WO2023080009A1 - フィルタ装置、アンテナ装置、およびアンテナモジュール - Google Patents

フィルタ装置、アンテナ装置、およびアンテナモジュール Download PDF

Info

Publication number
WO2023080009A1
WO2023080009A1 PCT/JP2022/039627 JP2022039627W WO2023080009A1 WO 2023080009 A1 WO2023080009 A1 WO 2023080009A1 JP 2022039627 W JP2022039627 W JP 2022039627W WO 2023080009 A1 WO2023080009 A1 WO 2023080009A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
filter device
antenna
path
capacitor
Prior art date
Application number
PCT/JP2022/039627
Other languages
English (en)
French (fr)
Inventor
真也 立花
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023557959A priority Critical patent/JPWO2023080009A1/ja
Priority to CN202280071945.5A priority patent/CN118176662A/zh
Publication of WO2023080009A1 publication Critical patent/WO2023080009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present disclosure relates to filter devices, antenna devices, and antenna modules, and more particularly to techniques for improving attenuation characteristics and pass characteristics.
  • a filter device such as a band-stop filter or a band-pass filter is provided in the high-frequency circuit.
  • Japanese Patent No. 6531824 discloses a filter device as an example of a filter device provided in a high frequency circuit.
  • the filter device includes a first inductor and a first capacitor forming a first series circuit, and a second inductor connected in parallel to the first series circuit.
  • Patent Document 1 when the attenuation band due to parallel resonance and the passband due to series resonance are brought close to each other, both the attenuation characteristic and the pass characteristic are maintained at high characteristics. was difficult.
  • the present disclosure has been made in order to solve such problems, and its object is to provide a filter that provides good characteristics even when the attenuation band due to parallel resonance and the pass band due to series resonance are brought close to each other. to provide the equipment.
  • a filter device is a filter device having a passband of a first frequency band and an attenuation band of a second frequency band lower than the first frequency band.
  • the filter device includes a first terminal, a second terminal, a first inductor connected to the first terminal, and a first path and a second path provided in parallel between the first inductor and the second terminal.
  • a series resonator including a first capacitor and a second inductor arranged in the first path. The first inductor and the second inductor are magnetically coupled to each other.
  • the series resonator is arranged in the first path, and the first inductor and the second and an inductor configured to be magnetically coupled to each other.
  • FIG. 1 is a circuit diagram of a filter device according to Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of an antenna device according to Embodiment 1;
  • FIG. 4 is a diagram for explaining reactance characteristics of the filter device according to Embodiment 1;
  • FIG. 2 is an equivalent circuit diagram of the filter device according to Embodiment 1.
  • FIG. 4 is a diagram showing an example of insertion loss of the filter device according to Embodiment 1;
  • FIG. 4 is a diagram showing an example of reactance characteristics of the filter device according to Embodiment 1;
  • FIG. FIG. 5 is a diagram showing an example of reactance characteristics when coupling coefficients are changed in the filter device according to Embodiment 1;
  • 1 is a perspective view of a filter device according to Embodiment 1.
  • FIG. 2 is an exploded plan view showing the configuration of the filter device according to Embodiment 1.
  • FIG. 3 is an exploded plan view showing a configuration in which the winding direction of inductor L1 and the winding direction of inductor L2 are opposite in the filter device according to the first embodiment;
  • FIG. FIG. 10 is a diagram showing the configuration of an antenna module according to Embodiment 2;
  • FIG. 10 is a diagram showing isolation characteristics between antenna devices in Embodiment 2;
  • FIG. 10 is a diagram showing the radiation efficiency of each antenna device according to Embodiment 2;
  • FIG. 10 is an external view of an antenna module according to Embodiment 2;
  • FIG. 11 is a circuit diagram of a filter device according to Embodiment 3;
  • FIG. 10 is a schematic diagram of a filter device according to Embodiment 3;
  • FIG. 10 is a diagram showing an example of insertion loss and reactance characteristics of a filter device according to Embodiment 3;
  • FIG. 11 is a circuit diagram of a filter device according to Embodiment 4;
  • FIG. 11 is a schematic diagram of a filter device according to Embodiment 4;
  • FIG. 11 is a circuit diagram of a filter device according to Embodiment 5;
  • FIG. 11 is a diagram showing an example of insertion loss of a filter device according to Embodiment 5;
  • FIG. 13 is a diagram showing an example of reactance characteristics of a filter device according to Embodiment 5;
  • FIG. 11 is a circuit diagram of a filter device according to Embodiment 6;
  • FIG. 11 is a diagram showing an example of insertion loss of a filter device according to Embodiment 6;
  • FIG. 12 is a diagram showing an example of reactance characteristics of a filter device according to Embodiment 6; It is a circuit diagram of a filter device in a modification.
  • FIG. 1 is a circuit diagram of a filter device 100 according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing the configuration of the antenna device 150 according to Embodiment 1.
  • Filter device 100 is a trap filter that is used in antenna device 150 to block and attenuate high-frequency signals in a specific frequency band.
  • Filter device 100 is also referred to as a band-eliminating filter.
  • the antenna device 150 includes a feeding circuit RF1, a filter device 100, and an antenna 155.
  • the antenna device 150 is installed in, for example, a mobile terminal such as a mobile phone, a smart phone, or a tablet, or a communication device such as a personal computer having a communication function.
  • the feeding circuit RF1 supplies the antenna 155 with a high-frequency signal in the frequency band of the f1 band.
  • Antenna 155 is, for example, a monopole antenna, and can radiate into the air as radio waves a high-frequency signal in the f1 band supplied from feeder circuit RF1.
  • the f1 band frequency band is, for example, n41 (2.5-2.7 GHz).
  • the filter device 100 is useful when the antenna device 150 is used near an antenna in the 2.4 GHz band (2.4-2.5 GHz) of Wi-Fi (registered trademark).
  • the filter device 100 is configured to attenuate high frequency signals in the 2.4 GHz band (f2 band) and to pass high frequency signals in the f1 band.
  • FIG. 3 is a diagram illustrating reactance characteristics of filter device 100 according to the first embodiment. As shown in FIG. 3, the filter device 100 has an attenuation band of the f2 band due to parallel resonance and a pass band of the f1 band due to series resonance.
  • the f1 band and the f2 band are adjacent frequency bands, as shown in FIG. Whether or not frequency bands are adjacent can be determined, for example, using a bandwidth and a center frequency for that bandwidth. For example, if the bandwidth between the frequency edge of the f1 band and the frequency edge of the f2 band and the ratio of the center frequency to the bandwidth are within a predetermined range, it is determined that the f1 band and the f2 band are close to each other. It should be noted that other methods may be used to determine whether or not the frequency bands are close to each other.
  • the filter device 100 shown in FIG. 2 has a terminal P1 and a terminal P2.
  • the terminal P1 is a terminal for connecting the filter device 100 to the transmission line on the power supply circuit RF1 side.
  • Terminal P2 is a terminal for connecting filter device 100 to a transmission line on the antenna 155 side.
  • the terminal P1 When the feed circuit RF1 supplies a high frequency signal to the antenna 155 through the filter device 100, the terminal P1 becomes an input terminal and the terminal P2 becomes an output terminal.
  • the terminal P1 When the high-frequency signal received by the antenna 155 is transmitted to the circuit on the power supply circuit RF1 side through the filter device 100, the terminal P1 becomes an output terminal and the terminal P2 becomes an input terminal.
  • the filter device 100 includes an inductor L1, an inductor L2, and a capacitor C1 as shown in FIG.
  • a first path TL1 and a second path TL2 are provided between the inductor L1 and the terminal P2.
  • the first path TL1 is provided with an LC series resonator RS in which an inductor L2 and a capacitor C1 are connected in series.
  • the second route TL2 is a short route.
  • FIG. 4 is an equivalent circuit diagram of the filter device 100 according to the first embodiment.
  • the circuit diagram shown in FIG. 4(a) shows the circuit of the filter device 100 when the winding directions of the coils forming the inductor L1 and the inductor L2 are the same.
  • the equivalent circuit diagram shown in FIG. 4B shows an equivalent circuit of the circuit of the filter device 100 shown in FIG. are shown respectively.
  • the filter device 100 functions as a parallel resonator with mutual inductances -M and +M.
  • the resonance frequency of this parallel resonator matches the series resonance frequency f0 of the LC series resonator RS, and is the parallel resonance frequency of the attenuation band (f2 band) of the filter device 100.
  • the filter device 100 it is possible to design the parallel resonance frequency of the attenuation band (f2 band) only by considering the inductor L2 and the capacitor C1 that constitute the LC series resonator RS. Therefore, the filter device 100 has a very advantageous configuration in terms of structural design.
  • the filter device 100 was simulated with an inductor L1 of 1.0 nH, an inductor L2 of 2.0 nH, a capacitor C1 of 2.2 pF, and a coupling coefficient K of 0.5. If the inductor L2 is 2.0 nH and the capacitor C1 is 2.2 pF, the series resonance frequency f0 of the LC series resonator RS is calculated to be 2.4 GHz. frequency) of 2.4 GHz. The series resonance frequency (center frequency) of the passband (f1 band) of the filter device 100 is 2.77 GHz. In filter device 100, the inductance of inductor L1 is preferably smaller than the inductance of inductor L2. Thereby, the loss of the filter device 100 as a whole can be reduced.
  • FIG. 5 is a diagram showing an example of the insertion loss of the filter device 100 according to Embodiment 1.
  • FIG. 5 the horizontal axis is frequency and the vertical axis is insertion loss.
  • FIG. 6 is a diagram showing an example of reactance characteristics of filter device 100 according to the first embodiment. In FIG. 6, the horizontal axis is frequency and the vertical axis is reactance.
  • the insertion loss is the ratio of the power that is output to the power that is input to the filter device 100 .
  • the filter device to be compared has a configuration in which an inductor Lb is connected in parallel to an LC series resonator composed of an inductor La and a capacitor Ca.
  • the comparison filter device was simulated with an inductor Lb of 0.069 nH, an inductor La of 42.19 nH, a capacitor Ca of 0.1 pF, and a coupling coefficient K2 between the inductor Lb and inductor La of 0.5.
  • the filter device to be compared also has a parallel resonance frequency (center frequency) of 2.4 GHz in the attenuation band (f2 band) and a series resonance frequency (center frequency) of 2.77 GHz in the pass band (f1 band).
  • the mark m1 shown in FIG. 5 indicates the position of the parallel resonance frequency (center frequency) of 2.4 GHz.
  • the loss is 2.75 dB. Therefore, the filter device 100 has sufficient attenuation characteristics in the attenuation band (f2 band), but the comparison filter device does not have sufficient attenuation characteristics.
  • the mark m2 shown in FIG. 5 indicates the position of the series resonance frequency (center frequency) of 2.77 GHz. has an insertion loss of 0.404 dB. Therefore, the filter device 100 has a higher pass characteristic in the passband (f1 band) than the comparison filter device.
  • FIG. 6 in addition to the line Ln3 representing the reactance characteristic of the filter device 100, a line Ln4 representing the reactance characteristic of the filter device to be compared is shown.
  • a mark m3 shown in FIG. 6 indicates the position of the parallel resonance frequency (center frequency) of 2.4 GHz, and the reactance of the line Ln3 at the mark m3 changes greatly compared to the reactance of the line Ln4. Therefore, the filter device 100 has sufficient attenuation characteristics in the attenuation band (f2 band), but the comparison filter device does not have sufficient attenuation characteristics.
  • the mark m4 shown in FIG. 6 indicates the position of the series resonance frequency (center frequency) of 2.77 GHz, and the reactance of the line Ln3 at the mark m4 is approximately 0 (zero). Therefore, the filter device 100 has sufficient pass characteristics in the pass band (f1 band).
  • filter device 100 when the attenuation band (f2 band) due to parallel resonance and the pass band (f1 band) due to series resonance are brought close to each other, sufficient attenuation characteristics and pass characteristics can be obtained as shown in FIGS. ing.
  • the filter device to be compared when the attenuation band (f2 band) due to parallel resonance and the pass band (f1 band) due to series resonance are brought close to each other, sufficient attenuation characteristics and passband characteristics are obtained as shown in FIGS. characteristics are not obtained.
  • the inductor La is as large as 42.19 nH, whereas the inductor Lb is not extremely small as 0.069 nH.
  • the band (f1 band) cannot be brought close to each other. Therefore, it is difficult to actually realize a configuration in which the coupling coefficient K2 between the inductor Lb and the inductor La is set to 0.5.
  • the parallel resonance frequency of the attenuation band (f2 band) is determined by the inductor L2 and the capacitor C1 that constitute the LC series resonator RS. Therefore, filter device 100 can change the series resonance frequency of the passband (f1 band) by changing the coupling coefficient between inductor L1 and inductor L2. can be made closer than the passband (f1 band) due to series resonance. That is, the filter device 100 can realize a narrow-band filter device in which the attenuation characteristic sharply changes in the vicinity of the parallel resonance frequency of the attenuation band (f2 band).
  • FIG. 7 is a diagram showing an example of reactance characteristics when the coupling coefficient K is changed in the filter device 100 according to the first embodiment.
  • the horizontal axis is frequency and the vertical axis is reactance.
  • FIG. 7 shows a line Ln5 representing the reactance characteristic of the filter device 100 with the coupling coefficient K of 0.3 in addition to the line Ln3 representing the reactance characteristic of the filter device 100 with the coupling coefficient K of 0.5.
  • the filter device 100 was simulated with an inductor L1 of 1.0 nH, an inductor L2 of 2.0 nH, and a capacitor C1 of 2.2 pF, except for the coupling coefficient K.
  • the reactance of the line Ln5 changes steeper than the reactance of the line Ln3.
  • the filter device 100 can bring the series resonance frequency (center frequency) closer to the parallel resonance frequency (center frequency) by reducing the coupling coefficient K.
  • FIG. 8 is a perspective view of the filter device according to Embodiment 1.
  • FIG. 9 is an exploded plan view showing the configuration of filter device 100 according to the first embodiment.
  • the filter device 100 is integrally formed as a chip part, for example, and has the inductor L1 and the LC series resonator RS shown in FIG. 1, external electrodes 2a to 2d are formed.
  • the terminal P1 is connected to the external electrode 2a (first external electrode), and the terminal P2 is connected to the external electrode 2b (second external electrode).
  • the short side direction is the X direction
  • the long side direction is the Y direction
  • the height direction is the Z direction
  • the lamination direction of the dielectric layers is the Z direction.
  • the external electrodes 2c and 2d are GND electrodes that are not connected to the internal circuit.
  • the filter device 100 shown in FIG. A terminal configuration may also be used.
  • the filter device 100 is formed by a lamination process, and is formed by laminating substrates of a plurality of dielectric layers Ly1 to Ly9 shown in FIG. 9 (hereinafter also simply referred to as dielectric layers Ly1 to Ly9).
  • Each of the dielectric layers Ly1 to Ly9 is a ceramic green sheet, and a wiring pattern is formed by printing a conductive paste (eg, Ni paste) by screen printing.
  • a wiring pattern r1 forming part of the inductor L1 is formed on the dielectric layer Ly1, and one end of the wiring pattern r1 is connected to the terminal P1 and the other end is connected to the via conductor h1a.
  • a wiring pattern r2a forming part of the inductor L1 is formed on the dielectric layer Ly2, and one end of the wiring pattern r2a is connected to the via conductor h1a, and the other end is connected to the wiring pattern r2b and the wiring pattern r2c of the second path TL2. It is connected.
  • the wiring pattern r2b constitutes a part of the inductor L2, and the via conductor h2a is connected to the opposite end to the wiring pattern r2a.
  • the wiring pattern r2c of the second path TL2 is connected to the via conductor h2b at the opposite end to the wiring pattern r2a.
  • a wiring pattern r3 forming part of the inductor L2 is formed on the dielectric layer Ly3, and one end of the wiring pattern r3 is connected to the via conductor h2a, and the other end is connected to the via conductor h3a.
  • a via conductor h3b connected to the via conductor h2b is provided in the dielectric layer Ly3.
  • a wiring pattern r4 forming part of the inductor L2 is formed on the dielectric layer Ly4, and one end of the wiring pattern r4 is connected to the via conductor h3a, and the other end is connected to the via conductor h4a.
  • a via conductor h4b connected to the via conductor h3b is provided on the dielectric layer Ly4.
  • a wiring pattern r5 forming part of the inductor L2 is formed on the dielectric layer Ly5, and one end of the wiring pattern r5 is connected to the via conductor h4a, and the other end is connected to the via conductor h5a.
  • a via conductor h5b connected to the via conductor h4b is provided in the dielectric layer Ly5.
  • an electrode pattern p1 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p1 is connected to the terminal P2 and also to the via conductor h6b.
  • the via conductor h6b is connected to the via conductor h5b and electrically connects the electrode pattern p1 and the wiring pattern r2c of the second path TL2.
  • a via conductor h6a connected to the via conductor h5a is provided on the dielectric layer Ly6.
  • an electrode pattern p2 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p2 is connected to the via conductor h7a and electrically connected to the inductor L2, but is not directly electrically connected to the electrode pattern p1.
  • a via conductor h7b connected to the via conductor h6b is provided on the dielectric layer Ly7.
  • an electrode pattern p3 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p3 is connected to the terminal P2 and also to the via conductor h7b.
  • the electrode pattern p1 and the electrode pattern p3 are electrically connected through the via conductor h7b.
  • a via conductor h8 connected to the via conductor h7a is provided in the dielectric layer Ly8.
  • an electrode pattern p4 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p4 is connected to the via conductor h8 and electrically connected to the electrode pattern p2, but is not directly electrically connected to the electrode patterns p1 and p3.
  • the wiring pattern r1 formed on the dielectric layer Ly1 and the wiring pattern r2a formed on the dielectric layer Ly2 form a winding shape when viewed from the stacking direction, and constitute the inductor L1.
  • the wiring pattern r2b formed on the dielectric layer Ly2 and the wiring patterns r3 to r5 formed on the dielectric layers Ly3 to Ly5 form an inductor L2 in a winding shape when viewed from the stacking direction.
  • the inductor L1 and the inductor L2 are arranged so as to face each other, and the opening of the inductor L1 at least partially overlaps the opening of the inductor L2 when viewed from the stacking direction.
  • the filter device 100 has the inductor L1, the inductor L2, and the capacitor C1 stacked in this order when viewed from the stacking direction.
  • the number of the via conductors h2b to h5b forming part of the second path TL2 is increased. can be reduced, and the length of the second path TL2 can be shortened.
  • the second path TL2 which is a short path shown in FIG. 1, is a path that connects between the inductor L1 and the inductor L2 to the capacitor C1, and the equivalent series inductance ESL (Equivalent Series Inductance), which is the parasitic inductance generated in this path, is It is preferably smaller than the mutual inductance M. That is, by making the inductance of the second path TL2 smaller than the mutual inductance M between the inductors L1 and L2, the second path TL2 can be regarded as a short path.
  • ESL Equivalent Series Inductance
  • the second path TL2 is composed of via conductors h2b to h5b connecting layers and a wiring pattern r2c.
  • the second path TL2, which is a short path, may contain some resistance component (R component), but by making the resistance component (R component) smaller, the Q value of the filter device 100 can be improved.
  • the inductors L1, L2 and the capacitor C1 can be made of different dielectric materials by using the layers forming the inductors L1, L2 as shown in FIG. It is necessary to separate the dielectric layers Ly1-Ly5) from the layers forming the capacitor C1 (dielectric layers Ly6-Ly9).
  • the filter device 100 is formed by photolithography, the layer forming the inductors L1 and L2 and the layer forming the capacitor C1 are not separated, and the capacitor C1 is formed side by side with respect to the inductor L1 or the inductor L2. can do.
  • filter device 100 has a structure that facilitates increasing the coupling coefficient between inductor L1 and inductor L2.
  • FIG. 10 is an exploded plan view showing a configuration in which the winding direction of inductor L1 and the winding direction of inductor L2 are opposite in filter device 100 according to the first embodiment.
  • the inductor L2, the inductor L1, and the capacitor C1 are stacked in this order when viewed from the stacking direction.
  • a wiring pattern r1 forming part of the inductor L2 is formed on the dielectric layer Ly1, and one end of the wiring pattern r1 is connected to the via conductor h1 and the other end is connected to the via conductor h2a of the dielectric layer Ly2. .
  • a wiring pattern r2 forming part of the inductor L2 is formed on the dielectric layer Ly2, and one end of the wiring pattern r2 is connected to the via conductor h2a, and the other end is connected to the via conductor h3a of the dielectric layer Ly3. .
  • a via conductor h2b connected to the via conductor h1 is provided in the dielectric layer Ly2.
  • a wiring pattern r3 forming part of the inductor L2 is formed on the dielectric layer Ly3, and one end of the wiring pattern r3 is connected to the via conductor h3a, and the other end is connected to the via conductor h4a of the dielectric layer Ly4. .
  • a via conductor h3b connected to the via conductor h2b is provided in the dielectric layer Ly3.
  • a wiring pattern r4a forming part of the inductor L1 is formed on the dielectric layer Ly4. They are connected to the wiring pattern r4b.
  • a via conductor h4c is connected to the end of the wiring pattern r4b of the second path TL2 on the opposite side to the wiring pattern r4a.
  • a via conductor h4b connected to the via conductor h3b is provided on the dielectric layer Ly4.
  • a wiring pattern r5 forming part of the inductor L1 is formed on the dielectric layer Ly5, and one end of the wiring pattern r5 is connected to the via conductor h5a, and the other end is connected to the terminal P1.
  • a via conductor h5b connected to the via conductor h4b is provided in the dielectric layer Ly5.
  • an electrode pattern p1 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p1 is connected to the terminal P2 and also to the via conductor h6a.
  • the via conductor h6a is connected to the via conductor h4c and electrically connects the electrode pattern p1 and the wiring pattern r4b of the second path TL2.
  • a via conductor h6b connected to the via conductor h5b is provided on the dielectric layer Ly6.
  • an electrode pattern p2 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p2 is connected to the via conductor h7b and electrically connected to the inductor L2, but is not directly electrically connected to the electrode pattern p1.
  • a via conductor h7a connected to the via conductor h6a is provided on the dielectric layer Ly7.
  • an electrode pattern p3 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p3 is connected to the terminal P2 and also to the via conductor h7a.
  • the electrode pattern p1 and the electrode pattern p3 are electrically connected through the via conductor h7a.
  • a via conductor h8 connected to the via conductor h7b is provided in the dielectric layer Ly8.
  • an electrode pattern p4 that constitutes a part of the capacitor C1 is formed at a position that does not overlap the inductors L1 and L2 when viewed from the stacking direction.
  • the electrode pattern p4 is connected to the via conductor h8 and is electrically connected to the electrode pattern p2, but is not electrically connected to the electrode patterns p1 and p3.
  • the wiring pattern r5 formed on the dielectric layer Ly5 and the wiring pattern r4a formed on the dielectric layer Ly4 form a winding shape when viewed from the stacking direction, and constitute the inductor L1.
  • the wiring patterns r1 to r3 formed on the dielectric layers Ly1 to Ly3 form an inductor L2 in a winding shape when viewed from the stacking direction.
  • the inductor L1 and the inductor L2 are arranged so as to face each other, and the opening of the inductor L1 at least partially overlaps the opening of the inductor L2 when viewed from the stacking direction.
  • the wiring pattern r5 and the wiring pattern r4a are wound counterclockwise from the dielectric layer Ly5 toward the dielectric layer Ly1. r3 is reversed in the clockwise winding direction. Therefore, unlike the equivalent circuit diagram shown in FIG. 4B, mutual inductance ⁇ M is generated in the first path TL1 and mutual inductance +M is generated in the second path TL2.
  • the wiring pattern r2a forming part of the inductor L1 and the wiring forming part of the inductor L2 are formed like the dielectric layer Ly2 in FIG. It is not formed in the same layer as the pattern r2a. Therefore, the degree of freedom of inductor L1 and inductor L2 is relatively high, and it becomes easy to adjust the respective inductances.
  • the filter device 100 has a passband of the f1 band (first frequency band) and an attenuation band of the f2 band (second frequency band) lower than the f1 band. is.
  • the filter device 100 includes a terminal P1 (first terminal), a terminal P2 (second terminal), an inductor L1 (first inductor) connected to the terminal P1, and provided in parallel between the inductor L1 and the terminal P2. and an LC series resonator RS including a capacitor C1 (first capacitor) and an inductor L2 (second inductor) arranged on the first path TL1. Inductor L1 and inductor L2 are magnetically coupled to each other.
  • the filter device 100 according to Embodiment 1 can obtain both high attenuation characteristics and high pass characteristics even when the attenuation band due to parallel resonance and the pass band due to series resonance are brought close to each other.
  • the inductance of the second path TL2 is preferably smaller than the mutual inductance M between the inductors L1 and L2. This allows the second path TL2 to be regarded as a short path, facilitating the design of the parallel resonance frequency.
  • the inductance of inductor L1 is preferably smaller than the inductance of inductor L2. Thereby, the loss of the filter device 100 as a whole can be reduced.
  • the terminals P1 and P2 are electrically connected to the first external electrode and the second external electrode provided on the housing, respectively, and the inductor L1 and the LC series resonator RS are provided within the housing.
  • the filter device 100 can be integrally formed, for example, as a chip component. Further, by miniaturizing the filter device 100, the number of parts of the antenna device incorporating the filter device 100 can be reduced, and the amount of solder used can also be reduced.
  • the housing is an insulator, and the inductor L1 and the LC series resonator RS are configured by a plurality of conductor patterns within the insulator.
  • Inductor L1 is electrically connected to terminal P1 and includes one or more layers of wiring patterns r1 and r2a (first conductor patterns).
  • Inductor L2 is electrically connected to terminal P2 and includes one or more layers of wiring patterns r2b, r3 to r5 (second conductor patterns).
  • Capacitor C1 is preferably electrically connected to wiring pattern r2c drawn from wiring patterns r2a and r2b.
  • the filter device 100 can be integrally formed as a chip component of a laminated structure.
  • the wiring pattern r2c can be drawn out from the middle of the wiring pattern of the inductors L1 and L2, the number of layers forming the second path TL2 can be reduced. ) can be formed as parts.
  • a substrate having wiring patterns r1 and r2a (first conductor patterns) and a substrate having wiring patterns r2b and r3 to r5 (second conductor patterns) formed thereon are laminated to form inductor L1 and inductor L2.
  • Capacitor C1 is preferably arranged in a layer different from the layer in which inductor L1 and inductor L2 are arranged. This allows different dielectric materials to be used for the capacitor C1 and for the inductors L1 and L2.
  • the capacitor C1 is preferably arranged on the side of the inductor L1 when viewed from the lamination direction of the insulator. Thereby, the length of the second path TL2 connecting the capacitor C1 and the inductor L1 can be shortened.
  • the antenna device 150 can radiate radio waves in the f1 band.
  • the antenna device 150 includes an antenna 155, a feeder circuit RF1 that supplies a high-frequency signal to the antenna 155, and the above-described filter device 100 provided between the antenna 155 and the feeder circuit RF1.
  • the antenna device 150 according to Embodiment 1 can pass the f1 band and attenuate the radio waves of the f2 band even when the f1 band and the f2 band are brought close to each other.
  • Embodiment 2 In Embodiment 1, the antenna device 150 having the antenna 155 has been described. In Embodiment 2, antenna module 200 including antenna device 160 in addition to antenna device 150 in Embodiment 1 will be described. In antenna module 200 of the second embodiment, description of the configuration overlapping with antenna device 150 of the first embodiment will not be repeated.
  • FIG. 11 is a diagram showing the configuration of antenna module 200 according to the second embodiment.
  • Antenna module 200 includes antenna device 150 and antenna device 160 .
  • Antenna device 160 includes a feeding circuit RF2 and an antenna 165 .
  • the antenna module 200 is mounted in, for example, a mobile terminal such as a mobile phone, a smart phone, or a tablet, or a communication device such as a personal computer having a communication function.
  • the feeding circuit RF1 supplies the antenna 155 with a high-frequency signal in the frequency band of the f1 band.
  • the antenna 155 can radiate into the air, as radio waves, a high-frequency signal in the f1 band supplied from the feeder circuit RF1.
  • the f1 band frequency band is, for example, n41 (2.5-2.7 GHz).
  • the filter device 100 according to Embodiment 2 is configured to attenuate high frequency signals in the f2 frequency band.
  • the frequency band of the f2 band is, for example, a band such as the 2.4 GHz band (2.4-2.5 GHz) of Wi-Fi (registered trademark).
  • the f1 band is the passband and the f2 band is the attenuation band.
  • the f1 band frequency band is lower than the f2 band frequency band.
  • the feeding circuit RF2 supplies the antenna 165 with a high-frequency signal in the frequency band of the f2 band.
  • the antenna 165 can radiate into the air the f2-band high-frequency signal supplied from the feeder circuit RF2 as radio waves.
  • the filter device 100 is provided to remove the f2 band high-frequency signal, which may become noise in the antenna device 150, by increasing the insertion loss due to parallel resonance.
  • the antenna 155 and the antenna 165 are mounted on the same substrate 170. Although the antennas 155 and 165 are provided on the same substrate 170 in FIG. 11 , they may be provided on different substrates as long as they are provided in the same antenna module 200 . Further, in the second embodiment, the power supply circuit RF1 is not limited to supplying only high frequency signals in the f1 band, and may supply high frequency signals in other bands.
  • FIG. 12 is a diagram showing isolation characteristics between the antenna devices 150 and 160 according to the second embodiment.
  • the horizontal axis indicates frequency and the vertical axis indicates isolation.
  • a line Ln6 indicates the isolation between the antenna device 150 and the antenna device 160 of the antenna module 200 in the second embodiment.
  • a line Ln7 indicates the isolation between the antenna device 150 and the antenna device 160 without the filter device 100 as a comparative example. That is, the isolation is the ratio of the power received by the feeder circuit RF1 of the antenna device 150 via the antenna to the power input from the feeder circuit RF2 of the antenna device 160 .
  • the isolation (Ln6) of the antenna module 200 is improved by 10 dB or more over the isolation (Ln7) of the antenna module of the comparative example. . That is, in the second embodiment, filter device 100 attenuates frequencies in the f2 band, thereby improving isolation between antenna devices 150 and 160 .
  • FIG. 13 is a diagram showing the radiation efficiency of each of the antenna devices 150, 160 according to the second embodiment.
  • the horizontal axis indicates frequency, and the vertical axis indicates radiation efficiency.
  • a line Ln8 indicates the radiation efficiency of the antenna device 150 of the antenna module 200 in the second embodiment.
  • a line Ln9 indicates the radiation efficiency of the antenna device 160 of the antenna module 200 according to the second embodiment.
  • a line Ln8a indicates the radiation efficiency of the antenna device 150 without the filter device 100 as a comparative example.
  • a line Ln9a indicates the radiation efficiency of the antenna device 160 when the filter device 100 is not provided in the antenna device 150 as a comparative example.
  • the radiation efficiency means the ratio of the power radiated from the antenna to the power supplied from the feeding circuit. That is, in FIG. 13, the power radiated from the antenna increases toward the top of the graph for the same supplied power.
  • the radiation efficiency (Ln9) of the antenna device 160 of the antenna module 200 is higher than the radiation efficiency (Ln9a) of the antenna device 160 of the comparative example. It has improved by about 6 dB. That is, in Embodiment 2, the radiation efficiency of the antenna device 160 is improved by providing the filter device 100 in the antenna device 150 .
  • FIG. 14 is an external view of antenna module 200 according to the second embodiment.
  • the antenna module 200 includes an antenna device 150 and an antenna device 160 as shown in FIG.
  • Antenna device 150 includes an antenna 155, which is a monopole antenna, filter device 100, and feeding circuit RF1.
  • Antenna device 160 includes an antenna 165, which is a monopole antenna, and a feeding circuit RF2.
  • the antennas 155 and 165 are not limited to monopole antennas, and may be inverted F-type antennas, loop antennas, array antennas, or the like.
  • Antenna 155 is connected to feeder circuit RF1 through filter device 100 .
  • Antenna 165 is connected to feeder circuit RF2.
  • the antenna module 200 according to Embodiment 2 can radiate radio waves in the f1 band and the f2 band.
  • the antenna module 200 includes an antenna device 150 capable of emitting radio waves in the f1 band and an antenna device 160 capable of emitting radio waves in the f2 band.
  • Antenna device 150 is the antenna device according to the first embodiment.
  • the antenna module 200 according to Embodiment 2 improves the isolation between the antenna device 150 and the antenna device 160, improves the radiation characteristics of the f1 band radio waves in the antenna device 150, and improves the f2 band in the antenna device 160. It is possible to improve the radio wave radiation characteristics of the band.
  • the filter device has a first path TL1 provided with an LC series resonator RS between an inductor L1 and a terminal P2, and a second path TL2 which is a short path. 100 has been described.
  • a filter device in which an inductor is provided in parallel with the short path of filter device 100 in the first embodiment will be described.
  • the same components as those of the filter device 100 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the filter device of the third embodiment may be used instead of the filter device 100.
  • FIG. 15 is a circuit diagram of the filter device 100A according to the third embodiment.
  • Filter device 100A includes inductor L1, inductor L2, inductor L3, and capacitor C1, as shown in FIG.
  • a first path TL1 and a second path TL2 are provided between the inductor L1 and the terminal P2.
  • the first path TL1 is provided with an LC series resonator RS in which an inductor L2 and a capacitor C1 are connected in series.
  • the second route TL2 is a short route.
  • an inductor L3 is provided in parallel with the second path TL2, which is a short path.
  • FIG. 16 is a schematic diagram of a filter device 100A according to Embodiment 3.
  • the filter device 100A is integrally formed as a chip part, for example, as shown in FIG. It includes a capacitor C1.
  • External electrodes 2a and 2b are formed on the outside of insulator 1.
  • Terminal P1 is connected to external electrode 2a (first external electrode), and terminal P2 is connected to external electrode 2b (second external electrode).
  • the wiring from the connecting portion of the inductor L1 and the inductor L2 to the external electrode 2b corresponds to the second path TL2, which is a short path, and is provided in parallel with the second path TL2. corresponds to the inductor L3. That is, the inductor L3 exists at a position not overlapping with the inductor L1 or the inductor L2 when viewed from the coil opening direction.
  • the external electrode 2a is electrically connected to the land electrode 20a of the circuit board for mounting the filter device 100A
  • the external electrode 2b is electrically connected to the land electrode 20b of the circuit board for mounting the filter device 100A. It is
  • FIG. 17 is a diagram showing an example of insertion loss and reactance characteristics of the filter device 100A according to the third embodiment.
  • 4 illustrates reactance characteristics
  • FIG. 17(a) is a diagram showing an example of the insertion loss of the filter device 100A according to the third embodiment. In FIG. 17(a), the horizontal axis is frequency and the vertical axis is insertion loss.
  • FIG. 17(b) is a diagram showing an example of reactance characteristics of the filter device 100A according to the third embodiment. In FIG. 17(b), the horizontal axis is frequency and the vertical axis is reactance.
  • the resonance frequency of the filter device 100A is approximately 2.4 GHz, which is the same resonance frequency as the filter device 100 of the first embodiment. That is, as in the filter device 100A, even if the inductor L3 (the third path having a parasitic inductance of about 2 nH) is provided in parallel with the second path TL2, which is a short path, there is no change in the insertion loss and reactance characteristics. I understand.
  • the filter device 100A can reduce the ESL by providing the inductor L3. In this way, additional paths can be formed regardless of parasitic inductance, and ESL can be reduced.
  • the filter device has a first path TL1 provided with an LC series resonator RS between an inductor L1 and a terminal P2, and a second path TL2 which is a short path. 100 has been described.
  • a filter device in which a capacitor is provided in parallel with the short path of filter device 100 in the first embodiment will be described.
  • the same components as those of the filter device 100 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the filter device of the fourth embodiment may be used instead of the filter device 100.
  • FIG. 18 is a circuit diagram of the filter device 100B according to the fourth embodiment.
  • Filter device 100B includes inductor L1, inductor L2, capacitor C1, and capacitor C3 as shown in FIG.
  • a first path TL1 and a second path TL2 are provided between the inductor L1 and the terminal P2.
  • the first path TL1 is provided with an LC series resonator RS in which an inductor L2 and a capacitor C1 are connected in series.
  • the second route TL2 is a short route.
  • a capacitor C3 is provided in parallel with the second path TL2, which is a short path.
  • FIG. 19 is a schematic diagram of a filter device 100B according to Embodiment 4.
  • FIG. The filter device 100B is integrally formed as a chip component as shown in FIG. 19, for example, and has the inductor L1, the inductor L2, the capacitor C1, Includes capacitor C3.
  • External electrodes 2a and 2b are formed on the outside of insulator 1. Terminal P1 is connected to external electrode 2a (first external electrode), and terminal P2 is connected to external electrode 2b (second external electrode).
  • the wiring from the connection portion between the inductor L1 and the inductor L2 to the external electrode 2b corresponds to the second route TL2, which is a short circuit route
  • the wiring between the second route TL2 and the external electrode 2b corresponds to the second route TL2.
  • the parasitic capacitance that is formed corresponds to capacitor C3.
  • the external electrode 2a is electrically connected to the land electrode 20a of the circuit board for mounting the filter device 100B
  • the external electrode 2b is electrically connected to the land electrode 20b of the circuit board for mounting the filter device 100B. It is
  • the resonance frequency of filter device 100B is about 2.0, which is the same as that of filter device 100A shown in FIGS. 17A and 17B, regardless of C3. It is 4 GHz and has the same resonance frequency as the filter device 100 of the first embodiment. Also, the reactance characteristics are the same as those of the filter device 100 . That is, it can be seen that even if the capacitor C3 (parasitic capacitance) is provided in parallel with the second path TL2, which is a short path, as in the filter device 100B, the insertion loss and reactance characteristics do not change. Normally, the inductor is placed as far away from the external electrode as possible, as shown in FIG. It is also possible to
  • FIG. 15 In the third embodiment, as shown in FIG. 15, filter device 100A in which inductor L3 is provided in parallel with second path TL2, which is a short path, has been described.
  • a filter device in which inductors are arranged in parallel over the entire path will be described, unlike the filter device 100A in the third embodiment in which inductors are arranged in parallel with respect to short paths.
  • the same components as those of the filter device 100 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the filter device of the fifth embodiment may be used instead of the filter device 100.
  • FIG. 20 is a circuit diagram of the filter device 100C according to the fifth embodiment.
  • Filter device 100C includes inductor L1, inductor L2, inductor L3 (third inductor), and capacitor C1, as shown in FIG.
  • a first path TL1 and a second path TL2 are provided between the inductor L1 and the terminal P2.
  • the first path TL1 is provided with an LC series resonator RS in which an inductor L2 and a capacitor C1 are connected in series.
  • the second route TL2 is a short route.
  • an inductor L3 is provided in parallel with the entire path between the terminals P1 and P2. That is, inductor L3 is connected in parallel with inductors L1 and L2.
  • inductors L1 and L2 are magnetically coupled to each other, inductor L3 is not magnetically coupled to inductors L1 and L2.
  • FIG. 21 is a diagram showing an example of the insertion loss of the filter device 100C according to the fifth embodiment.
  • the horizontal axis is frequency and the vertical axis is insertion loss.
  • FIG. 21 is a diagram showing an example of the insertion loss of the filter device 100C according to the fifth embodiment.
  • the horizontal axis is frequency and the vertical axis is insertion loss.
  • the graph shown in FIG. 21(a) is an example of the insertion loss of the filter device 100 according to Embodiment 1, and the
  • FIG. 22 is a diagram showing an example of reactance characteristics of the filter device 100C according to the fifth embodiment.
  • the horizontal axis is frequency and the vertical axis is reactance.
  • the graph shown in FIG. 22(a) is an example of the reactance characteristics of the filter device 100 according to the first embodiment
  • the graph shown in FIG. 22(b) is an example of the reactance characteristics of the filter device 100C according to the fifth embodiment. is.
  • the resonance frequency of filter device 100 is about 2.4 GHz (mark m6), while the resonance frequency of filter device 100C is about 2.7 GHz (mark m7) and about 0.7 GHz (mark m7). It is shifted to the 3 GHz high frequency side. That is, the resonance frequency can be adjusted by connecting the inductor L3 in parallel to the entire path as in the filter device 100C.
  • the filter device 100C may be an integrated chip, or may have a structure including a circuit board by adding another inductor element to the filter device 100. FIG. By adding another inductor element to the filter device 100, it is possible to arbitrarily adjust the resonance frequency.
  • the filter device 100B in which the capacitor C3 is provided in parallel with the second path TL2, which is a short path has been described.
  • the filter device 100B of the fourth embodiment in which the capacitor C3 is paralleled to the short path a filter device in which a capacitor is paralleled over the entire path will be described.
  • the same components as those of the filter device 100 of the first embodiment are denoted by the same reference numerals, and detailed description thereof will not be repeated.
  • the filter device of the sixth embodiment may be used instead of the filter device 100.
  • FIG. 23 is a circuit diagram of the filter device 100D according to the sixth embodiment.
  • Filter device 100D includes inductor L1, inductor L2, capacitor C1, and capacitor C3 (second capacitor) as shown in FIG.
  • a first path TL1 and a second path TL2 are provided between the inductor L1 and the terminal P2.
  • the first path TL1 is provided with an LC series resonator RS in which an inductor L2 and a capacitor C1 are connected in series.
  • the second route TL2 is a short route.
  • a capacitor C3 is provided in parallel with the entire path between the terminals P1 and P2. That is, capacitor C3 is connected in parallel with inductors L1 and L2.
  • an inductor L4 and a capacitor C5 are provided in parallel with the second path TL2, which is the short path described in the third and fourth embodiments.
  • filter device 100D does not change its insertion loss and reactance characteristics even when inductor L4 and capacitor C5 are provided.
  • the filter device 100D may have a configuration in which either one of the inductor L4 and the capacitor C5 is provided.
  • an inductor L4 and a capacitor C5 may be provided in parallel with the second path TL2, which is the short path described in the third and fourth embodiments.
  • FIG. 24 is a diagram showing an example of the insertion loss of the filter device 100D according to the sixth embodiment.
  • the horizontal axis is frequency and the vertical axis is insertion loss.
  • FIG. 25 is a diagram showing an example of reactance characteristics of filter device 100D according to the sixth embodiment.
  • the horizontal axis is frequency and the vertical axis is reactance.
  • the graph shown in FIG. 25(a) is an example of the reactance characteristics of the filter device 100 according to the first embodiment
  • the graph shown in FIG. 25(b) is an example of the reactance characteristics of the filter device 100D according to the sixth embodiment. is.
  • filter device 100 has one resonance frequency at approximately 2.4 GHz (mark m6), while filter device 100D has one resonance frequency at approximately 2.2 GHz (mark m8). It has two resonance frequencies at 4.9 GHz (mark m9). That is, by connecting the capacitor C3 in parallel to the entire path as in the filter device 100D, an attenuation region can be added in the L-characteristic region shown in FIG. In addition, since the resonance frequency of the filter device 100D is shifted to the low frequency side by providing the capacitor C3, by adding another capacitor element to the entire path of the filter device 100 as described in the fifth embodiment, The resonance frequency can be arbitrarily adjusted.
  • the filter device 100 In the filter device 100 according to the first embodiment, the configuration in which the inductor L1, the inductor L2, and the capacitor C1 are provided in order between the terminals P1 and P2 as shown in FIG. 1 has been described. However, in filter device 100, the order of inductor L2 and capacitor C1 may be changed, and the inductor L1 side may be connected to terminal P2.
  • the filter device 100 can determine whether to connect the inductor L1 to the terminal P2 side (antenna 155 side) or connect the inductor L1 to the terminal P1 side (feeder circuit RF1 side) based on the antenna impedance.
  • FIG. 26 is a circuit diagram of a filter device 100a in a modified example.
  • Filter device 100a has a configuration in which inductor L2, capacitor C1, and inductor L1 are provided in this order between terminal P1 and terminal P2, as shown in FIG.
  • the filter device 100a is provided with a first path TL1 and a second path TL2 between the terminal P1 and the inductor L1.
  • the first path TL1 is provided with an LC series resonator RS in which an inductor L2 and a capacitor C1 are connected in series in that order.
  • the second route TL2 is a short route.
  • Inductor L1 and inductor L2 are magnetically coupled to each other.
  • Filter device 100a can obtain the same effects as filter device 100, except for the effects of parasitic capacitance and parasitic inductance occurring in second path TL2, which is a short path, due to switching the order of inductors L2.
  • the filter devices 100 and 100a have been described as being designed in consideration of only the inductor L1, the inductor L2, and the capacitor C1, in an actual filter device, it is necessary to consider stray capacitance, parasitic inductance, etc. in the design. .
  • the filter devices 100 and 100a may include other configurations such as the antenna 155, a matching circuit for impedance matching with the feeding circuit RF1, etc., and a phase shifter for switching the phase of the high frequency signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)

Abstract

並列共振による減衰帯域と直列共振による通過帯域とを近接させた場合であっても良好な特性が得られるフィルタ装置を提供する。本開示に従うフィルタ装置(100)は、f1帯の通過帯域と、f2帯の減衰帯域とを有するフィルタ装置である。フィルタ装置(100)は、端子(P1)と、端子(P2)と、端子(P1)と接続されるインダクタ(L1)と、インダクタ(L1)と端子(P2)との間に並列に設けられる第1経路(TL1)および第2経路(TL2)のうち、第1経路(TL1)に配置されるキャパシタ(C1)およびインダクタ(L2)を含むLC直列共振器(RS)とを備える。インダクタ(L1)とインダクタ(L2)とは、互いに磁気結合する。

Description

フィルタ装置、アンテナ装置、およびアンテナモジュール
 本開示は、フィルタ装置、アンテナ装置、およびアンテナモジュールに関し、より特定的には、減衰特性および通過特性を改善するための技術に関する。
 高周波回路には、帯域阻止フィルタや帯域通過フィルタなどのフィルタ装置が設けられる。高周波回路に設けられるフィルタ装置の一例として、特許第6531824号公報(特許文献1)にフィルタ装置の開示がある。当該フィルタ装置は、第1直列回路を構成する第1インダクタおよび第1キャパシタと、第1直列回路に並列接続される第2インダクタとを備える。
特許第6531824号公報
 しかし、特許第6531824号公報(特許文献1)に開示のフィルタ装置では、並列共振による減衰帯域と直列共振による通過帯域とを近接させた場合、減衰特性と通過特性とを共に高い特性に維持することが困難であった。
 本開示は、このような課題を解決するためになされたものであり、その目的は並列共振による減衰帯域と直列共振による通過帯域とを近接させた場合であっても良好な特性が得られるフィルタ装置を提供することである。
 本開示に従うフィルタ装置は、第1周波数帯の通過帯域と、第1周波数帯よりも低い第2周波数帯の減衰帯域とを有するフィルタ装置である。フィルタ装置は、第1端子と、第2端子と、第1端子と接続される第1インダクタと、第1インダクタと第2端子との間に並列に設けられる第1経路および第2経路のうち、第1経路に配置される第1キャパシタおよび第2インダクタを含む直列共振器とを備える。第1インダクタと第2インダクタとは、互いに磁気結合する。
 本開示によるフィルタ装置においては、第1インダクタと第2端子との間に並列に設けられる第1経路および第2経路のうち、第1経路に直列共振器が配置され、第1インダクタと第2インダクタとが、互いに磁気結合するように構成される。このような構成とすることによって、本開示によるフィルタ装置は、並列共振による減衰帯域と直列共振による通過帯域とを近接させた場合であっても高い減衰特性および通過特性を得ることができる。
実施の形態1におけるフィルタ装置の回路図である。 実施の形態1におけるアンテナ装置の構成を示す図である。 実施の形態1におけるフィルタ装置のリアクタンス特性について説明する図である。 実施の形態1におけるフィルタ装置の等価回路図である。 実施の形態1におけるフィルタ装置の挿入損失の一例を示す図である。 実施の形態1におけるフィルタ装置のリアクタンス特性の一例を示す図である。 実施の形態1におけるフィルタ装置において結合係数を変更させた場合のリアクタンス特性の一例を示す図である。 実施の形態1におけるフィルタ装置の斜視図である。 実施の形態1におけるフィルタ装置の構成を示す分解平面図である。 実施の形態1におけるフィルタ装置においてインダクタL1の巻き方向とインダクタL2の巻き方向とが逆の構成を示す分解平面図である。 実施の形態2におけるアンテナモジュールの構成を示す図である。 実施の形態2におけるアンテナ装置間のアイソレーション特性を示す図である。 実施の形態2における各々のアンテナ装置の放射効率を示す図である。 実施の形態2におけるアンテナモジュールの外観図である。 実施の形態3におけるフィルタ装置の回路図である。 実施の形態3におけるフィルタ装置の概略図である。 実施の形態3におけるフィルタ装置の挿入損失およびリアクタンス特性の一例を示す図である。 実施の形態4におけるフィルタ装置の回路図である。 実施の形態4におけるフィルタ装置の概略図である。 実施の形態5におけるフィルタ装置の回路図である。 実施の形態5におけるフィルタ装置の挿入損失の一例を示す図である。 実施の形態5におけるフィルタ装置のリアクタンス特性の一例を示す図である。 実施の形態6におけるフィルタ装置の回路図である。 実施の形態6におけるフィルタ装置の挿入損失の一例を示す図である。 実施の形態6におけるフィルタ装置のリアクタンス特性の一例を示す図である。 変形例におけるフィルタ装置の回路図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 <フィルタ装置およびアンテナ装置の基本構成>
 図1は、実施の形態1におけるフィルタ装置100の回路図である。図2は、実施の形態1におけるアンテナ装置150の構成を示す図である。フィルタ装置100は、アンテナ装置150に用いて、特定の周波数帯の高周波信号の通過を妨げ、減衰させるトラップフィルタである。フィルタ装置100は、バンドエリミネートフィルタとも称される。
 アンテナ装置150は、給電回路RF1と、フィルタ装置100と、アンテナ155とを含む。アンテナ装置150は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどの通信装置に搭載される。
 給電回路RF1は、f1帯の周波数帯域の高周波信号をアンテナ155に供給する。アンテナ155は、たとえば、モノポールアンテナで、給電回路RF1から供給されたf1帯の高周波信号を電波として空気中に放射可能である。f1帯の周波数帯域は、たとえば、n41(2.5-2.7GHz)である。
 アンテナ装置150を、Wi-Fi(登録商標)の2.4GHz帯(2.4-2.5GHz)であるアンテナの近くで使用する場合、フィルタ装置100が有用である。フィルタ装置100は、2.4GHz帯(f2帯)の周波数帯域の高周波信号を減衰させ、f1帯の周波数帯域の高周波信号を通過させるように構成されている。図3は、実施の形態1におけるフィルタ装置100のリアクタンス特性について説明する図である。フィルタ装置100は、図3のように、並列共振による減衰帯域がf2帯の周波数帯域で、直列共振による通過帯域がf1帯の周波数帯域である。
 f1帯とf2帯とは、図3で示すように、近接する周波数帯域である。周波数帯域が近接するか否かは、たとえば、帯域幅とその帯域幅に対する中心周波数を用いて定めることができる。たとえば、f1帯の周波数端とf2帯の周波数端との帯域幅とその帯域幅に対する中心周波数の比が所定の範囲内にある場合、f1帯とf2帯とが近接していると判断する。なお、その他の手法によって、周波数帯域が近接しているか否かを定めてもよい。
 図2に示すフィルタ装置100は、端子P1および端子P2を有している。端子P1は、フィルタ装置100を給電回路RF1側の伝送線路と接続するための端子である。端子P2は、フィルタ装置100をアンテナ155側の伝送線路と接続するための端子である。
 給電回路RF1がフィルタ装置100を介して高周波信号をアンテナ155に供給する場合、端子P1は入力端子となり、端子P2は出力端子となる。アンテナ155が受信した高周波信号がフィルタ装置100を介して給電回路RF1側の回路に伝達される場合、端子P1は出力端子となり、端子P2は入力端子となる。
 フィルタ装置100は、図1に示すようにインダクタL1、インダクタL2、キャパシタC1を含む。インダクタL1と端子P2との間には、第1経路TL1と第2経路TL2とが設けてある。第1経路TL1には、インダクタL2とキャパシタC1とが直列接続されるLC直列共振器RSが設けてある。第2経路TL2は、ショート経路である。
 インダクタL1とインダクタL2とは、互いに磁気結合をしている。これにより、インダクタL1とインダクタL2との間に、相互インダクタンスMが発生する。発生した相互インダクタンスMにより、第1経路TL1と第2経路TL2とに各々インダクタンスが生じ並列共振器を構成することになる。図4は、実施の形態1におけるフィルタ装置100の等価回路図である。
 図4(a)に示す回路図では、インダクタL1およびインダクタL2を構成する各々のコイルの巻き方向が同じである場合のフィルタ装置100の回路が図示してある。図4(b)に示す等価回路図では、図4(a)に示すフィルタ装置100の回路の等価回路を示しており、第1経路TL1に相互インダクタンス+M、第2経路TL2に相互インダクタンス-Mをそれぞれ示している。
 ここで、LC直列共振器RSの直列共振周波数は、f0=1/(2π(L2×C1)1/2)と表される。LC直列共振器RSは、この直列共振周波数f0において、インダクタL2とキャパシタC1との合成リアクタンスXが0(ゼロ)となる(X=0)。そのため、LC直列共振器RSの合成リアクタンスXが0(ゼロ)となる直列共振周波数f0において、フィルタ装置100は、相互インダクタンス-M,+Mによる並列共振器として機能することになる。この並列共振器の共振周波数がLC直列共振器RSの直列共振周波数f0と一致し、フィルタ装置100の減衰帯域(f2帯)の並列共振周波数となっている。
 従来のフィルタ装置では、インダクタ、キャパシタなどのすべての構成が減衰帯域の並列共振周波数に影響を与えていた。そのため、従来のフィルタ装置では、減衰帯域の並列共振周波数を設計するには、すべての構成を考慮する必要があった。しかし、フィルタ装置100では、LC直列共振器RSを構成するインダクタL2とキャパシタC1とを考慮するだけで減衰帯域(f2帯)の並列共振周波数を設計することが可能となる。よって、フィルタ装置100は、構造設計において非常に優位な構成である。
 具体的に、フィルタ装置100は、インダクタL1を1.0nH、インダクタL2を2.0nH、キャパシタC1を2.2pF、結合係数Kを0.5としてシミュレーションを行った。なお、インダクタL2を2.0nH、キャパシタC1を2.2pFとしてLC直列共振器RSの直列共振周波数f0を計算すると2.4GHzとなり、フィルタ装置100の減衰帯域(f2帯)の並列共振周波数(中心周波数)の2.4GHzと一致している。フィルタ装置100の通過帯域(f1帯)の直列共振周波数(中心周波数)は、2.77GHzである。フィルタ装置100では、インダクタL1のインダクタンスが、インダクタL2のインダクタンスより小さくすることが好ましい。これにより、フィルタ装置100全体のロスを低減することができる。
 図5は、実施の形態1におけるフィルタ装置100の挿入損失の一例を示す図である。図5において、横軸は周波数、縦軸は挿入損失である。図6は、実施の形態1におけるフィルタ装置100のリアクタンス特性の一例を示す図である。図6において、横軸は周波数、縦軸はリアクタンスである。ここで、挿入損失とはフィルタ装置100に入力される電力に対し、出力される電力の比である。
 図5では、フィルタ装置100の挿入損失を示す線Ln1以外に、比較対象のフィルタ装置の挿入損失を示す線Ln2が示されている。なお、比較対象のフィルタ装置は、図示していないが、インダクタLaとキャパシタCaとで構成されるLC直列共振器に対してインダクタLbが並列接続された構成である。比較対象のフィルタ装置は、インダクタLbを0.069nH、インダクタLaを42.19nH、キャパシタCaを0.1pF、インダクタLbとインダクタLaとの結合係数K2を0.5としてシミュレーションを行った。比較対象のフィルタ装置においても、減衰帯域(f2帯)の並列共振周波数(中心周波数)は2.4GHz、通過帯域(f1帯)の直列共振周波数(中心周波数)は、2.77GHzとなる。
 図5に示すマークm1は、2.4GHzの並列共振周波数(中心周波数)の位置を示しており、当該マークm1での線Ln1の挿入損失が16.6dBであるのに対して線Ln2の挿入損失が2.75dBとなっている。そのため、フィルタ装置100は、減衰帯域(f2帯)において十分な減衰特性を得られているが、比較対象のフィルタ装置では十分な減衰特性が得られていない。
 また、図5に示すマークm2は、2.77GHzの直列共振周波数(中心周波数)の位置を示しており、当該マークm2での線Ln1の挿入損失が0.068dBであるのに対して線Ln2の挿入損失が0.404dBである。そのため、フィルタ装置100は、通過帯域(f1帯)において、比較対象のフィルタ装置に比べて高い通過特性が得られている。
 図6では、フィルタ装置100のリアクタンス特性を示す線Ln3以外に、比較対象のフィルタ装置のリアクタンス特性を示す線Ln4が示されている。図6に示すマークm3は、2.4GHzの並列共振周波数(中心周波数)の位置を示しており、当該マークm3での線Ln3のリアクタンスが線Ln4のリアクタンスに比べて大きく変化している。そのため、フィルタ装置100は、減衰帯域(f2帯)において十分な減衰特性を得られているが、比較対象のフィルタ装置では十分な減衰特性が得られていない。
 また、図6に示すマークm4は、2.77GHzの直列共振周波数(中心周波数)の位置を示しており、当該マークm4での線Ln3のリアクタンスが略0(ゼロ)である。そのため、フィルタ装置100は、通過帯域(f1帯)において十分な通過特性を得られている。
 フィルタ装置100は、並列共振による減衰帯域(f2帯)と直列共振による通過帯域(f1帯)とを近接させた場合、図5および図6に示すように十分な減衰特性および通過特性が得られている。一方、比較対象のフィルタ装置は、並列共振による減衰帯域(f2帯)と直列共振による通過帯域(f1帯)とを近接させた場合、図5および図6に示すように十分な減衰特性および通過特性が得られていない。さらに、比較対象のフィルタ装置では、インダクタLaが42.19nHと大きいのに対して、インダクタLbが0.069nHと極端に小さくしなければ、並列共振による減衰帯域(f2帯)と直列共振による通過帯域(f1帯)とを近接さることができない。そのため、インダクタLbとインダクタLaとの結合係数K2を0.5とするような構成を現実に実現することは困難である。
 前述したように、フィルタ装置100では、LC直列共振器RSを構成するインダクタL2とキャパシタC1とで減衰帯域(f2帯)の並列共振周波数が決まる。そのため、フィルタ装置100は、インダクタL1とインダクタL2との結合係数を変更することで、通過帯域(f1帯)の直列共振周波数を変更することができ、並列共振による減衰帯域(f2帯)に対して直列共振による通過帯域(f1帯)より近接させることができる。つまり、フィルタ装置100は、減衰帯域(f2帯)の並列共振周波数の近傍において減衰特性が急峻に変化する狭帯域なフィルタ装置を実現することができる。
 図7は、実施の形態1におけるフィルタ装置100において結合係数Kを変更させた場合のリアクタンス特性の一例を示す図である。図7において、横軸は周波数、縦軸はリアクタンスである。
 図7では、結合係数Kを0.5とするフィルタ装置100のリアクタンス特性を示す線Ln3以外に、結合係数Kを0.3とするフィルタ装置100のリアクタンス特性を示す線Ln5が示されている。なお、フィルタ装置100は、結合係数K以外は、共にインダクタL1を1.0nH、インダクタL2を2.0nH、キャパシタC1を2.2pFとしてシミュレーションを行った。
 図7に示すマークm3では、線Ln3のリアクタンスより線Ln5のリアクタンスが急峻に変化している。結合係数K=0.5の場合、線Ln3のリアクタンスがマークm4で略0(ゼロ)Ωとなり通過帯域(f1帯)の直列共振周波数が2.77GHzとなっている。一方、結合係数K=0.3の場合、線Ln4のリアクタンスがマークm5で略0(ゼロ)Ωとなり通過帯域(f1帯)の直列共振周波数が2.51GHzとなっており、より2.4GHzの並列共振周波数(中心周波数)に近づいている。つまり、フィルタ装置100は、結合係数Kを小さくすることで、直列共振周波数(中心周波数)をより並列共振周波数(中心周波数)に近づけることができる。なお、結合係数Kが小さくなると相互インダクタンスM自体も小さくなるので、フィルタ装置100において結合係数Kは0.1以上が好ましい。
 <フィルタ装置を一体化した素子の一例>
 続いて、実施の形態1におけるフィルタ装置100を一体化した素子として形成する例について、図を用いて説明する。図8は、実施の形態1におけるフィルタ装置の斜視図である。図9は、実施の形態1におけるフィルタ装置100の構成を示す分解平面図である。
 フィルタ装置100は、例えばチップ部品として一体に形成され、誘電体層が積層された絶縁体1(筐体)内に図1に示したインダクタL1およびLC直列共振器RSを設けてあり、絶縁体1の外側に外部電極2a~2dが形成している。端子P1は外部電極2a(第1外部電極)に、端子P2は外部電極2b(第2外部電極)にそれぞれ接続する。なお、フィルタ装置100は、短辺方向をX方向、長辺方向をY方向、高さ方向をZ方向とし、誘電体層の積層方向がZ方向である。また、外部電極2c,2dは、内部回路に接続のないGND電極である。さらに、図8に示すフィルタ装置100では、絶縁体1の外側に外部電極2a~2dを形成した4端子の構成を示したが、絶縁体1の外側に外部電極2a,2bのみを形成した2端子の構成でもよい。
 フィルタ装置100は、積層プロセスで形成され、図9に示す複数の誘電体層Ly1~Ly9の基板(以下、単に誘電体層Ly1~Ly9ともいう)を重ねることで形成される。各誘電体層Ly1~Ly9は、セラミックグリーンシートであり、導電性ペースト(例えば、Niペースト)をスクリーン印刷法により印刷して配線パターンが形成してある。
 誘電体層Ly1には、インダクタL1の一部を構成する配線パターンr1が形成され、配線パターンr1の一端が端子P1に、他端がビア導体h1aにそれぞれ接続されている。
 誘電体層Ly2には、インダクタL1の一部を構成する配線パターンr2aが形成され、配線パターンr2aの一端がビア導体h1aに、他端が配線パターンr2bおよび第2経路TL2の配線パターンr2cにそれぞれ接続されている。配線パターンr2bは、インダクタL2の一部を構成し、配線パターンr2aと接続する反対側の端にビア導体h2aが接続されている。第2経路TL2の配線パターンr2cは、配線パターンr2aと接続する反対側の端にビア導体h2bが接続されている。
 誘電体層Ly3には、インダクタL2の一部を構成する配線パターンr3が形成され、配線パターンr3の一端がビア導体h2aに、他端がビア導体h3aにそれぞれ接続されている。誘電体層Ly3には、ビア導体h2bと接続するビア導体h3bが設けられている。
 誘電体層Ly4には、インダクタL2の一部を構成する配線パターンr4が形成され、配線パターンr4の一端がビア導体h3aに、他端がビア導体h4aにそれぞれ接続されている。誘電体層Ly4には、ビア導体h3bと接続するビア導体h4bが設けられている。
 誘電体層Ly5には、インダクタL2の一部を構成する配線パターンr5が形成され、配線パターンr5の一端がビア導体h4aに、他端がビア導体h5aにそれぞれ接続されている。誘電体層Ly5には、ビア導体h4bと接続するビア導体h5bが設けられている。
 誘電体層Ly6には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp1が形成されている。電極パターンp1は、端子P2に接続されるとともに、ビア導体h6bと接続されている。ビア導体h6bは、ビア導体h5bと接続され、電極パターンp1と第2経路TL2の配線パターンr2cとを電気的に接続している。誘電体層Ly6には、ビア導体h5aと接続するビア導体h6aが設けられている。
 誘電体層Ly7には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp2が形成されている。電極パターンp2は、ビア導体h7aと接続されインダクタL2と電気的に接続されているが、電極パターンp1とは電気的に直接接続されていない。誘電体層Ly7には、ビア導体h6bと接続するビア導体h7bが設けられている。
 誘電体層Ly8には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp3が形成されている。電極パターンp3は、端子P2に接続されるとともに、ビア導体h7bと接続されている。ビア導体h7bを介して電極パターンp1と電極パターンp3とが電気的に接続している。誘電体層Ly8には、ビア導体h7aと接続するビア導体h8が設けられている。
 誘電体層Ly9には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp4が形成されている。電極パターンp4は、ビア導体h8と接続され電極パターンp2と電気的に接続されているが、電極パターンp1,p3とは電気的に直接接続されていない。
 誘電体層Ly1に形成した配線パターンr1と誘電体層Ly2に形成した配線パターンr2aとが、積層方向から視て巻線形状となりインダクタL1を構成している。誘電体層Ly2に形成した配線パターンr2bと誘電体層Ly3~Ly5に形成した配線パターンr3~r5とが、積層方向から視て巻線形状となりインダクタL2を構成している。インダクタL1とインダクタL2とは、互いに対向するように配置され、積層方向から視てインダクタL1の開口がインダクタL2の開口と少なくとも一部が重なっている。そのため、積層方向から視てインダクタL1の開口とインダクタL2の開口とが重なる部分を大きくすれば、インダクタL1とインダクタL2との結合係数が大きくなり、磁気結合による相互インダクタンスMが増大する。
 フィルタ装置100は、図9に示すように積層方向から視てインダクタL1、インダクタL2、キャパシタC1の順で積層されているが、インダクタL2、インダクタL1、キャパシタC1の順など他の順で積層されてもよい。なお、図9において、インダクタL1とインダクタL2との積層順を入れ替えてキャパシタC1をインダクタL1の側に配置することで、第2経路TL2の一部を構成するビア導体h2b~ビア導体h5bの数を減らすことができ、第2経路TL2の長さを短くできる。
 図1に示すショート経路である第2経路TL2は、インダクタL1とインダクタL2との間からキャパシタC1につなぐ経路で、この経路に発生する寄生インダクタンスである等価直列インダクタンスESL(Equivalent Series Inductance)は、相互インダクタンスMより小さくすることが好ましい。つまり、第2経路TL2のインダクタンスを、インダクタL1とインダクタL2との相互インダクタンスMより小さくすることで、第2経路TL2をショート経路とみなすことができる。
 図9に示す積層構造では、第2経路TL2が、積層間をつなぐビア導体h2b~h5bと配線パターンr2cとで構成されている。ショート経路である第2経路TL2は、多少の抵抗成分(R成分)を含んでもよいが、抵抗成分(R成分)をより小さくすることで、フィルタ装置100のQ値を改善できる。
 フィルタ装置100を積層プロセスで形成するならば、インダクタL1,L2とキャパシタC1とで誘電体材料を変えることができ、そのためには、図9で示したようにインダクタL1,L2を形成する層(誘電体層Ly1~Ly5)とキャパシタC1を形成する層(誘電体層Ly6~Ly9)とを分ける必要がある。一方、フィルタ装置100をフォトリソグラフィで形成するのであれば、インダクタL1,L2を形成する層とキャパシタC1を形成する層とを分けずに、インダクタL1またはインダクタL2に対してキャパシタC1を横並びで形成することができる。
 図9に示すフィルタ装置100では、インダクタL1の巻き方向とインダクタL2の巻き方向とが同じとなるように配線パターンr1,r2a,r2b,r3~r5を形成した。そのため、フィルタ装置100は、インダクタL1とインダクタL2との結合係数を大きくすることが容易な構造となっている。
 しかし、フィルタ装置100は、インダクタL1の巻き方向とインダクタL2の巻き方向とが同じ場合に限定されず、インダクタL1の巻き方向とインダクタL2の巻き方向とが逆でもよい。図10は、実施の形態1におけるフィルタ装置100においてインダクタL1の巻き方向とインダクタL2の巻き方向とが逆の構成を示す分解平面図である。なお、図10に示すフィルタ装置100は、積層方向から視てインダクタL2、インダクタL1、キャパシタC1の順で積層されている。
 誘電体層Ly1には、インダクタL2の一部を構成する配線パターンr1が形成され、配線パターンr1の一端がビア導体h1に、他端が誘電体層Ly2のビア導体h2aにそれぞれ接続されている。
 誘電体層Ly2には、インダクタL2の一部を構成する配線パターンr2が形成され、配線パターンr2の一端がビア導体h2aに、他端が誘電体層Ly3のビア導体h3aにそれぞれ接続されている。誘電体層Ly2には、ビア導体h1と接続するビア導体h2bが設けられている。
 誘電体層Ly3には、インダクタL2の一部を構成する配線パターンr3が形成され、配線パターンr3の一端がビア導体h3aに、他端が誘電体層Ly4のビア導体h4aにそれぞれ接続されている。誘電体層Ly3には、ビア導体h2bと接続するビア導体h3bが設けられている。
 誘電体層Ly4には、インダクタL1の一部を構成する配線パターンr4aが形成され、配線パターンr4aの一端が誘電体層Ly4のビア導体h5aに、他端がビア導体h4aおよび第2経路TL2の配線パターンr4bにそれぞれ接続されている。第2経路TL2の配線パターンr4bは、配線パターンr4aと接続する反対側の端にビア導体h4cが接続されている。誘電体層Ly4には、ビア導体h3bと接続するビア導体h4bが設けられている。
 誘電体層Ly5には、インダクタL1の一部を構成する配線パターンr5が形成され、配線パターンr5の一端がビア導体h5aに、他端が端子P1にそれぞれ接続されている。誘電体層Ly5には、ビア導体h4bと接続するビア導体h5bが設けられている。
 誘電体層Ly6には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp1が形成されている。電極パターンp1は、端子P2に接続されるとともに、ビア導体h6aと接続されている。ビア導体h6aは、ビア導体h4cと接続され、電極パターンp1と第2経路TL2の配線パターンr4bとを電気的に接続している。誘電体層Ly6には、ビア導体h5bと接続するビア導体h6bが設けられている。
 誘電体層Ly7には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp2が形成されている。電極パターンp2は、ビア導体h7bと接続されインダクタL2と電気的に接続されているが、電極パターンp1とは電気的に直接接続されていない。誘電体層Ly7には、ビア導体h6aと接続するビア導体h7aが設けられている。
 誘電体層Ly8には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp3が形成されている。電極パターンp3は、端子P2に接続されるとともに、ビア導体h7aと接続されている。ビア導体h7aを介して電極パターンp1と電極パターンp3とが電気的に接続している。誘電体層Ly8には、ビア導体h7bと接続するビア導体h8が設けられている。
 誘電体層Ly9には、積層方向から視てインダクタL1,L2と重ならない位置に、キャパシタC1の一部を構成する電極パターンp4が形成されている。電極パターンp4は、ビア導体h8と接続され電極パターンp2とが電気的に接続しているが、電極パターンp1,p3とは電気的に接続されていない。
 誘電体層Ly5に形成した配線パターンr5と誘電体層Ly4に形成した配線パターンr4aとが、積層方向から視て巻線形状となりインダクタL1を構成している。誘電体層Ly1~Ly3に形成した配線パターンr1~r3が、積層方向から視て巻線形状となりインダクタL2を構成している。インダクタL1とインダクタL2とは、互いに対向するように配置され、積層方向から視てインダクタL1の開口がインダクタL2の開口と少なくとも一部が重なっている。
 図10に示すインダクタL1は、配線パターンr5と配線パターンr4aとが誘電体層Ly5から誘電体層Ly1に向けて反時計回りの巻き方向であるのに対して、インダクタL2は、配線パターンr1~r3が時計回りの巻き方向で逆である。そのため、図4(b)に示す等価回路図とは異なり、第1経路TL1に相互インダクタンス-M、第2経路TL2に相互インダクタンス+Mがそれぞれ生じる。
 また、インダクタL1の巻き方向とインダクタL2の巻き方向とが逆の場合、図9の誘電体層Ly2のようにインダクタL1の一部を構成する配線パターンr2aとインダクタL2の一部を構成する配線パターンr2aと同じ層に形成されることがない。そのため、インダクタL1およびインダクタL2の自由度が比較的高く、それぞれのインダクタンスを調整しやすくなる。
 以上のように、実施の形態1に係るフィルタ装置100は、f1帯(第1周波数帯)の通過帯域と、f1帯よりも低いf2帯(第2周波数帯)の減衰帯域とを有するフィルタ装置である。フィルタ装置100は、端子P1(第1端子)と、端子P2(第2端子)と、端子P1と接続されるインダクタL1(第1インダクタ)と、インダクタL1と端子P2との間に並列に設けられる第1経路TL1および第2経路TL2のうち、第1経路TL1に配置されるキャパシタC1(第1キャパシタ)およびインダクタL2(第2インダクタ)を含むLC直列共振器RSとを備える。インダクタL1とインダクタL2とは、互いに磁気結合する。
 これにより、実施の形態1に係るフィルタ装置100は、並列共振による減衰帯域と直列共振による通過帯域とを近接させた場合であっても高い減衰特性および通過特性を共に得ることができる。
 第2経路TL2のインダクタンスは、インダクタL1とインダクタL2との相互インダクタンスMより小さいことが好ましい。これにより、第2経路TL2をショート経路と見なすことができ、並列共振周波数の設計が容易になる。
 インダクタL1のインダクタンスは、インダクタL2のインダクタンスより小さいことが好ましい。これにより、フィルタ装置100全体のロスを低減することができる。
 端子P1および端子P2は、筐体に設けた第1外部電極および第2外部電極にそれぞれ電気的に接続され、インダクタL1およびLC直列共振器RSは、筐体内に設けられていることが好ましい。これにより、フィルタ装置100を、例えばチップ部品として一体に形成できる。また、フィルタ装置100を小型化することで、フィルタ装置100を組み込んだアンテナ装置の部品点数を減すことができ、半田の使用量も減らせる。
 筐体は、絶縁体であり、絶縁体内において複数の導体パターンによりインダクタL1およびLC直列共振器RSが構成される。インダクタL1は、端子P1に電気的に接続され、1層以上の配線パターンr1,r2a(第1導体パターン)を含む。インダクタL2は、端子P2に電気的に接続され、1層以上の配線パターンr2b,r3~r5(第2導体パターン)を含む。キャパシタC1は、配線パターンr2a,r2bから引き出された配線パターンr2cと電気的に接続されることが好ましい。これにより、フィルタ装置100を、積層構造体のチップ部品として一体に形成できる。また、配線パターンr2cをインダクタL1,L2の配線パターンの途中から引き出すことで第2経路TL2を形成する層を減らすことができるので、フィルタ装置100を、低背、低コスト(かつ環境に配慮した)部品として形成することができる。
 絶縁体内において、配線パターンr1,r2a(第1導体パターン)を形成した基板に対して配線パターンr2b,r3~r5(第2導体パターン)を形成した基板を積層して、インダクタL1とインダクタL2とが互いに対向するように配置され、絶縁体の積層方向から視て、インダクタL1の開口がインダクタL2の開口と少なくとも一部が重なることが好ましい。これにより、インダクタL1とインダクタL2との結合係数が大きくなり、磁気結合による相互インダクタンスMを増大させることができる。
 キャパシタC1は、インダクタL1およびインダクタL2が配置された層と異なる層に配置されることが好ましい。これにより、キャパシタC1と、インダクタL1およびインダクタL2とで誘電体材料を異ならせることができる。
 キャパシタC1は、絶縁体の積層方向から視て、インダクタL1の側に配置されることが好ましい。これにより、キャパシタC1とインダクタL1とを接続する第2経路TL2の長さを短くできる。
 実施の形態1に係るアンテナ装置150は、f1帯の電波を放射可能である。アンテナ装置150は、アンテナ155と、アンテナ155に高周波信号を供給する給電回路RF1と、アンテナ155と給電回路RF1との間に設けられ前述のフィルタ装置100と、を備える。
 これにより、実施の形態1に係るアンテナ装置150は、f1帯とf2帯とを近接させた場合であってもf1帯通過させ、f2帯の電波を減衰させることができる。
 [実施の形態2]
 実施の形態1では、アンテナ155を有するアンテナ装置150について説明した。実施の形態2においては、実施の形態1におけるアンテナ装置150に加えて、アンテナ装置160を備えるアンテナモジュール200について説明する。なお、実施の形態2のアンテナモジュール200において、実施の形態1のアンテナ装置150と重複する構成については、説明を繰り返さない。
 <アンテナモジュールの基本構成>
 図11は、実施の形態2におけるアンテナモジュール200の構成を示す図である。アンテナモジュール200は、アンテナ装置150およびアンテナ装置160を含む。アンテナ装置160は、給電回路RF2とアンテナ165とを含む。アンテナモジュール200は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどの通信装置に搭載される。
 給電回路RF1は、f1帯の周波数帯域の高周波信号をアンテナ155に供給する。アンテナ155は、給電回路RF1から供給されたf1帯の高周波信号を電波として空気中に放射可能である。f1帯の周波数帯域は、たとえば、n41(2.5-2.7GHz)である。
 実施の形態2におけるフィルタ装置100は、f2帯の周波数帯域の高周波信号を減衰させるように構成されている。f2帯の周波数帯域は、たとえば、Wi-Fi(登録商標)の2.4GHz帯(2.4-2.5GHz)などの帯域である。
 実施の形態2におけるフィルタ装置100において、f1帯が通過帯域であってf2帯が減衰帯域である。f1帯の周波数帯域は、f2帯の周波数帯域よりも低い。
 給電回路RF2は、f2帯の周波数帯域の高周波信号をアンテナ165に供給する。アンテナ165は、給電回路RF2から供給されたf2帯の高周波信号を電波として、空気中に放射可能である。
 アンテナ装置150において、同一のアンテナモジュール200内に設けられているアンテナ装置160から放射されるf2帯の高周波信号は、ノイズとなり得る。そのため、フィルタ装置100は、アンテナ装置150においてノイズとなり得るf2帯の高周波信号を、並列共振による挿入損失を増大させることで取り除くために設けられている。
 アンテナ155およびアンテナ165は、同一の基板170に搭載されている。なお、図11では、アンテナ155およびアンテナ165は、同一の基板170に設けられているが、同一のアンテナモジュール200内に設けられれば、異なる基板に設けられてもよい。また、実施の形態2において、給電回路RF1は、f1帯の高周波信号のみを供給する場合に限られず、他の帯域の高周波信号を供給してもよい。
 図12は、実施の形態2におけるアンテナ装置150,160間のアイソレーション特性を示す図である。図12において、横軸は周波数を示し、縦軸はアイソレーションである。
 線Ln6は、実施の形態2におけるアンテナモジュール200のアンテナ装置150とアンテナ装置160との間のアイソレーションを示す。線Ln7は、比較例としてフィルタ装置100を設けていないアンテナ装置150とアンテナ装置160との間のアイソレーションを示す。すなわち、アンテナ装置160の給電回路RF2から入力された電力に対する、アンテナを介してアンテナ装置150の給電回路RF1が受信した電力の比がアイソレーションである。
 図12に示されているように、f2帯の2.4GHzの周波数において、アンテナモジュール200のアイソレーション(Ln6)は、比較例のアンテナモジュールのアイソレーション(Ln7)よりも10dB以上改善している。すなわち、実施の形態2では、フィルタ装置100がf2帯の周波数を減衰させることによって、アンテナ装置150とアンテナ装置160との間のアイソレーションが向上している。
 図13は、実施の形態2における各々のアンテナ装置150,160の放射効率を示す図である。図13において、横軸は周波数を示し、縦軸は放射効率である。線Ln8は、実施の形態2におけるアンテナモジュール200のアンテナ装置150の放射効率を示す。線Ln9は、実施の形態2におけるアンテナモジュール200のアンテナ装置160の放射効率を示す。線Ln8aは、比較例としてフィルタ装置100を設けていないアンテナ装置150の放射効率を示す。線Ln9aは、比較例としてアンテナ装置150にフィルタ装置100を設けていない場合のアンテナ装置160の放射効率を示す。ここで、放射効率とは、給電回路から供給される電力に対し、アンテナから放射される電力の比を意味する。すなわち、図13ではグラフ上部ほど、同じ供給電力に対し、アンテナから放射される電力が大きくなる。
 図13に示されているように、f2帯の2.4GHzの周波数において、アンテナモジュール200のアンテナ装置160の放射効率(Ln9)は、比較例のアンテナ装置160の放射効率(Ln9a)に比べて約6dB改善している。すなわち、実施の形態2にでは、アンテナ装置150においてフィルタ装置100が備えられることにより、アンテナ装置160の放射効率が向上している。
 <アンテナの構造例>
 図14は、実施の形態2におけるアンテナモジュール200の外観図である。アンテナモジュール200は、図14に示すようにアンテナ装置150と、アンテナ装置160とを備える。アンテナ装置150は、モノポールアンテナであるアンテナ155と、フィルタ装置100と、給電回路RF1とを含む。アンテナ装置160は、モノポールアンテナであるアンテナ165と、給電回路RF2とを含む。アンテナ155,165は、モノポールアンテナに限定されず、逆F型アンテナ、ループアンテナ、アレイアンテナなどであってもよい。アンテナ155はフィルタ装置100を介して給電回路RF1と接続する。アンテナ165は給電回路RF2と接続する。
 以上のように、実施の形態2に係るアンテナモジュール200は、f1帯およびf2帯の電波を放射可能である。アンテナモジュール200は、f1帯の電波を放射可能であるアンテナ装置150と、f2帯の電波を放射可能であるアンテナ装置160と、を備える。アンテナ装置150は、実施の形態1に係るアンテナ装置である。
 これにより、実施の形態2に係るアンテナモジュール200は、アンテナ装置150とアンテナ装置160とのアイソレーションを改善し、アンテナ装置150におけるf1帯の電波の放射特性を向上させるとともに、アンテナ装置160におけるf2帯の電波の放射特性を向上させることができる。
 [実施の形態3]
 実施の形態1では、図1に示すように、インダクタL1と端子P2との間に、LC直列共振器RSが設けてある第1経路TL1と、ショート経路の第2経路TL2とを有するフィルタ装置100について説明した。実施の形態3においては、実施の形態1におけるフィルタ装置100のショート経路に対して並列にインダクタを設けたフィルタ装置について説明する。なお、実施の形態3のフィルタ装置において、実施の形態1のフィルタ装置100と同じ構成については同じ符号を付して詳細な説明を繰り返さない。また、実施の形態1のアンテナ装置150、実施の形態2のアンテナモジュール200において、フィルタ装置100の代わりに実施の形態3のフィルタ装置を用いてもよい。
 図15は、実施の形態3におけるフィルタ装置100Aの回路図である。フィルタ装置100Aは、図15に示すようにインダクタL1、インダクタL2、インダクタL3、キャパシタC1を含む。インダクタL1と端子P2との間には、第1経路TL1と第2経路TL2とが設けてある。第1経路TL1には、インダクタL2とキャパシタC1とが直列接続されるLC直列共振器RSが設けてある。第2経路TL2は、ショート経路である。さらに、ショート経路である第2経路TL2に対して並列にインダクタL3が設けてある。
 インダクタL1とインダクタL2とは、互いに磁気結合をしているが、インダクタL3は、インダクタL1およびインダクタL2と磁気結合していない。図16は、実施の形態3におけるフィルタ装置100Aの概略図である。フィルタ装置100Aは、例えば図16に示すようにチップ部品として一体に形成され、誘電体層が積層された絶縁体1(筐体)内に図15に示したインダクタL1、インダクタL2、インダクタL3、キャパシタC1を含む。絶縁体1の外側に外部電極2a,2bが形成してあり、端子P1は外部電極2a(第1外部電極)に、端子P2は外部電極2b(第2外部電極)にそれぞれ接続する。
 また、図16に示すように、インダクタL1とインダクタL2との接続部分から外部電極2bに至る配線がショート経路である第2経路TL2に対応し、第2経路TL2に対して平行に設けた配線が持つ2nH程度の寄生インダクタンスがインダクタL3に対応する。すなわち、インダクタL3は、インダクタL1やインダクタL2とコイル開口方向からみて重ならない位置に存在する。外部電極2aは、フィルタ装置100Aを実装するための回路基板のランド電極20aと電気的に接続され、外部電極2bは、フィルタ装置100Aを実装するための回路基板のランド電極20bと電気的に接続されている。
 図17は、実施の形態3におけるフィルタ装置100Aの挿入損失およびリアクタンス特性の一例を示す図である。フィルタ装置100Aの各定数は、L1=2.0nH、L2=2.0nH、C1=2.2pF、k=0.6、L3=2nHであり、図17において実線で挿入損失およびリアクタンス特性を図示している。また、比較例として図1のフィルタ装置100の各定数が、L1=2.0nH、L2=2.0nH、C1=2.2pF、k=0.6であり、図17において破線で挿入損失およびリアクタンス特性を図示している。図17(a)は、実施の形態3におけるフィルタ装置100Aの挿入損失の一例を示す図である。図17(a)において、横軸は周波数、縦軸は挿入損失である。図17(b)は、実施の形態3におけるフィルタ装置100Aのリアクタンス特性の一例を示す図である。図17(b)において、横軸は周波数、縦軸はリアクタンスである。
 図17(a)および図17(b)に示すように、フィルタ装置100Aの共振周波数は、約2.4GHzであり、実施の形態1のフィルタ装置100と同じ共振周波数を有している。つまり、フィルタ装置100Aのように、ショート経路である第2経路TL2に対して並列にインダクタL3(2nH程度の寄生インダクタンスを持つ第3経路)を設けても挿入損失およびリアクタンス特性に変化がないことが分かる。一方、フィルタ装置100Aは、インダクタL3を設けることで、ESLを低減することが可能となる。このように、寄生インダクタンスを問わず追加で経路を形成することが可能であり、ESLの低減が可能となる。
 [実施の形態4]
 実施の形態1では、図1に示すように、インダクタL1と端子P2との間に、LC直列共振器RSが設けてある第1経路TL1と、ショート経路の第2経路TL2とを有するフィルタ装置100について説明した。実施の形態4においては、実施の形態1におけるフィルタ装置100のショート経路に対して並列にキャパシタを設けたフィルタ装置について説明する。なお、実施の形態4のフィルタ装置において、実施の形態1のフィルタ装置100と同じ構成については同じ符号を付して詳細な説明を繰り返さない。また、実施の形態1のアンテナ装置150、実施の形態2のアンテナモジュール200において、フィルタ装置100の代わりに実施の形態4のフィルタ装置を用いてもよい。
 図18は、実施の形態4におけるフィルタ装置100Bの回路図である。フィルタ装置100Bは、図18に示すようにインダクタL1、インダクタL2、キャパシタC1、キャパシタC3を含む。インダクタL1と端子P2との間には、第1経路TL1と第2経路TL2とが設けてある。第1経路TL1には、インダクタL2とキャパシタC1とが直列接続されるLC直列共振器RSが設けてある。第2経路TL2は、ショート経路である。さらに、ショート経路である第2経路TL2に対して並列にキャパシタC3が設けてある。
 インダクタL1とインダクタL2とは、互いに磁気結合をしている。図19は、実施の形態4におけるフィルタ装置100Bの概略図である。フィルタ装置100Bは、例えば図19に示すようにチップ部品として一体に形成され、誘電体層が積層された絶縁体1(筐体)内に図18に示したインダクタL1、インダクタL2、キャパシタC1、キャパシタC3を含む。絶縁体1の外側に外部電極2a,2bが形成してあり、端子P1は外部電極2a(第1外部電極)に、端子P2は外部電極2b(第2外部電極)にそれぞれ接続する。
 また、図19に示すように、インダクタL1とインダクタL2との接続部分から外部電極2bに至る配線がショート経路である第2経路TL2に対応し、第2経路TL2と外部電極2bとの間で形成される寄生容量がキャパシタC3に対応する。外部電極2aは、フィルタ装置100Bを実装するための回路基板のランド電極20aと電気的に接続され、外部電極2bは、フィルタ装置100Bを実装するための回路基板のランド電極20bと電気的に接続されている。
 フィルタ装置100Bの共振周波数は、L1、L2、C1、kの値が同じであれば、C3によらず、図17(a)および図17(b)に示したフィルタ装置100Aと同じ約2.4GHzであり、実施の形態1のフィルタ装置100と同じ共振周波数を有している。またリアクタンス特性もフィルタ装置100と同じ特性である。つまり、フィルタ装置100Bのように、ショート経路である第2経路TL2に対して並列にキャパシタC3(寄生容量)を設けても挿入損失およびリアクタンス特性に変化がないことが分かる。すなわち、通常であれば図16のようにできるだけ外部電極と離した位置にインダクタを配置するが、寄生容量であるC3によって特性変動しないことから、図19のように外部に近い位置にインダクタを配置することも可能となる。
 [実施の形態5]
 実施の形態3では、図15に示すように、ショート経路である第2経路TL2に対して並列にインダクタL3を設けたフィルタ装置100Aについて説明した。実施の形態5においては、実施の形態3におけるフィルタ装置100Aのようにショート経路に対してインダクタを並列させるのではなく、経路全体にインダクタを並列させたフィルタ装置について説明する。なお、実施の形態5のフィルタ装置において、実施の形態1のフィルタ装置100と同じ構成については同じ符号を付して詳細な説明を繰り返さない。また、実施の形態1のアンテナ装置150、実施の形態2のアンテナモジュール200において、フィルタ装置100の代わりに実施の形態5のフィルタ装置を用いてもよい。
 図20は、実施の形態5におけるフィルタ装置100Cの回路図である。フィルタ装置100Cは、図20に示すようにインダクタL1、インダクタL2、インダクタL3(第3インダクタ)、キャパシタC1を含む。インダクタL1と端子P2との間には、第1経路TL1と第2経路TL2とが設けてある。第1経路TL1には、インダクタL2とキャパシタC1とが直列接続されるLC直列共振器RSが設けてある。第2経路TL2は、ショート経路である。さらに、端子P1と端子P2との経路全体に対して並列にインダクタL3が設けてある。つまり、インダクタL3は、インダクタL1およびインダクタL2に対して並列に接続してある。なお、インダクタL1とインダクタL2とは、互いに磁気結合をしているが、インダクタL3は、インダクタL1およびインダクタL2と磁気結合していない。
 図21は、実施の形態5におけるフィルタ装置100Cの挿入損失の一例を示す図である。図21において、横軸は周波数、縦軸は挿入損失である。なお、図21(a)に示すグラフは、実施の形態1におけるフィルタ装置100の挿入損失の一例で、フィルタ装置100の各定数は、L1=2nH、L2=2nH、C1=2.2pF、k=0.6である。図21(b)に示すグラフは、実施の形態5におけるフィルタ装置100Cの挿入損失の一例で、図21(a)の各定数に加え、L3=2.5nHである。図22は、実施の形態5におけるフィルタ装置100Cのリアクタンス特性の一例を示す図である。図22において、横軸は周波数、縦軸はリアクタンスである。なお、図22(a)に示すグラフは、実施の形態1におけるフィルタ装置100のリアクタンス特性の一例で、図22(b)に示すグラフは、実施の形態5におけるフィルタ装置100Cのリアクタンス特性の一例である。
 図21および図22に示すように、フィルタ装置100の共振周波数は、約2.4GHz(マークm6)であるが、フィルタ装置100Cの共振周波数は、約2.7GHz(マークm7)と約0.3GHz高周波側にシフトしている。つまり、フィルタ装置100Cのように、経路全体に対してインダクタL3を並列接続することで、共振周波数を調整することができる。フィルタ装置100Cは一体化されたチップでもよいし、フィルタ装置100に別のインダクタ素子を加えることで回路基板も含めた構造としてもよい。フィルタ装置100に別のインダクタ素子を追加することで、共振周波数を任意に調整することが可能となる。
 [実施の形態6]
 実施の形態4では、図18に示すように、ショート経路である第2経路TL2に対して並列にキャパシタC3を設けたフィルタ装置100Bについて説明した。実施の形態6においては、実施の形態4におけるフィルタ装置100Bのようにショート経路に対してキャパシタC3を並列させるのではなく、経路全体にキャパシタを並列させたフィルタ装置について説明する。なお、実施の形態6のフィルタ装置において、実施の形態1のフィルタ装置100と同じ構成については同じ符号を付して詳細な説明を繰り返さない。また、実施の形態1のアンテナ装置150、実施の形態2のアンテナモジュール200において、フィルタ装置100の代わりに実施の形態6のフィルタ装置を用いてもよい。
 図23は、実施の形態6におけるフィルタ装置100Dの回路図である。フィルタ装置100Dは、図23に示すようにインダクタL1、インダクタL2、キャパシタC1、キャパシタC3(第2キャパシタ)を含む。インダクタL1と端子P2との間には、第1経路TL1と第2経路TL2とが設けてある。第1経路TL1には、インダクタL2とキャパシタC1とが直列接続されるLC直列共振器RSが設けてある。第2経路TL2は、ショート経路である。さらに、端子P1と端子P2との経路全体に対して並列にキャパシタC3が設けてある。つまり、キャパシタC3は、インダクタL1およびインダクタL2に対して並列に接続してある。
 さらに、フィルタ装置100Dには、実施の形態3,4で説明したショート経路である第2経路TL2に対して並列にインダクタL4、キャパシタC5を設けてある。実施の形態3,4で説明したように、フィルタ装置100Dは、インダクタL4、キャパシタC5を設けても挿入損失およびリアクタンス特性に変化がない。なお、フィルタ装置100Dは、インダクタL4、キャパシタC5のうち、いずれか一方を設ける構成でもよい。また、実施の形態5のフィルタ装置100Cにおいても同様に、実施の形態3,4で説明したショート経路である第2経路TL2に対して並列にインダクタL4、キャパシタC5を設けてもよい。
 図24は、実施の形態6におけるフィルタ装置100Dの挿入損失の一例を示す図である。図24において、横軸は周波数、縦軸は挿入損失である。なお、図24(a)に示すグラフは、実施の形態1におけるフィルタ装置100の挿入損失の一例で各定数はL1=2.0nH、L2=2.0nH、C1=2.2pF、k=0.6である。図24(b)に示すグラフは、実施の形態6におけるフィルタ装置100Dの挿入損失の一例で、上記定数に加え、C3=4pF、C5=2pF、L4=2nHである。図25は、実施の形態6におけるフィルタ装置100Dのリアクタンス特性の一例を示す図である。図25において、横軸は周波数、縦軸はリアクタンスである。なお、図25(a)に示すグラフは、実施の形態1におけるフィルタ装置100のリアクタンス特性の一例で、図25(b)に示すグラフは、実施の形態6におけるフィルタ装置100Dのリアクタンス特性の一例である。
 図24および図25に示すように、フィルタ装置100は、約2.4GHz(マークm6)に共振周波数を1つ有しているが、フィルタ装置100Dは、約2.2GHz(マークm8)と約4.9GHz(マークm9)とに共振周波数を2つ有している。つまり、フィルタ装置100Dのように、経路全体に対してキャパシタC3を並列接続することで、図25に示すL性領域において減衰域を追加することができる。なお、フィルタ装置100Dは、キャパシタC3を設けることで共振周波数が低周波側へシフトするため、実施の形態5で説明したように経路全体にフィルタ装置100に別のキャパシタ素子を追加することで、共振周波数を任意に調整できる。
 [変形例]
 実施の形態1に係るフィルタ装置100では、図1に示すように端子P1と端子P2との間にインダクタL1、インダクタL2、キャパシタC1が順に設けられる構成を説明した。しかし、フィルタ装置100は、インダクタL2とキャパシタC1との順を入れ替えてもよく、またインダクタL1側を端子P2に接続してもよい。なお、フィルタ装置100は、インダクタL1を端子P2側(アンテナ155側)に接続するか、インダクタL1を端子P1側(給電回路RF1側)に接続するかを、アンテナインピーダンスにより決定できる。
 図26は、変形例におけるフィルタ装置100aの回路図である。フィルタ装置100aは、図26に示すように端子P1と端子P2との間にインダクタL2、キャパシタC1、インダクタL1が順に設けられる構成である。
 フィルタ装置100aは、端子P1とインダクタL1との間には、第1経路TL1と第2経路TL2とが設けてある。第1経路TL1には、インダクタL2とキャパシタC1との順で直列接続されるLC直列共振器RSが設けてある。第2経路TL2は、ショート経路である。インダクタL1とインダクタL2とは、互いに磁気結合をしている。フィルタ装置100aは、インダクタL2の順を入れ替えたことによりショート経路である第2経路TL2に生じる寄生容量および寄生インダクタンスの影響を除けば、フィルタ装置100と同様の効果を得ることができる。
 フィルタ装置100,100aは、インダクタL1、インダクタL2、キャパシタC1のみを考慮して設計されるものとして説明したが、実際のフィルタ装置では、浮遊容量、寄生インダクタンスなどを加味して設計する必要がある。
 フィルタ装置100,100aは、アンテナ155、給電回路RF1などとインピーダンスを整合させるための整合回路、高周波信号の位相を切り換える移相器などの他の構成を含んでもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 絶縁体、2a~2d 外部電極、100,100a フィルタ装置、150,160 アンテナ装置、155,165 アンテナ、170 基板、200 アンテナモジュール、C1 キャパシタ、ESL 等価直列インダクタンス、K,K2 結合係数、L1,L2 インダクタ、P1,P2 端子、RF1,RF2 給電回路、TL1 第1経路、TL2 第2経路。

Claims (17)

  1.  第1周波数帯の通過帯域と、前記第1周波数帯よりも低い第2周波数帯の減衰帯域とを有するフィルタ装置であって、
     第1端子と、
     第2端子と、
     前記第1端子と接続される第1インダクタと、
     前記第1インダクタと前記第2端子との間に並列に設けられる第1経路および第2経路のうち、前記第1経路に配置される第1キャパシタおよび第2インダクタを含む直列共振器とを備え、
     前記第1インダクタと前記第2インダクタとは、互いに磁気結合する、フィルタ装置。
  2.  前記第2経路のインダクタンスは、前記第1インダクタと前記第2インダクタとの相互インダクタンスより小さい、請求項1に記載のフィルタ装置。
  3.  前記第1インダクタのインダクタンスは、前記第2インダクタのインダクタンスより小さい、請求項1または請求項2に記載のフィルタ装置。
  4.  前記第1端子および前記第2端子は、筐体に設けた第1外部電極および第2外部電極にそれぞれ電気的に接続され、
     前記第1インダクタおよび前記直列共振器は、前記筐体内に設けられている、請求項1~請求項3のいずれか1項に記載のフィルタ装置。
  5.  前記筐体は、絶縁体であり、
     前記絶縁体内において複数の導体パターンにより前記第1インダクタおよび前記直列共振器が構成され、
     前記第1インダクタは、
      前記第1外部電極に電気的に接続され、1層以上の第1導体パターンを含み、
     前記第2インダクタは、
      前記第2外部電極に電気的に接続され、1層以上の第2導体パターンを含み、
     前記第1キャパシタは、前記第1導体パターンまたは前記第2導体パターンから引き出された配線と電気的に接続される、請求項4に記載のフィルタ装置。
  6.  前記絶縁体内において、前記第1導体パターンを形成した基板に対して前記第2導体パターンを形成した基板を積層して、前記第1インダクタと前記第2インダクタとが互いに対向するように配置され、
     前記絶縁体の積層方向から視て、前記第1インダクタの開口が前記第2インダクタの開口と少なくとも一部が重なる、請求項5に記載のフィルタ装置。
  7.  前記第1キャパシタは、前記第1インダクタおよび前記第2インダクタが配置された層と異なる層に配置される、請求項6に記載のフィルタ装置。
  8.  前記第1キャパシタは、前記絶縁体の積層方向から視て、前記第1インダクタの側に配置される、請求項7に記載のフィルタ装置。
  9.  前記第2経路に対して並列に接続した第3経路をさらに備える、請求項1~請求項8のいずれか1項に記載のフィルタ装置。
  10.  前記第3経路は前記第1インダクタおよび前記第2インダクタとは磁界結合しない、請求項9に記載のフィルタ装置。
  11.  前記第3経路は前記第1インダクタおよび前記第2インダクタの開口方向から見て前記第1インダクタと前記第2インダクタと重ならない、請求項10に記載のフィルタ装置。
  12.  前記第1インダクタおよび前記第2インダクタに対して並列に接続した第3インダクタをさらに備える、請求項1~請求項11のいずれか1項に記載のフィルタ装置。
  13.  前記第1インダクタおよび前記第2インダクタに対して並列に接続した第3インダクタをさらに備え、
     前記第3インダクタの一端は前記第1外部電極に接続され、前記第3インダクタの他端は前記第2外部電極に接続され、
     前記第3インダクタは、前記筐体外に別の素子として設けられている、請求項4に記載のフィルタ装置。
  14.  前記第1インダクタおよび前記第2インダクタに対して並列に接続した第2キャパシタをさらに備える、請求項1~請求項12のいずれか1項に記載のフィルタ装置。
  15.  前記第1インダクタおよび前記第2インダクタに対して並列に接続した第2キャパシタをさらに備え、
     前記第2キャパシタの一端は前記第1外部電極に接続され、前記第2キャパシタの他端は前記第2外部電極に接続され、
     前記第2キャパシタは、前記筐体外に別の素子として設けられている、請求項4に記載のフィルタ装置。
  16.  前記第1周波数帯の電波を放射可能であるアンテナ装置であって、
     アンテナと、
     前記アンテナに高周波信号を供給する給電回路と、
     前記アンテナと前記給電回路との間に設けられる請求項1~請求項15のいずれか1項に記載のフィルタ装置と、を備えるアンテナ装置。
  17.  アンテナモジュールであって、
     前記第1周波数帯の電波を放射可能である第1アンテナ装置と、
     前記第2周波数帯の電波を放射可能である第2アンテナ装置と、を備え、
     前記第1アンテナ装置は、請求項16に記載のアンテナ装置である、アンテナモジュール。
PCT/JP2022/039627 2021-11-02 2022-10-25 フィルタ装置、アンテナ装置、およびアンテナモジュール WO2023080009A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023557959A JPWO2023080009A1 (ja) 2021-11-02 2022-10-25
CN202280071945.5A CN118176662A (zh) 2021-11-02 2022-10-25 滤波器装置、天线装置、以及天线模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021179521 2021-11-02
JP2021-179521 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080009A1 true WO2023080009A1 (ja) 2023-05-11

Family

ID=86240964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039627 WO2023080009A1 (ja) 2021-11-02 2022-10-25 フィルタ装置、アンテナ装置、およびアンテナモジュール

Country Status (3)

Country Link
JP (1) JPWO2023080009A1 (ja)
CN (1) CN118176662A (ja)
WO (1) WO2023080009A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287310A (ja) * 1985-06-13 1986-12-17 Matsushita Electric Ind Co Ltd Lcバンドパスフイルタ−
JP2014233074A (ja) * 2012-10-19 2014-12-11 株式会社村田製作所 コモンモードフィルタ
WO2016125515A1 (ja) * 2015-02-02 2016-08-11 株式会社村田製作所 可変フィルタ回路、高周波モジュール回路、および、通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287310A (ja) * 1985-06-13 1986-12-17 Matsushita Electric Ind Co Ltd Lcバンドパスフイルタ−
JP2014233074A (ja) * 2012-10-19 2014-12-11 株式会社村田製作所 コモンモードフィルタ
WO2016125515A1 (ja) * 2015-02-02 2016-08-11 株式会社村田製作所 可変フィルタ回路、高周波モジュール回路、および、通信装置

Also Published As

Publication number Publication date
CN118176662A (zh) 2024-06-11
JPWO2023080009A1 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
US9503051B2 (en) High-frequency module having a matching element coupled to a connection unit
CN107078715B (zh) 高频模块
JP6249020B2 (ja) 高周波モジュール
JP5817795B2 (ja) 高周波モジュール
WO2016181701A1 (ja) 高周波モジュール
WO2011090080A1 (ja) アンテナ装置および通信端末装置
JP5957816B2 (ja) インピーダンス変換デバイス、アンテナ装置および通信端末装置
US9065506B2 (en) High-frequency switch module
WO2016039231A1 (ja) 複合部品およびフロントエンドモジュール
CN106716634B (zh) 高频元器件
WO2012099085A1 (ja) 周波数安定化回路、アンテナ装置および通信端末装置
US9602078B2 (en) High-frequency module having a matching element coupled to a connection unit
JP6183462B2 (ja) 高周波モジュール
JPWO2015019722A1 (ja) 高周波モジュール
JPWO2017002661A1 (ja) 移相器、インピーダンス整合回路および通信端末装置
WO2019017098A1 (ja) アンテナ結合素子、アンテナ装置および電子機器
US8797225B2 (en) Antenna device and communication terminal apparatus
JP2002118486A (ja) 高周波複合スイッチモジュール
US9166285B2 (en) High-frequency module
WO2023080009A1 (ja) フィルタ装置、アンテナ装置、およびアンテナモジュール
US20210336648A1 (en) Filter circuit module, filter circuit element, filter circuit, and communication apparatus
JP2004063897A (ja) 高周波用コンデンサ及びそれを用いた高周波電子部品
WO2023276879A1 (ja) フィルタ装置、アンテナ装置、およびアンテナモジュール
KR101672035B1 (ko) 안테나 대역폭 확장장치
WO2023090250A1 (ja) フィルタ装置、アンテナ装置、およびアンテナモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557959

Country of ref document: JP