WO2023079934A1 - 発光装置及び測距装置 - Google Patents

発光装置及び測距装置 Download PDF

Info

Publication number
WO2023079934A1
WO2023079934A1 PCT/JP2022/038533 JP2022038533W WO2023079934A1 WO 2023079934 A1 WO2023079934 A1 WO 2023079934A1 JP 2022038533 W JP2022038533 W JP 2022038533W WO 2023079934 A1 WO2023079934 A1 WO 2023079934A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
conductive layer
light emitting
substrate
emitting element
Prior art date
Application number
PCT/JP2022/038533
Other languages
English (en)
French (fr)
Inventor
昌也 長田
裕史 磯部
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280072047.1A priority Critical patent/CN118160175A/zh
Publication of WO2023079934A1 publication Critical patent/WO2023079934A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present disclosure relates to a light emitting device and a distance measuring device.
  • VCSELs Very Cavity Surface Emitting Lasers
  • VCSELs have excellent features such as low power consumption, mass production at low cost, and easy two-dimensional array formation.
  • back-illuminated VCSELs do not require wire bonding and can be directly connected to LDD (Laser Diode Driver) substrates and SPAD (Single Photon Avalanche Diode) substrates, making it easy to achieve miniaturization and multi-functionality. .
  • LDD Laser Diode Driver
  • SPAD Single Photon Avalanche Diode
  • solder on the upper surface of the pad electrode arranged on the light emitting element and bond it to the LDD substrate or the like.
  • the periphery of the pad electrode is covered with an insulating layer.
  • the pad electrode or the underlying reflective electrode cracks, or if there is a gap between the end surface of the pad electrode or the like and the insulating layer, solder will enter the crack or gap, and the material of the pad electrode, etc. There is a possibility that the pad electrode and the reflective electrode may peel off due to the eutectic formation with gold and the expansion of the volume.
  • each light-emitting element in the VCSEL chip has a mesa structure, and since the pad area of each light-emitting element is small, peeling easily occurs.
  • the present disclosure provides a light-emitting device and a distance measuring device that can prevent peeling of a joint portion between a first substrate having a light-emitting element and a second substrate such as an LDD substrate.
  • a first substrate having a light emitting element; a second substrate bonded to the surface opposite to the light emitting surface of the light emitting element;
  • the first substrate is a first conductive layer laminated on the opposite surface side of the light emitting element; a second conductive layer laminated on the first conductive layer for reflecting light emitted from the light emitting element to the opposite surface; a third conductive layer laminated on the second conductive layer and bonded to the second substrate via a bonding member; and an insulating layer stacked on the third conductive layer so as to cover at least end portions of the stacked second conductive layer and the third conductive layer.
  • the insulating layer may be arranged to cover at least part of the upper surface of the third conductive layer from the end.
  • the surface of the third conductive layer facing the second substrate is a first region in contact with the joining member; and a second region arranged outside the first region and covered with the insulating layer.
  • the second region may be arranged from a position overlapping with the first conductive layer to the end when viewed in the stacking direction.
  • the second region may be arranged from a position closer to the center of the surface of the third conductive layer facing the second substrate than the position overlapping the first conductive layer when viewed in the stacking direction to the edge. good.
  • the thickness of the insulating layer in the second region may be substantially uniform from the center side to the end side of the surface of the third conductive layer facing the second substrate.
  • the thickness of the insulating layer in the second region may vary from the center side to the end side of the surface of the third conductive layer facing the second substrate.
  • the thickness of the insulating layer in the second region may be thicker on the end portion side than on the center portion side of the surface of the third conductive layer facing the second substrate.
  • the second substrate may have a driving circuit for controlling light emission of the light emitting elements.
  • a light receiving part may be provided.
  • the second substrate may have a voltage supply unit that supplies a predetermined voltage with a fixed voltage level to the light emitting element.
  • the first conductive layer is arranged in a ring shape so as to surround at least part of a region through which light emitted by the light emitting element passes;
  • the second conductive layer is arranged to cover the entire area of the first conductive layer including the area through which the light passes,
  • the third conductive layer may be arranged to cover the entire area of the second conductive layer.
  • the first conductive layer may be interrupted in at least one place in the ring direction.
  • the light emitting element is a mesa structure
  • the first substrate may have a plurality of light emitting elements.
  • the first conductive layer is a contact electrode electrically connected to the electrode on the opposite side of the light emitting element;
  • the second conductive layer is a reflective electrode that reflects light emitted from the light emitting element to the opposite surface side,
  • the third conductive layer may be a pad electrode that bonds the first substrate to the second substrate through the bonding member.
  • the first substrate is a reflective layer laminated on the opposite surface side of the light emitting element; a first conductive layer laminated around the reflective layer on the opposite surface side of the light emitting element; a second conductive layer laminated on the reflective layer and the first conductive layer and reflecting light emitted from the light emitting element to the opposite surface; a third conductive layer laminated on the second conductive layer and bonded to the second substrate via a bonding member; and an insulating layer stacked on the third conductive layer so as to overlap at least a portion of the reflective layer when viewed from the normal direction of the opposite surface of the light emitting element.
  • the insulating layer may be laminated on the third conductive layer so as to overlap the entire outer peripheral side of the reflective layer when viewed from the normal direction of the opposite surface of the light emitting element.
  • the reflective layer has at least one protrusion that protrudes outward from the outer peripheral portion of the reflective layer when viewed from the normal direction of the opposite surface of the light emitting element,
  • the insulating layer may be laminated on the third conductive layer so as to overlap the protrusion when viewed from the normal direction of the opposite surface of the light emitting element.
  • a light emitting device having a light emitting element; a light receiving element; a distance measuring unit that measures the distance to the object based on the light emission signal and the light reception signal of the light receiving element when the light emission signal of the light emitting element is reflected by the object and is received by the light receiving element; wherein the light emitting device comprises: a first substrate having the light emitting element; a second substrate bonded to the surface opposite to the light emitting surface of the light emitting element; The first substrate is a first conductive layer laminated on the opposite surface side of the light emitting element; a second conductive layer laminated on the first conductive layer for reflecting light emitted from the light emitting element to the opposite surface; a third conductive layer laminated on the second conductive layer and bonded to the second substrate via a bonding member; and an insulating layer laminated on the third conductive layer so as to cover at least an end portion of the third conductive layer.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a light emitting device according to one embodiment
  • FIG. FIG. 2 is a cross-sectional view showing in more detail the structures of the LDD substrate and the LD chip of the light emitting device of FIG. 1
  • FIG. 4 is a cross-sectional view showing details of a joint portion between an LDD substrate and an LD chip; Sectional drawing of the light-emitting device by this embodiment.
  • 4B is a plan view of the light emitting device of FIG. 4A
  • FIG. FIG. 10 is a diagram showing a state in which cracks are generated in laminated reflective electrodes and pad electrodes;
  • FIG. 4 is a cross-sectional view showing how solder has penetrated into the inside of the pad electrode and the reflective electrode; Sectional drawing of the light-emitting device by the 1st modification of FIG. 4A.
  • 6B is a plan view of the light emitting device of FIG. 6A;
  • FIG. 7B is a plan view of the light emitting device of FIG. 7A;
  • a plan view of a contact electrode in a light emitting device according to a fifth modification 4A to 4C are cross-sectional views showing the manufacturing process of the LDD substrate according to the present embodiment; Process sectional drawing following FIG.
  • FIG. 9A is a process cross-sectional view following FIG. 9B;
  • FIG. 9C is a process cross-sectional view following FIG. 9C;
  • FIG. 9C is a process cross-sectional view following FIG. 9D;
  • FIG. 9E is a process cross-sectional view following FIG. 9E;
  • Process sectional drawing following FIG. 9G. 4A to 4C are process cross-sectional views showing the manufacturing process of the LD chip according to the present embodiment;
  • FIG. 10B FIG. 4 is a manufacturing process diagram showing in detail a process of bonding individualized light emitting elements to an LDD substrate; Process sectional drawing following FIG. 11A.
  • FIG. 11B Sectional drawing of the light-emitting device by 2nd Embodiment.
  • FIG. 13 is a plan view of the light emitting device of FIG. 12 viewed from the normal direction of the surface opposite to the light emitting surface; Sectional drawing of the light-emitting device by the example of a changed completely type of 2nd Embodiment. The top view of the light-emitting device by the example of a changed completely type of 2nd Embodiment. Sectional drawing of the light-emitting device by one comparative example.
  • Sectional drawing of a ToF sensor. 1 is a diagram showing a configuration example of a distance measuring device as an implementation example of a light emitting device according to the present embodiment; FIG. Explanatory drawing of STL system.
  • FIG. 4 is an explanatory diagram of the distance measurement principle of the STL method
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system
  • FIG. 2 is an explanatory diagram showing an example of installation positions of an information detection unit outside the vehicle and an imaging unit;
  • Embodiments of a light emitting device and a distance measuring device will be described below with reference to the drawings. Although the main components of the light emitting device and the distance measuring device will be mainly described below, the light emitting device and the distance measuring device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a light emitting device 1 according to the first embodiment.
  • the light-emitting device 1 according to the present embodiment has an LDD substrate (first substrate) 4 arranged on a mounting substrate 2 with a heat dissipation substrate 3 interposed therebetween.
  • a chip (second substrate) 5 is arranged.
  • the LDD substrate 4 and the LD chip 5 are bonded together by a bonding layer 6 containing solder.
  • the LDD substrate 4 outputs drive signals for driving the light emitting elements in the LD chip 5 via the bonding layer 6 .
  • the LD chip 5 has a light emitting element.
  • the light emitting element emits laser light in a predetermined wavelength band according to a drive signal from the LDD substrate 4 .
  • Laser light emitted from the LD chip 5 is radiated to the outside through a correction lens 7 .
  • a correction lens 7 is held by a lens holding portion 8 . Since the correction lens 7 is not an essential member, it may be omitted.
  • FIG. 2 is a cross-sectional view showing in more detail the structure of the LDD substrate 4 and LD chip 5 of the light emitting device 1 of FIG.
  • the LD chip 5 includes a substrate 11 , a laminated film 12 , a plurality of light emitting elements 13 formed using the laminated film 12 , a plurality of anode electrodes 14 and a cathode electrode 16 .
  • the substrate 11 of the LD chip 5 is a substrate made of a compound semiconductor such as GaAs (gallium arsenide).
  • the surface of the substrate 11 facing the LDD substrate 4 is the front surface S2, and the laser light is emitted from the rear surface S3 of the substrate 11 side.
  • the laminated film 12 includes a first multilayer film reflector, a first spacer layer, an active layer, a second spacer layer, a second multilayer film reflector, and the like. Resonance is generated between the film reflecting mirror and the second multilayer film reflecting mirror to improve the light intensity, and the light is emitted from the rear surface S3 side of the substrate.
  • the LD chip 5 in FIG. 2 is of the back-illuminated type.
  • the light-emitting element 13 having the layer structure shown in FIG. 2 is referred to as a VCSEL structure.
  • the plurality of light emitting elements 13 have a mesa structure formed by processing the laminated film 12 into a mesa shape.
  • An anode electrode (second pad) 14 is arranged on the upper surface of each light emitting element 13 when viewed from the substrate 11 side.
  • a cathode electrode 16 is arranged on the top and side surfaces of the laminated film 12 arranged on the end side of the LD chip 5 when viewed from the substrate 11 side.
  • the cathode electrode 16 is also arranged on the lowermost layer side of the laminated film 12 of the plurality of light emitting elements 13 when viewed from the substrate 11 side.
  • the arrangement of the anode electrode 14 and the cathode electrode 16 may be reversed.
  • the common electrode is the cathode electrode 16, but the common electrode may be the anode electrode 14 and the cathode electrode 16 may be provided in each mesa portion.
  • the LDD substrate 4 has multiple pads 21 for supplying drive signals to the multiple light emitting elements 13 of the LD chip 5 .
  • a bonding layer 6 is arranged on these pads 21 as will be described later, and the pads 21 of the LDD substrate 4 and the corresponding pads of the anode electrode 14 of the LD chip 5 are bonded via the bonding layer 6 . be done.
  • the pad of the LDD substrate 4 is referred to as the first pad 21 and the pad of the anode electrode 14 of the LD chip 5 is referred to as the second pad 14 .
  • the LDD substrate 4 may have a drive circuit that generates a drive signal. In this case, the LDD substrate 4 is actively driven. Alternatively, the LDD substrate 4 may supply the pad 21 with a voltage according to a drive signal generated by an external drive circuit. In this case, the LDD substrate 4 is passively driven.
  • FIG. 3 is a cross-sectional view showing details of the joint portion between the LDD substrate 4 and the LD chip 5 .
  • the LD chip 5 is singulated with one or a plurality of light emitting elements 13 as a unit.
  • FIG. 3 shows an example in which the LD chip 5 including the individualized light emitting elements 13 is bonded to the LDD substrate 4 .
  • the bonding layer 6 is a laminated film containing a solder material and the like.
  • the LD chip 5 in FIG. 3 has a mesa-structured light-emitting element 13 , a second pad 14 , and an insulating layer 15 arranged around the second pad 14 .
  • the second pad 14 is arranged to face the first pad 21 and is bonded to the bonding layer 6 . That is, the first pad 21 and the second pad 14 are bonded via the bonding layer 6 .
  • the second pad 14 is composed of a contact electrode, a reflective electrode, and a pad electrode, but FIG. 3 shows the second pad 14 in a simplified manner. As will be described later, this embodiment is characterized by the location of the insulating layer 15, but FIG. 3 shows the insulating layer 15 in a simplified manner.
  • An underfill layer 23 is injected into the gap between the LDD substrate 4 and the LD chip 5 .
  • the joint portion between the first pad 21 and the second pad 14 can be protected, and peeling or the like can be prevented.
  • FIG. 4A is a cross-sectional view of the light emitting device 1 according to the first embodiment
  • FIG. 4B is a plan view of the light emitting device 1 of FIG. 4A
  • FIG. 4A shows the cross-sectional structure of the light emitting element 13 arranged in the opposite direction to that in FIG.
  • the bottom surface of FIG. 4A is the light emitting surface.
  • the second pad 14 in FIG. 3 is composed of the contact electrode 17, reflective electrode 18, and pad electrode 19 in FIG. 4A.
  • the contact electrode 17 is a first conductive layer laminated on the light emitting element 13 on the side opposite to the light emitting surface of the light emitting element 13 .
  • the reflective electrode 18 is a second conductive layer that is stacked on the contact electrode 17 and reflects the light emitted to the side opposite to the light emitting surface of the light emitting element 13 .
  • the pad electrode 19 is a third conductive layer laminated on the reflective electrode 18 and bonded to the LDD substrate 4 via a bonding member (bonding layer) 6 such as solder.
  • a contact electrode 17 is layered on the light emitting element 13 .
  • the contact electrode 17 is arranged in a ring shape so as to surround at least part of the region through which the light emitted by the light emitting element 13 passes.
  • FIG. 4B shows an example in which the notch portion 17a is formed in a part of the contact electrode 17, but the shape of the contact electrode 17 is arbitrary.
  • the contact electrode 17 does not necessarily have a ring shape, and may have a rectangular ring shape.
  • the contact electrode 17 is made of, for example, an alloy of gold (Au) and germanium (Ge), nickel (Ni), gold (Au), or the like, or has a laminated structure of nickel and gold.
  • the insulating layer 20 is arranged around the contact electrode 17 .
  • the insulating layer 20 is made of, for example, silicon nitride (SiN) or silicon oxide (SiO 2 ).
  • a reflective electrode 18 is laminated on the contact electrode 17 and the insulating layer 20 .
  • the reflective electrode 18 is planarly arranged from the outer peripheral side to the inner side of the contact electrode 17 .
  • the light emitting element 13 emits light downward in FIG. 4A, but part of the light travels upward. The light traveling upward is reflected by the reflective electrode 18 and travels downward.
  • the reflective electrode 18 is made of, for example, titanium (Ti) or gold (Au), or has a laminated structure of titanium and gold.
  • a pad electrode 19 is laminated on the reflective electrode 18 .
  • the pad electrode 19 is made of, for example, titanium (Ti) or gold (Au), or has a laminated structure of titanium and gold.
  • the pad electrode 19 is laminated so as to cover the entire area of the reflective electrode 18 .
  • An insulating layer 15 is laminated on the pad electrode 19 .
  • This insulating layer 15 is made of, for example, silicon nitride (SiN).
  • the insulating layer 15 is laminated so as to cover at least the end face of the laminated pad electrode 19 and reflective electrode 18, which is one of the features of this embodiment.
  • the insulating layer 15 has a two-layer structure. Both layers may be made of silicon nitride (SiN), or may be made of different materials.
  • the lower layer side of the insulating layer 15 having a two-layer structure is called a first insulating layer 15a
  • the upper layer side is called a second insulating layer 15b.
  • the first insulating layer 15a and the second insulating layer 15b in the insulating layer 15 of FIG. 4A have substantially the same area, and the positions of the end faces are also substantially the same.
  • the thickness of the first insulating layer 15a is thicker than the thickness of the second insulating layer 15b, but the thicknesses of the first insulating layer 15a and the second insulating layer 15b are arbitrary. be.
  • the upper surface of the pad electrode 19 has a first region 19a where the pad electrode 19 is exposed and a second region 19b covered with the insulating layer 15, as shown in FIG. 4B.
  • the first region 19 a is arranged on the center side of the upper surface of the pad electrode 19
  • the second region 19 b is arranged on the outer peripheral side of the upper surface of the pad electrode 19 . More specifically, the second region 19b is arranged from the position overlapping the contact electrode 17 to the end side of the pad electrode 19 when viewed in the stacking direction.
  • a bonding layer 6 such as solder as shown in FIG. 4B since the light emitting device of FIG. 4A has a large area ratio of the first region 19a, the bonding strength with the LDD substrate 4 can be increased.
  • FIG. 5A and 5B are diagrams for explaining the phenomenon that the pad electrode 19 and the reflective electrode 18 are peeled off.
  • 5A and 5B show cross-sectional structures around the contact electrode 17.
  • FIG. FIG. 5A shows a state in which cracks 31 are generated in the laminated reflective electrode 18 and pad electrode 19 .
  • the light-emitting element 13 is processed into a mesa shape, and when the reflective electrode 18 and the pad electrode 19 are laminated thereon, cracks 31 are likely to occur at the step portions.
  • the insulating layer 15 arranged around the pad electrode 19 and the reflective electrode 18 does not cover the end faces of the pad electrode 19 and the reflective electrode 18, and the end faces of the pad electrode 19 and the reflective electrode 18 are not covered.
  • a gap 32 is formed between the insulating layer 15 and the outer insulating layer 15 .
  • solder When solder is applied onto the pad electrode 19 in the state where the crack 31 is generated, as shown in FIG. expand and expand. Also, the solder enters the pad electrode 19 and the reflective electrode 18 from the gap 32 between the end faces of the pad electrode 19 and the reflective electrode 18 and the insulating layer 15 around them, and similarly eutecticizes with gold (Au) and expands. . If the pad electrode 19 or the reflective electrode 18 expands, they are likely to peel off.
  • the insulating layer 15 covers at least the end surfaces of the pad electrode 19 and the reflective electrode 18, there is a gap between the end surfaces of the pad electrode 19 and the reflective electrode 18 and the insulating layer 15 as shown in FIG. 5A. gap 32 does not exist. Therefore, there is no risk of solder entering the pad electrode 19 or the reflective electrode 18 from the end faces of the pad electrode 19 or the reflective electrode 18, and peeling of the pad electrode 19 or the reflective electrode 18 can be prevented.
  • the insulating layer 15 covers only the outer peripheral sides of the pad electrode 19 and the reflective electrode 18, and the exposed area of the pad electrode 19 increases. Since the bonding layer 6 containing solder is adhered to the upper surface of the pad electrode 19 and bonded to the LDD substrate 4, the bonding area with the LDD substrate 4 can be increased, and the pad electrode 19 and the reflective electrode 18 are peeled off. become difficult.
  • FIG. 6A is a cross-sectional view of the light emitting device 1 according to the first modified example of FIG. 4A
  • FIG. 6B is a plan view of the light emitting device 1 of FIG. 6A
  • the insulating layer 15 in FIG. 6A is placed differently from the insulating layer 15 in FIG. 4A.
  • the insulating layer 15 in FIG. 6A has a two-layer structure of a first insulating layer 15a and a second insulating layer 15b, like the insulating layer 15 in FIG. 4A.
  • the first insulating layer 15a in FIG. 6A extends to the vicinity of the center of the contact electrode 17 when viewed from the stacking direction, similarly to the first insulating layer 15a in FIG. 4A.
  • the second insulating layer 15b in FIG. 6A covers the pad electrode 19 to the inner side of the inner peripheral end of the contact electrode 17 when viewed in the stacking direction.
  • the second insulating layer 15b is made thinner than the first insulating layer 15a.
  • the upper surface of the pad electrode 19 in FIG. 6A has a first region 19a where the pad electrode 19 is exposed and a second region 19b covered with the insulating layer 15.
  • the first region 19a is arranged on the upper surface of the pad electrode 19 on the central side
  • the second region 19b is arranged on the upper surface of the pad electrode 19 outside the first region 19a.
  • the first region 19a in FIG. 6A has a smaller area than the first region 19a in FIG. 4A.
  • the second region 19b in FIG. 6A has a larger area than the second region 19b in FIG. 4A. More specifically, the second region 19b in FIG. 6A is arranged from a position closer to the central portion of the upper surface of the pad electrode 19 than the position overlapping the contact electrode 17 when viewed in the stacking direction to an end portion of the pad electrode 19. ing.
  • the thickness of the insulating layer 15 in the second region 19b varies from the center side to the end side of the surface of the pad electrode 19 facing the LDD substrate 4 . More specifically, the thickness of the insulating layer 15 in the second region 19b is thicker on the edge side of the surface of the pad electrode 19 facing the LDD substrate 4 than on the central side. That is, only the second insulating layer 15b is arranged on the inner peripheral side of the second region 19b, and the first insulating layer 15a and the second insulating layer 15b are arranged on the outer peripheral side of the second region 19b. The insulating layer 15 is thicker on the outer peripheral side of the region 19b than on the inner peripheral side.
  • the first region 19a where the pad electrode 19 is exposed is narrower than that of the light-emitting device 1 of FIG. 4A.
  • the crack 31 is likely to be covered with the insulating layer 15 . Therefore, it is possible to prevent solder from entering through the crack 31 and to prevent peeling of the pad electrode 19 and the reflective electrode 18 .
  • FIG. 7A is a cross-sectional view of the light emitting device 1 according to the first modified example of FIG. 4A
  • FIG. 7B is a plan view of the light emitting device 1 of FIG. 7A
  • the insulating layer 15 in FIG. 7A is located differently from the insulating layer 15 in FIGS. 4A and 6A.
  • the insulating layer 15 in FIG. 7A has a two-layer structure of a first insulating layer 15a and a second insulating layer 15b, similar to the insulating layer 15 in FIGS. 4A and 6A, but the first insulating layer 15a and the second insulating layer Both 15b are arranged inside the contact electrode 17 when viewed from the stacking direction.
  • the upper surface of the pad electrode 19 in FIG. 7A has a first region 19a where the pad electrode 19 is exposed and a second region 19b covered with the insulating layer 15.
  • the first region 19 a is arranged on the center side of the upper surface of the pad electrode 19
  • the second region 19 b is arranged on the outer peripheral side of the upper surface of the pad electrode 19 .
  • the first region 19a in FIG. 7 has a smaller area than the first region 19a in FIG.
  • the second region 19b in FIG. 7 has a larger area than the second region 19b in FIG. More specifically, like the second region 19b in FIG. 6, the second region 19b in FIG. 7 is positioned closer to the center of the upper surface of the pad electrode 19 than the position overlapping the contact electrode 17 when viewed in the stacking direction. , to the end of the pad electrode 19 .
  • Both the first insulating layer 15a and the second insulating layer 15b in FIG. 7 are arranged on the pad electrode 19 to the inner side of the approximate center of the contact electrode 17 when viewed from the stacking direction. As a result, even if a crack 31 occurs in the pad electrode 19 or the reflective electrode 18 around the contact electrode 17, the crack 31 can be covered with the insulating layer 15, and penetration of solder from the crack 31 is suppressed more than in FIG. can.
  • FIG. 6A and FIG. 7A The difference between FIG. 6A and FIG. 7A is that the central side of the pad electrode 19 is covered only by the thin second insulating layer 15b, or the central side of the pad electrode 19 is covered by both the first insulating layer 15a and the second insulating layer 15b. It is to cover the part side. Since the pad electrode 19 can be more strongly protected in FIG. 7A, the risk of solder entering the crack 31 can be further avoided.
  • the bonding area of the bonding layer 6 such as solder attached to the pad electrode 19 is smaller than that of the light emitting device 1 of FIG. 4A. Therefore, the light-emitting element 13 in FIGS. 6A and 7A has a weaker bonding strength to the LDD substrate 4 than the light-emitting device 1 in FIG. 4A.
  • the bonding strength to the LDD substrate 4 is the maximum in FIG. 4A, and the bonding strengths of the light emitting elements 13 in FIGS. , and is weaker than the bonding strength of the light emitting device 1 of FIG. 4A.
  • FIG. 7A is the most excellent from the viewpoint of preventing peeling due to penetration of solder from cracks 31 generated in the pad electrode 19 and the reflective electrode 18. 6A is superior, and FIG. 4A is the worst.
  • the contact electrode 17 in the light emitting element 13 shown in FIGS. 4A, 6A, and 7A has an annular shape with a notch 17a in part, but other shapes are possible.
  • FIG. 8A is a plan view of the contact electrode 17 in the light emitting device 1 according to the fourth modification
  • FIG. 8B is a plan view of the contact electrode 17 in the light emitting device 1 according to the fifth modification.
  • the contact electrode 17 in FIG. 8A has an annular shape with no notch 17a.
  • the contact electrode 17 in FIG. 8B has an annular shape with a plurality of notches 17a. In FIG. 8B, the size and number of notches 17a are arbitrary.
  • the size of the inner diameter and the outer diameter of the ring-shaped contact electrode 17 is arbitrary.
  • the contact electrode 17 may have any shape as long as it surrounds the path through which the light from the light emitting element 13 passes, and does not necessarily have to have a ring shape, and may have a rectangular ring shape or a polygonal ring shape. .
  • the mesa-structured light emitting element 13 is bonded to the LDD substrate 4 via the bonding layer 6 such as solder.
  • the light-emitting element 13 may be bonded to a passive substrate that supplies the light-emitting element 13 with a voltage corresponding to a drive signal generated by an external drive circuit.
  • a light receiving element may be arranged on the substrate to which the light emitting element 13 is bonded. As a result, a ToF sensor is obtained in which the light emitting element 13 and the light receiving element are arranged on a common substrate.
  • the contact electrode 17, the reflective electrode 18, and the pad electrode 19 are laminated on the surface opposite to the light emitting surface of the light emitting element 13 of the LD chip 5, and the reflective electrode 18 and the pad electrode 19 are laminated. Since the end face of the pad electrode 19 is covered with the insulating layer 15, solder does not penetrate into the reflective electrode 18 and the pad electrode 19 from this end face, and peeling of the reflective electrode 18 and the pad electrode 19 can be prevented.
  • FIG. 9A are process cross-sectional views showing the manufacturing process of the LDD substrate 4 according to this embodiment.
  • the first pad 21 is formed on the first surface S1 of the first substrate 25, and the insulating film 26 is formed on the first surface S1 so as to cover the first pad 21.
  • the first substrate 25 is, for example, a silicon substrate.
  • the insulating film 26 is provided to protect the first pads 21 and prevent short circuits between adjacent first pads 21 .
  • the insulating film 26 may be an organic insulating film or an inorganic insulating film.
  • the material of the organic insulating film is, for example, polyimide or polymer. Materials for the inorganic insulating film are, for example, SiO 2 and SiN.
  • the material of the first pad 21 is, for example, aluminum (Al). Wire bonding is facilitated by forming the first pads 21 from aluminum. Incidentally, the bonding between the LDD substrate 4 and the LD chip 5 can be performed without wire bonding. Wire bonding may be performed when connecting the mounting board 2 shown in FIG. 1 and the first pads 21 . Aluminum has high conductivity and excellent contact with bonding wires.
  • the first pad 21 is made of aluminum, an oxide film passivation is formed on the surface, and resistance to corrosion and the like can be enhanced.
  • the first pad 21 may be made of a metal other than aluminum.
  • the first pad 21 is for applying a drive signal to the anode electrode 14 of the light emitting element 13 inside the LD chip 5 .
  • the LDD substrate 4 is formed with the first pads 21 in the number corresponding to the number of the light emitting elements 13 in the LD chip 5 .
  • the insulating film 26 is patterned so that the first pads 21 are exposed.
  • the patterning of the insulating film 26 may be performed by dry etching or wet etching.
  • the third conductive layer 22 is formed on the first surface S1 of the LDD substrate 4, as shown in FIG. 9C.
  • the third conductive layer 22 functions as a barrier layer against the bonding layer 6 .
  • the third conductive layer 22 is formed by laminating a plurality of metal layers. If the first pad 21 is made of aluminum, the bottom layer of the third conductive layer 22 is preferably a titanium (Ti) layer. Thereby, migration of aluminum can be suppressed.
  • a copper (Cu) layer is formed on the Ti layer.
  • the third conductive layer 22 composed of the laminated film 12 of the Ti layer and the Cu layer functions as a barrier layer (UBM layer: Under Barrier Metal) for the bonding layer 6 .
  • UBM layer Under Barrier Metal
  • the third conductive layer 22 is arranged on the upper surface of the first pad 21 and the side and upper surfaces of the insulating film 26.
  • the boundary portion between the first pad 21 and the insulating film 26 is a stepped portion.
  • the third conductive layer 22 is formed with a predetermined film thickness so that the third conductive layer 22 does not break. More specifically, the thickness of the third conductive layer 22 depends on the thickness of the insulating film 26 . As the thickness of the insulating film 26 increases, the thickness of the third conductive layer 22 also needs to increase.
  • the Ti layer and Cu layer forming the third conductive layer 22 are formed by sputtering, vapor deposition, or the like.
  • a photoresist 27 is formed on the first surface S1 of the LDD substrate 4, and the photoresist 27 is patterned by a lithography process. Specifically, the photoresist 27 is patterned so that the upper surface of the third conductive layer 22 is exposed. The end face of the opening formed by patterning the photoresist 27 may be positioned outside or inside the step of the third conductive layer 22 .
  • the thickness of the photoresist 27 is set according to the thickness of the bonding layer 6 . For example, when forming the first pads 21 at a narrow pitch of 20 ⁇ m or less, the film thickness of the photoresist 27 is about 3 to 15 ⁇ m.
  • a bonding layer 6 is formed on the third conductive layer 22 in the opening of the photoresist 27. Then, as shown in FIG. In this specification, the bonding layer 6 may be called a plated layer or a solder layer.
  • the bonding layer 6 may be formed using an electrolytic plating method or an electroless plating method.
  • the bonding layer 6 is formed by laminating a plurality of metal layers.
  • the material of the bonding layer 6 has, for example, a three-layer structure of Cu pillar/Ni/SnAg. Alternatively, a four-layer structure of Cu/Ni/Cu/SnAg may be used. Alternatively, a two-layer structure of Ni/SnAg may be used.
  • the laminated film 12 such as Cu/Ni/AuSn, Cu/Ni/Cu/AuSn, Ni/AuSn, Cu/Ni/SnBi, Cu/Ni/Cu/SnBi, Ni/SnBi may be used.
  • the reason why the Ni layer is sandwiched between the SnAg layer and the Cu layer is that if there is no Ni layer, SnAg and Cu easily react to form an intermetallic compound (IMC). Formation of the IMC causes a reduction in reliability.
  • the Ni layer functions as a barrier layer against the SnAg layer and the Cu layer.
  • each layer constituting the bonding layer 6 is arbitrary, it is desirable to set the thickness of the Ni layer so that the SnAg layer does not diffuse into the underlying Cu layer.
  • the SnAg layer it is desirable to set the film thickness of the SnAg layer so that a sufficient amount of the SnAG layer adheres also to the LD chip 5 side when the LD chip 5 is joined.
  • the bonding layer 6 is Cu/Ni/SnAg
  • the thickness of the Cu layer is 1 to 10 ⁇ m
  • the thickness of the Ni layer is 1 to 8 ⁇ m
  • the thickness of the SnAg layer is 1 to 10 ⁇ m.
  • the patterned photoresist 27 is removed by etching or the like.
  • part of the third conductive layer 22 is removed.
  • a portion of the third conductive layer 22 is removed by wet etching, for example.
  • wet etching for example, when the pitch of the first pads 21 is 20 ⁇ m, the diameter of the bonding layer 6 is about 10 ⁇ m, so it is important to control the undercut amount of the third conductive layer 22 . It is desirable to adjust the undercut amount of the third conductive layer 22 by controlling the type of wet etching etchant and the etching conditions.
  • the bonding layer 6 is reflowed.
  • the reflow treatment may be performed while the flux is formed on the surface of the bonding layer 6, or the reflow treatment of the bonding layer 6 may be performed in formic acid.
  • wicking may occur in which the solder material such as SnAg wraps around the sidewalls of the Ni layer or the Cu layer.
  • it is important to control the temperature profile of the reflow process If the temperature is too high, wicking tends to occur, and if the temperature is too low, segregation will occur in the solder material such as SnAg, resulting in poor bonding. It is desirable to perform both temperature control and time control of reflow.
  • the bonding layer 6 subjected to the reflow process is formed on the first pad 21 of the LDD substrate 4 .
  • 9A to 9H since the first pads 21 on the LDD substrate 4 are formed on a substantially flat surface, the first pads 21 can be relatively easily formed by ordinary photolithography or the like. 3 A conductive layer 22 and a bonding layer 6 can be formed.
  • FIG. 10A are process cross-sectional views showing the manufacturing process of the LD chip 5 according to this embodiment.
  • a plurality of light emitting elements 13 having a mesa structure are formed on the substrate of the LD chip 5 .
  • Each light emitting element 13 is formed of the laminated film 12 as described above.
  • a second pad 14 functioning as an anode electrode 14 is formed on the upper surface of each light emitting element 13 (bottom surface of the light emitting element 13 in FIG. 10A) as viewed from the substrate side.
  • the second pad 14 is, for example, a laminated film of Ti/Pt/Au.
  • the Ti layer is a barrier layer when connecting with the laminated film 12 forming the light emitting element 13 .
  • the Pt layer is a barrier layer for the Au layer.
  • the Au layer functions as an antioxidant layer that prevents the surface of the second pad 14 from being oxidized.
  • the Ti layer has a thickness of, for example, 50-200 nm.
  • the Pt layer has a thickness of, for example, 100-500 nm.
  • the Au layer has a thickness of, for example, 50-300 nm.
  • the Au layer is effective in suppressing oxidation of the surface of the first pad 21, but if the Au layer is too thick, the Au will diffuse into the bonding layer 6 and cause voids. Thickness should be controlled.
  • an insulating film 28 is formed on the surface of the LD chip 5 on the second surface S2 side.
  • the insulating film 28 is, for example, SiN.
  • the film thickness of the insulating film 28 is, for example, about 230 nm.
  • the fourth conductive layer 24 is formed in the opening of the insulating film 28. Then, as shown in FIG. The fourth conductive layer 24 functions as a barrier layer (UBM layer) that prevents diffusion of Au and Pt contained in the second pad 14 .
  • the fourth conductive layer 24 is, for example, a laminated film of Ni/Au. The Ni layer can prevent Au and Pt from diffusing in the second pad 14 . Note that the fourth conductive layer 24 is not an essential layer and can be omitted.
  • the thickness of the Ni layer is, for example, about 500 to 3000 nm, and the thickness of the Au layer is, for example, about 25 to 300 nm.
  • the ratio between the size of the second pad 14 and the size of the fourth conductive layer 24 is important.
  • the bonding layer 6 preferably has a diameter of 8 to 10 ⁇ m. That is, it is desirable that the diameter size of the bonding layer 6 is 80 to 100% of the diameter size of the fourth conductive layer 24 .
  • the bonding layer 6 spreads toward the second pad 14 , so that the bonding layer 6 becomes insufficient and voids may be formed in the bonding layer 6 .
  • FIGS. 10A to 10C are performed while the size of the substrate of the LD chip 5 remains unchanged.
  • the process of separating the LD chip 5 into individual pieces in units of one or a plurality of light emitting elements 13 is performed.
  • a step of bonding each individualized light emitting element 13 to the LDD substrate 4 is performed.
  • Step of Bonding Light Emitting Element 13 to LDD Substrate 4 are manufacturing process diagrams showing in more detail the process of bonding each individualized light emitting element 13 to the LDD substrate 4.
  • FIG. The LDD substrate 4 has the size of a wafer.
  • the LD chip 5 side is individualized in units of one or a plurality of light emitting elements 13 .
  • FIGS. 11A to 11C are for CoW (Chip on Wafer) connection of the LD chip 5 on the LDD substrate 4 .
  • the individualized light emitting elements 13 are positioned on the LDD substrate 4, and reflow processing is performed.
  • CoW bonding is generally performed with a flip chip bonder, but a desired shape can also be obtained with a TCB (Thermo Compressive Bonder).
  • the individualized LD chips 5 are temporarily placed on the surface of the LDD substrate 4 with flux formed thereon, and the reflow process shown in FIG. 11B is performed.
  • reflow processing There are two types of reflow processing, either of which can be adopted. One is to form flux on the surface of the LDD substrate 4 in advance and then perform the reflow treatment, as described above. Another is to reflow in formic acid without flux formation.
  • the reflow temperature profile is important to prevent wicking. If the temperature is too high, wicking tends to occur, and if the temperature is too low, segregation will occur in the solder material, resulting in poor bonding.
  • it is desirable to control the temperature in the peak region for example, at 220.degree. C. to 240.degree. C. for about 40 to 70 seconds.
  • an underfill layer 23 is injected into the gap between the LDD substrate 4 and the LD chip 5 .
  • Formation of the underfill layer 23 is an important step for ensuring the reliability of the connection between the LDD substrate 4 and the LD chip 5 .
  • the height on the LD chip 5 side is as thin as about 100 ⁇ m, and there is a possibility that the underfill layer 23 will creep up to the substrate side of the LD chip 5 , causing bleeding. Therefore, selection of the material for the underfill layer 23 and control of the process of injecting the underfill layer 23 are important.
  • the substrate When singulating the LD chip 5, the substrate is diced. At this time, in blade dicing, unevenness on the side surface of the separated substrate 11 becomes large. If the side surface of the substrate 11 has large unevenness, bleeding may occur in which the underfill layer 23 injected into the gap between the LDD substrate 4 and the LD chip 5 crawls up the side surface of the substrate 11 . On the other hand, in stealth dicing, since the substrate 11 is diced by laser light irradiation, the dicing surface of the substrate 11 is flat, and the above-described bleeding hardly occurs. Therefore, when singulating the LD chip 5, it is desirable to perform stealth dicing.
  • the bonding layer 6 is formed on the first pad 21 of the LDD substrate 4 and then the LD chip 5 is bonded. Therefore, the formation positional deviation of the bonding layer 6 is less likely to occur.
  • Each light-emitting element 13 of the LD chip 5 is processed into a mesa shape, and it is highly difficult to precisely form the bonding layer 6 on the upper surface of each light-emitting element 13 in terms of process. , the short circuit between the anode electrodes 14 of two adjacent light emitting elements 13 tends to occur.
  • the periphery of the first pad 21 of the LDD substrate 4 is a substantially flat surface, it is relatively easy to form the bonding layer 6 on the first pad 21 . Therefore, the bonding layer 6 can be formed more easily and accurately than forming the bonding layer 6 on the upper surface of each light emitting element 13 of the LD chip 5, and the bonding between the LDD substrate 4 and the LD chip 5 can be performed without misalignment. can.
  • the light-emitting device according to the second embodiment is characterized in that peeling of the dielectric multilayer mirror arranged on the light-emitting element is prevented.
  • FIG. 12 is a cross-sectional view of the light emitting device 1a according to the second embodiment.
  • the same reference numerals are given to the components that are common to those of FIG. 4A, and the differences will be mainly described below.
  • the light emitting device 1a of FIG. 12 includes a dielectric multilayer mirror (DMM 20a: Dielectric Multilayer Mirror) 20a laminated on the light emitting element 13.
  • DMM 20a Dielectric Multilayer Mirror
  • a reflective layer consisting of a single layer may be arranged.
  • a contact electrode 17 is laminated on the light emitting element 13 on the outer peripheral side of the DMM 20a.
  • the light emitting element 13 emits light from the lower surface (light emitting surface) in FIG. Therefore, the upper side of FIG. 12 is the surface side opposite to the light emitting surface of the light emitting element 13, and the LDD substrate 4 of FIG. 2 is arranged to face it.
  • a reflective electrode 18 is arranged on the DMM 20 a and the contact electrode 17 .
  • a pad electrode 19 is arranged on the reflective electrode 18 .
  • the outer peripheral side of the pad electrode 19 is covered with the insulating layer 15 .
  • the insulating layer 15 has, for example, a two-layer structure of a first insulating layer 15a and a second insulating layer 15b, as in FIG. 4A.
  • FIG. 13 is a plan view of the surface of the light emitting device 1a of FIG. 12 opposite to the light emitting surface viewed from the normal direction.
  • FIG. 12 shows a cross-sectional structure taken along line AA of FIG.
  • the insulating layer 15 is arranged so as to overlap at least part of the DMM 20a. More specifically, in the example of FIG. 13, the insulating layer 15 is arranged so as to overlap the entire outer peripheral side of the DMM 20a. This improves the adhesion between the DMM 20a and the light emitting element 13, and prevents the DMM 20a from unintentionally peeling off.
  • a region that does not overlap the insulating layer 15 may exist in a part of the outer peripheral side of the DMM 20a.
  • plan view of FIG. 13 shows an example in which the DMM 20a has a substantially circular ring shape, a part of the ring may be cut off.
  • FIG. 14 is a cross-sectional view of a light emitting device 1b according to a modified example of the second embodiment
  • FIG. 15 is a plan view of the light emitting device 1b according to a modified example of the second embodiment.
  • FIG. 14 shows a cross-sectional structure taken along line BB of FIG.
  • the DMM 20a in the light emitting device 1b of FIG. 14 has a plurality of projecting portions 20b projecting outward from the outer peripheral portion, and the insulating layer 15 is arranged so as to overlap the projecting portions 20b.
  • the outer peripheral side of the DMM 20 a other than the protruding portion 20 b is arranged so as not to overlap the insulating layer 15 .
  • the number and size of the protrusions 20b are arbitrary.
  • FIG. 16 is a cross-sectional view of a light emitting device 100 according to a comparative example.
  • the insulating layer 15 is arranged so as not to overlap the DMM 20a when viewed from the normal direction of the surface of the light emitting element 13 opposite to the light emitting surface.
  • the adhesion between the DMM 20a and the light emitting element 13 is lower than that of the light emitting devices 1a and 1b shown in FIGS.
  • the insulating layer 15 is arranged so as to overlap at least a portion of the DMM 20a when the light-emitting devices 1a and 1b are viewed from the normal direction of the surface opposite to the light-emitting surface. , the adhesion between the DMM 20a and the light emitting element 13 can be improved, and problems such as peeling of the DMM 20a can be prevented.
  • the light-emitting device 1 (1a, 1b) can be used, for example, in a rangefinder (also called a rangefinder module) 40 that measures the distance to an object without contact.
  • the distance measuring device 40 requires a light receiving device 41 for receiving the reflected light signal of the light emitted from the light emitting device 1 (1a, 1b) reflected by the object.
  • the light-emitting device 1 (1a, 1b) and the light-receiving device 41 may be arranged separately, or may be arranged on a common support member .
  • FIG. 17 is a cross-sectional view of a ToF sensor 43 in which the light emitting device 1 and the light receiving device 41 are arranged on the same supporting member 42.
  • the light emitting device 1 and the light receiving device 41 are supported by a common supporting member 42, and a light blocking wall 44 is arranged between the light emitting device 1 and the light receiving device 41.
  • the light emitting device 1 of FIG. 17 has an LDD substrate 4 and an LD chip 5 that are bonded together, and a correction lens 7, as in FIG.
  • a light receiving device 41 in FIG. 17 has a light receiving element 45 and a condenser lens 46 .
  • the condenser lens 46 collects the reflected light signal from the object and forms an image on the light receiving element.
  • FIG. 18 shows a configuration example of a distance measuring device 40 as one mounting example of the light emitting device 1 (1a, 1b) according to the first or second embodiment.
  • the distance measuring device 40 includes a light emitting portion 51, a driving portion 52, a power supply circuit 53, a light emitting side optical system 54, a light receiving side optical system 55, a light receiving portion 56, a signal processing portion 57, a control portion 58, and a temperature detector.
  • a portion 59 is provided.
  • the light emitting unit 51 emits light from a plurality of light sources.
  • the light emitting unit 51 and the light emitting side optical system 54 correspond to the light emitting device 1 (1a, 1b) described above.
  • the light emitting unit 51 of this example has light emitting elements 13 by VCSEL (Vertical Cavity Surface Emitting LASER) as respective light sources, and the light emitting elements 13 are arranged in a matrix, for example. are arranged and configured according to a predetermined mode.
  • VCSEL Vertical Cavity Surface Emitting LASER
  • the driving section 52 is configured with a power supply circuit 53 for driving the light emitting section 51 .
  • the power supply circuit 53 generates a power supply voltage (driving voltage Vd, which will be described later) for the drive section 52 based on an input voltage (input voltage Vin, which will be described later) from a battery (not shown) provided in the distance measuring device 40, for example.
  • the driving section 52 drives the light emitting section 51 based on the power supply voltage.
  • the light emitted from the light emitting unit 51 is applied to a subject (target object) S as a distance measurement target via a light emitting side optical system 54 . Reflected light from the subject S of the light irradiated in this way enters the light receiving surface of the light receiving section 56 via the light receiving side optical system 55 .
  • the light receiving unit 56 is, for example, a light receiving element such as a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor. It receives light, converts it to an electrical signal, and outputs it.
  • the light receiving section 56 and the light receiving side optical system 55 correspond to the light receiving device 41 shown in FIG.
  • the light receiving unit 56 performs, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, etc. on the electrical signal obtained by photoelectrically converting the received light, and further performs A / D (Analog / Digital) conversion. process. Then, the signal as digital data is output to the signal processing section 57 in the subsequent stage.
  • CDS Correlated Double Sampling
  • AGC Automatic Gain Control
  • the light receiving section 56 of this example outputs the frame synchronization signal Fs to the driving section 52 .
  • the driving section 52 can cause the light emitting element 13 in the light emitting section 51 to emit light at a timing according to the frame cycle of the light receiving section 56 .
  • the signal processing unit 57 is configured as a signal processing processor such as a DSP (Digital Signal Processor).
  • the signal processing section 57 performs various signal processing on the digital signal input from the light receiving section 56 .
  • the control unit 58 includes, for example, a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), or an information processing device such as a DSP. It controls the drive unit 52 for controlling the operation and controls the light receiving operation of the light receiving unit 56 .
  • a microcomputer having a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), or an information processing device such as a DSP.
  • the control unit 58 has a function as a distance measurement unit 58a.
  • the distance measuring section 58a measures the distance to the subject S based on a signal input via the signal processing section 57 (that is, a signal obtained by receiving reflected light from the subject S).
  • the distance measuring unit 58a of this example measures the distance of each part of the subject S in order to specify the three-dimensional shape of the subject S.
  • Temperature detector 59 detects the temperature of light emitter 51 .
  • a diode may be used to detect the temperature.
  • the temperature information detected by the temperature detection unit 59 is supplied to the driving unit 52, so that the driving unit 52 can drive the light emitting unit 51 based on the temperature information.
  • ranging method As a ranging method in the ranging device 40, for example, a ranging method based on the STL (Structured Light) method or the ToF (Time of Flight) method can be adopted.
  • STL Structured Light
  • ToF Time of Flight
  • the STL method is a method of measuring the distance based on an image of the subject S irradiated with light having a predetermined bright/dark pattern such as a dot pattern or grid pattern.
  • FIG. 19A is an explanatory diagram of the STL method.
  • the subject S is irradiated with pattern light Lp having a dot pattern as shown in FIG. 19A, for example.
  • the pattern light Lp is divided into a plurality of blocks BL, and each block BL is assigned a different dot pattern (a dot pattern is prevented from overlapping between blocks B).
  • FIG. 19B is an explanatory diagram of the principle of distance measurement of the STL method.
  • the wall W and the box BX placed in front of it are the subject S, and the subject S is irradiated with the pattern light Lp.
  • “G” in the drawing schematically represents the angle of view of the light receiving section 56 .
  • BLn in the figure means the light of a certain block BL in the pattern light Lp
  • dn means the dot pattern of the block BLn projected on the received light image by the light receiving unit 56.
  • the dot pattern of the block BLn appears at the position of "dn'" in the received light image. That is, the position where the pattern of the block BLn appears in the received light image differs between when the box BX exists and when the box BX does not exist. Specifically, pattern distortion occurs.
  • the STL method is a method that obtains the shape and depth of the subject S by utilizing the fact that the irradiated pattern is distorted by the object shape of the subject S. Specifically, this method obtains the shape and depth of the object S from the distortion of the pattern.
  • the light receiving unit 56 for example, a global shutter type IR (Infrared: infrared) light receiving unit is used.
  • the distance measuring unit 58a controls the driving unit 52 so that the light emitting unit 51 emits pattern light, and detects pattern distortion in the image signal obtained through the signal processing unit 57. , to calculate the distance based on how the pattern is distorted.
  • the ToF method measures the distance to the object by detecting the flight time (time difference) of the light emitted from the light emitting unit 51 and reflected by the object until it reaches the light receiving unit 56. It is a method to
  • the distance measuring unit 58a calculates the time difference between the light emitted by the light emitting unit 51 and the light received by the light receiving unit 56 from the time when the light is emitted from the light emitting unit 51 to the time when the light is received by the light receiving unit 56, based on the signal input via the signal processing unit 57. and the speed of light.
  • a light receiving unit capable of receiving IR is used as the light receiving unit 56 .
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 20 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an inside information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 21 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 21 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the light emitting device 1 according to the present disclosure may be provided together with the imaging unit 12031 .
  • this technique can take the following structures. (1) a first substrate having a light emitting element; a second substrate bonded to the surface opposite to the light emitting surface of the light emitting element; The first substrate is a first conductive layer laminated on the opposite surface side of the light emitting element; a second conductive layer laminated on the first conductive layer for reflecting light emitted from the light emitting element to the opposite surface; a third conductive layer laminated on the second conductive layer and bonded to the second substrate via a bonding member; and an insulating layer stacked on the third conductive layer so as to cover at least end portions of the stacked second conductive layer and the third conductive layer.
  • the second region is arranged from a position closer to the center of the surface of the third conductive layer facing the second substrate than the position overlapping the first conductive layer when viewed in the stacking direction to the edge.
  • the light emitting device according to (3) According to (3), the thickness of the insulating layer in the second region is substantially uniform from the center side to the end side of the surface of the third conductive layer facing the second substrate.
  • the first conductive layer is arranged in a ring shape so as to surround at least part of a region through which light emitted by the light emitting element passes;
  • the second conductive layer is arranged to cover the entire area of the first conductive layer including the area through which the light passes,
  • the first conductive layer is interrupted in at least one location in the ring direction.
  • the light emitting element is a mesa structure;
  • the first conductive layer is a contact electrode electrically connected to the electrode on the opposite side of the light emitting element;
  • the second conductive layer is a reflective electrode that reflects light emitted from the light emitting element to the opposite surface side,
  • the light-emitting device according to any one of (1) to (14), wherein the third conductive layer is a pad electrode that bonds the first substrate to the second substrate via the bonding member.
  • the first substrate is a reflective layer laminated on the opposite surface side of the light emitting element; a first conductive layer laminated around the reflective layer on the opposite surface side of the light emitting element; a second conductive layer laminated on the reflective layer and the first conductive layer and reflecting light emitted from the light emitting element to the opposite surface; a third conductive layer laminated on the second conductive layer and bonded to the second substrate via a bonding member; and an insulating layer stacked on the third conductive layer so as to overlap at least a portion of the reflective layer when viewed from the normal direction of the opposite surface of the light emitting element.
  • the insulating layer is laminated on the third conductive layer so as to overlap the entire outer peripheral side of the reflective layer when viewed from the normal direction of the opposite surface of the light emitting element, ( 16) The light-emitting device as described in 16).
  • the reflective layer has at least one protrusion projecting outward from the outer peripheral portion of the reflective layer when viewed from the normal direction of the opposite surface of the light emitting element;
  • a light-emitting device having a light-emitting element; a light receiving element; a distance measuring unit that measures the distance to the object based on the light emission signal and the light reception signal of the light receiving element when the light emission signal of the light emitting element is reflected by the object and is received by the light receiving element;
  • the light emitting device comprises: a first substrate having the light emitting element; a second substrate bonded to the surface opposite to the light emitting surface of the light emitting element;
  • the first substrate is a first conductive layer laminated on the opposite surface side of the light emitting element; a second conductive layer laminated on the first conductive layer for reflecting light emitted from the light emitting element to the opposite surface; a third conductive layer laminated on the second conductive layer and bonded to the second substrate via a bonding member; and an insulating layer stacked on the third conductive layer so as to cover at least an end portion of the third conductive layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[課題]発光素子を有する第1基板とLDD基板等の第2基板との接合部分の剥離を防止する。 [解決手段]発光装置は、発光素子を有する第1基板と、前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、前記第1基板は、前記発光素子の前記反対の面側に積層される第1導電層と、前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、積層された前記第2導電層及び前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する。

Description

発光装置及び測距装置
 本開示は、発光装置及び測距装置に関する。
 近年、半導体レーザの一種として、VCSEL(Vertical Cavity Surface Emitting Laser)等の面発光レーザが注目されている(特許文献1参照)。VCSELは、低消費電力であり、低コストで大量生産ができ、かつ二次元アレイ化も容易であるという優れた特徴を持っている。特に、裏面照射型のVCSELは、ワイヤボンディングを必要とせず、LDD(Laser Diode Driver)基板やSPAD(Single Photon Avalanche Diode)基板等に直接接続できるため、小型化及び多機能化を容易に実現できる。
特表2014-529199号公報
 VCSELチップをLDD基板などに接合する際には、VCSELチップに形成されたメサ構造の発光素子の上面のパッドに半田等の接合部材を形成してから、LDD基板等を接合する手法を採用することができる。
 より具体的には、発光素子の上に配置されるパッド電極の上面に半田を形成して、LDD基板等と接合することが考えられる。パッド電極の周囲は絶縁層で覆われる。
 しかしながら、パッド電極や、その下の反射電極にクラックが入ったり、パッド電極等の端面と絶縁層との間に隙間があると、クラックや隙間に半田が侵入し、パッド電極等の材料である金と共晶化して体積が膨張し、パッド電極や反射電極が剥離するおそれがある。
 特に、VCSELチップ内の各発光素子はメサ構造であり、各発光素子のパッド面積が小さいことから、剥離が生じやすい。
 そこで、本開示では、発光素子を有する第1基板とLDD基板等の第2基板との接合部分の剥離を防止可能な発光装置及び測距装置を提供するものである。
 上記の課題を解決するために、本開示によれば、発光素子を有する第1基板と、
 前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
 前記第1基板は、
 前記発光素子の前記反対の面側に積層される第1導電層と、
 前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
 前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
 積層された前記第2導電層及び前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する、発光装置が提供される。
 前記絶縁層は、前記端部から前記第3導電層の上面の少なくとも一部を覆うように配置されてもよい。
 前記第3導電層の前記第2基板に対向する面は、
 前記接合部材と接触される第1領域と、
 前記第1領域の外側に配置され、前記絶縁層で覆われる第2領域と、を有してもよい。
 前記第2領域は、積層方向から見て前記第1導電層と重なる位置から前記端部まで配置されてもよい。
 前記第2領域は、積層方向から見て前記第1導電層と重なる位置よりも前記第3導電層の前記第2基板に対向する面の中央部側の位置から前記端部まで配置されてもよい。
 前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側から端部側にかけて略均一であってもよい。
 前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側から端部側にかけて変化してもよい。
 前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側より端部側の方が厚くてもよい。
 前記第2基板は、前記発光素子の発光を制御する駆動回路を有してもよい。
 受光部を備えてもよい。
 前記第2基板は、前記発光素子に電圧レベルが固定の所定の電圧を供給する電圧供給部を有してもよい。
 前記第1導電層は、前記発光素子で発光された光が通過する領域の少なくとも一部を取り囲むように環形状に配置され、
 前記第2導電層は、前記光が通過する領域を含めて前記第1導電層の全域を覆うように配置され、
 前記第3導電層は、前記第2導電層の全域を覆うように配置されてもよい。
 前記第1導電層は、環方向の少なくとも一箇所で途切れていてもよい。
 前記発光素子は、メサ構造体であり、
 前記第1基板は、複数の前記発光素子を有してもよい。
 前記第1導電層は、前記発光素子の前記反対の面側の電極に電気的に接続されるコンタクト電極であり、
 前記第2導電層は、前記発光素子から前記反対の面側に出射された光を反射させる反射電極であり、
 前記第3導電層は、前記接合部材を介して前記第1基板を前記第2基板に接合させるパッド電極であってもよい。
 本開示によれば、発光素子を有する第1基板と、
 前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
 前記第1基板は、
 前記発光素子の前記反対の面側に積層される反射層と、
 前記発光素子の前記反対の面側の前記反射層の周囲に積層される第1導電層と、
 前記反射層及び前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
 前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
 前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の少なくとも一部と重なり合うように前記第3導電層に積層される絶縁層と、を有する、発光装置が提供される。
 前記絶縁層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の外周側の全域と重なり合うように前記第3導電層に積層されてもよい。
 前記反射層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の外周部から外側に突き出た少なくとも一つの突起部を有し、
 前記絶縁層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記突起部と重なり合うように前記第3導電層に積層されてもよい。
 本開示によれば、発光素子を有する発光装置と、
 受光素子と、
 前記発光素子の発光信号が対象物で反射されて前記受光素子で受光されたときに、前記発光信号と前記受光素子の受光信号とに基づいて前記対象物までの距離を計測する距離計測部と、を備え
 前記発光装置は、
 前記発光素子を有する第1基板と、
 前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
 前記第1基板は、
 前記発光素子の前記反対の面側に積層される第1導電層と、
 前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
 前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
 前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する、測距装置が提供される。
一実施形態による発光装置の概略構成を示す模式的な断面図。 図1の発光装置のLDD基板とLDチップの構造をより詳細に示す断面図。 LDD基板とLDチップとの接合部分を詳細に示す断面図。 本実施形態による発光装置の断面図。 図4Aの発光装置の平面図。 積層された反射電極及びパッド電極にクラックが生じた状態を示す図。 パッド電極と反射電極の内部に半田が侵入した様子を示す断面図。 図4Aの第1変形例による発光装置の断面図。 図6Aの発光装置の平面図。 図4Aの第1変形例による発光装置の断面図。 図7Aの発光装置の平面図。 第4変形例による発光装置内のコンタクト電極の平面図。 第5変形例による発光装置内のコンタクト電極の平面図 本実施形態によるLDD基板の製造工程を示す工程断面図。 図9Aに続く工程断面図。 図9Bに続く工程断面図。 図9Cに続く工程断面図。 図9Dに続く工程断面図。 図9Eに続く工程断面図。 図9Fに続く工程断面図。 図9Gに続く工程断面図。 本実施形態によるLDチップの製造工程を示す工程断面図。 図10Aに続く工程断面図。 図10Bに続く工程断面図。 個片化された各発光素子をLDD基板に接合する工程を詳細に示す製造工程図。 図11Aに続く工程断面図。 図11Bに続く工程断面図。 第2の実施形態による発光装置の断面図。 図12の発光装置の発光面と反対の面の法線方向から平面視した平面図。 第2の実施形態の一変形例による発光装置の断面図。 第2の実施形態の一変形例による発光装置の平面図。 一比較例による発光装置の断面図。 ToFセンサの断面図。 本実施形態に係る発光装置の一実装例としての測距装置の構成例を示す図。 STL方式の説明図。 STL方式の測距原理についての説明図。 車両制御システムの概略的な構成の一例を示すブロック図。 車外情報検出部及び撮像部の設置位置の一例を示す説明図。
 以下、図面を参照して、発光装置及び測距装置の実施形態について説明する。以下では、発光装置及び測距装置の主要な構成部分を中心に説明するが、発光装置及び測距装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。
 (第1の実施形態)
 図1は第1の実施形態による発光装置1の概略構成を示す模式的な断面図である。図1に示すように、本実施形態による発光装置1は、実装基板2上に、放熱基板3を介してLDD基板(第1基板)4を配置し、LDD基板4上にLD(Laser Diode)チップ(第2基板)5を配置している。LDD基板4とLDチップ5とは、半田を含む接合層6で接合されている。LDD基板4は、接合層6を介してLDチップ5内の発光素子を駆動する駆動信号を出力する。LDチップ5は発光素子を有する。発光素子は、LDD基板4からの駆動信号に応じて、所定波長帯域のレーザ光を発光する。LDチップ5から発光されたレーザ光は、補正レンズ7を介して外部に放射される。補正レンズ7は、レンズ保持部8で保持されている。なお、補正レンズ7は必須の部材ではないため、省略してもよい。
 図2は図1の発光装置1のLDD基板4とLDチップ5の構造をより詳細に示す断面図である。LDチップ5は、基板11と、積層膜12と、積層膜12を用いて形成される複数の発光素子13と、複数のアノード電極14と、カソード電極16とを備えている。
 LDチップ5の基板11は、GaAs(ガリウムヒ素)等の化合物半導体を材料とする基板である。基板11のLDD基板4に対向する面が表(おもて)面S2であり、レーザ光は基板11の裏面S3側から出射される。積層膜12は、第1多層膜反射鏡、第1スペーサ層、活性層、第2スペーサ層、及び第2多層膜反射鏡などを含んでおり、活性層で発生されたレーザ光を第1多層膜反射鏡と第2多層膜反射鏡の間で共振させて光強度を向上させ、基板の裏面S3側から出射する。このように、図2のLDチップ5は裏面照射型である。本明細書では、図2のような層構成の発光素子13をVCSEL構造と呼ぶ。
 複数の発光素子13は、積層膜12をメサ形状に加工して形成されるメサ構造を有する。基板11側から見て、各発光素子13の上面にはアノード電極(第2パッド)14が配置されている。同様に、基板11側から見て、LDチップ5の端部側に配置される積層膜12の上面及び側面にはカソード電極16が配置されている。カソード電極16は、基板11側から見て、複数の発光素子13の積層膜12の最下層側にも配置されている。図2において、アノード電極14とカソード電極16の配置を逆にしてもよい。図2では、共通電極をカソード電極16にしているが、共通電極をアノード電極14にし、各メサ部にカソード電極16を設けてもよい。
 LDD基板4は、LDチップ5の複数の発光素子13に駆動信号を供給するための複数のパッド21を有する。これらパッド21の上には、後述するように接合層6が配置されており、接合層6を介して、LDD基板4のパッド21と、LDチップ5の対応するアノード電極14のパッドとが接合される。以下では、LDD基板4のパッドを第1パッド21、LDチップ5のアノード電極14のパッドを第2パッド14と呼ぶ。
 LDD基板4は、駆動信号を生成する駆動回路を有していてもよい。この場合、LDD基板4はアクティブ駆動を行う。あるいは、LDD基板4は、外部の駆動回路で生成された駆動信号に応じた電圧をパッド21に供給していてもよい。この場合、LDD基板4は、パッシブ駆動を行う。
 図3はLDD基板4とLDチップ5との接合部分を詳細に示す断面図である。LDチップ5は、基板11上に複数の発光素子13を形成し、各発光素子13の上面にアノード電極14を形成した後に、1個又は複数個の発光素子13を単位として個片化される。図3は、個片化された発光素子13を含むLDチップ5をLDD基板4に接合させる例を示している。
 図3に示すLDD基板4は、駆動信号が出力される第1パッド21と、第1パッド21の上に配置される第3導電層22と、第3導電層22の上に配置される接合層6とを有する。接合層6は、半田材料等を含む積層膜である。図3におけるLDチップ5は、メサ構造の発光素子13と、第2パッド14と、第2パッド14の周囲に配置される絶縁層15とを有する。第2パッド14は、第1パッド21に対向して配置されて接合層6に接合されている。すなわち、第1パッド21と第2パッド14は、接合層6を介して接合されている。
 後述するように、第2パッド14は、コンタクト電極、反射電極、及びパッド電極で構成されているが、図3では第2パッド14を簡略化して図示している。また、後述するように、本実施形態は、絶縁層15の配置場所に特徴があるが、図3では絶縁層15を簡略化して図示している。
 LDD基板4とLDチップ5の間の隙間には、アンダーフィル層23が注入されている。これにより、第1パッド21と第2パッド14との接合部分を保護することができ、剥離等を防止できる。後述するように、アンダーフィル層23がLDチップ5の側面側に這い上がるブリーディングと呼ばれる不具合が起きないように、アンダーフィル層23の材料等を選定する必要がある。
 図4Aは第1の実施形態による発光装置1の断面図、図4Bは図4Aの発光装置1の平面図である。図4Aでは、図3とは逆向きに配置した発光素子13の断面構造を示している。図4Aの底面が発光面である。
 上述したように、図3の第2パッド14は、図4Aのコンタクト電極17、反射電極18、及びパッド電極19で構成されている。コンタクト電極17は、発光素子13の発光面とは反対の面側で発光素子13に積層される第1導電層である。反射電極18は、コンタクト電極17に積層され、発光素子13の発光面とは反対の面側に出射された光を反射させる第2導電層である。パッド電極19は、反射電極18に積層され、半田等の接合部材(接合層)6を介してLDD基板4に接合される第3導電層である。
 図4Aに示すように、発光素子13の上には、コンタクト電極17が積層されている。コンタクト電極17は、発光素子13で発光された光が通過する領域の少なくとも一部を取り囲むように環形状に配置されている。図4Bでは、コンタクト電極17の一部に切り欠き部17aが形成されが例を示しているが、コンタクト電極17の形状は任意である。コンタクト電極17は必ずしも円環形状でなくてもよく、矩形の環形状でもよい。コンタクト電極17は、例えば、金(Au)とゲルマニウム(Ge)の合金、ニッケル(Ni)、又は金(Au)などで形成されるか、又はニッケルと金の積層構造で形成されている。
 コンタクト電極17の周囲には、絶縁層20が配置されている。この絶縁層20は、例えばシリコンナイトライド(SiN)又はシリコン酸化膜(SiO)などで形成されている。
 コンタクト電極17及び絶縁層20の上には、反射電極18が積層されている。反射電極18は、コンタクト電極17の外周側から内側にかけて面状に配置されている。発光素子13は、図4Aの下方に光を出射するが、一部の光は上方に進行する。上方に進行した光は反射電極18で反射されて下方に進行する。反射電極18は、例えば、チタン(Ti)又は金(Au)などで形成されか、又はチタンと金の積層構造で形成されている。
 反射電極18の上には、パッド電極19が積層されている。パッド電極19は、例えば、チタン(Ti)又は金(Au)などで形成されるか、又はチタンと金の積層構造で形成されている。パッド電極19は、反射電極18の全域を覆うように積層されている。
 パッド電極19の上には、絶縁層15が積層されている。この絶縁層15は、例えばシリコンナイトライド(SiN)で形成されている。絶縁層15は、積層されたパッド電極19及び反射電極18の端面を少なくとも覆うように積層されており、これが本実施形態の特徴の一つである。パッド電極19と反射電極18の端面を覆うように絶縁層15を積層することで、この端面からの半田の侵入を防止でき、半田が金(Au)などと共晶化して膨張し、パッド電極19や反射電極18を剥離させるおそれがなくなる。
 図4Aでは、絶縁層15を二層構造にしている。二層ともシリコンナイトライド(SiN)で形成されてもよいし、互いに別々の材料で形成されてもよい。以下では、二層構造の絶縁層15の下層側を第1絶縁層15a、上層側を第2絶縁層15bと呼ぶ。図4Aの絶縁層15における第1絶縁層15aと第2絶縁層15bは、ほぼ同じ面積を有し、端面の位置もほぼ同じである。図4Aの例では、第1絶縁層15aの膜厚が第2絶縁層15bの膜厚よりも厚い例を示しているが、第1絶縁層15aと第2絶縁層15bの膜厚は任意である。
 パッド電極19の上面は、図4Bに示すように、パッド電極19が露出した第1領域19aと、絶縁層15で覆われた第2領域19bとを有する。第1領域19aはパッド電極19の上面の中央側に配置され、第2領域19bはパッド電極19の上面の外周側に配置されている。より具体的には、第2領域19bは、積層方向から見てコンタクト電極17と重なる位置からパッド電極19の端部側まで配置されている。
 第1領域19aには、図3に示すような半田等の接合層6が付着されて、LDD基板4に接合される。図4Bに示すように、図4Aの発光装置は第1領域19aの面積の割合が大きいため、LDD基板4との接合強度を高めることができる。
 図5A及び図5Bはパッド電極19や反射電極18が剥離する現象を説明する図である。図5A及び図5Bはコンタクト電極17の周辺の断面構造を示している。図5Aは、積層された反射電極18及びパッド電極19にクラック31が生じた状態を示している。発光素子13は、メサ形状に加工されており、その上に反射電極18とパッド電極19を積層すると、段差部分においてクラック31が生じやすくなる。また、図5Aの例では、パッド電極19と反射電極18の周囲に配置された絶縁層15が、パッド電極19と反射電極18の端面を覆っておらず、パッド電極19と反射電極18の端面とその外側の絶縁層15との間に隙間32が生じている。
 クラック31が生じた状態で、パッド電極19の上に半田を付着させると、図5Bに示すように、半田がクラック31からパッド電極19や反射電極18に侵入し、金(Au)と共晶化して膨張する。また、パッド電極19及び反射電極18の端面とその周囲の絶縁層15との間の隙間32から半田がパッド電極19や反射電極18に入り込み、同様に金(Au)と共晶化して膨張する。パッド電極19や反射電極18が膨張すると、剥離しやすくなる。
 図4Aの発光装置1では、絶縁層15がパッド電極19と反射電極18の端面を少なくとも覆っているため、パッド電極19と反射電極18の端面と絶縁層15との間には図5Aのような隙間32が存在しない。よって、パッド電極19と反射電極18の端面から半田がパッド電極19や反射電極18に侵入するおそれがなくなり、パッド電極19や反射電極18の剥離を防止できる。
 図4Aの発光装置1では、絶縁層15がパッド電極19と反射電極18の外周側のみを覆っており、パッド電極19が露出する面積が大きくなる。パッド電極19の上面には半田を含む接合層6が付着されてLDD基板4に接合されるため、LDD基板4との接合面積を広げることができ、パッド電極19と反射電極18の剥離が起きにくくなる。
 その一方で、図4Aの発光装置1では、パッド電極19と反射電極18に図5Aのようなクラック31が生じたときに、クラック31から半田がパッド電極19や反射電極18に侵入して剥離が生じるおそれがある。
 図6Aは図4Aの第1変形例による発光装置1の断面図、図6Bは図6Aの発光装置1の平面図である。図6Aの絶縁層15は、図4Aの絶縁層15とは配置場所が異なっている。図6Aの絶縁層15は、図4Aの絶縁層15と同様に第1絶縁層15aと第2絶縁層15bの二層構造である。図6Aの第1絶縁層15aは、図4Aの第1絶縁層15aと同様に、積層方向から見て、コンタクト電極17の中央付近まで延びている。一方、図6Aの第2絶縁層15bは、積層方向から見て、コンタクト電極17の内周端よりも内側までパッド電極19を覆っている。第2絶縁層15bは、第1絶縁層15aよりも膜厚が薄くしている。
 図6Aのパッド電極19の上面は、パッド電極19が露出した第1領域19aと、絶縁層15で覆われた第2領域19bとを有する。第1領域19aはパッド電極19の上面の中央側に配置され、第2領域19bはパッド電極19の上面の第1領域19aよりも外側に配置されている。図6Aの第1領域19aは、図4Aの第1領域19aよりも面積が狭い。一方、図6Aの第2領域19bは、図4Aの第2領域19bよりも面積が広い。より具体的には、図6Aの第2領域19bは、積層方向から見てコンタクト電極17と重なる位置よりもパッド電極19の上面の中央部側の位置から、パッド電極19の端部まで配置されている。
 第2領域19bにおける絶縁層15の厚さは、パッド電極19のLDD基板4に対向する面の中央部側から端部側にかけて変化している。より具体的には、第2領域19bにおける絶縁層15の厚さは、パッド電極19のLDD基板4に対向する面の中央部側より端部側の方が厚い。すなわち、第2領域19bの内周側には第2絶縁層15bのみが配置され、第2領域19bの外周側には第1絶縁層15aと第2絶縁層15bが配置されており、第2領域19bの外周側が内周側よりも絶縁層15が厚くなっている。
 このように、図6Aの発光素子13では、パッド電極19が露出する第1領域19aを図4Aの発光装置1よりも狭くするため、パッド電極19や反射電極18にクラック31が生じたときに、そのクラック31が絶縁層15で覆われる可能性が高くなる。よって、クラック31からの半田の侵入を防止でき、パッド電極19と反射電極18の剥離を防止できる。
 これにより、コンタクト電極17の周辺におけるパッド電極19と反射電極18にクラック31が生じても、そのクラック31を絶縁層15で覆うことができ、図4Aよりもクラック31からの半田の侵入を抑制できる。
 図7Aは図4Aの第1変形例による発光装置1の断面図、図7Bは図7Aの発光装置1の平面図である。図7Aの絶縁層15は、図4A及び図6Aの絶縁層15とは配置場所が異なっている。図7Aの絶縁層15は、図4A及び図6Aの絶縁層15と同様に、第1絶縁層15aと第2絶縁層15bの二層構造であるが、第1絶縁層15aと第2絶縁層15bの双方とも、積層方向から見て、コンタクト電極17よりも内側まで配置されている。
 図7Aのパッド電極19の上面は、パッド電極19が露出した第1領域19aと、絶縁層15で覆われた第2領域19bとを有する。第1領域19aはパッド電極19の上面の中央側に配置され、第2領域19bはパッド電極19の上面の外周側に配置されている。図7の第1領域19aは、図4の第1領域19aよりも面積が狭い。一方、図7の第2領域19bは、図4の第2領域19bよりも面積が広い。より具体的には、図7の第2領域19bは、図6の第2領域19bと同様に、積層方向から見てコンタクト電極17と重なる位置よりもパッド電極19の上面の中央部側の位置から、パッド電極19の端部まで配置されている。
 図7の第1絶縁層15aと第2絶縁層15bはいずれも、積層方向から見て、コンタクト電極17の略中央よりも内側までパッド電極19上に配置されている。これにより、コンタクト電極17の周辺におけるパッド電極19や反射電極18にクラック31が生じても、そのクラック31を絶縁層15で覆うことができ、図6よりもクラック31からの半田の侵入を抑制できる。
 図6Aと図7Aの違いは、膜厚の薄い第2絶縁層15bだけでパッド電極19の中央側を覆うか、あるいは第1絶縁層15aと第2絶縁層15bの両方でパッド電極19の中央部側を覆うかである。図7Aの方がパッド電極19をより強固に保護できるため、クラック31に半田が侵入するおそれをより回避できる。
 図6Aと図7Aの発光素子13はいずれも、図4Aの発光装置1よりも、パッド電極19に付着される半田等の接合層6の接合面積が狭くなる。このため、図6Aと図7Aの発光素子13は、LDD基板4との接合強度が図4Aの発光装置1よりも弱くなる。
 このように、図4A、図6A及び図7Aの発光素子13は、LDD基板4との接合強度の観点では、図4Aが最大であり、図6Aと図7Aの発光素子13の接合強度は同程度で、図4Aの発光装置1の接合強度よりも弱い。また、図4A、図6A及び図7Aの発光素子13は、パッド電極19と反射電極18に生じたクラック31からの半田の侵入による剥離を防止する観点では、図7Aが最も優れており、次に図6Aが優れており、図4Aが最も劣っている。
 よって、図4A、図6A及び図7Aの発光素子13は、一長一短があるため、パッド電極19上の第2領域19bの面積や、パッド電極19及び反射電極18のクラック31の起こりやすさ等を総合的に勘案して、絶縁層15をパッド電極19上のどの位置まで配置するかを決定すればよい。
 図4A、図6A及び図7Aに示す発光素子13におけるコンタクト電極17は、一部に切り欠き部17aを有する円環形状であるが、他の形状も取りうる。例えば図8Aは第4変形例による発光装置1内のコンタクト電極17の平面図、図8Bは第5変形例による発光装置1内のコンタクト電極17の平面図である。図8Aのコンタクト電極17は、切り欠き部17aを持たない円環形状である。また、図8Bのコンタクト電極17は、複数の切り欠き部17aを有する円環形状である。図8Bにおいて、切り欠き部17aのサイズと数は任意である。また、円環形状のコンタクト電極17の内径と外径のサイズは任意である。さらに、コンタクト電極17は、発光素子13からの光が通過する経路を取り囲む形状であればよく、必ずしも円環形状である必要はなく、矩形の環形状でもよいし、多角形の環形状でもよい。
 上述した図1~図8Bでは、メサ構造の発光素子13をLDD基板4に半田等の接合層6を介して接合する例を説明したが、発光素子13が接合される基板は、必ずしもLDD基板4に限定されない。例えば、上述したように、外部の駆動回路で生成された駆動信号に応じた電圧を発光素子13に供給するパッシブ基板に発光素子13を接合してもよい。また、後述するように、発光素子13が接合される基板に受光素子が配置されていてもよい。これにより、発光素子13と受光素子が共通の基板上に配置されたToFセンサが得られる。
 このように、本実施形態による発光装置1は、LDチップ5の発光素子13の発光面とは反対の面側にコンタクト電極17、反射電極18、及びパッド電極19を積層し、反射電極18とパッド電極19の端面を絶縁層15で覆うため、この端面から半田が反射電極18やパッド電極19に侵入しなくなり、反射電極18やパッド電極19の剥離を防止できる。
 また、反射電極18とパッド電極19の端面だけでなく、パッド電極19の上面側も絶縁層15で覆うことで、パッド電極19や反射電極18にクラック31が入っても、そのクラック31から半田が侵入するのを防止できる。
 (LDD基板4の製造工程)
 図9A~図9Hは本実施形態によるLDD基板4の製造工程を示す工程断面図である。まず、図9Aに示すように、第1基板25の第1面S1上に第1パッド21を形成し、第1パッド21を覆うように第1面S1上に絶縁膜26を形成する。第1基板25は、例えばシリコン基板である。絶縁膜26は、第1パッド21を保護するとともに、隣接する第1パッド21同士の短絡を防止するために設けられている。絶縁膜26は、有機絶縁膜でもよいし、無機絶縁膜でもよい。有機絶縁膜の材料は、例えばポリイミドやポリマーなどである。無機絶縁膜の材料は、例えばSiOやSiNなどである。
 第1パッド21の材料は、例えばアルミニウム(Al)である。第1パッド21をアルミニウムで形成することで、ワイヤボンディングが容易になる。なお、LDD基板4とLDチップ5との接合に関してはワイヤボンディングなしで行うことができる。図1に示す実装基板2と第1パッド21を接続する際にワイヤボンディングが行われることがある。アルミニウムは、導電率が高く、ボンディングワイヤとの接触性にも優れている。
 また、第1パッド21をアルミニウムで形成すると、表面に酸化膜不動態が形成され、腐食等に対する耐性を高めることができる。なお、第1パッド21をアルミニウム以外の金属で形成してもよい。
 第1パッド21は、LDチップ5内の発光素子13のアノード電極14に駆動信号を付与するためのものである。図9Aでは省略しているが、LDD基板4には、LDチップ5内の発光素子13の数に応じた数の第1パッド21が形成される。
 次に、図9Bに示すように、第1パッド21が露出されるように、絶縁膜26をパターニングする。絶縁膜26のパターニングは、ドライエッチングで行ってもよいし、ウェットエッチングで行ってもよい。
 次に、図9Cに示すように、LDD基板4の第1面S1上に第3導電層22を形成する。第3導電層22は、接合層6に対するバリア層として機能する。第3導電層22は、複数の金属層を積層させたものである。第1パッド21がアルミニウムの場合には、第3導電層22の最下層はチタン(Ti)層にするのが望ましい。これにより、アルミニウムのマイグレーションを抑制できる。Ti層の上には、例えば銅(Cu)層が形成される。Ti層とCu層の積層膜12からなる第3導電層22は、接合層6に対するバリア層(UBM層:Under Barrier Metal)として機能する。
 第3導電層22は、第1パッド21の上面と、絶縁膜26の側面及び上面とに配置される、第1パッド21と絶縁膜26との境界部分は段差になっており、段差部分で第3導電層22が断線しないように、第3導電層22は所定の膜厚で形成される。より具体的には、第3導電層22の膜厚は、絶縁膜26の膜厚に依存する。絶縁膜26の膜厚が大きいほど、第3導電層22の膜厚も大きくする必要がある。第3導電層22を構成するTi層やCu層は、スパッタ又は蒸着などにより形成される。
 次に、図9Dに示すように、LDD基板4の第1面S1上にフォトレジスト27を形成し、リソグラフィ工程にてフォトレジスト27をパターニングする。具体的には、第3導電層22の上面が露出されるようにフォトレジスト27をパターニングする。フォトレジスト27のパターニングにより形成される開口部の端面は、第3導電層22の段差の外側に位置してもよいし、内側に位置してもよい。フォトレジスト27の膜厚は、接合層6の膜厚に合わせて設定される。例えば、20μmピッチ以下の狭ピッチで第1パッド21を形成する場合、フォトレジスト27の膜厚は3~15μm程度である。
 次に、図9Eに示すように、フォトレジスト27の開口部内の第3導電層22の上に接合層6を形成する。本明細書では、接合層6をメッキ層又は半田層と呼ぶことがある。接合層6の形成は、電解メッキ法を用いてもよいし、無電解メッキ法を用いてもよい。接合層6は、複数の金属層を積層したものである。接合層6の材料は、例えば、Cuピラー/Ni/SnAgの3層構造である。あるいは、Cu/Ni/Cu/SnAgの4層構造でもよい。あるいは、Ni/SnAgの2層構造でもよい。その他、Cu/Ni/AuSn、Cu/Ni/Cu/AuSn、Ni/AuSn、Cu/Ni/SnBi、Cu/Ni/Cu/SnBi、Ni/SnBiなどの積層膜12でもよい。
 SnAg層とCu層の間にNi層を挟むのは、Ni層がないとすると、SnAgとCuが容易に反応して金属間化合物(IMC:Inter Metal Compound)を形成するためである。IMCが形成されると、信頼性を低下する要因になる。Ni層は、SnAg層とCu層に対するバリア層として機能する。
 接合層6を構成する各層の膜厚は任意であるが、SnAg層が下地のCu層に拡散しないように、Ni層の膜厚を設定するのが望ましい。SnAg層については、LDチップ5を接合する際にLDチップ5側にも十分な量のSnAG層が付着するようにSnAg層の膜厚を設定するのが望ましい。一例として、接合層6がCu/Ni/SnAgの場合、Cu層の膜厚は1~10μm、Ni層の膜厚は1~8μm、SnAg層の膜厚は1~10μmである。
 次に、図9Fに示すように、パターニングされたフォトレジスト27をエッチング等により除去する。
 次に、図9Gに示すように、第3導電層22の一部を除去する。ここでは、例えばウェットエッチングにより第3導電層22の一部を除去する。例えば、第1パッド21のピッチが20μmの場合、接合層6の径は10μm程度になるため、第3導電層22のアンダーカット量の制御は重要である。ウェットエッチングのエッチャントの種類とエッチング条件とを制御して、第3導電層22のアンダーカット量を調整するのが望ましい。
 次に、図9Hに示すように、接合層6のリフロー処理を行う。接合層6の表面にフラックスを形成した状態で、リフロー処理を行ってもよいし、接合層6のリフロー処理をギ酸中で行ってもよい。このとき、SnAg等のはんだ材料がNi層やCu層の側壁に回り込むウィッキングが起きるおそれがある。ウィッキングを防止するには、リフロー処理の温度プロファイルの制御が重要である。温度が高すぎるとウィッキングが起きやすくなり、温度が低すぎると、SnAg等のはんだ材料に偏析が起こって良好な接合が得られない。リフローの温度制御と時間制御をともに行うのが望ましい。
 以上の工程により、LDD基板4の第1パッド21上には、リフロー処理が施された接合層6が形成される。図9A~図9Hの各製造工程で説明したように、LDD基板4上の第1パッド21は、ほぼ平坦な面上に形成されているため、通常のフォトリソグラフィ等により、比較的容易に第3導電層22と接合層6を形成できる。
 (LDチップの製造工程)
 次に、LDチップ5側の製造工程を説明する。図10A~図10Cは本実施形態によるLDチップ5の製造工程を示す工程断面図である。図10Aに示すように、LDチップ5の基板上には、メサ構造の複数の発光素子13が形成されている。各発光素子13は、上述したように積層膜12で形成されている。図10Aの工程では、基板側から見て各発光素子13の上面(図10Aの発光素子13の底面)にアノード電極14として機能する第2パッド14を形成する。第2パッド14は、例えばTi/Pt/Auの積層膜である。Ti層は、発光素子13を構成する積層膜12と接続する際のバリア層である。Pt層は、Au層に対するバリア層である。Au層は、第2パッド14の表面を酸化させないようにする酸化防止層として機能する。Ti層は、例えば50~200nmの膜厚を有する。Pt層は、例えば100~500nmの膜厚を有する。Au層は、例えば50~300nmの膜厚を有する。Au層は、第1パッド21の表面の酸化を抑制するのには有効であるが、Au層が厚すぎると、Auが接合層6に拡散してボイドの要因になるため、Au層の膜厚は制御する必要がある。
 次に、図10Bに示すように、LDチップ5の第2面S2側の表面に絶縁膜28を形成する。絶縁膜28は、例えばSiNである。絶縁膜28の膜厚は、例えば230nm程度である。絶縁膜28の膜厚をある程度厚くすることで、LDチップ5に外部から水分が侵入するのを防止できる。その後、絶縁膜28の一部に開口部を形成する。開口部の形成は、ドライエッチングやウェットエッチングで行うことができる。
 次に、図10Cに示すように、絶縁膜28の開口部に第4導電層24を形成する。第4導電層24は、第2パッド14に含まれるAuとPtの拡散を防止するバリア層(UBM層)として機能する。第4導電層24は、例えばNi/Auの積層膜である。Ni層は、第2パッド14内のAuとPtの拡散を防止することができる。なお、第4導電層24は必須の層ではなく、省略することも可能である。
 第4導電層24をNi/Auの積層膜12で構成する場合、Ni層の膜厚は、例えば500~3000nm程度、Au層の膜厚は、例えば25~300nm程度である。
 第2パッド14のサイズと第4導電層24のサイズの比率は重要である。例えば、第4導電層24が10μm径の場合、接合層6は8~10μm径とするのが望ましい。すなわち、第4導電層24の径サイズに対して、接合層6の径サイズは80~100%にするのが望ましい。接合層6の径サイズが小さいほど、接合層6が第2パッド14側に広がって接合層6が不足し、接合層6中にボイドが形成されるおそれがある。
 上述した図10A~図10Cの製造工程は、LDチップ5の基板のサイズのままで行われる。図10Cの工程が終わると、1個又は複数個の発光素子13を単位としてLDチップ5を個片化する工程が行われる。その後、個片化された各発光素子13を、LDD基板4に接合する工程が行われる。
 (発光素子13のLDD基板4への接合工程)
 図11A~図11Cは、個片化された各発光素子13をLDD基板4に接合する工程をより詳細に示す製造工程図である。LDD基板4はウエハのサイズを有する。LDチップ5側は、1個又は複数個の発光素子13を単位として個片化されている。このため、図11A~図11Cは、LDD基板4上にLDチップ5をCoW(Chip on Wafer)接続するものである。
 まず、図11Aに示すように、LDD基板4の上に、個片化された発光素子13を位置決めし、リフロー処理を行う。CoW接続は、フリップチップボンダで行うのが一般的であるが、TCB(Thermo Compressive Bonder)で行っても、所望の形状が得られる。フリップチップボンダの場合、LDD基板4の表面にフラックスを形成した状態で、個片化されたLDチップ5を仮置きして、図11Bに示すリフロー処理を行う。
 リフロー処理には以下の二通りがあり、どちらを採用してもよい。一つは上述したように、LDD基板4の表面にフラックスを予め形成してからリフロー処理を行うものである。もう一つは、フラックスを形成せずに、ギ酸中でリフロー処理を行うものである。本実施形態の場合、LDD基板4上の接合層6の径サイズが小さいため、接合層6中の半田材料がNi層やCu層の側壁に回り込んでウィッキングが起きる可能性がある。ウィッキングを防止するには、リフローの温度プロファイルが重要である。温度が高すぎると、ウィッキングが起きやすくなり、温度が低すぎると、半田材料に偏析が起こって、良好な接合が得られない。図11Bのリフロー処理では、例えば220℃~240℃で40~70秒程度のピーク領域の温度制御が望ましい。
 次に、図11Cに示すように、LDD基板4とLDチップ5との間の隙間にアンダーフィル層23を注入する。アンダーフィル層23の形成は、LDD基板4とLDチップ5の接続の信頼性を担保するために重要な工程である。LDチップ5側の高さは100μm程度の薄さであり、アンダーフィル層23がLDチップ5の基板側に這い上がるブリーディングが起きるおそれがある。このため、アンダーフィル層23の材料の選定と、アンダーフィル層23を注入する工程の制御が重要である。アンダーフィル層23の材料としては、ガラス転移温度Tgが高く、かつ硬化温度Tpがガラス転移温度Tgより低い材料を選定して、信頼性の向上を図るのが望ましい。
 LDチップ5を個片化する際には、基板をダイシングする処理が行われる。このとき、ブレードダイシングでは、個片化された基板11の側面の凹凸が大きくなる。基板11の側面の凹凸が大きいと、LDD基板4とLDチップ5の間の隙間に注入されたアンダーフィル層23が基板11の側面を這い上がるブリーディングが生じるおそれがある。一方、ステルスダイシングは、レーザ光の照射により基板11をダイシングするため、基板11のダイシング面が平坦であり、上述したブリーディングが生じにくくなる。よって、LDチップ5を個片化する際には、ステルスダイシングを行うのが望ましい。
 上述したように、LDチップ5の各発光素子13の上面に接合層6を形成する代わりに、LDD基板4の第1パッド21の上に接合層6を形成してからLDチップ5を接合するため、接合層6の形成位置ずれが生じにくくなる。LDチップ5の各発光素子13はメサ形状に加工されており、各発光素子13の上面に精度よく接合層6を形成するのはプロセス上の難易度が高く、接合層6の形成位置ずれにより、隣接する2つの発光素子13のアノード電極14同士が短絡する等の不具合が生じやすくなる。これに対して、LDD基板4の第1パッド21の周辺はほぼ平坦面であるため、第1パッド21の上に接合層6を形成するのも比較的容易に行うことができる。よって、LDチップ5の各発光素子13の上面に接合層6を形成するよりも容易かつ精度よく、接合層6を形成でき、LDD基板4とLDチップ5との接合も位置ずれなく行うことができる。
 (第2の実施形態)
 第2の実施形態による発光装置は、発光素子の上に配置される誘電体多層ミラーの剥離等を防止することを特徴とする。
 図12は第2の実施形態による発光装置1aの断面図である。図12の発光装置1aでは、図4Aと共通する構成部分には同一の符号を付しており、以下では相違点を中心に説明する。
 図12の発光装置1aは、発光素子13の上に積層される誘電体多層ミラー(DMM20a:Dielectric Multilayer Mirror)20aを備えている。DMM20aの代わりに、単層からなる反射層を配置してもよい。
 DMM20aの外周側には、コンタクト電極17が発光素子13の上に積層されている。発光素子13は、図12の下面(発光面)から光を発光する。よって、図12の上方は、発光素子13の発光面とは反対の面側であり、図2のLDD基板4が対向して配置される。
 DMM20aとコンタクト電極17の上には、反射電極18が配置されている。反射電極18の上にはパッド電極19が配置されている。パッド電極19の外周側は、絶縁層15で覆われている。
 絶縁層15は、図4Aと同様に、例えば、第1絶縁層15aと第2絶縁層15bの二層構造である。
 図13は図12の発光装置1aの発光面と反対の面の法線方向から平面視した平面図である。図12は、図13のA-A線方向の断面構造を示している。図12及び図13に示すように、第2の実施形態による発光装置1aでは、絶縁層15がDMM20aの少なくとも一部と重なるように配置されている。より具体的には、図13の例では、絶縁層15は、DMM20aの外周側の全域と重なるように配置されている。これにより、DMM20aと発光素子13の密着性が向上し、DMM20aが意図せずに剥離する不具合を防止できる。
 絶縁層15とDMM20aとをどの程度重ね合わせるかは任意である。DMM20aの外周側の一部に、絶縁層15と重なり合わない領域が存在してもよい。
 図13の平面図では、DMM20aが略円環形状である例を示しているが、円環の一部が切れていてもよい。
 図14は第2の実施形態の一変形例による発光装置1bの断面図、図15は第2の実施形態の一変形例による発光装置1bの平面図である。図14は、図15のB-B線方向の断面構造を示している。
 図14の発光装置1bにおけるDMM20aは、外周部から外側に突き出た複数の突起部20bを有し、これら突起部20bと重なるように絶縁層15が配置されている。突起部20b以外のDMM20aの外周側は、絶縁層15とは重ならないように配置されている。突起部20bの数及びサイズは任意である。
 図14及び図15の構造の発光装置1bでは、DMM20aの外周側の一部だけが絶縁層15と重なり合っているが、重なり部分を設けることで、DMM20aの剥離等の不具合を防止することができる。
 図16は一比較例による発光装置100の断面図である。図16の一比較例では、発光素子13の発光面と反対の面の法線方向から平面視したときに、絶縁層15がDMM20aと重ならないように配置されている。これにより、DMM20aと発光素子13の密着性が図12~図15の発光装置1a、1bよりも低下し、DMM20aの剥離等の不具合が生じやすくなる。
 このように、第2の実施形態では、発光装置1a、1bを発光面と反対の面の法線方向から平面視したときに、DMM20aの少なくとも一部と重なるように絶縁層15を配置するため、DMM20aと発光素子13の密着性を向上させることができ、DMM20aの剥離等の不具合を防止できる。
 第1又は第2の実施形態による発光装置1(1a、1b)は、例えば、非接触で物体までの距離を計測する測距装置(測距モジュールとも呼ばれる)40で用いることができる。測距装置40では、発光装置1(1a、1b)の発光信号が対象物で反射されて、その反射光信号を受光する受光装置41が必要となる。発光装置1(1a、1b)と受光装置41は、別個に配置してもよいし、共通の支持部材42上に配置してもよい。
 図17は発光装置1と受光装置41を同一の支持部材42上に配置したToFセンサ43の断面図である。なお、図17の発光装置1の代わりに、発光装置1a又は1bを設けてもよい。図17に示すように、発光装置1と受光装置41は、共通の支持部材42にて支持されており、発光装置1と受光装置41との間には、遮光壁44が配置されている。図17の発光装置1は、図1と同様に、互いに接合されるLDD基板4及びLDチップ5と、補正レンズ7とを有する。図17の受光装置41は、受光素子45と、集光レンズ46とを有する。集光レンズ46は、対象物からの反射光信号を集光して受光素子に結像させる。
(測距装置40の構成)
 図18は第1又は第2の実施形態に係る発光装置1(1a、1b)の一実装例としての測距装置40の構成例を示している。
 図示のように測距装置40は、発光部51、駆動部52、電源回路53、発光側光学系54、受光側光学系55、受光部56、信号処理部57、制御部58、及び温度検出部59を備えている。
 発光部51は、複数の光源により光を発する。発光部51と発光側光学系54は、上述した発光装置1(1a、1b)に対応する。後述するように、本例の発光部51は、各光源としてVCSEL(Vertical Cavity Surface Emitting LASER:垂直共振器面発光レーザ)による発光素子13を有しており、それら発光素子13が例えばマトリクス状等の所定態様により配列されて構成されている。
 駆動部52は、発光部51を駆動するための電源回路53を有して構成される。電源回路53は、例えば測距装置40に設けられた不図示のバッテリ等からの入力電圧(後述する入力電圧Vin)に基づき、駆動部52の電源電圧(後述する駆動電圧Vd)を生成する。駆動部52は、該電源電圧に基づいて発光部51を駆動する。
 発光部51より発せられた光は、発光側光学系54を介して測距対象としての被写体(対象物)Sに照射される。そして、このように照射された光の被写体Sからの反射光は、受光側光学系55を介して受光部56の受光面に入射する。
 受光部56は、例えばCCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の受光素子とされ、上記のように受光側光学系55を介して入射する被写体Sからの反射光を受光し、電気信号に変換して出力する。受光部56と受光側光学系55は、図17に示す受光装置41に対応する。
 受光部56は、受光した光を光電変換して得た電気信号について、例えばCDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。そしてデジタルデータとしての信号を、後段の信号処理部57に出力する。
 また、本例の受光部56は、フレーム同期信号Fsを駆動部52に出力する。これにより駆動部52は、発光部51における発光素子13を受光部56のフレーム周期に応じたタイミングで発光させることが可能とされる。
 信号処理部57は、例えばDSP(Digital Signal Processor)等により信号処理プロセッサとして構成される。信号処理部57は、受光部56から入力されるデジタル信号に対して、各種の信号処理を施す。
 制御部58は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するマイクロコンピュータ、或いはDSP等の情報処理装置を備えて構成され、発光部51による発光動作を制御するための駆動部52の制御や、受光部56による受光動作に係る制御を行う。
 制御部58は、測距部58aとしての機能を有する。測距部58aは、信号処理部57を介して入力される信号(つまり被写体Sからの反射光を受光して得られる信号)に基づき、被写体Sまでの距離を測定する。本例の測距部58aは、被写体Sの三次元形状の特定を可能とするために、被写体Sの各部について距離の測定を行う
 ここで、測距装置40における具体的な測距の手法については後に改めて説明する。
 温度検出部59は、発光部51の温度を検出する。温度検出部59としては、例えばダイオードを用いて温度検出を行う構成を採ることができる。
 本例では、温度検出部59により検出された温度の情報は駆動部52に供給され、これにより駆動部52は該温度の情報に基づいて発光部51の駆動を行うことが可能とされる。
(測距手法)
 測距装置40における測距手法としては、例えばSTL(Structured Light:構造化光)方式やToF(Time of Flight:光飛行時間)方式による測距手法を採用することができる。
 STL方式は、例えばドットパターンや格子パターン等の所定の明/暗パターンを有する光を照射された被写体Sの画像に基づいて距離を測定する方式である。
 図19Aは、STL方式の説明図である。STL方式では、例えば図19Aに示すようなドットパターンによるパターン光Lpを被写体Sに照射する。パターン光Lpは、複数のブロックBLに分割されており、各ブロックBLにはそれぞれ異なるドットパターンが割当てられている(ブロックB間でドットパターンが重複しないようにされている)。
 図19Bは、STL方式の測距原理についての説明図である。
 ここでは、壁Wとその前に配置された箱BXとが被写体Sとされ、該被写体Sに対してパターン光Lpが照射された例としている。図中の「G」は受光部56による画角を模式的に表している。
 また、図中の「BLn」はパターン光Lpにおける或るブロックBLの光を意味し、「dn」は受光部56による受光画像に映し出されるブロックBLnのドットパターンを意味している。
 ここで、壁Wの前の箱BXが存在しない場合、受光画像においてブロックBLnのドットパターンは図中の「dn’」の位置に映し出される。すなわち、箱BXが存在する場合と箱BXが存在しない場合とで、受光画像においてブロックBLnのパターンが映し出される位置が異なるものであり、具体的には、パターンの歪みが生じる。
 STL方式は、このように照射したパターンが被写体Sの物体形状によって歪むことを利用して被写体Sの形状や奥行きを求める方式となる。具体的には、パターンの歪み方から被写体Sの形状や奥行きを求める方式である。
 STL方式を採用する場合、受光部56としては、例えばグローバルシャッタ方式によるIR(Infrared:赤外線)受光部が用いられる。そして、STL方式の場合、測距部58aは、発光部51がパターン光を発光するように駆動部52を制御すると共に、信号処理部57を介して得られる画像信号についてパターンの歪みを検出し、パターンの歪み方に基づいて距離を計算する。
 続いて、ToF方式は、発光部51より発された光が対象物で反射されて受光部56に到達するまでの光の飛行時間(時間差)を検出することで、対象物までの距離を測定する方式である。
 ToF方式として、いわゆるダイレクトToF(dTOF)方式を採用する場合、受光部56としてはSPAD(Single Photon Avalanche Diode)を用い、また発光部51はパルス駆動する。この場合、測距部58aは、信号処理部57を介して入力される信号に基づき、発光部51より発せられ受光部56により受光される光について発光から受光までの時間差を計算し、該時間差と光の速度とに基づいて被写体Sの各部の距離を計算する。
 なお、ToF方式として、いわゆるインダイレクトToF(iTOF)方式(位相差法)を採用する場合、受光部56としては例えばIRを受光することのできる受光部が用いられる。
(移動体への応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図20は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図20に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図20の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図21は、撮像部12031の設置位置の例を示す図である。
 図21では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図21には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、撮像部12031とともに、本開示による発光装置1を設ければよい。撮像部12031に、本開示に係る技術を適用することにより、電磁ノイズの発生を抑制しつつ、距離画像の解像度を向上させることができ、車両12100の機能性および安全性を高めることができる。
 なお、本技術は以下のような構成を取ることができる。
 (1)発光素子を有する第1基板と、
 前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
 前記第1基板は、
 前記発光素子の前記反対の面側に積層される第1導電層と、
 前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
 前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
 積層された前記第2導電層及び前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する、発光装置。
 (2)前記絶縁層は、前記端部から前記第3導電層の上面の少なくとも一部を覆うように配置される、(1)に記載の発光装置。
 (3)前記第3導電層の前記第2基板に対向する面は、
 前記接合部材と接触される第1領域と、
 前記第1領域の外側に配置され、前記絶縁層で覆われる第2領域と、を有する、(1)に記載の発光装置。
 (4)前記第2領域は、積層方向から見て前記第1導電層と重なる位置から前記端部まで配置される、(3)に記載の発光装置。
 (5)前記第2領域は、積層方向から見て前記第1導電層と重なる位置よりも前記第3導電層の前記第2基板に対向する面の中央部側の位置から前記端部まで配置される、(3)に記載の発光装置。
 (6)前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側から端部側にかけて略均一である、(3)に記載の発光装置。
 (7)前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側から端部側にかけて変化する、(3)に記載の発光装置。
 (8)前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側より端部側の方が厚い、(7)に記載の発光装置。
 (9)前記第2基板は、前記発光素子の発光を制御する駆動回路を有する、(1)乃至(8)のいずれか一項に記載の発光装置。
 (10)受光部を備える、(1)乃至(9)のいずれか一項に記載の発光装置。
 (11)前記第2基板は、前記発光素子に電圧レベルが固定の所定の電圧を供給する電圧供給部を有する、(1)乃至(8)のいずれか一項に記載の発光装置。
 (12)前記第1導電層は、前記発光素子で発光された光が通過する領域の少なくとも一部を取り囲むように環形状に配置され、
 前記第2導電層は、前記光が通過する領域を含めて前記第1導電層の全域を覆うように配置され、
 前記第3導電層は、前記第2導電層の全域を覆うように配置される、(1)乃至(11)のいずれか一項に記載の発光装置。
 (13)前記第1導電層は、環方向の少なくとも一箇所で途切れている、(12)に記載の発光装置。
 (14)前記発光素子は、メサ構造体であり、
 前記第1基板は、複数の前記発光素子を有する、(1)乃至(13)のいずれか一項に記載の発光装置。
 (15)前記第1導電層は、前記発光素子の前記反対の面側の電極に電気的に接続されるコンタクト電極であり、
 前記第2導電層は、前記発光素子から前記反対の面側に出射された光を反射させる反射電極であり、
 前記第3導電層は、前記接合部材を介して前記第1基板を前記第2基板に接合させるパッド電極である、(1)乃至(14)のいずれか一項に記載の発光装置。
 (16)発光素子を有する第1基板と、
 前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
 前記第1基板は、
 前記発光素子の前記反対の面側に積層される反射層と、
 前記発光素子の前記反対の面側の前記反射層の周囲に積層される第1導電層と、
 前記反射層及び前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
 前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
 前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の少なくとも一部と重なり合うように前記第3導電層に積層される絶縁層と、を有する、発光装置。
 (17)前記絶縁層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の外周側の全域と重なり合うように前記第3導電層に積層される、(16)に記載の発光装置。
 (18)前記反射層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の外周部から外側に突き出た少なくとも一つの突起部を有し、
 前記絶縁層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記突起部と重なり合うように前記第3導電層に積層される、(16)に記載の発光装置。
 (19)発光素子を有する発光装置と、
 受光素子と、
 前記発光素子の発光信号が対象物で反射されて前記受光素子で受光されたときに、前記発光信号と前記受光素子の受光信号とに基づいて前記対象物までの距離を計測する距離計測部と、を備え
 前記発光装置は、
 前記発光素子を有する第1基板と、
 前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
 前記第1基板は、
 前記発光素子の前記反対の面側に積層される第1導電層と、
 前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
 前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
 前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する、測距装置。
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。
 1、1a、1b、100 発光装置、2 実装基板、3 放熱基板、4 LDD基板、5 LDチップ、6 接合層、7 補正レンズ、8 レンズ保持部、11 基板、12 積層膜、13 発光素子、14 アノード電極(第2パッド)、15 絶縁層、15a 第1絶縁層、15b 第2絶縁層、16 カソード電極、17 コンタクト電極、17a 切り欠き部、18 反射電極、19 パッド電極、19a 第1領域、19b 第2領域、20 絶縁層、20a、DMM、21 第1パッド、22 第3導電層、23 アンダーフィル層、24 第4導電層、25 第1基板、26 絶縁膜、27 フォトレジスト、28 絶縁膜、31 クラック、32 隙間、40 測距装置、41 受光装置、42 支持部材、43 ToFセンサ、44 遮光壁、45 受光素子、46 集光レンズ、51 発光部、52 駆動部、53 電源回路、54 発光側光学系、55 受光側光学系、56 受光部、57 信号処理部、58 制御部、58a 測距部、59 温度検出部

Claims (19)

  1.  発光素子を有する第1基板と、
     前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
     前記第1基板は、
     前記発光素子の前記反対の面側に積層される第1導電層と、
     前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
     前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
     積層された前記第2導電層及び前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する、発光装置。
  2.  前記絶縁層は、前記端部から前記第3導電層の上面の少なくとも一部を覆うように配置される、請求項1に記載の発光装置。
  3.  前記第3導電層の前記第2基板に対向する面は、
     前記接合部材と接触される第1領域と、
     前記第1領域の外側に配置され、前記絶縁層で覆われる第2領域と、を有する、請求項1に記載の発光装置。
  4.  前記第2領域は、積層方向から見て前記第1導電層と重なる位置から前記端部まで配置される、請求項3に記載の発光装置。
  5.  前記第2領域は、積層方向から見て前記第1導電層と重なる位置よりも前記第3導電層の前記第2基板に対向する面の中央部側の位置から前記端部まで配置される、請求項3に記載の発光装置。
  6.  前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側から端部側にかけて略均一である、請求項3に記載の発光装置。
  7.  前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側から端部側にかけて変化する、請求項3に記載の発光装置。
  8.  前記第2領域における前記絶縁層の厚さは、前記第3導電層の前記第2基板に対向する面の中央部側より端部側の方が厚い、請求項7に記載の発光装置。
  9.  前記第2基板は、前記発光素子の発光を制御する駆動回路を有する、請求項1に記載の発光装置。
  10.  受光部を備える、請求項1に記載の発光装置。
  11.  前記第2基板は、前記発光素子に電圧レベルが固定の所定の電圧を供給する電圧供給部を有する、請求項1に記載の発光装置。
  12.  前記第1導電層は、前記発光素子で発光された光が通過する領域の少なくとも一部を取り囲むように環形状に配置され、
     前記第2導電層は、前記光が通過する領域を含めて前記第1導電層の全域を覆うように配置され、
     前記第3導電層は、前記第2導電層の全域を覆うように配置される、請求項1に記載の発光装置。
  13.  前記第1導電層は、環方向の少なくとも一箇所で途切れている、請求項12に記載の発光装置。
  14.  前記発光素子は、メサ構造体であり、
     前記第1基板は、複数の前記発光素子を有する、請求項1に記載の発光装置。
  15.  前記第1導電層は、前記発光素子の前記反対の面側の電極に電気的に接続されるコンタクト電極であり、
     前記第2導電層は、前記発光素子から前記反対の面側に出射された光を反射させる反射電極であり、
     前記第3導電層は、前記接合部材を介して前記第1基板を前記第2基板に接合させるパッド電極である、請求項1に記載の発光装置。
  16.  発光素子を有する第1基板と、
     前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
     前記第1基板は、
     前記発光素子の前記反対の面側に積層される反射層と、
     前記発光素子の前記反対の面側の前記反射層の周囲に積層される第1導電層と、
     前記反射層及び前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
     前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
     前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の少なくとも一部と重なり合うように前記第3導電層に積層される絶縁層と、を有する、発光装置。
  17.  前記絶縁層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の外周側の全域と重なり合うように前記第3導電層に積層される、請求項16に記載の発光装置。
  18.  前記反射層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記反射層の外周部から外側に突き出た少なくとも一つの突起部を有し、
     前記絶縁層は、前記発光素子の前記反対の面の法線方向から平面視したときに、前記突起部と重なり合うように前記第3導電層に積層される、請求項16に記載の発光装置。
  19.  発光素子を有する発光装置と、
     受光素子と、
     前記発光素子の発光信号が対象物で反射されて前記受光素子で受光されたときに、前記発光信号と前記受光素子の受光信号とに基づいて前記対象物までの距離を計測する距離計測部と、を備え
     前記発光装置は、
     前記発光素子を有する第1基板と、
     前記発光素子の発光面とは反対の面側に接合される第2基板と、を備え、
     前記第1基板は、
     前記発光素子の前記反対の面側に積層される第1導電層と、
     前記第1導電層に積層され、前記発光素子から前記反対の面側に出射された光を反射させる第2導電層と、
     前記第2導電層に積層され、接合部材を介して前記第2基板に接合される第3導電層と、
     前記第3導電層の端部を少なくとも覆うように前記第3導電層に積層される絶縁層と、を有する、測距装置。
PCT/JP2022/038533 2021-11-05 2022-10-17 発光装置及び測距装置 WO2023079934A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280072047.1A CN118160175A (zh) 2021-11-05 2022-10-17 发光装置及测距装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-181132 2021-11-05
JP2021181132 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023079934A1 true WO2023079934A1 (ja) 2023-05-11

Family

ID=86241462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038533 WO2023079934A1 (ja) 2021-11-05 2022-10-17 発光装置及び測距装置

Country Status (2)

Country Link
CN (1) CN118160175A (ja)
WO (1) WO2023079934A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318488A (ja) * 2002-04-24 2003-11-07 Furukawa Electric Co Ltd:The 面発光レーザ装置、面発光レーザ装置を用いた光送受信器、光通信器および光通信システム
JP2010010712A (ja) * 2009-10-09 2010-01-14 Casio Comput Co Ltd 測距用光源及びそれを用いた測距装置
JP2011035324A (ja) * 2009-08-05 2011-02-17 Showa Denko Kk 半導体発光素子、ランプ、電子機器および機械装置
JP2013201456A (ja) * 2004-12-14 2013-10-03 Seoul Opto Devices Co Ltd 複数の発光セルを有する発光素子
JP2015065205A (ja) * 2013-09-24 2015-04-09 スタンレー電気株式会社 半導体発光素子
JP2016027657A (ja) * 2012-04-25 2016-02-18 京セラ株式会社 受発光素子モジュールおよびこれを用いたセンサ装置
JP2021141257A (ja) * 2020-03-06 2021-09-16 ソニーセミコンダクタソリューションズ株式会社 発光装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318488A (ja) * 2002-04-24 2003-11-07 Furukawa Electric Co Ltd:The 面発光レーザ装置、面発光レーザ装置を用いた光送受信器、光通信器および光通信システム
JP2013201456A (ja) * 2004-12-14 2013-10-03 Seoul Opto Devices Co Ltd 複数の発光セルを有する発光素子
JP2011035324A (ja) * 2009-08-05 2011-02-17 Showa Denko Kk 半導体発光素子、ランプ、電子機器および機械装置
JP2010010712A (ja) * 2009-10-09 2010-01-14 Casio Comput Co Ltd 測距用光源及びそれを用いた測距装置
JP2016027657A (ja) * 2012-04-25 2016-02-18 京セラ株式会社 受発光素子モジュールおよびこれを用いたセンサ装置
JP2015065205A (ja) * 2013-09-24 2015-04-09 スタンレー電気株式会社 半導体発光素子
JP2021141257A (ja) * 2020-03-06 2021-09-16 ソニーセミコンダクタソリューションズ株式会社 発光装置およびその製造方法

Also Published As

Publication number Publication date
CN118160175A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
KR102625900B1 (ko) 반도체 소자 및 그 제조 방법 및 전자 기기
WO2021020472A1 (en) Light receiving element and electronic device
WO2023079934A1 (ja) 発光装置及び測距装置
KR20230058611A (ko) 반도체 장치 및 반도체 장치의 제조 방법
WO2022019188A1 (ja) 発光装置及びその製造方法
US20210043672A1 (en) Imaging unit, method for manufacturing the same, and electronic apparatus
EP4276905A1 (en) Light-receiving element and ranging system
WO2022054411A1 (ja) 面発光レーザ装置、電子機器及び面発光レーザ装置の製造方法
US20220247153A1 (en) Surface light-emission laser device
WO2023188826A1 (ja) 発光装置、発光装置の製造方法、測距装置
WO2024090027A1 (ja) パッケージおよびパッケージの製造方法
WO2022130825A1 (ja) 面発光レーザ装置
WO2024135493A1 (ja) 光検出装置
WO2024024278A1 (ja) パッケージおよびパッケージの製造方法
WO2023162463A1 (ja) 発光デバイスおよびVoS(VCSEL on Silicon)デバイス
JP2024081832A (ja) 光学装置及び光学装置の製造方法
WO2024111248A1 (ja) 半導体パッケージ、光学装置、および、半導体パッケージの製造方法
WO2023145271A1 (ja) 面発光素子、光源装置及び面発光素子の製造方法
WO2024070803A1 (ja) 測距装置及びその製造方法
WO2024095610A1 (ja) 電子デバイス
WO2023248974A1 (ja) 光検出素子および光検出素子の製造方法
US20240072080A1 (en) Light detection device and distance measurement apparatus
US20240194708A1 (en) Semiconductor device
WO2024100994A1 (ja) ペルチェ素子および半導体パッケージ
WO2023248606A1 (ja) パッケージ、半導体装置およびパッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023557923

Country of ref document: JP