WO2023080122A1 - 多孔質の成形板 - Google Patents
多孔質の成形板 Download PDFInfo
- Publication number
- WO2023080122A1 WO2023080122A1 PCT/JP2022/040788 JP2022040788W WO2023080122A1 WO 2023080122 A1 WO2023080122 A1 WO 2023080122A1 JP 2022040788 W JP2022040788 W JP 2022040788W WO 2023080122 A1 WO2023080122 A1 WO 2023080122A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded plate
- less
- fiber
- mass
- plate according
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 53
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 45
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 45
- 239000000126 substance Substances 0.000 claims abstract description 43
- 239000011148 porous material Substances 0.000 claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 claims abstract description 38
- 239000004568 cement Substances 0.000 claims abstract description 33
- 238000009826 distribution Methods 0.000 claims abstract description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 70
- 239000000835 fiber Substances 0.000 claims description 63
- 238000012360 testing method Methods 0.000 claims description 58
- 238000005452 bending Methods 0.000 claims description 34
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 32
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 30
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 30
- 238000010521 absorption reaction Methods 0.000 claims description 28
- 229910021487 silica fume Inorganic materials 0.000 claims description 20
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 16
- 239000010881 fly ash Substances 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000010445 mica Substances 0.000 claims description 12
- 229910052618 mica group Inorganic materials 0.000 claims description 12
- -1 polyethylene Polymers 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 229920001778 nylon Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229920002972 Acrylic fiber Polymers 0.000 claims description 3
- 229920006231 aramid fiber Polymers 0.000 claims description 3
- 230000020169 heat generation Effects 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 238000002347 injection Methods 0.000 abstract 1
- 239000007924 injection Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 38
- 230000008859 change Effects 0.000 description 26
- 238000003825 pressing Methods 0.000 description 22
- 239000011229 interlayer Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 238000009987 spinning Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 239000011398 Portland cement Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000000123 paper Substances 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011550 stock solution Substances 0.000 description 5
- 229920006318 anionic polymer Polymers 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 238000007127 saponification reaction Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 241000218631 Coniferophyta Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000000578 dry spinning Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000002459 porosimetry Methods 0.000 description 3
- 238000002166 wet spinning Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000011400 blast furnace cement Substances 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 241000208327 Apocynaceae Species 0.000 description 1
- 241000208340 Araliaceae Species 0.000 description 1
- 241001116439 Araucariaceae Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- 240000006248 Broussonetia kazinoki Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 241001265525 Edgeworthia chrysantha Species 0.000 description 1
- 241000208367 Euonymus Species 0.000 description 1
- 241000219428 Fagaceae Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 241000218377 Magnoliaceae Species 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 241000219926 Myrtaceae Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 241000207834 Oleaceae Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000218641 Pinaceae Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000220217 Sapotaceae Species 0.000 description 1
- 241000269821 Scombridae Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 240000007591 Tilia tomentosa Species 0.000 description 1
- 241001073567 Verbenaceae Species 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 238000006359 acetalization reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical class O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 235000020640 mackerel Nutrition 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005392 opalescent glass Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- a cement-based paper-making board is obtained by curing and hardening a sheet formed by a paper-making method in which a slurry of cement and fibers suspended in an aqueous medium is made with a mesh.
- the papermaking method is used in a wide range of fields due to its versatility in manufacturing, and is often used in the field of construction in particular for manufacturing ceiling materials, interior materials, exterior materials, flooring materials, and the like.
- the production of cement requires a very large amount of energy, and the accompanying large amount of carbon dioxide emission is regarded as a problem.
- a steam boiler or the like is normally used for curing, which also discharges carbon dioxide.
- Patent Document 1 discloses a panel comprising a hydraulic binder such as cement, a filler such as calcium carbonate, and a synthetic fiber.
- Patent Document 3 discloses portland cement, calcium carbonate, calcium oxide, paraffin diatomaceous earth composite phase change material, modified carbon fiber, Manufactured from raw materials containing activated bentonite, rubber powder, modified loess powder, solid industrial waste, fiber, initial strength agent, water reducing agent, foaming agent, rare earth catalyst and water in a specific proportion, energy saving and environmentally friendly.
- a lightweight partition wall is disclosed.
- the problem to be solved by the present invention is to provide a shaped plate with high bending strength and low rate of dimensional change.
- a porous molded plate comprising 35 to 70% by mass of substances not involved in pozzolanic reactions, 20 to 61.5% by mass of cement, 1 to 3% by mass of synthetic fibers, and 2.5 to 7% by mass of pulp. and
- the ratio (B)/(A) of the pore volume (B) in the range of 6 to 560 nm to the pore volume (A) in the range of 660 to 9100 nm in the pore size distribution of the molded plate obtained by the mercury intrusion method is 1.
- a molded plate that is between .70 and 6.0.
- the molded plate of the present invention contains 35 to 70% by weight of substances not involved in the pozzolanic reaction, 20 to 61.5% by weight of cement, 1 to 3% by weight of synthetic fiber, and 2.5% by weight of pulp, based on the total weight of the molded plate. ⁇ 7% by mass. If the ratio of each component deviates from the specified range mentioned above, it is difficult to obtain a molded plate having both high bending strength and low dimensional change rate.
- the molded plate preferably contains 40 to 67.5% by weight of a substance that does not participate in the pozzolanic reaction, 25 to 60.5% by weight of cement, and 1 to 2% by weight of synthetic fiber, based on the total weight of the molded plate. and 2.5-6% by weight pulp, more preferably 45-65% by weight non-pozzolanic substances, 30-59.5% by weight cement, 1-1.5% by weight synthetic fibers, and 3-5% by weight of pulp.
- the total content of synthetic fibers and pulp is 7% by mass or less, preferably 6% by mass or less, relative to the total mass of the molded plate.
- the total calorific value of the molded plate tends to be smaller, which means that the molded plate has excellent flame retardancy.
- the molded plate of the present invention is porous.
- the ratio (B)/(A) of the pore volume (B) in the range of 6 to 560 nm to the pore volume (A) in the range of 660 to 9100 nm in the pore size distribution of the molded plate obtained by the mercury intrusion method is 1. .70 to 6.0, preferably 1.75 to 5.8, more preferably 1.80 to 5.6, particularly preferably 1.85 to 5.4.
- the ratio (B)/(A) is preferably 5.3 or less, more preferably 5.1 or less, and even more preferably less than 5.0, in addition to higher bending strength and low dimensional change rate, molding It is easy to obtain a higher yield rate in the production of the board.
- the ratio (B)/(A) may be 4.9 or less, 4.8 or less, 4.5 or less, or 4.0 or less. Also, the ratio (B)/(A) may be preferably 2.00 or more, more preferably 2.10 or more, even more preferably 2.20 or more, and even more preferably 2.50 or more.
- the ratio (B)/(A) can be adjusted, for example, by using a substance having a specific Blaine specific surface area as a substance that does not participate in the pozzolanic reaction, and/or by adjusting the molding conditions (especially press pressure). , can be adjusted to the desired value.
- the pore volume ratio (B)/(A) can be measured by the method described in Examples.
- the molded plate contains said four components (substances not involved in the pozzolanic reaction, cement, synthetic fibers and pulp) in specific proportions and has a specific ratio (B)/(A).
- B specific ratio
- the molded plate of the present invention can be produced by curing a curable composition containing the above four components. By applying an appropriate pressure during the curing process and molding, substances that do not participate in the pozzolanic reaction appropriately fill the voids in the molded plate during the curing process, resulting in increased adhesion between the synthetic fibers and the cement matrix.
- the pore volume (B) in the range of 6 to 560 nm is preferably 2.50 mL/g or less, more preferably 2.40 mL/g or less, particularly preferably 2.30 mL/g or less, and even more preferably 2.20 mL. / g or less.
- the pore volume (B) is equal to or less than the upper limit, the obtained molded plate tends to have excellent bending strength when dry and bending strength when absorbing water.
- the fact that the pore volume (B) is equal to or less than the upper limit value is related to the high adhesion between the synthetic fiber and the cement matrix as described above, and as a result, the molded plate can be bent when dry and when absorbing water. It is presumed that it tends to be superior in strength.
- pores in the range of 6 to 560 nm greatly affect water absorption. presumed to be on the rise.
- the pore volume (B) is preferably 2.10 mL/g or less, more preferably 2.00 mL/g or less, it is easy to obtain a higher yield rate in the production of molded plates.
- the pore volume (B) can be adjusted, for example, by using a substance having a specific Blaine specific surface area as a substance that does not participate in the pozzolanic reaction and/or by adjusting the molding conditions (especially press pressure). can be adjusted to the value of The pore volume (B) can be measured by the method described in Examples.
- the substance that does not participate in the pozzolanic reaction is preferably one or more substances selected from the group consisting of calcium carbonate, quartzite powder and talc. From the standpoint of availability and cost, the substance that does not participate in the pozzolanic reaction is preferably ground calcium carbonate.
- the substance that does not participate in the pozzolanic reaction preferably has a Blaine specific surface area of 2200-12000 cm 2 /g, more preferably 3000-11000 cm 2 /g, particularly preferably 4000-11000 cm 2 /g.
- the Blaine specific surface area is within the above range, it is easy to obtain a specific ratio (B)/(A) in the molded plate.
- the Blaine specific surface area according to their ratio is preferably within the above range.
- the Blaine specific surface area of the substance not involved in the pozzolanic reaction is preferably 10,000 cm 2 /g or less, more preferably 9,000 cm 2 /g or less, a higher yield rate is likely to be obtained in the production of molded plates.
- the Blaine specific surface area can be measured using an air permeation method in accordance with JIS R5201:2015.
- Substances that do not participate in such pozzolanic reactions are commercially available, and examples of commercially available products include calcium carbonate (first grade) manufactured by Sankyo Seifun Co., Ltd.
- cements in the present invention include Portland cements such as ordinary Portland cement, high-early-strength Portland cement, ultra-high-early-strength Portland cement and moderate-heat Portland cement; alumina cement; blast-furnace cement; silica cement; and fly ash cement; is mentioned. These cements may be used alone or in combination of two or more. From the viewpoint of versatility and/or cost, it is preferable to use ordinary Portland cement. From the viewpoint of easily obtaining strength development at an early stage, it is preferable to use high-early-strength Portland cement or ultra-high-early-strength Portland cement. It is preferable to use blast-furnace cement from the viewpoint of easily obtaining the effect of improving the long-term strength.
- Portland cements such as ordinary Portland cement, high-early-strength Portland cement, ultra-high-early-strength Portland cement and moderate-heat Portland cement
- alumina cement blast-furnace cement
- silica cement silica cement
- the above cement is commercially available, and an example of a commercially available product is Ordinary Portland Cement manufactured by Taiheiyo Cement Co., Ltd.
- the synthetic fiber preferably has an average fiber diameter of 5 ⁇ m or more, more preferably 6 ⁇ m or more, particularly preferably 7 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
- the average fiber diameter of the synthetic fibers is not less than the lower limit and not more than the upper limit, it is easy to achieve both good dispersibility of the synthetic fibers in the curable composition and good fiber reinforcement in the molded article. .
- the average fiber diameter is determined by randomly taking out 100 fibers, measuring the fiber diameter at the central portion in the length direction of each fiber with an optical microscope, and calculating the average value.
- the average fiber length of the synthetic fibers is preferably 2 to 30 mm, more preferably 2 to 20 mm, from the viewpoint of easily achieving both good fiber dispersibility in the curable composition and good fiber reinforcement in the molded article. is.
- the average fiber length can be determined according to JIS L 1015:2010.
- the aspect ratio (fiber length/fiber diameter) of the synthetic fiber is preferably 150 or more, more preferably 175 or more, particularly preferably 200 or more, preferably 1000 or less, more preferably 900 or less, and particularly preferably 800 or less. be.
- the aspect ratio of the synthetic fibers is at least the lower limit and at most the upper limit, it is easy to achieve both good dispersibility of the synthetic fibers in the curable composition and good fiber reinforcement in the molded article.
- the aspect ratio can be calculated from the average fiber length and average fiber diameter.
- the fiber tensile strength of synthetic fibers is preferably 3 cN/dtex or more, more preferably 5 cN/dtex or more, and particularly preferably 7 cN/dtex or more.
- the upper limit of the fiber tensile strength of the synthetic fiber in the present invention is appropriately set according to the type of fiber, and is, for example, 30 cN/dtex or less. Fiber tensile strength can be obtained in accordance with JIS L 1015:2010.
- Synthetic fibers may be inorganic synthetic fibers or organic synthetic fibers.
- Synthetic fibers are preferably organic synthetic fibers, and more preferably a group consisting of polyvinyl alcohol (hereinafter sometimes referred to as "PVA") fibers, polyethylene fibers, polypropylene fibers, acrylic fibers, aramid fibers and nylon fibers. is at least one selected from It is preferable to use PVA-based fibers and/or polypropylene fibers from the viewpoints of easily imparting excellent reinforcing properties to the molded plate and being inexpensive.
- PVA polyvinyl alcohol
- PVA-based fibers such as vinylon fibers are used as synthetic fibers
- PVA-based fibers having the following characteristics may be used.
- the degree of polymerization of the PVA-based polymer that constitutes the PVA-based fiber can be appropriately selected depending on the purpose, and is not particularly limited. Considering the mechanical properties of the resulting fiber, the average degree of polymerization of the PVA-based polymer obtained from the viscosity of the aqueous solution at 30°C is preferably about 500 to 20000, more preferably about 800 to 15000, and particularly preferably 1000 to 1000. It is about 10000.
- the average degree of polymerization of the PVA-based polymer is preferably 1000 or more, more preferably 1200 or more, more preferably 1500 or more, and particularly preferably 1750 or more, from the viewpoint of the strength of the obtained fiber.
- the PVA-based polymer may be a medium polymerization product with an average polymerization degree of 1000 or more and less than 3000, or a high polymerization degree product with an average polymerization degree of 3000 or more.
- the degree of saponification of the PVA-based polymer can also be appropriately selected according to the purpose, and is not particularly limited.
- the degree of saponification of the PVA-based polymer may be, for example, 95 mol % or more, preferably 98 mol % or more, from the viewpoint of the mechanical properties of the obtained fiber.
- the degree of saponification of the PVA-based polymer may be 99 mol% or more, or 99.8 mol% or more. When the degree of saponification of the PVA-based polymer is at least the above lower limit, the resulting fiber tends to have good mechanical properties, processability, manufacturing cost, and the like.
- the PVA-based fiber used in the present invention is produced by dissolving such a PVA-based polymer in a solvent, spinning it by a wet, dry-wet or dry method, and drawing it with hot heat.
- Wet spinning is a method in which a spinning dope is discharged directly from a spinning nozzle into a solidifying bath.
- Dry-wet spinning is a method in which a spinning stock solution is once discharged from a spinning nozzle into air or an inert gas at an arbitrary distance, and then introduced into a solidification bath.
- Dry spinning is a method of extruding a spinning dope into air or an inert gas.
- the PVA-based fiber may be subjected to a drawing treatment, if necessary.
- acetalization treatment or the like which is generally performed for PVA-based fibers, may be performed.
- the solvent used for the spinning stock solution of PVA-based fibers is not particularly limited as long as it can dissolve PVA.
- water, dimethylsulfoxide (DMSO), dimethylformamide, dimethylacetamide, and polyhydric alcohols eg, glycerin, ethylene glycol, triethylene glycol, etc.
- DMSO dimethylsulfoxide
- polyhydric alcohols eg, glycerin, ethylene glycol, triethylene glycol, etc.
- water or an organic solvent as the solvent.
- water and DMSO are particularly preferred from the viewpoint of ease of supply and impact on the environment.
- the concentration of the polymer in the spinning dope varies depending on the composition and degree of polymerization of the PVA-based polymer and the type of solvent, but is generally 6-60% by mass.
- solvents may be used even in dry spinning. In that case, either water or an organic solvent may be used.
- the spinning dope may contain additives and the like depending on the purpose, as long as they do not impair the effects of the present invention.
- additives include boric acid, surfactants, antioxidants, decomposition inhibitors, anti-freezing agents, pH adjusters, masking agents, coloring agents and oils.
- the solvent used in the solidification bath may be appropriately selected according to the type of solvent used in the spinning dope.
- the solidifying bath may be an aqueous solution of an inorganic salt (for example, sodium sulfate, ammonium sulfate, sodium carbonate, sodium hydroxide, etc.) capable of solidifying the PVA-based polymer, or an alkaline aqueous solution.
- an inorganic salt for example, sodium sulfate, ammonium sulfate, sodium carbonate, sodium hydroxide, etc.
- the solidifying bath includes, for example, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, which have the ability to solidify the PVA-based polymer. may be used.
- a PVA-based fiber obtained by dry spinning or a PVA-based fiber obtained by wet spinning from a spinning stock solution using water or an organic solvent as a solvent is preferable from the viewpoint of fiber tensile strength.
- the raw yarn may be passed through an extraction bath, or the raw yarn may be wet-stretched at the same time as the extraction.
- the fiber After wet drawing, the fiber may be dried and, if necessary, further subjected to dry heat drawing.
- the total stretching ratio product of wet stretching and stretching ratio after drying
- fibers may be used as synthetic fibers, examples of which include polyvinyl alcohol fibers manufactured by Kuraray Co., Ltd., polypropylene fibers manufactured by Daiwabo Co., Ltd., organic fibers such as nylon fibers manufactured by Toray Industries, Inc., and NEC. Inorganic fibers such as glass fibers manufactured by Glass Co., Ltd. and Taiheiyo Materials Co., Ltd. can be mentioned.
- the pulp may be either beaten or unbeaten. From the viewpoint of easily obtaining the desired bending strength and impact strength, it is preferable to use beaten pulp, and the freeness test method JIS P 8121-2: 2012 conforms to the Canadian standard freeness method. It is more preferable to use pulp with a measured freeness of 50 to 400 mL, more preferably 100 to 150 mL, in terms of CSF value. In the production of molded plates, from the viewpoint of easily obtaining the desired yield rate, when adopting the cylinder papermaking method described later, it is preferable to use pulp with a CSF value of 100 to 150 mL, and the flow-on papermaking method is adopted. If so, it is preferable to use pulp with a CSF value of 150-400 mL.
- pulps can be used as the pulp.
- pulp include conifers, hardwoods, manila hemp, mitsumata, paper mulberry, gampi, salago, mulberry, straw, bamboo, reed, mackerel, larang grass, esparto, bagasse, sisal, kenaf, linter, banana and waste paper.
- conifers include conifers of the family Cedar, Pinaceae, Cupressaceae, Araucariaceae, etc.
- Examples of the broadleaf trees include Elmaceae, Fagaceae, Myrtaceae, Capriaceae, Oleaceae, and mandarin oranges.
- broad-leaved trees such as the family, Betulaceae, Maple family, Walnut family, Linden family, Araliaceae, Sapotaceae, Euonymus family, Apocynaceae, Verbenaceae, Magnolia family, Aragonaceae, and the like.
- These pulps may be bleached or unbleached pulps.
- the pulp may be used alone or in combination of two or more.
- Such pulp is commercially available, and an example of a commercially available product is Cellofiber manufactured by Partek Co., Ltd.
- the shaped plate may optionally further comprise one or more substances selected from the group consisting of mica, fly ash and silica fume.
- the molded plate contains mica and/or silica fume, its content or total content is preferably 2 to 14% by mass, more preferably 2 to 10% by mass, more preferably 2 to 10% by mass, based on the total mass of the molded plate 3 to 10% by mass, more preferably 4 to 8% by mass.
- the molded plate contains mica, the effects of smaller dimensional change rate and improved flame retardancy (that is, reduced total calorific value) are likely to be exhibited.
- the molded plate When the molded plate contains silica fume, the molded plate tends to exhibit higher bending strength. This is probably because silica fume also participates in the pozzolanic reaction, and because silica fume has a fine particle size, it is easy to obtain a close-packing effect of the cement matrix. On the other hand, when the content of silica fume increases, the viscosity of the curable composition tends to increase, and the papermaking properties in the cylinder screen process tend to deteriorate. By setting the content of silica fume to preferably 10% by mass or less with respect to the total mass of the molded plate, it is easy to ensure good paper-making properties in the cylinder step.
- the molded plate contains fly ash
- its content is preferably 10 to 30% by weight, more preferably 15 to 25% by weight, based on the total weight of the molded plate.
- fly ash replaces a part of the substances that do not participate in the pozzolanic reaction.
- the fly ash also participates in the pozzolanic reaction, so that the molded plate tends to exhibit better long-term strength and higher bending strength.
- the mica is preferably a 30 to 200 mesh pass product, more preferably a 40 to 120 mesh pass product in the JIS test sieve test. It is particularly preferable to be a product that passes ⁇ 80 mesh.
- the fly ash JIS A6201: 2015 stipulated, Type I (Blaine specific surface area 5000 or more), II type (Blaine specific surface area 2500 or more), III type (Blaine specific surface area 2500 or more) or IV type (Blaine ratio surface area of 1500 or greater) may be used.
- silica fume silica fume defined in JIS A 6207:2016 may be used. Generally, silica fume has an average particle size of 0.1 to 0.5 ⁇ m.
- Mica, fly ash and silica fume are commercially available.
- Examples of commercially available mica products include mica manufactured by Tomoe Kogyo Co., Ltd.
- Examples of commercially available fly ash products include Fine Ash, Yonden Fly Ash and Eco Ash manufactured by Yonden Business Co., Ltd.
- Examples of commercial products of silica fume include EFACO manufactured by Tomoe Kogyo Co., Ltd.
- the molded plate may further comprise one or more optional additives and auxiliaries.
- an aqueous solution of an anionic polymer flocculant at a concentration of 0.5 to 2 g/L to the curable composition.
- the concentration of the anionic polymer flocculant in the curable composition is preferably 50 to 250 ppm/solid content, more preferably 75 to 175 ppm/solid content, more preferably 100 to 150 ppm/solid content. preferably.
- anionic polymer flocculants include IK Flock T210 manufactured by Nippon Giken Co., Ltd.
- the molded plate of the present invention is preferably produced by a papermaking method.
- the papermaking method is a method in which a slurry (hardening composition) obtained by suspending a solid such as cement in an aqueous medium is filtered through a wire mesh, and the filtered material is formed into a sheet.
- Papermaking methods include a cylinder papermaking method (Hatchek method) or a fourdrinier papermaking method, in which a thin sheet material filtered out is successively laminated on a making roll until it reaches a desired thickness to obtain a molded plate, and a thick slurry is felted.
- It includes a flow-on papermaking method in which a molded plate is obtained by feeding the paper to the top and successively laminating it on a making roll until the desired thickness is obtained in one or several times. From the viewpoints of easily obtaining a uniform molded plate and facilitating adjustment of the thickness, the circular net paper making method or the fourdrinier paper making method is preferred, and from the viewpoint of mass production, the circular net paper making method is more preferred.
- the manufacturing method by the cylinder papermaking method is usually preparing a curable composition by mixing substances that do not participate in the pozzolanic reaction, cement, synthetic fibers, pulp and water, and optionally the other components described above, optional additives and auxiliaries;
- the method of preparing the curable composition is not particularly limited.
- the curable composition can be prepared by mixing the components by any known or conventional mixing means such as a mixer.
- mixing means include mixers with high stirring performance, and examples thereof include vertical mixers, blade mixers, screw mixers, cone mixers and agitator mixers used in the papermaking method.
- each component is not particularly limited, but from the viewpoint of easily obtaining a curable composition in which the solid components are uniformly dispersed, the pulp is put into water and stirred, and then, in any order, it participates in the pozzolanic reaction. It is preferred to add and stir the non-staining material, cement and optionally other ingredients, additives and auxiliaries, and finally add the synthetic fibers.
- the solid content concentration of the curable composition is usually 55-6% by mass, preferably 40-8% by mass, more preferably 25-10% by mass.
- the amount of substances not involved in the pozzolanic reaction is 35 to 70% by mass (preferably 40 to 67% .5% by weight, more preferably 45-65% by weight), the amount of cement is 20-61.5% by weight (preferably 25-60.5% by weight, more preferably 30-59.5% by weight), synthetic
- the amount of fiber is 1-3% by mass (preferably 1-2% by mass, more preferably 1-1.5% by mass), and the amount of pulp is 2.5-7% by mass (preferably 2.5-6% by mass).
- the amount of mica is 0-10% by weight (for example, 2-10% by weight, 4-8% by weight)
- the amount of fly ash is 0-30% by weight (for example, 10-30% by weight, 15-25% by weight)
- the amount of silica fume is 0-14% by weight (for example, 2-14% by weight, 0-10% by weight, 2-10% by weight, 3-10% by weight, 4 ⁇ 8% by mass)
- the amount of optional additives and auxiliaries is 0-3% by mass (in the case of aqueous solutions of anionic polymer flocculants, for example, 50-250ppm, 75-175ppm, 100-150ppm). is preferred.
- the curable composition is put into the feed tank of the wet papermaking machine, and the solid content concentration of the curable composition is usually adjusted to about 10 to 1% by mass (preferably 8 to 3% by mass) with process circulating water. .
- the curable composition supplied from the feed tank to the vat is drawn up on the surface of the circular net by the rotation of the circular net with internal negative pressure in the vat to form a papermaking sheet, which is conveyed to the making roll.
- a making roll is used to laminate the papermaking sheets so as to have a desired thickness, and the laminated papermaking sheets are cut to a predetermined length.
- the yield rate in the papermaking process is preferably 85% or higher, more preferably 90% or higher.
- the yield rate is at least the lower limit, higher bending strength, higher interlayer adhesion strength, and/or lower dimensional change rate are likely to be obtained.
- the yield rate can be adjusted to the above lower limit or higher.
- the mesh size of the circular net is preferably 45 to 55 meshes per inch from the viewpoint of easily achieving both a yield rate and productivity.
- the yield rate in the papermaking process can be determined by the method described in Examples below.
- the molded plate of the present invention contains 35-70% by weight of substances not involved in pozzolanic reactions, 20-61.5% by weight of cement, 1-3% by weight of synthetic fibers, and 2.5-7% by weight of pulp. comprising
- the ratio of each component in the curable composition may be the ratio of each component in the molded plate.
- the yield rate in the papermaking process is preferably 85% or more (more preferably 90% or more).
- the molded plate of the present invention contains 35-70% by weight of substances that do not participate in the pozzolanic reaction, 20-61.5% by weight of cement, 1-3% by weight of synthetic fibers, and 2.5-7% by weight of pulp.
- a porous molded plate based on a curable composition consisting of a pore volume (A) in the range of 660 to 9100 nm in the pore size distribution of the molded plate obtained by mercury porosimetry.
- the curable composition optionally further comprises other components (one or more substances selected from the group consisting of mica, fly ash and silica fume) in proportions similar to the proportions of the other components in the molded plate described above. and may further contain optional additives and auxiliaries in the proportions mentioned above.
- other components one or more substances selected from the group consisting of mica, fly ash and silica fume
- the number of sheets to be laminated depends on the solid content concentration of the curable composition and the thickness of the molded plate to be manufactured, but it is usually 12 to 18 sheets when the thickness of the molded plate is about 6 mm.
- the cut sheet is squeezed by applying it with a press.
- the pressure applied by the press is preferably 2-30 MPa, more preferably 7-27 MPa, and particularly preferably 15-25 MPa.
- the time for applying pressure is usually 10 to 60 minutes, preferably 15 to 50 minutes, more preferably 20 to 40 minutes.
- Hardening progresses by curing. Hardening is due to the hydration reaction (setting reaction) of the cement components, but when the water in the sheet evaporates, the hydration reaction of the cement components is inhibited, and hardening may not progress.
- the relative humidity is preferably 30 to 100%, more preferably 50 to 100%, still more preferably 65 to 100%, still more preferably Is 80 to 100%, particularly preferably 90 to 100% (e.g., 100%) under an atmosphere
- a high humidity atmosphere preferably 30 to 100%, more preferably 40 to 90 %, more preferably 50 to 80% atmosphere
- Curing temperature is not particularly limited.
- the primary curing temperature is, for example, 10 to 90°C, preferably 30 to 80°C, more preferably 40 to 80°C.
- the curing temperature may be changed within the above range.
- the secondary curing temperature is, for example, 10°C to 70°C, preferably 20°C to 50°C.
- the primary curing time depends on the composition of the curable composition and the curing temperature, but is usually 6 hours to 48 hours, preferably 8 hours to 36 hours, more preferably 12 hours to 24 hours.
- the secondary curing time is usually 1 to 14 days.
- underwater curing may be performed as secondary curing.
- the water temperature is usually 10 to 30° C. and the curing time is 8 hours to 13 days.
- the secondary curing described in the previous paragraph may be carried out for 2 to 13 days.
- a molded plate is obtained by drying after secondary curing.
- the drying method is not particularly limited as long as a uniformly dried molded plate can be obtained.
- the equilibrium moisture content of the molded plate (for example, the moisture content reached when the molded plate is stored in a well-ventilated room for 7 days or more) is about 6% by mass to about 10% by mass. Dry to a moderate moisture content.
- the moisture content and equilibrium moisture content of the molded plate can be conveniently measured using a Kett moisture meter.
- the molded plate dried to a constant weight in an air dryer with a stirrer at 105 ° C. is weighed (W 2 ), and the following formula: ⁇ (W 1 ⁇ W 2 )/W 2 ⁇ 100 It can also be obtained by
- the molded plate obtained after drying has the above ratio (B)/(A) of 1.70 to 6.0. Also, all the embodiments and preferred embodiments mentioned with respect to the molded plates of the present invention can be regarded as embodiments and preferred embodiments with respect to the molded plates obtained after drying.
- the thickness of the molded plate of the present invention is, for example, 3 to 30 mm, depending on its use.
- the thickness of the molded plate is preferably 4 mm or more and 20 mm or less, and when it is used as a floor material, the molded plate preferably has a thickness of 8 mm or more and 30 mm or less. preferable.
- the upper limit of the thickness of the molded plate is not particularly limited, it is preferably up to about 15 mm for the cylinder paper making method, and up to about 50 mm for the fourdrinier paper making method.
- the thickness of the molded plate can be appropriately determined by adjusting the number of sheets to be laminated and/or the thickness of the squeezed sheet.
- the thickness of the molded plate can be measured by a general method, for example, by measuring the thickness at a plurality of locations using a digital vernier caliper and calculating the average value.
- the vertical and horizontal dimensions of the molded plate of the present invention depend on the dimensions of the papermaking machine and the press machine, for example, 3 x 6 shaku (910 mm x 1820 mm) or 4 x 8 shaku (1210 mm x 2440 mm) or 4 x 10 shaku (1210 mm x 3030 mm). Of course, smaller shaped plates having the desired dimensions can also be cut from these larger shaped plates.
- the bulk density of the molded plate of the present invention measured according to JIS A 5430:2018 is, for example, 1.45 to 1.8 g/cm 3 , preferably 1.50 to 1.75 g/cm 3 , more preferably 1.55 to 1.75 g/cm 3 .
- the bulk density can be adjusted within the above range by the types of the four components, the mixing ratio of the four components, the pressing pressure and/or the pressing time.
- the dry bending strength of the molded plate of the present invention measured according to JIS A 1408:2017 is preferably 10 N/mm 2 or more, more preferably 15 N/mm 2 or more, and still more preferably 20 N/mm 2 That's it.
- the dry flexural strength can be adjusted to the above lower limit or more by adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, the blending ratio of the four components, the pressing pressure and/or the pressing time, for example.
- the upper limit of the bending strength when dry is not particularly limited, it is usually 50 N/mm 2 or less.
- the bending strength of the molded plate of the present invention at the time of water absorption measured in accordance with JIS A 1408:2017 is preferably 5 N/mm 2 or more, more preferably 10 N/mm 2 or more, and still more preferably 15 N/mm 2 . That's it.
- the bending strength at the time of water absorption can be adjusted to the lower limit or more by, for example, adjusting the Blaine specific surface area of substances that do not participate in the pozzolanic reaction, the blending ratio of the four components, pressing pressure and/or pressing time.
- the upper limit of the bending strength at the time of water absorption is not particularly limited, it is usually 35 N/mm 2 or less.
- the dimensional change rate (length change rate) of the molded plate of the present invention measured in accordance with JIS A 5430:2018 is preferably 0.150% or less, more preferably 0.130% or less, and particularly preferably 0. .100 or less.
- the dimensional change rate can be adjusted, for example, to the above upper limit or less by adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, the mixing ratio of the four components, the pressing pressure and/or the pressing time.
- the molded plates of the invention have low water absorption.
- a low water absorption rate is preferable because the dimensions of the molded plate are less likely to vary depending on the atmosphere in which the molded plate is used (eg, season, region and/or usage environment). It is also preferable because the bending strength of the molded plate when absorbing water is improved.
- the water absorption rate of the molded plate of the present invention measured according to JIS A 5430:2018 is preferably 28% or less, more preferably 26% or less, even more preferably 24% or less, and even more preferably 22% or less. Particularly preferably, it is 20% or less.
- the lower limit of the water absorption rate is not limited, it is preferably 15% or more.
- the water absorption can be adjusted to the lower limit or more and the upper limit or less by, for example, adjusting the proportion of pulp, adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, pressing pressure and/or pressing time.
- the total calorific value of the molded plate measured according to the heat build-up test of JIS A 5430:2018 is preferably 8.0 MJ/m 2 or less, more preferably 7.0 MJ/m 2 or less, and still more preferably 6.0 MJ/m 2 or less. 0 MJ/m 2 or less.
- the lower limit of the total calorific value is not limited, and is, for example, 4.0 MJ/m 2 or more.
- the total calorific value can be adjusted below the upper limit by, for example, reducing the percentage of organic matter (pulp and synthetic organic fibers) in the molded plate and/or adjusting the ratio (B)/(A).
- the dry impact strength (type 1 test piece, without notch) measured in accordance with JIS K 7111-1:2012 "Plastics - Determination of Charpy impact properties" of the molded plate is preferably 1.5 kJ / m 2 or more, more preferably 1.8 kJ/m 2 or more, still more preferably 2.1 kJ/m 2 or more.
- the dry impact strength can be adjusted above the lower limit by, for example, pressing pressure and/or pressing time.
- the upper limit of the dry impact strength is not particularly limited, but is usually 7 kJ/m 2 or less.
- the impact strength at the time of water absorption (type 1 test piece, without notch) measured in accordance with JIS K 7111-1:2012 "Plastics - Determination of Charpy impact properties" of the molded plate is preferably 2 kJ / m 2 Above, more preferably 2.5 kJ/m 2 or more, still more preferably 3.0 kJ/m 2 or more.
- the impact strength at the time of water absorption can be adjusted to above the lower limit value by, for example, pressing pressure and/or pressing time.
- the upper limit of the impact strength when absorbing water is not particularly limited, it is usually 10 kJ/m 2 or less.
- the interlayer adhesion strength of the molded plate when dry is preferably 1.5 N/mm 2 or more, more preferably 2.0 N/mm 2 or more, and still more preferably 2.5 N/mm 2 or more. It is preferable that the interlayer adhesion strength at the time of drying is equal to or higher than the above-mentioned lower limit, since delamination during use can be prevented.
- the interlayer adhesion strength at the time of drying can be adjusted to the above lower limit or more by adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, pressing pressure and/or pressing time, for example.
- the upper limit of the interlayer adhesion strength when dried is not particularly limited, it is usually 6 N/mm 2 or less.
- the interlayer adhesion strength of the molded plate when water is absorbed is preferably 0.2 N/mm 2 or more, more preferably 0.3 N/mm 2 or more, and still more preferably 0.5 N/mm 2 or more. It is preferable that the interlayer adhesion strength at the time of water absorption is equal to or higher than the above lower limit, since delamination during use can be prevented.
- the interlayer adhesion strength at the time of water absorption can be adjusted to the lower limit value or higher by, for example, pressing pressure and/or pressing time.
- the upper limit of the interlayer adhesion strength at the time of water absorption is not particularly limited, it is usually 3 N/mm 2 or less.
- the interlayer adhesion strength of the molded plate when dried or when water is absorbed can be measured by the method described in Examples below.
- Pore volume ratio (B)/(A) ⁇ pore volume (B) in the range of 6 to 560 nm ⁇ / ⁇ pore volume (A) in the range of 660 to 9100 nm ⁇
- the bulk density was measured according to JIS A 5430:2018. Specifically, four strip-shaped test pieces having a length of about 180 mm and a width of about 50 mm were cut out from the molded plate to be measured, and then these test pieces were put into an air dryer equipped with a stirrer and heated at 105 ° C. ⁇ It was dried at 5°C for 24 hours. After that, the removed test piece was placed in a desiccator humidified with silica gel and allowed to stand until the temperature reached 20 ⁇ 1.5° C., and then the mass and volume of each test piece were measured to determine the bulk density. Their average value was taken as the bulk density of the molded plate.
- test piece was taken out, and after wiping off the water adhering to the surface, the bending strength of each test piece was immediately measured in accordance with JIS A 1408: 2017, and their average value was taken as the water absorption of the molded plate. It was adopted as the bending strength at time.
- the bending strength when dry and when absorbing water was measured using an autograph "AG50kNX" manufactured by Shimadzu Corporation under the conditions of a bending span of 14.6 cm and a test speed (loading head speed) of 20 mm/min with a central loading method.
- the dimensional change rate (length change rate) of the molded plate was measured according to JIS A 5430:2018. Specifically, three strip-shaped test pieces having a length of about 160 mm and a width of about 50 mm were cut out from the molded plate to be measured, and then these test pieces were placed in a dryer, and the temperature in the dryer was set to 60 ° C. ⁇ It was kept at 3°C for 24 hours. After that, the test piece was taken out, placed in a desiccator humidified with silica gel, and allowed to stand until the temperature reached 20 ⁇ 1.5°C.
- a piece of opalescent glass is attached to each test piece, a marked line is engraved so that the distance between the marked lines is about 140 mm, and the length between the marked lines is measured with a comparator having an accuracy of 1/500 mm. was defined as L 1 (mm).
- the test piece was erected so that the longitudinal direction was horizontal, and the upper end of the test piece was immersed in water at 20°C ⁇ 1.5°C so that the upper end of the test piece was about 30 mm below the water surface. After 24 hours, the test piece was taken out of the water, the water adhering to the surface was wiped off, and the length between the marked lines was measured again, and the length was defined as L 2 (mm).
- the dimensional change rate (%) due to water absorption was calculated for each test piece by the following formula, and the average value thereof was adopted as the dimensional change rate of the molded plate.
- Dimensional change rate due to water absorption ⁇ (L 2 ⁇ L 1 )/L 1 ⁇ 100
- the water absorption rate of the molded plate was measured according to JIS A 5430:2018. Specifically, four strip-shaped test pieces having a length of about 180 mm and a width of about 50 mm were cut out from the molded plate to be measured, and then the test pieces were immersed in water at 20°C ⁇ 1.5°C. After 24 hours had passed, the test pieces were taken out, and after wiping off the water adhering to the surface, the mass of each test piece (weight W 3 of the test piece when water was absorbed) was immediately measured.
- test pieces are placed in a dryer with a stirrer adjusted to 105°C ⁇ 5°C, dried for 24 hours, taken out, and placed in a desiccator humidified with silica gel, and the room temperature is 20°C ⁇ 1.5°C. left until After that, the mass of each test piece (dry test piece weight W 0 ) was measured.
- the interlayer adhesion strength of each test piece was calculated by dividing the maximum tensile load by the area of the test piece, and the average value was adopted as the interlayer adhesion strength of the molded plate when dried.
- steel jigs of about 40 mm x about 40 mm were adhered to the front and back of four air-dried test pieces using an epoxy resin adhesive.
- the epoxy resin-based adhesive was cured by standing at room temperature for 24 hours or longer. The specimen was then immersed in water at 20°C for 72 hours.
- test piece After removing the test piece and wiping off the water adhering to the surface, immediately pull it perpendicular to the adhesive surface at a speed of 0.5 mm / min using Shimadzu Autograph AG5000-B, and the maximum tensile load at that time is read.
- the interlaminar adhesion strength of each test piece was calculated by dividing the maximum tensile load by the area of the test piece, and the average value was adopted as the interlaminar adhesion strength of the molded plate when water was absorbed.
- yield rate in papermaking process The yield rate in the paper making process (the process of making a slurry with a circular mesh) in each example and each comparative example was determined. Specifically, the slurry put into the circular net was scooped up and its mass (A1) was measured. The solid content was collected by filtration using a filtration device (Nutsche and suction bottle), dried in a drier at 105° C. for 12 hours or more until the dry mass became constant, and the mass (B1) of the solid content was measured. The concentration C1 of the slurry introduced into the circular net was determined by the following formula.
- Concentration C 1 (B1/A1) x 100
- concentration C2 (B2/A2) x 100
- A2 is the mass of the drawn slurry after passing through the mesh
- B2 is the mass of its solid content.
- Total calorific value The total calorific value was determined by the heat generation test of JIS A 5430:2018. Specifically, from the molded plate to be measured, two 99 ⁇ 1 mm square test pieces are cut out and held at a temperature of 23 ° C ⁇ 2 ° C and a relative humidity of 50 ⁇ 5% until a constant mass is obtained. carried out. The heating time was 20 minutes. The average value of the total calorific value of each test piece was adopted as the total calorific value of the molded plate.
- Example 1 Pulp (NBKP, cellofiber manufactured by Paltex Co., Ltd., CSF value: 115 mL) was dispersed in water. Heavy calcium carbonate (Blaine specific surface area: 4000 cm 2 /g) and ordinary Portland cement (produced by Taiheiyo Cement Co., Ltd.: ordinary Portland cement) were added to the obtained dispersion and mixed. Polyvinyl alcohol fiber 1 (described as “PVA1” in Table 2) was added to the resulting mixture and further mixed. The ratio of each component is as shown in Table 2, and a curable composition having a solid concentration of 16% by mass was obtained. The resulting curable composition was transferred to the feed tank of the metering feeder and supplied from the feed tank to the cylinder.
- PVA1 Polyvinyl alcohol fiber 1
- the solid content concentration of the curable composition was adjusted to 4% by mass with process circulating water, and papermaking was carried out using a mini-hatchek machine.
- 15 sheets of the paper-made sheets obtained in the circular net process were laminated by a making roll, and the laminated paper-made sheets were pressed for 20 minutes while applying a pressure of 21.6 MPa to extract liquid.
- the sheet is cured in a constant temperature and humidity curing device for 24 hours under conditions of a temperature of 50 ° C. and saturated humidity (RH 98%), then wrapped with a wrap sheet, and placed in an environment of a temperature of 20 ° C. and a humidity of 60%. It was cured for 13 days (cured for 14 days of material age in total).
- Example 10 A molded plate was obtained in the same manner as in Example 1 except that each component was used in the ratio shown in Table 2, and various measurements and evaluations were performed on the obtained molded plate. The results are shown in Tables 2 and 3.
- fly ash or silica fume was also added when ordinary Portland cement was added.
- Example 18 A molded plate was obtained in the same manner as in Example 1, except that PVA2 was used instead of PVA1 and the pressure during pressing was changed from 21.6 MPa to 7.85 MPa. was measured and evaluated. The results are shown in Table 2.
- molded plates comprising specific proportions of substances not involved in the pozzolanic reaction, cement, synthetic fibers and pulp, and having specific pore volume ratios (B)/(A) , had high bending strength and low dimensional change rate.
- Comparative Example 1 in which the molded plate does not have a specific pore volume ratio (B)/(A), has lower flexural strength and higher dimensions than the corresponding Examples (Examples 1-4). It can be seen that the rate of change is shown. Further, in Comparative Example 1, the adhesion strength between layers is low, and the yield rate in the papermaking process is also low.
- Comparative Example 2 in which the molded plate does not contain the specific proportions of each component, exhibits a lower flexural strength than the corresponding Examples (Examples 1 and 5).
- Comparative Example 3 in which the molded plate does not contain each component in a specific proportion and does not have a specific pore volume ratio (B)/(A), has a lower flexural strength than the corresponding Examples (Examples 1 and 5). It can be seen that it exhibits a high degree of dimensional change and a high dimensional change rate. Further, in Comparative Example 3, the interlayer adhesion strength is low and the total heat generation is high.
- the effect of the ratio of silica fume, which is an optional component, on the paper-making properties in the cylinder step during the production of the molded plate was visually evaluated according to the following evaluation criteria.
- the molded plate of the present invention has high bending strength and low dimensional change rate.
- Such a molded plate of the present invention can be suitably used as building materials (for example, ceiling materials, interior materials, exterior materials, floor materials) or civil engineering materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Description
本発明は、多孔質の成形板に関する。
例えば、特許文献1には、セメント等の水硬性バインダー、炭酸カルシウム等の充填材および合成繊維を含んでなるパネルが開示されており、特許文献2には、マトリックス形成用水和性原料、無機質充填材、補強繊維およびケイ酸カルシウム水和物を含んでなる無機質抄造板が開示されており、特許文献3には、ポルトランドセメント、炭酸カルシウム、酸化カルシウム、パラフィン珪藻土複合相転移材料、変性炭素繊維、活性化ベントナイト、ゴム粉末、変性黄土粉末、固形産業廃棄物、繊維、初期強度付与剤、減水剤、発泡剤、希土類触媒および水を特定の割合で含む原料から製造された、省エネルギーで環境に優しい軽量パーテーション壁が開示されている。
即ち、本発明は、以下の好適な実施態様を包含する。
[1]ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる多孔質の成形板であって、
水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0である、成形板。
[2]ポゾラン反応に関与しない物質は、炭酸カルシウム、硅石粉およびタルクからなる群から選択される1以上の物質である、上記[1]に記載の成形板。
[3]炭酸カルシウムは重質炭酸カルシウムである、上記[2]に記載の成形板。
[4]マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質を更に含んでなる、上記[1]~[3]のいずれかに記載の成形板。
[5]合成繊維およびパルプの合計含有量は成形板の総質量に対して7質量%以下である、上記[1]~[4]のいずれかに記載の成形板。
[6]合成繊維の平均繊維径は50μm以下である、上記[1]~[5]のいずれかに記載の成形板。
[7]合成繊維の平均繊維径は5μm以上、40μm以下である、上記[6]に記載の成形板。
[8]合成繊維のアスペクト比は150以上、1000以下である、上記[1]~[7]のいずれかに記載の成形板。
[9]合成繊維は、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維およびナイロン繊維からなる群から選択される少なくとも一種である、上記[1]~[8]のいずれかに記載の成形板。
[10]JIS A 5430:2018に準拠して測定された吸水率は15%以上、28%以下である、上記[1]~[9]のいずれかに記載の成形板。
[11]JIS A 5430:2018の発熱性試験に準拠して測定された総発熱量は8.0MJ/m2以下である、上記[1]~[10]のいずれかに記載の成形板。
[12]JIS A 5430:2018に準拠して測定された嵩密度は1.50g/cm3以上である、上記[1]~[11]のいずれかに記載の成形板。
[13]JIS A 1408:2017に準拠して測定された吸水時の曲げ強さは15N/mm2以上である、上記[1]~[12]のいずれかに記載の成形板。
[14]JIS A 5430:2018に準拠して測定された吸水率は26%以下である、上記[1]~[13]のいずれかに記載の成形板。
[15]前記細孔容積(B)は2.50mL/g以下である、上記[1]~[14]のいずれかに記載の成形板。
成形板は、成形板の総質量に対して、好ましくは、40~67.5質量%のポゾラン反応に関与しない物質、25~60.5質量%のセメント、1~2質量%の合成繊維、および2.5~6質量%のパルプを含んでなり、より好ましくは45~65質量%のポゾラン反応に関与しない物質、30~59.5質量%のセメント、1~1.5質量%の合成繊維、および3~5質量%のパルプを含んでなる。
また、細孔容積(B)が好ましくは2.10mL/g以下、より好ましくは2.00mL/g以下であると、成形板の製造において、より高い歩留り率を得やすい。
細孔容積(B)は、例えば、ポゾラン反応に関与しない物質として特定のブレーン比表面積を有する物質を使用することにより、および/または成形時の条件(特にプレス圧力)を調整することにより、所望の値に調整することができる。細孔容積(B)は、実施例に記載の方法により測定できる。
ポゾラン反応に関与しない物質は、好ましくは、炭酸カルシウム、硅石粉およびタルクからなる群から選択される1以上の物質である。入手容易性およびコストの観点から、ポゾラン反応に関与しない物質は、重質炭酸カルシウムであることが好ましい。
ブレーン比表面積は、JIS R5201:2015に準拠して空気透過法を用いて測定できる。
本発明におけるセメントの例としては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメントおよび中庸熱ポルトランドセメント等のポルトランドセメント;アルミナセメント;高炉セメント;シリカセメント;並びにフライアッシュセメント;白色ポルトランドセメントが挙げられる。これらのセメントは、単独でまたは二種以上を組み合わせて使用してよい。
汎用性および/またはコストの観点からは、普通ポルトランドセメントを用いることが好ましい。早期に強度の発現が得られやすい観点からは、早強ポルトランドセメントまたは超早強ポルトランドセメントを用いることが好ましい。長期強度の向上効果が得られやすい観点からは、高炉セメントを用いることが好ましい。
合成繊維の平均繊維径は、好ましくは5μm以上、より好ましくは6μm以上、特に好ましくは7μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。合成繊維の平均繊維径が前記下限値以上であり、前記上限値以下であると、硬化性組成物中での合成繊維の良好な分散性と成形体における良好な繊維補強性とを両立しやすい。平均繊維径は、無作為に繊維を100本取り出し、それぞれの繊維の長さ方向の中央部における繊維径を光学顕微鏡により測定し、その平均値を計算することにより求められる。
成形板により優れた補強性を付与しやすく、安価である観点から、PVA系繊維および/またはポリプロピレン繊維を用いることが好ましい。
パルプは、叩解処理されたものであっても、叩解処理されていないものであってもよい。所望の曲げ強さおよび衝撃強さを得やすい観点から、叩解処理されたパルプを使用することが好ましく、濾水度試験方法JIS P 8121-2:2012のカナダ標準濾水度法に準拠して測定される叩解度がCSF値で50~400mL、より好ましくは100~150mLであるパルプを使用することがより好ましい。成形板の製造において、所望の歩留り率を得やすい観点から、後述する円網抄造法を採用する場合は、CSF値が100~150mLであるパルプを使用することが好ましく、フローオン抄造法を採用する場合は、CSF値が150~400mLであるパルプを使用することが好ましい。
成形板は、任意に、マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質を更に含んでもよい。
成形板がマイカおよび/またはシリカフュームを含む場合、その含有量または合計含有量は、成形板の総質量に対して、好ましくは2~14質量%、より好ましくは2~10質量%、より好ましくは3~10質量%、更に好ましくは4~8質量%である。この実施態様では、セメントの一部をマイカおよび/またはシリカフュームで置換する配合であることが好ましい。成形板がマイカを含むと、より小さい寸法変化率および難燃性向上(即ち、総発熱量低減)の効果が発現されやすい。成形板がシリカフュームを含むと、成形板において、より高い曲げ強さが発現されやすい。これは、シリカフュームもポゾラン反応に関与するため、また、シリカフュームの細かい粒子径に起因して、セメントマトリックスの細密充填効果が得られやすいためと考えられる。その一方で、シリカフュームの含有量が高くなると硬化性組成物の粘性が高まり、円網工程での抄造性が低下する傾向にある。シリカフュームの含有量を、成形板の総質量に対して、好ましくは10質量%以下とすることにより、円網工程での良好な抄造性を確保しやすい。
成形板がフライアッシュを含む場合、その含有量は、成形板の総質量に対して、好ましくは10~30質量%、より好ましくは15~25質量%である。この実施態様では、リサイクル原材料の有効活用および/または低コスト化の観点から、ポゾラン反応に関与しない物質の一部をフライアッシュで置換する配合であることが好ましい。また、成形板がフライアッシュを含むと、フライアッシュもポゾラン反応に関与するため、成形板において、より良好な長期材齢強度およびより高い曲げ強さが発現されやすい。
フライアッシュとしては、JIS A6201:2015に規定されている、I種(ブレーン比表面積5000以上)、II種(ブレーン比表面積2500以上)、III種(ブレーン比表面積2500以上)またはIV種(ブレーン比表面積1500以上)を用いてよい。
シリカフュームとしては、JIS A 6207:2016に規定されているシリカフュームを用いてよい。一般的には、シリカフュームの平均粒子径は0.1~0.5μmである。
成形板は、1以上の任意の添加剤および助剤を更に含んでもよい。後述する成形板の抄造法による製造方法において歩留り率を高めるために、アニオン系高分子凝集剤の濃度0.5~2g/Lの水溶液を、硬化性組成物に添加することが好ましい。その際、硬化性組成物におけるアニオン系高分子凝集剤の濃度が、好ましくは50~250ppm/固形分、より好ましくは75~175ppm/固形分、更に好ましくは100~150ppm/固形分となるよう添加することが好ましい。アニオン系高分子凝集剤の例としては、日本技研株式会社製のアイケイフロックT210が挙げられる。
本発明の成形板は、抄造法により製造することが好ましい。抄造法とは、セメント等の固体を水系媒体に縣濁させたスラリー(硬化性組成物)を金網で濾し取り、濾し取ったシート状物を成形する方法である。抄造法には、濾し取った薄いシート状物を所望の厚さとなるまで順次メーキングロールに積層して成形板を得る円網抄造法(ハチェック法)または長網抄造法、および濃厚スラリーをフェルト上に供給して、1回ないし数回で所望の厚さとなるまで順次メーキングロールに積層して成形板を得るフローオン抄造法等が包含される。均一な成形板を得やすく、厚さを調整しやすい観点から、円網抄造法または長網抄造法が好ましく、量産化できる観点から、円網抄造法がより好ましい。
ポゾラン反応に関与しない物質、セメント、合成繊維、パルプおよび水、並びに必要に応じて上述したその他の成分、任意の添加剤および助剤を混合して硬化性組成物を調製する工程、
得られた硬化性組成物を円網を用いて抄造して抄造シートを得、抄造シートを所望の厚さとなるまで積層する工程、
積層された抄造シートに圧力を印加して搾液する工程、および
搾液後のシートを養生する工程
を含む。
プレス機により印加される圧力は、好ましくは2~30MPa、より好ましくは7~27MPa、特に好ましくは15~25MPaである。また、圧力を印加する時間は、通常10~60分間、好ましくは15~50分間、より好ましくは20~40分間である。圧力が前記範囲内であり、圧力を印加する時間が前記範囲内であると、成形板において所望の細孔容積比(B)/(A)を得やすく、その結果、高い曲げ強さおよび小さい寸法安定性を得やすい。
養生により硬化が進行する。硬化は、セメント成分の水和反応(凝結反応)によるものであるが、シート中の水分が蒸発するとセメント成分の水和反応が阻害され、硬化が進行しなくなる場合がある。従って、一次養生として、シート中の水分が蒸発しない高湿度雰囲気下で、即ち、相対湿度が好ましくは30~100%、より好ましくは50~100%、更に好ましくは65~100%、更により好ましくは80~100%、特に好ましくは90~100%(例えば100%)の雰囲気下で、養生を行い、二次養生として、高湿度雰囲気下(好ましくは30~100%、より好ましくは40~90%、更に好ましくは50~80%の雰囲気下)において、水分を通さない容器または袋等にシートを入れたり、プラスチック板、プラスチックフィルム(ポリエチレンシート等)または金属板にシートを挟んだりすることにより、シート中の水分がより蒸発しにくい状態にして、養生を行うことが好ましい。
一次養生時間は、硬化性組成物の組成および養生温度に依存するが、通常は6時間~48時間、好ましくは8時間~36時間、より好ましくは12時間~24時間である。二次養生時間は、通常は1日間~14日間である。
乾燥方法は、均一に乾燥された成形板が得られる限り、特に限定されない。通常は、成形板の平衡含水率(例えば、風通しの良い室内に成形板を7日間以上保管したときに達する含水率)は約6質量%~約10質量%であるため、平衡含水率と同程度の含水率となるように乾燥させる。成形板の含水率および平衡含水率は、簡易的にはKett水分計を用いて測定できる。または、乾燥後の成形板を秤量(W1)した後、105℃の撹拌機付き空気乾燥機にて恒量となるまで乾燥させた成形板を秤量(W2)し、下記式:
{(W1-W2)/W2}×100
により求めることもできる。
本発明の成形板のJIS A 1408:2017に準拠して測定された吸水時の曲げ強さは、好ましくは5N/mm2以上、より好ましくは10N/mm2以上、更に好ましくは15N/mm2以上である。吸水時の曲げ強さは、例えば、ポゾラン反応に関与しない物質のブレーン比表面積の調整、前記四成分の配合割合、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。吸水時の曲げ強さの上限は特に制限されないが、通常は35N/mm2以下である。
本発明における成形板のJIS A 5430:2018に準拠して測定された吸水率は、好ましくは28%以下、より好ましくは26%以下、更に好ましくは24%以下、更により好ましくは22%以下、特に好ましくは20%以下である。前記吸水率の下限値は限定されるものではないが、好ましくは15%以上である。
吸水率は、例えば、パルプの割合の調整、ポゾラン反応に関与しない物質のブレーン比表面積の調整、プレス圧力および/またはプレス時間により、前記下限値以上および前記上限値以下に調整できる。
総発熱量は、例えば、成形板における有機物(パルプおよび合成有機繊維)の割合の低減および/または比(B)/(A)の調整により、前記上限値以下に調整できる。
成形板のJIS K 7111-1:2012「プラスチック-シャルピー衝撃特性の求め方」に準拠して測定された吸水時の衝撃強さ(タイプ1試験片、ノッチなし)は、好ましくは2kJ/m2以上、より好ましくは2.5kJ/m2以上、更に好ましくは3.0kJ/m2以上である。吸水時の衝撃強さは、例えば、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。吸水時の衝撃強さの上限は特に制限されないが、通常は10kJ/m2以下である。
成形板の吸水時の層間密着強度は、好ましくは0.2N/mm2以上、より好ましくは0.3N/mm2以上、更に好ましくは0.5N/mm2以上である。吸水時の層間密着強度が前記下限値以上であると、使用中の層間剥離を防止できるため好ましい。吸水時の層間密着強度は、例えば、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。吸水時の層間密着強度の上限は特に制限されないが、通常は3N/mm2以下である。
成形板の乾燥時または吸水時の層間密着強度は、後述の実施例に記載の方法で測定できる。
測定する成形板から、約1cm角の試験片を2個切り出して、105℃±5℃にて12時間以上乾燥させた後、シリカゲルで調湿したデシケータに入れ、20℃±1.5℃になるまで放置した。これらの試験片について、水銀圧入法による細孔径分布を、水銀圧入法細孔容積測定装置(マイクロメリティックス社製「MicroActive AutoPore V 9600」)を用いて測定した。得られた細孔径分布から得られたLog微分細孔容積より、各試験片の660~9100nmの範囲の細孔容積(A)および6~560nmの範囲の細孔容積(B)を求めた。下記式より、各試験片について細孔容積(A)に対する細孔容積(B)の比を算出し、それらの平均値を成形板の細孔容積比(B)/(A)として採用した。
細孔容積比(B)/(A)={6~560nmの範囲の細孔容積(B)}/{660~9100nmの範囲の細孔容積(A)}
デジタル式ノギスを用いて、測定する成形板の厚さを6箇所測定し、それらの平均値を、成形板の厚さとした。
嵩密度は、JIS A 5430:2018に準拠して測定した。具体的には、測定する成形板から、長さ約180mm、幅約50mmの短冊状の試験片を4個切り出した後、これらの試験片を撹拌機付き空気乾燥機に投入し、105℃±5℃で24時間乾燥した。その後、取り出した試験片をシリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した後、各試験片の質量および体積を測定し、嵩密度を求めた。それらの平均値を、成形板の嵩密度とした。
測定する成形板から、長さ約180mm、幅約50mmの短冊状の試験片を8個切り出した。
乾燥時の曲げ強さを測定するために、まず、4個の試験片を40℃に設定した撹拌機付き空気乾燥機において72時間乾燥した。次いで、取り出した試験片をシリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した。各試験片の曲げ強さを、JIS A 1408:2017に準拠して測定し、それらの平均値を、成形板の乾燥時の曲げ強さとして採用した。
吸水時の曲げ強さを測定するために、まず、4個の試験片を20℃の水中に72時間浸漬した。次いで、試験片を取り出し、表面に付着した水を拭き取った後、直ちに、各試験片の曲げ強さを、JIS A 1408:2017に準拠して測定し、それらの平均値を、成形板の吸水時の曲げ強さとして採用した。
乾燥時および吸水時の曲げ強さは、島津製作所株式会社製オートグラフ「AG50kNX」を用い、中央載荷方式で曲げスパン14.6cmおよび試験速度(載荷ヘッドスピード)20mm/分の条件で測定した。
測定する成形板から、JIS K 7111-1:2012に準拠したタイプ1試験片を6個切り出した。
乾燥時の衝撃強さを測定するために、まず、3個の試験片を40℃に設定した撹拌機付き空気乾燥機において72時間乾燥した。次いで、取り出した試験片をシリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した。各試験片の衝撃強さ(ノッチなし)を、JIS K 7111-1:2012に準拠して測定し、それらの平均値を、成形板の乾燥時の衝撃強さとして採用した。
吸水時の衝撃強さを測定するために、まず、3個の試験片を20℃の水中に72時間浸漬した。次いで、試験片を取り出し、表面に付着した水を拭き取った後、直ちに、各試験片の衝撃強さ(ノッチなし)を、JIS K 7111-1:2012に準拠して測定し、それらの平均値を、成形板の吸水時の衝撃強さとして採用した。
乾燥時および吸水時の衝撃強さは、株式会社東洋精機製作所製、シャルピー(デジタル)衝撃試験機、型式DG-CBを用いて測定した。
成形板の寸法変化率(長さ変化率)は、JIS A 5430:2018に準拠して測定した。具体的には、測定する成形板から、長さ約160mm、幅約50mmの短冊状の試験片を3個切り出した後、これらの試験片を乾燥機に入れ、乾燥機内の温度を60℃±3℃で24時間を保った。その後、試験片を取り出し、シリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した。次に、各試験片に乳色ガラスを貼り、標線間が約140mmになるように標線を刻み、1/500mmの精度を持つコンパレータで標線間の長さを測定し、その長さをL1(mm)とした。続いて、試験片の長手方向が水平になるようこば立てし、試験片の上端が水面下約30mmとなるようにして、20℃±1.5℃の水中に浸漬した。24時間後、水中から試験片を取り出して表面に付着した水を拭き取り、標線間の長さを再び測定し、その長さをL2(mm)とした。下記式により、各試験片について吸水による寸法変化率(%)を算出し、それらの平均値を、成形板の寸法変化率として採用した。
吸水による寸法変化率={(L2-L1)/L1}×100
成形板の吸水率は、JIS A 5430:2018に準拠して測定した。具体的には、測定する成形板から、長さ約180mm、幅約50mmの短冊状の試験片を4個切り出した後、試験片を20℃±1.5℃の水中に浸漬した。24時間経過後、試験片を取り出し、表面に付着した水を拭き取った後、直ちに、各試験片の質量(吸水時の試験片の質量W3)を測定した。次に、これらの試験片を105℃±5℃に調整した撹拌機付き乾燥機に入れ、24時間乾燥した後取り出し、シリカゲルで調湿したデシケータに入れ、室温20℃±1.5℃になるまで放置した。その後、各試験片の質量(乾燥時の試験片の質量W0)を測定した。下記式により、各試験片の吸水率(%)を算出し、それらの平均値を、成形板の吸水率として採用した。
吸水率={(W3-W0)/W0}×100
測定する成形板から、約40mm×約40mmの試験片を8個切り出した。
乾燥時の層間密着強度を測定するために、まず、気乾状態にある4個の試験片の表および裏に、エポキシ樹脂系接着剤を用いて約40mm×約40mmの鋼製冶具を接着し、24時間以上室温で放置することによりエポキシ樹脂系接着剤を硬化させ、接着強度を充分得た後、40℃に設定した撹拌機付き空気乾燥機において72時間乾燥した。各試験片について、島津オートグラフAG5000-Bを用いて0.5mm/分の速度で接着面に対して直角に引っ張り、そのときの最大引張荷重を読み取った。最大引張荷重を試験片の面積で除することにより各試験片の層間密着強度を算出し、それらの平均値を、成形板の乾燥時の層間密着強度として採用した。
吸水時の層間密着強度を測定するために、まず、気乾状態にある4個の試験片の表および裏に、エポキシ樹脂系接着剤を用いて約40mm×約40mmの鋼製冶具を接着し、24時間以上室温で放置することによりエポキシ樹脂系接着剤を硬化させた。次いで、試験片を20℃の水中に72時間浸漬した。試験片を取り出し、表面に付着した水を拭き取った後、直ちに、島津オートグラフAG5000-Bを用いて0.5mm/分の速度で接着面に対して直角に引っ張り、そのときの最大引張荷重を読み取った。最大引張荷重を試験片の面積で除することにより各試験片の層間密着強度を算出し、それらの平均値を、成形板の吸水時の層間密着強度として採用した。
各実施例および各比較例における抄造工程(円網でスラリーを抄き上げる工程)での歩留り率を求めた。具体的には、円網に投入したスラリーを汲み取り、その質量(A1)を測定した。濾過装置(ヌッチェおよび吸引瓶)を用いて固形分を濾取し、105℃の乾燥機にて乾燥質量が一定になるまで12時間以上乾燥し、固形分の質量(B1)を測定した。下記式により円網に投入したスラリーの濃度C1を求めた。
濃度C1=(B1/A1)×100
同様に、円網を通過した後のスラリーを汲み取り、その濃度C2を下記式により求めた。
濃度C2=(B2/A2)×100
ここで、A2は、汲み取った円網通過後のスラリーの質量であり、B2は、その固形分の質量である。
下記式により、抄造工程での歩留り率を求めた。
抄造工程での歩留り率(%)={(C1-C2)/C1}×100
JIS A 5430:2018の発熱性試験により、総発熱量を求めた。具体的には、測定する成形板から、99±1mm角の試験片を2個切り出し、温度23℃±2℃、相対湿度50±5%で一定質量になるまで保持した後、発熱性試験を実施した。加熱時間は20分間とした。各試験片の総発熱量の平均値を、その成形板の総発熱量として採用した。
パルプ(NBKP、株式会社パルテックス製セロファイバー、CSF値:115mL)を水に分散させた。得られた分散体に、重質炭酸カルシウム(ブレーン比表面積:4000cm2/g)および普通ポルトランドセメント(太平洋セメント株式会社製:普通ポルトランドセメント)を投入して混合した。得られた混合物にポリビニルアルコール系繊維1(表2では「PVA1」と記載)を添加して更に混合した。各成分の割合は表2に示す通りであり、固形分濃度16質量%の硬化性組成物を得た。
得られた硬化性組成物を、定量供給装置のフィードタンクに移送し、フィードタンクから円網に供給した。工程循環水によって硬化性組成物の固形分濃度を4質量%に調整し、ミニハチェックマシンを用いて抄造を行った。
次いで、円網工程で得られた抄造シートをメーキングロールにて15枚積層し、積層された抄造シートに21.6MPaの圧力を印加しながら20分間プレスすることにより搾液した。搾液後のシートを、恒温恒湿養生装置において、温度50℃、飽和湿度(RH98%)条件下で24時間養生し、その後、ラップシートで包み、温度20℃、湿度60%の環境下で13日間養生(あわせて材齢14日間の養生)した。ラップシートを除去したシートを、温度120℃に設定したロールドライヤー式の乾燥機において2時間乾燥することにより、成形板を得た。
得られた成形板について、各種の測定および評価を実施した。結果を表2に示す。なお、表2では、曲げ強さ、衝撃強さおよび層間密着強度の値が各実施例について2つずつ記載されているが、上段の値が乾燥時の値、下段の値が吸水時の値を示している。
各成分を表2に示す割合で用いたこと以外は実施例1と同様にして、成形板を得、得られた成形板について、各種の測定および評価を実施した。結果を、表2および表3に示す。なお、実施例10では、炭酸カルシウムとして、ブレーン比表面積2500cm2/gの重質炭酸カルシウムおよびブレーン比表面積6200cm2/gの重質炭酸カルシウムを質量比50:50で用いた。従って、実施例10における炭酸カルシウムのブレーン比表面積は、4500cm2/g(=2500×0.5+6500×0.5)と計算される。また、フライアッシュまたはシリカフュームを配合した実施例では、普通ポルトランドセメントを投入する際にフライアッシュまたはシリカフュームも投入した。
PVA1に代えてPVA2を用いたこと、およびプレス時の圧力を21.6MPaから7.85MPaに変更したこと以外は実施例1と同様にして、成形板を得、得られた成形板について、各種の測定および評価を実施した。結果を、表2に示す。
一方、表3から、成形板が特定の細孔容積比(B)/(A)を有さない比較例1では、対応する実施例(実施例1~4)より低い曲げ強さおよび高い寸法変化率を示すことが分かる。また、比較例1では、層間密着強度も小さく、抄造工程での歩留り率も小さいことが分かる。成形板が特定の割合で各成分を含まない比較例2では、対応する実施例(実施例1および5)より低い曲げ強さを示すことが分かる。また、比較例2では、層間密着強度も小さいことが分かる。成形板が特定の割合で各成分を含まず、特定の細孔容積比(B)/(A)を有さない比較例3では、対応する実施例(実施例1および5)より低い曲げ強さおよび高い寸法変化率を示すことが分かる。また、比較例3では、層間密着強度も小さく、総発熱量も高いことが分かる。
Claims (15)
- ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる多孔質の成形板であって、
水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0である、成形板。 - ポゾラン反応に関与しない物質は、炭酸カルシウム、硅石粉およびタルクからなる群から選択される1以上の物質である、請求項1に記載の成形板。
- 炭酸カルシウムは重質炭酸カルシウムである、請求項2に記載の成形板。
- マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質を更に含んでなる、請求項1に記載の成形板。
- 合成繊維およびパルプの合計含有量は成形板の総質量に対して7質量%以下である、請求項1に記載の成形板。
- 合成繊維の平均繊維径は50μm以下である、請求項1に記載の成形板。
- 合成繊維の平均繊維径は5μm以上、40μm以下である、請求項6に記載の成形板。
- 合成繊維のアスペクト比は150以上、1000以下である、請求項1に記載の成形板。
- 合成繊維は、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維およびナイロン繊維からなる群から選択される少なくとも一種である、請求項1に記載の成形板。
- JIS A 5430:2018に準拠して測定された吸水率は15%以上、28%以下である、請求項1に記載の成形板。
- JIS A 5430:2018の発熱性試験に準拠して測定された総発熱量は8.0MJ/m2以下である、請求項1に記載の成形板。
- JIS A 5430:2018に準拠して測定された嵩密度は1.50g/cm3以上である、請求項1に記載の成形板。
- JIS A 1408:2017に準拠して測定された吸水時の曲げ強さは15N/mm2以上である、請求項1に記載の成形板。
- JIS A 5430:2018に準拠して測定された吸水率は26%以下である、請求項1に記載の成形板。
- 前記細孔容積(B)は2.50mL/g以下である、請求項1に記載の成形板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023558034A JPWO2023080122A1 (ja) | 2021-11-02 | 2022-10-31 | |
EP22889942.3A EP4428110A1 (en) | 2021-11-02 | 2022-10-31 | Porous molded plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-179694 | 2021-11-02 | ||
JP2021179694 | 2021-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023080122A1 true WO2023080122A1 (ja) | 2023-05-11 |
Family
ID=86241126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040788 WO2023080122A1 (ja) | 2021-11-02 | 2022-10-31 | 多孔質の成形板 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4428110A1 (ja) |
JP (1) | JPWO2023080122A1 (ja) |
TW (1) | TW202334058A (ja) |
WO (1) | WO2023080122A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126544A (ja) * | 1984-07-13 | 1986-02-05 | 株式会社クラレ | 水硬性無機質抄造製品とその製造方法 |
JPH07237948A (ja) * | 1994-02-25 | 1995-09-12 | Matsushita Electric Works Ltd | セメント組成物 |
JP2001048630A (ja) * | 1999-06-02 | 2001-02-20 | Asano Slate Co Ltd | 無機質耐力面材およびその製造方法 |
JP2003292365A (ja) * | 2002-03-29 | 2003-10-15 | A & A Material Corp | セメント系無機硬化体及びその製造法 |
JP2004123500A (ja) * | 2002-10-04 | 2004-04-22 | A & A Material Corp | 繊維強化セメント板の製造方法 |
US20050072056A1 (en) | 2003-10-02 | 2005-04-07 | Saint-Gobain Materiaux De Construction S.A.S. | Cementitious product in panel form and manufacturing process |
JP2005205879A (ja) | 2003-12-26 | 2005-08-04 | A & A Material Corp | 無機質抄造板およびその製造方法 |
JP2007001043A (ja) * | 2005-06-21 | 2007-01-11 | A & A Material Corp | 表面化粧無機質抄造板 |
CN108276023A (zh) | 2018-01-23 | 2018-07-13 | 合肥梵腾环保科技有限公司 | 一种节能环保轻质隔墙板及其制备方法 |
JP2021179694A (ja) | 2020-05-11 | 2021-11-18 | 凸版印刷株式会社 | 管理サーバ、管理システム、管理方法、及びプログラム |
-
2022
- 2022-10-31 EP EP22889942.3A patent/EP4428110A1/en active Pending
- 2022-10-31 JP JP2023558034A patent/JPWO2023080122A1/ja active Pending
- 2022-10-31 TW TW111141315A patent/TW202334058A/zh unknown
- 2022-10-31 WO PCT/JP2022/040788 patent/WO2023080122A1/ja active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126544A (ja) * | 1984-07-13 | 1986-02-05 | 株式会社クラレ | 水硬性無機質抄造製品とその製造方法 |
JPH07237948A (ja) * | 1994-02-25 | 1995-09-12 | Matsushita Electric Works Ltd | セメント組成物 |
JP2001048630A (ja) * | 1999-06-02 | 2001-02-20 | Asano Slate Co Ltd | 無機質耐力面材およびその製造方法 |
JP2003292365A (ja) * | 2002-03-29 | 2003-10-15 | A & A Material Corp | セメント系無機硬化体及びその製造法 |
JP2004123500A (ja) * | 2002-10-04 | 2004-04-22 | A & A Material Corp | 繊維強化セメント板の製造方法 |
US20050072056A1 (en) | 2003-10-02 | 2005-04-07 | Saint-Gobain Materiaux De Construction S.A.S. | Cementitious product in panel form and manufacturing process |
JP2005205879A (ja) | 2003-12-26 | 2005-08-04 | A & A Material Corp | 無機質抄造板およびその製造方法 |
JP2007001043A (ja) * | 2005-06-21 | 2007-01-11 | A & A Material Corp | 表面化粧無機質抄造板 |
CN108276023A (zh) | 2018-01-23 | 2018-07-13 | 合肥梵腾环保科技有限公司 | 一种节能环保轻质隔墙板及其制备方法 |
JP2021179694A (ja) | 2020-05-11 | 2021-11-18 | 凸版印刷株式会社 | 管理サーバ、管理システム、管理方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023080122A1 (ja) | 2023-05-11 |
EP4428110A1 (en) | 2024-09-11 |
TW202334058A (zh) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101528847B (zh) | 改进的脲甲醛树脂组合物以及用于制造纤维毡的方法 | |
KR100905402B1 (ko) | 무기질판 및 이의 제조방법 | |
SK241092A3 (en) | Formed resistant product reinforced by fibrous | |
JPWO2019159943A1 (ja) | 難燃化した複合繊維およびその製造方法 | |
JP2010120790A (ja) | 繊維混入抄造板及びその製造方法 | |
NZ546876A (en) | Fibers reinforced cement sheet product and production method thereof | |
CN103276626A (zh) | 造纸工艺 | |
JP6898926B2 (ja) | 繊維補強炭酸化セメント成形物およびその製造方法 | |
WO2023080122A1 (ja) | 多孔質の成形板 | |
WO2022004640A1 (ja) | 積層成形板およびその製造方法 | |
CN115992464A (zh) | 低克重挂面箱板纸用的表面施胶剂及其加工方法 | |
US20200207663A1 (en) | Cellulose filaments reinforced cement composite board and method for the manufacture of the same | |
JP7577246B1 (ja) | 水硬性組成物の硬化体 | |
JP6887375B2 (ja) | 繊維含有炭酸化瓦およびその製造方法 | |
JP4732940B2 (ja) | 不燃シート又は不燃成形体 | |
BRPI0711389B1 (pt) | Composição de produtos de cimento-fibra e produto de cimento- fibra | |
WO2024225386A1 (ja) | 水硬性組成物の硬化体 | |
JP7262920B2 (ja) | 水分散性重袋 | |
JP6375125B2 (ja) | ポリビニルアルコール系繊維 | |
CN112469994A (zh) | 包含纤维和无机粒子的结构体的分析方法 | |
JP7499216B2 (ja) | 建材ボードにおける繊維混入板用嵩高剤およびその利用 | |
Balea Martín et al. | Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review | |
JP5215988B2 (ja) | 強化シート又は強化成形体及びそれらの製造方法 | |
JP2721563B2 (ja) | 水硬性成形用組成物 | |
JP3227234B2 (ja) | 水硬性無機質成型製品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889942 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023558034 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024007228 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202447033817 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18706192 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022889942 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022889942 Country of ref document: EP Effective date: 20240603 |
|
ENP | Entry into the national phase |
Ref document number: 112024007228 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240412 |