heartbeat wake-up and non-real-time business wake-up. The wake-up time of the immediate service.
  • the second period is the maximum value, minimum value, average value or common multiple of the first period and the wake-up period of the central node device.
  • the method further includes: the first sub-node device receives the fourth period, The fourth cycle is determined by the central node device according to the first cycle and the third cycle of the third sub-node device, and the third cycle is the wake-up cycle of the third sub-node device; the first sub-node device readjusts the first sub-node device according to the fourth cycle. The wakeup time of the node device.
  • the optimal wake-up period determined in the previous communication system can be changed again, so as to ensure that the changed optimal wake-up period can unify all the new sub-node devices in the communication system.
  • the wakeup cycle of an electronic device can readjust the wake-up time of the wake-up that has not been triggered according to the changed optimal wake-up period.
  • the embodiment of the present application provides a wake-up alignment method, the method is applied to the central node device, the method includes: the central node device receives the first cycle of the first child node device, the first cycle is the first child node device The wake-up cycle; the central power saving device determines the second cycle according to the first cycle; the central node device sends the second cycle and the reference time to the first sub-node device.
  • a central node device can receive the wake-up cycles of one or more sub-nodes in the communication system, and determine the wake-up time based on these wake-up cycles.
  • a uniform optimal wake-up cycle namely the second cycle, helps each device in the communication system to wake up according to the unified optimal wake-up cycle, reduces the number of wake-ups or working time of each device, and reduces the power consumption of electronic devices.
  • the wake-up of the first sub-node device is heartbeat wake-up or non-real-time service wake-up.
  • waking up may include heartbeat waking up, non-real-time service waking up and real-time service waking up.
  • the wake-up alignment method provided by the embodiment of the present application only changes the wake-up time of heartbeat wake-up and non-real-time business wake-up.
  • the wake-up time of the immediate service ensures the normal operation of the electronic device.
  • the second period is the maximum value, minimum value, average value or common multiple of the first period and the wake-up period of the central node device.
  • the method further includes: the central node device receives a third period of the third sub-node device, the third period is the wake-up period of the third sub-node device; the central node device determines according to the third period and the first period Fourth period: the central node device sends the fourth period to the first sub-node device and the third sub-node device.
  • the central node device can obtain the wake-up period of the newly-added sub-node device, and re-change the optimal wake-up period to ensure that the changed optimal wake-up period can uniformly add new sub-node devices.
  • the wake-up cycle of each electronic device in the communication system behind the node device can obtain the wake-up period of the newly-added sub-node device, and re-change the optimal wake-up period to ensure that the changed optimal wake-up period can uniformly add new sub-node devices.
  • the method further includes: the central node device selects the time closest to the current time in the wake-up time of the central node device The wake-up time of is used as the reference time.
  • the central node device can select the wake-up time closest to its own wake-up time as the reference time and send it to each sub-node device, so that each sub-node device can adjust the reference time as a reference for the adjusted wake-up time Wake-up time, so that the unified wake-up time is as close as possible to the original wake-up time of the central node device.
  • the reference time may also refer to the power-on time of the central node device, a randomly generated time, a preset time, and the like.
  • the central node device may adjust the original wake-up time of the central node device according to the second period and the reference time.
  • the central node device can also adjust its original wake-up time according to the uniform optimal wake-up cycle, so that the central node device can also wake up at the same wake-up time as the child node devices.
  • the embodiment of the present application provides a wake-up alignment method, which is applied to a communication system including a first sub-node device and a central node device, and the method includes: the first sub-node device sends a first period to the central node device , the first period is the wake-up period of the first sub-node device; the central node device receives the first period of the first sub-node device; the central node device determines the second period according to the first period; the central node device uses the second period and the central The reference time of the node device is sent to the first sub-node device; the first sub-node device adjusts the first original wake-up time of the first sub-node device to the first wake-up time according to the second cycle and the reference time, and the first original wake-up time The difference from the first wake-up time is not greater than the threshold, the first wake-up time is the reference time, and the sum of N times the second period, where N is an integer greater
  • each device in the communication system can adjust its own wake-up time according to the uniform optimal wake-up cycle, so as to ensure that each device wakes up at the uniform wake-up time, and each device adjusts its own wake-up time according to the optimal wake-up cycle.
  • each device try to ensure that the difference between the adjusted wake-up time and the original wake-up time is small, minimize the adjustment range of the wake-up time of each device, and reduce the impact of the wake-up time adjustment on the work of each device.
  • the communication system may include a central node device and one or more sub-node devices.
  • the first sub-node device is a sub-node device in the communication system.
  • Both the central node device and the sub-node devices can The optimal wake-up period and reference time adjust the wake-up time, and the wake-up intervals of the adjusted periodic wake-ups of each device are not necessarily equal.
  • the wake-up interval of one device is 2T
  • the wake-up interval of another device is 3T, where T Indicates the optimal wake-up period.
  • the threshold is half of the second period.
  • the first sub-node device adjusts the first original wake-up time of the first sub-node device to the first wake-up time, specifically including: the first sub-node device at the first wake-up time and the second sub-node device and/or Or central node device communication.
  • the wake-up of the sub-node device specifically means that the sub-node device communicates with other devices when the wake-up time is reached, and the other devices here may refer to the central node device or other sub-node devices.
  • the method further includes: the first sub-device powers on the CPU at the first wake-up time.
  • the child node device Before the child node device wakes up, the child node device may be in a sleep state. When the child node device needs to communicate with other devices, the child node device needs to power on the CPU to switch itself from the sleep state to the working state.
  • the wake-up of the first sub-node device is heartbeat wake-up or non-real-time service wake-up.
  • waking up may include heartbeat waking up, non-real-time service waking up and real-time service waking up.
  • the wake-up alignment method provided by the embodiment of the present application only changes the wake-up time of heartbeat wake-up and non-real-time business wake-up. The wake-up time of the immediate service.
  • the second period is the maximum value, minimum value, average value or common multiple of the first period and the wake-up period of the central node device.
  • the communication system further includes a third sub-node device; after the first sub-node device adjusts the wake-up time of the first sub-node device to the first wake-up time according to the second cycle and the reference time, the method further includes: the center The node device receives the third period of the third sub-node device, and the third period is the wake-up period of the third sub-node device; the central node device determines the fourth period according to the third period and the first period; the central node device determines the fourth period Send to the first sub-node device and the third sub-node device; the first sub-node device readjusts the wake-up time of the first sub-node device according to the fourth cycle, and the third sub-node device readjusts the third sub-node device according to the fourth cycle wake-up time.
  • the optimal wake-up period determined in the previous communication system can be changed again, so as to ensure that the changed optimal wake-up period can unify all the new sub-node devices in the communication system.
  • the wakeup cycle of an electronic device Each child node device can readjust the wake-up time of the wake-up that has not been triggered according to the changed optimal wake-up cycle, so as to ensure that the wake-up rhythm of each device is calculated according to the original wake-up rhythm of all devices.
  • the method further includes: the central node device selects the wake-up time closest to the current time as the reference among the wake-up times of the central node device time.
  • the central node device can select the wake-up time closest to its own wake-up time as the reference time and send it to each sub-node device, so that each sub-node device can adjust the reference time as a reference for the adjusted wake-up time Wake-up time, so that the unified wake-up time is as close as possible to the original wake-up time of the central node device.
  • the reference time may also refer to the power-on time of the central node device, a randomly generated time, a preset time, and the like.
  • the central node device may adjust the original wake-up time of the central node device according to the second period and the reference time.
  • the central node device can also adjust its original wake-up time according to the uniform optimal wake-up cycle, so that the central node device can also wake up at the same wake-up time as the child node devices.
  • the embodiment of the present application provides an electronic device, including memory, one or more processors, and one or more programs; when one or more processors execute one or more programs, the electronic device Implement the first aspect or any implementation manner of the first aspect, the second aspect or the method in any implementation manner of the second aspect.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions.
  • the electronic device executes the first aspect or any one of the implementation manners of the first aspect, and the second aspect.
  • the embodiment of the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the first aspect or any implementation manner of the first aspect, the second aspect or the second aspect The method in any one of the implementations of .
  • Implementing the technical solution provided by the embodiment of the present application can unify the working rhythm of each electronic device in the communication system, change the trigger time of each device wake-up, reduce frequent wake-ups between devices, optimize the power consumption of each device in the communication system, and ensure The battery life of each device in the communication system.
  • FIG. 1 is a schematic structural diagram of a communication system 10 involved in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wake-up alignment system provided by an embodiment of the present application.
  • Fig. 3 is a wake-up sequence diagram of each electronic device in the wake-up alignment system provided by the embodiment of the present application;
  • FIG. 4 is a schematic diagram of the software structure of the wake-up alignment system provided by the embodiment of the present application.
  • FIG. 5 is a wake-up sequence diagram of a sub-node device and a central node device provided in an embodiment of the present application;
  • FIG. 6 is a schematic flowchart of a wake-up alignment method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of power consumption waveforms of devices before and after wake-up alignment provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of an electronic device 100 provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • FIG. 1 shows a schematic structural diagram of a communication system 10 involved in an embodiment of the present application.
  • the communication system 10 may be a communication system composed of a distributed network. Rings, toothbrushes, body fat scales, etc.
  • communication connections can be established between these multiple electronic devices to perform data sending and receiving and business synchronization.
  • the wristband can establish communication connections with equipment such as wristbands, earphones, body fat scales, large screens, speakers, and air purifiers.
  • the bracelet can also establish communication connections with equipment such as large screens, mobile phones, earphones, and body fat scales.
  • the communication connections can be wired connections. ,Wireless connections.
  • the wireless connection may be a high-fidelity wireless communication (Wi-Fi) connection, a Bluetooth connection, an infrared connection, an NFC connection, a ZigBee connection, or a short-distance connection.
  • Wi-Fi high-fidelity wireless communication
  • the body fat scale can send the data collected by the body fat scale (such as weight, body fat percentage, muscle content, etc.) These data analyze the physical condition of the user.
  • the wireless connection may also be a long-distance connection, and the long-distance connection includes but is not limited to mobile networks supporting 2G, 3G, 4G, 5G and subsequent standard protocols. For example, multiple electronic devices can log in to the same user account (such as a Huawei account), and then connect remotely through the server.
  • the electronic equipment in order to save the power consumption of the electronic equipment, when the electronic equipment does not have working processes such as data transmission and reception and business synchronization, the electronic equipment often enters a dormant state. When other electronic devices communicate, the electronic device is woken up. Then, in this case, since there are communications between multiple electronic devices in the communication system 10, and the working rhythms of the various electronic devices are different, an electronic device may wake up frequently, so that the central processing of the electronic device
  • the central processing unit (CPU) frequently enters the high-speed operation state, or keeps the electronic equipment in the working state for a long time, which increases the power consumption of the electronic equipment and increases the power consumption of the electronic equipment.
  • the types of electronic devices in the communication system 10 are not limited to the aforementioned ecological devices such as mobile phones, watches, large screens, earphones, speakers, air purifiers, bracelets, toothbrushes, body fat scales, etc. Embodiments do not limit the types of electronic devices in communication system 10 .
  • one solution is to use an aligned wake-up mechanism.
  • the alignment wakeup mechanism is equivalent to setting a timer in the process, and when the time reaches the time specified by the timer, a signal to wake up the process is sent to the process. In this way, frequent wake-up of the electronic device can be avoided by controlling the wake-up time of the electronic device, thereby reducing the power consumption of the electronic device.
  • this alignment wakeup mechanism is only applicable to the wakeup of a single device, and cannot cover the wakeup situation caused by communication with other electronic devices in the communication system 10. work rhythm.
  • An embodiment of the present application provides a wake-up alignment method, which involves a central node device and a sub-node device.
  • the central node device obtains the wake-up period of the sub-node device, and calculates the optimal wake-up period according to the wake-up period, and then , the central node device then sends the optimal wake-up period and the reference time to the sub-node device, and the sub-node device and the central node device then determine the optimal wake-up time according to the optimal wake-up period and the reference time, and adjust the wake-up time, so that Each electronic device in the communication system wakes up at a uniform wake-up time to avoid frequent wake-ups of electronic devices due to inconsistent working rhythms, shorten the battery life of electronic devices, and reduce the energy consumption of the communication system.
  • Both the central node device and the sub-node devices are electronic devices in the communication system 10 shown in FIG. 1 .
  • the number of central node devices is one
  • the number of sub-node devices is one or more. That is to say, the central node device can collect the wake-up periods of one or more sub-node devices, and calculate an optimal wake-up period suitable for multiple sub-node devices and the central node device according to the one or more wake-up periods.
  • the electronic device in the communication system 10 obtains the optimal wake-up period and the reference time
  • the electronic device can determine the optimal wake-up time according to the optimal wake-up time and the reference time, and adjust the original wake-up time according to the nearest alignment principle, Enable electronic devices to wake up at a specified unified time.
  • the determination of the optimal wake-up time and the adjustment of the wake-up time please refer to the subsequent content, and details will not be described here.
  • the wake-up methods of electronic devices include but are not limited to the following two:
  • a service wake-up is a wake-up triggered by a service.
  • the service wake-up may be an active wake-up performed by the electronic device when there is a service to be executed by the electronic device itself, or a passive wake-up triggered by other electronic devices when the electronic device has a cross-device service.
  • the service wake-up may be triggered to wake up another electronic device when one electronic device needs to send a data synchronization message to another electronic device.
  • service wake-up includes: non-real-time service wake-up and real-time service wake-up.
  • the non-real-time service wake-up is a wake-up triggered by a non-immediate service, for example, the non-immediate service may refer to updating data. That is to say, for non-real-time service wake-up, the electronic device can change the wake-up time of the non-real-time service, for example, the electronic device can delay the non-real-time service wake-up for a period of time.
  • the real-time service wake-up is a wake-up triggered by an immediate service, for example, the immediate service may refer to a voice call service established between two devices. That is to say, for the wake-up of the real-time service, the electronic device cannot change the wake-up time of the real-time service, and the electronic device needs to wake up at the wake-up time specified by the real-time service.
  • Heartbeat wakeup is a periodic wakeup triggered between devices to maintain communication. That is to say, the heartbeat wakeup has a wakeup period, and the electronic device performs periodic heartbeat wakeup according to the wakeup period.
  • the electronic device after receiving the optimal wake-up cycle, the electronic device will perform periodic heartbeat wake-up according to the optimal wake-up cycle, and change the wake-up time of non-real-time service wake-up to: the electronic device performs periodic
  • the wake-up time of the latest heartbeat wake-up during heartbeat wake-up does not change the wake-up time of real-time business wake-up.
  • the number of wake-ups of the electronic device can be reduced as much as possible.
  • FIG. 2 exemplarily shows a schematic structural diagram of a wake-up alignment system provided by an embodiment of the present application.
  • the wake-up alignment system may include part or all of the electronic devices in the communication system 10 .
  • the wake-up alignment system includes a central node device and sub-node devices.
  • the number of central node devices is one
  • the number of sub-node devices is one or more.
  • FIG. 2 shows that the sub-node devices include: sub-node device A, sub-node device B, and sub-node device C, three electronic devices.
  • the central node device is used to receive the wake-up cycles of the sub-node devices A-C, and calculate the optimal wake-up for the central node device and the sub-node devices A-C according to the wake-up cycles of the three sub-node devices After that, the central node device sends the optimal wake-up cycle and the reference time to the child node devices A-C.
  • the sub-node devices A-C are used to send respective wake-up periods to the central node device, and receive the optimal wake-up time and the reference time sent by the central node device.
  • both the central node device and the sub-node devices A-C can calculate the optimal wake-up time according to the optimal wake-up time and the reference time, and adjust the original wake-up time of the respective electronic devices.
  • the central node device and sub-node devices A-C can adjust the wake-up time of heartbeat wake-up and non-real-time service wake-up according to the nearest alignment principle, without adjusting the original wake-up time of implementing service wake-up.
  • the central node device can be any device in the communication system 10, and the sub-node devices can be any one or more devices in the communication system 10 except the central node device, and the number of sub-node devices is not limited to that shown in Fig. 2 shows three of the wake-up alignment systems.
  • the central node device can be selected according to the performance of the device.
  • the central node device can be the device with the best performance in the wake-up alignment system, or the central node device can be selected according to the service situation of the device.
  • the central node device can be Wake up the least active device in the alignment system. Except for the determined central node device, the remaining devices in the wake-up alignment system are sub-node devices. It can be understood that, the embodiment of the present application does not limit the selection of the central node device.
  • FIG. 3 exemplarily shows a wake-up timing diagram of each electronic device in the wake-up alignment system.
  • each electronic device Before multiple devices wake up and align, that is, when each electronic device wakes up according to its own business rhythm, each electronic device may wake up frequently.
  • Q1-Q4 before multi-device wake-up alignment, there are four wake-ups of Q1-Q4 in the central node device, Q1 is real-time business wake-up, Q2 is non-real-time business wake-up, Q3, Q4 is heartbeat wake-up.
  • A1-A3 in child node device A A1 and A2 are heartbeat wake-ups
  • A3 is non-real-time service wake-up.
  • Child node device B has four wake-ups of B1-B4, B1 and B4 are heartbeat wake-ups, B2 and B3 are non-real-time service wake-ups, child-node device C has three wake-ups of C1-C3, C1 is non-real-time service wake-up, and C2 is Heartbeat wake-up, C3 wakes up for real-time services.
  • the non-real-time service wake-up Q2 of the central node device and the non-real-time service wake-up B2 of the sub-node device B are the simultaneous wake-up of the two devices caused by the same cross-device service, and the non-real-time service wake-up of the sub-node device A A3 and the sub-node
  • the non-real-time service wake-up B3 of device B is the simultaneous wake-up of the two devices caused by the same cross-device service.
  • another electronic device in the communication system 10 may wake up or be in a working state at the same time, such as the non-real-time business wake-up Q2 of the central node device and the non-real-time business wake-up B2 of the sub-node device B It is the simultaneous wake-up of two devices caused by the same service. Moreover, due to the different wake-up rhythms of each electronic device, it may cause the central node device or sub-node devices to wake up frequently or be in a working state for a long time.
  • the central node device can send the optimal wake-up cycle and reference time to the child node devices A-C, so that the child-node devices A-C can calculate the best periodic wake-up time, and according to the nearest alignment
  • the principle is to change the original wake-up time of each device in the wake-up alignment system, so that each device wakes up at a uniform time point.
  • the central node device and sub-node devices AC perform heartbeat wake-up and non-real-time business wake-up according to a unified wake-up time, while not changing the wake-up time of real-time business wake-up.
  • the central node device performs real-time service wake-up Q1 at the original T 1 time point, and performs a wake-up at 2T time point, which includes non-real-time service wake-up Q2 and heartbeat wake-up Q3 , perform a heartbeat to wake up Q4 at a time point of 3T.
  • the child node device A performs heartbeat wakeup A1 at time T, performs heartbeat wakeup A2 at time 2T, and wakes up A3 for non-real-time services at time 3T.
  • the child node device B performs a heartbeat wake-up B1 at time T, a non-real-time service wake-up B2 at 2T time point, and a wake-up at 3T time point.
  • the wake-up includes heartbeat wake-up B3 and non-real-time service wake-up B4.
  • the child node device C wakes up C1 for non-real-time services at time T, wakes up C2 for heartbeat at time 3T, and wakes up for real-time services at the original time T2 .
  • the central node device and sub-node devices can wake up at a unified cycle time point.
  • the original central node device needs to trigger non-real-time service wake-up Q2 and heartbeat wake-up Q3 at two different time points.
  • the central node device can only wake up once to complete the heartbeat wakeup for maintaining connection with other devices, and the non-real-time service wakeup required for communication with the sub-node device B's non-real-time service. In this way, the number of times of waking up or the working time of the electronic device can be reduced, and the power consumption of the electronic device can be reduced.
  • the adjusted wake-up period of each electronic device is not necessarily the same, nor is it necessarily equal to the unified optimal wake-up period.
  • the adjusted wake-up period of the electronic device may be M times the optimal wake-up period, where M is a positive integer. For example, suppose the optimal wake-up period is 5 minutes, and there are two child node devices: device A and device B. Device A can adjust the wake-up period of heartbeat wake-up to 10 minutes, and device B can adjust the wake-up period of heartbeat wake-up to 15 minutes.
  • Fig. 4 exemplarily shows a schematic diagram of a software structure of the wake-up alignment system.
  • the wake-up alignment system includes a central node device and sub-node devices. Both the central node device and the sub-node devices include a unified wake-up management module and a distributed soft bus. It should be noted that Figure 4 only shows the interaction process between one sub-node device and the central node device, the wake-up alignment system may include multiple sub-node devices, and the interaction process between other sub-node devices and the central node device is the same as that shown in Figure 4 The interaction process is consistent.
  • the distributed soft bus is used to receive the wake-up cycle sent by other devices, and to send the best wake-up cycle and reference time to other devices; the unified wake-up module is used to obtain the reference time of this device, and The wake-up cycle and the wake-up cycle of the device calculate the optimal wake-up cycle, and determine the optimal wake-up time after alignment according to the optimal wake-up cycle and the reference time, so that the central node device can wake up according to the optimal wake-up time after alignment.
  • the distributed soft bus is used to send the wake-up cycle to the central node device, and receive the optimal wake-up cycle and reference time sent by the central node device;
  • the unified wake-up module is used to determine the alignment according to the optimal wake-up cycle and basic time
  • the optimal wake-up time after alignment is used for the sub-node devices to wake up according to the optimal wake-up time after alignment.
  • the wake-up alignment system aligns the wake-up time mainly involves the following six steps:
  • the child node device sends a wake-up cycle to the central node device through the distributed soft bus;
  • the wake-up period is the wake-up period used by the sub-node devices before the wake-up alignment, and each sub-node device can perform periodic heartbeat wake-up according to the wake-up period.
  • the central node device can obtain the wake-up cycle of multiple devices.
  • the plurality of devices may refer to all sub-node devices in the communication network except the central node device, or, the plurality of devices may refer to some sub-node devices in the communication system 10 except the central node device, wherein the part of sub-node devices
  • the node device may be a device that currently needs to communicate with other devices in the communication system 10, or a device that is in a working state.
  • the central node device sends the wake-up cycle to the unified wake-up management module through the distributed soft bus;
  • the central node device can send the wake-up cycles of one or more sub-node devices to the unified wake-up management module in the central node device through the distributed soft bus.
  • the central node device obtains the optimal wake-up cycle and reference time through the unified wake-up management module, and sends them to the distributed soft bus;
  • the unified wake-up management module in the central node device can calculate an optimal wake-up period according to one or more received wake-up periods and the wake-up period of the central node device.
  • the optimal wake-up period may be the average number, common multiple, minimum value, maximum value, etc. of the wake-up periods of the central node device and the sub-node devices, and the embodiment of the present application does not limit the relationship between the optimal wake-up period and the wake-up period.
  • the reference time is used to determine the starting point of the wake-up time, so that multiple devices in the communication system 10 can wake up at the same time point.
  • the reference time may be the power-on time of the central node device, a randomly generated time, a preset time, etc.
  • the embodiment of the present application does not limit the reference time.
  • the central node device sends the optimal wake-up cycle and the reference time to the sub-node devices through the distributed soft bus;
  • the central node device may send the optimal wake-up cycle and the reference time to one or more sub-node devices included in the communication system 10 through the distributed soft bus.
  • the sub-node device sends the optimal wake-up cycle and the reference time to the unified wake-up management module through the distributed soft bus;
  • the central node device and the sub-node devices calculate the optimal wake-up time according to the optimal wake-up period and the reference time, so that each device wakes up at the optimal wake-up time.
  • the central node device and sub-node devices can calculate the optimal wake-up time according to the following formula:
  • X is the optimal wake-up time
  • N ⁇ 0, 1, 2, 3... ⁇
  • T is the optimal wake-up period
  • Delta is the reference time
  • the central node device or the sub-node device can change the original wake-up time (also called: original wake-up time) according to the principle of nearest alignment, and unify it at the best wake-up time closest to the original wake-up time.
  • original wake-up time also called: original wake-up time
  • the central node device or the sub-node device can adjust the wake-up time according to the following formula:
  • Y is the optimal wake-up time after the wake-up alignment
  • X1 and X2 represent two adjacent optimal wake-up times
  • Z represents the original wake-up time
  • the original wake-up time Z and the optimal wake-up time X1 of the previous cycle point when the interval between the original wake-up time Z and the optimal wake-up time X1 of the previous cycle point is less than or equal to the interval between the original wake-up time Z and the optimal wake-up time X2 of the next cycle point, The original wake-up time can be changed to the optimal wake-up time X1 of the previous cycle point; when the interval between the original wake-up time Z and the optimal wake-up time X1 of the previous cycle point is greater than the interval between the original wake-up time Z and the next cycle point When the interval between the optimal wake-up time X2, the original wake-up time can be changed to the optimal wake-up time X2 of the next cycle point; when the original wake-up time Z is exactly on the optimal cycle X1, the original wake-up time will not be changed. That is to say, the principle of nearest alignment can be used to determine the wake-up time after wake-up alignment.
  • the original wake-up time Z and the optimal wake-up time X1 of the previous cycle point is equal to the interval between the original wake-up time Z and the optimal wake-up time X2 of the next cycle point
  • the original The wake-up time is changed to the optimal wake-up time of the next cycle point, which is not limited in this embodiment of the present application.
  • the following uses a specific example to explain the principle of adjusting the wake-up time of the central node device or the sub-node device.
  • FIG. 5 exemplarily shows a wake-up sequence diagram of a sub-node device and a central node device.
  • the central node device uses the power-on time point (09:02) of the central node device as the reference time, and sends 5 minutes as the optimal wake-up cycle to the child node device A, and the child node device A is based on the reference time and
  • the optimal wake-up period combined with the above formula 1, calculates multiple optimal wake-up times (such as 09:02, 09:07, 09:12, 09:17%), because there are three wake-up time points in child node device A A1, A2, and A3 are at 09:09, 09:12, and 09:15, respectively.
  • the best wake-up time between 09:09 and the last time is 09:07, combined with formula 2 to calculate 2 ⁇ 2.5, therefore, adjust the original wake-up time of A1 from 09:09 to 09:07; 09:12 and The last best wake-up time 09:12 is equal, therefore, the wake-up time of A2 is not changed.
  • the best wake-up time between 09:15 and the last time is 09:12, combined with formula 2 to calculate 3>2.5, then Y is 09:17, therefore, the original wake-up time at 09:15 is adjusted to the next cycle Point 09:17.
  • FIG. 6 shows a schematic flowchart of a wake-up alignment method provided by an embodiment of the present application.
  • the method includes:
  • the child node device sends a wake-up cycle to the central node device.
  • the central node device may refer to any device in the communication system 10
  • the sub-node device may refer to one or more devices in the communication system 10 except the central node device.
  • the central node device can establish communication connections with sub-node devices, and communication connections can also be established between sub-node devices.
  • the communication connection may be a wired connection or a wireless connection.
  • the wake-up cycle sent by the child node device may refer to the wake-up cycle of the child node device when the current alignment is not woken up.
  • the child node device can perform periodic heartbeat wakeup according to the wakeup cycle.
  • the central node device determines an optimal wake-up period according to the wake-up period.
  • the central node device may determine an optimal wake-up period according to the one or more wake-up periods.
  • the optimal wake-up period may be a common multiple, average number, maximum value, minimum value, etc. of the one or more wake-up periods and the wake-up period of the central node device.
  • the central node device obtains the wake-up period of the two sub-node devices as 5 minutes and 8 minutes, and the wake-up period of the central node device is 5 minutes.
  • the central node device can use the average number of wake-up periods as the optimal wake-up period.
  • the wake-up period is 6 minutes.
  • the wake-up period sent by the sub-node device to the central node may also refer to the first period
  • the optimal wake-up period determined by the central node device according to the first period may also refer to the second period
  • the sub-node device may specifically refers to the first sub-node device
  • the first sub-node device may refer to one or more devices in the communication system that perform wake-up alignment with the central node device.
  • the central node device sends the optimal wake-up cycle and the reference time to the child node devices.
  • the reference time is used to determine the starting point of the wake-up time, so that multiple devices in the communication system 10 can wake up at the same time point.
  • the reference time may be the power-on time of the central node device, a randomly generated time, a preset time, etc.
  • the embodiment of the present application does not limit the reference time.
  • the central node device and the sub-node devices adjust the wake-up time according to the optimal wake-up period and the reference time.
  • the electronic device can calculate the optimal wake-up time according to the optimal wake-up period and the reference time, and then adjust the original wake-up time in the electronic device according to the nearest alignment principle.
  • the electronic device may calculate the optimal wake-up time according to Formula 1, and the optimal wake-up time may include a plurality of periodically increasing values.
  • the electronic device can adjust the original wake-up time according to Formula 2. For example, taking the central node device as an example, assuming that the central node device originally had a heartbeat wake-up at 9:08, two optimal wake-up times were obtained based on the optimal wake-up cycle and the reference time: 9:05 and 9:10 , because 9:08 is closer to 9:10 than 9:05, according to the principle of nearest alignment, the central node device can change the heartbeat wake-up time to 9:10.
  • the wake-up methods include: non-real-time business wake-up, real-time business wake-up, and heartbeat wake-up
  • the electronic device does not change the original wake-up time of the real-time business wake-up.
  • the electronic device can adjust the original wake-up time of the wake-up according to the optimal wake-up cycle and the reference time.
  • the threshold may be half of the optimum wake-up period.
  • the child node device adjusts the original wake-up time to the first wake-up time, specifically, the child node device powers on the CPU at the first wake-up time, enters a working state, and communicates with other devices.
  • the sub-node device may be a first sub-node device, and the other device may be a second sub-node device and/or a central node device, wherein the central node device, the first sub-node device and the second sub-node device They are all located in the communication system 10 shown in FIG. 2 .
  • the original wake-up time of the sub-node device may include the first original wake-up time and the second original wake-up time, etc., and the sub-node device may adjust the first original wake-up time to the first Wake-up time, adjust the second original wake-up time to the second wake-up time and so on.
  • the central node device when the central node device has determined the optimal wake-up period according to the wake-up period, when one or more sub-node devices are added to the communication system 10, the central node device can obtain the newly added one or more sub-node devices The wake-up period, and re-determine the optimal wake-up period, and send it to all devices in the communication system 10.
  • the newly added sub-node device in the communication system 10 may be a third sub-node device, and the wake-up period of the third sub-node device may be the third period.
  • the central node device may re-determine an optimal wake-up cycle (for example, the fourth cycle) according to the third cycle and the previously received wake-up cycle (for example, the second cycle) of the sub-node device, and use the re-determined optimal
  • the wake-up period is sent to each sub-node device in the communication system 10, and each sub-node device can adjust the wake-up time according to the latest received optimal wake-up period.
  • the central node device when the central node device adjusts the wake-up time according to the optimal wake-up cycle and the reference time, the central node device can adjust the wake-up time after determining the optimal wake-up cycle and before sending the optimal wake-up cycle and reference time to the child node devices . That is to say, for the central node device, S104 may be performed before S103.
  • the wake-up alignment method can change the trigger time of wake-up, reduce frequent wake-ups between devices due to non-real-time services and heartbeat maintenance, optimize the power consumption overhead of devices in the communication system 10, and ensure The battery life of each device in the communication system 10 is improved, and at the same time, the normal execution of instant services can be guaranteed, and the normal operation of the device can be satisfied while the devices are woken up uniformly.
  • FIG. 7 exemplarily shows a schematic diagram of power consumption waveforms of devices before wake-up alignment and after wake-up alignment of multiple devices. From the waveform diagram on the left in Figure 7, it can be seen that there are dense waveform peaks in the diagram, that is to say, before multiple devices wake up and align, electronic devices have frequent wake-ups and the power consumption is relatively large.
  • the electronic device reduces the number of wake-up times, and uses a multiple of a wake-up cycle value as the wake-up interval time, reducing the power consumption of the electronic device.
  • FIG. 8 shows a schematic diagram of the hardware structure of the electronic device 100 involved in the embodiment of the present application.
  • the electronic device 100 can be a mobile phone, a bracelet, earphones, a large screen, a body fat scale, an air purifier, a smart speaker, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, Ultra-mobile personal computer (UMPC), netbook, and cellular phone, personal digital assistant (PDA), augmented reality (AR) device, virtual reality (VR) device , artificial intelligence (AI) equipment, wearable equipment, vehicle-mounted equipment, smart home equipment and/or smart city equipment, the embodiment of the present application does not specifically limit the specific type of the electronic equipment.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • AI artificial intelligence
  • wearable equipment wearable equipment
  • vehicle-mounted equipment smart home equipment and/or smart city equipment
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and A subscriber identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the wireless communication function of the electronic device 100 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, a baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves and radiate them through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the electronic device 100.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , demodulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the display screen 194 is used to display images, videos and the like.
  • Camera 193 is used to capture still images or video.
  • the internal memory 121 may include one or more random access memories (random access memory, RAM) and one or more non-volatile memories (non-volatile memory, NVM).
  • the external memory interface 120 can be used to connect an external non-volatile memory, so as to expand the storage capacity of the electronic device 100 .
  • the electronic device 100 can implement audio functions through the audio module 170 , the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • Speaker 170A also referred to as a "horn” is used to convert audio electrical signals into sound signals.
  • Receiver 170B also called “earpiece”, is used to convert audio electrical signals into sound signals.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the earphone interface 170D is used for connecting wired earphones.
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100 .
  • the air pressure sensor 180C is used to measure air pressure.
  • the magnetic sensor 180D includes a Hall sensor.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes).
  • the distance sensor 180F is used to measure the distance.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light through the light emitting diode.
  • the Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the temperature sensor 180J is used to detect temperature.
  • the touch sensor 180K is also called “touch device”.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the motor 191 can generate a vibrating reminder.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the mobile communication module 150 or the wireless communication module 160 can be used to receive the wake-up cycle of the child node device, and send the optimal wake-up cycle and the reference time to the child node device.
  • the processor 110 can be used to calculate the optimal wake-up period according to one or more wake-up periods, calculate the optimal wake-up time according to the optimal wake-up period and the reference time, determine whether to adjust the wake-up time, and to wake up.
  • the calculation principle of the optimal wake-up time, and the principle of adjusting the wake-up time please refer to the foregoing content, which will not be repeated here.
  • the internal memory 121 is used to store related instructions for calculating the wake-up time, and one or more wake-up cycles.
  • the mobile communication module 150 or the wireless communication module 160 can be used to send the wake-up cycle to the central node device, and receive the optimal wake-up cycle and the reference time sent by the central node device.
  • the processor 110 may be configured to calculate the optimal wake-up time according to the optimal wake-up period and the reference time, determine whether to adjust the wake-up time, and wake up according to the adjusted or unadjusted wake-up time.
  • the optimal wake-up time and the principle of adjusting the wake-up time please refer to the subtrahend content, which will not be repeated here.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Abstract

本申请公开了唤醒对齐方法、系统及相关装置,该方法涉及中心节点设备和子节点设备。在该方法中,中心节点设备可以获取子节点设备的唤醒周期,并根据该唤醒周期计算出最佳唤醒周期,之后,中心节点设备再将该最佳唤醒周期以及基准时间发送给子节点设备,子节点设备以及中心节点设备再根据该最佳唤醒周期以及基准时间确定最佳唤醒时间,并调整唤醒的唤醒时间,从而使通信系统中的各电子设备能够在统一的唤醒时间进行唤醒,避免电子设备因为工作节奏的不统一,出现频繁唤醒的情况,缩短电子设备的续航时长。

Description

唤醒对齐方法、系统及相关装置
本申请要求于2021年11月11日提交中国专利局、申请号为202111335345.9、申请名称为“唤醒对齐方法、系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端及通信技术领域,尤其涉及唤醒对齐方法、系统及相关装置。
背景技术
随着移动互联网的发展,应用的业务越来越复杂,特别是在物联网的大背景下,存在着多个电子设备之间的通信,应用的业务复杂度对电子设备的功耗开销带来了巨大的挑战。
在分布式网络中,因为电子设备的业务同步、数据收发等原因,存在电子设备间频繁的中断唤醒,而电子设备的频繁唤醒会增加耗电量,造成系统待机时间减少,也意味着系统会被频繁激活,CPU频繁处于高速运转状态,进而会增加电子设备的功耗。因此,如何控制电子设备的唤醒以减少系统能耗开销是目前亟待解决的问题。
发明内容
本申请提供了唤醒对齐方法、系统及相关装置,该唤醒对齐方法能够统一通信系统中各电子设备的工作节奏,使各电子设备能够在统一的唤醒时间进行唤醒,缩短电子设备的续航时长。
第一方面,本申请实施例提供了一种唤醒对齐方法,该方法应用于第一子节点设备,方法包括:第一子节点设备向中心节点设备发送第一周期,第一周期为第一子节点设备的唤醒周期;第一子节点设备接收到第二周期以及基准时间,第二周期由中心节点设备根据第一周期确定;第一子节点设备根据第二周期和基准时间,将第一子节点设备的第一原唤醒时间调整为第一唤醒时间,第一原唤醒时间与第一唤醒时间的差值不大于阈值,第一唤醒时间为基准时间,与,第二周期的N倍的和,N为大于等于0的整数。
实施第一方面的方法,子节点设备可以根据中心节点设备发送的最佳唤醒周期,即第二周期,调整其唤醒时间,使子节点设备能够在统一的唤醒时间上进行唤醒,另外,调整后的唤醒时间与原唤醒的时间的差值较小,能够尽可能地降低子节点设备的唤醒时间的调整幅度,减少唤醒时间的调整对子节点设备的工作的影响。
结合第一方面,阈值为第二周期的二分之一。
这里,阈值为第二周期的二分之一是指第一唤醒时间为按照就近原则计算获得的唤醒时间,因为第一唤醒时间=基准时间+第二周期*N,当N值不同时,第一唤醒时间不同,当第一唤醒时间与第一原唤醒时间的差值不大于第二周期的二分之一,则说明该第一唤醒时间最靠近第一原唤醒时间。这样,可以尽可能地保证唤醒时间调整的幅度最小,避免影响设备原来的业务。
结合第一方面,第一子节点设备将第一子节点设备的唤醒时间调整为第一唤醒时间,具体包括:第一子节点设备在第一唤醒时间和第二子节点设备和/或中心节点设备通信。
也就是说,子节点设备的唤醒具体为子节点设备在到达唤醒时间时与其他设备进行通信,这里的其他设备可以是指中心节点设备或其他子节点设备。
结合第一方面,第一子节点设备在第一唤醒时间和第二子节点设备通信之前,方法还包括:第一子节点设备在第一唤醒时间对CPU进行上电。
在子节点设备唤醒前,该子节点设备可能处于休眠状态,当子节点设备需要与其他设备通信时,子节点设备需要对CPU进行上电,使自身从休眠状态切换到工作状态。
结合第一方面,第一子节点设备的唤醒为心跳唤醒或非实时业务唤醒。
这里,唤醒可以包括心跳唤醒、非实时业务唤醒和实时业务唤醒。而本申请实施例提供的唤醒对齐方法只更改心跳唤醒和非实时业务唤醒的唤醒时间,这是因为实时业务唤醒是即时性的业务触发的唤醒,为了保证即时性业务的及时正常执行,不更改该即时性业务的唤醒时间。
结合第一方面,第二周期为第一周期与中心节点设备的唤醒周期中的最大值、最小值、平均值或公倍数。
结合第一方面,第一子节点设备根据第二周期以及基准时间,将第一子节点设备的唤醒时间调整为第一唤醒时间之后,方法还包括:第一子节点设备接收到第四周期,第四周期为中心节点设备根据第一周期以及第三子节点设备的第三周期确定,第三周期为第三子节点设备的唤醒周期;第一子节点设备根据第四周期重新调整第一子节点设备的唤醒时间。
也就是说,当通信系统中新增子节点设备时,可以重新更改之前通信系统中确定的最佳唤醒周期,保证更改后的最佳唤醒周期能够统一新增子节点设备后的通信系统中各个电子设备的唤醒周期。之后,子节点设备可以根据更改后的最佳唤醒周期重新调整还未触发的唤醒的唤醒时间。
第二方面,本申请实施例提供一种唤醒对齐方法,该方法应用于中心节点设备,方法包括:中心节点设备接收到第一子节点设备的第一周期,第一周期为第一子节点设备的唤醒周期;中心节电设备根据第一周期确定第二周期;中心节点设备将第二周期以及基准时间发送给第一子节点设备。
实施第二方面提供的方法,为了统一包含多个设备的通信系统中各个设备的唤醒时间,可以由一个中心节点设备接收通信系统中一个或多个子节点的唤醒周期,从而根据这些唤醒周期确定出一个统一的最佳唤醒周期,即第二周期,帮助通信系统中的各设备根据该统一的最佳唤醒周期进行唤醒,减少各设备的唤醒次数或工作时间,降低电子设备的耗电量。
结合第二方面,第一子节点设备的唤醒为心跳唤醒或非实时业务唤醒。
这里,唤醒可以包括心跳唤醒、非实时业务唤醒和实时业务唤醒。而本申请实施例提供的唤醒对齐方法只更改心跳唤醒和非实时业务唤醒的唤醒时间,这是因为实时业务唤醒是即时性的业务触发的唤醒,为了保证即时性业务的及时正常执行,不更改该即时性业务的唤醒时间,保证电子设备的正常运行。
结合第二方面,第二周期为第一周期与中心节点设备的唤醒周期中的最大值、最小值、平均值或公倍数。
结合第二方面,该方法还包括:中心节点设备接收到第三子节点设备的第三周期,第三周期为第三子节点设备的唤醒周期;中心节点设备根据第三周期以及第一周期确定第四周期;中心节点设备将第四周期发送给第一子节点设备和第三子节点设备。
也就是说,当通信系统中新增子节点设备时,中心节点设备可以获取该新增子节点设备的唤醒周期,重新更改最佳唤醒周期,保证更改后的最佳唤醒周期能够统一新增子节点设备 后的通信系统中各个电子设备的唤醒周期。
结合第二方面,中心节点设备将第二周期以及中心节点设备的基准时间发送给第一子节点设备之前,方法还包括:中心节点设备在中心节点设备的唤醒时间中,选择和当前时间最接近的唤醒时间作为基准时间。
也就是说,中心节点设备可以选择与自身存在的唤醒时间中最近的唤醒时间作为基准时间发送给各个子节点设备,使各子节点设备能够将该基准时间作为调整后的唤醒时间的基准来调整唤醒时间,使统一后的唤醒时间尽可能地接近中心节点设备原本的唤醒时间。
在一些实施例中,该基准时间还可以是指中心节点设备的开机时间、随机生成的时间、预设的时间等等。
结合第二方面,该中心节点设备可以根据该第二周期以及基准时间调整中心节点设备的原唤醒时间。
也就是说,中心节点设备也可以根据该统一的最佳唤醒周期来调整其原来的唤醒时间,使中心节点设备也可以与子节点设备在统一的唤醒时间进行唤醒。
第三方面,本申请实施例提供了一种唤醒对齐方法,该方法应用于包括第一子节点设备和中心节点设备的通信系统,方法包括:第一子节点设备向中心节点设备发送第一周期,第一周期为第一子节点设备的唤醒周期;中心节点设备接收到第一子节点设备的第一周期;中心节点设备根据第一周期确定第二周期;中心节点设备将第二周期以及中心节点设备的基准时间发送给第一子节点设备;第一子节点设备根据第二周期以及基准时间,将第一子节点设备的第一原唤醒时间调整为第一唤醒时间,第一原唤醒时间与第一唤醒时间的差值不大于阈值,第一唤醒时间为基准时间,与,第二周期的N倍的和,N为大于等于0的整数。
实施第三方面的方法,通信系统中的各设备能够根据统一的最佳唤醒周期调整各自的唤醒时间,保证各设备在统一的唤醒时间进行唤醒,并且,各设备在按照最佳唤醒周期调整各自的唤醒时间的同时,尽量保证调整后的唤醒时间与原来的唤醒时间的差距较小,尽量减少各设备唤醒时间调整的幅度,减少唤醒时间的调整对各设备工作的影响。
需要注意的是,通信系统中可以包含一个中心节点设备,一个或多个子节点设备,该第一子节点设备即为该通信系统中的一个子节点设备,中心节点设备和子节点设备都可以根据该最佳唤醒周期和基准时间调整唤醒时间,并且,各设备调整后的周期性唤醒的唤醒间隔不一定相等,例如,一个设备的唤醒间隔为2T,另一个设备的唤醒间隔为3T,其中,T表示最佳唤醒周期。
结合第三方面,阈值为第二周期的二分之一。
这里,阈值为第二周期的二分之一是指第一唤醒时间为按照就近原则计算获得的唤醒时间,因为第一唤醒时间=基准时间+第二周期*N,当N值不同时,第一唤醒时间不同,当第一唤醒时间与第一原唤醒时间的差值不大于第二周期的二分之一,则说明该第一唤醒时间最靠近第一原唤醒时间。这样,可以尽可能地保证唤醒时间调整的幅度最小,避免影响设备原来的业务。
结合第三方面,第一子节点设备将第一子节点设备的第一原唤醒时间调整为第一唤醒时间,具体包括:第一子节点设备在第一唤醒时间和第二子节点设备和/或中心节点设备通信。
也就是说,子节点设备的唤醒具体为子节点设备在到达唤醒时间时与其他设备进行通信,这里的其他设备可以是指中心节点设备或其他子节点设备。
结合第三方面,第一子设备在第一唤醒时间和第二子设备通信之前,方法还包括:第一子设备在第一唤醒时间对CPU进行上电。
在子节点设备唤醒前,该子节点设备可能处于休眠状态,当子节点设备需要与其他设备通信时,子节点设备需要对CPU进行上电,使自身从休眠状态切换到工作状态。
结合第三方面,第一子节点设备的唤醒为心跳唤醒或非实时业务唤醒。
这里,唤醒可以包括心跳唤醒、非实时业务唤醒和实时业务唤醒。而本申请实施例提供的唤醒对齐方法只更改心跳唤醒和非实时业务唤醒的唤醒时间,这是因为实时业务唤醒是即时性的业务触发的唤醒,为了保证即时性业务的及时正常执行,不更改该即时性业务的唤醒时间。
结合第三方面,第二周期为第一周期与中心节点设备的唤醒周期中的最大值、最小值、平均值或公倍数。
结合第三方面,通信系统还包括第三子节点设备;第一子节点设备根据第二周期以及基准时间,将第一子节点设备的唤醒时间调整为第一唤醒时间之后,方法还包括:中心节点设备接收到第三子节点设备的第三周期,第三周期为第三子节点设备的唤醒周期;中心节点设备根据第三周期以及第一周期确定第四周期;中心节点设备将第四周期发送给第一子节点设备和第三子节点设备;第一子节点设备根据第四周期重新调整第一子节点设备的唤醒时间,第三子节点设备根据第四周期重新调整第三子节点设备的唤醒时间。
也就是说,当通信系统中新增子节点设备时,可以重新更改之前通信系统中确定的最佳唤醒周期,保证更改后的最佳唤醒周期能够统一新增子节点设备后的通信系统中各个电子设备的唤醒周期。各子节点设备可以根据更改后的最佳唤醒周期重新调整还未触发的唤醒的唤醒时间,保证各设备的唤醒节奏为根据所有设备原本的唤醒节奏计算得到的。
中心节点设备将第二周期以及中心节点设备的基准时间发送给第一子节点设备之前,方法还包括:中心节点设备在中心节点设备的唤醒时间中,选择和当前时间最接近的唤醒时间作为基准时间。
也就是说,中心节点设备可以选择与自身存在的唤醒时间中最近的唤醒时间作为基准时间发送给各个子节点设备,使各子节点设备能够将该基准时间作为调整后的唤醒时间的基准来调整唤醒时间,使统一后的唤醒时间尽可能地接近中心节点设备原本的唤醒时间。
在一些实施例中,该基准时间还可以是指中心节点设备的开机时间、随机生成的时间、预设的时间等等。
结合第二方面,该中心节点设备可以根据该第二周期以及基准时间调整中心节点设备的原唤醒时间。
也就是说,中心节点设备也可以根据该统一的最佳唤醒周期来调整其原来的唤醒时间,使中心节点设备也可以与子节点设备在统一的唤醒时间进行唤醒。
第四方面,本申请实施例提供了一种电子设备,包括存储器,一个或多个处理器,以及一个或多个程序;一个或多个处理器在执行一个或多个程序时,使得电子设备实现第一方面或第一方面的任意一种实施方式、第二方面或第二方面的任意一种实施方式中的方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当指令在电子设备上运行时,使得电子设备执行第一方面或第一方面的任意一种实施方式、第二方面或第二方面的任意一种实施方式中的方法。
第六方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面或第一方面的任意一种实施方式、第二方面或第二方面的任意一种实施方式中的方法。
实施本申请实施例提供的技术方案,能够统一通信系统中各个电子设备的工作节奏,更改各 设备唤醒的触发时间,减少设备间的频繁唤醒,优化通信系统中各设备的功耗开销,保证了通信系统中各设备的续航能力。
附图说明
图1为本申请实施例涉及的通信系统10的结构示意图;
图2为本申请实施例提供的唤醒对齐系统的结构示意图;
图3为本申请实施例提供的唤醒对齐系统中各电子设备的唤醒时序图;
图4为本申请实施例提供的唤醒对齐系统的软件结构示意图;
图5为本申请实施例提供的子节点设备和中心节点设备的唤醒时序图;
图6为本申请实施例提供的唤醒对齐方法的流程示意图;
图7为本申请实施例提供的多设备唤醒对齐前和唤醒对齐后的设备的功耗波形示意图;
图8为本申请实施例提供的电子设备100的硬件结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1示出了本申请实施例涉及的通信系统10的结构示意图。
如图1所示,通信系统10可以为分布式网络组成的通信系统,该通信系统10包括多个电子设备,该电子设备可以为手机、手表、大屏、耳机、音箱、空气净化器、手环、牙刷、体脂秤等等,在这个通信系统中,这多个电子设备之间可以建立通信连接,进行数据收发和业务同步等等,例如,图1示例性示出了手机可以与手环、耳机、体脂称、大屏、音箱、空气净化器等设备建立通信连接,手环又可以和大屏、手机、耳机、体脂秤等设备建立通信连接,该通信连接可以为有线连接、无线连接。
具体地,无线连接可以是高保真无线通信(Wi-Fi)连接、蓝牙连接、红外线连接、NFC连接、ZigBee连接等近距离连接。以手机和体脂秤的通信过程为例,体脂秤可以通过近距离连接将体脂秤采集到的数据(例如,体重、体脂率、肌肉含量等)发送给手机,之后,手机可以根据这些数据分析用户的身体状况。另外,无线连接还可以是远距离连接,远距离连接包括但不限于支持2G,3G,4G,5G以及后续标准协议的移动网络。例如,多个电子设备可以登录同一用户账号(例如华为账号),然后通过服务器进行远距离连接。
在该通信系统10中,为了节约电子设备的功耗,在电子设备不存在数据收发和业务同步等工作进程时,电子设备往往会进入休眠状态,在该电子设备需要与该通信系统10中的其他电子设备进行通信时,再对该电子设备进行唤醒。那么,在这种情况下,由于该通信系统10中存在多个电子设备之前的通信,各个电子设备之间的工作节奏不同,则一个电子设备可能会存在频繁唤醒,从而使电子设备的中央处理器(central processing unit,CPU)频繁进入高 速运转状态,或者使电子设备长期处于工作状态,反而增加了电子设备的功耗,加大了电子设备的耗电量。
需要注意的是,通信系统10中的电子设备的类型不限于上述提及的手机、手表、大屏、耳机、音箱、空气净化器、手环、牙刷、体脂秤等等生态设备,本申请实施例不限制通信系统10中的电子设备的类型。
为了减少电子设备的功耗,一种解决方法是使用对齐唤醒机制。
对齐唤醒机制相当于在进程中设置一个定时器,当时间到达定时器指定的时间时,向进程发送唤醒进程的信号。这样可以通过控制电子设备唤醒的时间来避免电子设备频繁唤醒的情况,从而减少电子设备的功耗。但是,该对齐唤醒机制仅适用于单设备的唤醒,覆盖不了通信系统10中与其他电子设备的通信而引起的唤醒情况,换句话说,该对齐唤醒机制无法统一通信系统10中各个电子设备的工作节奏。
因此,如何统一唤醒通信系统10中的各个电子设备是目前亟待解决的问题。
本申请实施例提供一种唤醒对齐方法,该方法涉及中心节点设备和子节点设备,在该方法中,中心节点设备获取子节点设备的唤醒周期,并根据该唤醒周期计算出最佳唤醒周期,之后,中心节点设备再将该最佳唤醒周期以及基准时间发送给子节点设备,子节点设备以及中心节点设备再根据该最佳唤醒周期以及基准时间确定最佳唤醒时间,并调整唤醒时间,从而使得通信系统中的各电子设备在统一的唤醒时间进行唤醒,避免电子设备因为工作节奏的不统一,出现频繁唤醒的情况,缩短电子设备的续航时长,减少通信系统的能耗开销。
中心节点设备和子节点设备都为图1所示的通信系统10中的电子设备。其中,中心节点设备的数量为一个,子节点设备的数量为一个或多个。也就是说,中心节点设备可以收集一个或多个子节点设备的唤醒周期,并根据这一个或多个唤醒周期计算出一个适用于多个子节点设备以及中心节点设备的最佳唤醒周期。
另外,在通信系统10中的电子设备获得最佳唤醒周期以及基准时间后,电子设备可以根据根据该最佳唤醒时间以及基准时间确定最佳唤醒时间,并根据就近对齐原则调整原本的唤醒时间,使电子设备能够在指定的统一的时间进行唤醒。具体关于最佳唤醒时间的确定以及唤醒时间的调整可以参见后续内容,这里先不赘述。
其中,电子设备的唤醒方式包括但不限于以下两种:
(1)业务唤醒
业务唤醒为业务触发的唤醒。业务唤醒可以为电子设备自身存在需要执行的业务时,电子设备进行的主动唤醒,也可以为电子设备存在跨设备业务时,其他电子设备触发的被动唤醒。例如,业务唤醒可以为一个电子设备需要向另一个电子设备发送数据同步消息时,触发的另一个电子设备的唤醒。
其中,业务唤醒包括:非实时业务唤醒、实时业务唤醒。非实时业务唤醒为非即时性的业务触发的唤醒,例如,该非即时性的业务可以是指更新数据。也就是说,针对非实时业务唤醒,电子设备可以更改非实时业务的唤醒时间,例如,电子设备可以延迟一段时间进行非实时业务唤醒。实时业务唤醒为即时性的业务触发的唤醒,例如,该即时性的业务可以是指两个设备之间建立的语音通话业务。也就是说,针对实时业务唤醒,电子设备不能更改实时业务的唤醒时间,电子设备需要在实时业务指定的唤醒时间进行唤醒。
(2)心跳唤醒
心跳唤醒为设备之间为了维持通信而触发的周期性唤醒。也就是说,心跳唤醒存在一个唤醒周期,电子设备会根据该唤醒周期进行周期性的心跳唤醒。
在本申请实施例中,电子设备会在接收到最佳唤醒周期后,根据该最佳唤醒周期进行周期性的心跳唤醒,并将非实时业务唤醒的唤醒时间更改为:电子设备进行周期性的心跳唤醒时最近的心跳唤醒的唤醒时间,不更改实时业务唤醒的唤醒时间。这样,可以在保证即时性业务和非即时性业务的正常执行的前提下,尽量减少电子设备唤醒的次数。
图2示例性示出了本申请实施例提供的唤醒对齐系统的结构示意图。
如图2所示,该唤醒对齐系统可以包含通信系统10中的部分或全部电子设备。具体地,该唤醒对齐系统包括中心节点设备和子节点设备。其中,中心节点设备的数量为一个,子节点设备的数量为一个或多个。图2示出了子节点设备包括:子节点设备A、子节点设备B、子节点设备C这三个电子设备。
在图2所示的唤醒对齐系统中,中心节点设备用于接收子节点设备A-C的唤醒周期,并根据该三个子节点设备的唤醒周期计算出适用于中心节点设备和子节点设备A-C的最佳唤醒周期,之后,中心节点设备再将最佳唤醒周期以及基准时间发送给子节点设备A-C。子节点设备A-C用于将各自的唤醒周期发送给中心节点设备,接收中心节点设备发送的最佳唤醒时间以及基准时间。另外,中心节点设备以及子节点设备A-C都可以根据该最佳唤醒时间以及基准时间计算出最佳唤醒时间,并调整各自电子设备中原本的唤醒时间。具体地,中心节点设备以及子节点设备A-C可以根据就近对齐原则调整心跳唤醒以及非实时业务唤醒的唤醒时间,不调整实施业务唤醒的原本的唤醒时间。
需要注意的是,中心节点设备可以为通信系统10中的任意一个设备,子节点设备可以为通信系统10中除去中心节点设备之外的任意一个或多个设备,子节点设备的数量不限于图2所示的唤醒对齐系统中的三个。唤醒对齐系统中的电子设备之间存在跨设备的业务唤醒,或者存在为了保持设备间的通信而存在的心跳唤醒。其中,可以根据设备的性能来选取中心节点设备,例如,中心节点设备可以为唤醒对齐系统中性能最好的设备,或者,可以根据设备的业务情况选取中心节点设备,例如,中心节点设备可以为唤醒对齐系统中业务最少的设备。除去确定好的中心节点设备,唤醒对齐系统中的其余设备即为子节点设备。可以理解的是,本申请实施例对中心节点设备的选取不做限制。
图3示例性示出了唤醒对齐系统中各电子设备的唤醒时序图。
在多设备唤醒对齐前,即各电子设备根据各自的业务节奏进行唤醒时,各电子设备可能存在频繁的唤醒。如图3所示,在多设备唤醒对齐前,中心节点设备存在Q1-Q4这四次唤醒,Q1为实时业务唤醒,Q2为非实时业务唤醒,Q3、Q4为心跳唤醒。子节点设备A存在A1-A3这三次唤醒,A1、A2为心跳唤醒,A3为非实时业务唤醒。子节点设备B存在B1-B4这四次唤醒,B1、B4为心跳唤醒,B2、B3为非实时业务唤醒,子节点设备C存在C1-C3这三次唤醒,C1为非实时业务唤醒,C2为心跳唤醒,C3为实时业务唤醒。其中,中心节点设备的非实时业务唤醒Q2与子节点设备B的非实时业务唤醒B2为同一个跨设备业务引起的这两个设备的同时唤醒,子节点设备A的非实时业务唤醒A3和子节点设备B的非实时业务唤醒B3为同一个跨设备业务引起的这两个设备的同时唤醒。
可以看出,由于一个电子设备唤醒时,可能会存在通信系统10中另一个电子设备同时唤醒或者处于工作状态,例如中心节点设备的非实时业务唤醒Q2以及子节点设备B的非实时业务唤醒B2即为同一个业务引起的两个设备的同时唤醒。并且,由于各电子设备的唤醒节奏不同,可能会导致中心节点设备或子节点设备存在频繁唤醒或者长期处于工作状态,例如,中心节点设备在第一时刻存在实时业务唤醒Q1后,处理完该实时业务后又回到休眠状态,但在第二时刻,又由于与子节点设备B的跨设备业务进程,触发非实时业务唤醒Q2,从而造 成中心节点设备的功耗较大。
为了统一唤醒对齐系统中各设备的唤醒节奏,中心节点设备可以向子节点设备A-C发送最佳唤醒周期以及基准时间,以供子节点设备A-C计算出周期性的最佳唤醒时间,并按照就近对齐的原则,更改唤醒对齐系统中,各设备原本的唤醒时间,使各设备在统一的时间点上唤醒。
在多设备唤醒对齐后,中心节点设备以及子节点设备A-C按照统一的唤醒时间进行心跳唤醒以及非实时业务唤醒,同时不改变实时业务唤醒的唤醒时间。如图3所示,在多设备唤醒对齐后,中心节点设备在原来的T 1时间点进行实时业务唤醒Q1,在2T时间点进行一次唤醒,该唤醒包括了非实时业务唤醒Q2以及心跳唤醒Q3,在3T时间点进行心跳唤醒Q4。子节点设备A在T时间点进行心跳唤醒A1,在2T时间点进行心跳唤醒A2,在3T时间点进行非实时业务唤醒A3。子节点设备B在T时间点进行心跳唤醒B1,在2T时间点进行非实时业务唤醒B2,在3T时间点进行一次唤醒,该唤醒包括心跳唤醒B3和非实时业务唤醒B4。子节点设备C在T时间点进行非实时业务唤醒C1,在3T时间点进行心跳唤醒C2,在原来的T 2时间点进行实时业务唤醒。
可以看出,中心节点设备和子节点设备可以在统一的周期时间点上进行唤醒,例如,原本中心节点设备需要在两个不同的时间点触发非实时业务唤醒Q2和心跳唤醒Q3,在多设备唤醒对齐后,中心节点设备可以仅唤醒一次,完成与其他设备保持连接的心跳唤醒,以及与子节点设备B的非实时业务的通信所需的非实时业务唤醒。这样,可以减少电子设备的唤醒次数或工作时间,降低电子设备的耗电量。
另外,需要注意的是,在多设备唤醒对齐后,各电子设备调整后的唤醒周期不一定相同,也不一定等于统一后的最佳唤醒周期。具体地,电子设备调整后的唤醒周期可以为最佳唤醒周期的M倍,其中,M为正整数。例如,假设最佳唤醒周期为5min,存在两个子节点设备:设备A和设备B,设备A可以将心跳唤醒的唤醒周期调整为10min,设备B可以将心跳唤醒的唤醒周期调整为15min。
图4示例性示出了唤醒对齐系统的软件结构示意图。
如图4所示,该唤醒对齐系统包括中心节点设备和子节点设备。中心节点设备以及子节点设备都包括统一唤醒管理模块以及分布式软总线。需要注意的时,图4仅示出了一个子节点设备与中心节点设备的交互过程,该唤醒对齐系统可以包括多个子节点设备,其他子节点设备与中心节点设备的交互过程与图4所示的交互过程一致。
在中心节点设备中,分布式软总线用于接收其他设备发送的唤醒周期,以及向其他设备发送最佳唤醒周期、基准时间;统一唤醒模块用于获取本设备的基准时间,以及根据其他设备的唤醒周期以及本设备的唤醒周期计算出最佳唤醒周期,并根据该最佳唤醒周期以及基准时间确定对齐后的最佳唤醒时间,以供中心节点设备根据对齐后的最佳唤醒时间进行唤醒。
在子节点设备中,分布式软总线用于向中心节点设备发送唤醒周期,以及接收中心节点设备发送的最佳唤醒周期、基准时间;统一唤醒模块用于根据最佳唤醒周期以及基本时间确定对齐后的最佳唤醒时间,以供子节点设备根据对齐后的最佳唤醒时间进行唤醒。
如图4所示,在具体实现中,唤醒对齐系统对齐唤醒时间主要涉及以下六个步骤:
(1)子节点设备通过分布式软总线向中心节点设备发送唤醒周期;
其中,唤醒周期为子节点设备在唤醒对齐前,使用的唤醒周期,各子节点设备可以根据该唤醒周期进行周期性的心跳唤醒。
当子节点设备包含多个设备时,中心节点设备可以获得多个设备的唤醒周期。该多个设 备可以是指通信网络中除中心节点设备外所有的子节点设备,或者,该多个设备可以是指通信系统10中除中心节点设备外的部分子节点设备,其中,该部分子节点设备可以为当前需要与通信系统10中的其他设备通信的设备,或者,处于工作状态的设备。
(2)中心节点设备通过分布式软总线将唤醒周期发送给统一唤醒管理模块;
具体地,中心节点设备可以通过分布式软总线,将一个或多个子节点设备的唤醒周期发送给中心节点设备中的统一唤醒管理模块。
(3)中心节点设备通过统一唤醒管理模块获得最佳唤醒周期以及基准时间,并将其发送给分布式软总线;
中心节点设备中的统一唤醒管理模块可以根据接收到的一个或多个唤醒周期,以及中心节点设备的唤醒周期计算出一个最佳唤醒周期。该最佳唤醒周期可以为中心节点设备以及子节点设备的唤醒周期的平均数、公倍数、最小值、最大值等等,本申请实施例对该最佳唤醒周期与唤醒周期的关系不作限制。
基准时间用于确定唤醒时间的起点,使通信系统10中的多个设备能够在同一时间点进行唤醒。该基准时间可以为中心节点设备的开机时间、随机生成的时间、预设的时间等等,本申请实施例对该基准时间不作限制。
(4)中心节点设备通过分布式软总线将最佳唤醒周期以及基准时间发送给子节点设备;
具体地,中心节点设备可以通过分布式软总线,将最佳唤醒周期以及基准时间发送给通信系统10中包含的一个或多个子节点设备。
(5)子节点设备通过分布式软总线将最佳唤醒周期以及基准时间发送给统一唤醒管理模块;
(6)中心节点设备以及子节点设备根据最佳唤醒周期以及基准时间计算最佳唤醒时间,使得各设备在最佳唤醒时间进行唤醒。
中心节点设备以及子节点设备可以根据以下公式计算最佳唤醒时间:
X=N*T+Delta   公式1
其中,X为最佳唤醒时间,N={0,1,2,3……},T为最佳唤醒周期,Delta为基准时间。
可以看出,当N取不同的值时,计算得到的最佳唤醒时间不同。中心节点设备或子节点设备可以根据就近对齐的原则,更改原来的唤醒时间(也称:原唤醒时间),将其统一在与原唤醒时间距离最近的最佳唤醒时间上。
在具体实现中,针对一次唤醒,中心节点设备或者子节点设备可以根据以下公式调整该唤醒的时间:
Figure PCTCN2022129213-appb-000001
其中,Y为该唤醒对齐后的最佳唤醒时间,X1和X2表示两个相邻的最佳唤醒时间,Z表示原唤醒时间,Z与X1、X2的关系可以表示为(N 1*T+Delta)=X1≤Z<((N 1+1)*T+Delta)=X2,N1∈N。
从公式2可以看出,当原唤醒时间Z与上一个周期点的最佳唤醒时间X1的间隔,小于或等于,该原唤醒时间Z与下一个周期点的最佳唤醒时间X2的间隔时,可以将原唤醒时间更改为上一个周期点的最佳唤醒时间X1;当原唤醒时间Z与上一个周期点的最佳唤醒时间X1的间隔,大于,该原唤醒时间Z与下一个周期点的最佳唤醒时间X2的间隔时,可以将原唤醒时间更改为下一个周期点的最佳唤醒时间X2;当原唤醒时间Z恰好位于最佳周期间X1上时,则不更改原唤醒时间。也即是说,可以采用就近对齐的原则来确定唤醒对齐后的唤醒 时间。
需要注意的是,当原唤醒时间Z与上一个周期点的最佳唤醒时间X1的间隔,等于,该原唤醒时间Z与下一个周期点的最佳唤醒时间X2的间隔时,也可以将原唤醒时间更改为下一个周期点的最佳唤醒时间,本申请实施例对此不作限制。
下面以一个具体的例子来解释中心节点设备或者子节点设备调整唤醒时间的原理。
图5示例性示出了子节点设备与中心节点设备的唤醒时序图。
如图5所示,中心节点设备将中心节点设备的开机时间点(09:02)作为基准时间,将5分钟作为最佳唤醒周期发送给子节点设备A,子节点设备A根据该基准时间以及最佳唤醒周期,结合上述公式1计算出多个最佳唤醒时间(如09:02、09:07、09:12、09:17……),由于子节点设备A原本存在三个唤醒时间点A1、A2、A3,分别在09:09、09:12、09:15。其中,09:09与上一次最近的最佳唤醒时间为09:07,结合公式2计算得出2≤2.5,因此,将A1原本的唤醒时间09:09调整到09:07;09:12与上一次最近的最佳唤醒时间09:12相等,因此,不改变A2的唤醒时间。09:15与上一次最近的最佳唤醒时间为09:12,结合公式2计算得出3>2.5,则Y为09:17,因此,将原本在09:15的唤醒时间调整到下一个周期点09:17。
图6示出了本申请实施例提供的唤醒对齐方法的流程示意图。
如图6所示,该方法包括:
S101.子节点设备向中心节点设备发送唤醒周期。
中心节点设备可以是指通信系统10中的任意一个设备,子节点设备可以是指通信系统10中除去中心节点设备外的一个或多个设备。
其中,中心节点设备可以与子节点设备建立通信连接,子节点设备之间也可以建立通信连接。该通信连接可以为有线连接、无线连接,具体关于该通信连接的描述可以参见前述内容,这里不再赘述。
子节点设备发送的唤醒周期可以是指当前未唤醒对齐时,子节点设备的唤醒周期。子节点设备可以根据该唤醒周期进行周期性地心跳唤醒。
S102.中心节点设备根据唤醒周期确定最佳唤醒周期。
中心节点设备在接收到一个或多个子节点设备发送的唤醒周期后,可以根据该一个或多个唤醒周期确定出最佳唤醒周期。其中,该最佳唤醒周期可以为这一个或多个唤醒周期以及中心节点设备的唤醒周期的公倍数、平均数、最大值、最小值等等。例如,中心节点设备获取到两个子节点设备的唤醒周期为5分钟、8分钟,中心节点设备的唤醒周期为5分钟,中心节点设备可以将唤醒周期的平均数作为最佳唤醒周期,则最佳唤醒周期为6分钟。
示例性地,子节点设备向中心节点发送的唤醒周期还可以是指第一周期,中心节点设备根据第一周期确定的最佳唤醒周期还可以是指第二周期,该子节点设备该可以具体是指第一子节点设备,该第一子节点设备可以是指通信系统中与中心节点设备进行唤醒对齐的其中一个或多个设备。
S103.中心节点设备将最佳唤醒周期以及基准时间发送给子节点设备。
基准时间用于确定唤醒时间的起点,使通信系统10中的多个设备能够在同一时间点进行唤醒。该基准时间可以为中心节点设备的开机时间、随机生成的时间、预设的时间等等,本申请实施例对该基准时间不作限制。
S104.中心节点设备和子节点设备根据最佳唤醒周期以及基准时间调整唤醒时间。
这里,由于中心节点设备与子节点设备的执行过程相同,下面以电子设备统一指代中心节点设备和子节点设备。
具体地,电子设备可以根据最佳唤醒周期以及基准时间计算出最佳唤醒时间,之后,再根据就近对齐原则,调整电子设备中的原本的唤醒时间。
其中,电子设备可以根据公式1计算出最佳唤醒时间,该最佳唤醒时间可以包含多个周期性递增的数值。电子设备可以根据公式2调整原唤醒时间。例如,以中心节点设备为例,假设中心节点设备原本存在一个心跳唤醒在9点08分,根据最佳唤醒周期以及基准时间计算获得两个最佳唤醒时间:9点05分和9点10分,由于9点08分距离9点10分比距离9点05分近,根据就近对齐的原则,中心节点设备可以将该心跳唤醒的时间更改到9点10分。
另外,由于唤醒方式包括:非实时业务唤醒、实时业务唤醒、心跳唤醒,当电子设备中原本的唤醒为实时业务唤醒时,电子设备不更改该实时业务唤醒原本的唤醒时间,当电子设备中原本的唤醒为实时业务唤醒或心跳唤醒时,电子设备可以根据最佳唤醒周期以及基准时间调整该唤醒原本的唤醒时间。
具体地,在子节点设备根据最佳唤醒时间以及基准时间调整唤醒时间的过程中,子节点设备可以将原唤醒时间调整为第一唤醒时间,该原唤醒时间与第一唤醒时间的差值不大于阈值,其中,第一唤醒时间=基准时间+最佳唤醒周期*N,N≥0。示例性地,该阈值可以为最佳唤醒周期的二分之一。另外,子节点设备将原唤醒时间调整为第一唤醒时间,具体为子节点设备在第一唤醒时间对CPU进行上电,进入工作状态,与其他设备进行通信。示例性地,该子节点设备可以为第一子节点设备,该其他设备可以为第二子节点设备和/或中心节点设备,其中,中心节点设备、第一子节点设备和第二子节点设备均位于如图2所示通信系统10中。
另外,子节点设备或中心节点设备可以存在多个原唤醒时间。示例性地,子节点设备的原唤醒时间可以包括第一原唤醒时间和第二原唤醒时间等等,子节点设备可以根据该最佳唤醒时间以及基准时间将第一原唤醒时间调整为第一唤醒时间,将第二原唤醒时间调整为第二唤醒时间等等。
在一些实施例中,当中心节点设备已经根据唤醒周期确定了最佳唤醒周期,当通信系统10中新增一个或多个子节点设备,中心节点设备可以获取这新增的一个或多个子节点设备的唤醒周期,并重新确定最佳唤醒周期,发送给通信系统10中的所有设备。示例性地,通信系统10中新增的子节点设备可以为第三子节点设备,该第三子节点设备的唤醒周期可以为第三周期,在中心节电设备已确定最佳唤醒周期之后,中心节点设备可以根据该第三周期和之前接收到的子节点设备的唤醒周期(例如第二周期),重新确定一个最佳唤醒周期(例如,第四周期),并将该重新确定的最佳唤醒周期发送给通信系统10中的各子节点设备,各子节点设备可以根据最新接收到的最佳唤醒周期来调整唤醒时间。
需要注意的是,当中心节点设备根据最佳唤醒周期以及基准时间调整唤醒时间时,中心节点设备可以在确定最佳唤醒周期之后将最佳唤醒周期以及基准时间发送给子节点设备之前调整唤醒时间。也即是说,对于中心节点设备,S104可以在S103之前执行。
总的来说,本申请实施例提供的唤醒对齐方法能够更改唤醒的触发时间,减少设备间因为非实时业务以及心跳保持引起的频繁唤醒,优化了通信系统10中的设备的功耗开销,保障了通信系统10中各设备的续航能力,同时,可以保证即时性业务的正常执行,在各设备统一唤醒的同时满足设备的正常运行。
图7示例性示出了多设备唤醒对齐前和唤醒对齐后的设备的功耗波形示意图。从图7中左边的波形图可以看出,图中存在密集的波形尖峰,也即是说,多设备唤醒对齐前,电子设备存在频繁的唤醒,功率损耗较大。从图7中右边的波形图可以看出,图中存在间隔出现的波形尖峰,例如10分钟间隔出现的波形尖峰、5分钟间隔出现的波形尖峰或2.5分钟间隔出 现的波形尖峰,也即是说,多设备唤醒对齐后,电子设备减少了唤醒的次数,并以一个唤醒周期值的倍数作为唤醒的间隔时间,降低了电子设备的功率损耗。
图8示出了本申请实施例涉及到的电子设备100的硬件结构示意图。
如图8所示,电子设备100可以是手机、手环、耳机、大屏、体脂称、空气净化器、智能音箱、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备和/或智慧城市设备,本申请实施例对该电子设备的具体类型不作特殊限制。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。在一些实施例中,处理器110可以包括一个或多个接口。
充电管理模块140用于从充电器接收充电输入。电源管理模块141用于连接电池142,充电管理模块140与处理器110。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。天线1和天线2用于发射和接收电磁波信号。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器 (lownoise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号解调以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
显示屏194用于显示图像,视频等。摄像头193用于捕获静态图像或视频。内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。外部存储器接口120可以用于连接外部的非易失性存储器,实现扩展电子设备100的存储能力。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。耳机接口170D用于连接有线耳机。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。陀螺仪传感器180B可以用于确定电子设备100的运动姿态。气压传感器180C用于测量气压。磁传感器180D包括霍尔传感器。加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。距离传感器180F,用于测量距离。接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。环境光传感器180L用于感知环境光亮度。指纹传感器180H用于采集指纹。温度传感器180J 用于检测温度。触摸传感器180K,也称“触控器件”。骨传导传感器180M可以获取振动信号。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。马达191可以产生振动提示。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口195用于连接SIM卡。
在本申请实施例中,当电子设备100为中心节点设备时:
移动通信模块150或无线通信模块160可用于接收子节点设备的唤醒周期,向子节点设备发送最佳唤醒周期以及基准时间。
处理器110可用于根据一个或多个唤醒周期计算出最佳唤醒周期,根据最佳唤醒周期以及基准时间计算出最佳唤醒时间,判断是否调整唤醒时间,并根据调整后或未调整的唤醒时间进行唤醒。具体关于唤醒周期与最佳唤醒周期的关系、最佳唤醒时间的计算原理,调整唤醒时间的原理的相关描述可以参见前述内容,这里不再赘述。
内部存储器121用于存储计算唤醒时间的相关指令,以及一个或多个唤醒周期。
在本申请实施例中,当电子设备100为子节点设备时:
移动通信模块150或无线通信模块160可用于向中心节点设备发送唤醒周期,接收中心节点设备发送的最佳唤醒周期以及基准时间。
处理器110可用于根据最佳唤醒周期以及基准时间计算出最佳唤醒时间,判断是否调整唤醒时间,并根据调整后或未调整的唤醒时间进行唤醒。具体关于最佳唤醒时间的计算原理,调整唤醒时间的原理的相关描述可以参见减数内容,这里不再赘述。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
总之,以上所述仅为本发明技术方案的实施例而已,并非用于限定本发明的保护范围。凡根据本发明的揭露,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种唤醒对齐方法,其特征在于,所述方法应用于第一子节点设备,所述方法包括:
    所述第一子节点设备向中心节点设备发送第一周期,所述第一周期为所述第一子节点设备的唤醒周期;
    所述第一子节点设备接收到第二周期以及基准时间,所述第二周期由所述中心节点设备根据所述第一周期确定;
    所述第一子节点设备根据所述第二周期和所述基准时间,将所述第一子节点设备的第一原唤醒时间调整为第一唤醒时间,所述第一原唤醒时间与所述第一唤醒时间的差值不大于阈值,所述第一唤醒时间为所述基准时间,与,所述第二周期的N倍的和,所述N为大于等于0的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述阈值为所述第二周期的二分之一。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一子节点设备将所述第一子节点设备的唤醒时间调整为第一唤醒时间,具体包括:
    所述第一子节点设备在所述第一唤醒时间和第二子节点设备和/或所述中心节点设备通信。
  4. 根据权利要求3所述的方法,其特征在于,所述第一子节点设备在所述第一唤醒时间和第二子节点设备通信之前,所述方法还包括:
    所述第一子节点设备在所述第一唤醒时间对CPU进行上电。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一子节点设备的唤醒为心跳唤醒或非实时业务唤醒。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第二周期为所述第一周期与所述中心节点设备的唤醒周期中的最大值、最小值、平均值或公倍数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,
    所述第一子节点设备根据所述第二周期以及所述基准时间,将所述第一子节点设备的唤醒时间调整为第一唤醒时间之后,所述方法还包括:
    所述第一子节点设备接收到第四周期,所述第四周期为所述中心节点设备根据所述第一周期以及第三子节点设备的第三周期确定,所述第三周期为所述第三子节点设备的唤醒周期;
    所述第一子节点设备根据所述第四周期重新调整所述第一子节点设备的唤醒时间。
  8. 一种唤醒对齐方法,其特征在于,所述方法应用于中心节点设备,所述方法包括:
    所述中心节点设备接收到第一子节点设备的第一周期,所述第一周期为所述第一子节点设备的唤醒周期;
    所述中心节电设备根据所述第一周期确定第二周期;
    所述中心节点设备将所述第二周期以及基准时间发送给所述第一子节点设备。
  9. 根据权利要求8所述的方法,其特征在于,所述第一子节点设备的唤醒为心跳唤醒或非实时业务唤醒。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第二周期为所述第一周期与所述中心节点设备的唤醒周期中的最大值、最小值、平均值或公倍数。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述中心节点设备接收到第三子节点设备的第三周期,所述第三周期为所述第三子节点设备的唤醒周期;
    所述中心节点设备根据所述第三周期以及所述第一周期确定第四周期;
    所述中心节点设备将所述第四周期发送给所述第一子节点设备和所述第三子节点设备。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述中心节点设备将所述第二周期以及所述中心节点设备的基准时间发送给所述第一子节点设备之前,所述方法还包括:
    所述中心节点设备在所述中心节点设备的唤醒时间中,选择和当前时间最接近的唤醒时间作为所述基准时间。
  13. 一种唤醒对齐方法,其特征在于,所述方法应用于包括第一子节点设备和中心节点设备的通信系统,所述方法包括:
    所述第一子节点设备向所述中心节点设备发送第一周期,所述第一周期为所述第一子节点设备的唤醒周期;
    所述中心节点设备接收到所述第一子节点设备的所述第一周期;
    所述中心节点设备根据所述第一周期确定第二周期;
    所述中心节点设备将所述第二周期以及所述中心节点设备的基准时间发送给所述第一子节点设备;
    所述第一子节点设备根据所述第二周期以及所述基准时间,将所述第一子节点设备的第一原唤醒时间调整为第一唤醒时间,所述第一原唤醒时间与所述第一唤醒时间的差值不大于阈值,所述第一唤醒时间为所述基准时间,与,所述第二周期的N倍的和,所述N为大于等于0的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述阈值为所述第二周期的二分之一。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一子节点设备将所述第一子节点设备的所述第一原唤醒时间调整为所述第一唤醒时间,具体包括:
    所述第一子节点设备在所述第一唤醒时间和第二子节点设备和/或所述中心节点设备通信。
  16. 根据权利要求15所述的方法,其特征在于,所述第一子设备在所述第一唤醒时间和第二子设备通信之前,所述方法还包括:
    所述第一子设备在所述第一唤醒时间对CPU进行上电。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述第一子节点设备的唤醒为心跳唤醒或非实时业务唤醒。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述第二周期为所述第一周期与所述中心节点设备的唤醒周期中的最大值、最小值、平均值或公倍数。
  19. 根据权利要求13-18任一项所述的方法,其特征在于,所述通信系统还包括第三子节点设备;
    所述第一子节点设备根据所述第二周期以及所述基准时间,将所述第一子节点设备的唤醒时间调整为第一唤醒时间之后,所述方法还包括:
    所述中心节点设备接收到所述第三子节点设备的第三周期,所述第三周期为所述第三子节点设备的唤醒周期;
    所述中心节点设备根据所述第三周期以及所述第一周期确定第四周期;
    所述中心节点设备将所述第四周期发送给所述第一子节点设备和所述第三子节点设备;
    所述第一子节点设备根据所述第四周期重新调整所述第一子节点设备的唤醒时间,所述第三子节点设备根据所述第四周期重新调整所述第三子节点设备的唤醒时间。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述中心节点设备将所述第二周期以及所述中心节点设备的基准时间发送给所述第一子节点设备之前,所述方法还包括:
    所述中心节点设备在所述中心节点设备的唤醒时间中,选择和当前时间最接近的唤醒时间作为所述基准时间。
  21. 一种电子设备,其特征在于,包括存储器,一个或多个处理器,以及一个或多个程序;所述一个或多个处理器在执行所述一个或多个程序时,使得所述电子设备实现如权利要求1-7、8-12任一项所述的方法。
  22. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1-7、8-12任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1-7、8-12任一项所述的方法。
PCT/CN2022/129213 2021-11-11 2022-11-02 唤醒对齐方法、系统及相关装置 WO2023083068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111335345.9 2021-11-11
CN202111335345.9A CN114245443A (zh) 2021-11-11 2021-11-11 唤醒对齐方法、系统及相关装置

Publications (1)

Publication Number Publication Date
WO2023083068A1 true WO2023083068A1 (zh) 2023-05-19

Family

ID=80749112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129213 WO2023083068A1 (zh) 2021-11-11 2022-11-02 唤醒对齐方法、系统及相关装置

Country Status (2)

Country Link
CN (1) CN114245443A (zh)
WO (1) WO2023083068A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117950343A (zh) * 2022-10-28 2024-04-30 华为技术有限公司 设备控制系统、方法、设备、可读存储介质和芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937369A (zh) * 2015-12-31 2017-07-07 深圳友讯达科技股份有限公司 低功耗节点同步唤醒方法、节点及系统
WO2020167475A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Discontinuous reception parameter adaptation using wake up signaling
CN112019616A (zh) * 2020-08-26 2020-12-01 广州视源电子科技股份有限公司 物联网内设备管理方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536739A (zh) * 2014-12-17 2015-04-22 深圳市金立通信设备有限公司 一种唤醒终端系统的方法
US10203748B2 (en) * 2015-06-30 2019-02-12 Google Llc Systems and methods for efficiently communicating between low-power devices
US20180020405A1 (en) * 2016-07-13 2018-01-18 Intel IP Corporation Wake-up packet acknowledgement procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937369A (zh) * 2015-12-31 2017-07-07 深圳友讯达科技股份有限公司 低功耗节点同步唤醒方法、节点及系统
WO2020167475A1 (en) * 2019-02-15 2020-08-20 Qualcomm Incorporated Discontinuous reception parameter adaptation using wake up signaling
CN112019616A (zh) * 2020-08-26 2020-12-01 广州视源电子科技股份有限公司 物联网内设备管理方法和装置

Also Published As

Publication number Publication date
CN114245443A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110299978B (zh) 信息传输方法、终端及网络设备
WO2018000134A1 (zh) 一种蓝牙连接的方法及终端
CN110167128B (zh) 信息检测方法、传输方法、终端及网络设备
WO2021143541A1 (zh) 无线通信方法和具有无线通信功能的设备
US20190045046A1 (en) Intelligent Alerting Method, Terminal, Wearable Device, and System
CN110300444B (zh) 信息传输方法、终端及网络设备
WO2021052245A1 (zh) 一种数据收发方法、电子设备与计算机可读存储介质
KR20180005471A (ko) 다중 주파수 대역을 이용한 통신 방법 및 장치
WO2021115193A1 (zh) 一种设备组网方法、电子设备及系统
JP2017507586A (ja) ウェイクアップメッセージを使用する近隣認識ネットワーク(nan)の発見
CN111405681B (zh) Wi-Fi Aware的建链方法、系统、电子设备和存储介质
CN112584463B (zh) 一种多设备之间的信息同步方法、系统及电子设备
US20220264462A1 (en) Wake-up signal configuration method, wake-up signal processing method, and related device
CN112469016A (zh) 蓝牙-超宽带同步
WO2022222754A1 (zh) Wifi链路休眠唤醒方法、电子设备及系统
US20150282072A1 (en) Apparatus, system and method of wireless communication during a power save state
WO2023083068A1 (zh) 唤醒对齐方法、系统及相关装置
US20220399973A1 (en) Reference Signal Transmission Method and Related Device
JP2024516668A (ja) デバイスネットワーキング方法、電子デバイス、及び記憶媒体
WO2023179731A1 (zh) 休眠唤醒方法及电子设备
WO2021212511A1 (zh) 数据传输方法、数据传输装置及存储介质
CN109803353A (zh) 一种数据处理方法、接入点及工作站
WO2023030138A1 (zh) 终端节能方法、装置及系统
US20220078704A1 (en) Power management for signal scanning
WO2022252796A1 (zh) 一种基于心跳包的在线检测方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891864

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891864

Country of ref document: EP

Effective date: 20240326