WO2023080122A1 - 多孔質の成形板 - Google Patents

多孔質の成形板 Download PDF

Info

Publication number
WO2023080122A1
WO2023080122A1 PCT/JP2022/040788 JP2022040788W WO2023080122A1 WO 2023080122 A1 WO2023080122 A1 WO 2023080122A1 JP 2022040788 W JP2022040788 W JP 2022040788W WO 2023080122 A1 WO2023080122 A1 WO 2023080122A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded plate
less
fiber
mass
plate according
Prior art date
Application number
PCT/JP2022/040788
Other languages
English (en)
French (fr)
Inventor
祥徳 人見
彰 今川
敦久 小川
郷史 勝谷
三郎 羽田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023558034A priority Critical patent/JPWO2023080122A1/ja
Priority to EP22889942.3A priority patent/EP4428110A1/en
Publication of WO2023080122A1 publication Critical patent/WO2023080122A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • a cement-based paper-making board is obtained by curing and hardening a sheet formed by a paper-making method in which a slurry of cement and fibers suspended in an aqueous medium is made with a mesh.
  • the papermaking method is used in a wide range of fields due to its versatility in manufacturing, and is often used in the field of construction in particular for manufacturing ceiling materials, interior materials, exterior materials, flooring materials, and the like.
  • the production of cement requires a very large amount of energy, and the accompanying large amount of carbon dioxide emission is regarded as a problem.
  • a steam boiler or the like is normally used for curing, which also discharges carbon dioxide.
  • Patent Document 1 discloses a panel comprising a hydraulic binder such as cement, a filler such as calcium carbonate, and a synthetic fiber.
  • Patent Document 3 discloses portland cement, calcium carbonate, calcium oxide, paraffin diatomaceous earth composite phase change material, modified carbon fiber, Manufactured from raw materials containing activated bentonite, rubber powder, modified loess powder, solid industrial waste, fiber, initial strength agent, water reducing agent, foaming agent, rare earth catalyst and water in a specific proportion, energy saving and environmentally friendly.
  • a lightweight partition wall is disclosed.
  • the problem to be solved by the present invention is to provide a shaped plate with high bending strength and low rate of dimensional change.
  • a porous molded plate comprising 35 to 70% by mass of substances not involved in pozzolanic reactions, 20 to 61.5% by mass of cement, 1 to 3% by mass of synthetic fibers, and 2.5 to 7% by mass of pulp. and
  • the ratio (B)/(A) of the pore volume (B) in the range of 6 to 560 nm to the pore volume (A) in the range of 660 to 9100 nm in the pore size distribution of the molded plate obtained by the mercury intrusion method is 1.
  • a molded plate that is between .70 and 6.0.
  • the molded plate of the present invention contains 35 to 70% by weight of substances not involved in the pozzolanic reaction, 20 to 61.5% by weight of cement, 1 to 3% by weight of synthetic fiber, and 2.5% by weight of pulp, based on the total weight of the molded plate. ⁇ 7% by mass. If the ratio of each component deviates from the specified range mentioned above, it is difficult to obtain a molded plate having both high bending strength and low dimensional change rate.
  • the molded plate preferably contains 40 to 67.5% by weight of a substance that does not participate in the pozzolanic reaction, 25 to 60.5% by weight of cement, and 1 to 2% by weight of synthetic fiber, based on the total weight of the molded plate. and 2.5-6% by weight pulp, more preferably 45-65% by weight non-pozzolanic substances, 30-59.5% by weight cement, 1-1.5% by weight synthetic fibers, and 3-5% by weight of pulp.
  • the total content of synthetic fibers and pulp is 7% by mass or less, preferably 6% by mass or less, relative to the total mass of the molded plate.
  • the total calorific value of the molded plate tends to be smaller, which means that the molded plate has excellent flame retardancy.
  • the molded plate of the present invention is porous.
  • the ratio (B)/(A) of the pore volume (B) in the range of 6 to 560 nm to the pore volume (A) in the range of 660 to 9100 nm in the pore size distribution of the molded plate obtained by the mercury intrusion method is 1. .70 to 6.0, preferably 1.75 to 5.8, more preferably 1.80 to 5.6, particularly preferably 1.85 to 5.4.
  • the ratio (B)/(A) is preferably 5.3 or less, more preferably 5.1 or less, and even more preferably less than 5.0, in addition to higher bending strength and low dimensional change rate, molding It is easy to obtain a higher yield rate in the production of the board.
  • the ratio (B)/(A) may be 4.9 or less, 4.8 or less, 4.5 or less, or 4.0 or less. Also, the ratio (B)/(A) may be preferably 2.00 or more, more preferably 2.10 or more, even more preferably 2.20 or more, and even more preferably 2.50 or more.
  • the ratio (B)/(A) can be adjusted, for example, by using a substance having a specific Blaine specific surface area as a substance that does not participate in the pozzolanic reaction, and/or by adjusting the molding conditions (especially press pressure). , can be adjusted to the desired value.
  • the pore volume ratio (B)/(A) can be measured by the method described in Examples.
  • the molded plate contains said four components (substances not involved in the pozzolanic reaction, cement, synthetic fibers and pulp) in specific proportions and has a specific ratio (B)/(A).
  • B specific ratio
  • the molded plate of the present invention can be produced by curing a curable composition containing the above four components. By applying an appropriate pressure during the curing process and molding, substances that do not participate in the pozzolanic reaction appropriately fill the voids in the molded plate during the curing process, resulting in increased adhesion between the synthetic fibers and the cement matrix.
  • the pore volume (B) in the range of 6 to 560 nm is preferably 2.50 mL/g or less, more preferably 2.40 mL/g or less, particularly preferably 2.30 mL/g or less, and even more preferably 2.20 mL. / g or less.
  • the pore volume (B) is equal to or less than the upper limit, the obtained molded plate tends to have excellent bending strength when dry and bending strength when absorbing water.
  • the fact that the pore volume (B) is equal to or less than the upper limit value is related to the high adhesion between the synthetic fiber and the cement matrix as described above, and as a result, the molded plate can be bent when dry and when absorbing water. It is presumed that it tends to be superior in strength.
  • pores in the range of 6 to 560 nm greatly affect water absorption. presumed to be on the rise.
  • the pore volume (B) is preferably 2.10 mL/g or less, more preferably 2.00 mL/g or less, it is easy to obtain a higher yield rate in the production of molded plates.
  • the pore volume (B) can be adjusted, for example, by using a substance having a specific Blaine specific surface area as a substance that does not participate in the pozzolanic reaction and/or by adjusting the molding conditions (especially press pressure). can be adjusted to the value of The pore volume (B) can be measured by the method described in Examples.
  • the substance that does not participate in the pozzolanic reaction is preferably one or more substances selected from the group consisting of calcium carbonate, quartzite powder and talc. From the standpoint of availability and cost, the substance that does not participate in the pozzolanic reaction is preferably ground calcium carbonate.
  • the substance that does not participate in the pozzolanic reaction preferably has a Blaine specific surface area of 2200-12000 cm 2 /g, more preferably 3000-11000 cm 2 /g, particularly preferably 4000-11000 cm 2 /g.
  • the Blaine specific surface area is within the above range, it is easy to obtain a specific ratio (B)/(A) in the molded plate.
  • the Blaine specific surface area according to their ratio is preferably within the above range.
  • the Blaine specific surface area of the substance not involved in the pozzolanic reaction is preferably 10,000 cm 2 /g or less, more preferably 9,000 cm 2 /g or less, a higher yield rate is likely to be obtained in the production of molded plates.
  • the Blaine specific surface area can be measured using an air permeation method in accordance with JIS R5201:2015.
  • Substances that do not participate in such pozzolanic reactions are commercially available, and examples of commercially available products include calcium carbonate (first grade) manufactured by Sankyo Seifun Co., Ltd.
  • cements in the present invention include Portland cements such as ordinary Portland cement, high-early-strength Portland cement, ultra-high-early-strength Portland cement and moderate-heat Portland cement; alumina cement; blast-furnace cement; silica cement; and fly ash cement; is mentioned. These cements may be used alone or in combination of two or more. From the viewpoint of versatility and/or cost, it is preferable to use ordinary Portland cement. From the viewpoint of easily obtaining strength development at an early stage, it is preferable to use high-early-strength Portland cement or ultra-high-early-strength Portland cement. It is preferable to use blast-furnace cement from the viewpoint of easily obtaining the effect of improving the long-term strength.
  • Portland cements such as ordinary Portland cement, high-early-strength Portland cement, ultra-high-early-strength Portland cement and moderate-heat Portland cement
  • alumina cement blast-furnace cement
  • silica cement silica cement
  • the above cement is commercially available, and an example of a commercially available product is Ordinary Portland Cement manufactured by Taiheiyo Cement Co., Ltd.
  • the synthetic fiber preferably has an average fiber diameter of 5 ⁇ m or more, more preferably 6 ⁇ m or more, particularly preferably 7 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the average fiber diameter of the synthetic fibers is not less than the lower limit and not more than the upper limit, it is easy to achieve both good dispersibility of the synthetic fibers in the curable composition and good fiber reinforcement in the molded article. .
  • the average fiber diameter is determined by randomly taking out 100 fibers, measuring the fiber diameter at the central portion in the length direction of each fiber with an optical microscope, and calculating the average value.
  • the average fiber length of the synthetic fibers is preferably 2 to 30 mm, more preferably 2 to 20 mm, from the viewpoint of easily achieving both good fiber dispersibility in the curable composition and good fiber reinforcement in the molded article. is.
  • the average fiber length can be determined according to JIS L 1015:2010.
  • the aspect ratio (fiber length/fiber diameter) of the synthetic fiber is preferably 150 or more, more preferably 175 or more, particularly preferably 200 or more, preferably 1000 or less, more preferably 900 or less, and particularly preferably 800 or less. be.
  • the aspect ratio of the synthetic fibers is at least the lower limit and at most the upper limit, it is easy to achieve both good dispersibility of the synthetic fibers in the curable composition and good fiber reinforcement in the molded article.
  • the aspect ratio can be calculated from the average fiber length and average fiber diameter.
  • the fiber tensile strength of synthetic fibers is preferably 3 cN/dtex or more, more preferably 5 cN/dtex or more, and particularly preferably 7 cN/dtex or more.
  • the upper limit of the fiber tensile strength of the synthetic fiber in the present invention is appropriately set according to the type of fiber, and is, for example, 30 cN/dtex or less. Fiber tensile strength can be obtained in accordance with JIS L 1015:2010.
  • Synthetic fibers may be inorganic synthetic fibers or organic synthetic fibers.
  • Synthetic fibers are preferably organic synthetic fibers, and more preferably a group consisting of polyvinyl alcohol (hereinafter sometimes referred to as "PVA") fibers, polyethylene fibers, polypropylene fibers, acrylic fibers, aramid fibers and nylon fibers. is at least one selected from It is preferable to use PVA-based fibers and/or polypropylene fibers from the viewpoints of easily imparting excellent reinforcing properties to the molded plate and being inexpensive.
  • PVA polyvinyl alcohol
  • PVA-based fibers such as vinylon fibers are used as synthetic fibers
  • PVA-based fibers having the following characteristics may be used.
  • the degree of polymerization of the PVA-based polymer that constitutes the PVA-based fiber can be appropriately selected depending on the purpose, and is not particularly limited. Considering the mechanical properties of the resulting fiber, the average degree of polymerization of the PVA-based polymer obtained from the viscosity of the aqueous solution at 30°C is preferably about 500 to 20000, more preferably about 800 to 15000, and particularly preferably 1000 to 1000. It is about 10000.
  • the average degree of polymerization of the PVA-based polymer is preferably 1000 or more, more preferably 1200 or more, more preferably 1500 or more, and particularly preferably 1750 or more, from the viewpoint of the strength of the obtained fiber.
  • the PVA-based polymer may be a medium polymerization product with an average polymerization degree of 1000 or more and less than 3000, or a high polymerization degree product with an average polymerization degree of 3000 or more.
  • the degree of saponification of the PVA-based polymer can also be appropriately selected according to the purpose, and is not particularly limited.
  • the degree of saponification of the PVA-based polymer may be, for example, 95 mol % or more, preferably 98 mol % or more, from the viewpoint of the mechanical properties of the obtained fiber.
  • the degree of saponification of the PVA-based polymer may be 99 mol% or more, or 99.8 mol% or more. When the degree of saponification of the PVA-based polymer is at least the above lower limit, the resulting fiber tends to have good mechanical properties, processability, manufacturing cost, and the like.
  • the PVA-based fiber used in the present invention is produced by dissolving such a PVA-based polymer in a solvent, spinning it by a wet, dry-wet or dry method, and drawing it with hot heat.
  • Wet spinning is a method in which a spinning dope is discharged directly from a spinning nozzle into a solidifying bath.
  • Dry-wet spinning is a method in which a spinning stock solution is once discharged from a spinning nozzle into air or an inert gas at an arbitrary distance, and then introduced into a solidification bath.
  • Dry spinning is a method of extruding a spinning dope into air or an inert gas.
  • the PVA-based fiber may be subjected to a drawing treatment, if necessary.
  • acetalization treatment or the like which is generally performed for PVA-based fibers, may be performed.
  • the solvent used for the spinning stock solution of PVA-based fibers is not particularly limited as long as it can dissolve PVA.
  • water, dimethylsulfoxide (DMSO), dimethylformamide, dimethylacetamide, and polyhydric alcohols eg, glycerin, ethylene glycol, triethylene glycol, etc.
  • DMSO dimethylsulfoxide
  • polyhydric alcohols eg, glycerin, ethylene glycol, triethylene glycol, etc.
  • water or an organic solvent as the solvent.
  • water and DMSO are particularly preferred from the viewpoint of ease of supply and impact on the environment.
  • the concentration of the polymer in the spinning dope varies depending on the composition and degree of polymerization of the PVA-based polymer and the type of solvent, but is generally 6-60% by mass.
  • solvents may be used even in dry spinning. In that case, either water or an organic solvent may be used.
  • the spinning dope may contain additives and the like depending on the purpose, as long as they do not impair the effects of the present invention.
  • additives include boric acid, surfactants, antioxidants, decomposition inhibitors, anti-freezing agents, pH adjusters, masking agents, coloring agents and oils.
  • the solvent used in the solidification bath may be appropriately selected according to the type of solvent used in the spinning dope.
  • the solidifying bath may be an aqueous solution of an inorganic salt (for example, sodium sulfate, ammonium sulfate, sodium carbonate, sodium hydroxide, etc.) capable of solidifying the PVA-based polymer, or an alkaline aqueous solution.
  • an inorganic salt for example, sodium sulfate, ammonium sulfate, sodium carbonate, sodium hydroxide, etc.
  • the solidifying bath includes, for example, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, which have the ability to solidify the PVA-based polymer. may be used.
  • a PVA-based fiber obtained by dry spinning or a PVA-based fiber obtained by wet spinning from a spinning stock solution using water or an organic solvent as a solvent is preferable from the viewpoint of fiber tensile strength.
  • the raw yarn may be passed through an extraction bath, or the raw yarn may be wet-stretched at the same time as the extraction.
  • the fiber After wet drawing, the fiber may be dried and, if necessary, further subjected to dry heat drawing.
  • the total stretching ratio product of wet stretching and stretching ratio after drying
  • fibers may be used as synthetic fibers, examples of which include polyvinyl alcohol fibers manufactured by Kuraray Co., Ltd., polypropylene fibers manufactured by Daiwabo Co., Ltd., organic fibers such as nylon fibers manufactured by Toray Industries, Inc., and NEC. Inorganic fibers such as glass fibers manufactured by Glass Co., Ltd. and Taiheiyo Materials Co., Ltd. can be mentioned.
  • the pulp may be either beaten or unbeaten. From the viewpoint of easily obtaining the desired bending strength and impact strength, it is preferable to use beaten pulp, and the freeness test method JIS P 8121-2: 2012 conforms to the Canadian standard freeness method. It is more preferable to use pulp with a measured freeness of 50 to 400 mL, more preferably 100 to 150 mL, in terms of CSF value. In the production of molded plates, from the viewpoint of easily obtaining the desired yield rate, when adopting the cylinder papermaking method described later, it is preferable to use pulp with a CSF value of 100 to 150 mL, and the flow-on papermaking method is adopted. If so, it is preferable to use pulp with a CSF value of 150-400 mL.
  • pulps can be used as the pulp.
  • pulp include conifers, hardwoods, manila hemp, mitsumata, paper mulberry, gampi, salago, mulberry, straw, bamboo, reed, mackerel, larang grass, esparto, bagasse, sisal, kenaf, linter, banana and waste paper.
  • conifers include conifers of the family Cedar, Pinaceae, Cupressaceae, Araucariaceae, etc.
  • Examples of the broadleaf trees include Elmaceae, Fagaceae, Myrtaceae, Capriaceae, Oleaceae, and mandarin oranges.
  • broad-leaved trees such as the family, Betulaceae, Maple family, Walnut family, Linden family, Araliaceae, Sapotaceae, Euonymus family, Apocynaceae, Verbenaceae, Magnolia family, Aragonaceae, and the like.
  • These pulps may be bleached or unbleached pulps.
  • the pulp may be used alone or in combination of two or more.
  • Such pulp is commercially available, and an example of a commercially available product is Cellofiber manufactured by Partek Co., Ltd.
  • the shaped plate may optionally further comprise one or more substances selected from the group consisting of mica, fly ash and silica fume.
  • the molded plate contains mica and/or silica fume, its content or total content is preferably 2 to 14% by mass, more preferably 2 to 10% by mass, more preferably 2 to 10% by mass, based on the total mass of the molded plate 3 to 10% by mass, more preferably 4 to 8% by mass.
  • the molded plate contains mica, the effects of smaller dimensional change rate and improved flame retardancy (that is, reduced total calorific value) are likely to be exhibited.
  • the molded plate When the molded plate contains silica fume, the molded plate tends to exhibit higher bending strength. This is probably because silica fume also participates in the pozzolanic reaction, and because silica fume has a fine particle size, it is easy to obtain a close-packing effect of the cement matrix. On the other hand, when the content of silica fume increases, the viscosity of the curable composition tends to increase, and the papermaking properties in the cylinder screen process tend to deteriorate. By setting the content of silica fume to preferably 10% by mass or less with respect to the total mass of the molded plate, it is easy to ensure good paper-making properties in the cylinder step.
  • the molded plate contains fly ash
  • its content is preferably 10 to 30% by weight, more preferably 15 to 25% by weight, based on the total weight of the molded plate.
  • fly ash replaces a part of the substances that do not participate in the pozzolanic reaction.
  • the fly ash also participates in the pozzolanic reaction, so that the molded plate tends to exhibit better long-term strength and higher bending strength.
  • the mica is preferably a 30 to 200 mesh pass product, more preferably a 40 to 120 mesh pass product in the JIS test sieve test. It is particularly preferable to be a product that passes ⁇ 80 mesh.
  • the fly ash JIS A6201: 2015 stipulated, Type I (Blaine specific surface area 5000 or more), II type (Blaine specific surface area 2500 or more), III type (Blaine specific surface area 2500 or more) or IV type (Blaine ratio surface area of 1500 or greater) may be used.
  • silica fume silica fume defined in JIS A 6207:2016 may be used. Generally, silica fume has an average particle size of 0.1 to 0.5 ⁇ m.
  • Mica, fly ash and silica fume are commercially available.
  • Examples of commercially available mica products include mica manufactured by Tomoe Kogyo Co., Ltd.
  • Examples of commercially available fly ash products include Fine Ash, Yonden Fly Ash and Eco Ash manufactured by Yonden Business Co., Ltd.
  • Examples of commercial products of silica fume include EFACO manufactured by Tomoe Kogyo Co., Ltd.
  • the molded plate may further comprise one or more optional additives and auxiliaries.
  • an aqueous solution of an anionic polymer flocculant at a concentration of 0.5 to 2 g/L to the curable composition.
  • the concentration of the anionic polymer flocculant in the curable composition is preferably 50 to 250 ppm/solid content, more preferably 75 to 175 ppm/solid content, more preferably 100 to 150 ppm/solid content. preferably.
  • anionic polymer flocculants include IK Flock T210 manufactured by Nippon Giken Co., Ltd.
  • the molded plate of the present invention is preferably produced by a papermaking method.
  • the papermaking method is a method in which a slurry (hardening composition) obtained by suspending a solid such as cement in an aqueous medium is filtered through a wire mesh, and the filtered material is formed into a sheet.
  • Papermaking methods include a cylinder papermaking method (Hatchek method) or a fourdrinier papermaking method, in which a thin sheet material filtered out is successively laminated on a making roll until it reaches a desired thickness to obtain a molded plate, and a thick slurry is felted.
  • It includes a flow-on papermaking method in which a molded plate is obtained by feeding the paper to the top and successively laminating it on a making roll until the desired thickness is obtained in one or several times. From the viewpoints of easily obtaining a uniform molded plate and facilitating adjustment of the thickness, the circular net paper making method or the fourdrinier paper making method is preferred, and from the viewpoint of mass production, the circular net paper making method is more preferred.
  • the manufacturing method by the cylinder papermaking method is usually preparing a curable composition by mixing substances that do not participate in the pozzolanic reaction, cement, synthetic fibers, pulp and water, and optionally the other components described above, optional additives and auxiliaries;
  • the method of preparing the curable composition is not particularly limited.
  • the curable composition can be prepared by mixing the components by any known or conventional mixing means such as a mixer.
  • mixing means include mixers with high stirring performance, and examples thereof include vertical mixers, blade mixers, screw mixers, cone mixers and agitator mixers used in the papermaking method.
  • each component is not particularly limited, but from the viewpoint of easily obtaining a curable composition in which the solid components are uniformly dispersed, the pulp is put into water and stirred, and then, in any order, it participates in the pozzolanic reaction. It is preferred to add and stir the non-staining material, cement and optionally other ingredients, additives and auxiliaries, and finally add the synthetic fibers.
  • the solid content concentration of the curable composition is usually 55-6% by mass, preferably 40-8% by mass, more preferably 25-10% by mass.
  • the amount of substances not involved in the pozzolanic reaction is 35 to 70% by mass (preferably 40 to 67% .5% by weight, more preferably 45-65% by weight), the amount of cement is 20-61.5% by weight (preferably 25-60.5% by weight, more preferably 30-59.5% by weight), synthetic
  • the amount of fiber is 1-3% by mass (preferably 1-2% by mass, more preferably 1-1.5% by mass), and the amount of pulp is 2.5-7% by mass (preferably 2.5-6% by mass).
  • the amount of mica is 0-10% by weight (for example, 2-10% by weight, 4-8% by weight)
  • the amount of fly ash is 0-30% by weight (for example, 10-30% by weight, 15-25% by weight)
  • the amount of silica fume is 0-14% by weight (for example, 2-14% by weight, 0-10% by weight, 2-10% by weight, 3-10% by weight, 4 ⁇ 8% by mass)
  • the amount of optional additives and auxiliaries is 0-3% by mass (in the case of aqueous solutions of anionic polymer flocculants, for example, 50-250ppm, 75-175ppm, 100-150ppm). is preferred.
  • the curable composition is put into the feed tank of the wet papermaking machine, and the solid content concentration of the curable composition is usually adjusted to about 10 to 1% by mass (preferably 8 to 3% by mass) with process circulating water. .
  • the curable composition supplied from the feed tank to the vat is drawn up on the surface of the circular net by the rotation of the circular net with internal negative pressure in the vat to form a papermaking sheet, which is conveyed to the making roll.
  • a making roll is used to laminate the papermaking sheets so as to have a desired thickness, and the laminated papermaking sheets are cut to a predetermined length.
  • the yield rate in the papermaking process is preferably 85% or higher, more preferably 90% or higher.
  • the yield rate is at least the lower limit, higher bending strength, higher interlayer adhesion strength, and/or lower dimensional change rate are likely to be obtained.
  • the yield rate can be adjusted to the above lower limit or higher.
  • the mesh size of the circular net is preferably 45 to 55 meshes per inch from the viewpoint of easily achieving both a yield rate and productivity.
  • the yield rate in the papermaking process can be determined by the method described in Examples below.
  • the molded plate of the present invention contains 35-70% by weight of substances not involved in pozzolanic reactions, 20-61.5% by weight of cement, 1-3% by weight of synthetic fibers, and 2.5-7% by weight of pulp. comprising
  • the ratio of each component in the curable composition may be the ratio of each component in the molded plate.
  • the yield rate in the papermaking process is preferably 85% or more (more preferably 90% or more).
  • the molded plate of the present invention contains 35-70% by weight of substances that do not participate in the pozzolanic reaction, 20-61.5% by weight of cement, 1-3% by weight of synthetic fibers, and 2.5-7% by weight of pulp.
  • a porous molded plate based on a curable composition consisting of a pore volume (A) in the range of 660 to 9100 nm in the pore size distribution of the molded plate obtained by mercury porosimetry.
  • the curable composition optionally further comprises other components (one or more substances selected from the group consisting of mica, fly ash and silica fume) in proportions similar to the proportions of the other components in the molded plate described above. and may further contain optional additives and auxiliaries in the proportions mentioned above.
  • other components one or more substances selected from the group consisting of mica, fly ash and silica fume
  • the number of sheets to be laminated depends on the solid content concentration of the curable composition and the thickness of the molded plate to be manufactured, but it is usually 12 to 18 sheets when the thickness of the molded plate is about 6 mm.
  • the cut sheet is squeezed by applying it with a press.
  • the pressure applied by the press is preferably 2-30 MPa, more preferably 7-27 MPa, and particularly preferably 15-25 MPa.
  • the time for applying pressure is usually 10 to 60 minutes, preferably 15 to 50 minutes, more preferably 20 to 40 minutes.
  • Hardening progresses by curing. Hardening is due to the hydration reaction (setting reaction) of the cement components, but when the water in the sheet evaporates, the hydration reaction of the cement components is inhibited, and hardening may not progress.
  • the relative humidity is preferably 30 to 100%, more preferably 50 to 100%, still more preferably 65 to 100%, still more preferably Is 80 to 100%, particularly preferably 90 to 100% (e.g., 100%) under an atmosphere
  • a high humidity atmosphere preferably 30 to 100%, more preferably 40 to 90 %, more preferably 50 to 80% atmosphere
  • Curing temperature is not particularly limited.
  • the primary curing temperature is, for example, 10 to 90°C, preferably 30 to 80°C, more preferably 40 to 80°C.
  • the curing temperature may be changed within the above range.
  • the secondary curing temperature is, for example, 10°C to 70°C, preferably 20°C to 50°C.
  • the primary curing time depends on the composition of the curable composition and the curing temperature, but is usually 6 hours to 48 hours, preferably 8 hours to 36 hours, more preferably 12 hours to 24 hours.
  • the secondary curing time is usually 1 to 14 days.
  • underwater curing may be performed as secondary curing.
  • the water temperature is usually 10 to 30° C. and the curing time is 8 hours to 13 days.
  • the secondary curing described in the previous paragraph may be carried out for 2 to 13 days.
  • a molded plate is obtained by drying after secondary curing.
  • the drying method is not particularly limited as long as a uniformly dried molded plate can be obtained.
  • the equilibrium moisture content of the molded plate (for example, the moisture content reached when the molded plate is stored in a well-ventilated room for 7 days or more) is about 6% by mass to about 10% by mass. Dry to a moderate moisture content.
  • the moisture content and equilibrium moisture content of the molded plate can be conveniently measured using a Kett moisture meter.
  • the molded plate dried to a constant weight in an air dryer with a stirrer at 105 ° C. is weighed (W 2 ), and the following formula: ⁇ (W 1 ⁇ W 2 )/W 2 ⁇ 100 It can also be obtained by
  • the molded plate obtained after drying has the above ratio (B)/(A) of 1.70 to 6.0. Also, all the embodiments and preferred embodiments mentioned with respect to the molded plates of the present invention can be regarded as embodiments and preferred embodiments with respect to the molded plates obtained after drying.
  • the thickness of the molded plate of the present invention is, for example, 3 to 30 mm, depending on its use.
  • the thickness of the molded plate is preferably 4 mm or more and 20 mm or less, and when it is used as a floor material, the molded plate preferably has a thickness of 8 mm or more and 30 mm or less. preferable.
  • the upper limit of the thickness of the molded plate is not particularly limited, it is preferably up to about 15 mm for the cylinder paper making method, and up to about 50 mm for the fourdrinier paper making method.
  • the thickness of the molded plate can be appropriately determined by adjusting the number of sheets to be laminated and/or the thickness of the squeezed sheet.
  • the thickness of the molded plate can be measured by a general method, for example, by measuring the thickness at a plurality of locations using a digital vernier caliper and calculating the average value.
  • the vertical and horizontal dimensions of the molded plate of the present invention depend on the dimensions of the papermaking machine and the press machine, for example, 3 x 6 shaku (910 mm x 1820 mm) or 4 x 8 shaku (1210 mm x 2440 mm) or 4 x 10 shaku (1210 mm x 3030 mm). Of course, smaller shaped plates having the desired dimensions can also be cut from these larger shaped plates.
  • the bulk density of the molded plate of the present invention measured according to JIS A 5430:2018 is, for example, 1.45 to 1.8 g/cm 3 , preferably 1.50 to 1.75 g/cm 3 , more preferably 1.55 to 1.75 g/cm 3 .
  • the bulk density can be adjusted within the above range by the types of the four components, the mixing ratio of the four components, the pressing pressure and/or the pressing time.
  • the dry bending strength of the molded plate of the present invention measured according to JIS A 1408:2017 is preferably 10 N/mm 2 or more, more preferably 15 N/mm 2 or more, and still more preferably 20 N/mm 2 That's it.
  • the dry flexural strength can be adjusted to the above lower limit or more by adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, the blending ratio of the four components, the pressing pressure and/or the pressing time, for example.
  • the upper limit of the bending strength when dry is not particularly limited, it is usually 50 N/mm 2 or less.
  • the bending strength of the molded plate of the present invention at the time of water absorption measured in accordance with JIS A 1408:2017 is preferably 5 N/mm 2 or more, more preferably 10 N/mm 2 or more, and still more preferably 15 N/mm 2 . That's it.
  • the bending strength at the time of water absorption can be adjusted to the lower limit or more by, for example, adjusting the Blaine specific surface area of substances that do not participate in the pozzolanic reaction, the blending ratio of the four components, pressing pressure and/or pressing time.
  • the upper limit of the bending strength at the time of water absorption is not particularly limited, it is usually 35 N/mm 2 or less.
  • the dimensional change rate (length change rate) of the molded plate of the present invention measured in accordance with JIS A 5430:2018 is preferably 0.150% or less, more preferably 0.130% or less, and particularly preferably 0. .100 or less.
  • the dimensional change rate can be adjusted, for example, to the above upper limit or less by adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, the mixing ratio of the four components, the pressing pressure and/or the pressing time.
  • the molded plates of the invention have low water absorption.
  • a low water absorption rate is preferable because the dimensions of the molded plate are less likely to vary depending on the atmosphere in which the molded plate is used (eg, season, region and/or usage environment). It is also preferable because the bending strength of the molded plate when absorbing water is improved.
  • the water absorption rate of the molded plate of the present invention measured according to JIS A 5430:2018 is preferably 28% or less, more preferably 26% or less, even more preferably 24% or less, and even more preferably 22% or less. Particularly preferably, it is 20% or less.
  • the lower limit of the water absorption rate is not limited, it is preferably 15% or more.
  • the water absorption can be adjusted to the lower limit or more and the upper limit or less by, for example, adjusting the proportion of pulp, adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, pressing pressure and/or pressing time.
  • the total calorific value of the molded plate measured according to the heat build-up test of JIS A 5430:2018 is preferably 8.0 MJ/m 2 or less, more preferably 7.0 MJ/m 2 or less, and still more preferably 6.0 MJ/m 2 or less. 0 MJ/m 2 or less.
  • the lower limit of the total calorific value is not limited, and is, for example, 4.0 MJ/m 2 or more.
  • the total calorific value can be adjusted below the upper limit by, for example, reducing the percentage of organic matter (pulp and synthetic organic fibers) in the molded plate and/or adjusting the ratio (B)/(A).
  • the dry impact strength (type 1 test piece, without notch) measured in accordance with JIS K 7111-1:2012 "Plastics - Determination of Charpy impact properties" of the molded plate is preferably 1.5 kJ / m 2 or more, more preferably 1.8 kJ/m 2 or more, still more preferably 2.1 kJ/m 2 or more.
  • the dry impact strength can be adjusted above the lower limit by, for example, pressing pressure and/or pressing time.
  • the upper limit of the dry impact strength is not particularly limited, but is usually 7 kJ/m 2 or less.
  • the impact strength at the time of water absorption (type 1 test piece, without notch) measured in accordance with JIS K 7111-1:2012 "Plastics - Determination of Charpy impact properties" of the molded plate is preferably 2 kJ / m 2 Above, more preferably 2.5 kJ/m 2 or more, still more preferably 3.0 kJ/m 2 or more.
  • the impact strength at the time of water absorption can be adjusted to above the lower limit value by, for example, pressing pressure and/or pressing time.
  • the upper limit of the impact strength when absorbing water is not particularly limited, it is usually 10 kJ/m 2 or less.
  • the interlayer adhesion strength of the molded plate when dry is preferably 1.5 N/mm 2 or more, more preferably 2.0 N/mm 2 or more, and still more preferably 2.5 N/mm 2 or more. It is preferable that the interlayer adhesion strength at the time of drying is equal to or higher than the above-mentioned lower limit, since delamination during use can be prevented.
  • the interlayer adhesion strength at the time of drying can be adjusted to the above lower limit or more by adjusting the Blaine specific surface area of substances not involved in the pozzolanic reaction, pressing pressure and/or pressing time, for example.
  • the upper limit of the interlayer adhesion strength when dried is not particularly limited, it is usually 6 N/mm 2 or less.
  • the interlayer adhesion strength of the molded plate when water is absorbed is preferably 0.2 N/mm 2 or more, more preferably 0.3 N/mm 2 or more, and still more preferably 0.5 N/mm 2 or more. It is preferable that the interlayer adhesion strength at the time of water absorption is equal to or higher than the above lower limit, since delamination during use can be prevented.
  • the interlayer adhesion strength at the time of water absorption can be adjusted to the lower limit value or higher by, for example, pressing pressure and/or pressing time.
  • the upper limit of the interlayer adhesion strength at the time of water absorption is not particularly limited, it is usually 3 N/mm 2 or less.
  • the interlayer adhesion strength of the molded plate when dried or when water is absorbed can be measured by the method described in Examples below.
  • Pore volume ratio (B)/(A) ⁇ pore volume (B) in the range of 6 to 560 nm ⁇ / ⁇ pore volume (A) in the range of 660 to 9100 nm ⁇
  • the bulk density was measured according to JIS A 5430:2018. Specifically, four strip-shaped test pieces having a length of about 180 mm and a width of about 50 mm were cut out from the molded plate to be measured, and then these test pieces were put into an air dryer equipped with a stirrer and heated at 105 ° C. ⁇ It was dried at 5°C for 24 hours. After that, the removed test piece was placed in a desiccator humidified with silica gel and allowed to stand until the temperature reached 20 ⁇ 1.5° C., and then the mass and volume of each test piece were measured to determine the bulk density. Their average value was taken as the bulk density of the molded plate.
  • test piece was taken out, and after wiping off the water adhering to the surface, the bending strength of each test piece was immediately measured in accordance with JIS A 1408: 2017, and their average value was taken as the water absorption of the molded plate. It was adopted as the bending strength at time.
  • the bending strength when dry and when absorbing water was measured using an autograph "AG50kNX" manufactured by Shimadzu Corporation under the conditions of a bending span of 14.6 cm and a test speed (loading head speed) of 20 mm/min with a central loading method.
  • the dimensional change rate (length change rate) of the molded plate was measured according to JIS A 5430:2018. Specifically, three strip-shaped test pieces having a length of about 160 mm and a width of about 50 mm were cut out from the molded plate to be measured, and then these test pieces were placed in a dryer, and the temperature in the dryer was set to 60 ° C. ⁇ It was kept at 3°C for 24 hours. After that, the test piece was taken out, placed in a desiccator humidified with silica gel, and allowed to stand until the temperature reached 20 ⁇ 1.5°C.
  • a piece of opalescent glass is attached to each test piece, a marked line is engraved so that the distance between the marked lines is about 140 mm, and the length between the marked lines is measured with a comparator having an accuracy of 1/500 mm. was defined as L 1 (mm).
  • the test piece was erected so that the longitudinal direction was horizontal, and the upper end of the test piece was immersed in water at 20°C ⁇ 1.5°C so that the upper end of the test piece was about 30 mm below the water surface. After 24 hours, the test piece was taken out of the water, the water adhering to the surface was wiped off, and the length between the marked lines was measured again, and the length was defined as L 2 (mm).
  • the dimensional change rate (%) due to water absorption was calculated for each test piece by the following formula, and the average value thereof was adopted as the dimensional change rate of the molded plate.
  • Dimensional change rate due to water absorption ⁇ (L 2 ⁇ L 1 )/L 1 ⁇ 100
  • the water absorption rate of the molded plate was measured according to JIS A 5430:2018. Specifically, four strip-shaped test pieces having a length of about 180 mm and a width of about 50 mm were cut out from the molded plate to be measured, and then the test pieces were immersed in water at 20°C ⁇ 1.5°C. After 24 hours had passed, the test pieces were taken out, and after wiping off the water adhering to the surface, the mass of each test piece (weight W 3 of the test piece when water was absorbed) was immediately measured.
  • test pieces are placed in a dryer with a stirrer adjusted to 105°C ⁇ 5°C, dried for 24 hours, taken out, and placed in a desiccator humidified with silica gel, and the room temperature is 20°C ⁇ 1.5°C. left until After that, the mass of each test piece (dry test piece weight W 0 ) was measured.
  • the interlayer adhesion strength of each test piece was calculated by dividing the maximum tensile load by the area of the test piece, and the average value was adopted as the interlayer adhesion strength of the molded plate when dried.
  • steel jigs of about 40 mm x about 40 mm were adhered to the front and back of four air-dried test pieces using an epoxy resin adhesive.
  • the epoxy resin-based adhesive was cured by standing at room temperature for 24 hours or longer. The specimen was then immersed in water at 20°C for 72 hours.
  • test piece After removing the test piece and wiping off the water adhering to the surface, immediately pull it perpendicular to the adhesive surface at a speed of 0.5 mm / min using Shimadzu Autograph AG5000-B, and the maximum tensile load at that time is read.
  • the interlaminar adhesion strength of each test piece was calculated by dividing the maximum tensile load by the area of the test piece, and the average value was adopted as the interlaminar adhesion strength of the molded plate when water was absorbed.
  • yield rate in papermaking process The yield rate in the paper making process (the process of making a slurry with a circular mesh) in each example and each comparative example was determined. Specifically, the slurry put into the circular net was scooped up and its mass (A1) was measured. The solid content was collected by filtration using a filtration device (Nutsche and suction bottle), dried in a drier at 105° C. for 12 hours or more until the dry mass became constant, and the mass (B1) of the solid content was measured. The concentration C1 of the slurry introduced into the circular net was determined by the following formula.
  • Concentration C 1 (B1/A1) x 100
  • concentration C2 (B2/A2) x 100
  • A2 is the mass of the drawn slurry after passing through the mesh
  • B2 is the mass of its solid content.
  • Total calorific value The total calorific value was determined by the heat generation test of JIS A 5430:2018. Specifically, from the molded plate to be measured, two 99 ⁇ 1 mm square test pieces are cut out and held at a temperature of 23 ° C ⁇ 2 ° C and a relative humidity of 50 ⁇ 5% until a constant mass is obtained. carried out. The heating time was 20 minutes. The average value of the total calorific value of each test piece was adopted as the total calorific value of the molded plate.
  • Example 1 Pulp (NBKP, cellofiber manufactured by Paltex Co., Ltd., CSF value: 115 mL) was dispersed in water. Heavy calcium carbonate (Blaine specific surface area: 4000 cm 2 /g) and ordinary Portland cement (produced by Taiheiyo Cement Co., Ltd.: ordinary Portland cement) were added to the obtained dispersion and mixed. Polyvinyl alcohol fiber 1 (described as “PVA1” in Table 2) was added to the resulting mixture and further mixed. The ratio of each component is as shown in Table 2, and a curable composition having a solid concentration of 16% by mass was obtained. The resulting curable composition was transferred to the feed tank of the metering feeder and supplied from the feed tank to the cylinder.
  • PVA1 Polyvinyl alcohol fiber 1
  • the solid content concentration of the curable composition was adjusted to 4% by mass with process circulating water, and papermaking was carried out using a mini-hatchek machine.
  • 15 sheets of the paper-made sheets obtained in the circular net process were laminated by a making roll, and the laminated paper-made sheets were pressed for 20 minutes while applying a pressure of 21.6 MPa to extract liquid.
  • the sheet is cured in a constant temperature and humidity curing device for 24 hours under conditions of a temperature of 50 ° C. and saturated humidity (RH 98%), then wrapped with a wrap sheet, and placed in an environment of a temperature of 20 ° C. and a humidity of 60%. It was cured for 13 days (cured for 14 days of material age in total).
  • Example 10 A molded plate was obtained in the same manner as in Example 1 except that each component was used in the ratio shown in Table 2, and various measurements and evaluations were performed on the obtained molded plate. The results are shown in Tables 2 and 3.
  • fly ash or silica fume was also added when ordinary Portland cement was added.
  • Example 18 A molded plate was obtained in the same manner as in Example 1, except that PVA2 was used instead of PVA1 and the pressure during pressing was changed from 21.6 MPa to 7.85 MPa. was measured and evaluated. The results are shown in Table 2.
  • molded plates comprising specific proportions of substances not involved in the pozzolanic reaction, cement, synthetic fibers and pulp, and having specific pore volume ratios (B)/(A) , had high bending strength and low dimensional change rate.
  • Comparative Example 1 in which the molded plate does not have a specific pore volume ratio (B)/(A), has lower flexural strength and higher dimensions than the corresponding Examples (Examples 1-4). It can be seen that the rate of change is shown. Further, in Comparative Example 1, the adhesion strength between layers is low, and the yield rate in the papermaking process is also low.
  • Comparative Example 2 in which the molded plate does not contain the specific proportions of each component, exhibits a lower flexural strength than the corresponding Examples (Examples 1 and 5).
  • Comparative Example 3 in which the molded plate does not contain each component in a specific proportion and does not have a specific pore volume ratio (B)/(A), has a lower flexural strength than the corresponding Examples (Examples 1 and 5). It can be seen that it exhibits a high degree of dimensional change and a high dimensional change rate. Further, in Comparative Example 3, the interlayer adhesion strength is low and the total heat generation is high.
  • the effect of the ratio of silica fume, which is an optional component, on the paper-making properties in the cylinder step during the production of the molded plate was visually evaluated according to the following evaluation criteria.
  • the molded plate of the present invention has high bending strength and low dimensional change rate.
  • Such a molded plate of the present invention can be suitably used as building materials (for example, ceiling materials, interior materials, exterior materials, floor materials) or civil engineering materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本発明は、ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる多孔質の成形板であって、水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0である、成形板に関する。

Description

多孔質の成形板
 本特許出願は日本国特許出願第2021-179694(出願日:2021年11月2日)についてパリ条約上の優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本発明は、多孔質の成形板に関する。
 セメント系抄造板は、セメントおよび繊維を水系媒体に懸濁させたスラリーをメッシュ(網)で抄き上げる抄造法により成形されたシートを、養生硬化させることで得られる。抄造法は、その製造汎用性から、幅広い分野で使用されており、特に建築分野では、天井材、内装材、外装材、床材等の製造にしばしば使用されている。しかしながら、セメントの製造には非常に多くのエネルギーを要し、それに伴う二酸化炭素の大量排出が問題視されている。また、製造過程でオートクレーブ養生を要する場合、養生には通常、スチームボイラー等が用いられるため、ここでもまた二酸化炭素が排出される。そのため、二酸化炭素の排出量を低減するために、オートクレーブ養生が不要で、セメントの割合が低減されたセメント系抄造板が提案されている。
 例えば、特許文献1には、セメント等の水硬性バインダー、炭酸カルシウム等の充填材および合成繊維を含んでなるパネルが開示されており、特許文献2には、マトリックス形成用水和性原料、無機質充填材、補強繊維およびケイ酸カルシウム水和物を含んでなる無機質抄造板が開示されており、特許文献3には、ポルトランドセメント、炭酸カルシウム、酸化カルシウム、パラフィン珪藻土複合相転移材料、変性炭素繊維、活性化ベントナイト、ゴム粉末、変性黄土粉末、固形産業廃棄物、繊維、初期強度付与剤、減水剤、発泡剤、希土類触媒および水を特定の割合で含む原料から製造された、省エネルギーで環境に優しい軽量パーテーション壁が開示されている。
米国特許出願公開第2005/72056号明細書 特開2005-205879号公報 中国特許出願公開第108276023号明細書
 しかし、二酸化炭素排出量を低減しつつも、より優れた性能、例えば、高い曲げ強さおよび低い寸法変化率といった性能を有する成形板の開発は常に求められている。従って、本発明が解決しようとする課題は、高い曲げ強さおよび低い寸法変化率を有する成形板を提供することである。
 本発明者らは、前記課題を解決するために、成形板について詳細に検討を重ね、本発明を完成させるに至った。
 即ち、本発明は、以下の好適な実施態様を包含する。
[1]ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる多孔質の成形板であって、
水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0である、成形板。
[2]ポゾラン反応に関与しない物質は、炭酸カルシウム、硅石粉およびタルクからなる群から選択される1以上の物質である、上記[1]に記載の成形板。
[3]炭酸カルシウムは重質炭酸カルシウムである、上記[2]に記載の成形板。
[4]マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質を更に含んでなる、上記[1]~[3]のいずれかに記載の成形板。
[5]合成繊維およびパルプの合計含有量は成形板の総質量に対して7質量%以下である、上記[1]~[4]のいずれかに記載の成形板。
[6]合成繊維の平均繊維径は50μm以下である、上記[1]~[5]のいずれかに記載の成形板。
[7]合成繊維の平均繊維径は5μm以上、40μm以下である、上記[6]に記載の成形板。
[8]合成繊維のアスペクト比は150以上、1000以下である、上記[1]~[7]のいずれかに記載の成形板。
[9]合成繊維は、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維およびナイロン繊維からなる群から選択される少なくとも一種である、上記[1]~[8]のいずれかに記載の成形板。
[10]JIS A 5430:2018に準拠して測定された吸水率は15%以上、28%以下である、上記[1]~[9]のいずれかに記載の成形板。
[11]JIS A 5430:2018の発熱性試験に準拠して測定された総発熱量は8.0MJ/m以下である、上記[1]~[10]のいずれかに記載の成形板。
[12]JIS A 5430:2018に準拠して測定された嵩密度は1.50g/cm以上である、上記[1]~[11]のいずれかに記載の成形板。
[13]JIS A 1408:2017に準拠して測定された吸水時の曲げ強さは15N/mm以上である、上記[1]~[12]のいずれかに記載の成形板。
[14]JIS A 5430:2018に準拠して測定された吸水率は26%以下である、上記[1]~[13]のいずれかに記載の成形板。
[15]前記細孔容積(B)は2.50mL/g以下である、上記[1]~[14]のいずれかに記載の成形板。
 本発明によれば、高い曲げ強さおよび低い寸法変化率を有する成形板を提供することができる。
 以下、本発明の実施態様について詳細に説明する。なお、本発明の範囲はここで説明する実施態様に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。
 本発明の成形板は、成形板の総質量に対して、ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる。各成分の割合が上述した特定の範囲から逸脱すると、高い曲げ強さおよび低い寸法変化率をあわせ持つ成形板を得ることは困難である。
 成形板は、成形板の総質量に対して、好ましくは、40~67.5質量%のポゾラン反応に関与しない物質、25~60.5質量%のセメント、1~2質量%の合成繊維、および2.5~6質量%のパルプを含んでなり、より好ましくは45~65質量%のポゾラン反応に関与しない物質、30~59.5質量%のセメント、1~1.5質量%の合成繊維、および3~5質量%のパルプを含んでなる。
 好ましい一実施態様において、合成繊維およびパルプの合計含有量は、成形板の総質量に対して7質量%以下、好ましくは6質量%以下である。合成繊維およびパルプの合計含有量が前記上限値以下であると、成形板の総発熱量がより小さくなりやすく、これは、成形板が難燃性に優れることを意味する。
 本発明の成形板は多孔質である。水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0、好ましくは1.75~5.8、より好ましくは1.80~5.6、特に好ましくは1.85~5.4である。比(B)/(A)が好ましくは5.3以下、より好ましくは5.1以下、さらに好ましくは5.0未満であると、より高い曲げ強さおよび低い寸法変化率に加えて、成形板の製造におけるより高い歩留り率を得やすい。また、比(B)/(A)は、4.9以下、4.8以下、4.5以下、4.0以下であってもよい。また、比(B)/(A)は、好ましくは2.00以上、より好ましくは2.10以上、さらに好ましくは2.20以上、よりさらに好ましくは2.50以上であってもよい。比(B)/(A)は、例えば、ポゾラン反応に関与しない物質として特定のブレーン比表面積を有する物質を使用することにより、および/または成形時の条件(特にプレス圧力)を調整することにより、所望の値に調整することができる。細孔容積比(B)/(A)は、実施例に記載の方法により測定できる。
 本発明者らは意外なことに、成形板が特定の割合で前記四成分(ポゾラン反応に関与しない物質、セメント、合成繊維およびパルプ)を含み、特定の比(B)/(A)を有することにより、成形板において高い曲げ強さと低い寸法変化率とを両立できることを見出した。その理由は明らかではないが、下記作用機構が推定される。本発明の成形板は、前記四成分を含む硬化性組成物を硬化させることにより製造できる。その硬化過程で適当な圧力を印加して成形することにより、ポゾラン反応に関与しない物質が硬化過程の成形板における空隙を適度に埋め、その結果、合成繊維とセメントマトリックスとの密着性が高まる。また、ポゾラン反応に関与しない物質は、ポゾラン反応の進行に伴い生じ得るクラックまたは反りなどの欠陥を招くことはない。そのため、成形体において、高い曲げ強さおよび低い寸法変化率が発現されるものと推定される。ただし、上記は推定であり、本発明はこの作用機構に限定されない。
 6~560nmの範囲の細孔容積(B)は、好ましくは2.50mL/g以下、より好ましくは2.40mL/g以下、特に好ましくは2.30mL/g以下、よりさらに好ましくは2.20mL/g以下である。細孔容積(B)が前記上限値以下であると、得られる成形板は、乾燥時の曲げ強さおよび吸水時の曲げ強さに優れる傾向にある。細孔容積(B)が前記上限値以下であることは、上述したように合成繊維とセメントマトリックスとの密着性が高いことと関連し、その結果、成形板は、乾燥時および吸水時の曲げ強さに優れる傾向にあると推測される。また、6~560nmの範囲の細孔は、水の吸水に大きく影響するため、細孔容積(B)が前記上限値以下であることによって、水の影響が低減され、特に吸水時の曲げ強さが高くなる傾向にあると推測される。
 また、細孔容積(B)が好ましくは2.10mL/g以下、より好ましくは2.00mL/g以下であると、成形板の製造において、より高い歩留り率を得やすい。
 細孔容積(B)は、例えば、ポゾラン反応に関与しない物質として特定のブレーン比表面積を有する物質を使用することにより、および/または成形時の条件(特にプレス圧力)を調整することにより、所望の値に調整することができる。細孔容積(B)は、実施例に記載の方法により測定できる。
<ポゾラン反応に関与しない物質>
 ポゾラン反応に関与しない物質は、好ましくは、炭酸カルシウム、硅石粉およびタルクからなる群から選択される1以上の物質である。入手容易性およびコストの観点から、ポゾラン反応に関与しない物質は、重質炭酸カルシウムであることが好ましい。
 ポゾラン反応に関与しない物質は、好ましくは2200~12000cm/g、より好ましくは3000~11000cm/g、特に好ましくは4000~11000cm/gのブレーン比表面積を有する。ブレーン比表面積が前記範囲内であると、成形板において特定の比(B)/(A)を得やすい。ブレーン比表面積が異なる2以上のポゾラン反応に関与しない物質を使用する場合は、それらの割合に応じたブレーン比表面積が前記範囲内であることが好ましい。例えば、ブレーン比表面積が2500cm/gのポゾラン反応に関与しない物質1とブレーン比表面積が6500cm/gのポゾラン反応に関与しない物質2とを50:50の質量比で用いる場合、物質1および2の組み合わせについての割合に応じたブレーン比表面積は4500cm/g(=2500×0.5+6500×0.5)と計算される。また、ポゾラン反応に関与しない物質のブレーン比表面積が好ましくは10000cm/g以下、より好ましくは9000cm/g以下であると、成形板の製造において、より高い歩留り率を得やすい。
 ブレーン比表面積は、JIS R5201:2015に準拠して空気透過法を用いて測定できる。
 そのようなポゾラン反応に関与しない物質は、市販されており、市販品の例としては、三共精粉株式会社製炭酸カルシウム(一級)が挙げられる。
<セメント>
 本発明におけるセメントの例としては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメントおよび中庸熱ポルトランドセメント等のポルトランドセメント;アルミナセメント;高炉セメント;シリカセメント;並びにフライアッシュセメント;白色ポルトランドセメントが挙げられる。これらのセメントは、単独でまたは二種以上を組み合わせて使用してよい。
 汎用性および/またはコストの観点からは、普通ポルトランドセメントを用いることが好ましい。早期に強度の発現が得られやすい観点からは、早強ポルトランドセメントまたは超早強ポルトランドセメントを用いることが好ましい。長期強度の向上効果が得られやすい観点からは、高炉セメントを用いることが好ましい。
 上記したようなセメントは市販されており、市販品の例としては、太平洋セメント株式会社製普通ポルトランドセメントが挙げられる。
<合成繊維>
 合成繊維の平均繊維径は、好ましくは5μm以上、より好ましくは6μm以上、特に好ましくは7μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。合成繊維の平均繊維径が前記下限値以上であり、前記上限値以下であると、硬化性組成物中での合成繊維の良好な分散性と成形体における良好な繊維補強性とを両立しやすい。平均繊維径は、無作為に繊維を100本取り出し、それぞれの繊維の長さ方向の中央部における繊維径を光学顕微鏡により測定し、その平均値を計算することにより求められる。
 合成繊維の平均繊維長は、硬化性組成物中での繊維の良好な分散性と成形体における良好な繊維補強性とを両立しやすい観点から、好ましくは2~30mm、より好ましくは2~20mmである。平均繊維長は、JIS L 1015:2010に準拠して求めることができる。
 合成繊維のアスペクト比(繊維長/繊維径)は、好ましくは150以上、より好ましくは175以上、特に好ましくは200以上であり、好ましくは1000以下、より好ましくは900以下、特に好ましくは800以下である。合成繊維のアスペクト比が前記下限値以上であり、前記上限値以下であると、硬化性組成物中での合成繊維の良好な分散性と成形体における良好な繊維補強性とを両立しやすい。アスペクト比は、平均繊維長と平均繊維径から算出できる。
 合成繊維の繊維引張強さは、好ましくは3cN/dtex以上、より好ましくは5cN/dtex以上、特に好ましくは7cN/dtex以上である。合成繊維の繊維引張強さが前記下限値以上であると、成形板における繊維補強性をより高めやすい。本発明における合成繊維の繊維引張強さの上限値は、繊維の種類に応じて適宜設定されるが、例えば、30cN/dtex以下である。繊維引張強さは、JIS L 1015:2010に準拠して求めることができる。
 合成繊維は、無機合成繊維でも有機合成繊維でもよい。合成繊維は、好ましくは有機合成繊維であり、より好ましくは、ポリビニルアルコール(以下、「PVA」と称することもある)系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維およびナイロン繊維からなる群から選択される少なくとも一種である。
 成形板により優れた補強性を付与しやすく、安価である観点から、PVA系繊維および/またはポリプロピレン繊維を用いることが好ましい。
 合成繊維としてPVA系繊維、例えばビニロン繊維を用いる場合、下記特性を有するPVA系繊維を用いてよい。PVA系繊維を構成するPVA系ポリマーの重合度は、目的に応じて適宜選択でき、特に限定されない。得られる繊維の機械的特性等を考慮すると、30℃水溶液の粘度から求めた、PVA系ポリマーの平均重合度は、好ましくは500~20000程度、より好ましくは800~15000程度、特に好ましくは1000~10000程度である。このうち、得られる繊維の強度の観点から、PVA系ポリマーの平均重合度は、好ましくは1000以上、より好ましくは1200以上、より好ましくは1500以上、特に好ましくは1750以上である。PVA系ポリマーは、平均重合度1000以上3000未満の中重合度品であってもよいし、平均重合度3000以上の高重合度品であってもよい。
 PVA系ポリマーのけん化度も、目的に応じて適宜選択でき、特に限定されない。得られる繊維の力学的物性の点から、PVA系ポリマーのけん化度は、例えば95モル%以上、好ましくは98モル%以上であってよい。PVA系ポリマーのけん化度は99モル%以上であってもよく、99.8モル%以上であってもよい。PVA系ポリマーのけん化度が前記下限値以上であると、得られる繊維について、良好な機械的特性、工程通過性および製造コスト等が得られやすい。
 本発明に用いられるPVA系繊維は、このようなPVA系ポリマーを溶剤に溶解し、湿式、乾湿式または乾式のいずれかの方法により紡糸し、乾熱延伸することにより製造される。湿式紡糸とは、紡糸ノズルから直接固化浴に紡糸原液を吐出する方法のことである。乾湿式紡糸とは、紡糸ノズルから一旦任意の距離の空気中または不活性ガス中に紡糸原液を吐出し、その後に固化浴に導入する方法のことである。乾式紡糸とは、空気中または不活性ガス中に紡糸原液を吐出する方法のことである。PVA系繊維は、紡糸後、必要に応じて延伸処理が行われてもよい。また、PVA系繊維で一般的に行われているアセタール化処理等が行われてもよい。
 PVA系繊維の紡糸原液に用いられる溶剤としては、PVAを溶解することが可能な溶剤であれば特に限定されない。例えば、水、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、ジメチルアセトアミドおよび多価アルコール(例えば、グリセリン、エチレングリコールおよびトリエチレングリコール等)等の一種または二種以上を組み合わせて用いてよい。本発明では、湿式紡糸を行う場合、溶剤としては水または有機系の溶剤を用いることが好ましい。この中でも、供給容易性および環境負荷への影響の観点から、水およびDMSOが特に好ましい。紡糸原液中のポリマー濃度は、PVA系ポリマーの組成および重合度、並びに溶剤の種類によって異なるが、一般的には6~60質量%である。
 乾式紡糸でも、上述した溶剤を用いてよい。その場合、水を用いても、有機系の溶剤を用いてもよい。
 本発明の効果を損なわない範囲であれば、紡糸原液には、PVA系ポリマー以外に、目的に応じて添加剤等が含まれていてもよい。添加剤の例としては、硼酸、界面活性剤、酸化防止剤、分解抑制剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤および油剤等を挙げることができる。
 固化浴で用いられる溶剤は、紡糸原液で用いられる溶剤の種類に応じて適宜選択してよい。紡糸原液が水溶液の場合、固化浴としては、PVA系ポリマーに対して固化能を有する無機塩類(例えば、硫酸ナトリウム、硫酸アンモニウム、炭酸ナトリウムまたは水酸化ナトリウム等)の水溶液およびアルカリ性水溶液を用いてよい。紡糸原液が有機溶剤溶液の場合、固化浴としては、例えば、メタノール、エタノール、プロパノールまたはブタノール等のアルコール類、アセトン、メチルエチルケトンまたはメチルイソブチルケトン等のケトン類等の、PVA系ポリマーに対して固化能を有する有機溶剤を用いてよい。
 本発明においては、乾式紡糸で得られるPVA系繊維、または水または有機溶剤を溶剤とする紡糸原液から湿式紡糸で得られるPVA系繊維が、繊維引張強さの観点から好ましい。
 固化された原糸から紡糸原液の溶剤を抽出除去するために、抽出浴を通過させてもよく、抽出時に同時に原糸を湿延伸してもよい。また、湿延伸後、繊維を乾燥させ、必要に応じて、更に乾熱延伸を行ってもよい。延伸を行う場合、総延伸倍率(湿延伸と乾燥後の延伸倍率の積)として、例えば5~25倍、好ましくは8~20倍程度の延伸を行ってもよい。
 合成繊維として、市販の繊維を使用してもよく、その例としては、株式会社クラレ製ポリビニルアルコール系繊維、大和紡績株式会社製ポリプロピレン繊維、東レ株式会社製ナイロン繊維等の有機繊維、並びに日本電気硝子株式会社製および太平洋マテリアル株式会社製ガラス繊維等の無機繊維を挙げることができる。
<パルプ>
 パルプは、叩解処理されたものであっても、叩解処理されていないものであってもよい。所望の曲げ強さおよび衝撃強さを得やすい観点から、叩解処理されたパルプを使用することが好ましく、濾水度試験方法JIS P 8121-2:2012のカナダ標準濾水度法に準拠して測定される叩解度がCSF値で50~400mL、より好ましくは100~150mLであるパルプを使用することがより好ましい。成形板の製造において、所望の歩留り率を得やすい観点から、後述する円網抄造法を採用する場合は、CSF値が100~150mLであるパルプを使用することが好ましく、フローオン抄造法を採用する場合は、CSF値が150~400mLであるパルプを使用することが好ましい。
 パルプとして、広範な種類のパルプを使用できる。パルプの例としては、針葉樹、広葉樹、マニラ麻、ミツマタ、コウゾ、ガンピ、サラゴ、桑、ワラ、竹、アシ、サバイ、ララン草、エスパルト、バガス、サイザル、ケナフ、リンター、バナナおよび古紙等を挙げることができる。前記針葉樹の例としては、スギ科、マツ科、ヒノキ科、ナンヨウスギ科等の針葉樹を挙げることができ、前記広葉樹の例としては、ニレ科、ブナ科、フトモモ科、カツラ科、モクセイ科、ミカン科、カバノキ科、カエデ科、クルミ科、シナノキ科、ウコギ科、アカテツ科、ニシキギ科、キョウチクトウ科、クマツヅラ科、モクテン科、アオギリ科等の広葉樹を挙げることができる。これらのパルプは、晒しパルプでも未晒しパルプでもよい。前記パルプは、単独で、または二種以上組み合わせて使用してよい。
 そのようなパルプは市販されており、市販品の例としては、パルテック株式会社製セロファイバーが挙げられる。
<その他の成分>
 成形板は、任意に、マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質を更に含んでもよい。
 成形板がマイカおよび/またはシリカフュームを含む場合、その含有量または合計含有量は、成形板の総質量に対して、好ましくは2~14質量%、より好ましくは2~10質量%、より好ましくは3~10質量%、更に好ましくは4~8質量%である。この実施態様では、セメントの一部をマイカおよび/またはシリカフュームで置換する配合であることが好ましい。成形板がマイカを含むと、より小さい寸法変化率および難燃性向上(即ち、総発熱量低減)の効果が発現されやすい。成形板がシリカフュームを含むと、成形板において、より高い曲げ強さが発現されやすい。これは、シリカフュームもポゾラン反応に関与するため、また、シリカフュームの細かい粒子径に起因して、セメントマトリックスの細密充填効果が得られやすいためと考えられる。その一方で、シリカフュームの含有量が高くなると硬化性組成物の粘性が高まり、円網工程での抄造性が低下する傾向にある。シリカフュームの含有量を、成形板の総質量に対して、好ましくは10質量%以下とすることにより、円網工程での良好な抄造性を確保しやすい。
 成形板がフライアッシュを含む場合、その含有量は、成形板の総質量に対して、好ましくは10~30質量%、より好ましくは15~25質量%である。この実施態様では、リサイクル原材料の有効活用および/または低コスト化の観点から、ポゾラン反応に関与しない物質の一部をフライアッシュで置換する配合であることが好ましい。また、成形板がフライアッシュを含むと、フライアッシュもポゾラン反応に関与するため、成形板において、より良好な長期材齢強度およびより高い曲げ強さが発現されやすい。
 マイカは、所望の寸法変化率および曲げ強さを得やすい観点から、JIS試験篩試験で、30~200メッシュパス品であることが好ましく、40~120メッシュパス品であることがより好ましく、60~80メッシュパス品であることが特に好ましい。
 フライアッシュとしては、JIS A6201:2015に規定されている、I種(ブレーン比表面積5000以上)、II種(ブレーン比表面積2500以上)、III種(ブレーン比表面積2500以上)またはIV種(ブレーン比表面積1500以上)を用いてよい。
 シリカフュームとしては、JIS A 6207:2016に規定されているシリカフュームを用いてよい。一般的には、シリカフュームの平均粒子径は0.1~0.5μmである。
 マイカ、フライアッシュおよびシリカフュームは市販されている。マイカの市販品の例としては、巴工業株式会社製のマイカが挙げられ、フライアッシュの市販品の例としては、四電ビジネス株式会社製のファイナッシュ、四電フライアッシュおよびエコアッシュが挙げられ、シリカフュームの市販品の例としては、巴工業株式会社製のEFACOが挙げられる。
<任意の添加剤および助剤>
 成形板は、1以上の任意の添加剤および助剤を更に含んでもよい。後述する成形板の抄造法による製造方法において歩留り率を高めるために、アニオン系高分子凝集剤の濃度0.5~2g/Lの水溶液を、硬化性組成物に添加することが好ましい。その際、硬化性組成物におけるアニオン系高分子凝集剤の濃度が、好ましくは50~250ppm/固形分、より好ましくは75~175ppm/固形分、更に好ましくは100~150ppm/固形分となるよう添加することが好ましい。アニオン系高分子凝集剤の例としては、日本技研株式会社製のアイケイフロックT210が挙げられる。
<成形板の製造方法>
 本発明の成形板は、抄造法により製造することが好ましい。抄造法とは、セメント等の固体を水系媒体に縣濁させたスラリー(硬化性組成物)を金網で濾し取り、濾し取ったシート状物を成形する方法である。抄造法には、濾し取った薄いシート状物を所望の厚さとなるまで順次メーキングロールに積層して成形板を得る円網抄造法(ハチェック法)または長網抄造法、および濃厚スラリーをフェルト上に供給して、1回ないし数回で所望の厚さとなるまで順次メーキングロールに積層して成形板を得るフローオン抄造法等が包含される。均一な成形板を得やすく、厚さを調整しやすい観点から、円網抄造法または長網抄造法が好ましく、量産化できる観点から、円網抄造法がより好ましい。
 円網抄造法による製造方法は、通常、
 ポゾラン反応に関与しない物質、セメント、合成繊維、パルプおよび水、並びに必要に応じて上述したその他の成分、任意の添加剤および助剤を混合して硬化性組成物を調製する工程、
 得られた硬化性組成物を円網を用いて抄造して抄造シートを得、抄造シートを所望の厚さとなるまで積層する工程、
 積層された抄造シートに圧力を印加して搾液する工程、および
 搾液後のシートを養生する工程
を含む。
 硬化性組成物の調製方法は特に限定されない。公知または慣用のミキサーなどの混合手段によって成分を混合することにより、硬化性組成物を調製できる。混合手段の例としては、撹拌性能の高いミキサーが挙げられ、その例としては、抄造法で用いられる縦型ミキサー、ブレードミキサー、スクリュー式ミキサー、コーンミキサーおよびアジター式ミキサー等が挙げられる。
 各成分の混合順序は特に限定されないが、固体成分が均一に分散された硬化性組成物を得やすい観点から、水にパルプを投入して撹拌し、次いで、任意の順で、ポゾラン反応に関与しない物質、セメントおよび任意にその他の成分、添加剤および助剤を添加して撹拌し、最後に合成繊維を添加することが好ましい。
 硬化性組成物の固形分濃度は、通常55~6質量%、好ましくは40~8質量%、より好ましくは25~10質量%である。
 硬化性組成物の固形分の総質量に対し、即ち、硬化性組成物における水以外の成分の総質量に対し、ポゾラン反応に関与しない物質の量は35~70質量%(好ましくは40~67.5質量%、より好ましくは45~65質量%)、セメントの量は20~61.5質量%(好ましくは25~60.5質量%、より好ましくは30~59.5質量%)、合成繊維の量は1~3質量%(好ましくは1~2質量%、より好ましくは1~1.5質量%)、パルプの量は2.5~7質量%(好ましくは2.5~6質量%、より好ましくは3~5質量%)、マイカの量は0~10質量%(例えば、2~10質量%、4~8質量%)、フライアッシュの量は0~30質量%(例えば、10~30質量%、15~25質量%)、シリカフュームの量は0~14質量%(例えば、2~14質量%、0~10質量%、2~10質量%、3~10質量%、4~8質量%)、任意の添加剤および助剤の量は0~3質量%(アニオン系高分子凝集剤の水溶液の場合は、例えば、50~250ppm、75~175ppm、100~150ppm)であることが好ましい。
 次いで、硬化性組成物を湿式抄造機のフィードタンクに投入し、通常は工程循環水によって硬化性組成物の固形分濃度を10~1質量%程度(好ましくは8~3質量%)に調整する。フィードタンクからバットに供給された硬化性組成物は、バット内にある内部陰圧の円網の回転により円網表面に抄き上げられて抄造シートとなり、メーキングロールまで運搬される。メーキングロールにて、所望の厚さとなるよう抄造シートを積層し、積層した抄造シートを所定の長さで切断する。
 好ましい一実施態様において、抄造工程での歩留り率は、好ましくは85%以上、より好ましくは90%以上である。歩留り率が前記下限値以上であると、より高い曲げ強さ、高い層間密着強度、および/またはより低い寸法変化率を得やすい。ポゾラン反応に関与しない物質のブレーン比表面積の調整、叩解パルプの叩解度の調整、および/または円網のメッシュサイズの選択により、歩留り率を前記下限値以上に調整することができる。歩留り率と生産性とを両立しやすい観点から、円網のメッシュサイズは、1インチあたり45~55メッシュであることが好ましい。抄造工程での歩留り率は、後述の実施例に記載の方法により求めることができる。
 上述した通り、本発明の成形板は、ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる。硬化性組成物に含まれる成分の割合が変わらないよう抄造法により成形板を製造できる場合は、硬化性組成物における各成分の割合を、成形板における各成分の割合としてよい。そのような場合とは、例えば、抄造工程での歩留り率が好ましくは85%以上(より好ましくは90%以上)の場合である。この場合、本発明の成形板は、ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる硬化性組成物に基づく多孔質の成形板であって、水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0である、成形板である。硬化性組成物は、任意に、その他の成分(マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質)を、上述した成形板におけるその他の成分の割合と同様の割合で更に含んでよく、また、任意の添加剤および助剤を上述した割合で更に含んでよい。
 積層する抄造シートの枚数は、硬化性組成物の固形分濃度および製造される成形板の厚さに依存するが、通常、成形板の厚さが約6mmの場合で12~18枚である。
 次いで、切断されたシートにプレス機で印加することにより搾液する。
 プレス機により印加される圧力は、好ましくは2~30MPa、より好ましくは7~27MPa、特に好ましくは15~25MPaである。また、圧力を印加する時間は、通常10~60分間、好ましくは15~50分間、より好ましくは20~40分間である。圧力が前記範囲内であり、圧力を印加する時間が前記範囲内であると、成形板において所望の細孔容積比(B)/(A)を得やすく、その結果、高い曲げ強さおよび小さい寸法安定性を得やすい。
 続いて、搾液されたシートを養生する。
 養生により硬化が進行する。硬化は、セメント成分の水和反応(凝結反応)によるものであるが、シート中の水分が蒸発するとセメント成分の水和反応が阻害され、硬化が進行しなくなる場合がある。従って、一次養生として、シート中の水分が蒸発しない高湿度雰囲気下で、即ち、相対湿度が好ましくは30~100%、より好ましくは50~100%、更に好ましくは65~100%、更により好ましくは80~100%、特に好ましくは90~100%(例えば100%)の雰囲気下で、養生を行い、二次養生として、高湿度雰囲気下(好ましくは30~100%、より好ましくは40~90%、更に好ましくは50~80%の雰囲気下)において、水分を通さない容器または袋等にシートを入れたり、プラスチック板、プラスチックフィルム(ポリエチレンシート等)または金属板にシートを挟んだりすることにより、シート中の水分がより蒸発しにくい状態にして、養生を行うことが好ましい。
 養生温度は特に限定されない。一次養生温度は、例えば10~90℃、好ましくは30~80℃、更に好ましくは40~80℃である。前記範囲内の温度で、養生温度を途中で変更してもよい。二次養生温度は、例えば10℃~70℃、好ましくは20℃~50℃である。
 一次養生時間は、硬化性組成物の組成および養生温度に依存するが、通常は6時間~48時間、好ましくは8時間~36時間、より好ましくは12時間~24時間である。二次養生時間は、通常は1日間~14日間である。
 また、二次養生として水中養生を行ってもよい。この場合、通常、水温は10~30℃、養生時間は8時間~13日間である。水温10~30℃での水中養生を4時間~24時間行った後、先の段落に記載した二次養生を2日間~13日間行ってもよい。
 二次養生の後に乾燥することにより、成形板が得られる。
 乾燥方法は、均一に乾燥された成形板が得られる限り、特に限定されない。通常は、成形板の平衡含水率(例えば、風通しの良い室内に成形板を7日間以上保管したときに達する含水率)は約6質量%~約10質量%であるため、平衡含水率と同程度の含水率となるように乾燥させる。成形板の含水率および平衡含水率は、簡易的にはKett水分計を用いて測定できる。または、乾燥後の成形板を秤量(W)した後、105℃の撹拌機付き空気乾燥機にて恒量となるまで乾燥させた成形板を秤量(W)し、下記式:
    {(W-W)/W}×100
により求めることもできる。
 乾燥後に得られた成形板は、1.70~6.0の上記比(B)/(A)を有する。また、本発明の成形板に関して述べている実施態様および好ましい実施態様の全ては、乾燥後に得られた成形板に関する実施態様および好ましい実施態様とみなすことができる。
 本発明の成形板の厚さは、その用途によるが、例えば3~30mmである。成形板を例えば壁材として使用する場合、成形板の厚さは4mm以上、20mm以下であることが好ましく、床材として使用する場合、成形板の厚さは8mm以上、30mm以下であることが好ましい。また、成形板の厚さの上限値は、特に限定されるものでないが、円網抄造法では15mm程度までが好適であり、長網抄造法では50mm程度までが好適である。成形板の厚さは、積層する抄造シートの枚数および/または搾液されたシートの厚さを調整することにより、適宜決めることができる。成形板の厚さは、一般的な方法により、例えばデジタル式ノギス等を用いて複数個所の厚さを測定し、その平均値を求めることにより、測定できる。
 本発明の成形板の縦横の寸法は、抄造機およびプレス機の寸法に依存し、例えば3×6尺(910mm×1820mm)または4×8尺(1210mm×2440mm)または4×10尺(1210mm×3030mm)であり得る。もちろん、これらの大きな寸法の成形板から、所望の寸法を有する、より小さい成形板を切り出すこともできる。
 本発明の成形板のJIS A 5430:2018に準拠して測定された嵩密度は、例えば1.45~1.8g/cm、好ましくは1.50~1.75g/cm、より好ましくは1.55~1.75g/cmである。嵩密度が前記範囲内であると、所望の寸法変化率、曲げ強さ、層間密着強度および/または難燃性を得やすい。嵩密度は、前記四成分の種類、前記四成分の配合割合、プレス圧力および/またはプレス時間により、前記範囲内に調整できる。
 本発明の成形板のJIS A 1408:2017に準拠して測定された乾燥時の曲げ強さは、好ましくは10N/mm以上、より好ましくは15N/mm以上、更に好ましくは20N/mm以上である。乾燥時の曲げ強さは、例えば、ポゾラン反応に関与しない物質のブレーン比表面積の調整、前記四成分の配合割合、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。乾燥時の曲げ強さの上限は特に制限されないが、通常は50N/mm以下である。
 本発明の成形板のJIS A 1408:2017に準拠して測定された吸水時の曲げ強さは、好ましくは5N/mm以上、より好ましくは10N/mm以上、更に好ましくは15N/mm以上である。吸水時の曲げ強さは、例えば、ポゾラン反応に関与しない物質のブレーン比表面積の調整、前記四成分の配合割合、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。吸水時の曲げ強さの上限は特に制限されないが、通常は35N/mm以下である。
 本発明の成形板のJIS A 5430:2018に準拠して測定された寸法変化率(長さ変化率)は、好ましくは0.150%以下、より好ましくは0.130%以下、特に好ましくは0.100以下である。寸法変化率は例えば、ポゾラン反応に関与しない物質のブレーン比表面積の調整、前記四成分の配合割合、プレス圧力および/またはプレス時間により前記上限値以下に調整できる。
 本発明者らは、本発明の成形板が低い吸水率を有することを見出した。吸水率が低いと、成形板が使用される雰囲気(例えば、季節、地域および/または使用環境)によって、成形板の寸法が変動しにくいため好ましい。また、吸水時の成形板の曲げ強さが向上するため好ましい。
 本発明における成形板のJIS A 5430:2018に準拠して測定された吸水率は、好ましくは28%以下、より好ましくは26%以下、更に好ましくは24%以下、更により好ましくは22%以下、特に好ましくは20%以下である。前記吸水率の下限値は限定されるものではないが、好ましくは15%以上である。
 吸水率は、例えば、パルプの割合の調整、ポゾラン反応に関与しない物質のブレーン比表面積の調整、プレス圧力および/またはプレス時間により、前記下限値以上および前記上限値以下に調整できる。
 成形板のJIS A 5430:2018の発熱性試験に準拠して測定された総発熱量は、好ましくは8.0MJ/m以下、より好ましくは7.0MJ/m以下、更に好ましくは6.0MJ/m以下である。総発熱量が前記上限値以下であると、成形板の難燃性はより高い。前記総発熱量の下限値は限定されるものではなく、例えば4.0MJ/m以上である。
 総発熱量は、例えば、成形板における有機物(パルプおよび合成有機繊維)の割合の低減および/または比(B)/(A)の調整により、前記上限値以下に調整できる。
 成形板のJIS K 7111-1:2012「プラスチック-シャルピー衝撃特性の求め方」に準拠して測定された乾燥時の衝撃強さ(タイプ1試験片、ノッチなし)は、好ましくは1.5kJ/m以上、より好ましくは1.8kJ/m以上、更に好ましくは2.1kJ/m以上である。乾燥時の衝撃強さは、例えば、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。乾燥時の衝撃強さの上限は特に制限されないが、通常は7kJ/m以下である。
 成形板のJIS K 7111-1:2012「プラスチック-シャルピー衝撃特性の求め方」に準拠して測定された吸水時の衝撃強さ(タイプ1試験片、ノッチなし)は、好ましくは2kJ/m以上、より好ましくは2.5kJ/m以上、更に好ましくは3.0kJ/m以上である。吸水時の衝撃強さは、例えば、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。吸水時の衝撃強さの上限は特に制限されないが、通常は10kJ/m以下である。
 成形板の乾燥時の層間密着強度は、好ましくは1.5N/mm以上、より好ましくは2.0N/mm以上、更に好ましくは2.5N/mm以上である。乾燥時の層間密着強度が前記下限値以上であると、使用中の層間剥離を防止できるため好ましい。乾燥時の層間密着強度は、例えば、ポゾラン反応に関与しない物質のブレーン比表面積の調整、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。乾燥時の層間密着強度の上限は特に制限されないが、通常は6N/mm以下である。
 成形板の吸水時の層間密着強度は、好ましくは0.2N/mm以上、より好ましくは0.3N/mm以上、更に好ましくは0.5N/mm以上である。吸水時の層間密着強度が前記下限値以上であると、使用中の層間剥離を防止できるため好ましい。吸水時の層間密着強度は、例えば、プレス圧力および/またはプレス時間により前記下限値以上に調整できる。吸水時の層間密着強度の上限は特に制限されないが、通常は3N/mm以下である。
 成形板の乾燥時または吸水時の層間密着強度は、後述の実施例に記載の方法で測定できる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はかかる実施例により何ら限定されるものではない。実施例および比較例における各物性は、下記手順により測定または評価した。
[細孔容積]
 測定する成形板から、約1cm角の試験片を2個切り出して、105℃±5℃にて12時間以上乾燥させた後、シリカゲルで調湿したデシケータに入れ、20℃±1.5℃になるまで放置した。これらの試験片について、水銀圧入法による細孔径分布を、水銀圧入法細孔容積測定装置(マイクロメリティックス社製「MicroActive AutoPore V 9600」)を用いて測定した。得られた細孔径分布から得られたLog微分細孔容積より、各試験片の660~9100nmの範囲の細孔容積(A)および6~560nmの範囲の細孔容積(B)を求めた。下記式より、各試験片について細孔容積(A)に対する細孔容積(B)の比を算出し、それらの平均値を成形板の細孔容積比(B)/(A)として採用した。
  細孔容積比(B)/(A)={6~560nmの範囲の細孔容積(B)}/{660~9100nmの範囲の細孔容積(A)}
[厚さ]
 デジタル式ノギスを用いて、測定する成形板の厚さを6箇所測定し、それらの平均値を、成形板の厚さとした。
[嵩密度]
 嵩密度は、JIS A 5430:2018に準拠して測定した。具体的には、測定する成形板から、長さ約180mm、幅約50mmの短冊状の試験片を4個切り出した後、これらの試験片を撹拌機付き空気乾燥機に投入し、105℃±5℃で24時間乾燥した。その後、取り出した試験片をシリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した後、各試験片の質量および体積を測定し、嵩密度を求めた。それらの平均値を、成形板の嵩密度とした。
[曲げ強さ]
 測定する成形板から、長さ約180mm、幅約50mmの短冊状の試験片を8個切り出した。
 乾燥時の曲げ強さを測定するために、まず、4個の試験片を40℃に設定した撹拌機付き空気乾燥機において72時間乾燥した。次いで、取り出した試験片をシリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した。各試験片の曲げ強さを、JIS A 1408:2017に準拠して測定し、それらの平均値を、成形板の乾燥時の曲げ強さとして採用した。
 吸水時の曲げ強さを測定するために、まず、4個の試験片を20℃の水中に72時間浸漬した。次いで、試験片を取り出し、表面に付着した水を拭き取った後、直ちに、各試験片の曲げ強さを、JIS A 1408:2017に準拠して測定し、それらの平均値を、成形板の吸水時の曲げ強さとして採用した。
 乾燥時および吸水時の曲げ強さは、島津製作所株式会社製オートグラフ「AG50kNX」を用い、中央載荷方式で曲げスパン14.6cmおよび試験速度(載荷ヘッドスピード)20mm/分の条件で測定した。
[衝撃強さ]
 測定する成形板から、JIS K 7111-1:2012に準拠したタイプ1試験片を6個切り出した。
 乾燥時の衝撃強さを測定するために、まず、3個の試験片を40℃に設定した撹拌機付き空気乾燥機において72時間乾燥した。次いで、取り出した試験片をシリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した。各試験片の衝撃強さ(ノッチなし)を、JIS K 7111-1:2012に準拠して測定し、それらの平均値を、成形板の乾燥時の衝撃強さとして採用した。
 吸水時の衝撃強さを測定するために、まず、3個の試験片を20℃の水中に72時間浸漬した。次いで、試験片を取り出し、表面に付着した水を拭き取った後、直ちに、各試験片の衝撃強さ(ノッチなし)を、JIS K 7111-1:2012に準拠して測定し、それらの平均値を、成形板の吸水時の衝撃強さとして採用した。
 乾燥時および吸水時の衝撃強さは、株式会社東洋精機製作所製、シャルピー(デジタル)衝撃試験機、型式DG-CBを用いて測定した。
[寸法変化率]
 成形板の寸法変化率(長さ変化率)は、JIS A 5430:2018に準拠して測定した。具体的には、測定する成形板から、長さ約160mm、幅約50mmの短冊状の試験片を3個切り出した後、これらの試験片を乾燥機に入れ、乾燥機内の温度を60℃±3℃で24時間を保った。その後、試験片を取り出し、シリカゲルで調湿したデシケータに入れ、20±1.5℃になるまで放置した。次に、各試験片に乳色ガラスを貼り、標線間が約140mmになるように標線を刻み、1/500mmの精度を持つコンパレータで標線間の長さを測定し、その長さをL(mm)とした。続いて、試験片の長手方向が水平になるようこば立てし、試験片の上端が水面下約30mmとなるようにして、20℃±1.5℃の水中に浸漬した。24時間後、水中から試験片を取り出して表面に付着した水を拭き取り、標線間の長さを再び測定し、その長さをL(mm)とした。下記式により、各試験片について吸水による寸法変化率(%)を算出し、それらの平均値を、成形板の寸法変化率として採用した。
  吸水による寸法変化率={(L-L)/L}×100
[吸水率]
 成形板の吸水率は、JIS A 5430:2018に準拠して測定した。具体的には、測定する成形板から、長さ約180mm、幅約50mmの短冊状の試験片を4個切り出した後、試験片を20℃±1.5℃の水中に浸漬した。24時間経過後、試験片を取り出し、表面に付着した水を拭き取った後、直ちに、各試験片の質量(吸水時の試験片の質量W)を測定した。次に、これらの試験片を105℃±5℃に調整した撹拌機付き乾燥機に入れ、24時間乾燥した後取り出し、シリカゲルで調湿したデシケータに入れ、室温20℃±1.5℃になるまで放置した。その後、各試験片の質量(乾燥時の試験片の質量W)を測定した。下記式により、各試験片の吸水率(%)を算出し、それらの平均値を、成形板の吸水率として採用した。
  吸水率={(W-W)/W}×100
[層間密着強度]
 測定する成形板から、約40mm×約40mmの試験片を8個切り出した。
 乾燥時の層間密着強度を測定するために、まず、気乾状態にある4個の試験片の表および裏に、エポキシ樹脂系接着剤を用いて約40mm×約40mmの鋼製冶具を接着し、24時間以上室温で放置することによりエポキシ樹脂系接着剤を硬化させ、接着強度を充分得た後、40℃に設定した撹拌機付き空気乾燥機において72時間乾燥した。各試験片について、島津オートグラフAG5000-Bを用いて0.5mm/分の速度で接着面に対して直角に引っ張り、そのときの最大引張荷重を読み取った。最大引張荷重を試験片の面積で除することにより各試験片の層間密着強度を算出し、それらの平均値を、成形板の乾燥時の層間密着強度として採用した。
 吸水時の層間密着強度を測定するために、まず、気乾状態にある4個の試験片の表および裏に、エポキシ樹脂系接着剤を用いて約40mm×約40mmの鋼製冶具を接着し、24時間以上室温で放置することによりエポキシ樹脂系接着剤を硬化させた。次いで、試験片を20℃の水中に72時間浸漬した。試験片を取り出し、表面に付着した水を拭き取った後、直ちに、島津オートグラフAG5000-Bを用いて0.5mm/分の速度で接着面に対して直角に引っ張り、そのときの最大引張荷重を読み取った。最大引張荷重を試験片の面積で除することにより各試験片の層間密着強度を算出し、それらの平均値を、成形板の吸水時の層間密着強度として採用した。
[抄造工程での歩留り率]
 各実施例および各比較例における抄造工程(円網でスラリーを抄き上げる工程)での歩留り率を求めた。具体的には、円網に投入したスラリーを汲み取り、その質量(A1)を測定した。濾過装置(ヌッチェおよび吸引瓶)を用いて固形分を濾取し、105℃の乾燥機にて乾燥質量が一定になるまで12時間以上乾燥し、固形分の質量(B1)を測定した。下記式により円網に投入したスラリーの濃度Cを求めた。
  濃度C=(B1/A1)×100
 同様に、円網を通過した後のスラリーを汲み取り、その濃度Cを下記式により求めた。
  濃度C=(B2/A2)×100
 ここで、A2は、汲み取った円網通過後のスラリーの質量であり、B2は、その固形分の質量である。
 下記式により、抄造工程での歩留り率を求めた。
  抄造工程での歩留り率(%)={(C-C)/C}×100
[総発熱量]
 JIS A 5430:2018の発熱性試験により、総発熱量を求めた。具体的には、測定する成形板から、99±1mm角の試験片を2個切り出し、温度23℃±2℃、相対湿度50±5%で一定質量になるまで保持した後、発熱性試験を実施した。加熱時間は20分間とした。各試験片の総発熱量の平均値を、その成形板の総発熱量として採用した。
 実施例および比較例では、下記表1に示す繊維を使用した。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
 パルプ(NBKP、株式会社パルテックス製セロファイバー、CSF値:115mL)を水に分散させた。得られた分散体に、重質炭酸カルシウム(ブレーン比表面積:4000cm/g)および普通ポルトランドセメント(太平洋セメント株式会社製:普通ポルトランドセメント)を投入して混合した。得られた混合物にポリビニルアルコール系繊維1(表2では「PVA1」と記載)を添加して更に混合した。各成分の割合は表2に示す通りであり、固形分濃度16質量%の硬化性組成物を得た。
 得られた硬化性組成物を、定量供給装置のフィードタンクに移送し、フィードタンクから円網に供給した。工程循環水によって硬化性組成物の固形分濃度を4質量%に調整し、ミニハチェックマシンを用いて抄造を行った。
 次いで、円網工程で得られた抄造シートをメーキングロールにて15枚積層し、積層された抄造シートに21.6MPaの圧力を印加しながら20分間プレスすることにより搾液した。搾液後のシートを、恒温恒湿養生装置において、温度50℃、飽和湿度(RH98%)条件下で24時間養生し、その後、ラップシートで包み、温度20℃、湿度60%の環境下で13日間養生(あわせて材齢14日間の養生)した。ラップシートを除去したシートを、温度120℃に設定したロールドライヤー式の乾燥機において2時間乾燥することにより、成形板を得た。
 得られた成形板について、各種の測定および評価を実施した。結果を表2に示す。なお、表2では、曲げ強さ、衝撃強さおよび層間密着強度の値が各実施例について2つずつ記載されているが、上段の値が乾燥時の値、下段の値が吸水時の値を示している。
[実施例2~17および比較例1~3]
 各成分を表2に示す割合で用いたこと以外は実施例1と同様にして、成形板を得、得られた成形板について、各種の測定および評価を実施した。結果を、表2および表3に示す。なお、実施例10では、炭酸カルシウムとして、ブレーン比表面積2500cm/gの重質炭酸カルシウムおよびブレーン比表面積6200cm/gの重質炭酸カルシウムを質量比50:50で用いた。従って、実施例10における炭酸カルシウムのブレーン比表面積は、4500cm/g(=2500×0.5+6500×0.5)と計算される。また、フライアッシュまたはシリカフュームを配合した実施例では、普通ポルトランドセメントを投入する際にフライアッシュまたはシリカフュームも投入した。
[実施例18]
 PVA1に代えてPVA2を用いたこと、およびプレス時の圧力を21.6MPaから7.85MPaに変更したこと以外は実施例1と同様にして、成形板を得、得られた成形板について、各種の測定および評価を実施した。結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2に示されているように、特定の割合でポゾラン反応に関与しない物質、セメント、合成繊維およびパルプを含んでなり、特定の細孔容積比(B)/(A)を有する成形板は、高い曲げ強さおよび低い寸法変化率を有していた。
 一方、表3から、成形板が特定の細孔容積比(B)/(A)を有さない比較例1では、対応する実施例(実施例1~4)より低い曲げ強さおよび高い寸法変化率を示すことが分かる。また、比較例1では、層間密着強度も小さく、抄造工程での歩留り率も小さいことが分かる。成形板が特定の割合で各成分を含まない比較例2では、対応する実施例(実施例1および5)より低い曲げ強さを示すことが分かる。また、比較例2では、層間密着強度も小さいことが分かる。成形板が特定の割合で各成分を含まず、特定の細孔容積比(B)/(A)を有さない比較例3では、対応する実施例(実施例1および5)より低い曲げ強さおよび高い寸法変化率を示すことが分かる。また、比較例3では、層間密着強度も小さく、総発熱量も高いことが分かる。
 また、任意成分であるシリカフュームの割合が、成形板の製造時の円網工程における抄造性に及ぼす影響を、下記評価基準で目視評価した。
  A:硬化性組成物の抄き上げ時、円網からの硬化性組成物の液だれなし
  B:硬化性組成物の抄き上げ時、円網からの硬化性組成物の液だれは、円網幅30cmあたり1箇所
  C:硬化性組成物の抄き上げ時、円網からの硬化性組成物の液だれは、円網幅30cmあたり2箇所以上
Figure JPOXMLDOC01-appb-T000004
 本発明の成形板は、高い曲げ強さおよび低い寸法変化率を有する。このような本発明の成形板は、建材(例えば、天井材、内装材、外装材、床材)または土木資材として好適に利用できる。

Claims (15)

  1.  ポゾラン反応に関与しない物質35~70質量%、セメント20~61.5質量%、合成繊維1~3質量%、およびパルプ2.5~7質量%を含んでなる多孔質の成形板であって、
    水銀圧入法によって求めた成形板の細孔径分布における、660~9100nmの範囲の細孔容積(A)に対する6~560nmの範囲の細孔容積(B)の比(B)/(A)は1.70~6.0である、成形板。
  2.  ポゾラン反応に関与しない物質は、炭酸カルシウム、硅石粉およびタルクからなる群から選択される1以上の物質である、請求項1に記載の成形板。
  3.  炭酸カルシウムは重質炭酸カルシウムである、請求項2に記載の成形板。
  4.  マイカ、フライアッシュおよびシリカフュームからなる群から選択される1以上の物質を更に含んでなる、請求項1に記載の成形板。
  5.  合成繊維およびパルプの合計含有量は成形板の総質量に対して7質量%以下である、請求項1に記載の成形板。
  6.  合成繊維の平均繊維径は50μm以下である、請求項1に記載の成形板。
  7.  合成繊維の平均繊維径は5μm以上、40μm以下である、請求項6に記載の成形板。
  8.  合成繊維のアスペクト比は150以上、1000以下である、請求項1に記載の成形板。
  9.  合成繊維は、ポリビニルアルコール系繊維、ポリエチレン繊維、ポリプロピレン繊維、アクリル繊維、アラミド繊維およびナイロン繊維からなる群から選択される少なくとも一種である、請求項1に記載の成形板。
  10.  JIS A 5430:2018に準拠して測定された吸水率は15%以上、28%以下である、請求項1に記載の成形板。
  11.  JIS A 5430:2018の発熱性試験に準拠して測定された総発熱量は8.0MJ/m以下である、請求項1に記載の成形板。
  12.  JIS A 5430:2018に準拠して測定された嵩密度は1.50g/cm以上である、請求項1に記載の成形板。
  13.  JIS A 1408:2017に準拠して測定された吸水時の曲げ強さは15N/mm以上である、請求項1に記載の成形板。
  14.  JIS A 5430:2018に準拠して測定された吸水率は26%以下である、請求項1に記載の成形板。
  15.  前記細孔容積(B)は2.50mL/g以下である、請求項1に記載の成形板。
PCT/JP2022/040788 2021-11-02 2022-10-31 多孔質の成形板 WO2023080122A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023558034A JPWO2023080122A1 (ja) 2021-11-02 2022-10-31
EP22889942.3A EP4428110A1 (en) 2021-11-02 2022-10-31 Porous molded plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-179694 2021-11-02
JP2021179694 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080122A1 true WO2023080122A1 (ja) 2023-05-11

Family

ID=86241126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040788 WO2023080122A1 (ja) 2021-11-02 2022-10-31 多孔質の成形板

Country Status (4)

Country Link
EP (1) EP4428110A1 (ja)
JP (1) JPWO2023080122A1 (ja)
TW (1) TW202334058A (ja)
WO (1) WO2023080122A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126544A (ja) * 1984-07-13 1986-02-05 株式会社クラレ 水硬性無機質抄造製品とその製造方法
JPH07237948A (ja) * 1994-02-25 1995-09-12 Matsushita Electric Works Ltd セメント組成物
JP2001048630A (ja) * 1999-06-02 2001-02-20 Asano Slate Co Ltd 無機質耐力面材およびその製造方法
JP2003292365A (ja) * 2002-03-29 2003-10-15 A & A Material Corp セメント系無機硬化体及びその製造法
JP2004123500A (ja) * 2002-10-04 2004-04-22 A & A Material Corp 繊維強化セメント板の製造方法
US20050072056A1 (en) 2003-10-02 2005-04-07 Saint-Gobain Materiaux De Construction S.A.S. Cementitious product in panel form and manufacturing process
JP2005205879A (ja) 2003-12-26 2005-08-04 A & A Material Corp 無機質抄造板およびその製造方法
JP2007001043A (ja) * 2005-06-21 2007-01-11 A & A Material Corp 表面化粧無機質抄造板
CN108276023A (zh) 2018-01-23 2018-07-13 合肥梵腾环保科技有限公司 一种节能环保轻质隔墙板及其制备方法
JP2021179694A (ja) 2020-05-11 2021-11-18 凸版印刷株式会社 管理サーバ、管理システム、管理方法、及びプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126544A (ja) * 1984-07-13 1986-02-05 株式会社クラレ 水硬性無機質抄造製品とその製造方法
JPH07237948A (ja) * 1994-02-25 1995-09-12 Matsushita Electric Works Ltd セメント組成物
JP2001048630A (ja) * 1999-06-02 2001-02-20 Asano Slate Co Ltd 無機質耐力面材およびその製造方法
JP2003292365A (ja) * 2002-03-29 2003-10-15 A & A Material Corp セメント系無機硬化体及びその製造法
JP2004123500A (ja) * 2002-10-04 2004-04-22 A & A Material Corp 繊維強化セメント板の製造方法
US20050072056A1 (en) 2003-10-02 2005-04-07 Saint-Gobain Materiaux De Construction S.A.S. Cementitious product in panel form and manufacturing process
JP2005205879A (ja) 2003-12-26 2005-08-04 A & A Material Corp 無機質抄造板およびその製造方法
JP2007001043A (ja) * 2005-06-21 2007-01-11 A & A Material Corp 表面化粧無機質抄造板
CN108276023A (zh) 2018-01-23 2018-07-13 合肥梵腾环保科技有限公司 一种节能环保轻质隔墙板及其制备方法
JP2021179694A (ja) 2020-05-11 2021-11-18 凸版印刷株式会社 管理サーバ、管理システム、管理方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2023080122A1 (ja) 2023-05-11
EP4428110A1 (en) 2024-09-11
TW202334058A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN101528847B (zh) 改进的脲甲醛树脂组合物以及用于制造纤维毡的方法
KR100905402B1 (ko) 무기질판 및 이의 제조방법
SK241092A3 (en) Formed resistant product reinforced by fibrous
JPWO2019159943A1 (ja) 難燃化した複合繊維およびその製造方法
JP2010120790A (ja) 繊維混入抄造板及びその製造方法
NZ546876A (en) Fibers reinforced cement sheet product and production method thereof
CN103276626A (zh) 造纸工艺
JP6898926B2 (ja) 繊維補強炭酸化セメント成形物およびその製造方法
WO2023080122A1 (ja) 多孔質の成形板
WO2022004640A1 (ja) 積層成形板およびその製造方法
CN115992464A (zh) 低克重挂面箱板纸用的表面施胶剂及其加工方法
US20200207663A1 (en) Cellulose filaments reinforced cement composite board and method for the manufacture of the same
JP7577246B1 (ja) 水硬性組成物の硬化体
JP6887375B2 (ja) 繊維含有炭酸化瓦およびその製造方法
JP4732940B2 (ja) 不燃シート又は不燃成形体
BRPI0711389B1 (pt) Composição de produtos de cimento-fibra e produto de cimento- fibra
WO2024225386A1 (ja) 水硬性組成物の硬化体
JP7262920B2 (ja) 水分散性重袋
JP6375125B2 (ja) ポリビニルアルコール系繊維
CN112469994A (zh) 包含纤维和无机粒子的结构体的分析方法
JP7499216B2 (ja) 建材ボードにおける繊維混入板用嵩高剤およびその利用
Balea Martín et al. Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review
JP5215988B2 (ja) 強化シート又は強化成形体及びそれらの製造方法
JP2721563B2 (ja) 水硬性成形用組成物
JP3227234B2 (ja) 水硬性無機質成型製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558034

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024007228

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202447033817

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18706192

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022889942

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022889942

Country of ref document: EP

Effective date: 20240603

ENP Entry into the national phase

Ref document number: 112024007228

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240412