WO2023080371A1 - 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터 - Google Patents

3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터 Download PDF

Info

Publication number
WO2023080371A1
WO2023080371A1 PCT/KR2022/007213 KR2022007213W WO2023080371A1 WO 2023080371 A1 WO2023080371 A1 WO 2023080371A1 KR 2022007213 W KR2022007213 W KR 2022007213W WO 2023080371 A1 WO2023080371 A1 WO 2023080371A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
element composition
dimensional molding
film heater
film
Prior art date
Application number
PCT/KR2022/007213
Other languages
English (en)
French (fr)
Inventor
김윤진
유길준
장상현
김형준
박건희
홍보경
Original Assignee
주식회사 테라온
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210152297A external-priority patent/KR102649796B1/ko
Priority claimed from KR1020210153324A external-priority patent/KR102634237B1/ko
Application filed by 주식회사 테라온 filed Critical 주식회사 테라온
Priority to DE112022005374.7T priority Critical patent/DE112022005374T5/de
Publication of WO2023080371A1 publication Critical patent/WO2023080371A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible

Definitions

  • the present invention relates to a heating element composition capable of three-dimensional molding and a film heater formed therefrom.
  • the present invention has high elongation and excellent high-temperature durability, which is in a conflicting relationship with elongation, so that mechanical damage such as cracks during stretching can be suppressed, and, like conventional stretchable materials, restored to its original shape after molding It has the characteristics of being stably maintained in a molded shape, and the rate of change in resistance can be minimized when deformed by three-dimensional molding, and it can be cured at 150 ° C or less, and a heating element can be formed by various printing or coating. It relates to a heating element composition capable of three-dimensional molding applicable to various film heaters and a film heater formed therefrom.
  • the film heater is manufactured by printing or coating an electrode and a heating element connected to the electrode on a flexible polymer film, and when power is applied to the electrode, a current flows through the heating element connected to the electrode and heats up by the resistance held, thereby providing a sense of warmth to the subject.
  • a heater It is thin, can be manufactured in a large area, and has the advantage of providing a rapid sense of warmth with low power, so it has recently been applied in various forms to household appliances such as heaters and sterilizers, automobiles, and buildings.
  • the conventional film heater has a problem in that it is difficult to use at a high temperature of 150 ° C. or more due to insufficient durability of the material at a high temperature, and curing at a limited temperature is required or a heating element can be formed by a limited printing or coating method. is narrow, and in particular, elongation of the material inevitably occurs during 3-dimensional molding. This elongation may cause mechanical damage such as cracks in the heating element, and furthermore, a rapid change in resistance of the heating element occurs, resulting in a significant decrease in heating performance. problems can arise.
  • the object of the present invention is to provide a heating element composition capable of three-dimensional molding capable of suppressing mechanical damage such as cracks during stretching, and a film heater formed therefrom, which possesses high extensibility and excellent high-temperature durability, which is in a conflicting relationship with extensibility.
  • the present invention provides a three-dimensional moldable heating element composition having a characteristic of being stably maintained in a molded shape rather than being restored to its original shape after molding like a conventional stretchable material, and a film heater formed therefrom aims to
  • an object of the present invention is to provide a three-dimensional moldable heating element composition capable of minimizing resistance change during deformation by three-dimensional molding and a film heater formed therefrom.
  • thermoforming a heating element composition capable of three-dimensional molding that can be cured at 150° C. or lower and can be formed by various printing or coating, so that it can be applied to various film heaters.
  • a heating element composition capable of three-dimensional molding comprising a binder resin, conductive particles, an adhesion enhancer and a heat resistance enhancer, wherein the adhesion enhancer includes polyvinyl acetal, the heat resistance enhancer includes silsesquioxane powder, and the conductive
  • the particles include carbon nanotubes
  • the binder resin includes at least one selected from the group consisting of a resol-based phenolic resin, an unsaturated polyester resin, and a cresol-based phenolic resin.
  • the binder resin includes a resol-based phenolic resin or a cresol-based phenolic resin
  • the heating element composition further includes a crosslinking agent
  • the crosslinking agent includes at least one isocyanate crosslinking agent selected from the group consisting of isophorone diisocyanate, hexamethylene diisocyanate and norbornane diisocyanate, and the content of the crosslinking agent is 70 to 120 parts by weight based on 100 parts by weight of the binder resin A heating element composition characterized in that it is negative is provided.
  • the conductive particles include carbon nanotubes (CNT), and the content of the carbon nanotubes (CNT) is 3.5 to 15% by weight based on the total weight of the heating element composition, characterized in that, to provide a heating element composition do.
  • CNT carbon nanotubes
  • the conductive particle provides a heating element composition, characterized in that it further comprises at least one selected from the group consisting of carbon black, graphite, graphene flakes and metal particles.
  • the polyvinyl acetal includes polyvinyl butyral (PVB), and the content of the polyvinyl acetal is 10 to 100 parts by weight based on 100 parts by weight of the binder resin.
  • PVB polyvinyl butyral
  • the silsesquioxane powder includes polymethylsilsesquioxane powder, and the content of the silsesquioxane powder is 0.5 to 20% by weight based on the total weight of the heating element composition. composition is provided.
  • the heating element composition comprises at least one organic solvent selected from the group consisting of carbitol acetate, butyl carbitol, butyl carbitol acetate, dibutyl ether (DBE), butanol, and octanol. to provide.
  • organic solvent selected from the group consisting of carbitol acetate, butyl carbitol, butyl carbitol acetate, dibutyl ether (DBE), butanol, and octanol. to provide.
  • the base film On the other hand, the base film; a pair of electrodes formed on one surface of the base film and having different polarities; and at least one heating element connected to each of the pair of electrodes and including carbon nanotubes, wherein the base film includes a polymer film having a tensile strength of 80 kgf/cm 2 or more and an elastic modulus of 550 to 4,000 MPa , A film heater capable of three-dimensional molding is provided.
  • the polymer film is polyethylene terephthalate (PET), polycarbonate (PC), polycyclohexylenedimethylene terephthalate (PCT), polyethylene terephthalate glycol (PETG), droplet polymer (LCP), acrylonitrile-butadiene - Characterized in that it comprises a film made of one or more polymers selected from the group consisting of styrene (ABS), high-impact polystyrene (HIPS), polypropylene (PP) and polyvinyl chloride (PVC), capable of three-dimensional molding A film heater is provided.
  • ABS styrene
  • HIPS high-impact polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • the heating element is formed from a heating element composition including a binder resin, conductive particles, an adhesion enhancer and a heat resistance enhancer, the adhesion enhancer includes polyvinyl acetal, and the heat resistance enhancer includes silsesquioxane powder.
  • the conductive particles include carbon nanotubes, and the binder resin includes at least one selected from the group consisting of resol-based phenolic resins, unsaturated polyester resins, and cresol-based phenolic resins.
  • the binder resin includes a resol-based phenolic resin or a cresol-based phenolic resin
  • the heating element composition provides a film heater capable of three-dimensional molding, characterized in that it further includes a crosslinking agent.
  • the crosslinking agent includes at least one isocyanate crosslinking agent selected from the group consisting of isophorone diisocyanate, hexamethylene diisocyanate and norbornane diisocyanate, and the content of the crosslinking agent is 70 to 120 parts by weight based on 100 parts by weight of the binder resin It provides a film heater capable of three-dimensional molding, characterized in that it is negative.
  • the conductive particles include carbon nanotubes (CNTs), and the content of the carbon nanotubes (CNTs) is 3.5 to 15% by weight based on the total weight of the heating element composition.
  • a possible film heater is provided.
  • the conductive particle provides a film heater capable of three-dimensional molding, characterized in that it further comprises at least one selected from the group consisting of carbon black, graphite, graphene flake, and metal particles.
  • the polyvinyl acetal includes polyvinyl butyral (PVB), and the content of the polyvinyl acetal is 10 to 100 parts by weight based on 100 parts by weight of the binder resin, a film heater capable of three-dimensional molding.
  • the silsesquioxane powder includes polymethylsilsesquioxane powder, and the content of the silsesquioxane powder is 0.5 to 20% by weight based on the total weight of the heating element composition.
  • a film heater capable of dimensional molding is provided.
  • the heating element composition is characterized in that it comprises at least one organic solvent selected from the group consisting of carbitol acetate, butyl carbitol, butyl carbitol acetate, dibutyl ether (DBE), butanol and octanol, three-dimensional molding This provides a possible film heater.
  • the pair of electrodes are made of one or more conductive metals selected from the group consisting of silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), stainless steel and alloys thereof Characterized in that , A film heater capable of three-dimensional molding is provided.
  • a film heater capable of three-dimensional molding, characterized in that a heat insulating material or a metal plate is additionally provided on the other surface of the base film.
  • the heating element composition capable of three-dimensional molding according to the present invention has high elongation through a specific combination of a binder resin and an additive, and at the same time has excellent high-temperature durability, which is in a conflicting relationship with elongation, so that mechanical damage such as cracks during elongation can be suppressed, , It has the characteristic of being stably maintained in the molded shape rather than being restored to its original shape after molding, like conventional stretchable materials, and the rate of change in resistance can be minimized during deformation by three-dimensional molding, and below 150 ° C. It can be cured in and form a heating element by various printing or coating, so it shows excellent effects applicable to various film heaters.
  • FIG. 1 schematically illustrates a cross-sectional structure of one embodiment of a film heater capable of three-dimensional molding according to the present invention.
  • FIG. 2 schematically shows a cross-sectional structure of another embodiment of a film heater capable of three-dimensional molding according to the present invention.
  • Example 3 is a photograph of a two-dimensional film heater and a three-dimensional molded film heater of Example 1;
  • FIG. 4 is an optical image of a heating part/electrode interface of the three-dimensionally formed film heater of Example 1 and an optical image of the surface of the three-dimensionally formed film heater of Comparative Example 1.
  • FIG. 4 is an optical image of a heating part/electrode interface of the three-dimensionally formed film heater of Example 1 and an optical image of the surface of the three-dimensionally formed film heater of Comparative Example 1.
  • Example 5 is a picture taken with a thermal imaging camera when the 2D film heater and the 3D formed film heater of Example 1 generate heat.
  • FIG. 6 schematically shows the appearance of a vacuum thermoforming machine for evaluating three-dimensional formability in Examples.
  • FIG. 1 schematically illustrates a cross-sectional structure of one embodiment of a film heater capable of three-dimensional molding according to the present invention.
  • a pair of electrodes 200 having different polarities are formed on one surface of a base film 100, and the pair of electrodes 200 ) may be provided with one or more heating elements 300 connected to each.
  • the one or more heating elements 300 include a plurality of heating elements, the plurality of heating elements may be connected in series or parallel to each other.
  • the base film 100 has high extensibility and shape retention characteristics after molding to enable three-dimensional molding, and heat resistance, that is, high-temperature durability is required to withstand high-temperature heat generation from the heating element 300 .
  • the base film 100 has a tensile strength of 80 kgf/cm 2 or more, for example, 80 to 750 kgf/cm 2 , preferably 100 to 560 kgf/cm 2 , and an elastic modulus in order to satisfy the above-described physical properties.
  • It may be a polymer film having physical properties of 550 to 4,000 MPa, preferably 590 to 2,000 MPa, and a glass transition temperature of 150 ° C or less, for example, -30 to 150 ° C, preferably 80 to 100 ° C,
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PCT polycyclohexylenedimethylene terephthalate
  • PETG polyethylene terephthalate glycol
  • LCP droplet polymer
  • ABS acrylonitrile-butadiene-styrene
  • HIPS high impact polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • the electrode 200 may be made of a conductive metal such as silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), stainless steel, or an alloy thereof, and a metal foil laminated on a base film It can be formed by processing into a certain pattern by a process such as etching by photolithography.
  • a conductive metal such as silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), stainless steel, or an alloy thereof.
  • the heating element 300 may be formed by printing or coating a heating element composition including a binder resin, a crosslinking agent, conductive particles, an adhesion enhancer, a heat resistance enhancer, an organic solvent, and the like. % or less, preferably, the resistance change rate may be 28% or less when elongated by 20%.
  • the resistance change rate refers to the ratio of the increase in resistance after stretching to the initial resistance based on the resistance before stretching.
  • the binder resin as a base material of the heating element composition, has moldability so that the heating element can be formed by a printing or coating method such as screen, gravure, comma coating, spray coating, slot die coating, etc. And, in particular, it can retain stretchability and shape retention characteristics after molding so that three-dimensional molding of a heating element formed from the heating element composition and a film heater including the same is possible, and can be used even at a high temperature of 200 ° C. or higher despite excellent stretchability.
  • PET Polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PI polyimide
  • LCP liquid crystal resin
  • LCP liquid drop polymer
  • ABS acrylonitrile-butadiene-styrene
  • HIPS high-impact polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • the binder resin may include, for example, at least one selected from the group consisting of a resol-based phenolic resin, an unsaturated polyester resin, a cresol-based phenolic resin, and the like, preferably a resol-based phenolic resin.
  • the heating element composition may further include a crosslinking agent, and the crosslinking agent is used to form the binder resin after printing or coating the heating element composition.
  • a crosslinking agent is used to form the binder resin after printing or coating the heating element composition.
  • isocyanate crosslinking agents such as isophorone diisocyanate, hexamethylene diisocyanate, and norbornane diisocyanate. can do.
  • the isocyanate crosslinking agent is inactive below a certain temperature and has excellent storage stability and workability in which crosslinking reaction does not occur during storage, and may be included in an amount of 70 to 120 parts by weight based on 100 parts by weight of the binder resin.
  • the content of the crosslinking agent when the content of the crosslinking agent is less than 70 parts by weight, the degree of crosslinking of the binder resin is low and the heat resistance of the heating element composition is lowered, whereas when the content of the crosslinking agent is greater than 120 parts by weight, the heating element composition is formed by printing or coating. Excessive brittleness of the heating element reduces elongation, and as a result, mechanical defects may occur during three-dimensional molding.
  • the conductive particles may include carbon nanotubes (CNTs). Since the carbon nanotubes have a high aspect ratio, the distance between the carbon nanotube particles can be maintained even when the heating element formed from the heating element composition is stretched, so that the heating element can minimize resistance change even during stretching or three-dimensional molding.
  • CNTs carbon nanotubes
  • the content of the carbon nanotubes (CNT) may be 3.5 to 15% by weight based on the total weight of the heating element composition, and when the content of the carbon nanotubes (CNT) is less than 3.5% by weight, the heating element has high resistance and elongation. When the resistance change rate is large and the viscosity of the heating element composition is too low, workability such as printing or coating is deteriorated. On the other hand, when the content of the carbon nanotubes (CNT) exceeds 15% by weight, the carbon nanotubes in the heating element composition Dispersion of (CNT) is difficult, and as a result, resistance is lowered, and in particular, a resistance change rate may increase during stretching or three-dimensional molding of the heating element.
  • the conductive particles may further include conductive auxiliary particles such as carbon black, graphite, graphene flakes, and metal particles in addition to the carbon nanotubes (CNT), thereby increasing the resistance change rate during stretching or 3-dimensional molding of the heating element.
  • conductive auxiliary particles such as carbon black, graphite, graphene flakes, and metal particles in addition to the carbon nanotubes (CNT), thereby increasing the resistance change rate during stretching or 3-dimensional molding of the heating element.
  • the content of the conductive auxiliary particles may be 1 to 10% by weight based on the total weight of the heating element composition.
  • the adhesion reinforcing agent may further facilitate stretching or three-dimensional molding of the heating element by performing a function of further improving flexibility and adhesion of the heating element formed from the heating element composition.
  • the adhesion enhancer may include polyvinyl acetal obtained by synthesizing polyvinyl alcohol and aldehyde, and the aldehyde is n-butyl aldehyde, isobutyl aldehyde, n-barrel aldehyde, 2-ethyl butyl aldehyde, n-hexyl aldehyde, etc. It may include one or more selected from the group consisting of, the adhesion enhancer may preferably include polyvinyl butyral (PVB).
  • the content of the adhesion enhancer may be 10 to 100 parts by weight based on 100 parts by weight of the binder resin.
  • flexibility, adhesiveness, etc. of the heating element composition may be insufficient, whereas when the content of the adhesion enhancer exceeds 100 parts by weight, the viscosity of the heating element composition is excessive, resulting in printing and coating properties This can be greatly reduced.
  • the heat-resistant enhancer performs a function of further improving heat resistance, that is, high-temperature durability and flexibility of the heating element composition, so that the heating element composition can be applied to various plastic films and can further facilitate stretching or three-dimensional molding of the heating element. .
  • the heat resistance enhancer may include silsesquioxane powder, preferably polyalkylsilsesquioxane powder such as polymethylsilsesquioxane and polypropylsilsesquioxane, and the content of the heat resistance enhancer is the heating element composition. It may be 0.5 to 20% by weight based on the total weight of.
  • the content of the heat-resistant enhancer when the content of the heat-resistant enhancer is less than 0.5% by weight, cracks may frequently occur during stretching of the heating element formed from the heating element composition, whereas when the content of the heat-resistant enhancer exceeds 20% by weight, the viscosity of the heating element composition is excessive As a result, film characteristics of a heating element formed from the heating element composition may be deteriorated.
  • the heating element composition further includes an organic solvent such as carbitol acetate, butyl carbitol, butyl carbitol acetate, dibutyl ether (DBE), butanol, and octanol to adjust rheology such as viscosity and thixotropic index. and the content of the organic solvent may be 35 to 50% by weight based on the total weight of the heating element composition.
  • an organic solvent such as carbitol acetate, butyl carbitol, butyl carbitol acetate, dibutyl ether (DBE), butanol, and octanol to adjust rheology such as viscosity and thixotropic index.
  • the content of the organic solvent may be 35 to 50% by weight based on the total weight of the heating element composition.
  • the heating element composition maintains high elongation through the combination of the above-described components and the resistance change rate controlled during elongation by the combination thereof, and at the same time has excellent high-temperature durability, which is in a conflicting relationship with elongation, so that mechanical damage such as cracks during elongation can be suppressed. And, unlike the conventional stretchable material, it does not return to its original shape after molding, but has the characteristic of being stably maintained in the molded shape, and the rate of change in resistance can be minimized during deformation by 3-dimensional molding, and 150 ° C. It can be cured below and can form a heating element by various printing or coating, so it shows excellent effects applicable to various film heaters.
  • the heating element formed from the heating element composition may have a specific resistance of 10 -1 to 1 ⁇ 10 -3 ⁇ cm, and considers the specific resistance, thickness, area and applied power of the printed heating element coating to generate heat at 250 ° C or more. No problem.
  • stretchable materials using conventional urethane resins or polydimethylsulfate (PDMS) resins have significantly poor heat resistance, which causes a change in the resistance of the heating element or damage to the coating film. cannot be used as
  • FIG. 2 schematically shows a cross-sectional structure of another embodiment of a film heater capable of three-dimensional molding according to the present invention.
  • an insulator 400 and a metal plate 500 provided under the insulator 400 may be formed on the other surface of the base film 100 .
  • the insulator 400 prevents the heat energy generated by the heating element 300 from being lost to the other side of the base film 100 via the base film 100, so that the heating element 300 is sufficient for the subject. It performs a function of supplying thermal energy, and may be provided as, for example, a spacer insulation material such as a foamed strip insulation material or a honeycomb insulation material filled with air to form an air insulation layer.
  • the metal plate 500 serves to protect the foamed styrofoam heat insulating material from external impact or pressure, and when the heat insulating material 400 is a spacer heat insulating material, the metal plate 500 may function as a reflector preventing additional heat loss by sealing the empty space inside the spacer and reflecting radiation from the other surface of the base film 100 back to the base film 100 .
  • the film heater capable of three-dimensional molding according to the present invention has high stretchability through the combination of the above-described structure and material, and at the same time has excellent high temperature durability, which is in a conflicting relationship with stretchability, so that mechanical damage such as cracks during stretching can be suppressed. It has a characteristic of being stably maintained in the molded shape rather than being restored to its original shape after molding like conventional stretchable materials, and the rate of change in resistance of the heating element is minimized during deformation by three-dimensional molding to generate uniform heat. Through this, it shows an excellent effect that can provide a rapid sense of warmth to the subject.
  • a heating element composition was prepared with the components and contents shown in Table 1 below. Specifically, a conductive carbon dispersion is prepared by adding conductive particles to an organic solvent together with a dispersant and ultrasonicating for 60 minutes. Next, the binder resin and other additives are prepared as a master batch (M/B) through mechanical stirring or mechanical kneading with autorotation, and after kneading together with the conductive carbon dispersion through mechanical stirring, using a 3-roll mill A heating element paste composition was prepared by thoroughly kneading. The unit of the content shown in Table 1 below is % by weight.
  • Binder resin 2 cresol-based phenol
  • a two-dimensional film heater was obtained by printing and drying the heating element paste composition of each of Examples and Comparative Examples on a polycyclohexylenedimethylene terephthalate (PCT) film using a screen printer, and printing and drying a silver (Ag) electrode paste. manufactured Next, a three-dimensional molded film heater was manufactured by three-dimensionally molding the manufactured two-dimensional film heater using a vacuum forming machine.
  • PCT polycyclohexylenedimethylene terephthalate
  • the heating element paste composition according to each of Examples and Comparative Examples was screen-printed to a size of 3 cm ⁇ 3 cm and cured to prepare a heating element specimen, and then the sheet resistance of the heating element specimen was measured using a 4-terminal measurement method (Loresta-GX).
  • the heating element paste composition according to each of Examples and Comparative Examples was screen-printed to a size of 2.5 cm ⁇ 5 cm, cured, and silver (Ag) electrodes were printed at both ends to prepare a heating element specimen.
  • silver (Ag) electrodes were printed at both ends to prepare a heating element specimen.
  • the resistance of the specimen in the tensile state was measured, and the resistance change rate corresponding to the fraction of the increased resistance was calculated based on the resistance before stretching.
  • a two-dimensional film heater specimen of FIG. 3 was prepared by printing and drying using a screen printer on a polyimide substrate of each heating element composition of Examples and Comparative Examples, and then applying a voltage at which 200 ° C. heat was generated to the specimen. It was applied and the heat test was performed. Specimens that emit smoke or undergo thermal decomposition during the test are immediately treated as defective. 1,000 on/off cycle intermittent life tests were performed on the film heater specimens in normal operation from room temperature to 200°C, and when the terminal resistance and heating temperature were maintained within 5% compared to before the test, when left for 1 hour and then re-operated, determined to be.
  • the heating elements formed from the heating element compositions of Examples 1 to 8 according to the present invention have resistance strain adjusted to 15% or less at 15% elongation, and additionally, resistance strain at 20% elongation to 28% or less
  • mechanical strength was excellent, such as no cracking even during 3-dimensional molding, shape retention characteristics after 3-dimensional molding were excellent, and excellent high-temperature durability even in an environment of 200 ° C. or higher
  • the three-dimensional molded film heater equipped with a heating element formed from the heating element composition of Example 1 has a heating uniformity of 94% or more even after three-dimensional molding, realizing uniform heating performance over the entire area. This means that the resistance of the heating element was maintained and mechanical damage such as cracks was suppressed even during stretching by three-dimensional molding. It was confirmed that the resistance change rate during stretching greatly increased, and mechanical defects such as cracks occurred as shown in FIG.
  • the heating element compositions of Comparative Examples 6 and 7 include a polyacrylate or polyurethane resin having insufficient heat resistance as a binder resin, so there is a problem that it can be applied only in a working environment of less than 150 ° C. It was confirmed that there is a problem of insufficient shape retention after molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

본 발명은 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터에 관한 것이다. 구체적으로, 본 발명은 고연신성을 가지는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있고, 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하며, 3차원 성형에 의한 변형시 저항의 변화율이 최소화될 수 있고, 150℃ 이하에서 경화 가능하고 다양한 인쇄나 코팅에 의해 발열체를 형성할 수 있어 다양한 필름 히터에 적용 가능한 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터에 관한 것이다.

Description

3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터
본 발명은 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터에 관한 것이다. 구체적으로, 본 발명은 고연신성을 가지는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있고, 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하며, 3차원 성형에 의한 변형시 저항의 변화율이 최소화될 수 있고, 150℃ 이하에서 경화 가능하고 다양한 인쇄나 코팅에 의해 발열체를 형성할 수 있어 다양한 필름 히터에 적용 가능한 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터에 관한 것이다.
필름 히터는 유연한 고분자 필름에 전극 및 상기 전극에 연결된 발열체를 인쇄 또는 코팅하여 제조되고 전극에 전원 인가시 상기 전극에 연결된 발열체에 전류가 흐르면서 보유한 저항에 의해 발열함으로써 피사체에 온열감을 제공하는 히터로서, 두께가 얇고 대면적으로 제조가 가능하며 저전력으로 신속한 온열감을 제공할 수 있는 장점이 있어 최근 온열기, 살균기 등의 생활가전이나 자동차, 건축물 등에 다양한 형태로 적용되고 있다.
그러나, 종래 필름 히터는 2차원 형상을 보유하기 때문에 3차원 형상의 구조물에 밀착하여 부착하기 어려워 V-cut 등의 칼집을 내어서 접착하는 방식으로 구조물에 부착해야 하는데, 이로 인해 조립상의 어려움이 있거나 내환경 시험시 불량의 원인이 되는 문제가 있다.
또한, 종래 필름 히터는 소재의 고온 내구성이 불충분해 150℃ 이상의 고온에서 사용하기 어려운 문제가 있고, 제한된 온도에서의 경화가 요구되거나 제한된 인쇄법이나 코팅법에 의해 발열체를 형성할 수 있는 등 적용 범위가 협소하며, 특히 3차원 성형시 소재의 연신(elongation)이 필연적으로 일어나게 되는데, 이러한 연신에 의해 발열체에 크랙 등의 기계적 파손이 발생할 수 있고, 나아가 발열체의 급격한 저항 변화가 일어나 발열 성능이 크게 저하되는 문제가 발생할 수 있다.
종래 고연신성을 보유한 우레탄 수지나 폴리디메틸설페이트(PDMS) 수지 등을 이용하는 스트레쳐블(stretchable) 소재가 있으나 이러한 스트레쳐블 소재는 성형 이후 원래의 형상으로 복원되는 특성이 있어 3차원 형상의 구조물에 밀착하여 성형된 형상을 안정적으로 유지해야 하는 필름 히터에 적용하기 어렵다.
따라서, 고연신성을 보유하는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있고, 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하며, 3차원 성형에 의한 변형시 저항의 변화율이 최소화될 수 있고, 150℃ 이하에서 경화 가능하고 다양한 인쇄나 코팅에 의해 발열체를 형성할 수 있어 다양한 필름 히터에 적용 가능한 3차원 성형이 가능한 필름 히터용 발열체 조성물 및 이로부터 형성된 필름 히터가 절실히 요구되고 있는 실정이다.
본 발명은 고연신성을 보유하는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있는 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터를 제공하는 것을 목적으로 한다.
또한, 본 발명은 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하는 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터를 제공하는 것을 목적으로 한다.
나아가, 본 발명은 3차원 성형에 의한 변형시 저항의 변화율이 최소화될 수 있는 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터를 제공하는 것을 목적으로 한다.
그리고, 150℃ 이하에서 경화 가능하고 다양한 인쇄나 코팅에 의해 발열체를 형성할 수 있어 다양한 필름 히터에 적용 가능한 3차원 성형이 가능한 발열체 조성물을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은,
3차원 성형이 가능한 발열체 조성물로서, 바인더 수지, 전도성 입자, 접착력 강화제 및 내열성 강화제를 포함하고, 상기 접착력 강화제는 폴리비닐아세탈을 포함하고, 상기 내열성 강화제는 실세스퀴옥산 분말을 포함하며, 상기 전도성 입자는 탄소나노튜브를 포함하며, 상기 바인더 수지는 레졸계 페놀 수지, 불포화 폴리에스테르 수지 및 크레졸계 페놀 수지로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 발열체 조성물을 제공한다.
여기서, 상기 바인더 수지는 레졸계 페놀 수지 또는 크레졸계 페놀 수지를 포함하고, 상기 발열체 조성물은 가교제를 추가로 포함하는 것을 특징으로 하는, 발열체 조성물을 제공한다.
또한, 상기 가교제는 이소포론디이소시아네이트, 헥사메틸렌디이소시아네이트 및 노르보난디이소시아네이트로 이루어진 그룹으로부터 선택된 1종 이상의 이소시아네이트 가교제를 포함하고, 상기 가교제의 함량은 상기 바인더 수지 100 중량부를 기준으로 70 내지 120 중량부인 것을 특징으로 하는, 발열체 조성물을 제공한다.
그리고, 상기 전도성 입자는 탄소나노튜브(CNT)를 포함하고, 상기 탄소나노튜브(CNT)의 함량은 상기 발열체 조성물의 총 중량을 기준으로 3.5 내지 15 중량%인 것을 특징으로 하는, 발열체 조성물을 제공한다.
나아가, 상기 전도성 입자는 카본블랙, 그라파이트, 그래핀 플레이크 및 금속 입자로 이루어진 그룹으로부터 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는, 발열체 조성물을 제공한다.
한편, 상기 폴리비닐아세탈은 폴리비닐부티랄(PVB)을 포함하고, 상기 폴리비닐아세탈의 함량은 상기 바인더 수지 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는, 발열체 조성물을 제공한다.
또한, 상기 실세스퀴옥산 분말은 폴리메틸실세스퀴옥산 분말을 포함하고, 상기 실세스퀴옥산 분말의 함량은 상기 발열체 조성물의 총 중량을 기준으로 0.5 내지 20 중량%인 것을 특징으로 하는, 발열체 조성물을 제공한다.
그리고, 상기 발열체 조성물은 카비톨 아세테이트, 부틸 카비톨, 부틸 카비톨 아세테이트, 디부틸 에테르(DBE), 부탄올 및 옥타놀로 이루어진 그룹으로부터 선택된 1종 이상의 유기 용매를 포함하는 것을 특징으로 하는, 발열체 조성물을 제공한다.
한편, 베이스 필름; 상기 베이스 필름의 일면에 형성되고 서로 다른 극성을 갖는 한 쌍의 전극; 및 상기 한 쌍의 전극 각각에 연결되고 탄소나노튜브를 포함하는 하나 이상의 발열체를 포함하고, 상기 베이스 필름은 인장강도가 80 kgf/cm2 이상, 탄성계수가 550 내지 4,000 MPa인 고분자 필름을 포함하는, 3차원 성형이 가능한 필름 히터를 제공한다.
여기서, 상기 고분자 필름은 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCT), 폴리에틸렌테레프탈레이트글리콜(PETG), 액적 고분자(LCP), 아크릴로니트릴-부타디엔-스티렌(ABS), 고충격폴리스티렌(HIPS), 폴리프로필렌(PP) 및 폴리염화비닐(PVC)로 이루어진 그룹으로부터 선택된 1종 이상의 고분자로 이루어진 필름을 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
또한, 상기 발열체는 바인더 수지, 전도성 입자, 접착력 강화제 및 내열성 강화제를 포함하는 발열체 조성물로부터 형성되고, 상기 접착력 강화제는 폴리비닐아세탈을 포함하고, 상기 내열성 강화제는 실세스퀴옥산 분말을 포함하며, 상기 전도성 입자는 탄소나노튜브를 포함하며, 상기 바인더 수지는 레졸계 페놀 수지, 불포화 폴리에스테르 수지 및 크레졸계 페놀 수지로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
여기서, 상기 바인더 수지는 레졸계 페놀 수지 또는 크레졸계 페놀 수지를 포함하고, 상기 발열체 조성물은 가교제를 추가로 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
또한, 상기 가교제는 이소포론디이소시아네이트, 헥사메틸렌디이소시아네이트 및 노르보난디이소시아네이트로 이루어진 그룹으로부터 선택된 1종 이상의 이소시아네이트 가교제를 포함하고, 상기 가교제의 함량은 상기 바인더 수지 100 중량부를 기준으로 70 내지 120 중량부인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
그리고, 상기 전도성 입자는 탄소나노튜브(CNT)를 포함하고, 상기 탄소나노튜브(CNT)의 함량은 상기 발열체 조성물의 총 중량을 기준으로 3.5 내지 15 중량%인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
여기서, 상기 전도성 입자는 카본블랙, 그라파이트, 그래핀 플레이크 및 금속 입자로 이루어진 그룹으로부터 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
한편, 상기 폴리비닐아세탈은 폴리비닐부티랄(PVB)을 포함하고, 상기 폴리비닐아세탈의 함량은 상기 바인더 수지 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
또한, 상기 실세스퀴옥산 분말은 폴리메틸실세스퀴옥산 분말을 포함하고, 상기 실세스퀴옥산 분말의 함량은 상기 발열체 조성물의 총 중량을 기준으로 0.5 내지 20 중량%인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
그리고, 상기 발열체 조성물은 카비톨 아세테이트, 부틸 카비톨, 부틸 카비톨 아세테이트, 디부틸 에테르(DBE), 부탄올 및 옥타놀로 이루어진 그룹으로부터 선택된 1종 이상의 유기 용매를 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
나아가, 상기 한 쌍의 전극은 은(Ag), 알루미늄(Al), 구리(Cu), 니켈(Ni), 스테인레스 스틸 및 이들의 합금으로 이루어진 그룹으로부터 선택된 1종 이상의 전도성 금속으로 이루어진 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
한편, 상기 베이스 필름의 타면에는 단열재나 금속판이 추가로 구비되는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터를 제공한다.
본 발명에 따른 3차원 성형이 가능한 발열체 조성물은 바인더 수지와 첨가제의 특정 조합을 통해 고연신성을 보유하는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있고, 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하며, 3차원 성형에 의한 변형시 저항의 변화율이 최소화될 수 있고, 150℃ 이하에서 경화 가능하고 다양한 인쇄나 코팅에 의해 발열체를 형성할 수 있어 다양한 필름 히터에 적용 가능한 우수한 효과를 나타낸다.
도 1은 본 발명에 따른 3차원 성형이 가능한 필름 히터에 관한 하나의 실시예의 단면 구조를 개략적으로 도시한 것이다.
도 2는 본 발명에 따른 3차원 성형이 가능한 필름 히터에 관한 또 하나의 실시예의 단면 구조를 개략적으로 도시한 것이다.
도 3은 실시예 1의 2차원 필름 히터 및 3차원 성형된 필름 히터 사진이다.
도 4는 실시예 1의 3차원 성형된 필름 히터에 대한 발열부/전극부 계면의 광학이미지 및 비교예 1의 3차원 성형된 필름 히터에 대한 표면의 광학이미지이다.
도 5는 실시예 1의 2차원 필름 히터 및 3차원 성형된 필름 히터의 발열시 열화상 카메라로 촬영한 사진이다.
도 6은 실시예에서 3차원 성형성을 평가하기 위한 진공 열성형기의 모습을 개략적으로 도시한 것이다.
이하, 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전반에 걸쳐 동일한 도면 부호는 동일한 구성을 의미한다.
도 1은 본 발명에 따른 3차원 성형이 가능한 필름 히터에 관한 하나의 실시예의 단면 구조를 개략적으로 도시한 것이다.
도 1에 도시된 바와 같이, 본 발명에 따른 3차원 성형이 가능한 필름 히터는 베이스 필름(100)의 일면에 서로 다른 극성을 갖는 한 쌍의 전극(200)이 형성되고 상기 한 쌍의 전극(200) 각각에 연결된 하나 이상의 발열체(300)가 구비될 수 있다.
이로써, 외부로부터 상기 한 쌍의 전극(200)에 전원이 인가되면 상기 한 쌍의 전극(200) 각각에 연결된 하나 이상의 발열체(300)에 전류가 흐르게 되고 상기 발열체(300)가 보유한 저항에 의해 발열함으로써 피사체에 온열감을 제공하게 된다. 여기서, 상기 하나 이상의 발열체(300)는 복수 개의 발열체를 포함하는 경우 복수 개의 발열체가 서로 직렬 또는 병렬로 연결될 수 있다.
상기 베이스 필름(100)은 3차원 성형이 가능하도록 고연신성 및 성형 후 형상 유지 특성을 보유하고 상기 발열체(300)의 고온 발열을 견딜 수 있도록 내열성, 즉 고온 내구성이 요구된다. 상기 베이스 필름(100)은 앞서 기술한 물성을 만족하기 위해 인장강도가 80 kgf/cm2 이상, 예를 들어 80 내지 750 kgf/cm2, 바라직하게는 100 내지 560 kgf/cm2, 탄성계수가 550 내지 4,000 MPa, 바람직하게는 590 내지 2,000 MPa, 유리전이온도가 150℃ 이하, 예를 들어, -30 내지 150℃, 바람직하게는 80 내지 100℃의 물성을 보유하는 고분자 필름일 수 있고, 예를 들어 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCT), 폴리에틸렌테레프탈레이트글리콜(PETG), 액적 고분자(LCP), 아크릴로니트릴-부타디엔-스티렌(ABS), 고충격폴리스티렌(HIPS), 폴리프로필렌(PP), 폴리염화비닐(PVC) 등으로 이루어진 필름일 수 있다.
한편, 상기 전극(200)은 은(Ag), 알루미늄(Al), 구리(Cu), 니켈(Ni), 스테인레스 스틸, 이들의 합금 등의 전도성 금속으로 이루어질 수 있고, 베이스 필름에 적층된 금속박을 포토리소그래피에 의한 에칭 등의 공정에 의해 일정한 패턴으로 가공함으로써 형성될 수 있다.
상기 발열체(300)는 바인더 수지, 가교제, 전도성 입자, 접착력 강화제, 내열성 강화제, 유기 용매 등을 포함하는 발열체 조성물의 인쇄나 코팅에 의해 형성될 수 있고, 이러한 발열체는 15% 연신시 저항변화율이 15% 이하, 바람직하게는 20% 연신시 저항변화율이 28% 이하일 수 있다. 여기서, 저항변화율이란 연신 이전의 저항을 기준으로 연신 이후 저항의 증가분이 초기 저항에서 차지하는 비율을 의미한다.
상기 바인더 수지는 상기 발열체 조성물의 베이스 소재로서 상기 발열체 조성물이 스크린, 그라비아, 콤마 코팅, 스프레이 코팅, 슬롯 다이(slot die) 코팅 등의 인쇄 또는 코팅 공법에 의해 발열체가 형성될 수 있도록 성형성을 보유하고, 특히 상기 발열체 조성물로부터 형성된 발열체 및 이를 포함하는 필름 히터의 3차원 성형이 가능하도록 연신성 및 성형 후 형상 유지 특성을 보유할 수 있고, 연신성이 우수함에도 불구하고 200℃ 이상의 고온에서도 사용 가능하도록 고온 내구성이 우수하며 150℃ 이하에서 경화 가능하므로 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리에틸렌나프탈레이트(PEN), 폴리이미드(PI), 액정수지(LCP), 액적 고분자(LCP), 아크릴로니트릴-부타디엔-스티렌(ABS), 고충격폴리스티렌(HIPS), 폴리프로필렌(PP), 폴리염화비닐(PVC) 등의 다양한 플라스틱 필름에 적용 가능할 수 있다.
상기 바인더 수지는 예를 들어 레졸계 페놀 수지, 불포화 폴리에스테르 수지, 크레졸계 페놀 수지 등으로 이루어진 그룹으로부터 선택된 1종 이상, 바람직하게는 레졸계 페놀 수지를 포함할 수 있다.
여기서, 상기 바인더 수지가 레졸계 페놀 수지나 크레졸계 페놀 수지 또는 이들 모두를 포함하는 경우 상기 발열체 조성물은 가교제를 추가로 포함할 수 있고, 상기 가교제는 상기 발열체 조성물의 인쇄 또는 코팅 후 상기 바인더 수지의 가교를 통해 상기 발열체 조성물로부터 형성되는 발열체의 성형 후 형상 유지 특성, 고온 내구성 등을 향상시킬 수 있고, 예를 들어, 이소포론디이소시아네이트, 헥사메틸렌디이소시아네이트, 노르보난디이소시아네이트 등의 이소시아네이트 가교제를 포함할 수 있다.
상기 이소시아네이트 가교제는 일정 온도 이하에서는 활성이 없어 보관시 가교 반응이 일어나지 않는 저장안정성 및 작업성이 우수하고, 상기 바인더 수지 100 중량부를 기준으로 70 내지 120 중량부로 포함될 수 있다.
여기서, 상기 가교제의 함량이 70 중량부 미만인 경우 상기 바인더 수지의 가교도가 낮아 상기 발열체 조성물의 내열성이 저하되는 반면, 상기 가교제의 함량이 120 중량부 초과인 경우 상기 발열체 조성물의 인쇄 또는 코팅에 의해 형성된 발열체의 취성이 과도하여 연신성이 저하되고 결과적으로 3차원 성형시 기계적인 결함이 발생할 수 있다.
상기 전도성 입자는 탄소나노튜브(CNT)를 포함할 수 있다. 상기 탄소나노튜브는 종횡비가 크기 때문에 상기 발열체 조성물로부터 형성된 발열체의 연신시에도 탄소나노튜브 입자 사이의 거리가 유지될 수 있으므로 상기 발열체는 연신이나 3차원 성형시에도 저항의 변화를 최소화할 수 있다.
상기 탄소나노튜브(CNT)의 함량은 상기 발열체 조성물의 총 중량을 기준으로 3.5 내지 15 중량%일 수 있고, 상기 탄소나노튜브(CNT)의 함량이 3.5 중량% 미만인 경우 상기 발열체의 저항이 높고 연신시 저항변화율이 크고 상기 발열체 조성물의 점도가 너무 낮아 인쇄 또는 코팅 등의 작업성이 저하되는 반면, 상기 탄소나노튜브(CNT)의 함량이 15 중량% 초과인 경우 상기 발열체 조성물 내에서 상기 탄소나노튜브(CNT)의 분산이 어려워 결과적으로 저항이 저하되고 특히 상기 발열체의 연신이나 3차원 성형시 저항 변화율이 증가할 수 있다.
상기 전도성 입자는 상기 탄소나노튜브(CNT) 이외에 카본블랙, 그라파이트, 그래핀 플레이크, 금속 입자 등의 전도성 보조 입자를 추가로 포함할 수 있고, 이로써 상기 발열체의 연신이나 3차원 성형시 저항 변화율을 추가로 감소시킬 수 있으며, 여기서 상기 전도성 보조 입자의 함량은 상기 발열체 조성물의 총 중량을 기준으로 1 내지 10 중량%일 수 있다.
상기 접착력 강화제는 상기 발열체 조성물로부터 형성되는 발열체의 유연성 및 접착력을 추가로 향상시키는 기능을 수행함으로써 상기 발열체의 연신이나 3차원 성형을 더욱 용이하게 할 수 있다. 상기 접착력 강화제는 폴리비닐알코올과 알데하이드를 합성한 폴리비닐아세탈을 포함할 수 있고, 상기 알데하이드는 n-부틸 알데하이드, 이소부틸 알데하이드, n-배럴 알데하이드, 2-에틸 부틸 알데하이드, n-헥실 알데하이드 등으로 이루어진 그룹으로부터 선택된 1종 이상을 포함할 수 있으며, 상기 접착력 강화제는 바람직하게는 폴리비닐부티랄(PVB)을 포함할 수 있다.
상기 접착력 강화제의 함량은 상기 바인더 수지 100 중량부를 기준으로 10 내지 100 중량부일 수 있다. 상기 접착력 강화제의 함량이 10 중량부 미만인 경우 상기 발열체 조성물의 유연성, 접착력 등이 불충분할 수 있는 반면, 상기 접착력 강화제의 함량이 100 중량부 초과인 경우 상기 발열체 조성물의 점성이 과도하여 인쇄 및 코팅 특성이 크게 저하될 수 있다.
상기 내열성 강화제는 상기 발열체 조성물의 내열성, 즉 고온 내구성 및 유연성을 추가로 향상시키는 기능을 수행함으로써 상기 발열체 조성물가 다양한 플라스틱 필름에 적용될 수 있고 상기 발열체의 연신이나 3차원 성형을 더욱 용이하게 할 수 있다.
상기 내열성 강화제는 실세스퀴옥산 분말, 바람직하게는 폴리메틸실세스퀴옥산, 폴리프로필실세스퀴옥산 등의 폴리알킬실세스퀴옥산 분말을 포함할 수 있고, 상기 내열성 강화제의 함량은 상기 발열체 조성물의 총 중량을 기준으로 0.5 내지 20 중량%일 수 있다.
여기서, 상기 내열성 강화제의 함량이 0.5 중량% 미만인 경우 상기 발열체 조성물로부터 형성된 발열체의 연신시 크랙이 빈번하게 발생할 수 있는 반면, 상기 내열성 강화제의 함량이 20 중량% 초과인 경우 상기 발열체 조성물의 점성이 과도하여 상기 발열체 조성물로부터 형성되는 발열체의 막 특성이 저하될 수 있다.
상기 발열체 조성물은 점도, 요변지수 등의 레올로지를 조절하기 위해 추가로 카비톨 아세테이트, 부틸 카비톨, 부틸 카비톨 아세테이트, 디부틸 에테르(DBE), 부탄올, 옥타놀 등의 유기 용매를 추가로 포함할 수 있고, 상기 유기 용매의 함량은 상기 발열체 조성물의 총 중량을 기준으로 35 내지 50 중량%일 수 있다.
상기 발열체 조성물은 앞서 기술한 구성성분의 조합 및 이에 의한 연신시 조절된 저항변화율을 통해 고연신성을 보유하는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있고, 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하며, 3차원 성형에 의한 변형시 저항의 변화율이 최소화될 수 있고, 150℃ 이하에서 경화 가능하고 다양한 인쇄나 코팅에 의해 발열체를 형성할 수 있어 다양한 필름 히터에 적용 가능한 우수한 효과를 나타낸다.
또한, 상기 발열체 조성물로부터 형성된 발열체는 비저항이 10-1 내지 1×10-3 Ω㎝로 구현될 수 있고, 인쇄된 발열체 도막의 비저항, 두께, 면적 및 인가되는 전원을 고려할 때 250℃ 이상 발열하는데 문제가 없다. 다만, 종래 우레탄 수지나 폴리디메틸설페이트(PDMS) 수지 등을 이용하는 스트레쳐블(stretchable) 소재는 내열성이 크게 떨어지고 이로 인해 발열체의 저항변화나 도막의 파손이 발생하기 때문에 3차원 성형될 발열체의 바인더 수지로 사용할 수 없다.
도 2는 본 발명에 따른 3차원 성형이 가능한 필름 히터에 관한 또 하나의 실시예의 단면 구조를 개략적으로 도시한 것이다.
도 2에 도시된 바와 같이, 상기 베이스 필름(100)의 타면에는 단열재(400) 및 상기 단열재(400) 하부에 구비된 금속판(500)이 형성될 수 있다. 상기 단열재(400)는 상기 발열체(300)의 발열에 의한 열에너지가 상기 베이스 필름(100)을 매개로 상기 베이스 필름(100)의 타면 쪽으로 손실되는 것을 방지함으로써 상기 발열체(300)가 피사체에 대해 충분한 열에너지를 공급하도록 하는 기능을 수행하고, 예를 들어 발포 스트리폼 단열재나 내부에 공기가 충진되어 공기단열층을 형성하는 허니콤 단열재 등의 스페이서 단열재로 구비될 수 있다.
상기 단열재(400)가 발포 스티로폼 단열재인 경우 상기 금속판(500)은 상기 발포 스티로폼 단열재의 외부의 충격이나 압력으로부터 보호하는 기능을 수행하고, 상기 단열재(400)가 스페이서 단열재인 경우 상기 금속판(500)은 상기 스페이서의 내부 빈 공간을 밀폐하는 동시에 상기 베이스 필름(100)의 타면으로부터의 복사광을 다시 상기 베이스 필름(100)으로 반사함으로써 추가적인 열손실을 방지하는 반사판으로서의 기능을 수행할 수 있다.
본 발명에 따른 3차원 성형이 가능한 필름 히터는 앞서 기술한 구조와 소재의 조합을 통해 고연신성을 보유하는 동시에 연신성과 상충관계에 있는 고온 내구성이 우수하여 연신시 크랙 등의 기계적 파손이 억제될 수 있고, 종래 스트레처블 소재와 같이 성형 이후 원래의 형상으로 복원되는 것이 아니라 성형된 형상으로 안정적으로 유지되는 특성을 보유하며, 3차원 성형에 의한 변형시 발열체 저항의 변화율이 최소화되어 균일한 발열을 통해 피사체에 신속한 온열감을 제공할 수 있는 우수한 효과를 나타낸다.
[실시예]
1. 제조예
1) 발열체 페이스트 조성물의 제조예
아래 표 1에 기재된 구성성분 및 함량으로 발열체 조성물을 제조했다. 구체적으로, 전도성 입자를 분산제와 함께 유기 용매에 첨가하고 60분간 초음파 처리하여 전도성 카본 분산액을 제조한다. 다음으로 바인더 수지와 다른 첨가제를 기계적 교반 또는 자전공전이 가능한 기계적 혼련을 통해 마스터 배치(master batch, M/B)로 제조하고 전도성 카본 분산액과 함께 기계적 교반을 통해 혼련한 후 3-roll mill을 이용해 완전히 혼련함으로써 발열체 페이스트 조성물을 제조했다. 아래 표 1에 기재된 함량의 단위는 중량%이다.
Figure PCTKR2022007213-appb-img-000001
- 바인더 수지1 : 레졸계 페놀
- 바인더 수지2 : 크레졸계 페놀
- 바인더 수지3 : 불포화 폴리에스테르
- 바인더 수지4 : 폴리아크릴레이트
- 바인더 수지5 : 폴리우레탄
- 가교제 : 이소시아네이트
- 접착력 강화제 : 폴리비닐부티랄
- 전도성 입자1 : 탄소나노튜브
- 전도성 입자2 : 그라파이트
- 내열성 강화제 : 폴리메틸실세스퀴옥산
- 유기용매 : 부틸 카비톨
- 분산제 : BYK사 분산제
2) 필름 히터의 제조예
폴리사이클로헥실렌디메틸렌 테레프탈레이트(PCT) 필름에 스크린 프린터를 이용하여 실시예 및 비교예 각각의 발열체 페이스트 조성물을 인쇄 및 건조하고, 은(Ag) 전극 페이스트를 인쇄 및 건조함으로써 2차원 필름 히터를 제조했다. 다음으로 제조한 2차원 필름 히터를 진공 성형기를 이용하여 3차원으로 성형함으로써 3차원 성형 필림 히터를 제조했다.
2. 물성 평가
1) 면저항 및 연신시 저항변화율 평가
실시예 및 비교예 각각에 따른 발열체 페이스트 조성물을 3 cm × 3 cm 크기로 스크린 인쇄 후 경화시켜 발열체 시편을 제조한 후 4단자 측정법(Loresta-GX)을 이용해 발열체 시편의 면저항을 측정했다.
또한, 실시예 및 비교예 각각에 따른 발열체 페이스트 조성물을 2.5 cm × 5 cm 크기로 스크린 인쇄 후 경화시키고 양 끝단에 은(Ag) 전극을 인쇄하여 발열체 시편을 제조했고 만능인장시험 장비를 이용해 15% 및 20% 인장 후 인장된 상태의 시편 저항을 측정했고, 인장 전 저항을 기준으로 증가항 저항의 분율에 해당하는 저항변화율을 계산했다.
나아가, 3차원 성형 전/후 필름 히터의 열화상 카메라 촬영을 통해 저항 변화에 의한 발열균일도를 평가했다.
2) 기계적 결함 평가
실시예 및 비교예 각각에 다른 발열체 페이스트 조성물로부터 형성된 발열체가 구비되고 3차원으로 성형한 필름 히터에서 발열체의 표면을 전자현미경(SEM)으로 관찰함으로써 크랙 여부를 확인했다.
3) 3차원 성형성 평가
도 6에 도시된 진공열성형기를 이용하여 실시예 및 비교예 각각에 따른 필름 히터 시편을 도 6에 도시된 필름의 위치에 장착한 후 시편을 200℃로 예열하고 반구몰드가 있는 아래 방향으로 당겨 성형한다. 성형 이후 필름 히터 시편의 기계적인 파손 유무를 관찰하고 전기적인 특성 및 발열거동을 분석함으로써 성형성을 평가했다.
4) 사용가능 온도 평가
200℃ 사용성을 평가하기 위해서 실시예 및 비교예 각각의 발열체 조성물 폴리이미드 기판에 스크린 프린터를 이용하여 인쇄 및 건조함으로써 도 3의 2차원 필름 히터 시편을 제조한 후 시편에 200℃ 발열이 되는 전압을 인가하여 발열 시험했다. 시험시 연기가 나거나 열분해가 나는 시편은 바로 불량으로 처리한다. 정상 작동하는 필름 히터 시편에 대해서 실온에서 200℃까지 1,000회의 on/off cycle 단속수명 시험을 하고 1시간 방치 후 다시 재작동 했을 때 시험전에 비해서 5% 이내로 단자저항과 발열온도가 유지될 때 사용가능한 것으로 판별하였다.
상기 평가 결과는 아래 표 2 및 도 3 내지 5에 나타난 바와 같다.
Figure PCTKR2022007213-appb-img-000002
상기 표 2에 기재된 바와 같이, 본 발명에 따른 실시예 1 내지 8의 발열체 조성물로부터 형성된 발열체는 15% 연신시 저항변형율이 15% 이하로 조절되고, 추가로 20% 연신시 저항변형율이 28% 이하로 조절되는 동시에, 도 3 및 4에 나타난 바와 같이 3차원 성형시에도 크랙이 발생하지 않는 등 기계적 강도가 우수하며 3차원 성형 후 형상 유지 특성이 우수했고, 우수한 고온 내구성에 의해 200℃ 이상의 환경에서도 적용 가능하며, 나아가 도 5에 도시된 바와 같이 실시예 1의 발열체 조성물로부터 형성된 발열체가 구비된 3차원 성형 필름 히터는 3차원 성형 후에도 발열균일도가 94% 이상으로 전체 면적에서 균일한 발열 성능을 구현하고 있는 것으로 확인되었고 이는 3차원 성형에 의한 연신시에도 발열체의 저항이 유지되고 크랙 등의 기계적 손상이 억제되었음을 의미한다.한편, 비교예 1 내지 3의 발열체 조성물은 내열성 강화제가 포함되지 않아 발열체의 연신시 저항변화율이 크게 증가했고, 고온 내구성이 불충분해 3차원 성형시 도 2에 나타난 바와 같이 크랙 등의 기계적 결함이 발생하며 3차원 성형성도 크게 저하된 것으로 확인되었다.
비교예 4의 발열체 조성물은 가교제 함량이 기준 초과로 형성된 발열체의 취성이 과도하여 연신성이 저하되고 결과적으로 3차원 성형시 기계적인 결함이 발생한 것으로 확인되었고, 비교예 5의 발열체 조성물은 접착성 강화제 함량이 기준 초과로 발열체 조성물의 점성이 과도하여 인쇄 및 코팅 특성이 크게 저하된 것으로 확인되었다.
또한, 비교예 6 및 7의 발열체 조성물은 바인더 수지로서 내열성이 부족한 폴리아크릴레이트나 폴리우레탄 수지를 포함함으로써 150℃ 미만의 작업 환경에서만 적용 가능한 문제가 있고, 나아가 3차원 성형시 크랙 발생이나 3차원 성형 후 형상 유지 특성이 불충분한 문제가 있는 것으로 확인되었다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (20)

  1. 3차원 성형이 가능한 발열체 조성물로서,
    바인더 수지, 전도성 입자, 접착력 강화제 및 내열성 강화제를 포함하고,
    상기 접착력 강화제는 폴리비닐아세탈을 포함하고,
    상기 내열성 강화제는 실세스퀴옥산 분말을 포함하며,
    상기 전도성 입자는 탄소나노튜브를 포함하며,
    상기 바인더 수지는 레졸계 페놀 수지, 불포화 폴리에스테르 수지 및 크레졸계 페놀 수지로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 발열체 조성물.
  2. 제1항에 있어서,
    상기 바인더 수지는 레졸계 페놀 수지 또는 크레졸계 페놀 수지를 포함하고,
    상기 발열체 조성물은 가교제를 추가로 포함하는 것을 특징으로 하는, 발열체 조성물.
  3. 제2항에 있어서,
    상기 가교제는 이소포론디이소시아네이트, 헥사메틸렌디이소시아네이트 및 노르보난디이소시아네이트로 이루어진 그룹으로부터 선택된 1종 이상의 이소시아네이트 가교제를 포함하고,
    상기 가교제의 함량은 상기 바인더 수지 100 중량부를 기준으로 70 내지 120 중량부인 것을 특징으로 하는, 발열체 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 전도성 입자는 탄소나노튜브(CNT)를 포함하고,
    상기 탄소나노튜브(CNT)의 함량은 상기 발열체 조성물의 총 중량을 기준으로 3.5 내지 15 중량%인 것을 특징으로 하는, 발열체 조성물.
  5. 제4항에 있어서,
    상기 전도성 입자는 카본블랙, 그라파이트, 그래핀 플레이크 및 금속 입자로 이루어진 그룹으로부터 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는, 발열체 조성물.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 폴리비닐아세탈은 폴리비닐부티랄(PVB)을 포함하고,
    상기 폴리비닐아세탈의 함량은 상기 바인더 수지 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는, 발열체 조성물.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 실세스퀴옥산 분말은 폴리메틸실세스퀴옥산 분말을 포함하고,
    상기 실세스퀴옥산 분말의 함량은 상기 발열체 조성물의 총 중량을 기준으로 0.5 내지 20 중량%인 것을 특징으로 하는, 발열체 조성물.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 발열체 조성물은 카비톨 아세테이트, 부틸 카비톨, 부틸 카비톨 아세테이트, 디부틸 에테르(DBE), 부탄올 및 옥타놀로 이루어진 그룹으로부터 선택된 1종 이상의 유기 용매를 포함하는 것을 특징으로 하는, 발열체 조성물.
  9. 베이스 필름;
    상기 베이스 필름의 일면에 형성되고 서로 다른 극성을 갖는 한 쌍의 전극; 및
    상기 한 쌍의 전극 각각에 연결되고 탄소나노튜브를 포함하는 하나 이상의 발열체를 포함하고,
    상기 베이스 필름은 인장강도가 80 kgf/cm2 이상, 탄성계수가 550 내지 4,000 MPa인 고분자 필름을 포함하는, 3차원 성형이 가능한 필름 히터.
  10. 제9항에 있어서,
    상기 고분자 필름은 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCT), 폴리에틸렌테레프탈레이트글리콜(PETG), 액적 고분자(LCP), 아크릴로니트릴-부타디엔-스티렌(ABS), 고충격폴리스티렌(HIPS), 폴리프로필렌(PP) 및 폴리염화비닐(PVC)로 이루어진 그룹으로부터 선택된 1종 이상의 고분자로 이루어진 필름을 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  11. 제9항 또는 제10항에 있어서,
    상기 발열체는 바인더 수지, 전도성 입자, 접착력 강화제 및 내열성 강화제를 포함하는 발열체 조성물로부터 형성되고,
    상기 접착력 강화제는 폴리비닐아세탈을 포함하고,
    상기 내열성 강화제는 실세스퀴옥산 분말을 포함하며,
    상기 전도성 입자는 탄소나노튜브를 포함하며,
    상기 바인더 수지는 레졸계 페놀 수지, 불포화 폴리에스테르 수지 및 크레졸계 페놀 수지로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  12. 제11항에 있어서,
    상기 바인더 수지는 레졸계 페놀 수지 또는 크레졸계 페놀 수지를 포함하고,
    상기 발열체 조성물은 가교제를 추가로 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  13. 제11항에 있어서,
    상기 가교제는 이소포론디이소시아네이트, 헥사메틸렌디이소시아네이트 및 노르보난디이소시아네이트로 이루어진 그룹으로부터 선택된 1종 이상의 이소시아네이트 가교제를 포함하고,
    상기 가교제의 함량은 상기 바인더 수지 100 중량부를 기준으로 70 내지 120 중량부인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  14. 제11항에 있어서,
    상기 전도성 입자는 탄소나노튜브(CNT)를 포함하고,
    상기 탄소나노튜브(CNT)의 함량은 상기 발열체 조성물의 총 중량을 기준으로 3.5 내지 15 중량%인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  15. 제14항에 있어서,
    상기 전도성 입자는 카본블랙, 그라파이트, 그래핀 플레이크 및 금속 입자로 이루어진 그룹으로부터 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  16. 제11항에 있어서,
    상기 폴리비닐아세탈은 폴리비닐부티랄(PVB)을 포함하고,
    상기 폴리비닐아세탈의 함량은 상기 바인더 수지 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  17. 제11항에 있어서,
    상기 실세스퀴옥산 분말은 폴리메틸실세스퀴옥산 분말을 포함하고,
    상기 실세스퀴옥산 분말의 함량은 상기 발열체 조성물의 총 중량을 기준으로 0.5 내지 20 중량%인 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  18. 제11항에 있어서,
    상기 발열체 조성물은 카비톨 아세테이트, 부틸 카비톨, 부틸 카비톨 아세테이트, 디부틸 에테르(DBE), 부탄올 및 옥타놀로 이루어진 그룹으로부터 선택된 1종 이상의 유기 용매를 포함하는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  19. 제9항 또는 제10항에 있어서,
    상기 한 쌍의 전극은 은(Ag), 알루미늄(Al), 구리(Cu), 니켈(Ni), 스테인레스 스틸 및 이들의 합금으로 이루어진 그룹으로부터 선택된 1종 이상의 전도성 금속으로 이루어진 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
  20. 제9항 또는 제10항에 있어서,
    상기 베이스 필름의 타면에는 단열재나 금속판이 추가로 구비되는 것을 특징으로 하는, 3차원 성형이 가능한 필름 히터.
PCT/KR2022/007213 2021-11-08 2022-05-20 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터 WO2023080371A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022005374.7T DE112022005374T5 (de) 2021-11-08 2022-05-20 Dreidimensional formbare heizelementzusammensetzung und daraus geformter folienheizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020210152297A KR102649796B1 (ko) 2021-11-08 2021-11-08 3차원 성형이 가능한 발열체 조성물
KR10-2021-0152297 2021-11-08
KR10-2021-0153324 2021-11-09
KR1020210153324A KR102634237B1 (ko) 2021-11-09 2021-11-09 3차원 성형이 가능한 필름 히터

Publications (1)

Publication Number Publication Date
WO2023080371A1 true WO2023080371A1 (ko) 2023-05-11

Family

ID=86241185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007213 WO2023080371A1 (ko) 2021-11-08 2022-05-20 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터

Country Status (2)

Country Link
DE (1) DE112022005374T5 (ko)
WO (1) WO2023080371A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150130580A (ko) * 2014-05-13 2015-11-24 전자부품연구원 발열 페이스트 조성물을 이용한 히팅유닛 및 히팅모듈
JP2018104646A (ja) * 2016-12-28 2018-07-05 日立化成株式会社 伸縮性樹脂層形成用樹脂組成物
KR20190113336A (ko) * 2018-03-28 2019-10-08 전자부품연구원 복사 히터 조립체
KR20200008849A (ko) * 2018-07-17 2020-01-29 이병진 원적외선 방출이 가능한 충전식 손난로
KR102259236B1 (ko) * 2020-12-16 2021-06-03 주식회사 디에이티신소재 탄소나노튜브를 포함하는 면상 발열체 페이스트 조성물, 이를 포함하는 면상 발열체 및 탄소나노튜브 기반 동파방지용 필름히터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150130580A (ko) * 2014-05-13 2015-11-24 전자부품연구원 발열 페이스트 조성물을 이용한 히팅유닛 및 히팅모듈
JP2018104646A (ja) * 2016-12-28 2018-07-05 日立化成株式会社 伸縮性樹脂層形成用樹脂組成物
KR20190113336A (ko) * 2018-03-28 2019-10-08 전자부품연구원 복사 히터 조립체
KR20200008849A (ko) * 2018-07-17 2020-01-29 이병진 원적외선 방출이 가능한 충전식 손난로
KR102259236B1 (ko) * 2020-12-16 2021-06-03 주식회사 디에이티신소재 탄소나노튜브를 포함하는 면상 발열체 페이스트 조성물, 이를 포함하는 면상 발열체 및 탄소나노튜브 기반 동파방지용 필름히터

Also Published As

Publication number Publication date
DE112022005374T5 (de) 2024-10-02

Similar Documents

Publication Publication Date Title
US11139089B2 (en) Stretchable interconnects for flexible electronic surfaces
TWI796472B (zh) 成形膜用導電性組成物、成形膜、成形體及其製造方法
US20110133134A1 (en) Crosslinkable and Crosslinked Compositions of Olefin Polymers and Graphene Sheets
WO2012036538A2 (ko) 탄소나노튜브를 이용한, ntc 특성이 감소된 ptc 소자용 전도성 중합체조성물
WO2011105837A2 (ko) 연성 전극소재 및 그 제조방법
JP7055096B2 (ja) 展延性導電ペーストおよび曲面プリント配線板の製造方法
CN1809598B (zh) 涂膏用粘合树脂
KR20120073283A (ko) 도전성 가교체, 및 그 제조 방법, 그리고 그것을 사용한 트랜스듀서, 플렉시블 배선판, 전자파 시일드
WO2015178696A1 (ko) 전도성 조성물
WO2013036038A2 (en) Transparent conductive film, method of manufacturing the same, and touch panel having the same
JP7118582B2 (ja) 展延性導電性組成物および三次元プリント配線板の製造方法
JP5569733B2 (ja) 導電性銀ペースト、導電性パターンの形成方法及び導電性パターン印刷物
CN103474126A (zh) 可快速uv表面固化的导电浆料及其导电薄膜线路生产方法
WO2023080371A1 (ko) 3차원 성형이 가능한 발열체 조성물 및 이로부터 형성된 필름 히터
WO2019112227A1 (ko) 실리콘 복합재 및 이의 제조방법
WO2017010620A1 (ko) 수분산폴리우레탄수지 기반 도전성필름의 제조방법 및 그에 의해 제조된 수분산폴리우레탄수지 기반 도전성필름
KR102634237B1 (ko) 3차원 성형이 가능한 필름 히터
JP7473761B2 (ja) 成形フィルムおよびその製造方法、成形体およびその製造方法
WO2020111805A1 (ko) 신축성 페이스트 조성물
JP2020011502A (ja) 成形フィルムおよびその製造方法、成形体およびその製造方法
KR102649796B1 (ko) 3차원 성형이 가능한 발열체 조성물
JP2022088712A (ja) 成形フィルム用導電性組成物、成形フィルム、及びその製造方法、並びに、成形体及びその製造方法
WO2018124317A1 (ko) 방열 그래핀 시트 및 이의 제조방법
WO2014069866A1 (ko) 인쇄전자용 구리 페이스트 조성물
CN112143208B (zh) 一种高填充聚合物复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18698348

Country of ref document: US