WO2023082301A1 - 一种无机微晶驻极体材料及其制备方法 - Google Patents

一种无机微晶驻极体材料及其制备方法 Download PDF

Info

Publication number
WO2023082301A1
WO2023082301A1 PCT/CN2021/131416 CN2021131416W WO2023082301A1 WO 2023082301 A1 WO2023082301 A1 WO 2023082301A1 CN 2021131416 W CN2021131416 W CN 2021131416W WO 2023082301 A1 WO2023082301 A1 WO 2023082301A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcrystalline
inorganic
electret material
electret
temperature
Prior art date
Application number
PCT/CN2021/131416
Other languages
English (en)
French (fr)
Inventor
黄志强
Original Assignee
常州晶麒新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州晶麒新材料科技有限公司 filed Critical 常州晶麒新材料科技有限公司
Publication of WO2023082301A1 publication Critical patent/WO2023082301A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63492Natural resins, e.g. rosin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to the technical field of electret materials, in particular to an inorganic microcrystalline electret material and a preparation method thereof.
  • An electret is a dielectric that generates internal and external electric fields and is the equivalent of a permanent magnet to static electricity.
  • electrets were made by first melting a suitable dielectric material, such as a polymer or wax with polar molecules, and then allowing it to re-solidify in a strong electrostatic field. The polar molecules of the dielectric align themselves in the direction of the electrostatic field, creating a dipole electret with an electrostatic bias.
  • Modern electrets are usually made by embedding excess charge in a highly insulating dielectric, for example by electron beam, corona discharge, injection of electricity from an electron gun, electrical breakdown across a gap, or a dielectric barrier.
  • Electrets are widely used in microphones and copiers, and are also used in some types of air filters, for electrostatic collection of dust particles, in electret ion chambers to measure ionizing radiation, and more.
  • Electret materials are very common in nature. For example, quartz and other forms of silicon dioxide are naturally occurring electrets. However, there are various defects in the traditional SiO 2 , Si 3 N 4 and other simple film electrets, which lead to the slow development of inorganic electrets. Therefore, an inorganic microcrystalline electret material and its preparation method are proposed.
  • the object of the present invention is to provide an inorganic microcrystalline electret material and a preparation method thereof to solve the technical problems mentioned in the background art above.
  • the present invention provides the following technical proposal: a kind of inorganic microcrystalline electret material, its raw material composition and corresponding weight percent are: silicon dioxide 35%-45%, zinc oxide 15%-25%, trioxide 15%-25% of diboron, 10%-15% of magnesium oxide, and the rest are performance regulators.
  • its raw material composition and corresponding weight percentage are: 40%-44% of silicon dioxide, 20%-23% of zinc oxide, 20%-23% of diboron trioxide, 12%-14% of magnesium oxide, and the rest are properties Conditioner.
  • the raw material composition and the corresponding weight percentage are: 42% of silicon dioxide, 22% of zinc oxide, 20% of diboron trioxide, 13% of magnesium oxide, and 3% of performance regulator.
  • the performance regulator is one of natural wax or rosin in molten state.
  • a preparation method of an inorganic microcrystalline electret material comprising the steps of:
  • Step 1 Mix silicon dioxide, zinc oxide, diboron trioxide and magnesium oxide, melt at a temperature of 1400°C for 3.5-5 hours at a high temperature, and crush it into a composite powder of 1-10 ⁇ m level after quenching;
  • Step 2 Add the composite powder prepared in step 1 to absolute ethanol or hydroxymethyl cellulose, and add a performance regulator to it to form a sol, and evenly coat it on the polished surface of monocrystalline silicon, let it dry before sending it to Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min. After heat preservation for 1 hour, it was cooled to room temperature with the furnace, and the whole process was protected by nitrogen to obtain an inorganic microcrystalline electret material.
  • the thickness of the sol coating is 10-20um.
  • the beneficial effects of the present invention are: an inorganic microcrystalline electret material and its preparation method in the present invention, select silicon dioxide, zinc oxide, diboron trioxide and magnesium oxide to mix, and melt at high temperature to prepare composite powder Bulk material, with multi-component composite, microcrystalline structure, positive and negative symmetric static electricity performance, the composite powder material and natural wax or rosin in molten state are configured into a sol, which is more convenient for coating on single crystal silicon On the polished surface, the inorganic microcrystalline electret material has a higher dielectric constant through the selection of a specific heating rate and heating stage value.
  • Step 1 Mix 35% silicon dioxide, 25% zinc oxide, 25% diboron trioxide and 10% magnesium oxide by weight, melt at a temperature of 1400°C for 3.5 hours, and crush it into 10 ⁇ m after quenching Grade composite powder;
  • Step 2 Add the composite powder prepared in step 1 into absolute ethanol, and add 5% by weight of natural wax in a molten state to form a sol, and evenly coat it on the polished surface of single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • Step 1 Mix 45% silicon dioxide, 15% zinc oxide, 20% diboron trioxide and 15% magnesium oxide by weight, melt at a temperature of 1400°C for 4 hours, and crush it into 10 ⁇ m grade after quenching composite powder;
  • Step 2 Add the composite powder prepared in step 1 into absolute ethanol, and add 5% by weight of natural wax in a molten state to form a sol, and evenly coat it on the polished surface of single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • Step 1 Mix 40% silicon dioxide, 23% zinc oxide, 23% diboron trioxide and 12% magnesium oxide by weight, melt at a temperature of 1400°C for 4 hours, and crush it into 8 ⁇ m grade after quenching composite powder;
  • Step 2 Add the composite powder prepared in step 1 to absolute ethanol, and add 2% by weight natural wax in a molten state to form a sol, evenly coat the polished surface of the single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • Step 1 Mix 44% silicon dioxide, 20% zinc oxide, 20% diboron trioxide and 10% magnesium oxide by weight, melt at a temperature of 1400°C for 5 hours, and crush it into 8 ⁇ m grade after quenching composite powder;
  • Step 2 Add the composite powder prepared in step 1 to absolute ethanol, and add 2% by weight natural wax in a molten state to form a sol, evenly coat the polished surface of the single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • Step 1 Mix 42% silicon dioxide, 22% zinc oxide, 20% diboron trioxide and 13% magnesium oxide by weight, melt at a temperature of 1400°C for 4.5 hours, and crush it into 5 ⁇ m after quenching Grade composite powder;
  • Step 2 Add the composite powder prepared in step 1 to absolute ethanol, and add 3% by weight of natural wax in a molten state to form a sol, and evenly coat it on the polished surface of single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Step 1 Mix 38% silicon dioxide, 25% zinc oxide, 25% boron trioxide and 10% magnesium oxide by weight, melt at a temperature of 1400°C for 5 hours, and crush it into 5 ⁇ m grade after quenching composite powder;
  • Step 2 Add the composite powder prepared in step 1 to absolute ethanol, and add 2% by weight natural wax in a molten state to form a sol, evenly coat the polished surface of the single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Step 1 Mix 39% silicon dioxide, 24% zinc oxide, 24% diboron trioxide and 12% magnesium oxide by weight, melt at a temperature of 1400°C for 5 hours, and crush it into 5 ⁇ m grade after quenching composite powder;
  • Step 2 Add the composite powder prepared in step 1 to absolute ethanol, and add 1% by weight of natural wax in a molten state to form a sol, and evenly coat the polished surface of the single crystal silicon, and let it dry after standing Put it into a high-temperature atmosphere furnace, firstly raise the temperature to 500°C at a heating rate of 3°C/min, then raise the temperature to 700°C at a heating rate of 5°C/min, keep it for 1 hour, and then cool it to 400°C at a cooling rate of 5°C/min , keep warm for 1h and then cool down to room temperature with the furnace, under nitrogen protection throughout the process, to obtain inorganic microcrystalline electret materials.
  • the inorganic microcrystalline electret material prepared in embodiment 1-7 is carried out physical and chemical property test, and test result is as follows:
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 4.3 ⁇ 10 -6 /°C 4.2 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10 -6 /°C 4.5 ⁇ 10
  • the thermal expansion coefficient of the inorganic microcrystalline electret material prepared in Examples 1-7 is close to that of silicon, which proves that it is suitable as a silicon-based electret material.
  • the value of the sample ⁇ (10KHz) is 2200-3200
  • the value of ⁇ (100KHz) is 1100-2200
  • the value of ⁇ (1MHz) is 200-700
  • Example 1 the 10KHz 100KHz 1MHz Example 1 2200-2600 1100-2000 200-600
  • Example 2 2200-2600 1100-2000 200-600
  • Example 3 2300-2800 1100-2000 200-600
  • Example 4 2200-2600 1100-2000 300-600
  • Example 5 2500-3200 1300-2200 400-700
  • Example 6 2200-2600 1100-2100 300-600
  • Example 7 2200-2600 1100-2100 300-600
  • the inorganic microcrystalline electret material prepared in Examples 1-7 can obtain a surface potential almost equal to the grid voltage after charging;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Filtering Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明属于驻极体材料技术领域,具体涉及一种无机微晶驻极体材料及其制备方法,其原材料组成及相应重量百分比为:二氧化硅35%-45%、氧化锌15%-25%、三氧化二硼15%-25%、氧化镁10%-15%、其余为性能调节剂,选取二氧化硅、氧化锌、三氧化二硼和氧化镁进行混合,经高温熔制,制备出复合粉体材料,具有多组分复合化、微晶结构、单一稳定的能阱机制、正负对称的驻电性能,将复合粉体材料与熔融状态的天然蜡或松香一同配置成溶胶体,更加便于涂覆于单晶硅的抛光面上,再经特定升温速率及升温阶段值的选取,使得无机微晶驻极体材料具有较高的介电常数。

Description

一种无机微晶驻极体材料及其制备方法 技术领域
本发明涉及驻极体材料技术领域,具体领域为一种无机微晶驻极体材料及其制备方法。
背景技术
驻极体是一种电介质,驻极体产生内部和外部的电场,并且是静电的等效永久磁铁。从历史上看,驻极体是通过首先熔化合适的介电材料(例如极性分子的聚合物或蜡),然后使其在强大的静电场中重新凝固而制成的。电介质的极性分子将其自身对准静电场的方向,从而产生具有静电偏压的偶极驻极体。现代的驻极体通常是通过将多余的电荷嵌入到高度绝缘的电介质中来制成的,例如通过电子束、电晕放电、从电子枪注入电,跨越间隙的电击穿或电介质阻挡层。
驻极体广泛应用于麦克风和复印机中,还用于某些类型的空气过滤器,静电收集灰尘颗粒,驻极体离子室中以测量电离辐射等。
驻极体材料在自然界中非常普遍。例如,石英和其他形式的二氧化硅是天然存在的驻极体。然传统SiO 2、Si 3N 4等单质膜驻极体存在各种各样缺陷,导致无机驻极体发展缓慢,为此提出一种无机微晶驻极体材料及其制备方法。
发明内容
本发明的目的在于提供一种无机微晶驻极体材料及其制备方法以解决上述背景技术中提到的技术问题。
为实现上述目的,本发明提供如下技术方案:一种无机微晶驻极体材料,其原材料组成及相应重量百分比为:二氧化硅35%-45%、氧化锌15%-25%、三氧化二硼15%-25%、氧化镁10%-15%、其余为性能调节剂。
优选的,其原材料组成及相应重量百分比为:二氧化硅40%-44%、氧化锌20%-23%、三氧化二硼20%-23%、氧化镁12%-14%、其余为性能调节剂。
优选的,其原材料组成及相应重量百分比为:二氧化硅42%、氧化锌22%、三氧化二硼20%、氧化镁13%、性能调节剂3%。
优选的,性能调节剂为熔融状态的天然蜡或松香中的一种。
一种无机微晶驻极体材料的制备方法,其制备方法包括如下步骤:
步骤1:取二氧化硅、氧化锌、三氧化二硼和氧化镁混合,在温度为1400℃条件下高温熔制3.5-5h,淬冷后粉碎成1-10μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇或羟甲基纤维素中,并向其中加入性能调节剂配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
优选的,溶胶涂覆厚度为10-20um。
本发明的有益效果是:本发明一种无机微晶驻极体材料及其制备方法,选取二氧化硅、氧化锌、三氧化二硼和氧化镁进行混合,经高温熔制,制备出复合粉体材料,具有多组分复合化、微晶结构、正负对称的驻电性能,将复合粉体材料与熔融状态的天然蜡或松香一同配置成溶胶体,更加便于涂覆于单晶硅的抛光面上,再经特定升温速率及升温阶段值的选取,使得无机微晶驻极体材料具有较高的介电常数。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
步骤1:取重量百分比为35%二氧化硅、25%氧化锌、25%三氧化二硼和10% 氧化镁混合,在温度为1400℃条件下高温熔制3.5h,淬冷后粉碎成10μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为5%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
实施例2:
步骤1:取重量百分比为45%二氧化硅、15%氧化锌、20%三氧化二硼和15%氧化镁混合,在温度为1400℃条件下高温熔制4h,淬冷后粉碎成10μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为5%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
实施例3:
步骤1:取重量百分比为40%二氧化硅、23%氧化锌、23%三氧化二硼和12%氧化镁混合,在温度为1400℃条件下高温熔制4h,淬冷后粉碎成8μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为2%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温 至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
实施例4:
步骤1:取重量百分比为44%二氧化硅、20%氧化锌、20%三氧化二硼和10%氧化镁混合,在温度为1400℃条件下高温熔制5h,淬冷后粉碎成8μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为2%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
实施例5:
步骤1:取重量百分比为42%二氧化硅、22%氧化锌、20%三氧化二硼和13%氧化镁混合,在温度为1400℃条件下高温熔制4.5h,淬冷后粉碎成5μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为3%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
实施例6:
步骤1:取重量百分比为38%二氧化硅、25%氧化锌、25%三氧化二硼和10%氧化镁混合,在温度为1400℃条件下高温熔制5h,淬冷后粉碎成5μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为2%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
实施例7:
步骤1:取重量百分比为39%二氧化硅、24%氧化锌、24%三氧化二硼和12%氧化镁混合,在温度为1400℃条件下高温熔制5h,淬冷后粉碎成5μm级的复合粉料;
步骤2:将步骤1中制备的复合粉料加入无水乙醇中,并向其中加入重量百分比为1%熔融状态的天然蜡配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
将实施例1-7所制备的无机微晶驻极体材料进行理化性能试验,试验结果如下:
热膨胀系数
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
4.3×10 -6/℃ 4.2×10 -6/℃ 4.5×10 -6/℃ 4.5×10 -6/℃ 4.5×10 -6/℃ 4.5×10 -6/℃ 4.5×10 -6/℃
实施例1-7所制备的无机微晶驻极体材料与硅的热膨胀系数接近,证明其适宜作为硅基驻极体材料。
实施例1-7所制备的无机微晶驻极体材料,室温至160℃范围内,样品ε(10KHz)值处于2200-3200,ε(100KHz)值为1100-2200,ε(1MHz)值为 200-700,显示材料介电常数值随频率增高而减小,同一频率下介电常数随温度升高而逐步增大。
介电常数
  10KHz 100KHz 1MHz
实施例1 2200-2600 1100-2000 200-600
实施例2 2200-2600 1100-2000 200-600
实施例3 2300-2800 1100-2000 200-600
实施例4 2200-2600 1100-2000 300-600
实施例5 2500-3200 1300-2200 400-700
实施例6 2200-2600 1100-2100 300-600
实施例7 2200-2600 1100-2100 300-600
电晕充电试验
当栅压值为|V G|=500V时,实施例1-7所制备的无机微晶驻极体材料在充电结束后可以获得与栅电压几乎相等的表面电位;
当栅压提高至|V G|=900V时,充电后的样品表面电位Vs约可以达到|V G|的92%-98%,正负电荷充电性能无差异。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

  1. 一种无机微晶驻极体材料,其特征在于:其原材料组成及相应重量百分比为:二氧化硅35%-45%、氧化锌15%-25%、三氧化二硼15%-25%、氧化镁10%-15%、其余为性能调节剂。
  2. 根据权利要求1所述的一种无机微晶驻极体材料,其特征在于:其原材料组成及相应重量百分比为:二氧化硅40%-44%、氧化锌20%-23%、三氧化二硼20%-23%、氧化镁12%-14%、其余为性能调节剂。
  3. 根据权利要求2所述的一种无机微晶驻极体材料,其特征在于:其原材料组成及相应重量百分比为:二氧化硅42%、氧化锌22%、三氧化二硼20%、氧化镁13%、性能调节剂3%。
  4. 根据权利要求1-3任一项所述的一种无机微晶驻极体材料,其特征在于:性能调节剂为熔融状态的天然蜡或松香中的一种。
  5. 一种无机微晶驻极体材料的制备方法,其特征在于:其制备方法包括如下步骤:
    步骤1:取二氧化硅、氧化锌、三氧化二硼和氧化镁混合,在温度为1400℃条件下高温熔制3.5-5h,淬冷后粉碎成1-10μm级的复合粉料;
    步骤2:将步骤1中制备的复合粉料加入无水乙醇或羟甲基纤维素中,并向其中加入性能调节剂配置成溶胶,均匀涂覆于单晶硅抛光面,静置干燥后送入高温气氛炉中,首先以3℃/min升温速率阶段升温至500℃,再以5℃/min升温速率阶段升温至700℃,保温1h,以5℃/min降温速率阶段降温至400℃,保温1h后随炉冷却至室温,全程氮气保护,获得无机微晶驻极体材料。
  6. 根据权利要求5所述的一种无机微晶驻极体材料的制备方法,其特征在于:溶胶涂覆厚度为10-20um。
PCT/CN2021/131416 2021-11-11 2021-11-18 一种无机微晶驻极体材料及其制备方法 WO2023082301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111333707.0 2021-11-11
CN202111333707.0A CN113998995A (zh) 2021-11-11 2021-11-11 一种无机微晶驻极体材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023082301A1 true WO2023082301A1 (zh) 2023-05-19

Family

ID=79928567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131416 WO2023082301A1 (zh) 2021-11-11 2021-11-18 一种无机微晶驻极体材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113998995A (zh)
WO (1) WO2023082301A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283373A (ja) * 1996-04-15 1997-10-31 Matsushita Electric Works Ltd シリコン酸化膜エレクトレット
CN101071683A (zh) * 2007-03-20 2007-11-14 浙江科技学院 一种驻极体的极化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119678A1 (ja) * 2008-03-27 2009-10-01 旭硝子株式会社 エレクトレットおよび静電誘導型変換素子
CN104479633B (zh) * 2014-11-19 2017-09-12 辽宁大学 一种石蜡‑二氧化硅复合相变储能材料的制备方法
CN108587347A (zh) * 2018-06-19 2018-09-28 佛山陵朝新材料有限公司 一种超疏水材料的制备方法
JP7426647B2 (ja) * 2019-12-13 2024-02-02 株式会社デンソー エレクトレット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283373A (ja) * 1996-04-15 1997-10-31 Matsushita Electric Works Ltd シリコン酸化膜エレクトレット
CN101071683A (zh) * 2007-03-20 2007-11-14 浙江科技学院 一种驻极体的极化方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG ZHIQIANG, MA XUETAO, GU YUJIE : "Comparison and study of three kinds of SiO 2 based inorganic electret materials: STBR, SPAP and SiO 2 film", JOURNAL OF FUNCTIONAL MATERIALS, vol. 51, no. 2, 1 January 2020 (2020-01-01), pages 2137 - 2143, XP093067238, DOI: 10.3969/j.issn.1001-9731.2020.02.022 *
HUANG ZHIQIANG; MA XUE-RAO; GU YU-JI: "Preparation and Study of a Novel Microcrystalline Electret Composite: SiO2-Ta2O5-B2O3-RO", JOURNAL OF FUNCTIONALMATERIALS AND DEVICES, vol. 25, no. 2, 30 June 2019 (2019-06-30), CN , pages 124 - 129, XP009546377, ISSN: 1007-4252 *
HUANG ZHIQIANG;, XU ZHENG; FANG MINGBAO; YU JIANQUN: "B3+, Zn2+ Doping and Modification of SiO2 Thin Film Electret", CHINESE JOURNAL OF MATERIALS RESEARCH, vol. 14, no. 4, 1 August 2000 (2000-08-01), XP093067248 *

Also Published As

Publication number Publication date
CN113998995A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
KR101642137B1 (ko) 리튬이온전지용 일산화실리콘 복합음극소재, 그 제조 방법 및 리튬이온전지
Wallis et al. Field assisted glass‐metal sealing
TW200415815A (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
Schwödiauer et al. Charge stability of pulsed-laser deposited polytetrafluoroethylene film electrets
US20210184100A1 (en) Electret
CN110247109A (zh) 一种硫化物固态电解质及其制备方法和用途
WO2023082301A1 (zh) 一种无机微晶驻极体材料及其制备方法
WO2021097740A1 (zh) 纳米棒及其制造方法以及含有该纳米棒的光阀
JPH05505909A (ja) シリコンのエアゾール蒸着および膜の形成
JP2720381B2 (ja) 任意の電気抵抗率を有する熱分解窒化ホウ素成形体の製造方法
KR20170127636A (ko) 정전척용 세라믹 복합소재의 제조방법
Annaratone et al. A note on the potential acquired by a dust particle in an electronegative plasma
Pieloth et al. Influence of thermodynamic, material, and bulk properties on electrical resistivity of particle layers
Chen et al. PECVD SiO 2/Si 3 N 4 double layers electrets on glass substrate
Sun et al. Effects of thickness on the microstructure and energy-storage performance of PLZT antiferroelectric thick films
US3252812A (en) Glass compositions
Viraneva et al. Effect of TiO2 particle incorporation on the electret properties of corona charged polypropylene composite films
CN108376780B (zh) 一种三维多孔硅掺杂钛源与碳复合的负极材料制备方法
Wang et al. Characteristics of charge dissipation on super-hydrophobic surface of silicone rubber and its influence on hydrophobicity
Lu et al. Comparative study of microstructure and electrical properties of varistors prepared from plasma vapor‐phase reaction process and French process ZnO powders
JP2012051761A (ja) 半導体被覆用ガラス
JP4865119B2 (ja) 耐熱性に優れた太陽電池用絶縁基板及びその製造方法
Jin et al. Charge characteristics of corona discharge spray
Zhongfu et al. Silicondioxide electret films prepared by the sol-gel process
CN109802099B (zh) 融合氮化硅的铅电极制作方法及其铅酸蓄电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963747

Country of ref document: EP

Kind code of ref document: A1