WO2023082719A1 - 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置 - Google Patents

一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置 Download PDF

Info

Publication number
WO2023082719A1
WO2023082719A1 PCT/CN2022/108924 CN2022108924W WO2023082719A1 WO 2023082719 A1 WO2023082719 A1 WO 2023082719A1 CN 2022108924 W CN2022108924 W CN 2022108924W WO 2023082719 A1 WO2023082719 A1 WO 2023082719A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
air
aerosol
intake air
temperature
Prior art date
Application number
PCT/CN2022/108924
Other languages
English (en)
French (fr)
Inventor
刘荣东
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2023082719A1 publication Critical patent/WO2023082719A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present application relates to the technical field of aerosol generating devices, and more specifically, to a method, system, and aerosol generating device for detecting the consumption of an aerosol substrate.
  • the use of aerosol substrates is generally judged by the duration of the puff and the number of puffs.
  • such an inferential judgment method has low accuracy, which can easily lead to the situation that when the number of suction ports reaches the maximum threshold, the aerosol substrate has not been fully used, or when the number of suction ports has not reached the maximum threshold, but a single It can be directly judged that the aerosol base material has been fully used according to the length of suction, resulting in a waste of the aerosol base material.
  • the embodiment of the present application provides an aerosol base material consumption detection method, system, and aerosol generating device, which are used to solve the technical problem of low detection accuracy of the aerosol base material consumption in the prior art.
  • the embodiment of the present application provides a method for detecting the consumption of aerosol substrate, which adopts the following technical solution: including the following steps:
  • the consumption of the aerosol substrate is obtained by accumulating all the temperature-raising gas volumes in the target time period.
  • the intake environment parameters and the temperature rise environment parameters it also includes:
  • a heating temperature corresponding to the type of the aerosol substrate is obtained, and the aerosol substrate is heated according to the heating temperature.
  • the step of obtaining the consumption of the aerosol substrate it also includes:
  • the type of the aerosol substrate determine the standard capacity of the aerosol substrate
  • the step of continuously obtaining the intake air volume includes:
  • the suction pressure difference data is the pressure difference between the air pressure in the internal airflow channel and the external air pressure when the aerosol generating device is sucked, so
  • the cross-sectional area of the air inlet is the cross-sectional area of the air inlet of the air passage;
  • the intake air volume is calculated according to the suction time, the suction pressure difference data and the cross-sectional area of the intake port.
  • the step of calculating the intake air volume according to the suction time, the suction pressure difference data and the cross-sectional area of the air inlet includes:
  • the intake air volume is calculated according to the suction time, the gas flow rate and the cross-sectional area of the intake port.
  • the step of calculating the intake air volume according to the suction time, the gas flow rate and the cross-sectional area of the intake port includes:
  • V 1 ⁇ vAdt
  • V 1 is the intake air volume within the suction time
  • A is the cross-sectional area of the air inlet
  • t is the length variable of the suction time
  • v is the gas flow rate
  • the gas flow rate v has a functional relationship with the length variable t of the suction time
  • V 1 ⁇ v i At i
  • V 1 is the intake air volume within the pumping time
  • t i is the length of a certain moment in the pumping time
  • v i is the gas with the length t i at a certain moment in the pumping time
  • A is the cross-sectional area of the air inlet.
  • the intake air environment parameters include intake air pressure and intake air temperature
  • the temperature-raising environment parameters include the gas pressure after temperature rise and the temperature after temperature increase
  • the step of calculating the temperature-raising gas volume of the heating area in the airflow channel with the temperature-raising environment parameters includes:
  • the embodiment of the present application also provides an aerosol substrate consumption system, which adopts the following technical solution: including:
  • the data acquisition module is used to continuously acquire the intake air volume, the intake air environment parameters and the temperature rise environment parameters;
  • a heating air volume calculation module configured to calculate the heating air volume of the heating area in the airflow channel according to the intake air volume, the intake environment parameters and the temperature increase environment parameters;
  • the consumption determination module is configured to add up all the warming gas volumes within the target time period to obtain the consumption of the aerosol substrate.
  • the embodiment of the present application also provides an aerosol substrate consumption system, which adopts the following technical solution:
  • It includes a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the aerosol substrate consumption detection method as described in any one of the above is realized.
  • the housing also includes a housing and an adjustment assembly, the memory and the processor are arranged in the housing;
  • the housing has an air intake channel and a housing chamber, the air intake channel communicates with the housing chamber to form an airflow channel, and the housing chamber is used to accommodate the aerosol substrate, and the air intake channel is used for To allow outside air to enter, the adjusting component is arranged in the air intake passage and is used to adjust the intake air volume of the air intake passage.
  • the embodiments of the present application mainly have the following beneficial effects: the present application continuously obtains the intake air volume of the airflow channel, the intake air environment parameters and the temperature rise environmental parameters; according to the intake air volume, the intake air environment parameters and the temperature-raising environment parameters to calculate the temperature-raising gas volume of the airflow channel; and add up all the temperature-raising gas volumes within the target time period to obtain the consumption of the aerosol substrate.
  • This application combines the influence of temperature-rising environmental factors on the volume change of intake air volume, and calculates the temperature-rising gas volume in the airflow channel after heating up through the intake air volume, intake environment parameters and temperature-raising environment parameters, and accumulates all the temperature-rising gas volumes within the target time period to obtain
  • the consumption of the aerosol substrate effectively ensures the accuracy and reliability of the detection of the consumption of the aerosol substrate.
  • Fig. 1 is a flowchart of an embodiment of the method for detecting consumption of aerosol substrate according to the present application
  • Fig. 2 is a mapping relationship diagram between airflow velocity and suction pressure difference data
  • Fig. 3 is a schematic structural view of an embodiment of an aerosol substrate consumption inspection system according to the present application.
  • Fig. 4 is a schematic cross-sectional structure diagram of an embodiment of the aerosol generating device of the present application.
  • Fig. 5 is a schematic diagram of the cross-sectional structure of Fig. 4 after hiding the aerosol substrate;
  • Fig. 6 is a schematic structural view of the regulating assembly in the aerosol generating device of the present application (state one);
  • Fig. 7 is a schematic structural view of the regulating assembly in the aerosol generating device of the present application (state 2);
  • Fig. 8 is a schematic structural diagram of the first adjustment ring in the aerosol generating device of the present application.
  • Fig. 9 is a schematic structural diagram of the first adjustment ring in the aerosol generating device of the present application.
  • Aerosol generating device 31. Processor; 32. Housing; 320. Intake channel; 321. Accommodating cavity; 322. Airflow channel; 323. Intake area; 324. Heating area; 325. Outlet area; 33. Adjustment component; 330. First adjustment ring; 331. Second adjustment ring; 332. First air port; 333. Second air port; 34. Aerosol substrate; 35. Microphone; 36. Heating element.
  • FIG. 1 shows a flowchart of an embodiment of a method for detecting consumption of aerosol substrate according to the present application.
  • the method for detecting consumption of aerosol base material comprises the following steps:
  • Step S101 Continuously acquire the intake air volume of the airflow channel, the intake environment parameters and the temperature rise environment parameters.
  • the aerosol generating device has the above-mentioned airflow channel, which is formed by communicating with the air intake channel and the storage chamber, the above-mentioned air intake channel is used for the outside air to enter, and the above-mentioned storage chamber is used for accommodating air.
  • the aerosol substrate when the outside atmosphere enters from the air intake channel, enters the substrate section of the aerosol substrate located in the accommodating cavity, to take out the aerosol generated in the substrate section of the aerosol substrate; During the suction process, the user sucks the airflow in the airflow channel, resulting in a low pressure in the airflow channel.
  • the external air enters the airflow channel through the air intake channel to supplement, and the amount of air intake is characterized by the external air entering through the air intake channel.
  • the intake volume in the airflow channel For the specific method of obtaining the intake volume, please refer to the description below.
  • the air intake environment parameters are characterized by the environmental parameters of the air intake area of the air intake channel in the air flow channel.
  • the specific acquisition method of the intake air environment parameters please refer to the description below; there is a heating area in the accommodation cavity, and the heating area is located in the accommodation cavity Near one end of the air intake channel, when the aerosol substrate is placed in the accommodating cavity, the substrate section of the aerosol substrate is located in the heating area, and the substrate section is heated by a heating element (such as a heating wire) located in the heating area.
  • the aerosol is generated by heating, and the temperature-rising environmental parameters are characterized by the environmental parameters of the substrate section where the aerosol substrate is located in the heating area.
  • the specific method of obtaining the temperature-rising environmental parameters please refer to the description below.
  • Step S102 Calculating the heating air volume of the heating area in the airflow channel according to the intake air volume, the intake air environment parameters and the temperature increase environment parameters.
  • the above-mentioned heating gas volume is characterized as the gas volume after the gas entering the air flow channel is heated and heated by the heating area in the above-mentioned accommodating cavity; Please refer to the description below for specific steps.
  • Step S103 accumulating all the warming gas volumes within the target time period to obtain the consumption of the aerosol base material.
  • the cumulative use time is continued, and any period of time is taken as the target time period from the accumulated use time, and when the current aerosol substrate has been sucked, and Before inhaling a new aerosol base material, the accumulated use time can be cleared, and then the new aerosol base material use time can be accumulated again, or a new one can be added to the previously accumulated current aerosol base use time Aerosol substrate use time.
  • the target time period includes at least one time node; in practical applications, every time the user takes a puff, a warming gas volume will be generated, and the time node corresponding to the puff will be recorded; if the target time period includes When there is one time node, the amount of warming gas corresponding to the time node is used as the consumption of aerosol substrate; if the target time period includes at least two time nodes, the amount of warming gas corresponding to each time node is accumulated to obtain The cumulative value is used as the consumption of the aerosol substrate.
  • step S101 before the step of continuously obtaining the intake air volume of the airflow channel, the intake air environment parameters and the temperature rise environment parameters, it also includes:
  • a heating temperature corresponding to the type of the aerosol substrate is obtained, and the aerosol substrate is heated according to the heating temperature.
  • the electrical parameter is used as the identification of the aerosol substrate to identify the type of the aerosol substrate, and the electrical parameters corresponding to different types of aerosol substrates are different, so as to identify different types of aerosol substrates. Aerosol substrates are differentiated.
  • the electrical components used to generate electrical parameters are arranged on the inside or outside of the aerosol, and the aerosol generating device is provided with sensing elements used in conjunction with the electrical components to sense the electrical parameters of the electrical components .
  • the above-mentioned electrical parameters include one or more of capacitance value, resistance value, and inductance value, which are not specifically limited here.
  • the electrical element is a heating element (such as a heating wire, a heating sheet, etc.) installed on the aerosol substrate
  • the inductive element is an induction coil installed on the aerosol generating device.
  • different types of aerosol substrates correspond to different heating temperatures. Therefore, different types of aerosol substrates are associated with heating temperatures.
  • One type of aerosol substrate Corresponding to a heating temperature heating is performed at a heating temperature corresponding to the aerosol substrate, so as to ensure that the aerosol substrate can be fully heated.
  • the aerosol substrate when the aerosol substrate is at a heating temperature that is suitable for itself, the aerosol substrate produces the most aerosol at this time, and when the same type of aerosol substrate is at different heating temperatures, the same type of aerosol substrate Types of aerosol substrates vary in the amount of aerosol.
  • the heating temperature is related to the amount of aerosol produced by the aerosol substrate, and one heating temperature corresponds to the aerosol produced by one aerosol substrate.
  • the aerosol amount generated by the current aerosol substrate can also be determined according to the current heating temperature.
  • a first temperature measuring element (such as a thermistor or a temperature measuring circuit) can be set on the heating element, and the temperature on the current heating element can be detected according to the first temperature measuring element, so as to ensure that the aerosol substrate can be fully heated.
  • step S103 after the step of obtaining the consumption of the aerosol base material in the above step S103, it further includes:
  • different types of aerosol substrates correspond to different standard capacities
  • one type of aerosol substrate corresponds to a standard capacity, where the standard capacity represents the approved capacity of the aerosol substrate.
  • the remaining capacity of the aerosol substrate can be obtained by subtracting the consumption from the standard capacity.
  • the aerosol generating device has a display module for performing the above capacity display mode,
  • the display module is an indicator light, a display module or an audio broadcast module; when the display module is an indicator light, there are multiple indicator lights, and each indicator light corresponds to a remaining capacity.
  • the standard capacity of an aerosol base material is 5L
  • the number of corresponding indicator lights is 5. If 5 indicator lights are on at the same time, it means that the remaining capacity of the aerosol base material is 5L.
  • each time one indicator light is turned off the remaining capacity of the aerosol base material is reduced by 1L.
  • the display module is a display module, the remaining capacity of the aerosol substrate is displayed by means of virtual numbers, virtual indicator lights or virtual patterns.
  • the step of continuously acquiring the intake air volume includes:
  • the intake air volume is calculated according to the suction time, the suction pressure difference data and the cross-sectional area of the air intake port.
  • the suction time is the length of time that the user inhales the aerosol substrate each time;
  • the suction pressure difference data is the pressure of the air pressure in the internal airflow channel relative to the external air pressure when the aerosol generating device is inhaled difference, there is a microphone on the aerosol generating device, and the suction pressure difference data can be detected by the microphone;
  • the suction pressure difference data is positively correlated with the user’s suction force, and the user
  • the value of the suction pressure difference data obtained may also be different;
  • the cross-sectional area of the air inlet is the cross-sectional area of the air inlet of the airflow channel, and the cross-sectional area of the air inlet is obtained by pre-measurement.
  • the step of calculating the intake air volume according to the suction time, the suction pressure difference data, and the cross-sectional area of the air inlet includes:
  • the intake air volume is calculated according to the suction time, the gas flow rate and the cross-sectional area of the intake port.
  • Fig. 2 shows the mapping relationship between the suction pressure difference data and the gas flow rate.
  • the suction pressure difference data is larger, it can be considered that the user's suction force is strong, and the air flow in the air channel The gas consumption is fast, and at this time, the gas flow rate in the corresponding airflow channel is fast, and the external gas is also quickly replenished into the airflow channel.
  • the gas flow rate corresponding to the suction differential pressure data can be determined according to the mapping relationship.
  • the step of calculating the intake air volume according to the suction time, the gas flow rate and the cross-sectional area of the intake port includes:
  • V 1 ⁇ vAdt
  • V 1 is the intake air volume within the suction time
  • A is the cross-sectional area of the intake port
  • t is the variable of the suction time length
  • v is the gas flow rate, and can be the gas flow rate v and the suction time t have a functional relationship
  • V 1 ⁇ v i At i
  • V 1 is the intake air volume within the pumping time
  • t i is the length of a certain moment in the pumping time
  • v i is the gas with the length t i at a certain moment in the pumping time
  • A is the cross-sectional area of the air inlet.
  • the difference between the first formula and the second formula is: in the first formula, the gas flow rate v has a functional relationship with the suction time t, for example, the functional relationship between the gas flow rate v and the length variable t of the suction time can be simulated It can be obtained by combining, such as the least square method or other fitting methods; therefore, the intake air volume can be calculated in the form of integral.
  • the gas flow rate v i is an individual and discrete value, so the intake air volume can be calculated in the form of summation.
  • the airflow velocity can be calculated according to the suction pressure difference data obtained by the microphone.
  • the obtained airflow velocity v i can be regarded as continuous; on the contrary, when the sensitivity of the microphone is lower and the feedback speed is slower, the obtained airflow velocity v is Discrete, discontinuous values.
  • the main factor affecting the gas flow rate v/v i is the user's suction force.
  • the gas flow rate v/v i is greater; on the contrary, when the user's suction force is smaller, the gas flow rate The smaller the flow velocity v/v i is.
  • the intake air volume V 1 is not only related to the size of the gas flow rate v/v i , but also related to the duration of the gas flow rate v/v i for pumping.
  • the environmental parameters of the intake air include intake air pressure and intake air temperature; the environmental parameters of temperature rise include the pressure of the gas after temperature rise and the temperature after temperature rise; according to the intake air volume, intake air Environmental Parameters and Temperature-Rising Environmental Parameters
  • the steps for calculating the heating-up gas volume of the heating area in the airflow channel include:
  • the aerosol generating device has two pressure measuring elements, the two pressure measuring elements are respectively arranged in the air intake area and the heating area of the air inlet of the air flow channel, and are used to measure the progress of the air intake area. Air pressure and the gas pressure after the temperature rise at the substrate section of the aerosol substrate in the heating area; it should be noted that, in order to improve the detection accuracy of the load cell, the load cell can be built into the accommodating cavity, and The accommodating cavity extends away from the end of the air inlet channel, and can be inserted into the aerosol substrate. At this time, it is located in the heating area and is used for heating the aerosol substrate. It can be integrated with the load cell, or the heating element is built-in In the aerosol substrate (please refer to the description above for details of the way the heating element is built into the aerosol substrate).
  • the aerosol generating device also has two second temperature measuring elements, the two second temperature measuring elements are respectively arranged in the air inlet area and the heating area of the air inlet of the airflow passage, and are used to measure the temperature of the air inlet area respectively. Inlet air temperature and elevated temperature at the substrate segment of the aerosol substrate in the heating zone.
  • the second temperature measuring element can be the first temperature measuring element mentioned above, detect the temperature on the heating element according to the first temperature measuring element, and then calculate the temperature of the aerosol substrate in the heating area according to the temperature on the heating element.
  • the temperature of the gas at the substrate section, and the mapping relationship between the temperature on the heating element and the temperature rise of the gas at the substrate section of the aerosol substrate in the heating area can be obtained through prior experiments; the second temperature measuring element is also It can be separately installed on the heating element to detect the temperature of the gas around the heating element.
  • the pressures of the inlet air pressure P1 and the outlet air pressure P2 are basically the same.
  • the gas volume after the intake of the aerosol device will be affected by the temperature in the heating area and will change.
  • Parameters and temperature-raising environment parameters Calculate the heating-up gas volume after heating in the airflow channel, and add up all the heating-up gas volumes within the target time period to obtain the consumption of the aerosol substrate, which effectively ensures the accuracy of the detection of the consumption of the aerosol substrate and reliability.
  • the present application provides an embodiment of an aerosol substrate consumption detection system, and the device embodiment corresponds to the method embodiment shown in Fig. 1 , the aerosol substrate consumption detection system can be specifically applied to various aerosol generating devices.
  • the aerosol substrate consumption detection system 200 of this embodiment includes: a data acquisition module 201 , a heating gas volume calculation module 202 and a consumption determination module 203 . in:
  • a data acquisition module 201 configured to continuously acquire intake air volume, intake environment parameters and temperature rise environment parameters
  • a heating air volume calculation module 202 configured to calculate the heating air volume of the heating area in the airflow channel according to the intake air volume, the intake air environment parameters and the temperature increase environmental parameters;
  • the consumption determination module 203 is configured to add up all the warming gas volumes within the target time period to obtain the consumption of the aerosol substrate.
  • the gas volume after the intake of the aerosol device will be affected by the temperature in the heating area and will change.
  • Parameters and temperature-raising environment parameters Calculate the heating-up gas volume after heating in the airflow channel, and add up all the heating-up gas volumes within the target time period to obtain the consumption of the aerosol substrate, which effectively ensures the accuracy of the detection of the consumption of the aerosol substrate and reliability.
  • a type determination module and a heating module are also included. in:
  • a type determination module configured to obtain electrical parameters of the aerosol substrate, and determine the type of the aerosol substrate according to the electrical parameters
  • the heating module is configured to obtain a heating temperature corresponding to the type of the aerosol substrate, and heat the aerosol substrate according to the heating temperature.
  • a standard capacity determination module and a remaining capacity determination module are also included. in:
  • a standard capacity determination module configured to determine the standard capacity of the aerosol substrate according to the type of the aerosol substrate
  • a remaining capacity determining module configured to determine the remaining capacity of the aerosol substrate according to the standard capacity and the consumption.
  • the data acquisition module 201 includes a data acquisition submodule and an intake air volume calculation submodule. in:
  • the data acquisition sub-module is used to acquire the suction time, the suction pressure difference data and the cross-sectional area of the air inlet, wherein the suction pressure difference data is the air pressure in the internal airflow channel relative to the outside world when the aerosol generating device is sucked
  • the pressure difference of air pressure, the cross-sectional area of the air inlet is the cross-sectional area of the air inlet of the air passage;
  • the first calculation sub-module is used to calculate the intake air volume according to the suction time, the suction pressure difference data and the cross-sectional area of the intake port.
  • the above-mentioned first calculation submodule includes a flow velocity acquisition unit and an intake air volume calculation unit. in:
  • a flow velocity acquisition unit configured to acquire the gas flow velocity corresponding to the suction pressure difference data according to the mapping relationship
  • a calculation unit configured to calculate the intake air volume according to the suction time, the gas flow rate and the cross-sectional area of the intake port.
  • the calculation unit includes a first calculation subunit or a second calculation subunit. in:
  • the first calculation subunit according to the first formula:
  • V 1 is the intake air volume within the suction time
  • A is the cross-sectional area of the air inlet
  • t is the length variable of the suction time
  • v is the gas flow rate
  • the gas flow rate v has a functional relationship with the length variable t of the suction time
  • the second calculation subunit is used for according to the second formula:
  • V 1 ⁇ v i At i
  • V 1 is the intake air volume within the pumping time
  • t i is the length of a certain moment in the pumping time
  • v i is the gas with the length t i at a certain moment in the pumping time
  • A is the cross-sectional area of the air inlet.
  • the above-mentioned heating gas volume calculation module 202 includes a second calculation sub-module. in:
  • the T 1 is the intake air temperature
  • the P 2 is the gas pressure after the temperature rise
  • the V 2 is the temperature gas volume
  • the T 2 is the temperature after the temperature rise.
  • FIG. 4 is a schematic cross-sectional structure diagram of the aerosol generating device 3 of this embodiment.
  • the above-mentioned aerosol generating device 3 includes a memory (not shown) and a processor 31, the memory (not shown) stores a computer program, and when the computer program is executed by the processor 31, the aerosol as described in any one of the above is realized. Sol substrate consumption detection method.
  • the memory includes at least one type of readable storage medium, and the readable storage medium includes a flash memory, a hard disk, a multimedia card, a card-type memory (not shown) (for example, SD or DX memory (Fig. not shown), etc.), random access memory (not shown) (RAM), static random access memory (not shown) (SRAM), read-only memory (not shown) (ROM), electrically erasable programmable Read memory (not shown) (EEPROM), programmable read-only memory (not shown) (PROM), magnetic memory (not shown), magnetic disk, optical disk, etc.
  • a flash memory for example, SD or DX memory (Fig. not shown), etc.
  • RAM random access memory
  • SRAM static random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable Read memory
  • PROM programmable read-only memory
  • magnetic memory not shown
  • magnetic disk optical disk, etc.
  • the memory (not shown) may be an internal memory (not shown) of the aerosol generating device 3 , such as a hard disk or memory of the aerosol generating device 3 .
  • the memory (not shown) can also be an external storage device of the aerosol generating device 3, such as a plug-in hard disk equipped on the aerosol generating device 3, a smart memory card (Smart memory card) Media Card, SMC), Secure Digital (Secure Digital, SD) card, Flash Card (Flash Card), etc.
  • the memory (not shown) may also include both the internal memory (not shown) of the aerosol generating device 3 and its external storage device.
  • the memory (not shown) is usually used to store the operating system and various application software installed in the aerosol generating device 3 , such as the program code of the vehicle fuel quantity measurement method.
  • the memory (not shown) can also be used to temporarily store various types of data that have been output or will be output.
  • the processor 31 may be a central processing unit (Central Processing Unit, CPU), controller, microcontroller, microprocessor, or other data processing chips in some embodiments.
  • the processor 31 is generally used to control the overall operation of the aerosol generating device 3 .
  • the processor 31 is configured to run program codes or process data stored in the memory (not shown), for example, run program codes of the method for detecting consumption of aerosol substrate.
  • the gas volume after the intake of the aerosol device will be affected by the temperature in the heating area and will change.
  • Parameters and temperature-raising environment parameters Calculate the heating-up gas volume after heating in the airflow channel, and add up all the heating-up gas volumes within the target time period to obtain the consumption of the aerosol substrate, which effectively ensures the accuracy of the detection of the consumption of the aerosol substrate and reliability.
  • the aerosol generating device 3 further includes a housing 32 and an adjustment assembly 33, and a memory (not shown) and a processor 31 are arranged in the housing.
  • body 32 In body 32;
  • the housing 32 has an air intake channel 320 and an accommodating cavity 321, the air intake channel 320 communicates with the accommodating cavity 321 to form an airflow channel 322, and the accommodating cavity 321 is used to accommodate the aerosol substrate 34, and the air intake channel 320 is used for
  • the regulating component 33 is disposed in the air intake passage 320 and is used for adjusting the intake air volume of the air intake passage 320 for outside air to enter.
  • the regulating component 33 is a regulating valve, through which the size of the air inlet on the air intake passage can be controlled; specifically, referring to Fig. 6 to Fig. 9, the regulating valve includes a first regulating ring 330 and a second regulating ring 330 Adjustment ring 331, wherein the first adjustment ring 330 is sleeved outside the casing, the second adjustment ring 331 is rotatably connected to the first adjustment ring 330, and the first adjustment ring 330 has a first air port 332 for air intake, the second The second adjusting ring 331 has a second air port 333 for air intake, and the first air port 332 and the second air port 333 are combined to form an air inlet; in practical applications, by adjusting the second adjusting ring 331, the second air port 333 and The first air port 332 is completely correspondingly connected, and the air intake volume is the largest at this time, or the second air port 333 is partially connected with the first air port 332, and the air intake volume
  • the aerosol generating device also includes a detection component (not shown) for detecting the size of the air inlet, and the detection component (not shown) includes a moving contact (not shown) and a static contact (not shown) used in conjunction with each other.
  • the adjustment assembly 33 has multi-level adjustments, each adjustment corresponds to the size of an air inlet, and the movable contact (not shown) is arranged on the second adjustment ring 331 , and on the first adjustment ring 330
  • the current gear is judged by the signal mark, and then the size of the air inlet is determined according to
  • a plurality of moving contacts can also be set on the second adjusting ring 331, and a static contact (not shown) can be set on the first adjusting ring 330, or the second adjusting ring 331 can be set
  • a plurality of moving contacts (not shown in the figure) and a plurality of static contacts (not shown in the figure) disposed on the first adjustment ring 330 can also achieve the above purpose of determining the size of the air inlet.
  • the aerosol generating device 3 also includes a microphone 35 and a heating element 36, wherein the microphone 35 is located in the housing 32 and is electrically connected to the processor 31, and the microphone 35 is used to detect the suction pressure difference data of the airflow channel 322 ;
  • the above heating element 36 can be a magnetic induction heating element.
  • the heating element 36 can be built in the aerosol base material 34 , or the heating element 36 can also be built in the accommodating cavity 321 and can be inserted into the aerosol base material 34 .
  • the heating element 36 is not electrically connected to the processor 31, and the heating element 36 is used in conjunction with the induction coil (not shown) arranged around the accommodating cavity 321 to heat the aerosol substrate 34, and the induction coil (not shown) ) is electrically connected to the processor 31.
  • the heating element 36 can also be a resistive heating element, can be arranged in the accommodating cavity 321 , can be inserted into the aerosol substrate 34 , and be directly electrically connected with the processor 31 .
  • the aerosol substrate 34 is heated by the heating element 36 .
  • the heating element 36 can also be built into the aerosol substrate 34, and at this moment, the aerosol substrate 34 can expose a first conductive contact (not shown) connected with the heating element 36, so as to act as an aerosol substrate
  • the first conductive contact (not shown) contacts and conducts with the second conductive contact (not shown) in the accommodating cavity 321 to realize power supply to the heating element.
  • the air intake passage 320 has an air intake area 323, and the accommodating cavity 321 has a heating area 324 and an air outlet area 325, wherein the two ends of the heating area 324 communicate with the air intake area 323 and the air outlet area 325 respectively, and the air inlet
  • the end of the gas area 323 away from the heating area 324 communicates with the outside atmosphere
  • the end of the air outlet area 325 away from the heating area 324 communicates with the outside atmosphere
  • the heating element 36 is located in the heating area 324 .
  • the aerosol generating device 3 has two load cells (not shown) electrically connected to the processor 31, the two load cells (not shown) are respectively arranged on the air intake area 323 and the heating area 324, and respectively It is used to measure the air inlet pressure in the air inlet area 323 and the gas pressure after the temperature rise at the substrate section of the aerosol substrate 34 in the heating area 324; Accuracy, the load cell (not shown) can be built in the accommodation cavity 321, and extend to the gas outlet area 325 of the accommodation cavity 321, and can be inserted into the aerosol substrate 34, at this time, the heating element 36 can be connected with the measurement The pressure element (not shown) is integrated together, or the heating element 36 is embedded in the aerosol substrate 34 .
  • the aerosol generating device also has two temperature measuring elements (not shown) electrically connected to the processor 31, the two temperature measuring elements (not shown) are respectively arranged in the air intake area 323 and the heating area 324, and respectively It is used to measure the temperature of the intake air in the intake area 323 and the temperature of the heated substrate section of the aerosol substrate 34 in the heating area 324 .
  • the temperature measuring element (not shown) can be arranged on the heating element 36, the temperature on the heating element 36 is detected according to the temperature measuring element (not shown), and the heating area is calculated according to the temperature on the heating element 36
  • the temperature of the gas at the substrate section of the aerosol substrate 34 in 324, and the temperature on the heating element 36 and the temperature of the gas at the substrate section of the aerosol substrate 34 in the heating area 324 can be obtained through prior experiments get.
  • the air outlet area 325 is provided with a fixing assembly (not shown) for fixing the aerosol substrate 34.
  • the fixing assembly may be an elastic clamping assembly, including at least two clamping parts symmetrically arranged on the air outlet area 325 ( (not shown in the figure), by controlling the length of the clamping part protruding into the accommodating cavity 321, the transition between the clamping part clamping the aerosol substrate and the clamping part releasing the aerosol substrate is realized.
  • the clamping part can be rotatably arranged on the accommodating cavity 321 up and down.
  • the clamping part In the initial state, the clamping part can be in the maximum angular position of upward rotation, the length of the clamping part extending into the accommodating cavity 321 is the smallest, the clamping part is out of contact with the aerosol substrate, or the clamping part is opposite to the aerosol substrate.
  • the clamping force is small.
  • the aerosol substrate 34 When the aerosol substrate 34 is placed in the accommodating cavity 321, the downward movement of the aerosol substrate 34 will drive the clamping part to rotate downward to a horizontal position, so that the clamping part extends into the accommodating cavity 321
  • the length is the largest, and the clamping part squeezes, clamps and fixes the aerosol substrate 34.
  • the aerosol base material 34 can be pulled up to drive the clamping part to rotate upwards to the maximum angle, the clamping part is out of contact with the aerosol base material, and the aerosol base material is released.

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种气溶胶基材(34)消耗量检测方法,包括持续获取气流通道(322)的进气量、进气环境参数及升温环境参数;根据进气量、进气环境参数及升温环境参数计算气流通道(322)中加热区域的升温气量;将目标时间段内的所有升温气量累加,得到气溶胶基材(34)的消耗量。一种气溶胶基材(34)消耗量检测系统及气溶胶生成装置(3)。结合升温环境因素对进气量体积变化的影响,通过进气量、进气环境参数和升温环境参数计算气流通道(322)中升温后的升温气量,在目标时间段内的所有升温气量累加,得到气溶胶基材(34)的消耗量,这样有效保证检测得到气溶胶基材(34)的消耗量的准确性和可靠性。

Description

一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置 技术领域
本申请涉及气溶胶生成装置技术领域,更具体地,涉及一种气溶胶基材消耗量检测方法、系统、及气溶胶生成装置。
背景技术
目前,一般通过抽吸时长、抽吸口数的方式,来判断气溶胶基材的使用情况。但这样的推断式的判断方法准确性低,极易导致出现抽吸口数到达最大阈值时,气溶胶基材还未被充分使用完的情况,或者抽吸口数还未到达最大阈值时,但单凭抽吸时长就直接判断气溶胶基材已被充分使用完,造成气溶胶基材的浪费。
发明内容
本申请实施例提供一种气溶胶基材消耗量检测方法、系统、及气溶胶生成装置,用于解决现有技术中气溶胶基材的消耗量检测准确性低的技术问题。
为了解决上述技术问题,本申请实施例提供一种气溶胶基材消耗量检测方法,采用了如下所述的技术方案:包括如下步骤:
持续获取气流通道的进气量、进气环境参数及升温环境参数;
根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量;
将目标时间段内的所有所述升温气量累加,得到气溶胶基材的消耗量。
进一步的,在所述持续获取气流通道的进气量、进气环境参数及升温环境参数的步骤之前,还包括:
获取气溶胶基材的电参数,并根据所述电参数确定所述气溶胶基材的所属类型;
获取与所述气溶胶基材的所属类型对应的加热温度,根据所述加热温度对所述气溶胶基材进行加热。
进一步的,所述得到气溶胶基材的消耗量的步骤之后,还包括:
根据所述气溶胶基材的所属类型,确定所述气溶胶基材的标准容量;
计算所述标准容量和所述消耗量之差,得到所述气溶胶基材的剩余容量。
进一步的,所述持续获取进气量的步骤包括:
获取抽吸时间、抽吸压差数据以及进气口截面积,其中所述抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,所述进气口截面积为所述气流通道进气口的截面积;
根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量。
进一步的,所述根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量的步骤包括:
根据映射关系获取与所述抽吸压差数据对应的气体流速;
根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量。
进一步的,所述根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量的步骤包括:
根据第一公式:
V 1=∫vAdt
计算V 1,其中V 1为所述抽吸时间内的进气量,A为所述进气口截面积,t为所述抽吸时间的长度变量,v为所述气体流速,且所述气体流速v与所述抽吸时间的长度变量t具有函数关系;
或,根据第二公式:
V 1=∑v iAt i
计算V 1,其中V 1为所述抽吸时间内的进气量,t i为所述抽吸时间内某一时刻长度,v i为所述抽吸时间内某一时刻长度t i的气体流速,A为所述进气口截面积。
进一步的,所述进气环境参数包括进气压强和进气温度;所述升温环境参数包括升温后的气体压强和升温后的温度;所述根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量的步骤包括:
根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中所述P 1为所述进气压强,所述V 1为所述进气量,所述T 1为所述进气温度,所述P 2为所述升温后的气体压强,所述V 2为所述升温气量,所述T 2为所述升温后的温度。
为了解决上述技术问题,本申请实施例还提供一种气溶胶基材消耗量系统,采用了如下所述的技术方案:包括:
数据获取模块,用于持续获取进气量、进气环境参数及升温环境参数;
升温气量计算模块,用于根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量;以及
消耗量确定模块,用于将目标时间段内的所有所述升温气量累加,得到所述气溶胶基材的消耗量。
为了解决上述技术问题,本申请实施例还提供一种气溶胶基材消耗量系统,采用了如下所述的技术方案:
包括存储器和处理器,述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,实现如上述任一项所述的气溶胶基材消耗量检测方法。
进一步的,还包括壳体以及调节组件,所述存储器和处理器设于壳体内;
所述壳体具有进气通道和容置腔,所述进气通道与所述容置腔连通形成气流通道,且所述容置腔用于容置气溶胶基材,所述进气通道用于供外界大气进入,所述调节组件设于所述进气通道内且用于调节进气通道的进气量。
与现有技术相比,本申请实施例主要有以下有益效果:本申请通过持续获取气流通道的进气量、进气环境参数及升温环境参数;根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道的升温气量;将目标时间段内的所有所述升温气量累加,得到气溶胶基材的消耗量。本申请结合升温环境因素对进气量体积变化的影响,通过进气量、进气环境参数和升温环境参数计算气流通道中升温后的升温气量,在目标时间段内的所有升温气量累加,得到气溶胶基材的消耗量,这样有效保证检测得到气溶胶基材的消耗量的准确性和可靠性。
附图说明
为了更清楚地说明本申请的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请的气溶胶基材消耗量检测方法的一个实施例的流程图;
图2是气流流速与抽吸压差数据的映射关系图;
图3是根据本申请的气溶胶基材消耗量检系统的一个实施例的结构示意图;
图4是本申请的气溶胶生成装置的一个实施例的剖面结构示意图;
图5是为图4隐藏气溶胶基材后的剖面结构示意图;
图6是本申请的气溶胶生成装置中调节组件的结构示意图(状态一);
图7是本申请的气溶胶生成装置中调节组件的结构示意图(状态二);
图8是本申请的气溶胶生成装置中第一调节环的结构示意图;
图9是本申请的气溶胶生成装置中第一调节环的结构示意图。
附图标记:
3、气溶胶生成装置;31、处理器;32、壳体;320、进气通道;321、容置腔;322、气流通道;323、进气区域;324、加热区域;325、出气区域;33、调节组件;330、第一调节 环;331、第二调节环;332、第一气口;333、第二气口;34、气溶胶基材;35、咪头;36、发热件。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参考图1,示出了根据本申请的一种气溶胶基材消耗量检测方法的一个实施例的流程图。所述的气溶胶基材消耗量检测方法,包括以下步骤:
步骤S101:持续获取气流通道的进气量、进气环境参数及升温环境参数。
在本实施例中,气溶胶生成装置上具有上述气流通道,该气流通道由进气通道和容置腔连通形成,上述进气通道用于供外界大气进入,上述容置腔用于容置气溶胶基材,当外界大气从进气通道进入后,进入位于容置腔的气溶胶基材的基材段内,用以将气溶胶基材的基材段内生成的气溶胶带出;在抽吸过程中,使用者将气流通道内气流吸走,致使气流通道内形成低压,此时外界大气通过进气通道进入气流通道内进行补充,而进气量表征为外界大气通过进气通道进入气流通道内的进气体积,关于进气量的具体获取方法请参见下文描述。
进气环境参数表征为气流通道中进气通道的进气区域的环境参数,关于进气环境参数的具体获取方法请参见下文描述;容置腔内设有加热区域,其中加热区域位于容置腔靠近进气通道的一端,当气溶胶基材置于容置腔时,气溶胶基材的基材段位于加热区域内,通过位于加热区域内的发热件(如发热丝)对基材段进行加热生成气溶胶,而升温环境参数表征为气溶胶基材位于加热区域内的基材段的环境参数,关于升温环境参数的具体获取方法请参见下文描述。
步骤S102:根据进气量、进气环境参数及升温环境参数计算气流通道中加热区域的升温气量。
在本实施例中,上述升温气量表征为气流通道进入的气体在经上述容置腔内的加热区域加热升温后的气体体积;关于进气量、进气环境参数及升温环境参数计算升温气量的具体步骤请参见下文描述。
步骤S103:将目标时间段内的所有所述升温气量累加,得到气溶胶基材的消耗量。
在本实施例中,气溶胶生成装置使用过程中,持续累计使用时间,从累计的使用时间中取任一段时间段作为目标时间段,而当目前的气溶胶基材已抽吸完成后,且抽吸新的气溶胶基材之前,可将累计的使用时间清零,之后再重新累计新的气溶胶基材使用时间,又或在原先累计的目前气溶胶基材使用时间上继续累加新的气溶胶基材使用时间。
进一步说明的是,目标时间段包括至少一个时间节点;在实际应用中,使用者每抽吸一口,则会产生一次升温气量,并记录该次抽吸所对应的时间节点;若目标时间段包括一个时间节点时,则将该时间节点所对应的升温气量作为气溶胶基材的消耗量;若目标时间段包括至少两个时间节点时,则将各时间节点所对应的升温气量进行累计,得到累计值,并将该累计值作为气溶胶基材的消耗量。
在本实施例的一些可选的实现方式中,上述步骤S101中,在持续获取气流通道的进气量、进气环境参数及升温环境参数的步骤之前,还包括:
获取气溶胶基材的电参数,并根据所述电参数确定所述气溶胶基材的所属类型;
获取与所述气溶胶基材的所属类型对应的加热温度,根据所述加热温度对所述气溶胶基材进行加热。
在本实施例中,电参数作为气溶胶基材的标识,用于识别气溶胶基材的所属类型,而不同所属类型的气溶胶基材对应的电参数不同,以此进行对不同所属类型的气溶胶基材进行区分。
在实际应用中,用于产生电参数的电气元件设置气溶胶的内部或外表面上,在气溶胶生成装置上设有用于与电气元件配合使用的感应元件,以用于感应电气元件的电参数。
上述中电参数包括电容值、电阻值、电感值中的一种或多种,在此不作具体限定。以下以电参数为电感值为例:此时电气元件为设于气溶胶基材的发热件(如发热丝、发热片等),感应元件为设于气溶胶生成装置上的感应线圈,当气溶胶基材置于容置腔内时,通过感应线圈感应气溶胶基材的发热件的电感值后,根据获取的电感值确定气溶胶基材的所属类型。
进一步的,为保证气溶胶基材能够充分加热,不同所属类型的气溶胶基材所对应的加热温度不同,因此将不同所属类型气溶胶基材与加热温度对应关联,一种类型气溶胶基材对应一个加热温度,通过与气溶胶基材对应的加热温度进行加热,以此保证气溶胶基材能够充分加热。
需要说明的是,当气溶胶基材在适配自身的加热温度下,此时气溶胶基材产生的气溶胶最多,而当同一所属类型的气溶胶基材在不同的加热温度下,同一所属类型的气溶胶基材的气溶胶量不同。
需要说明的是,不同加热温度加热气溶胶基材产生的气溶胶量不同,因此将加热温度与气溶胶基材产生的气溶胶量进行关联,一个加热温度对应一个气溶胶基材产生的气溶胶量;这样在实际应用中,若当前的加热温度不是最佳加热温度时,也可根据当前加热温度确定当前气溶胶基材产生的气溶胶量。
进一步的,可在发热件上设置第一测温元件(如热敏电阻或者测温线路),根据第一测温元件检测当前发热件上的温度,以保证气溶胶基材能够得到充分加热。
在本实施例的一些可选的实现方式中,在上述步骤S103中,得到气溶胶基材的消耗量的步骤之后,还包括:
根据气溶胶基材的所属类型,确定气溶胶基材的标准容量;
计算标准容量和消耗量之差,得到气溶胶基材的剩余容量。
在本实施例中,不同所属类型的气溶胶基材所对应的标准容量不同,一个所属类型的气溶胶基材对应一个标准容量,其中标准容量表征是气溶胶基材的核定容量。
在获得消耗量后,通过标准容量减去消耗量,即可得到气溶胶基材的剩余容量。
进一步的,在得到气溶胶基材的剩余容量后,获取容量展示方式,并按容量展示方式展示气溶胶基材的剩余容量;在气溶胶生成装置具有用于执行上述容量展示方式的展示模块,该展示模块为指示灯、显示模块或音频播报模块;当展示模块为指示灯时,指示灯的数量为多个,每个指示灯对应一个剩余容量,如气溶胶基材的标准容量为5L,则对应的指示灯的数量为5个,若5个指示灯同时亮起时,则表示气溶胶基材的剩余容量为5L,相应的每少亮一个指示灯,气溶胶基材剩余容量减少1L;当展示模块为显示模块时,通过虚拟数字、虚拟指示灯或虚拟图案的方式展示气溶胶基材的剩余容量。
在本实施例的一些可选的实现方式中,上述步骤S101中,持续获取进气量的步骤包括:
获取抽吸时间、抽吸压差数据以及进气口截面积;
根据抽吸时间、抽吸压差数据和所述进气口截面积计算进气量。
在本实施例中,抽吸时间为使用者每次抽吸气溶胶基材的时间长度;抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,在气溶胶生成装置上具有咪头,抽吸压差数据可以由该咪头检测得到;需要说明的是,抽吸压差数据与使用者的抽吸力度成正相关的关系,使用者在每次抽吸时间内的不同时刻,获得的抽吸压差数据的值也可能不同;进气口截面积为气流通道进气口的截面积,该进气口截面积预先测量得到。
在本实施例的一些可选的实现方式中,根据抽吸时间、抽吸压差数据和进气口截面积计算进气量的步骤包括:
从映射关系中获取与抽吸压差数据对应的气体流速;
根据抽吸时间、气体流速和进气口截面积计算进气量。
在本实施例中,请参见图2,图2为抽吸压差数据与气体流速的映射关系,当抽吸压差数据越大时,可认为使用者的抽吸力度大,气流通道内的气体损耗快,此时相应的气流通道内的气体流速快,外界气体也快速的向气流通道内进行补充。
在获取抽吸压差数据后,即可根据映射关系确定与抽吸压差数据对应的气体流速。
在本实施例的一些可选的实现方式中,上述步骤S102中,根据抽吸时间、气体流速和所述进气口截面积计算所述进气量的步骤包括:
根据第一公式:
V 1=∫vAdt
计算V 1,其中V 1为抽吸时间内的进气量,A为进气口截面积,t为抽吸时间长度的变量,v为气体流速,且可以为气体流速v与抽吸时间t具有函数关系;
或,根据第二公式:
V 1=∑v iAt i
计算V 1,其中V 1为所述抽吸时间内的进气量,t i为所述抽吸时间内某一时刻长度,v i为所述抽吸时间内某一时刻长度t i的气体流速,A为所述进气口截面积。
第一公式与第二公式的区别在于:在第一公式中,气体流速v与抽吸时间t具有函数关系,比如,气体流速v与抽吸时间的长度变量t之间的函数关系,可以拟合得到,比如最小二乘法或者其他拟合方法;因此可以采用积分的形式来计算进气量。在第二公式中,气体流速v i是个体的、离散的数值,因此可以采用求和的形式来计算进气量。
上述第一公式和第二公式中,气流流速可以根据咪头获取的抽吸压差数据计算而得到。当咪头的灵敏度越高、反馈速度越快时,得到的气流流速v i就可以视为连续的;反之,当咪头的灵敏度越低、反馈速度越慢时,得到的气流流速v就是是离散的、不连续的数值。
影响气体流速v/v i大小的主要因素在于使用者的抽吸力度,当使用者抽吸力度越大时,气体流速v/v i越大;反之,当使用者抽吸力度越小时,气体流速v/v i越小。此外根据第一公式和第二公式可知,进气量V 1,不仅与气体流速v/v i的大小相关,还与气体流速v/v i所持续的抽吸时间长度相关。
在本实施例的一些可选的实现方式中,进气环境参数包括进气压强和进气温度;升温环境参数包括升温后的气体压强和升温后的温度;根据所述进气量、进气环境参数及升温环境参数计算气流通道中加热区域的升温气量的步骤包括:
根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中P 1为进气压强,V 1为进气量,T 1为进气温度,P 2为升温后的气体压强,V 2为升温气量,T 2为升温后的温度。
在本实施例中,气溶胶生成装置具有两个测压元件,该两个测压元件分别设于气流通道的进气口的进气区域和加热区域,且分别用于测量进气区域的进气压强和加热区域中气溶胶基材的基材段处升温后的气体压强;需要说明的是,为提升测压元件的检测准确性,可将测压元件内置于容置腔中,并向容置腔远离进气通道的一端延伸,可插入气溶胶基材中,此时位于加热区域内且用于对气溶胶基材的发热件,可与测压元件集成在一起,或发热件内置在气溶胶基材中(发热件内置在气溶胶基材的方式具体请参见上文描述)。
在气溶胶生成装置还具有两个第二测温元件,该两个第二测温元件分别设于气流通道的进气口的进气区域和加热区域内,且分别用于测量进气区域的进气温度和加热区域中气溶胶基材的基材段处升温后的温度。需要说明的是,第二测温元件可为上述中的第一测温元件,根据第一测温元件检测发热件上的温度,再根据发热件上的温度计算加热区域中气溶胶基材的基材段处气体的温度,而发热件上的温度与加热区域中气溶胶基材的基材段处气体的升温 温度之间的映射关系可通过事先实验获取的得到;第二测温元件也可以单独设置在发热件上,用于检测发热件周围气体的温度。
这样利用上述公式P 1V 1/T 1=P 2V 2/T 2计算V 2,以保证计算得到的到升温气量V 2,准确、可靠。
进一步的,为简化计算,可设定进气压强P 1和出气压强P 2的压强基本相同。
在实际应用中,气溶胶装置进气后的气体体积会受到加热区域内温度的影响而产生变化,因此本申请结合升温环境因素对进气量体积变化的影响,通过进气量、进气环境参数和升温环境参数计算气流通道中升温后的升温气量,在目标时间段内的所有升温气量累加,得到气溶胶基材的消耗量,这样有效保证检测得到气溶胶基材的消耗量的准确性和可靠性。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
进一步参考图3,作为对上述图1所示方法的实现,本申请提供了一种气溶胶基材消耗量检测系统的一个实施例,该装置实施例与图1所示的方法实施例相对应,该气溶胶基材消耗量检测系统具体可以应用于各种气溶胶生成装置中。
如图3所示,本实施例所述的气溶胶基材消耗量检测系统200包括:数据获取模块201、升温气量计算模块202以及消耗量确定模块203。其中:
数据获取模块201,用于持续获取进气量、进气环境参数及升温环境参数;
升温气量计算模块202,用于根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量;
消耗量确定模块203,用于将目标时间段内的所有所述升温气量累加,得到所述气溶胶基材的消耗量。
在实际应用中,气溶胶装置进气后的气体体积会受到加热区域内温度的影响而产生变化,因此本申请结合升温环境因素对进气量体积变化的影响,通过进气量、进气环境参数和升温环境参数计算气流通道中升温后的升温气量,在目标时间段内的所有升温气量累加,得到气溶胶基材的消耗量,这样有效保证检测得到气溶胶基材的消耗量的准确性和可靠性。
在本实施例的一些可选的实现方式中,还包括类型确定模块以及加热模块。其中:
类型确定模块,用于获取气溶胶基材的电参数,并根据所述电参数确定所述气溶胶基材的所属类型;
加热模块,用于获取与所述气溶胶基材的所属类型对应的加热温度,根据所述加热温度对所述气溶胶基材进行加热。
在本实施例的一些可选的实现方式中,还包括标准容量确定模块以及剩余容量确定模块。其中:
标准容量确定模块,用于根据所述气溶胶基材的所属类型,确定所述气溶胶基材的标准容量;
剩余容量确定模块,用于根据所述标准容量和所述消耗量确定所述气溶胶基材的剩余容量。
在本实施例的一些可选的实现方式中,上述数据获取模块201包括数据获取子模块以及进气量计算子模块。其中:
数据获取子模块,用于获取抽吸时间、抽吸压差数据以及进气口截面积,其中所述抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,所述进气口截面积为所述气流通道进气口的截面积;
第一计算子模块,用于根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量。
在本实施例的一些可选的实现方式中,上述第一计算子模块包括流速获取单元以及进气量计算单元。其中:
流速获取单元,用于根据映射关系获取与所述抽吸压差数据对应的气体流速;
计算单元,用于根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量。
在本实施例的一些可选的实现方式中,上述计算单元包括第一计算子单元或第二计算子单元。其中:
第一计算子单元,根据第一公式:
∫vAdt
计算V 1,其中V 1为所述抽吸时间内的进气量,A为所述进气口截面积,t为所述抽吸时间的长度变量,v为所述气体流速,且所述气体流速v与所述抽吸时间的长度变量t具有函数关系;
第二计算子单元,用于根据第二公式:
V 1=∑v iAt i
计算V 1,其中V 1为所述抽吸时间内的进气量,t i为所述抽吸时间内某一时刻长度,v i为所述抽吸时间内某一时刻长度t i的气体流速,A为所述进气口截面积。
在本实施例的一些可选的实现方式中,上述升温气量计算模块202包括第二计算子模块。其中:
第二计算子模块,用于根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中所述P 1为所述进气压强,所述V 1为所述进气量,所述T 1为所述进气温度,所述P 2为所述升温后的气体压强,所述V 2为所述升温气量,所述T 2为所述升温后的温度。
为解决上述技术问题,本申请实施例还提供气溶胶生成装置3。具体请参阅图4,图4为本实施例气溶胶生成装置3剖面结构示意图。
上述气溶胶生成装置3包括存储器(图未示)和处理器31,存储器(图未示)存储有计算机程序,计算机程序被所述处理器31执行时,实现如上述任一项所述的气溶胶基材消耗量检测方法。
所述存储器(图未示)至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(图未示)(例如,SD或DX存储器(图未示)等)、随机访问存储器(图未示)(RAM)、静态随机访问存储器(图未示)(SRAM)、只读存储器(图未示)(ROM)、电可擦除可编程只读存储器(图未示)(EEPROM)、可编程只读存储器(图未示)(PROM)、磁性存储器(图未示)、磁盘、光盘等。在一些实施例中,所述存储器(图未示)可以是所述气溶胶生成装置3的内部存储器(图未示),例如该气溶胶生成装置3的硬盘或内存。在另一些实施例中,所述存储器(图未示)也可以是所述气溶胶生成装置3的外部存储设备,例如该气溶胶生成装置3上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器(图未示)还可以既包括所述气溶胶生成装置3的内部存储器(图未示)也包括其外部存储设备。本实施例中,所述存储器(图未示)通常用于存储安装于所述气溶胶生成装置3的操作系统和各类应用软件,例如车辆油量测量方法的程序代码等。此外,所述存储器(图未示)还可以用于暂时地存储已经输出或者将要输出的各类数据。
所述处理器31在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器31通常用于控制所述气溶胶生成装置3的总体操作。本实施例中,所述处理器31用于运行所述存储器(图未示)中存储的程序代码或者处理数据,例如运行所述气溶胶基材消耗量检测方法的程序代码。
在实际应用中,气溶胶装置进气后的气体体积会受到加热区域内温度的影响而产生变化,因此本申请结合升温环境因素对进气量体积变化的影响,通过进气量、进气环境参数和升温环境参数计算气流通道中升温后的升温气量,在目标时间段内的所有升温气量累加,得到气溶胶基材的消耗量,这样有效保证检测得到气溶胶基材的消耗量的准确性和可靠性。
在本实施例的一些可选的实现方式中,参见图4和图5所示,气溶胶生成装置3还包括壳体32以及调节组件33,存储器(图未示)和处理器31设于壳体32内;
壳体32具有进气通道320和容置腔321,进气通道320与容置腔321连通形成气流通道322,且容置腔321用于容置气溶胶基材34,进气通道320用于供外界大气进入,调节组件33设于进气通道320内且用于调节进气通道320的进气量。
在本实施例中,调节组件33为调节阀,通过调节阀可控制进气通道上进气口的大小;具体为,请参见图6至图9,调节阀包括第一调节环330和第二调节环331,其中第一调节环330套设在壳体外部,第二调节环331与第一调节环330可转动连接,且第一调节环330具有用于进气的第一气口332,第二调节环331具有用于进气的第二气口333,且第一气口332和第二气口333组合形成进气口;在实际应用中,通过调节第二调节环331,使第二气口333与第一气口332完全对应连通,此时进气量最大,又或使第二气口333与第一气口332部分对应连通,此时进气量小于第二气口333与第一气口332完全对应连通状态下的进气量,又或使第二气口333与第一气口332不对应连通,此时外界气体无法通过第一气口332和第二气口333进入进气通道内。
进一步的,气溶胶生成装置还包括用于检测进气口大小的检测组件(图未示),检测组件(图未示)包括配合使用的动触件(图未示)和静触件(图未示),如调节组件33具有多档调节,每一档调节对应一个进气口的大小,而动触件(图未示)设置在第二调节环331上,第一调节环330上设置有多个静触件(图未示),每个静触件(图未示)对应一档调节;当调节组件33调节进气口大小时,转动第二调节环331,以调节动触件(图未示)的位置,使动触件(图未示)与目标档位上的静触件(图未示)接触产生信号标识,并发送至处理器31上,处理器31根据接收到的信号标识判断当前档位,再根据当前档位确定进气口的大小。此外,也可在第二调节环331上设置多个动触件(图未示)、以及在第一调节环330上设置一个静触件(图未示),或第二调节环331上设置多个动触件(图未示)、以及第一调节环330上设置有多个静触件(图未示),同样也可实现上述确定进气口大小的目的。
进一步的,气溶胶生成装置3还包括咪头35和发热件36,其中咪头35位于壳体32内且与处理器31电连接,咪头35用于检测气流通道322的抽吸压差数据;
上述发热件36可以采用磁感应式发热件。发热件36可以内置于气溶胶基材34中,或发热件36也可以内置于容置腔321内,且可插入气溶胶基材34中。此时发热件36不与处理器31电连接,发热件36通过设置在容置腔321四周的感应线圈(图未示)配合使用实现对气溶胶基材34加热,而感应线圈(图未示)与处理器31电连接。
可以理解的是,发热件36也可以采用电阻式发热件,可以设置在容置腔321内,且可插入气溶胶基材34中,并与处理器31直接电连接。在实际应用中,由发热件36对气溶胶基材34进行加热。此外,发热件36也可内置于气溶胶基材34中,此时气溶胶基材34上可以外露有与发热件36连接的第一导电触点(图未示),以当气溶胶基材34置于容置腔321时,第一导电触点(图未示)与容置腔321内的第二导电触点(图未示)接触导通,实现对发热件的电能供应。
进一步的,参见图5,进气通道320具有进气区域323,容置腔321具有加热区域324和出气区域325,其中加热区域324的两端分别与进气区域323和出气区域325连通,进气区域323远离加热区域324的一端与外界大气连通,出气区域325远离加热区域324的一端与外界大气连通;发热件36设于加热区域324内。
气溶胶生成装置3具有与处理器31电连接的两个测压元件(图未示),该两个测压元件(图未示)分别设于进气区域323和加热区域324上,且分别用于测量进气区域323的进气压强和加热区域324中气溶胶基材34的基材段处的升温后的气体压强;需要说明的是,为提升测压元件(图未示)的检测准确性,可将测压元件(图未示)内置于容置腔321中,并向容置腔321的出气区域325延伸,可插入气溶胶基材34中,此时发热件36可与测压元件(图未示)集成在一起,或发热件36内置在气溶胶基材34中。
在气溶胶生成装置还具有与处理器31电连接的两个测温元件(图未示),该两个测温元件(图未示)分别设于进气区域323和加热区域324,且分别用于测量进气区域323的进气温度和加热区域324中气溶胶基材34的基材段处升温后的温度。需要说明的是,测温元件(图未示)可为设置在发热件36上,根据测温元件(图未示)检测发热件36上的温度,再根据发热件36上的温度计算加热区域324中气溶胶基材34的基材段处气体的温度,而发热件36上的温度与加热区域324中气溶胶基材34的基材段处气体的升温后的温度可通过事先实验获取的得到。
进一步的,出气区域325处设有用于固定气溶胶基材34的固定组件(图未示),该固定组件可以为弹性夹持组件,包括至少两个对称设于出气区域325的夹持部(图未示),通过控制夹持部伸入进容置腔321中的长度的大小,实现夹持部夹持气溶胶基材与夹持部释放气溶胶基材之间状态的转换。示例的,夹持部可以上下旋转设置在容置腔321上。初始状态下,夹持部可以处于向上旋转的最大角度位置,夹持部伸入容置腔321中长度最小,夹持部脱离与气溶胶基材的接触,或者夹持部对气溶胶基材的夹持力度较小。当将气溶胶基材34置于容置腔321时,气溶胶基材34向下移动的过程,会带动夹持部向下旋转到水平位置,使得夹持部伸入到容置腔321中的长度最大,夹持部对气溶胶基材34进行挤压、夹持以及固定。当使用完毕一个气溶胶基材34之后,可以向上拔起气溶胶基材34,带动夹持部向上旋转到最大角度,夹持部脱离与气溶胶基材的接触,释放气溶胶基材。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (20)

  1. 一种气溶胶基材消耗量检测方法,其中,包括如下步骤:
    持续获取气流通道的进气量、进气环境参数及升温环境参数;
    根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量;
    将目标时间段内的所有所述升温气量累加,得到气溶胶基材的消耗量。
  2. 根据权利要求1所述的气溶胶基材消耗量检测方法,其中,在所述持续获取气流通道的进气量、进气环境参数及升温环境参数的步骤之前,还包括:
    获取气溶胶基材的电参数,并根据所述电参数确定所述气溶胶基材的所属类型;
    获取与所述气溶胶基材的所属类型对应的加热温度,根据所述加热温度对所述气溶胶基材进行加热。
  3. 根据权利要求2所述的气溶胶基材消耗量检测方法,其中,所述得到气溶胶基材的消耗量的步骤之后,还包括:
    根据所述气溶胶基材的所属类型,确定所述气溶胶基材的标准容量;
    计算所述标准容量和所述消耗量之差,得到所述气溶胶基材的剩余容量。
  4. 根据权利要求1项所述的气溶胶基材消耗量检测方法,其中,所述持续获取进气量的步骤包括:
    获取抽吸时间、抽吸压差数据以及进气口截面积,其中所述抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,所述进气口截面积为所述气流通道进气口的截面积;
    根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量。
  5. 根据权利要求2项所述的气溶胶基材消耗量检测方法,其中,所述持续获取进气量的步骤包括:
    获取抽吸时间、抽吸压差数据以及进气口截面积,其中所述抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,所述进气口截面积为所述气流通道进气口的截面积;
    根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量。
  6. 根据权利要求3项所述的气溶胶基材消耗量检测方法,其中,所述持续获取进气量的步骤包括:
    获取抽吸时间、抽吸压差数据以及进气口截面积,其中所述抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,所述进气口截面积为所述气流通道进气口的截面积;
    根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量。
  7. 根据权利要求4所述的气溶胶基材消耗量检测方法,其中,所述根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量的步骤包括:
    根据预设的映射关系获取与所述抽吸压差数据对应的气体流速;
    根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量。
  8. 根据权利要求7所述的气溶胶基材消耗量检测方法,其中,所述根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量的步骤包括:
    根据第一公式:
    V 1=∫vAdt
    计算V 1,其中V 1为所述抽吸时间内的进气量,A为所述进气口截面积,t为所述抽吸时间的长度变量,v为所述气体流速,且所述气体流速v与所述抽吸时间的长度变量t具有函数关系;
    或,根据第二公式:
    V 1=∑v iAt i
    计算V 1,其中V 1为所述抽吸时间内的进气量,t i为所述抽吸时间内某一时刻长度,v i为所述抽吸时间内某一时刻长度t i的气体流速,A为所述进气口截面积。
  9. 根据权利要求1所述的气溶胶基材消耗量检测方法,其中,所述进气环境参数包括进气压强和进气温度;所述升温环境参数包括升温后的气体压强和升温后的温度;所述根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量的步骤包括:
    根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中所述P 1为所述进气压强,所述V 1为所述进气量,所述T 1为所述进气温度,所述P 2为所述升温后的气体压强,所述V 2为所述升温气量,所述T 2为所述升温后的温度。
  10. 根据权利要求2所述的气溶胶基材消耗量检测方法,其中,所述进气环境参数包括进气压强和进气温度;所述升温环境参数包括升温后的气体压强和升温后的温度;所述根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量的步骤包括:
    根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中所述P 1为所述进气压强,所述V 1为所述进气量,所述T 1为所述进气温度,所述P 2为所述升温后的气体压强,所述V 2为所述升温气量,所述T 2为所述升温后的温度。
  11. 根据权利要求3所述的气溶胶基材消耗量检测方法,其中,所述进气环境参数包括进气压强和进气温度;所述升温环境参数包括升温后的气体压强和升温后的温度;所述根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量的步骤包括:
    根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中所述P 1为所述进气压强,所述V 1为所述进气量,所述T 1为所述进气温度,所述P 2为所述升温后的气体压强,所述V 2为所述升温气量,所述T 2为所述升温后的温度。
  12. 一种气溶胶基材消耗量检测系统,其中,包括:
    数据获取模块,用于持续获取进气量、进气环境参数及升温环境参数;
    升温气量计算模块,用于根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量;以及
    消耗量确定模块,用于将目标时间段内的所有所述升温气量累加,得到所述气溶胶基材的消耗量。
  13. 一种气溶胶生成装置,其中,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,实现以下步骤:
    持续获取气流通道的进气量、进气环境参数及升温环境参数;
    根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量;
    将目标时间段内的所有所述升温气量累加,得到气溶胶基材的消耗量。
  14. 根据权利要求13所述的气溶胶生成装置,其中,还包括壳体以及调节组件,所述存储器和处理器设于壳体内;
    所述壳体具有进气通道和容置腔,所述进气通道与所述容置腔连通形成气流通道,且所述容置腔用于容置气溶胶基材,所述进气通道用于供外界大气进入,所述调节组件设于所述进气通道内且用于调节进气通道的进气量。
  15. 根据权利要求13所述的气溶胶生成装置,其中,在所述持续获取气流通道的进气量、进气环境参数及升温环境参数的步骤之前,还包括:
    获取气溶胶基材的电参数,并根据所述电参数确定所述气溶胶基材的所属类型;
    获取与所述气溶胶基材的所属类型对应的加热温度,根据所述加热温度对所述气溶胶基材进行加热。
  16. 根据权利要求15所述的气溶胶生成装置,其中,所述得到气溶胶基材的消耗量的步骤之后,还包括:
    根据所述气溶胶基材的所属类型,确定所述气溶胶基材的标准容量;
    计算所述标准容量和所述消耗量之差,得到所述气溶胶基材的剩余容量。
  17. 根据权利要求13所述的气溶胶生成装置,其中,所述持续获取进气量的步骤包括:
    获取抽吸时间、抽吸压差数据以及进气口截面积,其中所述抽吸压差数据为气溶胶生成装置被抽吸时内部气流通道中的气压相对于外界气压的压力差值,所述进气口截面积为所述气流通道进气口的截面积;
    根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量。
  18. 根据权利要求17所述的气溶胶生成装置,其中,所述根据所述抽吸时间、所述抽吸压差数据和所述进气口截面积计算所述进气量的步骤包括:
    根据预设的映射关系获取与所述抽吸压差数据对应的气体流速;
    根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量。
  19. 根据权利要求18所述的气溶胶生成装置,其中,所述根据所述抽吸时间、所述气体流速和所述进气口截面积计算所述进气量的步骤包括:
    根据第一公式:
    V 1=∫vAdt
    计算V 1,其中V 1为所述抽吸时间内的进气量,A为所述进气口截面积,t为所述抽吸时间的长度变量,v为所述气体流速,且所述气体流速v与所述抽吸时间的长度变量t具有函数关系;
    或,根据第二公式:
    V 1=∑v iAt i
    计算V 1,其中V 1为所述抽吸时间内的进气量,t i为所述抽吸时间内某一时刻长度,v i为所述抽吸时间内某一时刻长度t i的气体流速,A为所述进气口截面积。
  20. 根据权利要求13所述的气溶胶生成装置,其中,所述进气环境参数包括进气压强和进气温度;所述升温环境参数包括升温后的气体压强和升温后的温度;所述根据所述进气量、所述进气环境参数及所述升温环境参数计算所述气流通道中加热区域的升温气量的步骤包括:
    根据公式P 1V 1/T 1=P 2V 2/T 2计算V 2,其中所述P 1为所述进气压强,所述V 1为所述进气量,所述T 1为所述进气温度,所述P 2为所述升温后的气体压强,所述V 2为所述升温气量,所述T 2为所述升温后的温度。
PCT/CN2022/108924 2021-11-10 2022-07-29 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置 WO2023082719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111326346.7A CN114009854B (zh) 2021-11-10 2021-11-10 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置
CN202111326346.7 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023082719A1 true WO2023082719A1 (zh) 2023-05-19

Family

ID=80063267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108924 WO2023082719A1 (zh) 2021-11-10 2022-07-29 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置

Country Status (2)

Country Link
CN (1) CN114009854B (zh)
WO (1) WO2023082719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698134A (zh) * 2023-08-09 2023-09-05 国网安徽省电力有限公司合肥供电公司 电网地下有限空间作业安全监测系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114009854B (zh) * 2021-11-10 2024-05-28 深圳市吉迩科技有限公司 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108338414A (zh) * 2017-01-25 2018-07-31 贵州中烟工业有限责任公司 电加热吸烟系统的控制方法、控制系统
CN110839968A (zh) * 2019-10-24 2020-02-28 深圳麦克韦尔科技有限公司 一种电子雾化装置及其气溶胶形成基质摄入量的检测方法
CN210248379U (zh) * 2019-04-04 2020-04-07 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置
CN112438437A (zh) * 2019-09-03 2021-03-05 深圳市合元科技有限公司 气溶胶生成系统、检测方法、雾化装置和电源装置
WO2021074583A1 (en) * 2019-10-16 2021-04-22 Nicoventures Trading Limited Electronic aerosol provision system and method
CN114009854A (zh) * 2021-11-10 2022-02-08 深圳市吉迩科技有限公司 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098397A2 (en) * 2011-12-30 2013-07-04 Philip Morris Products S.A. Aerosol generating device with air flow detection
SG11201403681WA (en) * 2011-12-30 2014-07-30 Philip Morris Products Sa Aerosol generating system with consumption monitoring and feedback
CN109480333A (zh) * 2017-09-12 2019-03-19 常州市派腾电子技术服务有限公司 展示尼古丁吸入量的方法及电子烟
CN210611025U (zh) * 2018-11-05 2020-05-26 冷朝阳 气溶胶生成系统及气溶胶生成装置和气溶胶生成制品
CN112438438A (zh) * 2019-08-28 2021-03-05 常州市派腾电子技术服务有限公司 电源装置、气溶胶发生装置及其控制方法
CN113100501B (zh) * 2021-04-15 2022-10-11 深圳市海仕格科技有限公司 一种电子烟控制方法及控制系统
CN113598422A (zh) * 2021-07-28 2021-11-05 深圳麦克韦尔科技有限公司 一种气溶胶生成制品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108338414A (zh) * 2017-01-25 2018-07-31 贵州中烟工业有限责任公司 电加热吸烟系统的控制方法、控制系统
CN210248379U (zh) * 2019-04-04 2020-04-07 惠州市新泓威科技有限公司 可控制摄入剂量的雾化装置
CN112438437A (zh) * 2019-09-03 2021-03-05 深圳市合元科技有限公司 气溶胶生成系统、检测方法、雾化装置和电源装置
WO2021074583A1 (en) * 2019-10-16 2021-04-22 Nicoventures Trading Limited Electronic aerosol provision system and method
CN110839968A (zh) * 2019-10-24 2020-02-28 深圳麦克韦尔科技有限公司 一种电子雾化装置及其气溶胶形成基质摄入量的检测方法
CN114009854A (zh) * 2021-11-10 2022-02-08 深圳市吉迩科技有限公司 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116698134A (zh) * 2023-08-09 2023-09-05 国网安徽省电力有限公司合肥供电公司 电网地下有限空间作业安全监测系统
CN116698134B (zh) * 2023-08-09 2023-12-29 国网安徽省电力有限公司合肥供电公司 电网地下有限空间作业安全监测系统

Also Published As

Publication number Publication date
CN114009854A (zh) 2022-02-08
CN114009854B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2023082719A1 (zh) 一种气溶胶基材消耗量检测方法、系统及气溶胶生成装置
CN105982520B (zh) 烹饪用具
JP5716062B2 (ja) ガス供給装置
TWI702918B (zh) 霧氣產生裝置、霧氣產生裝置用控制單元、電源控制方法及電源控制程式
CN108158039A (zh) 一种集成多个Pt温度传感器的MEMS发热芯片及其制造方法
JPWO2019104277A5 (zh)
CN109789288B (zh) 缺水警报确定
JP2021516950A5 (ja) 電気式エアロゾル生成システム
WO2021011739A1 (en) Vaporizer flow detection
CN108354228A (zh) 一种集成Pt温度传感器的MEMS发热芯片及其制造方法
CN114376274B (zh) 气溶胶产生装置及其控制方法、控制装置和存储介质
WO2019170032A1 (zh) 电子烟、电子烟的控制方法和装置
US20240023631A1 (en) Electronic vaporizer and control method
CN108185526A (zh) 一种集成二极管温度传感器的mems发热芯片及其制造方法
CN207821101U (zh) 一种集成二极管温度传感器的mems发热芯片
CN207836769U (zh) 一种集成Pt温度传感器的MEMS发热芯片
US20240085225A1 (en) Aerosol Generation Assembly and Method of Continuous Estimation of the Remaining Amount of Aerosol Forming Precursor
TWM604386U (zh) 依桶內水溫計算加熱時間數據之電熱水器
WO2023193647A1 (zh) 气溶胶产生装置及统计用户的抽吸口数的方法
KR102614335B1 (ko) 휴대용 에어로졸 발생장치
CN205138679U (zh) 温度传感器技术的研究试验装置
CN218354609U (zh) 气溶胶产生装置
CN107328030A (zh) 水垢检测装置、检测方法、加湿器、存储介质及空调器
US20230180836A1 (en) Vaporization state recognition method, apparatus, electronic device and storage medium
KR20240050600A (ko) 에어로졸 발생 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE