WO2023082898A1 - 高色纯度的二价铂配合物 - Google Patents

高色纯度的二价铂配合物 Download PDF

Info

Publication number
WO2023082898A1
WO2023082898A1 PCT/CN2022/123703 CN2022123703W WO2023082898A1 WO 2023082898 A1 WO2023082898 A1 WO 2023082898A1 CN 2022123703 W CN2022123703 W CN 2022123703W WO 2023082898 A1 WO2023082898 A1 WO 2023082898A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
substituted
unsubstituted
layer
hydrogen
Prior art date
Application number
PCT/CN2022/123703
Other languages
English (en)
French (fr)
Inventor
吴信蔚
李慧杨
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Priority to KR1020247017940A priority Critical patent/KR20240091179A/ko
Publication of WO2023082898A1 publication Critical patent/WO2023082898A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of light-emitting materials, in particular to a divalent platinum complex with high color purity and its application in organic light-emitting diodes.
  • OLEDs Organic electroluminescence
  • advantages such as ultra-light and ultra-thin, low power consumption, self-illumination, wide operating temperature range, wide color gamut, wide viewing angle, fast response speed, and easier realization of flexible display.
  • advantages has become an important direction of the current material science and industrialization development.
  • the fluorescent OLEDs developed in the early stage usually can only use singlet state to emit light, and the triplet excitons generated in the device cannot be effectively used and return to the ground state through non-radiative means, which limits the popularization and use of OLEDs.
  • Zhiming Zhiming of the University of Hong Kong and others reported the phenomenon of electrophosphorescence for the first time.
  • Thompson et al prepared phosphorescent OLEDs using transition metal complexes as light-emitting materials.
  • Phosphorescent OLEDs can efficiently utilize singlet and triplet excitons to emit light, and theoretically can achieve 100% internal quantum efficiency, which greatly promotes the commercialization of OLEDs.
  • the covalent metal-carbon bond of the electrophosphorescent metal complex increases the mixing of the metal d orbital and the ligand orbital, which can also improve the stability of the compound; and due to the strong heavy atom effect, the metal d orbital and the ligand orbital Mixing can enhance the effect of the metal center on the excited state of the ligand itself, enhance the spin-orbit coupling effect, thereby increasing the quantum yield of the triplet state and promoting efficient phosphorescent radiative relaxation.
  • the present invention provides a divalent platinum complex with high color purity, and the material is applied to an organic light-emitting diode and exhibits good photoelectric performance.
  • the invention also provides an organic light-emitting diode based on the divalent platinum complex with high color purity.
  • the divalent platinum complex of high color purity is a compound with the structure of formula (I):
  • R 1 to R 23 are each independently selected from: hydrogen, deuterium, halogen, amino, carbonyl, carboxyl, sulfanyl, cyano, sulfonyl, phosphino, substituted or unsubstituted 1-20 carbon atoms Alkyl, substituted or unsubstituted cycloalkyl having 3-20 ring carbon atoms, substituted or unsubstituted alkenyl having 2-20 carbon atoms, substituted or unsubstituted cycloalkyl having 1-20 carbon atoms Alkoxy, substituted or unsubstituted aryl with 6-30 carbon atoms, substituted or unsubstituted heteroaryl with 3-30 carbon atoms, or any two adjacent substituents connected or condensed synthetic ring;
  • a 1 -A 4 are selected from hydrogen, deuterium, halogen, amino, carbonyl, carboxyl, sulfanyl, cyano, sulfonyl, phosphino, substituted or unsubstituted alkyl with 1-20 carbon atoms, substituted Or unsubstituted cycloalkyl with 3-20 carbon atoms, substituted or unsubstituted alkenyl with 2-20 carbon atoms, substituted or unsubstituted alkoxy with 1-20 carbon atoms, An aryl group with 6-30 carbon atoms, a substituted or unsubstituted heteroaryl group with 3-30 carbon atoms; or any two adjacent substituents are connected or fused to form a ring;
  • heteroatoms in the heteroaryl group are one or more of N, S, O;
  • substitution is substituted by halogen, deuterium, amino, cyano or C1-C4 alkyl.
  • R to R are each independently selected from: hydrogen, deuterium, halogen, amino, sulfanyl, cyano, substituted or unsubstituted alkyl having 1-6 carbon atoms, substituted or unsubstituted Cycloalkyl with 3-6 ring carbon atoms, substituted or unsubstituted alkenyl with 2-6 carbon atoms, substituted or unsubstituted alkoxy with 1-6 carbon atoms, substituted or unsubstituted A substituted aryl group having 6-12 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3-6 carbon atoms;
  • a 1 -A 4 are selected from hydrogen, deuterium, halo, cyano, substituted or unsubstituted alkyl having 1-20 carbon atoms, substituted or unsubstituted cycloalkane having 3-20 ring carbon atoms group, substituted or unsubstituted alkenyl group having 2-20 carbon atoms, aryl group having 6-30 carbon atoms, substituted or unsubstituted heteroaryl group having 3-30 carbon atoms.
  • R 1 to R 23 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1-6 carbon atoms;
  • a 1 -A 4 are selected from halogen, cyano, substituted or unsubstituted alkyl having 1-20 carbon atoms, substituted or unsubstituted cycloalkyl having 3-12 ring carbon atoms , a substituted or unsubstituted alkenyl group having 2-12 carbon atoms, an aryl group having 6-30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3-30 carbon atoms, and the rest being hydrogen.
  • R 1 to R 23 are each independently selected from: hydrogen, deuterium, halogen, substituted or unsubstituted alkyl having 1-6 carbon atoms;
  • One of A 1 -A 4 is selected from halogen, cyano, substituted or unsubstituted alkyl with 1-6 carbon atoms, substituted or unsubstituted cycloalkyl with 3-12 ring carbon atoms, substituted Or an unsubstituted alkenyl group having 2-12 carbon atoms, an aryl group having 6-30 carbon atoms, a substituted or unsubstituted heteroaryl group having 3-30 carbon atoms, and the rest being hydrogen.
  • R 1 to R 23 are each independently selected from: hydrogen, deuterium, methyl, tert-butyl;
  • One of A 1 -A 4 is selected from fluorine, cyano, methyl, tert-butyl, phenyl, cyanophenyl, pyridyl; the rest are hydrogen.
  • R 6 -R 23 among R 1 to R 23 is hydrogen.
  • R 1 -R 5 is not hydrogen.
  • R 1 -R 5 , R 2 and R 4 are not hydrogen, and R 1 and R 5 are hydrogen.
  • platinum metal complexes according to the present invention, but are not limited to the listed structures:
  • the precursor of the above-mentioned metal complex i.e. the ligand, has the following structural formula:
  • the present invention also provides an application of the above-mentioned divalent platinum complex with high color purity in organic optoelectronic devices, which include, but are not limited to, organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs), organic photovoltaic devices (OPVs), light emitting electrochemical cells (LCEs) and chemical sensors, preferably OLEDs.
  • organic optoelectronic devices include, but are not limited to, organic light-emitting diodes (OLEDs), organic thin-film transistors (OTFTs), organic photovoltaic devices (OPVs), light emitting electrochemical cells (LCEs) and chemical sensors, preferably OLEDs.
  • OLEDs organic light-emitting diode
  • the organic light-emitting diode in the present invention includes a cathode, an anode and an organic layer, and the organic layer is one of a hole injection layer, a hole transport layer, a light-emitting layer, a hole blocking layer, an electron injection layer, and an electron transport layer or multiple layers, these organic layers do not need to exist in each layer; at least one layer contains the formula (I) in the hole injection layer, hole transport layer, hole blocking layer, electron injection layer, light emitting layer, electron transport layer the platinum complexes described above.
  • the layer where the high color purity divalent platinum complex described in formula (I) is located is the light emitting layer or the electron transport layer.
  • the total thickness of the organic layer of the device of the present invention is 1-1000 nm, preferably 1-500 nm, more preferably 5-300 nm.
  • the organic layer can be formed into a thin film by evaporation or solution method.
  • a series of divalent platinum complex luminescent materials with novel structure and high color purity disclosed by the present invention show unexpected characteristics, significantly improve the luminous efficiency and device color purity of this type of compound, and have better thermal stability It meets the requirements of OLED panels for luminescent materials.
  • the compound is applied in organic light-emitting diodes, and has lower driving voltage and higher luminous efficiency, and the color purity is significantly improved, which has great potential for the industrialization of materials in the field of electroluminescent devices.
  • Fig. 1 is a structural diagram of an organic light emitting diode device of the present invention
  • 10 represents the glass substrate
  • 20 represents the anode
  • 30 represents the hole injection layer
  • 40 represents the hole transport layer
  • 50 represents the light emitting layer
  • 60 represents the electron transport layer
  • 70 represents the electron injection layer
  • 80 represents the cathode.
  • the present invention does not require the synthesis method of materials.
  • the following examples are given, but not limited thereto.
  • the raw materials used in the following synthesis are commercially available products unless otherwise specified.
  • Embodiment 1 the synthesis of complex 22
  • reaction solution was filtered to obtain a filter cake
  • the obtained residue was sonicated with Hex (200ml) for 1h, and stood overnight until the product was precipitated, filtered, and the filter cake was ground, beaten with Hex (200mL) at 80°C for 2h, filtered, and dried to obtain 11g of a white solid.
  • the yield was 75.79%.
  • reaction solution was filtered to obtain a filter cake
  • reaction solution was filtered to obtain a filter cake
  • reaction solution was filtered to obtain a filter cake
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the organic light-emitting diode is prepared by using the complex light-emitting material of the present invention, and the structure of the device is shown in FIG. 1 .
  • the transparent conductive ITO glass substrate 10 (with the anode 20 on it) is sequentially washed with detergent solution, deionized water, ethanol, acetone, and deionized water, and then treated with oxygen plasma for 30 seconds.
  • HATCN was vapor-deposited on the ITO to a thickness of 10 nm as the hole injection layer 30 .
  • the compound HT was evaporated to form a hole transport layer 40 with a thickness of 40 nm.
  • a luminescent layer 50 with a thickness of 20 nm was evaporated on the hole transport layer, and the luminescent layer was composed of mixed doping of platinum complex 22 (20%) and CBP (80%).
  • Example 7 Complex 38 was used to replace complex 22, and the method described in Example 7 was used to prepare an organic light-emitting diode.
  • Example 8 Complex 40 was used to replace complex 22, and the method described in Example 7 was used to prepare an organic light-emitting diode.
  • Example 9 Complex 48 was used to replace complex 22, and the method described in Example 7 was used to prepare an organic light-emitting diode.
  • the platinum complex material of the present invention is applied to organic light-emitting diodes, and has lower driving voltage and higher luminous efficiency.
  • the device life of the organic light-emitting diode based on the complex of the present invention is significantly better than that of the complex material in the comparative example, which can meet the requirements of the display industry for light-emitting materials and has a good industrialization prospect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及高色纯度的二价铂配合物,具有化学式(I)结构,该化合物应用在有机发光二极管中,具有较低的驱动电压和较高的发光效率,且半峰宽窄,色纯度越高,能够得到更优的量子效率,有潜力应用于有机电致发光器件领域。本发明还提供了一种有机电致光电器件,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子传输层、电子注入层中的一层或多层,有机层中至少有一层含有结构式(I)中的化合物。

Description

高色纯度的二价铂配合物 技术领域
本发明涉及发光材料领域,具体涉及含一种高色纯度的二价铂配合物及其在有机发光二极管中的应用。
背景技术
随着信息化需求的提高,新型智能终端产品不断涌现,特别是电子产品逐渐向智能化、柔性化、便携化方向发展。有机电致发光(OLEDs)这一新型显示技术,因其具备超轻超薄、低功耗、自主发光、工作温度范围大、宽色域、宽视角、响应速度快、更易实现柔性显示等诸多优点,已成为当前材料科学和产业化发展的一大重要方向。
早期研制的荧光OLEDs通常只能利用单重态发光,器件中所产生的三重态激子无法有效利用而通过非辐射的方式回到基态,限制了OLEDs的推广使用。1998年,香港大学支志明等人首次报道了电致磷光现象。同年,Thompson等人使用过渡金属配合物作为发光材料制备了磷光OLEDs。磷光OLEDs能够高效地利用单线态和三线态激子发光,理论上可以实现100%的内量子效率,在很大程度上促进了OLEDs的商业化进程。电致磷光金属配合物的共价性质的金属-碳键增加了金属d轨道和配体轨道的混合,可以也提高化合物的稳定性;并且由于强重原子效应,金属d轨道和配体轨道的混合能够增强金属中心对配体本身的激发态的影响,增强自旋-轨道耦合效应,从而提高三重态的量子产率并促进高效的磷光辐射弛豫。经过近二十年的对电致磷光OLEDs的研究发展,OLEDs材料已经进入了应用阶段。在应用阶段而言,为满足元器件高品质的全色发光的需求,具有较高量子效率以及良好色纯度性能的材料是必不可少的,这就要求OLEDs发展新型高效的窄版缝宽的配合物材料。
发明内容
针对现有技术存在的上述问题,本发明提供了高色纯度的二价铂配合物,该材料应用于有机发光二极管体现了良好的光电性能。
本发明还提供了一种基于所述高色纯度的二价铂配合物的有机发光二极管。
高色纯度的二价铂配合物,为具有式(I)结构的化合物:
Figure PCTCN2022123703-appb-000001
其中:
R 1至R 23各自独立地选自:氢、氘、卤素、胺基、羰基、羧基、硫烷基、氰基、磺酰基、膦基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有2-20个碳原子的烯基、取代或未取代的具有1-20个碳原子的烷氧基、取代或未取代的具有6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基、或者任意两个相邻取代基之间连接或者稠合成环;
A 1-A 4选自氢、氘、卤素、胺基、羰基、羧基、硫烷基、氰基、磺酰基、膦基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有2-20个碳原子的烯基、取代或未取代的具有1-20个碳原子的烷氧基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基;;或者任意两个相邻取代基之间连接或者稠合成环;
所述杂芳基中的杂原子为N、S、O中的一个或多个;
所述取代为被卤素、氘、胺基、氰基或C1-C4烷基所取代。
优选地,R 1至R 23各自独立地选自:氢、氘、卤素、胺基、硫烷基、氰基、取代或未取代的具有1-6个碳原子的烷基、取代或未取代的具有3-6个环碳原子的环烷基、取代或未取代的具有2-6个碳原子的烯基、取代或未取代的具有1-6个碳原子的烷氧基、取代或未取代的具有6-12个碳原子的芳基、或者取代或未取代的具有3-6个碳原子的杂芳基;
A 1-A 4选自氢、氘、卤代基、氰基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有2-20个碳原子的烯基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基。
优选地,R 1至R 23各自独立地选自:氢、氘、卤素、取代或未取代的具有1-6个碳原子的烷基;
A 1-A 4其中一个或多个选自卤素、氰基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-12个环碳原子的环烷基、取代或未取代的具有2-12个碳原子的烯基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基,其余为氢。
优选地,R 1至R 23各自独立地选自:氢、氘、卤素、取代或未取代的具有1-6个碳原子的烷基;
A 1-A 4其中之一选自卤素、氰基、取代或未取代的具有1-6个碳原子的烷基、取代或未取代的具有3-12个环碳原子的环烷基、取代或未取代的具有2-12个碳原子的烯基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基,其余为氢。
进一步优选,通式(I)中,R 1至R 23各自独立地选自:氢、氘、甲基、叔丁基;
A 1-A 4其中之一选自氟、氰基、甲基、叔丁基、苯基、氰基苯基、吡啶基;其余为氢。优选:其中R 1至R 23中R 6-R 23为氢。
其中R 1-R 5中至少有一个不为氢。
其中R 1-R 5中R 2、R 4不为氢,R 1、R 5为氢。
以下列出按照本发明的铂金属配合物例子,但不限于所列举的结构:
Figure PCTCN2022123703-appb-000002
Figure PCTCN2022123703-appb-000003
Figure PCTCN2022123703-appb-000004
上述金属配合物的前体,即配体,结构式如下:
Figure PCTCN2022123703-appb-000005
本发明还提供一种上述高色纯度的二价铂配合物在有机光电子器件中的应用,所述光电子器件包括,但不限于,有机发光二极管(OLEDs),有机薄膜晶体管(OTFTs),有机光伏器件(OPVs),发光电化学池(LCEs)和化学传感器,优选为OLEDs。
一种包含上述高色纯度的二价铂配合物的有机发光二极管(OLEDs),所述铂配合物为发光器件中的发光材料。
本发明中的有机发光二极管,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子注入层、电子传输层中的一层或多层,这些有机层不必每层都存在;所述空穴注入层、空穴传输层、空穴阻挡层、电子注入层、发光层、电子传输层中至少有一层含有式(I)所述的铂配合物。
优选地,式(I)所述高色纯度的二价铂配合物所在层为发光层或电子传输层。
本发明的器件有机层的总厚度为1-1000nm,优选1-500nm,更优选5-300nm。
所述有机层可以通过蒸渡或溶液法形成薄膜。
本发明公开的一系列结构新颖的高色纯度的二价铂配合物发光材料显示出了出乎意料的特性,显著改善了该类化合物的发光效率和器件色纯度,且具有较好的热稳定性,符合OLED面板对发光材料的要求。
该化合物应用在有机发光二极管中,具有较低的驱动电压和较高的发光效率,且色纯度有着明显的提升,这对于材料应用于机电致发光器件领域产业化有着极大地潜力。
附图说明
图1为本发明的有机发光二极管器件结构图,
其中10代表为玻璃基板,20代表为阳极,30代表为空穴注入层,40代表为空穴传输层,50代表发光层,60电子传输层,70代表电子注入层,80代表阴极。
具体实施方式
本发明对材料的合成方法不作要求,为了更详细叙述本发明,特举以下例子,但不限于此。下述合成中所用到的原料如无特别说明均为市售产品。
实施例1:配合物22的合成
Figure PCTCN2022123703-appb-000006
化合物22b的合成:
取1000ml单口瓶,投入22a(10g,59.47mmol,1.0eq)溶于甲醇(200ml)中,将KOH(16.68g,297.33mmol,5.0eq)溶于水(100ml)中,将水溶液缓慢滴加到反应液中,然后加入a1(14.28g,65.41mmol,1.1eq),45℃搅拌反应16h。反应结束后,将反应液过滤,滤饼用甲醇(50ml*2次)打浆,烘干。得14g白色固体,产率为63.9%。 1H NMR(400MHz,CDCl3)δ7.68–7.60(m,2H),7.48(s,1H),7.43(d,J=1.6Hz,2H),7.34(d,J=15.9Hz,1H),6.77–6.69(m,2H),3.89(s,3H),1.34(s,18H).
化合物22c的合成:
取500ml单口瓶,投入22b(14g,38mmol,1.0eq)、a2(18.42g,46mmol,1.2eq)、NH 4OAc(87.86g,1.14mol,30.0eq)和乙酸(180ml),氮气保护,130℃反应4h。反应结束后,将反 应液过滤,得到滤饼,反应液加入水(200ml)再用DCM(100ml*2)萃取,有机相旋干,将得到的残渣和滤饼一起用Hex:EA=20:1(V/V,total,200ml)打浆,过滤,将滤饼烘干,得17g灰白色固体,产率为81.38%。
1H NMR(400MHz,CDCl3)δ8.30(s,1H),8.03(dd,J=10.3,4.9Hz,3H),7.78(d,J=1.3Hz,1H),7.53(dd,J=14.1,3.2Hz,4H),7.37(t,J=7.9Hz,1H),6.85(td,J=8.4,2.4Hz,1H),6.77(dd,J=11.0,2.3Hz,1H),3.90(s,3H),1.42(s,18H).
化合物22d的合成:
取1000ml单口瓶,投入22c(17g,31mmol,1.0eq)、联硼酸频那醇酯(15.8g,62mmol,2.0eq)、Pd(OAc) 2(69.84mg,0.311mmol,0.01eq)、KOAc(9.16g,93mmol,3.0eq)、X-phos(1.48g,3.1mmol,0.1eq)和甲苯(250ml),氮气保护,80℃反应16h。反应结束后,将反应液过滤,旋干。将得到的残渣用Hex(200ml)超声1h,静置过夜,待产物析出,过滤,将滤饼磨碎,用Hex(200mL)在80℃下打浆2h,过滤,烘干,得11g白色固体,产率为75.79%。
1H NMR(400MHz,CDCl3)δ8.46(s,1H),8.26(d,J=7.7Hz,1H),8.09–8.01(m,1H),7.95(s,1H),7.86(dd,J=9.4,4.3Hz,2H),7.56–7.48(m,4H),6.87–6.73(m,2H),3.90(s,3H),1.41(s,18H),1.37(s,12H).
化合物a5的合成:
取250ml单口瓶,投入a3(8g,29mmol,1.0eq)、a4(17.57g,86mmol,3.0eq)、Cu(912mg,14mmol,0.5eq)、CuI(2.73g,14mmol,0.5eq)、Cs 2CO 3(28.05g,86mmol,3.0eq)、邻菲罗啉(5.17g,29mmol,1.0eq)和二甲苯(150ml),氮气保护,140℃反应,反应48h。没反应完全,再增加172h(17.57g,86mmol,3.0eq),反应未完全,继续增加a4(17.57g,86mmol,3.0eq)。反应结束后,快速滤硅胶漏斗(EA),旋干溶剂,进行硅胶柱色谱分离(淋洗剂为:Hex:EA=20:1)。得到白色固体7g,产率为68.74%。
1H NMR(400MHz,CDCl3)δ8.26(dd,J=7.7,1.1Hz,1H),8.19(d,J=7.7Hz,1H),8.00(d,J=5.0Hz,1H),7.45–7.28(m,5H),7.25(dd,J=9.9,3.3Hz,3H),7.12–7.04(m,2H),6.99(s,1H),6.93(dd,J=5.0,1.4Hz,1H).
化合物22e的合成:
取500ml单口瓶,投入a5(5g,31mmol,1.0eq)、22d(10.04g,62mmol,2.0eq)、Pd 2(dba) 3(258mg,0.28mmol,0.02eq)、K 3PO 4-3H 2O(9.16g,42.27mmol,3.0eq)、X-phos(672mg,1.41mmol,0.1eq)和甲苯/乙醇/水(60mL/15mL/15mL),氮气保护,90℃反应7h。反应结束后,向反应液中加入水(100mL),再用DCM(200ml)萃取,旋干,进行硅胶柱色谱分离(淋洗剂为:Hex:EA=5:1(V/V)),得8.5g白色固体,产率为76.75%。
1H NMR(400MHz,CDCl3)δ8.55(s,1H),8.39(d,J=5.0Hz,1H),8.26(dd,J=6.0,3.0Hz,1H),8.18(dd,J=15.0,7.8Hz,2H),8.07–8.01(m,1H),7.99–7.93(m,2H),7.91(s,1H),7.56(dd,J=18.5,5.3Hz,4H),7.46(s,1H),7.41(dd,J=8.2,5.2Hz,3H),7.33(t,J=7.3Hz,1H),7.23(d,J=8.2Hz,1H),7.14–6.99(m,6H),6.78–6.71(m,2H),3.87(s,3H),1.40(s,18H).
化合物22f的合成:
取500ml单口瓶,投入22e(8g,10.18mmol,1.0eq)、吡啶盐酸盐(80g)和邻二氯苯(8ml),氮气保护,200℃反应4h。反应结束后,加水,用DCM(100ml*2次)萃取,取有机相,旋干,进行硅胶柱色谱分离(淋洗剂为:He:EA=5:1(V/V))。得到黄色固体7.5g,产率为92%。
1H NMR(400MHz,CDCl3)δ8.41(s,1H),8.38(d,J=5.0Hz,1H),8.27(dd,J=5.7,3.3Hz,1H),8.21(d,J=7.4Hz,1H),8.02(d,J=7.8Hz,1H),7.98–7.92(m,2H),7.92–7.87(m,2H),7.65–7.58(m,2H),7.51(d,J=1.6Hz,2H),7.47(s,1H),7.41(dd,J=8.8,5.5Hz,3H),7.33(t,J=7.0Hz,1H),7.28(s,1H),7.12(s,2H),7.05(t,J=4.6Hz,4H),6.70–6.60(m,2H),1.42(s,18H).
配合物22的合成:
取500ml单口瓶,投入以下反应:
22f(6.9g,8.94mmol,1.0eq)、K 2PtCl 4(4.44g,10.74mmol,1.2eq)、TBAB(148mg,0.45mmol,0.05eq)和乙酸(750mL),氩气保护,130度反应16h。
反应结束后,合并处理,加入过量的去离子水,固体析出,抽滤,固体用二氯甲烷溶解,旋干,进行硅胶柱色谱分离(淋洗剂为:DCM),再用Hex:DCM:EA=2:1:0.2作为淋洗剂进行硅胶柱色谱分离。然后用DCM:Hex=10ml:70ml重结晶,得到红色固体7g,再用DCM:MeOH=15ml:15ml重结晶得到红色固体6.62g,产率为69.1%。1H NMR(400MHz,CDCl3)δ8.71(d,J=5.6Hz,1H),8.33–8.28(m,1H),8.23(d,J=7.4Hz,2H),8.10–8.03(m,1H),7.77(s,1H),7.60(dd,J=14.6,6.3Hz,4H),7.44(t,J=5.7Hz,3H),7.38–7.27(m,4H),7.12(ddd,J=27.9,16.7,8.4Hz,7H),6.96(d,J=7.2Hz,1H),6.51(s,1H),1.45(s,18H).
13C NMR(101MHz,CDCl 3)δ152.12,151.60,148.11,144.46,144.34,141.23,140.83,139.59,139.19,138.93,138.92,137.16,137.14,134.48,130.05,128.38,128.33,128.06,127.49,127.27,127.21,126.91,125.82,125.15,124.75,124.17,123.93,123.50,123.47,123.44,122.86,122.84,122.63,122.26,121.69,121.59,120.47,112.54,108.38,108.22,102.14,101.98,34.96,31.29.
ESI-MS(m/z):965.3(M+1)
实施例2:
Figure PCTCN2022123703-appb-000007
化合物38b的合成:
取1000ml单口瓶,投入38a(8g,30.5mmol,1.0eq)溶于甲醇(200ml)中,将KOH(8.54g,152.5mmol,5.0eq)溶于水(100ml)中,将水溶液缓慢滴加到反应液中,然后加入a1(7.3g,33.55mmol,1.1eq),45℃搅拌反应16h。反应结束后,将反应液过滤,滤饼用甲醇(50ml*2次)打浆,烘干。得7.6g白色固体,产率为53.9%。
1H NMR(400MHz,CDCl3)δ7.85(d,J=2.2Hz,1H),7.71(d,J=15.6Hz,1H),7.60–7.52(m,2H),7.48(t,J=2.1Hz,1H),7.39(d,J=2.1Hz,2H),3.87(s,3H),1.42(s,9H),1.36(s,18H).化合物38c的合成:
取500ml单口瓶,投入38b(7g,15.12mmol,1.0eq)、a2(7.3g,18.15mmol,1.2eq)、NH 4OAc(34.96g,453.6mmol,30.0eq)和乙酸(150ml),氮气保护,130℃反应4h。反应结束后,将反应液过滤,得到滤饼,反应液加入水(200ml)再用DCM(100ml*2)萃取,有机相旋干,将得到的残渣和滤饼一起用Hex:EA=20:1(V/V,total,200ml)打浆,过滤,将滤饼烘干,得7.2g灰白色固体,产率为74.4%。
1H NMR(400MHz,CDCl3)δ8.22(t,J=1.9Hz,1H),8.10(d,J=2.0Hz,1H),8.00(ddd,J=8.6,1.9,1.2Hz,1H),7.93(d,J=2.0Hz,1H),7.55(ddd,J=8.1,2.0,1.3Hz,1H),7.53–7.49(m,2H),7.46–7.36(m,4H),3.87(s,3H),1.42(s,9H),1.35(s,27H).
化合物38d的合成:
取1000ml单口瓶,投入38c(7g,10.93mmol,1.0eq)、联硼酸频那醇酯(5.51g,21.86mmol,2.0eq)、Pd(OAc) 2(24.47mg,0.109mmol,0.01eq)、KOAc(3.2g,32.79mmol,3.0eq)、X-phos(0.51g,1.09mmol,0.1eq)和甲苯(200ml),氮气保护,80℃反应14h。反应结束后,将反应液过滤,旋干。将得到的残渣用Hex(200ml)超声1h,静置过夜,待产物析出,过滤,将滤饼磨碎,用Hex(200mL)在80℃下打浆2h,过滤,烘干,得6.7g白色固体,产率为90.4%。
1H NMR(400MHz,CDCl3)δ8.08(d,J=2.2Hz,1H),8.05(t,J=1.9Hz,1H),7.93(d,J=2.0Hz,1H),7.78(ddd,J=7.7,1.8,1.1Hz,1H),7.74(ddd,J=7.1,1.9,1.2Hz,1H),7.54–7.49(m,3H),7.43(dd,J=9.0,2.2Hz,3H),3.87(s,3H),1.42(s,9H),1.35(s,27H),1.24(s,12H).
化合物38e的合成:
取500ml单口瓶,投入a5(1.8g,5.1mmol,1.0eq)、38d(7g,10.2mmol,2.0eq)、Pd 2(dba) 3(57.5mg,0.10mmol,0.02eq)、K 3PO 4-3H 2O(4.07g,15.3mmol,3.0eq)、X-phos(243mg,0.51mmol,0.1eq)和甲苯/乙醇/水(60mL/15mL/15mL),氮气保护,90℃反应7h。反应结束后,向反应液中加入水(100mL),再用DCM(200ml)萃取,旋干,进行硅胶柱色谱分离(淋洗剂为:Hex:EA=5:1(V/V)),得3.6g白色固体,产率为80.3%。
1H NMR(400MHz,CDCl3)δ8.75(d,J=4.6Hz,1H),8.27(d,J=1.9Hz,1H),8.21(t,J=2.0Hz,1H),8.18–8.12(m,1H),8.12–8.07(m,2H),7.93(d,J=2.0Hz,1H),7.89(dd,J=8.4,1.7Hz,2H),7.70–7.64(m,1H),7.65–7.60(m,2H),7.57–7.47(m,5H),7.45–7.36(m,7H),7.34–7.28(m,2H),3.87(s,3H),1.42(s,9H),1.35(s,27H).
化合物38f的合成:
取500ml单口瓶,投入38e(3.5g,3.97mmol,1.0eq)、吡啶盐酸盐(35g)和邻二氯苯(3.5ml),氮气保护,200℃反应4h。反应结束后,加水,用DCM(200ml*2次)萃取,取有机相,旋干,进行硅胶柱色谱分离(淋洗剂为:He:EA=5:1(V/V))。得到黄色固体3g,产率为87%。
1H NMR(400MHz,CDCl3)δ8.75(d,J=4.6Hz,1H),8.27(d,J=1.9Hz,1H),8.21(t,J=2.0Hz,1H),8.18–8.13(m,1H),8.12–8.08(m,2H),7.90(dd,J=5.4,2.1Hz,2H),7.88(d,J=1.7Hz,1H),7.70–7.61(m,3H),7.54(t,J=7.0Hz,1H),7.52–7.48(m,4H),7.44–7.36(m,7H),7.34–7.28(m,2H),7.23(d,J=2.2Hz,1H),1.43(s,9H),1.35(s,27H).
配合物38的合成:
取500ml单口瓶,投入以下反应:
38f(2g,2.3mmol,1.0eq)、KPtCl 4(1.04g,2.77mmol,1.2eq)、TBAB(37mg,0.115mmol,0.05eq)和乙酸(200mL),氩气保护,130度反应16h。
反应结束后,合并处理,加入过量的去离子水,固体析出,抽滤,固体用二氯甲烷溶解,旋干,进行硅胶柱色谱分离(淋洗剂为:DCM),再用Hex:DCM:EA=2:1:0.2作为淋洗剂进行硅胶柱色谱分离。然后用DCM:Hex=10ml:70ml重结晶,得到红色固体7g,再用DCM:MeOH=51ml:15ml重结晶得到红色固体1.8g,产率为75.0%。
1H NMR(400MHz,CDCl3)δ9.15(d,J=9.0Hz,1H),8.27(d,J=2.2Hz,1H),8.17–8.12 (m,2H),8.09(p,J=3.8Hz,1H),7.77–7.69(m,2H),7.69–7.64(m,1H),7.60–7.57(m,1H),7.57–7.53(m,3H),7.52–7.45(m,4H),7.44–7.28(m,8H),7.22–7.15(m,2H),6.91(s,1H),1.40(s,9H),1.35(s,27H).
13C NMR(101MHz,CDCl 3)δ161.88,152.13,151.60,148.13,145.08,144.75,144.40,140.67,139.63,139.61,139.59,139.19,138.93,138.92,137.18,137.14,134.50,130.05,129.70,128.38,128.33,128.06,127.49,126.91,125.15,124.99,124.75,124.17,123.93,123.51,123.50,123.47,123.44,122.86,122.84,122.63,122.50,121.69,121.62,121.59,120.47,112.54,34.96,34.92,31.29,31.27,30.41.
ESI-MS(m/z):1059.4(M+1)
实施例3:
Figure PCTCN2022123703-appb-000008
化合物40b的合成:
取1000ml单口瓶,投入40a(10g,57.1mmol,1.0eq)溶于甲醇(200ml)中,将KOH(16.0g,285.4mmol,5.0eq)溶于水(100ml)中,将水溶液缓慢滴加到反应液中,然后加入a1(13.71g,62.82mmol,1.1eq),45℃搅拌反应16h。反应结束后,将反应液过滤,滤饼用甲醇(50ml*2次)打浆,烘干。得12.4g白色固体,产率为58.3%。 1H NMR(400MHz,CDCl3)δ8.14(d,J=1.9Hz,1H),7.77(dd,J=8.5,1.9Hz,1H),7.72(d,J=15.5Hz,1H),7.57(d,J=15.4Hz,1H),7.48(t,J=2.1Hz,1H),7.39(d,J=2.2Hz,2H),7.22(d,J=8.4Hz,1H),3.89(s,3H),1.36(s,18H).
化合物40c的合成:
取500ml单口瓶,投入40b(12g,32mmol,1.0eq)、a2(15.51g,38.4mmol,1.2eq)、NH 4OAc(74.0g,960mmol,30.0eq)和乙酸(180ml),氮气保护,130℃反应4h。反应结束后,将反应液过滤,得到滤饼,反应液加入水(200ml)再用DCM(100ml X 2)萃取,有机相旋干,将得到的残渣和滤饼一起用Hex:EA=20:1(V/V,total,200ml)打浆,过滤,将滤饼烘干,得13.6g灰白色固体,产率为76.8%。
1H NMR(400MHz,CDCl3)δ8.22(t,J=2.0Hz,1H),8.13(d,J=1.9Hz,1H),8.10(d,J=2.2Hz,1H),8.00(ddd,J=8.6,1.9,1.2Hz,1H),7.96(d,J=2.2Hz,1H),7.71(dd,J=8.3,1.9Hz,1H),7.55(ddd,J=8.1,2.0,1.3Hz,1H),7.50(t,J=2.2Hz,1H),7.44–7.36(m,3H),7.19(d,J=8.3Hz,1H),3.91(s,3H),1.35(s,18H).
化合物40d的合成:
取1000ml单口瓶,投入40c(13g,23.49mmol,1.0eq)、联硼酸频那醇酯(11.9g,46.98mmol,2.0eq)、Pd(OAc) 2(52.76mg,0.235mmol,0.01eq)、KOAc(6.8g,69.47mmol,3.0eq)、X-phos(1.12g,0.235mmol,0.1eq)和甲苯(250ml),氮气保护,80℃反应16h。反应结束后,将反应液过滤,旋干。将得到的残渣用Hex(200ml)超声1h,静置过夜,待产物析出,过滤,将滤饼磨碎,用Hex(200mL)在80℃下打浆2h,过滤,烘干,得10.5g白色固体,产率为74.4%。
1H NMR(400MHz,CDCl3)δ8.13(d,J=1.9Hz,1H),8.08(d,J=2.2Hz,1H),8.05(t,J=1.9Hz,1H),7.96(d,J=2.2Hz,1H),7.78(ddd,J=7.7,1.9,1.2Hz,1H),7.74(ddd,J=7.1,1.9,1.2Hz,1H),7.71(dd,J=8.3,1.9Hz,1H),7.54–7.48(m,2H),7.42(d,J=2.1Hz,2H),7.19(d,J=8.3Hz,1H),3.91(s,3H),1.35(s,18H),1.24(s,12H).
化合物40e的合成:
取500ml单口瓶,投入a5(10g,28.18mmol,1.0eq)、40d(33.84g,56.36mmol,2.0eq)、Pd 2(dba) 3(322mg,0.56mmol,0.02eq)、K 3PO 4-3H 2O(22.6g,84.85mmol,3.0eq)、X-phos(1.3g,2.81mmol,0.1eq)和甲苯/乙醇/水(120mL/30mL/30mL),氮气保护,90℃反应7h。反应结束后,向反应液中加入水(200mL),再用DCM(400ml)萃取,旋干,进行硅胶柱色谱分离(淋洗剂为:Hex:EA=5:1(V/V)),得15.4g白色固体,产率为69.1%。
1H NMR(400MHz,CDCl3)δ8.75(d,J=4.6Hz,1H),8.27(d,J=1.9Hz,1H),8.21(t,J=2.0Hz,1H),8.17–8.12(m,2H),8.12–8.07(m,2H),7.96(d,J=2.2Hz,1H),7.89(dd,J=8.5,1.7Hz,2H),7.71(dd,J=8.3,1.9Hz,1H),7.69–7.64(m,1H),7.64–7.60(m,2H),7.59–7.48(m,4H),7.45–7.36(m,6H),7.36–7.28(m,2H),7.19(d,J=8.3Hz,1H),3.91(s,3H),1.35(s,18H).
化合物40f的合成:
取500ml单口瓶,投入40e(12g,15.13mmol,1.0eq)、吡啶盐酸盐(96g)和邻二氯苯(12ml),氮气保护,200℃反应6h。反应结束后,加水,用DCM(200ml*2次)萃取,取有机相,旋干,进行硅胶柱色谱分离(淋洗剂为:He:EA=5:1(V/V))。得到黄色固体9.34g,产率为79.3%。
1H NMR(400MHz,CDCl3)δ8.75(d,J=4.6Hz,1H),8.27(d,J=1.9Hz,1H),8.21(t,J=2.0Hz,1H),8.16–8.12(m,1H),8.12–8.05(m,3H),7.93(d,J=2.2Hz,1H),7.89(dd,J=8.5,1.8Hz,2H),7.71–7.58(m,4H),7.54(t,J=7.0Hz,1H),7.52–7.47(m,3H),7.45–7.36(m,6H),7.36–7.28(m,2H),7.04(d,J=8.6Hz,1H),1.35(s,18H).
配合物40的合成:
取500ml单口瓶,投入以下反应:
40f(9g,9.25mmol,1.0eq)、KPtCl 4(4.18g,11.1mmol,1.2eq)、TBAB(151.3mg,0.46mmol,0.05eq)和乙酸(900mL),氩气保护,130度反应16h
反应结束后,合并处理,加入过量的去离子水,固体析出,抽滤,固体用二氯甲烷溶解,旋干,进行硅胶柱色谱分离(淋洗剂为:DCM),再用Hex:DCM:EA=2:1:0.2作为淋洗剂进行硅胶柱色谱分离。然后用DCM:Hex=10ml:70ml重结晶,得到红色固体7g,再用DCM:MeOH=51ml:15ml重结晶得到红色固体7.1g,产率为79.8%。1H NMR(400MHz,CDCl3)δ9.07(d,J=8.9Hz,1H),8.30(d,J=1.9Hz,1H),8.26(d,J=1.8Hz,1H),8.18–8.11(m,2H),8.09(t,J=3.8Hz,1H),7.80–7.69(m,2H),7.69–7.64(m,1H),7.60–7.56(m,1H),7.56–7.53(m,3H),7.52–7.44(m,5H),7.44–7.27(m,8H),7.07(s,1H),1.35(s,18H).
13C NMR(101MHz,CDCl 3)δ167.39,152.12,151.60,148.09,144.54,144.37,140.79,139.59,139.45,139.19,138.93,138.92,137.16,137.14,134.47,132.07,130.91,130.05,128.38,128.33,128.06,127.49,126.91,125.96,125.15,124.75,124.17,123.93,123.50,123.47,123.44,122.86,122.84,122.63,122.31,121.69,121.59,120.47,118.10,115.07,112.54,103.68,34.96,31.29.
ESI-MS(m/z):972.3(M+1)
实施例4:
Figure PCTCN2022123703-appb-000009
化合物48b的合成:
取1000ml单口瓶,投入48a(10g,40.9mmol,1.0eq)溶于甲醇(200ml)中,将KOH(11.4g,204.5mmol,5.0eq)溶于水(100ml)中,将水溶液缓慢滴加到反应液中,然后加入a1(9.82g,44.99mmol,1.1eq),45℃搅拌反应16h。反应结束后,将反应液过滤,滤饼用甲醇(50ml*2次)打浆,烘干。得10.8g白色固体,产率为59.4%。
1H NMR(400MHz,CDCl3)δ7.77(d,J=7.9Hz,1H),7.72(d,J=15.5Hz,1H),7.57(d,J=15.6Hz,1H),7.50–7.43(m,3H),7.42–7.36(m,6H),3.90(s,3H),1.36(s,18H).
化合物48c的合成:
取500ml单口瓶,投入48b(10g,22.5mmol,1.0eq)、a2(10.91g,27.0mmol,1.2eq)、NH 4OAc(52.0g,675mmol,30.0eq)和乙酸(200ml),氮气保护,130℃反应4h。反应结束后,将反应液过滤,得到滤饼,反应液加入水(200ml)再用DCM(100ml*2)萃取,有机相旋干,将得到的残渣和滤饼一起用Hex:EA=20:1(V/V,total,200ml)打浆,过滤,将滤饼烘干,得10.25g灰白色固体,产率为73.2%。
1H NMR(400MHz,CDCl3)δ8.22(t,J=1.9Hz,1H),8.10(d,J=2.2Hz,1H),8.00(ddd,J=8.6,1.9,1.2Hz,1H),7.95(d,J=2.2Hz,1H),7.66(d,J=8.0Hz,1H),7.55(ddd,J=8.1,2.0,1.3Hz,1H),7.50(t,J=2.2Hz,1H),7.48–7.44(m,2H),7.44–7.36(m,6H),7.32(d,J=5.1Hz,1H),3.89(s,3H),1.35(s,18H).
化合物48d的合成:
取1000ml单口瓶,投入48c(10g,16.1mmol,1.0eq)、联硼酸频那醇酯(8.16g,32.2mmol,2.0eq)、Pd(OAc) 2(36.1mg,0.161mmol,0.01eq)、KOAc(4.74g,48.3mmol,3.0eq)、X-phos(0.77g,1.61mmol,0.1eq)和甲苯(250ml),氮气保护,80℃反应16h。反应结束后,将反应液过滤,旋干。将得到的残渣用Hex(200ml)超声1h,静置过夜,待产物析出,过滤,将滤饼磨碎,用Hex(200mL)在80℃下打浆2h,过滤,烘干,得7.68g白色固体,产率为71.3%。
1H NMR(400MHz,CDCl3)δ8.08(d,J=2.2Hz,1H),8.05(t,J=1.9Hz,1H),7.95(d,J=2.2Hz,1H),7.78(ddd,J=7.7,1.8,1.1Hz,1H),7.74(ddd,J=7.1,1.9,1.2Hz,1H),7.66(d,J=8.0Hz,1H),7.54–7.49(m,2H),7.48–7.44(m,2H),7.44–7.35(m,5H),7.32(d,J=5.1Hz,1H),3.89(s,3H),1.35(s,18H),1.24(s,12H).
化合物48e的合成:
取500ml单口瓶,投入a5(2.47g,6.97mmol,1.0eq)、48d(7g,10.45mmol,1.5eq)、Pd 2(dba) 3(78.05mg,0.14mmol,0.02eq)、K 3PO 4-3H 2O(5.57g,20.91mmol,3.0eq)、X-phos(1.3g,2.81mmol,0.1eq)和甲苯/乙醇/水(120mL/30mL/30mL),氮气保护,90℃反应7h。反应结束后,向反应液中加入水(200mL),再用DCM(400ml)萃取,旋干,进行硅胶柱色谱分 离(淋洗剂为:Hex:EA=5:1(V/V)),得3.9g白色固体,产率为65.6%。
1H NMR(400MHz,CDCl3)δ8.75(d,J=4.6Hz,1H),8.27(d,J=1.9Hz,1H),8.21(t,J=1.9Hz,1H),8.19–8.12(m,1H),8.12–8.07(m,2H),7.95(d,J=2.2Hz,1H),7.89(dd,J=8.5,1.7Hz,2H),7.70–7.60(m,4H),7.54(t,J=7.0Hz,1H),7.52–7.35(m,14H),7.35–7.28(m,3H),3.89(s,3H),1.35(s,18H).
化合物48f的合成:
取500ml单口瓶,投入48e(3.5g,4.1mmol,1.0eq)、吡啶盐酸盐(35g)和邻二氯苯(3.5ml),氮气保护,200℃反应6h。反应结束后,加水,用DCM(200ml*2次)萃取,取有机相,旋干,进行硅胶柱色谱分离(淋洗剂为:He:EA=5:1(V/V))。得到黄色固体2.97g,产率为86.3%。
1H NMR(400MHz,CDCl3)δ8.75(d,J=4.6Hz,1H),8.27(d,J=1.9Hz,1H),8.21(t,J=1.9Hz,1H),8.16–8.12(m,1H),8.12–8.07(m,2H),7.92–7.85(m,3H),7.70–7.60(m,3H),7.57–7.52(m,2H),7.52–7.44(m,5H),7.44–7.36(m,9H),7.34–7.28(m,2H),7.22(d,J=4.9Hz,1H),1.35(s,18H).
配合物48的合成:
取500ml单口瓶,投入以下反应:
48f(2.5g,2.95mmol,1.0eq)、KPtCl 4(1.33g,3.54mmol,1.2eq)、TBAB(48.3mg,0.15mmol,0.05eq)和乙酸(250mL),氩气保护,130度反应16h。
反应结束后,合并处理,加入过量的去离子水,固体析出,抽滤,固体用二氯甲烷溶解,旋干,进行硅胶柱色谱分离(淋洗剂为:DCM),再用Hex:DCM:EA=2:1:0.2作为淋洗剂进行硅胶柱色谱分离。然后用DCM:Hex=10ml:70ml重结晶,得到红色固体7g,再用DCM:MeOH=51ml:15ml重结晶得到红色固体2.31g,产率为75.1%。
1H NMR(400MHz,CDCl3)δ9.08(d,J=8.9Hz,1H),8.26(d,J=1.8Hz,1H),8.17–8.02(m,3H),7.78–7.69(m,2H),7.69–7.65(m,1H),7.62–7.56(m,1H),7.56–7.52(m,3H),7.52–7.35(m,14H),7.35–7.28(m,2H),7.25(s,1H),7.07(s,1H),1.35(s,18H).
13C NMR(101MHz,CDCl 3)δ152.13,151.60,148.09,144.57,144.37,140.83,139.59,139.19,138.93,138.92,137.16,137.14,134.47,130.05,129.06,128.52,128.38,128.33,128.06,127.98,127.96,127.49,126.91,125.49,125.15,124.75,124.17,123.93,123.50,123.47,123.44,122.86,122.84,122.63,122.16,121.69,121.59,120.47,112.88,112.72,112.54,111.49,111.42,34.96,31.29.
ESI-MS(m/z):1041.3(M+1)
实施例5:
氮气氛围下,分别称量约5.0mg经过充分干燥的铂配合物22,38,40,48的样品,设置加热扫描速度为10℃/min,扫描范围25-800℃,测得热分解温度分别为452,476,457.3,483(热失重0.5%对应的温度),表明这类配合物具有非常优良的热稳定性。
实施例6:
使用本发明的配合物发光材料制备有机发光二极管,器件结构见图1。
首先,将透明导电ITO玻璃基板10(上面带有阳极20)依次经:洗涤剂溶液和去离子水,乙醇,丙酮,去离子水洗净,再用氧等离子处理30秒。
然后,在ITO上蒸镀10nm厚的HATCN作为空穴注入层30。
然后,蒸镀化合物HT,形成40nm厚的空穴传输层40。
然后,在空穴传输层上蒸镀20nm厚的发光层50,发光层由铂配合物22(20%)与CBP(80%)混合掺杂组成。
然后,在发光层上蒸镀40nm厚的AlQ 3作为电子传输层60。
最后,蒸镀1nm LiF为电子注入层70和100nm Al作为器件阴极80。
实施例7:使用配合物38替换配合物22,采用实施例7中所描述的方法制备有机发光二极管。
实施例8:使用配合物40替换配合物22,采用实施例7中所描述的方法制备有机发光二极管。
实施例9:使用配合物48替换配合物22,采用实施例7中所描述的方法制备有机发光二极管。
比较例1:
使用配合物Ref-1(CN110872325A)替换配合物9,采用实施例7中所描述的方法制备有机发光二极管。
比较例2:
使用配合物Ref-2(Chem.Sci.,2014,5,4819)替换配合物9,采用实施例7中所描述的方法制备有机发光二极管。
比较例3:
使用配合物Ref-3(CN110872325A)替换配合物9,采用实施例3中所描述的方法制备有机发光二极管。
比较例4:
使用配合物Ref-4(CN110872325A)替换配合物9,采用实施例3中所描述的方法制备有机发光二极管。
器件中HATCN、HT、AlQ 3、Ref-1、Ref-2、Ref-3、Ref-4及CBP结构式如下:
Figure PCTCN2022123703-appb-000010
实施例6-9、比较例1-4中的有机电致发光器件在20mA/cm 2电流密度下的器件性能列于表1:
表1
Figure PCTCN2022123703-appb-000011
由表1数据可以看出,相同条件下,本发明的铂配合物材料应用于有机发光二极管,具有更低的驱动电压和更高的发光效率。此外,基于本发明配合物的有机发光二极管的器件寿命显著优于对比例中的配合物材料,可以满足显示产业对于发光材料的要求,具有良好的产业化前景。
上述多种实施方案仅作为示例,不用于限制本发明范围。在不偏离本发明精神的前提下,本发明中的多种材料和结构可以用其它材料和结构替代。应当理解,本领域的技术人员无需创造性的劳动就可以根据本发明的思路做出许多修改和变化。因此,技术人员在现有技术基础上通过分析、推理或者部分研究可以得到的技术方案,均应在权利要求书所限制的保护范围内。

Claims (12)

  1. 高色纯度的二价铂配合物,为具有式(I)结构的化合物:
    Figure PCTCN2022123703-appb-100001
    R 1至R 23各自独立地选自:氢、氘、卤素、胺基、羰基、羧基、硫烷基、氰基、磺酰基、膦基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有2-20个碳原子的烯基、取代或未取代的具有1-20个碳原子的烷氧基、取代或未取代的具有6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基、或者任意两个相邻取代基之间连接或者稠合成环;
    A 1-A 4选自氢、氘、卤素、胺基、羰基、羧基、硫烷基、氰基、磺酰基、膦基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有2-20个碳原子的烯基、取代或未取代的具有1-20个碳原子的烷氧基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基;或者任意两个相邻取代基之间连接或者稠合成环;
    所述杂芳基中的杂原子为N、S、O中的一个或多个;
    所述取代为被卤素、胺基、氰基或C1-C4烷基所取代。
  2. 根据权利要求1所述的二价铂配合物,R 1至R 23各自独立地选自:氢、氘、卤素、胺基、硫烷基、氰基、取代或未取代的具有1-6个碳原子的烷基、取代或未取代的具有3-6个环碳原子的环烷基、取代或未取代的具有2-6个碳原子的烯基、取代或未取代的具有1-6个碳原子的烷氧基、取代或未取代的具有6-12个碳原子的芳基、或者取代或未取代的具有3-6个碳原子的杂芳基;
    A 1-A 4其中一个或多个选自氢、氘、卤代基、氰基、取代或未取代的具有1-20个碳原子的烷基、取代或未取代的具有3-20个环碳原子的环烷基、取代或未取代的具有2-20个碳原子的烯基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基。
  3. 根据权利要求2所述的二价铂配合物,其中R 1至R 23各自独立地选自:氢、氘、卤素、取代或未取代的具有1-6个碳原子的烷基;
    A 1-A 4其中一个或多个选自卤素、氰基、取代或未取代的具有1-6个碳原子的烷基、取代 或未取代的具有3-12个环碳原子的环烷基、取代或未取代的具有2-12个碳原子的烯基、6-30个碳原子的芳基、取代或未取代的具有3-30个碳原子的杂芳基,其余为氢。
  4. 根据权利要求3所述的二价铂配合物,其中:R 1至R 23各自独立地选自:氢、氘、甲基、叔丁基;
    A 1-A 4其中一个或多个选自氟、氰基、甲基、叔丁基、苯基、氰基苯基、吡啶基;其余为氢。
  5. 根据权利要求1-4任一所述的二价铂配合物,其中R 1至R 23中R 6-R 23为氢。
  6. 根据权利要求5所述的二价铂配合物,其中R 1-R 5中至少有一个不为氢。
  7. 根据权利要求6所述的二价铂配合物,其中R 1-R 5中R 2、R 4不为氢,R 1、R 5为氢。
  8. 根据权利要求1所述的二价铂金属配合物,为下列化合物之一:
    Figure PCTCN2022123703-appb-100002
    Figure PCTCN2022123703-appb-100003
    Figure PCTCN2022123703-appb-100004
  9. 根据权利要求1-8任一所述的二价铂配合物的前体,即配体,其结构式如下:
    Figure PCTCN2022123703-appb-100005
    R 1至R 23、A 1-A 4如权利要求1-7任一所述。
  10. 权利要求1-8任一所述的二价铂配合物在有机发光二极管,有机薄膜晶体管,有机光伏器件,发光电化学池或化学传感器中的应用。
  11. 有机发光二极管,包括阴极、阳极和有机层,所述有机层为空穴注入层、空穴传输层、发光层、空穴阻挡层、电子注入层、电子传输层中的一层或多层,所述有机层中含有权利要求1-8任一所述的二价铂配合物。
  12. 根据权利要求11所述的有机发光二极管,权利要求1-8任一所述的二价铂配合物所在层为发光层。
PCT/CN2022/123703 2021-11-10 2022-10-04 高色纯度的二价铂配合物 WO2023082898A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247017940A KR20240091179A (ko) 2021-11-10 2022-10-04 색순도가 높은 백금(ii) 착물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111324669.2 2021-11-10
CN202111324669.2A CN116102597A (zh) 2021-11-10 2021-11-10 高色纯度的二价铂配合物

Publications (1)

Publication Number Publication Date
WO2023082898A1 true WO2023082898A1 (zh) 2023-05-19

Family

ID=86254824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123703 WO2023082898A1 (zh) 2021-11-10 2022-10-04 高色纯度的二价铂配合物

Country Status (4)

Country Link
KR (1) KR20240091179A (zh)
CN (1) CN116102597A (zh)
TW (1) TWI823631B (zh)
WO (1) WO2023082898A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097395A (zh) * 2010-07-21 2013-05-08 港大科桥有限公司 应用于有机发光二极管的铂(ii)四齿oncn络合物
CN106795428A (zh) * 2014-04-03 2017-05-31 港大科桥有限公司 用于oled应用的铂(ii)发射体
US20180062088A1 (en) * 2016-08-25 2018-03-01 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
CN110872325A (zh) * 2018-09-03 2020-03-10 广东阿格蕾雅光电材料有限公司 基于铂四齿oncn络合物的有机发光材料、制备方法及其在有机发光二极管中的应用
CN113717229A (zh) * 2020-05-26 2021-11-30 广东阿格蕾雅光电材料有限公司 含oncn四齿配体的铂配合物及其在有机发光二极管中的应用
CN114573639A (zh) * 2020-11-30 2022-06-03 广东阿格蕾雅光电材料有限公司 含咔唑的oncn四齿配体的铂配合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043097A1 (ja) * 2014-09-17 2016-03-24 住友化学株式会社 金属錯体およびそれを用いた発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097395A (zh) * 2010-07-21 2013-05-08 港大科桥有限公司 应用于有机发光二极管的铂(ii)四齿oncn络合物
CN106795428A (zh) * 2014-04-03 2017-05-31 港大科桥有限公司 用于oled应用的铂(ii)发射体
US20180062088A1 (en) * 2016-08-25 2018-03-01 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
CN110872325A (zh) * 2018-09-03 2020-03-10 广东阿格蕾雅光电材料有限公司 基于铂四齿oncn络合物的有机发光材料、制备方法及其在有机发光二极管中的应用
CN113717229A (zh) * 2020-05-26 2021-11-30 广东阿格蕾雅光电材料有限公司 含oncn四齿配体的铂配合物及其在有机发光二极管中的应用
CN114573639A (zh) * 2020-11-30 2022-06-03 广东阿格蕾雅光电材料有限公司 含咔唑的oncn四齿配体的铂配合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG, GANG ET AL.: "Structurally robust phosphorescent [Pt(ONCN)] emitters for high performance organic light emitters for high performance organic light emitting devices with power efficiency up to 126 lm W-1 and external quantum efficiency over 20%", CHEM. SCI., vol. 5, 26 August 2014 (2014-08-26), XP055512462, DOI: 10.1039/C4SC01105H *
MAO, MAO ET AL.: "High-performance organic light-emitting diodes with low-efficiency roll-off using bulky tetradentate [Pt(ONCN)] emitters", J. MATER. CHEM. C, vol. 7, 11 April 2019 (2019-04-11), XP055692518, DOI: 10.1039/C9TC00682F *

Also Published As

Publication number Publication date
KR20240091179A (ko) 2024-06-21
TWI823631B (zh) 2023-11-21
CN116102597A (zh) 2023-05-12
TW202319516A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Liu et al. Nondoped blue fluorescent organic light-emitting diodes based on benzonitrile-anthracene derivative with 10.06% external quantum efficiency and low efficiency roll-off
US11444254B2 (en) Metal complexes comprising diazabenzmidazolocarbene ligands and the use thereof in OLEDs
CN107021926A (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用
EP4027402A1 (en) Method of manufacturing an organic light emitting device
Yu et al. Starburst 4, 4′, 4′′-tris (carbazol-9-yl)-triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic light-emitting diodes
CN107056783A (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在有机电致发光器件上的应用
WO2021238623A1 (zh) 含oncn四齿配体的铂配合物及其在有机发光二极管中的应用
WO2017210966A1 (zh) 有机光电材料以及包括该有机材料的有机电致发光器件
TW201134823A (en) Materials for electronic devices
TW201134786A (en) Materials for organic electroluminescent devices
WO2007119816A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
TW201127811A (en) Materials for organic electroluminescent devices
WO2013174075A1 (zh) 一类含空穴传输功能基团的铱配合物及其电致发光器件
Yang et al. Rational design of pyridine-containing emissive materials for high performance deep-blue organic light-emitting diodes with CIEy~ 0.06
WO2019085683A1 (zh) 一种含有蒽酮和含氮杂环的化合物及其在oled上的应用
CN114163424A (zh) 有机电致发光材料及其器件
CN114075252A (zh) 铱金属化合物、发光材料、发光层和有机电致发光器件
Xie et al. An azomethin-zinc complex for organic electroluminescence: Crystal structure, thermal stability and optoelectronic properties
CN110343048A (zh) 一种含有螺二苯并环庚烯芴结构的有机化合物及其应用
Ho et al. Triphenylethene-carbazole-based molecules for the realization of blue and white aggregation-induced emission OLEDs with high luminance
WO2019179497A1 (zh) 一种以氮杂苯为核心的有机化合物及其应用
CN111205295B (zh) 一种以咪唑并咔唑为受体的化合物及其应用
WO2023109722A1 (zh) 基于咔唑修饰的铂配合物发光材料及其应用
CN106467511B (zh) 一种以吖啶酮为核心的化合物及其在有机电致发光器件上的应用
WO2023082898A1 (zh) 高色纯度的二价铂配合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247017940

Country of ref document: KR

Kind code of ref document: A