WO2023082818A1 - 一种微界面强化超高效废水臭氧处理装置及处理方法 - Google Patents

一种微界面强化超高效废水臭氧处理装置及处理方法 Download PDF

Info

Publication number
WO2023082818A1
WO2023082818A1 PCT/CN2022/118430 CN2022118430W WO2023082818A1 WO 2023082818 A1 WO2023082818 A1 WO 2023082818A1 CN 2022118430 W CN2022118430 W CN 2022118430W WO 2023082818 A1 WO2023082818 A1 WO 2023082818A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface
ozone
generator
treatment
Prior art date
Application number
PCT/CN2022/118430
Other languages
English (en)
French (fr)
Inventor
张志炳
张锋
周政
李磊
孟为民
杨高东
杨国强
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2023082818A1 publication Critical patent/WO2023082818A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/784Diffusers or nozzles for ozonation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Definitions

  • the invention relates to the technical field of wastewater treatment, in particular to a micro-interface enhanced ultra-high-efficiency wastewater ozone treatment device and a treatment method.
  • Chemical Oxygen Demand (COD cr ) is one of the main indicators for the total control of wastewater discharge in China.
  • COD cr Chemical Oxygen Demand
  • the removal rate of refractory organic matter in industrial wastewater is not high by traditional physicochemical, biochemical, oxidation and other processes, usually only 20%. -30% removal rate, so improving the removal rate of refractory organic matter in industrial wastewater has become a difficult problem to be solved.
  • Ozone Due to its strong oxidizing properties and the reaction product being oxygen, ozone diffuses into the air without causing secondary pollution. It is a green and environmentally friendly oxidizing agent. Ozone has been widely used in the field of sewage treatment, especially for the treatment of highly stable and refractory organic pollutants in wastewater.
  • the direct reaction is the direct oxidation of pollutants by ozone.
  • the mechanism of action is mainly based on the strong oxidation of ozone, which is a selective reaction, and the reaction is slow and the rate constant is very low; the indirect reaction is that ozone produces a large amount of activity and oxidation during the treatment process Hydroxyl radicals ( ⁇ OH) with stronger properties have higher pollutant degradation and removal capabilities and faster reaction rates, which are non-selective reactions.
  • ⁇ OH Hydroxyl radicals
  • the common ozone preparation technology uses air or pure oxygen as the raw material and adopts the corona discharge method. stay high.
  • the first object of the present invention is to provide a micro-interface-enhanced ultra-efficient wastewater ozone treatment device.
  • the overall structure of the treatment device is simple, and the wastewater is treated by setting two treatment areas, which improves the oxidation treatment effect of the wastewater;
  • the side wall of the second treatment area is provided with a gas outlet, and the unreacted ozone in the second treatment area enters the first treatment area to continue to participate in the treatment of wastewater, which improves the utilization rate of ozone, reduces the waste of ozone, and saves costs.
  • the second object of the present invention is to provide a micro-interface-enhanced ultra-efficient wastewater ozone treatment method, which is simple to operate, can effectively improve the purification treatment effect of wastewater, and can achieve more than 95% utilization of ozone, thereby saving Wastewater treatment costs.
  • the invention provides a micro-interface enhanced ultra-efficient wastewater ozone treatment device, comprising: an ozone generator and a reaction tower; a partition plate is arranged in the middle of the reaction tower; the first treatment area is above the partition plate, and the second processing area;
  • the side wall of the first treatment area is connected with a waste water pipeline; the first treatment area is provided with a first micro-interface unit, and the second treatment area is provided with a second micro-interface unit,
  • the inlet of the ozone generator is connected with an oxygen pipeline, and the outlet is respectively connected with the first micro-interface unit and the second micro-interface unit;
  • An overflow pipe is arranged in the first treatment area, and the overflow pipe penetrates the partition plate to communicate with the first treatment area and the second treatment area; the waste water treated in the first treatment area into the second treatment zone through the overflow pipe;
  • the top of the second treatment area is provided with a gas outlet, and the gas outlet is connected to the first micro-interface unit to transport the ozone at the top of the second treatment area to the first treatment area; the gas outlet is high the liquid level in the second treatment zone.
  • the present invention provides a micro-interface enhanced ultra-high-efficiency wastewater ozone treatment device.
  • the device can perform ozone treatment on wastewater twice by setting the first treatment area and the second treatment area, thereby effectively improving the efficiency of the treatment process.
  • Wastewater treatment effect by setting the overflow pipe to connect the first treatment area and the second treatment area, the liquid level in the two treatment areas can be kept in balance, and the waste water treated in the first treatment area enters through the overflow pipe In the second treatment area; by setting the first micro-interface unit and the second micro-interface unit respectively in the first treatment area and the second treatment area, the ozone is dispersed and broken into micron-level microbubbles by the micro-interface unit, which improves the ozone
  • the solubility in wastewater increases the gas-liquid contact area between ozone and wastewater, thereby improving the utilization rate of ozone and reducing the cost of wastewater treatment.
  • the first micro-interface unit includes a first micro-interface generator and a second micro-interface generator, the first micro-interface generator is located above the second micro-interface generator and the first micro-interface
  • the interface generator and the second micro-interface generator are located on the same line, and a first guide tube is arranged between the first micro-interface generator and the second micro-interface generator, and the first micro-interface generator
  • the outlet of the device is connected to the second micro-interface generator through the first guide tube; the gas outlet is connected to the first micro-interface generator, and the ozone generator is connected to the second micro-interface generator connected to the device.
  • ozone can be dispersed and crushed twice, and the effect of dispersing and crushing ozone can be improved, thereby improving the effect of ozone and wastewater.
  • the gas-liquid contact area By setting up the first micro-interface generator and the second micro-interface generator and connecting them with the first guide tube, ozone can be dispersed and crushed twice, and the effect of dispersing and crushing ozone can be improved, thereby improving the effect of ozone and wastewater.
  • the second micro-interface unit includes a third micro-interface generator, a fourth micro-interface generator and a second draft tube, and the third micro-interface generator is located above the fourth micro-interface generator And the third micro-interface generator and the fourth micro-interface generator are located on the same straight line, and the outlet of the third micro-interface generator is connected to the fourth micro-interface generator through the second draft tube ;
  • the third micro-interface generator is connected to the ozone generator.
  • the top inlet of the overflow pipe is higher than the first micro-interface unit and below the liquid level in the first treatment zone, and the bottom outlet is lower than the second micro-interface unit.
  • the wastewater before treatment contains more organic matter, and its density is higher than that of the treated wastewater. Therefore, the treated wastewater will float to the top, and the wastewater at the top will overflow into the second treatment area through the inlet of the overflow pipe.
  • the wastewater pipeline is vertically arranged between the first micro-interface generator and the second micro-interface generator.
  • a first circulation pipeline is provided on the side of the first treatment zone, the inlet of the first circulation pipeline is connected to the bottom of the first treatment zone, and the outlet is connected to the first micro-interface generator.
  • a second circulation pipeline is provided on one side of the second treatment zone; the inlet of the second circulation pipeline is connected to the bottom of the second treatment zone; the outlet is connected to the third micro-interface generator.
  • the amount of ozone entering the second reaction zone from the ozone generator is greater than the amount of ozone entering the first reaction zone from the ozone generator. Further, the ratio of the amount of ozone entering the second reaction zone from the ozone generator to the amount of ozone entering the first reaction zone from the ozone generator is 1:9.
  • a liquid outlet is provided on the side wall of the second treatment zone, and the liquid outlet is vertically located between the second micro-interface unit and the liquid surface in the second treatment zone.
  • a tail gas pipeline is connected to the top of the first treatment area. Oxygen generated by the reaction of ozone and wastewater and carbon dioxide generated during the oxidation process are discharged from the tail gas pipeline.
  • the wastewater enters the first treatment area through the wastewater pipeline, and at the same time, the ozone delivered by the ozone generator enters the first micro-interface unit, and is broken into micron-level microbubbles through the micro-interface, and mixed with the wastewater to form gas-liquid
  • the emulsion and ozone microbubbles are in contact with the wastewater to oxidize the pollutants in the wastewater; the wastewater treated in the first treatment area flows into the second treatment area through the overflow pipe;
  • the wastewater continues to be treated twice.
  • the treated wastewater flows out through the liquid outlet.
  • Ozone enters the first treatment zone through the gas outlet to participate in the treatment of waste water. This not only improves the treatment effect of waste water, but also improves the utilization efficiency of ozone, and the utilization efficiency of ozone in the reaction system can be increased to 95%.
  • the pretreatment of wastewater is mainly carried out in the first treatment zone, and therefore the ozone injected into it is much less than the ozone injected into the second reaction zone, so that the wastewater in the first treatment zone remains excessive, It can improve the utilization efficiency of ozone, and at the same time carry out a primary oxidation treatment of wastewater;
  • the second treatment zone is the main reaction zone, in which excessive ozone is introduced, and is dispersed into micron-level microbubbles under the dispersion and crushing of the second micro-interface unit.
  • the gas-liquid contact area between the two is increased, thereby ensuring the treatment effect on wastewater.
  • the ozone that has not participated in the reaction enters the first treatment zone from the gas outlet on the upper part of the second treatment zone, and participates in the pretreatment of wastewater, thereby improving the efficiency of ozone use.
  • the first micro-interface unit and the second micro-interface unit disperse and break the ozone into micron-level microbubbles, which increases the residence time of ozone in wastewater, slows down the rising speed of ozone, and prolongs the ozone
  • the reaction zone with wastewater improves the ozone utilization rate and wastewater treatment effect, and reduces the waste of ozone;
  • the generated ozone microbubbles are broken in the wastewater, the energy generated by the breakage can decompose the water molecules in the wastewater into An active oxygen and an active hydroxyl group, while ozone itself is decomposed into oxygen and an active oxygen in the wastewater, all of which have an oxidation effect on the pollutants in the wastewater.
  • the present invention not only improves the gas-liquid contact area between ozone and waste water by adopting the micro-interface unit, but also improves the oxidation treatment effect of waste water by using the crushing energy of the generated ozone microbubbles.
  • the treatment efficiency of the present invention to waste water is improved.
  • the chemical reaction formula of ozone and water is as follows:
  • micro-interface generator used in the present invention has been embodied in the inventor's previous patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • the prior patent CN201610641119.6 introduced in detail the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator).
  • the body is provided with an inlet communicating with the cavity, the opposite first end and second end of the cavity are open, and the cross-sectional area of the cavity is from the middle of the cavity to the first end and the second end of the cavity.
  • the second end is reduced; the secondary broken piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary broken piece is set in the cavity, and the two ends of the secondary broken piece and the cavity are open
  • An annular channel is formed between the through holes.
  • the micron bubble generator also includes an inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, it can be known that the specific working principle is: the liquid enters the micrometer tangentially through the liquid inlet pipe.
  • the gas is rotated and cut at a super high speed, so that the gas bubbles are broken into micron-level micro-bubbles, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation device.
  • the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet, and a gas-liquid mixture outlet, while the secondary bubble breaker connects the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both Gas-liquid mixing is required.
  • the primary bubble breaker mainly uses circulating fluid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker.
  • the mixture is passed into the elliptical rotating ball for rotation at the same time, so that the bubbles are broken during the rotation process, so the secondary bubble breaker is actually a gas-liquid linkage micro-interface generator.
  • the micro-interface generator used in the present invention is not limited to the above-mentioned several forms
  • the specific structure of the bubble breaker described in the prior patents is only one of the forms that the micro-interface generator of the present invention can adopt.
  • the liquid phase coming in from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the attached drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, which is also for the liquid phase to provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the patent application, it was named micro-bubble generator (CN201610641119.6) and bubble breaker (201710766435.0) in the early stage. With continuous technological improvement, it was later renamed as micro-interface generator Device, now the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the name is different. In summary, the micro-interface generator of the present invention belongs to the prior art.
  • the invention also provides a micro-interface enhanced ultra-efficient wastewater ozone treatment method, which uses the above-mentioned treatment device to treat the wastewater.
  • the treatment method includes:
  • the oxygen After the oxygen is converted into ozone, it is broken into micron-level micro-bubbles through the micro-interface, and the ozone micro-bubbles are in contact with the wastewater to purify the wastewater.
  • the treatment method of the invention is simple to operate, can effectively improve the purification treatment effect on waste water, and the utilization rate of ozone can reach more than 95%, thereby saving waste water treatment cost.
  • the micro-interface enhanced ultra-high-efficiency wastewater ozone treatment device of the present invention has a simple overall structure, and the wastewater is treated by setting two treatment areas, which improves the oxidation treatment effect of the wastewater; by setting the gas outlet on the side wall of the second treatment area, the second The unreacted ozone in the treatment area enters the first treatment area and continues to participate in the treatment of wastewater, which improves the utilization rate of ozone, reduces the waste of ozone, and saves costs.
  • Fig. 1 is the schematic structural diagram of the micro-interface enhanced ultra-efficient wastewater ozone treatment device provided in Example 1 of the present invention
  • Fig. 2 is a schematic structural diagram of a micro-interface enhanced ultra-high-efficiency wastewater ozone treatment device provided in Comparative Example 3 of the present invention.
  • 170-ozone generator 180-first treatment area.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • the present embodiment provides a micro-interface enhanced ultra-efficient wastewater ozone treatment device, comprising: an ozone generator 170 and a reaction tower; the middle part of the reaction tower is provided with a partition plate 60; above the partition plate 60 is the first treatment Zone 180 , below which is the second processing zone 10 .
  • the side wall of the first treatment area 180 is connected with the wastewater pipeline 100; the first micro-interface unit is arranged in the first treatment area 180, and the second micro-interface unit is arranged in the second treatment area 10; the outlet of the ozone generator 170 is respectively connected with The first micro-interface unit is connected to the second micro-interface unit, and the inlet is connected with an oxygen pipeline 160.
  • oxygen enters the ozone generator 170 through the oxygen pipeline 160 and reacts to generate ozone, and the ozone is respectively input into the first micro-interface unit and the first micro-interface unit.
  • the second micro-interface unit is dispersed and crushed into micron-level micro-bubbles and then mixed with waste water to treat the waste water.
  • the amount of ozone entering the second reaction zone from the ozone generator 170 is greater than the amount of ozone entering the first reaction zone from the ozone generator 170 .
  • the ratio of the amount of ozone entering the second reaction zone from the ozone generator 170 to the amount of ozone entering the first reaction zone from the ozone generator 170 is 1:9.
  • the first micro-interface unit includes a first micro-interface generator 90 and a second micro-interface generator 70, the first micro-interface generator 90 is located above the second micro-interface generator 70 and the first micro-interface generator 90 and the second micro-interface generator 70
  • the second micro-interface generator 70 is located on the same straight line
  • the first guide pipe 80 is arranged between the first micro-interface generator 90 and the second micro-interface generator 70, and the outlet of the first micro-interface generator 90 passes through the first micro-interface generator 70.
  • the guide tube 80 is connected to the second micro-interface generator 70 ; the gas outlet 120 is connected to the first micro-interface generator 90 , and the ozone generator 170 is connected to the second micro-interface generator 70 .
  • the wastewater pipeline 100 is vertically arranged between the first micro-interface generator 90 and the second micro-interface generator 70 .
  • ozone can be dispersed and crushed twice, and the effect of dispersing and crushing ozone can be improved, thereby improving The gas-liquid contact area between ozone and wastewater.
  • a tail gas pipeline 110 is connected to the top of the first treatment area 180 . Oxygen generated by the reaction of ozone and wastewater and carbon dioxide generated during the oxidation process are discharged from the tail gas pipeline 110 .
  • the side of the first treatment area 180 is provided with a first circulation pipeline 130 , the inlet of the first circulation pipeline 130 is connected to the bottom of the first treatment area 180 , and the outlet is connected to the first micro-interface generator 90 .
  • an overflow pipe 20 is arranged in the first treatment area 180, and the overflow pipe 20 penetrates the dividing plate 60 to communicate with the first treatment area 180 and the second treatment area 10;
  • the waste water enters the second treatment area 10 through the overflow pipe 20; specifically, the top inlet of the overflow pipe 20 is higher than the first micro interface unit and below the liquid level in the first treatment area 180, and the bottom outlet is lower than the second Micro interface unit.
  • the wastewater before treatment contains more organic matter, and its density is higher than that of wastewater after treatment.
  • the wastewater after treatment floats to the top and overflows into the second treatment area 10 through the inlet of the overflow pipe 20 .
  • the second microinterface group comprises the 3rd microinterface generator 50, the 4th microinterface generator 30 and the second guide tube 40, the 3rd microinterface generator 50 is positioned at the 4th microinterface generator 30 Above and the third micro-interface generator 50 is located on the same straight line as the fourth micro-interface generator 30, and the outlet of the third micro-interface generator 50 is connected to the fourth micro-interface generator 30 through the second draft tube 40; the third The micro interface generator 50 is connected with the ozone generator 170 .
  • ozone can be dispersed and crushed twice, and the effect of dispersing and crushing ozone can be improved, thereby improving The gas-liquid contact area between ozone and wastewater.
  • a second circulation pipeline 150 is arranged on one side of the second treatment zone 10 ; the inlet of the second circulation pipeline 150 is connected to the bottom of the second treatment zone 10 ; the outlet is connected to the third micro-interface generator 50 .
  • a gas outlet 120 is provided on the top of the second treatment zone 10, and the gas outlet 120 is connected with the first micro interface unit to transport the ozone at the top of the second treatment zone 10 to the first treatment zone 180;
  • the gas outlet 120 is higher than the liquid level in the second treatment zone 10 .
  • the side wall of the second treatment zone 10 is provided with a liquid outlet 140 , and the liquid outlet 140 is located between the second micro interface unit and the liquid surface in the second treatment zone 10 along the vertical direction.
  • the water treated by the second treatment zone 10 is extracted from the liquid outlet 140 .
  • Example 1 The only difference between this example and Example 1 is that no partition is provided.
  • Example 1 The only difference between this example and Example 1 is that the gas outlet of the second treatment zone is not connected with the first treatment zone, and the gas at the top of the second treatment zone is directly extracted.
  • Example 1 The difference between this example and Example 1 is that the first micro-interface generator and the second micro-interface generator are not on the same straight line in this example, and the third micro-interface generator and the fourth micro-interface generator are not on the same straight line, specifically as Figure 2 shows.
  • the waste water of a chemical enterprise was treated by the treatment devices of Embodiment 1, Comparative Example 1 and Comparative Example 2 respectively.
  • the waste water volume is 100m 3 /h
  • the COD is 2400mg/L
  • the ozone dosing concentration is 100mg/L.
  • the COD of the produced water at the liquid outlet is tested, and the test results are shown in the table below.
  • the treatment device of this embodiment can effectively purify wastewater, and the removal rate can reach 98.3%.
  • the removal rate of comparative example 1 only reaches 86.2%, because there is only one treatment zone in comparative example 1, the part ozone that enters wherein does not just discharge by the tail gas pipeline of top without reacting with waste water, and ozone utilization rate is low;
  • two treatment zones are set, and only a small amount of ozone is passed into the first treatment zone for pretreatment, and a gas outlet is provided on the top of the second treatment zone, through which the gas that has not participated in the reaction in the second treatment zone can be removed.
  • Ozone is discharged into the first treatment area to carry out pretreatment to waste water, has realized the efficient utilization of ozone by this way, has improved the treatment effect to waste water simultaneously;
  • the removal rate of comparative example 2 is far lower than embodiment 1, this It is because the unreacted ozone in the second treatment zone in Comparative Example 2 is directly extracted from the gas outlet, which affects the utilization rate of ozone, thus causing its poor treatment effect on wastewater.
  • the micro-interface enhanced ultra-efficient wastewater ozone treatment device of the present invention has a simple overall structure, can effectively improve the purification treatment effect on wastewater, and can realize efficient utilization of ozone, thereby reducing wastewater treatment. cost.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明提供了一种微界面强化超高效废水臭氧处理装置,包括:臭氧发生器和反应塔;所述反应塔中部设置有分隔板;所述分隔板上方为第一处理区,下方为第二处理区;所述第一处理区侧壁连接有废水管路;所述第一处理区内设置有第一微界面机组,所述第二处理区内设置有第二微界面机组;所述臭氧发生器的入口连接有氧气管路,出口分别与所述第一微界面机组和所述第二微界面机组相连;所述第一处理区内设置有溢流管,所述溢流管穿透所述分隔板连通所述第一处理区和所述第二处理区。本发明的微界面强化超高效废水臭氧处理装置整体结构简单,能够有效提高对废水的净化处理效果,且能够实现对臭氧的高效利用,从而降低了废水处理成本。

Description

一种微界面强化超高效废水臭氧处理装置及处理方法 技术领域
本发明涉及废水处理技术领域,具体而言,涉及一种微界面强化超高效废水臭氧处理装置及处理方法。
背景技术
我国水资源短缺,而随着工业的快速发展,废水的种类和数量迅速增加,对水体的污染也日趋广泛和严重,水环境面临异常严峻的形势,威胁人类的建康和安全。在此情况下,国家近年来陆续出台了一系列政策措施,如《水污染防治行动计划》,大力开展水环境整治。水环境治理和保护的关键在于工业领域的废水治理,而工业废水治理的关键在于:1)源头控制,从优化工业过程、提高生产技术水平着手节水、减排;2)不断研究和发展废水净化循环利用或达标排放技术。
化学需氧量(COD cr)是我国废水排放总量控制的主要指标之一,而传统的物化、生化、氧化等工艺对工业废水中难降解有机物的去除率都不高,通常仅有20%-30%的去除率,因此提高工业废水中难降解有机物的去除率,成为亟待解决的难题。
臭氧由于其强氧化性,且反应产物为氧气,扩散进入空气中,不会造成二次污染,是一种绿色环保的氧化剂。臭氧在污水处理领域,尤其是针对废水中高稳定性、难降解有机污染物的处理,得到了广泛应用。
臭氧与污染物反应的方式有直接和间接两种方式。直接反应是臭氧直接氧化污染物,其作用机理主要是基于臭氧的强氧化性,属于选择性反应,且反应缓慢,速率常数很低;间接反应是臭氧在处理过程中产生大量的、活性和氧化性能均更强的羟基自由基(·OH),从而具备更高的污染物降解去除能力和更快 的反应速率,属于非选择性反应。从在水中臭氧与有机物反应的这两种方式特点来看,臭氧的间接反应具有更重要的意义,特别是在针对难氧化降解的废水处理时,有望成为一种高效去除COD cr的技术。
尽管臭氧氧化技术发展多年,但其在实际的工业废水处理系统中应用较少或效果不佳,归纳其主要问题及原因如下:
(1)目前,常见的制备臭氧技术都是以空气或纯氧为原料,采用电晕放电方法,该过程能耗高、产率较低、臭氧品质波动较大,从而导致臭氧氧化技术的成本居高不下。
(2)臭氧在水中溶解度较低,传统接触设备或方式(曝气)的传质效果不理想,造成气液接触的吸收效率低,限制了参与反应的臭氧浓度,进而限制了污染物处理效果,偏低的臭氧利用率加剧了臭氧氧化技术的成本劣势。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种微界面强化超高效废水臭氧处理装置,该处理装置整体结构简单,通过设置两个处理区对废水进行处理,提高了对废水的氧化处理效果;通过在第二处理区侧壁设置气体出口,第二处理区未反应的臭氧进入第一处理区中继续参与对废水的处理,提高了臭氧的利用率,减少了臭氧的浪费,节约了成本。
本发明的第二目的在于提供一种微界面强化超高效废水臭氧处理方法,该方法操作简单,能够有效提高对废水的净化处理效果,且对臭氧的利用率能达到95%以上,从而节约了废水处理成本。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种微界面强化超高效废水臭氧处理装置,包括:臭氧发生器和反应塔;所述反应塔中部设置有分隔板;所述分隔板上方为第一处理区, 下方为第二处理区;
所述第一处理区侧壁连接有废水管路;所述第一处理区内设置有第一微界面机组,所述第二处理区内设置有第二微界面机组,
所述臭氧发生器的入口连接有氧气管路,出口分别与所述第一微界面机组和所述第二微界面机组相连;
所述第一处理区内设置有溢流管,所述溢流管穿透所述分隔板连通所述第一处理区和所述第二处理区;所述第一处理区处理后的废水通过所述溢流管进入所述第二处理区中;
所述第二处理区的上部设置有气体出口,所述气体出口与所述第一微界面机组相连以将所述第二处理区顶部的臭氧输送到第一处理区中;所述气体出口高于所述第二处理区内的液面。
现有技术中,臭氧进入反应塔后,由于其本身为气态且在水中溶解度较低,气液接触的吸收效率低,一般只有40%左右的臭氧参与了废水的氧化处理过程,大量臭氧直接从反应塔塔顶排出,臭氧利用率低,严重影响了废水的处理效果,同时,偏低的臭氧利用率加剧了臭氧氧化技术的成本劣势。
为解决上述技术问题,本发明提供了一种微界面强化超高效废水臭氧处理装置,该装置通过设置第一处理区和第二处理区,能够对废水进行两次臭氧处理,从而有效提高了对废水的处理效果;通过设置溢流管,将第一处理区和第二处理区连通,能够使两个处理区内的液面保持平衡,同时第一处理区处理后的废水通过溢流管进入第二处理区中;通过在第一处理区和第二处理区内分别设置第一微界面机组和第二微界面机组,利用微界面机组将臭氧分散破碎成为微米级别的微气泡,提高了臭氧在废水中的溶解度,同时提高了臭氧与废水间的气液接触面积,从而提高了臭氧的利用率,降低了废水处理成本。
优选的,所述第一微界面机组包括第一微界面发生器和第二微界面发生器,所述第一微界面发生器位于所述第二微界面发生器的上方且所述第一微界面发生器与所述第二微界面发生器位于同一直线,所述第一微界面发生器与所 述第二微界面发生器之间设置有第一导流管,所述第一微界面发生器的出口通过所述第一导流管与所述第二微界面发生器相连;所述气体出口与所述第一微界面发生器相连,所述臭氧发生器与所述第二微界面发生器相连。通过设置第一微界面发生器和第二微界面发生器,并利用第一导流管将其进行连接,能够将臭氧进行两次分散破碎,提高对臭氧的分散破碎效果,从而提高臭氧与废水的气液接触面积。
优选的,所述第二微界面机组包括第三微界面发生器、第四微界面发生器和第二导流管,所述第三微界面发生器位于所述第四微界面发生器的上方且所述第三微界面发生器与所述第四微界面发生器位于同一直线,所述第三微界面发生器的出口通过所述第二导流管与所述第四微界面发生器相连;所述第三微界面发生器与所述臭氧发生器相连。通过设置第三微界面发生器和第四微界面发生器,并利用第二导流管将其进行连接,能够将臭氧进行两次分散破碎,提高对臭氧的分散破碎效果,从而提高臭氧与废水的气液接触面积。
优选的,所述溢流管顶部进口高于所述第一微界面机组且位于所述第一处理区内的液面下方,底部出口低于所述第二微界面机组。处理前的废水中含有较多的有机物,相比于处理后的废水密度高,因此,处理后的废水会上浮到顶部,顶部的废水通过溢流管进口溢流到第二处理区中。
优选的,所述废水管路沿竖直方向设置在所述第一微界面发生器与所述第二微界面发生器之间。
优选的,所述第一处理区侧部设置有第一循环管路,所述第一循环管路的入口与所述第一处理区底部相连,出口与所述第一微界面发生器相连。
优选的,所述第二处理区一侧设置有第二循环管路;所述第二循环管路入口与所述第二处理区底部相连;出口与所述第三微界面发生器相连。
优选的,从所述臭氧发生器进入第二反应区的臭氧量大于从所述臭氧发生器进入第一反应区的臭氧量。进一步的,从所述臭氧发生器进入第二反应区的臭氧量与从所述臭氧发生器进入第一反应区的臭氧量的比例为1:9。
优选的,所述第二处理区侧壁设置有液体出口,所述液体出口沿竖直方向位于所述第二微界面机组与所述第二处理区内的液面之间。
优选的,所述第一处理区顶部连接有尾气管路。臭氧与废水反应后生成的氧气以及氧化过程中产生的二氧化碳从尾气管路排出。
在本发明中,废水经废水管路进入第一处理区中,同时,臭氧发生器输送的臭氧进入第一微界面机组中,经微界面破碎成为微米级别的微气泡,与废水混合为气液乳化物,臭氧微气泡与废水接触,对废水中的污染物进行氧化处理;经第一处理区处理后的废水通过溢流管流到第二处理区中;
与此同时,臭氧发生器输送的臭氧在第二微界面机组中分散破碎为微气泡后,继续对废水进行二次处理,处理后的废水经液体出口流出,第二处理区中未参与反应的臭氧经气体出口进入第一处理区中参与对废水的处理。这样既提高了对废水的处理效果,又提高了对臭氧的利用效率,反应体系中对臭氧的利用效率可提高到95%。
实际上,第一处理区中主要进行的是对废水的预处理,也因此其中通入的臭氧远远少于第二反应区中通入的臭氧,这样使第一处理区中废水保持过量,能够提高对臭氧的利用效率,同时对废水进行一次氧化处理;第二处理区是主反应区,其中通入的臭氧过量,在第二微界面机组的分散破碎下分散成为微米级别的微气泡,提高了两者的气液接触面积,从而保证了对废水的处理效果,未参与反应的臭氧从第二处理区上部的气体出口进入到第一处理区中,参与对废水的预处理,从而提高了臭氧的利用效率。
本发明中,一方面通过第一微界面机组和第二微界面机组将臭氧分散破碎成为微米级别的微气泡,提高了臭氧在废水中的停留时间,减缓了臭氧的上升速度,从而延长了臭氧与废水的反应区间,提高了臭氧利用率及废水处理效果,减少了臭氧的浪费;另一方面,产生的臭氧微气泡在废水中破碎时,破碎产生的能量能够将废水中的水分子分解为一个活性氧和一个活性氢氧基,同时臭氧本身在废水中分解为氧气和一个活性氧,这些均对废水中的污染物有氧化效 果。可见,本发明不仅通过采用微界面机组提高了臭氧与废水间的气液接触面积,还利用产生的臭氧微气泡破碎时的破碎能提高了对废水的氧化处理效果,正是通过这种方式,提高了本发明对废水的处理效率。其中,臭氧与水的化学反应式如下:
O 3→O 2+O·
H 2O→HO·+O·
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器 实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。综上所述,本发明的微界面发生器属于现有技术。
本发明还提供了一种微界面强化超高效废水臭氧处理方法,应用上述的处理装置对废水进行处理。
优选的,所述处理方法包括:
氧气转化成臭氧后,经微界面破碎成微米级别的微气泡,臭氧微气泡与废水接触对废水进行净化。
本发明的处理方法操作简单,能够有效提高对废水的净化处理效果,且对臭氧的利用率能达到95%以上,从而节约了废水处理成本。
与现有技术相比,本发明的有益效果在于:
本发明的微界面强化超高效废水臭氧处理装置整体结构简单,通过设置两个处理区对废水进行处理,提高了对废水的氧化处理效果;通过在第二处理区侧壁设置气体出口,第二处理区未反应的臭氧进入第一处理区中继续参与对废水的处理,提高了臭氧的利用率,减少了臭氧的浪费,节约了成本。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例1提供的微界面强化超高效废水臭氧处理装置的结构示意图;
图2为本发明比较例3提供的微界面强化超高效废水臭氧处理装置的结构示意图。
其中:
10-第二处理区;                     20-溢流管;
30-第四微界面发生器;               40-第二导流管;
50-第三微界面发生器;               60-分隔板;
70-第二微界面发生器;               80-第一导流管;
90-第一微界面发生器;               100-废水管路;
110-尾气管路;                      120-气体出口;
130-第一循环管路;                  140-液体出口;
150-第二循环管路;                  160-氧气管路;
170-臭氧发生器;                    180-第一处理区。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例1
参阅图1,本实施例提供了一种微界面强化超高效废水臭氧处理装置,包括:臭氧发生器170和反应塔;反应塔中部设置有分隔板60;分隔板60上方为第一处理区180,下方为第二处理区10。第一处理区180侧壁连接有废水管 路100;第一处理区180内设置有第一微界面机组,第二处理区10内设置有第二微界面机组;臭氧发生器170的出口分别与第一微界面机组和第二微界面机组相连,入口连接有氧气管路160,反应时,氧气通过氧气管路160进入臭氧发生器170内反应产生臭氧,臭氧分别输入到第一微界面机组和第二微界面机组中分散破碎成微米级别的微气泡后与废水混合,对废水进行处理。为保证处理效果,从臭氧发生器170进入第二反应区的臭氧量大于从臭氧发生器170进入第一反应区的臭氧量。本实施例中,从臭氧发生器170进入第二反应区的臭氧量与从臭氧发生器170进入第一反应区的臭氧量的比例为1:9。
其中,第一微界面机组包括第一微界面发生器90和第二微界面发生器70,第一微界面发生器90位于第二微界面发生器70的上方且第一微界面发生器90与第二微界面发生器70位于同一直线上,第一微界面发生器90与第二微界面发生器70之间设置有第一导流管80,第一微界面发生器90的出口通过第一导流管80与第二微界面发生器70相连;气体出口120与第一微界面发生器90相连,臭氧发生器170与第二微界面发生器70相连。废水管路100沿竖直方向设置在第一微界面发生器90与第二微界面发生器70之间。通过设置第一微界面发生器90和第二微界面发生器70,并利用第一导流管80将其进行连接,能够将臭氧进行两次分散破碎,提高对臭氧的分散破碎效果,从而提高臭氧与废水的气液接触面积。
第一处理区180顶部连接有尾气管路110。臭氧与废水反应后生成的氧气以及氧化过程中产生的二氧化碳从尾气管路110排出。
第一处理区180侧部设置有第一循环管路130,第一循环管路130的入口与第一处理区180底部相连,出口与第一微界面发生器90相连。
在本实施例中,第一处理区180内设置有溢流管20,溢流管20穿透分隔板60连通第一处理区180和第二处理区10;第一处理区180处理后的废水通过溢流管20进入第二处理区10中;具体而言,溢流管20顶部进口高于第一微界面机组且位于第一处理区180内的液面下方,底部出口低于第二微界面机 组。处理前的废水中含有较多的有机物,相比于处理后的废水密度高,处理后的废水上浮到顶部,通过溢流管20进口溢流到第二处理区10中。
继续参阅图1,第二微界面机组包括第三微界面发生器50、第四微界面发生器30和第二导流管40,第三微界面发生器50位于第四微界面发生器30的上方且第三微界面发生器50与第四微界面发生器30位于同一直线上,第三微界面发生器50的出口通过第二导流管40与第四微界面发生器30相连;第三微界面发生器50与臭氧发生器170相连。通过设置第三微界面发生器50和第四微界面发生器30,并利用第二导流管40将其进行连接,能够将臭氧进行两次分散破碎,提高对臭氧的分散破碎效果,从而提高臭氧与废水的气液接触面积。
第二处理区10一侧设置有第二循环管路150;第二循环管路150入口与第二处理区10底部相连;出口与第三微界面发生器50相连。
为提高臭氧的利用率,在第二处理区10的上部设置有气体出口120,气体出口120与第一微界面机组相连以将第二处理区10顶部的臭氧输送到第一处理区180中;气体出口120高于第二处理区10内的液面。
第二处理区10侧壁设置有液体出口140,液体出口140沿竖直方向位于第二微界面机组与第二处理区10内的液面之间。经第二处理区10处理后的水从液体出口140采出。
比较例1
本例与实施例1的不同点仅在于不设置分隔板。
比较例2
本例与实施例1的不同点仅在于第二处理区的气体出口不与第一处理区连接,第二处理区顶部气体直接采出。
比较例3
本例与实施例1的区别在于本例中第一微界面发生器与第二微界面发生器不在同一直线上,第三微界面发生器与第四微界面发生器不在同一直线上,具体如图2所示。
实验例1
以某化工企业的废水为例,分别利用实施例1、比较例1和比较例2的处理装置对废水进行处理。
其中,废水水量100m 3/h,COD为2400mg/L,臭氧投加浓度为100mg/L,测试液体出口采出水的COD,测试结果如下表。
表1测试结果
  COD(mg/L) 去除率(%)
实施例1 40.8 98.3
比较例1 331.2 86.2
比较例2 156 93.5
比较例3 105.6 95.6
从表1中可以看出,本实施例的处理装置能够有效净化废水,去除率能够达到98.3%。其中,比较例1的去除率仅达到86.2%,是因为比较例1中只有一个处理区,进入其中的部分臭氧并未与废水反应就通过顶部的尾气管路排出,臭氧利用率低;而实施例1中则通过设置两个处理区,且第一处理区中仅通入少量臭氧进行预处理,第二处理区上部设置有气体出口,通过气体出口能够将第二处理区中未参与反应的臭氧排入到第一处理区中对废水进行预处理,通过这种方式实现了对臭氧的高效利用,同时提高了对废水的处理效果;比较例2的去除率远低于实施例1,这是由于比较例2中第二处理区未反应的臭氧直接从气体出口采出,影响了臭氧的利用率,因此造成其对废水的处理效果差。比较例3的去除率虽然优于比较例1和比较例2,但是其去除率低于实施例1, 这是因为比较例3中微界面机组的两个微界面发生器不在同一直线上,因此,微气泡在导流管中输送时可能会受到输送路径的影响,冲击力减弱,在二次破碎时的破碎效果较差,其气液接触面积不如实施例1,因此影响了其去除率。
总之,与现有技术的相比,本发明的微界面强化超高效废水臭氧处理装置整体结构简单,能够有效提高对废水的净化处理效果,且能够实现对臭氧的高效利用,从而降低了废水处理成本。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种微界面强化超高效废水臭氧处理装置,其特征在于,包括:臭氧发生器和反应塔;所述反应塔中部设置有分隔板;所述分隔板上方为第一处理区,下方为第二处理区;
    所述第一处理区侧壁连接有废水管路;所述第一处理区内设置有第一微界面机组,所述第二处理区内设置有第二微界面机组;
    所述臭氧发生器的入口连接有氧气管路,出口分别与所述第一微界面机组和所述第二微界面机组相连;
    所述第一处理区内设置有溢流管,所述溢流管穿透所述分隔板连通所述第一处理区和所述第二处理区;所述第一处理区处理后的废水通过所述溢流管进入所述第二处理区中;
    所述第二处理区的上部设置有气体出口,所述气体出口与所述第一微界面机组相连以将所述第二处理区顶部的臭氧输送到第一处理区中;所述气体出口高于所述第二处理区内的液面。
  2. 根据权利要求1所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述第一微界面机组包括第一微界面发生器和第二微界面发生器,所述第一微界面发生器位于所述第二微界面发生器的上方且所述第一微界面发生器与所述第二微界面发生器位于同一直线,所述第一微界面发生器与所述第二微界面发生器之间设置有第一导流管,所述第一微界面发生器的出口通过所述第一导流管与所述第二微界面发生器相连;所述气体出口与所述第一微界面发生器相连,所述臭氧发生器与所述第二微界面发生器相连。
  3. 根据权利要求1所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述第二微界面机组包括第三微界面发生器、第四微界面发生器和第二导流管,所述第三微界面发生器位于所述第四微界面发生器的上方且所述第三微界面发生器与所述第四微界面发生器位于同一直线,所述第三微界面发生器的出口通过所述第二导流管与所述第四微界面发生器相连;所述第三微界面发 生器与所述臭氧发生器相连。
  4. 根据权利要求1所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述溢流管顶部进口高于所述第一微界面机组且位于所述第一处理区内的液面下方,底部出口低于所述第二微界面机组。
  5. 根据权利要求2所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述废水管路沿竖直方向设置在所述第一微界面发生器与所述第二微界面发生器之间。
  6. 根据权利要求2所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述第一处理区侧部设置有第一循环管路,所述第一循环管路的入口与所述第一处理区底部相连,出口与所述第一微界面发生器相连。
  7. 根据权利要求3所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述第二处理区一侧设置有第二循环管路;所述第二循环管路入口与所述第二处理区底部相连;出口与所述第三微界面发生器相连。
  8. 根据权利要求3所述的微界面强化超高效废水臭氧处理装置,其特征在于,所述第二处理区侧壁设置有液体出口,所述液体出口沿竖直方向位于所述第二微界面机组与所述第二处理区内的液面之间。
  9. 一种微界面强化超高效废水臭氧处理方法,其特征在于,应用权利要求1-8任一项所述的处理装置对废水进行处理。
  10. 根据权利要求9所述的处理方法,其特征在于,包括:
    氧气转化成臭氧后,经微界面破碎成微米级别的微气泡,臭氧微气泡与废水接触对废水进行净化。
PCT/CN2022/118430 2021-11-11 2022-09-13 一种微界面强化超高效废水臭氧处理装置及处理方法 WO2023082818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111331164.9A CN113929204A (zh) 2021-11-11 2021-11-11 一种微界面强化超高效废水臭氧处理装置及处理方法
CN202111331164.9 2021-11-11

Publications (1)

Publication Number Publication Date
WO2023082818A1 true WO2023082818A1 (zh) 2023-05-19

Family

ID=79286194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118430 WO2023082818A1 (zh) 2021-11-11 2022-09-13 一种微界面强化超高效废水臭氧处理装置及处理方法

Country Status (2)

Country Link
CN (1) CN113929204A (zh)
WO (1) WO2023082818A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929204A (zh) * 2021-11-11 2022-01-14 南京延长反应技术研究院有限公司 一种微界面强化超高效废水臭氧处理装置及处理方法
CN114477577B (zh) * 2022-01-19 2023-09-01 南京延长反应技术研究院有限公司 一种超声波废水处理的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634365A1 (en) * 1993-07-16 1995-01-18 BASF Aktiengesellschaft Breaking down aromatic compounds in industrial wastewaters
JPH08299971A (ja) * 1995-03-06 1996-11-19 Fuji Electric Co Ltd 分離注入式オゾン接触方法
CN111362493A (zh) * 2019-12-23 2020-07-03 南京延长反应技术研究院有限公司 一种双甘磷高盐废水的处理系统及方法
CN112479349A (zh) * 2019-09-11 2021-03-12 南京延长反应技术研究院有限公司 一种黑臭水体的处理系统及其方法
CN113060827A (zh) * 2021-03-26 2021-07-02 南京延长反应技术研究院有限公司 一种好氧生物处理的反应装置
CN113087254A (zh) * 2019-12-23 2021-07-09 南京延长反应技术研究院有限公司 一种丙烯酸及其酯废水的处理系统及方法
CN113929204A (zh) * 2021-11-11 2022-01-14 南京延长反应技术研究院有限公司 一种微界面强化超高效废水臭氧处理装置及处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437390A (zh) * 2018-12-19 2019-03-08 南京大学盐城环保技术与工程研究院 一种臭氧催化氧化废水的反应器及其使用方法
CN112479348A (zh) * 2019-09-11 2021-03-12 南京延长反应技术研究院有限公司 一种黑臭水的远程控制系统及其方法
CN111573964B (zh) * 2020-03-24 2021-07-09 南京延长反应技术研究院有限公司 一种内置微界面造纸废水处理系统及处理方法
CN111422971A (zh) * 2020-05-08 2020-07-17 上海尚析环保设备有限公司 一种喷淋式催化臭氧氧化反应系统
CN112755927A (zh) * 2020-12-17 2021-05-07 南京延长反应技术研究院有限公司 一种环氧乙烷法制备乙二醇的反应系统及方法
CN113479850A (zh) * 2021-07-16 2021-10-08 南京延长反应技术研究院有限公司 一种制备双氧水的塔式强化氧化系统以及方法
CN113499738A (zh) * 2021-07-16 2021-10-15 南京延长反应技术研究院有限公司 一种内置式即时脱水微界面强化dmc制备系统及方法
CN217148695U (zh) * 2021-11-11 2022-08-09 南京延长反应技术研究院有限公司 一种微界面强化超高效废水臭氧处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634365A1 (en) * 1993-07-16 1995-01-18 BASF Aktiengesellschaft Breaking down aromatic compounds in industrial wastewaters
JPH08299971A (ja) * 1995-03-06 1996-11-19 Fuji Electric Co Ltd 分離注入式オゾン接触方法
CN112479349A (zh) * 2019-09-11 2021-03-12 南京延长反应技术研究院有限公司 一种黑臭水体的处理系统及其方法
CN111362493A (zh) * 2019-12-23 2020-07-03 南京延长反应技术研究院有限公司 一种双甘磷高盐废水的处理系统及方法
CN113087254A (zh) * 2019-12-23 2021-07-09 南京延长反应技术研究院有限公司 一种丙烯酸及其酯废水的处理系统及方法
CN113060827A (zh) * 2021-03-26 2021-07-02 南京延长反应技术研究院有限公司 一种好氧生物处理的反应装置
CN113929204A (zh) * 2021-11-11 2022-01-14 南京延长反应技术研究院有限公司 一种微界面强化超高效废水臭氧处理装置及处理方法

Also Published As

Publication number Publication date
CN113929204A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2023082818A1 (zh) 一种微界面强化超高效废水臭氧处理装置及处理方法
CN106007256A (zh) 微气泡臭氧催化氧化-无曝气生化耦合工艺系统及其应用
CN105645559B (zh) 一种臭氧催化氧化法处理工业废水的装置及处理工艺
CN209507714U (zh) 一种臭氧氧化反应器
CN102910711B (zh) 一种处理废水的空化撞击流微电解反应器及处理方法
CN104761088A (zh) 臭氧氧化与气浮组合处理系统及工艺
CN208561948U (zh) 一种有机废水臭氧催化氧化处理系统
CN106495359A (zh) 一种高难度废水深度处理装置及方法
CN113735245B (zh) 一种臭氧催化氧化污水的方法
CN112978898A (zh) 一种水力-超声空化协同旋流微气泡强化臭氧传质装置
WO2023140319A1 (ja) 工業廃水の処理システム、工業廃水の処理システムの使用、工業廃水の処理方法、及び廃水処理プロセス
CN104787981A (zh) 一种dmto装置低bc比废水的深度处理方法及处理装置
CN217148695U (zh) 一种微界面强化超高效废水臭氧处理装置
JPH1190496A (ja) 生物汚泥のオゾン処理装置および方法
CN100515963C (zh) 负压微泡投加臭氧处理水的方法
CN205590393U (zh) 一种臭氧催化氧化法处理工业废水的装置
CN111217441B (zh) 一种臭氧氧化反应器及其使用方法
CN207659165U (zh) 一种芬顿氧化反应塔装置
CN116002911A (zh) 一种组合式臭氧催化氧化净水装置及原水净化方法
CN110723876A (zh) 一种污泥深度脱水减量化处理系统
CN211595147U (zh) 一种废水处理装置
CN212833012U (zh) 通过二次水力空化和超声空化实现气水混溶活化的装置
CN211521982U (zh) 一种污泥深度脱水减量化处理系统
WO2019127270A1 (zh) 臭氧氧化与气浮一体化污水处理系统
CN108751369A (zh) 一种聚合硫酸铁的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891623

Country of ref document: EP

Kind code of ref document: A1