WO2023079887A1 - アクセスポイント及び通信方法 - Google Patents

アクセスポイント及び通信方法 Download PDF

Info

Publication number
WO2023079887A1
WO2023079887A1 PCT/JP2022/037062 JP2022037062W WO2023079887A1 WO 2023079887 A1 WO2023079887 A1 WO 2023079887A1 JP 2022037062 W JP2022037062 W JP 2022037062W WO 2023079887 A1 WO2023079887 A1 WO 2023079887A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
information
coordination
cooperative communication
channel information
Prior art date
Application number
PCT/JP2022/037062
Other languages
English (en)
French (fr)
Inventor
潤 美濃谷
敬 岩井
嘉夫 浦部
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN202280070728.4A priority Critical patent/CN118202701A/zh
Publication of WO2023079887A1 publication Critical patent/WO2023079887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This disclosure relates to access points and communication methods.
  • 802.11ax 802.11ax
  • 802.11be 802.11be
  • IEEE 802.11-19/1582r2 Coordinated AP time/Frequency Sharing in a Transmit Opportunity in 11be IEEE Std 802.11TM-2016 IEEE Std 802.11axTM-2021 IEEE 802.11-20/560r0, Multi-AP Configuration and Resource Allocation
  • a non-limiting embodiment of the present disclosure contributes to providing an access point and a communication method that improve the communication efficiency of cooperative communication in wireless communication.
  • An access point includes a control circuit that determines channel information related to control of cooperative communication based on channels allocated to each of a plurality of access points in non-cooperative communication, and a transmission circuit for transmitting to the access point.
  • MAP Multi-Access Point
  • AP Access Point
  • HT High Throughput
  • HE High Efficient
  • HE High Efficient
  • STA operation Block diagram showing a configuration example of part of the AP Block diagram showing a configuration example of part of STA Block diagram showing an AP configuration example
  • TXOP Transmission Opportunity
  • Sharing AP an AP that has acquired a channel usage period (TXOP: Transmission Opportunity) is called a "Sharing AP”.
  • the AP may obtain TXOP, for example, by Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA).
  • CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
  • a sharing AP may be, for example, an AP that controls cooperative communication in Multi-AP coordination.
  • Multi-AP coordination for example, an AP whose cooperative communication is controlled by a Sharing AP is called a "Shared AP”.
  • a terminal that belongs to for example, belongs to, connects to, or associates with
  • a Sharing AP also called a station (STA) or non-AP STA
  • STA station
  • non-AP STA non-AP STA
  • a STA belonging to a Shared AP may be called a "Shared STA”.
  • Fig. 1 is a diagram showing an example of a control method for Multi-AP coordination.
  • the Multi-AP coordination process is divided into three phases, a "Tx indication and request” phase, a "Schedule allocation” phase, and a "Data Tx” phase.
  • FIG. 2 is a diagram showing an example of negotiation (eg, Tx indication and request phase and Schedule allocation phase) between APs (eg, Sharing AP and Shared AP) in Multi-AP coordination.
  • AP1 may be a Sharing AP and AP2 and AP3 may be Shared APs.
  • Sharing AP sends a Coordinated AP TXOP Indication (CTI) frame to Shared APs (AP2 and AP3), and then to Multi-AP coordination. requests a response of whether or not to participate.
  • CTI Coordinated AP TXOP Indication
  • Shared AP AP2 and AP3 transmits a Coordinated AP TXOP Request (CTR) frame to Sharing AP (AP1) in response to CTI from AP1, and responds whether it can participate in Multi-AP coordination.
  • CTR Coordinated AP TXOP Request
  • the Sharing AP transmits a Coordinated AP TXOP AP Schedule (CTAS) frame to the Shared APs (AP2 and AP3), and each Shared AP It notifies allocation information such as available resource information (for example, frequency resource and time resource) and transmission start time.
  • CTAS Coordinated AP TXOP AP Schedule
  • Sharing AP (AP1) and Shared AP (AP2 and AP3) for example, transmit a Coordinated AP TXOP Local Schedule (CTLS) frame, and use resource information and It notifies allocation information such as transmission start time.
  • CTLS Coordinated AP TXOP Local Schedule
  • AP and STA perform cooperative communication (or also called cooperative transmission) based on the allocation information.
  • coordinated communication in the Data TX phase includes Joint Transmission (JT), Coordinated Beamforming (CBF), Coordinated Spatial Reuse (CSR), Coordinated Orthogonal Frequency Division Multiple Access (COFDMA), or Coordinated Time Division Multiple Access (CTDMA).
  • JT Joint Transmission
  • CBF Coordinated Beamforming
  • CSR Coordinated Spatial Reuse
  • COFDMA Coordinated Orthogonal Frequency Division Multiple Access
  • CTDMA Coordinated Time Division Multiple Access
  • cooperative communication may be either downlink cooperative communication or uplink cooperative communication.
  • the control method of Multi-AP coordination shown in FIGS. 1 and 2 is an example, and is not limited to the methods shown in FIGS.
  • [Assignment of primary channel] 11be for example, a method of allocating a primary channel (for example, primary 20 MHz channel) in Multi-AP coordination is being studied.
  • a primary 20MHz channel is a channel defined individually in a Basic Service Set (BSS) consisting of an AP and multiple STAs under the AP, for example. may be used for The primary 20MHz channel may be determined, for example, from among the AP's available channels (eg, also called “operating channels” or “operating channels”).
  • BSS Basic Service Set
  • the primary channel (for example, primary 20MHz channel) may be included in the operation elements shown in FIGS. 3 and 4 and notified from the AP to the STA (see, for example, Non-Patent Documents 2 or 3).
  • FIG. 3 is a diagram showing an example of a High Throughput (HT) Operation element.
  • the HT Operation element shown in FIG. 3 uses the "primary channel” field to notify information about the primary channels of the 2.4 GHz band and 5 GHz band (for example, the channel number (also called channel number or channel index)).
  • FIG. 4 is a diagram showing an example of a High Efficiency (HE) Operation element.
  • the HE Operation element shown in FIG. 4 may, for example, use the "Primary channel” subfield included in the "6 GHz Operation Information” field to notify information (eg, channel number) on the primary channel of the 6 GHz band.
  • Each operation element is included in a signal (eg, broadcast information) such as a beacon signal, a probe response signal, or an association signal (eg, an association response signal or a reassociation response signal) and notified from the AP to the STA. good.
  • a signal eg, broadcast information
  • a probe response signal e.g., a probe response signal
  • an association signal e.g., an association response signal or a reassociation response signal
  • Sharing AP and Shared AP do not have to use the same primary channel (for example, see Non-Patent Document 4).
  • the primary channel (eg, primary 20MHz channel) of the Sharing AP may be allocated within the operating channel of the Shared AP, for example.
  • the Shared AP's primary channel eg, primary 20MHz channel
  • FIG. 5 is a diagram showing a setting example of the operating channel and primary channel (for example, primary 20MHz channel) of each of the Sharing AP and Shared AP.
  • the primary channels of the sharing AP and the shared AP are allocated within each other's operating channel, so the sharing AP and the shared AP can transmit and receive each other's signals.
  • the shared AP's primary channel is allocated outside the sharing AP's operating channel, so the shared AP does not receive the sharing AP's transmission signal.
  • the control method for the primary channel in Multi-AP coordination has not been sufficiently discussed.
  • different primary channels may be set for non-Multi-AP coordination (also called non-coordinated communication or Non-Multi-AP coordination) and Multi-AP coordination. Therefore, for example, the primary channel may be changed (or switched) between Non-Multi-AP coordination and Multi-AP coordination.
  • FIG. 6 is a diagram showing an example of allocation of primary channels (for example, primary 20MHz channels) in Non-Multi-AP coordination.
  • each AP for example, AP1 and AP2
  • the primary 20MHz channel is set outside each other's operating channel. There may be cases.
  • the primary 20MHz channel can be changed into each AP's operating channel for Multi-AP coordination.
  • the setting is changed as to whether or not to match the primary channel between APs.
  • the primary channel eg, primary 20MHz channel
  • COFDMA is applied in Multi-AP coordination
  • the primary 20MHz channel can be changed into the frequency resources (eg, resource units (RUs)) allocated to each of AP1 and AP2, as shown in FIG.
  • a channel eg, primary channel
  • a channel is appropriately set (eg, assigned, changed, or switched), and cooperative communication in Multi-AP coordination
  • a terminal eg, AP or STA
  • channel information eg, information about a primary channel
  • Control over channels eg, primary channel
  • Multi-AP coordination may be determined.
  • AP and STA set a channel (for example, primary channel) used in Multi-AP coordination based on channel information regarding control of Multi-AP coordination ( For example, by changing or switching), signals related to Multi-AP coordination can be properly transmitted and received.
  • Terminal may refer to either an AP or a non-AP terminal (for example, STA).
  • a wireless communication system includes at least one coordination group that performs Multi-AP coordination.
  • a cooperation group includes, for example, multiple APs 100 and at least one STA 200 .
  • the AP 100 corresponds to a "downlink wireless transmitter" and the STA 200 corresponds to a "downlink wireless receiver”.
  • the AP 100 corresponds to an "uplink radio receiving apparatus” and the STA 200 corresponds to an "uplink radio transmitting apparatus”.
  • AP 100 transmits a DL signal to other AP 100 or STA 200 .
  • the STA 200 transmits a UL signal based on the signal received from the AP 100.
  • multiple APs 100 and multiple STAs 200 perform Multi-AP coordination.
  • a method in which two APs 100 (AP1 and AP2) transmit and receive control signals related to Multi-AP coordination between APs and notify other APs 100 of the primary channel (e.g., primary 20MHz channel) used in Multi-AP coordination. will be explained.
  • FIG. 9 is a sequence diagram showing an operation example regarding Multi-AP coordination by AP 100 (including, for example, AP1 and AP2) and STA 200 (including, for example, STA1 and STA2) in a wireless communication system according to an embodiment of the present disclosure. be.
  • AP1 and STA1 may belong to BSS1, and AP2 and STA2 may belong to BSS2.
  • AP1 transmits a beacon signal including information about the primary channel of BSS1 (Non-Multi-AP coordination) (hereinafter referred to as "primary channel information") to STA1 under AP1 (S101).
  • STA1 for example, performs reception processing of a beacon signal transmitted from AP1 (S102-1).
  • STA1 may set the primary channel based on primary channel information included in the beacon signal.
  • AP2 receives, for example, a beacon signal transmitted from AP1 to STA1, and stores primary channel information used in BSS1 in a buffer based on the primary channel information included in the received beacon signal (S102- 2).
  • AP2 like AP1, transmits a beacon signal including primary channel information of BSS2 (Non-Multi-AP coordination) to STA2 under AP2 (S103).
  • STA2 for example, performs reception processing of a beacon signal transmitted from AP2 (S104-2).
  • STA2 may set the primary channel based on primary channel information included in the beacon signal.
  • AP1 receives a beacon signal transmitted from AP2 to STA2, for example, and stores primary channel information used in BSS2 in a buffer based on the primary channel information included in the received beacon signal (S104- 1).
  • AP1 acquires TXOP and operates as a Sharing AP that controls (or leads) Multi-AP coordination.
  • AP1 transmits a participation request signal (for example, CTI) to Multi-AP coordination to AP2 (S105).
  • CTI participation request signal
  • AP2 performs reception processing of the Multi-AP coordination participation request signal (S106). For example, AP2 may decide whether to participate in Multi-AP coordination based on the capability information (Capability) related to Multi-AP coordination. AP2, for example, transmits Multi-AP coordination participation response information (for example, CTR) including whether or not to participate in Multi-AP coordination to AP1 (S107).
  • S106 Multi-AP coordination participation request signal
  • Capability capability information
  • AP2 for example, transmits Multi-AP coordination participation response information (for example, CTR) including whether or not to participate in Multi-AP coordination to AP1 (S107).
  • CTR Multi-AP coordination participation response information
  • AP1 performs reception processing of the Multi-AP coordination participation response information signal (S108). For example, AP1 determines a Multi-AP coordination method (eg, JT, CBF, CSR, COFDMA, or CTDMA) based on information about APs participating in Multi-AP coordination (eg, Shared AP). You can schedule. AP1 then transmits, for example, Multi-AP coordination scheduling information (for example, CTAS) to Shared APs (for example, including AP2) (S109). AP2, for example, performs reception processing of Multi-AP coordination scheduling information from AP1 (S110).
  • a Multi-AP coordination method eg, JT, CBF, CSR, COFDMA, or CTDMA
  • AP1 transmits, for example, Multi-AP coordination scheduling information (for example, CTAS) to Shared APs (for example, including AP2) (S109).
  • AP2 for example, performs reception processing of Multi-AP coordination scheduling information from AP1 (S110).
  • Multi-AP coordination scheduling information includes, for example, information on AP 100 that performs coordinated communication (for example, Service Set Identifier (SSID) common to a coordinated group formed by APs 100 that perform coordinated communication, or Association Identifier of each STA). (AID)), resource information that each AP 100 can use (for example, frequency resource information or time resource information), weighting to amplitude or phase in cooperative communication (also called steering, spatial mapping, transmission precoding) information or transmission power information may be included.
  • SSID Service Set Identifier
  • AID Association Identifier of each STA
  • resource information that each AP 100 can use for example, frequency resource information or time resource information
  • weighting to amplitude or phase in cooperative communication also called steering, spatial mapping, transmission precoding
  • the scheduling information of Multi-AP coordination may include, for example, primary channel information (for example, primary channel information or operating channel information of each of Sharing AP and Shared AP) regarding operation of Multi-AP coordination.
  • primary channel information for example, primary channel information or operating channel information of each of Sharing AP and Shared AP
  • AP1 and AP2 for example, transmit Multi-AP coordination local scheduling information (eg, CTLS) to STAs under each AP (eg, STA1 and STA2) (S111-1 and S111-2).
  • Multi-AP coordination local scheduling information eg, CTLS
  • the Multi-AP coordination local scheduling information includes, for example, resource information (for example, frequency resource information or reception timing information) for STA1 or STA2 to receive DL Multi-AP coordination signals, or STA1 or STA2 to receive UL Multi- Resource information (eg, frequency resource information, transmission timing information, or transmission power information) for transmitting AP coordination signals may be included.
  • resource information for example, frequency resource information or reception timing information
  • UL Multi- Resource information eg, frequency resource information, transmission timing information, or transmission power information
  • the Multi-AP coordination local scheduling information includes, for example, primary channel information related to Multi-AP coordination for STA1 and STA2 to transmit and receive signals in Multi-AP coordination (for example, primary channel information or operating channel information of Shared AP). information) may be included.
  • STA1 and STA2 perform reception processing of the Multi-AP coordination local scheduling information (S112-1 and S112-2).
  • AP1 and STA1, and AP2 and STA2 for example, multi- A primary channel in AP coordination may be set (S113-1 to S113-4).
  • AP1 and STA1, and AP2 and STA2 may switch primary channels based on BSS-specific primary channel information when the primary channel based on Multi-AP coordination is changed.
  • FIG. 10 is a block diagram showing a configuration example of part of the AP 100 according to one embodiment of the present disclosure.
  • a control unit for example, corresponding to a control circuit
  • performs cooperative communication for example, , Multi-AP coordination
  • a transmission unit for example, corresponding to a transmission circuit transmits channel information to other APs 100 .
  • FIG. 11 is a block diagram showing a configuration example of part of the STA 200 according to one embodiment of the present disclosure.
  • a receiving unit for example, corresponding to a receiving circuit
  • performs cooperative communication for example, Receives channel information related to control of Multi-AP coordination from other APs 100 .
  • a control unit controls cooperative communication based on the channel information.
  • FIG. 12 is a block diagram showing a configuration example of the AP 100 (for example, a downlink radio transmission device or an uplink radio reception device).
  • AP 100 shown in FIG. 12 includes, for example, a radio reception unit 101, a preamble demodulation unit 102, a data demodulation unit 103, a data decoding unit 104, a channel control unit 105, a scheduling unit 106, a data generation unit 107, Data encoding section 108 , data modulation section 109 , preamble generation section 110 and radio transmission section 111 may be included.
  • preamble demodulation section 102 may be included in the control unit shown in FIG. 10
  • data demodulation section 103 may be included in the control unit shown in FIG. 10
  • data decoding section 104 may be included in the control unit shown in FIG. 10
  • channel control section 105 scheduling section 106
  • data generation section 107 may be included in the control unit shown in FIG. 10
  • data encoding section 108 may be included in the control unit shown in FIG. 10
  • preamble generation section 110 may be included in the control unit shown in FIG. 10
  • the wireless transmission unit 111 may be included in the transmission unit shown in FIG.
  • Radio receiving section 101 receives a signal transmitted from another AP 100 (e.g., downlink radio transmitting device) or STA 200 (e.g., downlink radio receiving device) via an antenna, and down-converts it into a received signal. - Perform wireless reception processing such as digital (A/D) conversion. Radio receiving section 101 divides, for example, a received signal after radio reception processing into a preamble section (also referred to as a preamble signal) and a data section (also referred to as data signal), and outputs the preamble signal to preamble demodulation section 102. , outputs the data signal to the data demodulator 103 .
  • a preamble section also referred to as a preamble signal
  • a data section also referred to as data signal
  • radio receiving section 101 selects a channel (eg, primary channel) for receiving a signal based on the channel information. may be set (eg changed or switched).
  • Preamble demodulation section 102 performs demodulation processing such as Fourier transform (for example, Fast Fourier Transform (FFT)) on the preamble signal input from radio reception section 101, and extracts the control signal included in the preamble signal.
  • demodulation processing such as Fourier transform (for example, Fast Fourier Transform (FFT))
  • FFT Fast Fourier Transform
  • the control signal may include reception control information used for demodulation and decoding of the data signal, such as, for example, the frequency bandwidth (BW), Modulation and Coding Scheme (MCS), or error correction code.
  • BW frequency bandwidth
  • MCS Modulation and Coding Scheme
  • preamble demodulation section 102 performs channel estimation based on, for example, a reference signal included in the preamble signal, and derives a channel estimation value.
  • Preamble demodulation section 102 outputs reception control information to data demodulation section 103 and data decoding section 104, and outputs a channel estimation value to data demodulation section 103, for example.
  • Data demodulation section 103 for example, performs Fourier transform (for example, FFT) on the data signal input from radio reception section 101, and based on the reception control information and channel estimation value input from preamble demodulation section 102, Demodulate the data signal after FFT.
  • Data demodulation section 103 outputs the demodulated data signal to data decoding section 104 .
  • the data decoding section 104 decodes the demodulated data signal input from the data demodulation section 103 based on the reception control information input from the preamble demodulation section 102, for example. For example, data decoding section 104 may perform error determination such as Cyclic Redundancy Check (CRC) on the decoded data signal. Data decoding section 104 outputs the decoded data signal to scheduling section 106, for example, when there is no error in the decoded data signal (in other words, decoding error). Further, for example, when the decoded data has no error and the decoded data signal contains channel information (for example, information such as primary channel number or operating channel information), data decoding section 104 outputs the channel information to channel control section 105. do.
  • CRC Cyclic Redundancy Check
  • the channel control unit 105 selects the primary channel set to the BSS controlled by the AP 100 and the BSS controlled by the other AP 100 based on the channel information. may control the setting of the primary channel that is set to For example, the channel control unit 105 may determine whether to change (or switch) the primary channel set in the BSS controlled by each AP 100 based on the channel information.
  • the channel control section 105 when switching the primary channel corresponding to another AP 100 , the channel control section 105 outputs information about the switched primary channel to the scheduling section 106 . Also, for example, when switching the primary channel corresponding to the AP 100, channel control section 105 outputs information about the post-switching primary channel to scheduling section 106 and radio receiving section 101 after the primary channel switching timing.
  • the switching timing of the primary channel may be, for example, the timing after a specified time (for example, Short Inter Frame Space (SIFS)) has passed since the transmission of the Multi-AP coordination local scheduling information.
  • SIFS Short Inter Frame Space
  • channel control section 105 does not need to output a signal to scheduling section 106 when not switching the primary channel.
  • the scheduling unit 106 determines scheduling information for cooperative communication signals (for example, also called cooperative signals).
  • Coordinated signal scheduling information may include information such as, for example, a coordinated communication scheme in Multi-AP coordination, user information participating in coordinated communication, resource information that can be used individually for each user, and information such as MCS or error correction code. .
  • scheduling section 106 determines channel information related to control of primary channels in Multi-AP coordination, for example, based on information input from channel control section 105 .
  • the channel information regarding the control of the primary channel in Multi-AP coordination includes information regarding the primary channel after switching of the relevant AP 100 (eg, Sharing AP) and information regarding the primary channel of other AP 100 (eg, Shared AP).
  • can be Channel information related to control of primary channels in Multi-AP coordination may be included in scheduling information of coordinated signals, for example.
  • the scheduling section 106 may determine frequency resource information based on information about the primary channel of another AP 100, for example.
  • Scheduling section 106 may also determine scheduling information for cooperative signals based on scheduling information notified by the decoded data signal input from data decoding section 104 .
  • Scheduling section 106 outputs the scheduling information of the coordinated signal to data generating section 107 , data coding section 108 , data modulating section 109 and preamble generating section 110 .
  • Data generating section 107 for example, based on the scheduling information of the coordinated signal input from scheduling section 106, data sequence to be transmitted to other AP 100 (eg, downlink radio transmitting device) or STA 200 (eg, downlink radio receiving device) and outputs the data series to data encoding section 108 .
  • AP 100 eg, downlink radio transmitting device
  • STA 200 eg, downlink radio receiving device
  • data sequences transmitted to other APs 100 may include Multi-AP coordination participation requests (eg, CTI) or Multi-AP coordination scheduling information (eg, CTAS).
  • a data sequence transmitted to other APs 100 may include a response signal (eg, CTR) to a Multi-AP coordination participation request (eg, CTI).
  • the data sequence transmitted to the STA 200 includes information on the primary channel for the STA 200 to transmit or receive a coordinated signal, resource information, a trigger frame for requesting transmission of the UL signal, and a signal transmitted from the STA 200. may include a response signal (Ack or Block Ack) to
  • the data encoding section 108 encodes the data sequence input from the data generation section 107 based on the scheduling information input from the scheduling section 106 , and outputs the encoded data to the data modulation section 109 .
  • Data modulation section 109 modulates and inverse Fourier transforms (for example, Inverse Fast Fourier Transform (for example, IFFT)) is performed, and the modulated data signal is output to the radio transmission section 111 .
  • inverse Fourier transforms for example, Inverse Fast Fourier Transform (for example, IFFT)
  • the preamble generating section 110 generates a preamble signal based on the scheduling information input from the scheduling section 106, for example. For example, preamble generation section 110 performs modulation and IFFT processing on the preamble signal and outputs the preamble signal to radio transmission section 111 .
  • Radio transmission section 111 generates a radio frame (for example, a "packet signal” or a "packet") including a data signal input from data modulation section 109 and a preamble signal input from preamble generation section 110. ). Radio transmission section 111 performs radio transmission processing such as digital-to-analog (D/A) conversion and up-conversion to a carrier frequency on the generated radio frame, and transmits the signal after radio transmission processing via an antenna. , to other AP 100 or STA 200 .
  • D/A digital-to-analog
  • FIG. 13 is a block diagram showing a configuration example of the STA 200 (for example, downlink radio receiving device). STA 200 shown in FIG. and
  • the preamble demodulator 202 may be included in the controller shown in FIG.
  • the receiver 201 may be included in the receiver shown in FIG.
  • the radio reception unit 201 receives a signal transmitted from the AP 100 (downlink radio transmission device) via an antenna, and performs radio reception processing such as down-conversion and A/D conversion on the received signal. Radio reception section 201 extracts a preamble from the signal after radio reception processing, and outputs the preamble to preamble demodulation section 202 . Radio reception section 201 also extracts a data signal from the signal after radio reception processing, and outputs the data signal to data demodulation section 203 .
  • radio receiving section 201 selects a channel (eg, primary channel) for receiving a signal based on the channel information. may be set (eg changed or switched).
  • the preamble demodulation unit 202 performs demodulation processing such as FFT on the preamble signal input from the radio reception unit 201, and from the demodulated preamble signal, for example, reception control information (for example, BW , MCS or error correction code).
  • Preamble demodulation section 202 outputs the extracted reception control information to data demodulation section 203 and data decoding section 204, for example.
  • preamble demodulation section 202 performs channel estimation, for example, based on a reference signal included in the preamble signal, and derives a channel estimation value.
  • Preamble demodulation section 202 outputs the channel estimation value to data demodulation section 203 .
  • Data demodulation section 203 performs, for example, a Fourier transform (for example, FFT) on the data signal input from radio reception section 201, and based on the reception control information and channel estimation value input from preamble demodulation section 202, The data signal after FFT is demodulated, and the demodulated data signal addressed to STA 200 is output to data decoding section 204 .
  • FFT Fourier transform
  • the data decoding section 204 decodes the data signal input from the data demodulation section 203 based on the reception control information input from the preamble demodulation section 202, and performs error judgment such as CRC. For example, when there is no error in the decoded data, data decoding section 204 outputs the decoded data to transmission signal generation section 206 . Also, data decoding section 204 outputs the channel information to channel control section 205, for example, when there is no error in the decoded data signal and the decoded data signal contains channel information.
  • the channel control unit 205 controls setting of the primary channel based on the channel information. For example, when switching the primary channel, channel control section 205 outputs information about the switched primary channel to transmission signal generating section 206 and radio receiving section 201 after a prescribed timing.
  • the specified timing may be, for example, the timing after a specified time (for example, SIFS) has passed since the transmission of the Multi-AP coordination local scheduling information.
  • the transmission signal generating section 206 generates a transmission signal based on the decoded data signal input from the data decoding section 204, for example.
  • transmission signal generation section 206 may generate a data sequence including a response signal (for example, ACK or Block ACK (BS)) based on information on error determination input from data decoding section 204 .
  • the transmission signal generation unit 206 transmits in a Trigger-based Physical Layer Convergence Procedure Protocol Data Unit (TB PPDU) based on the control information included in the Trigger frame.
  • TB PPDU Trigger-based Physical Layer Convergence Procedure Protocol Data Unit
  • transmission signal generation section 206 encodes the data sequence, and generates a data signal by performing modulation and IFFT processing on a predetermined frequency resource. Further, for example, when information is output from channel control section 205, transmission signal generation section 206 may generate a data signal allocated to a predetermined frequency resource including the switched primary channel indicated in the information. Transmission signal generation section 206 adds a preamble signal to the data signal to generate a radio frame (for example, packet signal), and outputs the radio frame to radio transmission section 207 .
  • a radio frame for example, packet signal
  • Radio transmission section 207 performs radio transmission processing such as D/A conversion and up-conversion to a carrier frequency on the radio frame input from transmission signal generation section 206, and transmits the signal after radio transmission processing via an antenna. and send it to the AP 100.
  • AP 100 for example, Sharing AP
  • receives channel information regarding control of cooperative communication for example, Multi-AP coordination
  • the channel information may include, for example, information about a primary channel for transmitting information about control of cooperative communication or information about a primary channel for performing cooperative communication.
  • the information about the primary channel may include at least information about the primary channel (for example, primary channel number) that the Sharing AP uses in Multi-AP coordination.
  • the channel information may include information (for example, primary channel number) on the primary channel that Shared AP uses in Multi-AP coordination.
  • FIG. 14 is a diagram showing an operation example according to method 1.
  • AP1 and AP2 for example, during non-coordinated communication (for example, Non-Multi-AP coordination), read the beacon signal transmitted to the STA (for example, STA200) under each AP, non-coordinated communication acquire the primary channel information of each of the other APs 100 in .
  • Beacon signals may be transmitted using non-HT duplicate PPDUs, for example.
  • AP1 acquires TXOP and operates as a sharing AP.
  • AP1 may, for example, send a Multi-AP coordination join request signal (eg, CTI) to AP2.
  • a Multi-AP coordination join request signal may be included in, for example, a non-HT duplicate PPDU.
  • AP2 may transmit a Multi-AP coordination participation response signal (eg, CTR) to AP1 in response to a Multi-AP coordination participation request signal from AP1.
  • the Multi-AP coordination join response signal may be included in the TB PPDU, for example.
  • AP1 (Sharing AP) may determine APs (for example, Shared AP) that participate in cooperative communication based on Multi-AP coordination participation response signals from each AP100, for example.
  • AP1 Sharing AP
  • AP100 for example, AP2
  • the Sharing AP and Shared AP Control information eg, primary channel information
  • AP1 (Sharing AP) may, for example, notify Shared AP (AP2, for example) of Multi-AP coordination scheduling information (eg, CTAS) including information on primary channels used in coordinated communication.
  • Multi-AP coordination scheduling information may be included in non-HT DUP, for example.
  • AP2 may, for example, notify STA 200 under AP2 of Multi-AP coordination local scheduling information (for example, CTLS) including primary channel information in cooperative communication notified from AP1 (Sharing AP).
  • Multi-AP coordination local scheduling information may be included in non-HT duplicate PPDUs, for example.
  • AP1 may, for example, notify STA200 under AP1 of Multi-AP coordination local scheduling information (for example, CTLS) including primary channel information in cooperative communication.
  • Multi-AP coordination local scheduling information may be included in non-HT duplicate PPDUs, for example.
  • Sharing AP for example, AP1
  • Shared AP for example, including AP2
  • STA 200 under each AP 100 are based on primary channel information in Multi-AP coordination.
  • a primary channel may be set and cooperative communication signals may be transmitted and received.
  • AP 100 and STA 200 may change (or switch) the primary channel when the primary channel used in Non-Multi-AP coordination and the primary channel used in Multi-AP coordination are different.
  • a primary channel is set for each AP 100 (eg, AP1 and AP2) outside each other's operating channel.
  • the sharing AP for example, AP1
  • AP1 may notify AP2 of the change of the primary channel.
  • AP1 and AP2 are assigned a primary channel in each other's operating channel, so that they can transmit and receive each other's signals in cooperative communication.
  • the same primary channel is set for each AP 100 (eg, AP1 and AP2), Multi-AP coordination
  • a frequency division multiplexing system such as COFDMA may be applied in .
  • the sharing AP for example, AP1
  • AP1 may notify AP2 of the change of the primary channel.
  • AP1 and AP2 are assigned primary channels within the frequency resources assigned to each AP 100, so that signals can be transmitted and received in cooperative communication.
  • FIG. 15 is a diagram showing an example of notifying primary channel information of cooperative communication according to Method 1 by including it in a management frame.
  • the management frame (for example, called Multi-AP coordination channel information element) shown in FIG.
  • a "Number of Shared AP" subfield indicating the number of participating Shared APs and a user information subfield (eg, a "Primary channel Information of Shared AP" subfield) individual to the Shared AP may be included.
  • the individual user information for the Shared AP includes an identifier that identifies the corresponding AP 100 (e.g., "AP ID”) and information on the primary channel of the Shared AP (e.g., channel number).
  • AP ID identifies the corresponding AP 100
  • channel number information on the primary channel of the Shared AP
  • a "Shared AP primary channel” subfield may be included.
  • the sharing AP may include the Multi-AP coordination channel information element shown in FIG. 15 in a control signal such as a beacon signal and notify it to the shared AP.
  • a control signal such as a beacon signal
  • FIG. 16 is a diagram showing an example of notifying primary channel information of cooperative communication according to method 1 by including it in a trigger frame.
  • the trigger frame (for example, called Multi-AP coordination trigger frame) shown in FIG. , channel number).
  • the Multi-AP coordination trigger frame shown in FIG. 16 is, for example, an "AP ID” that notifies individual user information (for example, User Info field) to multiple APs 100 or STAs 200 of an AP ID that identifies each Shared AP. subfields, and a "Shared AP primary channel” subfield that notifies information about the primary channel of the Shared AP (eg, channel number).
  • the primary channel of the Shared AP may be notified using, for example, the "Trigger Dependent User Info" subfield of the user information.
  • Shared AP uses the Trigger Dependent User Info subfield when the Trigger frame type (e.g., "Trigger type” subfield in FIG. 16) is a type corresponding to cooperative communication (e.g., Multi-AP coordination or Multi-AP operation) may be used as a Shared AP primary channel subfield (for example, also referred to as a Primary channel subfield) to obtain the Primary channel information of the Shared AP.
  • the Trigger frame type e.g., "Trigger type" subfield in FIG. 16
  • cooperative communication e.g., Multi-AP coordination or Multi-AP operation
  • Shared AP for example, information (for example, pros and cons information) about approval (for example, accept) or disapproval (for example, do not accept) for the setting of the primary channel notified by the Multi-AP coordination trigger frame transmitted by the Sharing AP may be included in the response signal to the Multi-AP coordination trigger frame and notified.
  • information for example, pros and cons information
  • approval for example, accept
  • disapproval for example, do not accept
  • the sharing AP can appropriately set the primary channel of each AP in cooperative communication based on the primary channel information of other shared APs in non-Multi-AP coordination. As a result, it is possible to avoid setting a primary channel outside the operating channels of APs participating in cooperative communication, so that signals related to cooperative communication can be properly transmitted and received.
  • the notification method (or content) of primary channel information for cooperative communication to each AP 100 may be set according to the cooperative communication method (or cooperative communication scheme).
  • the sharing AP notifies individual primary channel information to each AP 100 (for example, sharing AP and shared AP). good.
  • the sharing APs may each determine a primary channel within the allocated frequency resource of each shared AP, for example. Also, the sharing AP may notify the shared AP of the primary channel information using the frame shown in FIG. 15 or 16, for example.
  • Sharing APs each AP may be notified of common primary channel information.
  • the Sharing AP and Shared AP may use a common primary channel.
  • 17 and 18 are diagrams showing examples (or format examples) of reporting primary channel information for cooperative communication when a cooperative communication method that uses common frequency resources for a plurality of APs 100 is used.
  • Sharing AP and Shared AP are common in cooperative communication.
  • Information about the primary channel to use eg, channel number
  • Information about (eg, channel number) may be notified by the Sharing AP primary channel subfield of the common information.
  • the shared AP primary channel information may not be included in Trigger Dependent User Info.
  • the type of information element or trigger frame used for notification of primary channel information of cooperative communication may be changed according to the cooperative communication method (or also referred to as the cooperative communication type).
  • the cooperative communication type or also referred to as the cooperative communication type.
  • different trigger frame types are used depending on whether the cooperative communication method uses different frequency resources for multiple APs 100 or the cooperative communication method uses common frequency resources for multiple APs 100. may be defined.
  • primary channel information for cooperative communication may be notified by the Multi-AP coordination trigger frame shown in FIG.
  • primary channel information of cooperative communication is notified by the Multi-AP coordination trigger frame shown in FIG. you can
  • the Shared AP may replace each negotiation signal or trigger frame signal based on information on the cooperative communication method (for example, cooperative communication type information).
  • the sharing AP can notify appropriate channel information for each cooperative communication method by changing the notification method of primary channel information for cooperative communication based on the cooperative communication method. In other words, depending on the cooperative communication method, transmission of unnecessary information as primary channel information can be suppressed, and signaling overhead can be reduced.
  • the channel information may include, in cooperative communication, information (for example, referred to as operation channel information) regarding a common usable operating channel for a plurality of APs 100 participating in cooperative communication.
  • information for example, referred to as operation channel information
  • AP1 and AP2 for example, during non-coordinated communication (for example, Non-Multi-AP coordination), read the beacon signal transmitted to the STA (for example, STA200) under each AP, non-coordinated communication acquires the operating channel information of each of the other APs 100 in .
  • non-coordinated communication for example, Non-Multi-AP coordination
  • AP1 which acquires TXOP and operates as a sharing AP, may transmit a Multi-AP coordination participation request signal (eg, CTI) to AP2.
  • AP2 may, for example, transmit a Multi-AP coordination participation response signal (eg, CTR) to AP1 in response to the Multi-AP coordination participation request signal from AP1.
  • AP1 (Sharing AP) may determine APs (for example, Shared AP) that participate in cooperative communication based on Multi-AP coordination participation response signals from each AP100, for example.
  • AP1 Sharing AP
  • AP100 for example, AP2
  • Sharing AP for example, to AP100 (for example, AP2) participating in cooperative communication, based on the operating channel information during non-cooperative communication acquired from the beacon signal, the Sharing AP and Shared AP
  • An operating channel (hereinafter referred to as "Multi-AP operating channel") to be used in cooperative communication may be determined.
  • AP1 (Sharing AP) may determine a Primary channel to be used by Sharing AP in cooperative communication, for example, from channels in Multi-AP operating channel.
  • AP1 (Sharing AP), for example, sends information about the primary channel of Sharing AP in cooperative communication and Multi-AP coordination scheduling information (eg, CTAS) including Multi-AP operating channel to Shared AP (eg, AP2).
  • CTAS Multi-AP coordination scheduling information
  • AP2 Multi-AP operating channel to Shared AP
  • AP2 Shared AP
  • AP2 performs cooperative communication within the notified Multi-AP operating channel and within the frequency resources assigned to AP2. You may decide which primary channel to use in . Then, AP2 may notify STA 200 under AP2 of Multi-AP coordination local scheduling information (for example, CTLS) including primary channel information of AP2 in cooperative communication.
  • Multi-AP coordination local scheduling information for example, CTLS
  • Sharing AP for example, AP1
  • Shared AP for example, including AP2
  • STA 200 under each AP 100 are based on primary channel information in Multi-AP coordination.
  • a primary channel may be set and cooperative communication signals may be transmitted and received.
  • AP 100 and STA 200 may change (or switch) the primary channel when the primary channel used in Non-Multi-AP coordination and the primary channel used in Multi-AP coordination are different.
  • FIG. 19 is a diagram showing a setting example of the Multi-AP operating channel.
  • FIG. 19 shows an example in which all channels common to each operating channel of AP1, AP2, and AP3 are set to the Multi-AP operating channel, but the present invention is not limited to this, and each of AP1, AP2, and AP3 At least part of the channels common to the operating channels of the AP may be set to the Multi-AP operating channel.
  • each of AP1, AP2, and AP3 may set any of the Multi-AP operating channels as the primary channel. This allows AP1, AP2 and AP3 to set the primary channel in the operating channels of both Shared AP and Shared AP in cooperative communication.
  • a primary channel is set for each AP 100 (eg, AP1 and AP2) outside each other's operating channel.
  • the sharing AP (for example, AP1) may, for example, set the operating channel common to AP1 and AP2 participating in cooperative communication to Multi-AP operating channel, and notify AP2 of the Multi-AP operating channel.
  • Each of AP1 and AP2 sets a primary channel within the Multi-AP operating channel and within the allocated resource (for example, channel) of each of AP1 and AP2, so that they can transmit and receive each other's signals in cooperative communication.
  • FIG. 20 is a diagram showing an example of notifying primary channel information of cooperative communication according to Method 2 by including it in a management frame.
  • the management frame (for example, called Multi-AP coordination operating channel information element) shown in FIG.
  • a 'Bandwidth (BW)' subfield for notifying the bandwidth of the AP operating channel and a 'Channel Center Frequency' subfield for notifying the center frequency of the Multi-AP operating channel may be included.
  • the sharing AP may include the Multi-AP coordination channel information element shown in FIG. 20 in a control signal such as a beacon signal and notify it to the shared AP.
  • a control signal such as a beacon signal
  • FIG. 21 is a diagram showing an example of notifying primary channel information of cooperative communication according to Method 2 by including it in a trigger frame.
  • the trigger frame shown in FIG. 21 (for example, called Multi-AP coordination operating channel trigger frame) includes, for example, Sharing AP primary channel subfield, Bandwidth(BW) subfield, and Channel Center Frequency May contain subfields.
  • the Shared AP may identify the Multi-AP operating channel by deriving the lowest frequency of the Multi-AP operating channel by "Channel Center Frequency" - "BW"/2.
  • the Shared AP may derive the highest frequency of the Multi-AP operating channel by "Channel Center Frequency" + "BW”/2 to identify the Multi-AP operating channel.
  • each AP 100 determines the setting of the primary channel of cooperative communication used by the AP 100 (for example, whether or not to change or switch), and sets an appropriate primary channel. can.
  • the sharing AP determines all primary channels of the shared APs, whereas in method 2, each shared AP controls (for example, determines or sets) the primary channel. It is possible to reduce the load of arithmetic processing related to cooperative communication.
  • Method 3 for example, the sharing AP instructs the APs 100 in the cooperation group to transmit primary channel information.
  • a coordination group is, for example, a group that performs Multi-AP coordination (for example, it is also called a "coordination group”).
  • Collaborative groups include, for example, "AP candidate set” and "Virtual Basic Service Set (Virtual BSS).
  • FIG. 22 is a diagram showing an example of AP candidate set and Virtual BSS.
  • the AP canidate set may be a group composed of multiple APs (for example, AP1, AP2, AP3 and AP4).
  • AP1, AP2, AP3 and AP4 For example, a Sharing AP and a Shared AP that perform Multi-AP coordination may be selected from APs included in the AP candidate set.
  • the Virtual BSS may be a group composed of multiple Basic Service Sets (BSS) (for example, BSS1 and BSS2) for performing Multi-AP coordination.
  • BSS Basic Service Sets
  • APs participating in a Virtual BSS may, for example, have a common Service Set identifier (SSID).
  • SSID Service Set identifier
  • APs included in a Virtual BSS may share, for example, information about STAs belonging to each BSS (eg, STA's Association Identifier (AID)).
  • AID Association Identifier
  • the sharing AP may transmit and receive primary channel information to and from another AP 100 (eg, shared AP) using a channel outside the operation channel of the sharing AP.
  • the Sharing AP may use frames that can be used for transmission and reception between different BSSs (eg, "public action frames") for transmission and reception of primary channel information.
  • FIG. 23 is a diagram showing an example of a public action frame (or also called a "primary channel information frame") for notifying primary channel information according to Method 3.
  • a public action frame or also called a "primary channel information frame” for notifying primary channel information according to Method 3.
  • the frame for example, primary channel information frame
  • a 'Bandwidth (BW)' subfield for notifying the bandwidth of the operating channel of the source AP and a 'Channel Center Frequency' subfield for notifying the center frequency of the operating channel of the source AP may be included.
  • the primary channel information frame may operate as a "channel information request".
  • the channel information request may be used, for example, by the sharing AP to notify other APs 100 (for example, shared APs) of the sharing AP's primary channel information and request transmission of the destination AP's primary channel information.
  • the primary channel information frame may operate as "channel information response".
  • the channel information response may be used, for example, as a response signal to the channel information request to notify the sharing AP of the primary channel information of the source AP (eg, Shared AP).
  • the primary channel information frame may operate as "Multi-AP channel information".
  • Multi-AP channel information may be used, for example, to notify primary channel information to be used for transmission/reception of negotiation signals (for example, CTI, CTR, or CTAS in FIG. 14) regarding cooperative communication.
  • FIG. 24 is a diagram showing an operation example according to Method 3.
  • AP1 for example, Sharing AP
  • AP2 for example, Shared AP
  • AP1 and AP2 belong to a common cooperative group, and AP2's primary channel is set outside AP1's operating channel.
  • the channel information request may include primary channel information of AP1 in non-Multi-AP coordination.
  • AP1 transmits channel information (for example, channel information request or Multi-AP channel information) regarding cooperative communication control to a channel different from the channel allocated to AP1 (for example, a channel corresponding to public action frame). may be used to transmit to another AP (eg, AP2). Also, AP2 may receive channel information (for example, channel information response) assigned to AP2 in non-cooperative communication using a channel different from the channel assigned to AP2, for example.
  • channel information for example, channel information response
  • AP1 and AP2 set (for example, change or switch) the primary channel of the coordinated communication notified by the Multi-AP channel information, and the negotiation signal regarding Multi-AP coordination (eg CTI, CTR or CTAS).
  • the negotiation signal regarding Multi-AP coordination eg CTI, CTR or CTAS.
  • a primary channel is set for each AP 100 (eg, AP1 and AP2) outside each other's operating channel.
  • AP1 for example, Sharing AP
  • receives a public action frame for example, channel information request or Multi-AP channel information
  • AP2 eg, Shared AP
  • transmits a public action frame eg, channel information response
  • AP1 and AP2 can make settings related to cooperative communication based on the public action frame from the other AP 100.
  • the efficiency of communication control can be improved.
  • the AP 100 shares the primary channel information of each AP 100 even when the primary channel of the other AP 100 is outside the operation channel, and cooperative communication can determine the primary channel for sending negotiation signals for
  • AP 100 performs cooperative communication (for example, Multi- AP coordination) control channel information (for example, primary channel) is determined, and information about the determined primary channel is transmitted to other APs 100 . Then, the AP 100 (for example, Sharing AP and Shared AP) and STA 200 control cooperative communication (for example, set, change, or switch the primary channel of Multi-AP coordination) based on the channel information related to cooperative communication control. .
  • cooperative communication for example, Multi- AP coordination
  • control channel information for example, primary channel
  • STA 200 control cooperative communication (for example, set, change, or switch the primary channel of Multi-AP coordination) based on the channel information related to cooperative communication control.
  • AP 100 and STA 200 can perform Multi-AP coordination 's primary channel can be set appropriately. Therefore, according to the present embodiment, it is possible to improve the communication efficiency of cooperative communication in Multi-AP coordination.
  • an AP that acquires TXOP is a "sharing AP” and an AP that is cooperatively controlled by the sharing AP is a "shared AP.”
  • the name can be different.
  • a Sharing AP may be called a 'Coordination AP' or a 'Master AP'.
  • Shared AP may be called "Coordinated AP” or "Slave AP”.
  • Non-Multi-AP coordination Notification is not limited to the method using beacon signals, and other notification methods may be used.
  • non-multi-AP coordination primary channel information is included in at least one of a Multi-AP coordination participation request signal (eg, CTI in FIG. 2) and a Multi-AP coordination participation response signal (CTR in FIG. 2).
  • CTI Multi-AP coordination participation request signal
  • CTR Multi-AP coordination participation response signal
  • the channel notified by the channel information is not limited to the primary channel individually determined by the BBS.
  • the primary channel for Non-Multi-AP coordination that is individually determined by the BSS may be set (eg, changed) during the Multi-AP coordination period according to channel information.
  • a primary channel for Multi-AP coordination different from the primary channel for Non-Multi-AP coordination individually determined for each BSS may be newly set by channel information.
  • the channel notified by the channel information is not limited to the primary channel.
  • a channel e.g., sub-channel, off-channel, temporary primary channel
  • non-limiting of the present disclosure for those channels exemplary embodiments may be applied.
  • a non-limiting embodiment of the present disclosure for example, when notifying channel information used when AP 100 and STA 200 or STA 200 and STA 200 communicate by peer-to-peer (also called P2P) may be applied to
  • a common (same) primary channel may be used in non-Multi-AP coordination and Multi-AP coordination.
  • the primary channel for Multi-AP coordination may be common to the primary channel for Non-Multi-AP coordination. In other words, it is not necessary to switch (or change) primary channels between Non-Multi-AP coordination and Multi-AP coordination.
  • each AP 100 does not have to notify the change of the primary channel. Also, if the primary channel is not changed, each AP 100 may notify other APs 100 of the same primary channel information as non-Multi-AP coordination.
  • Method 1 or Method 2 and Method 3 may be applied in combination.
  • a primary channel for transmitting and receiving negotiation signals for example, CTI, CTR, CTAS, or CTLS
  • the sharing AP may determine the primary channel that each AP 100 uses in cooperative communication based on the cooperative communication method decided by the negotiation signal regarding cooperative communication.
  • the primary channel used by each AP 100 in cooperative communication may be determined based on Method 1 or Method 2 and notified.
  • the transmission format of the negotiation signal for cooperative communication is not limited to non-HT duplicate PPDU.
  • all terminals participating in cooperative communication e.g., AP100 and STA200
  • other formats newer than non-HTT duplicate PPDU e.g., HT PPDU or HE PPDU, EHT PPDU
  • other transmission formats may be used to transmit the negotiation signal for cooperative communication.
  • a management frame, a trigger frame, and a public action frame are newly defined as frames used for notification of primary channel information. can be any other way.
  • FIG. 25 is a diagram showing an example of notifying primary channel information regarding cooperative communication using a Channel switch announcement frame.
  • a Channel switch announcement frame is a signal used for channel switch notification in non-Multi-AP coordination defined in 802.11n.
  • the primary channel information about cooperative communication When primary channel information about cooperative communication is notified using a channel switch announcement frame, for example, in the "New channel number" subfield included in the "Channel switch announcement element" field shown in FIG. 25, the primary channel information about cooperative communication (For example, the primary channel number of the change destination) may be notified.
  • the center frequency of the operating channel for cooperative communication may be notified.
  • the primary channel setting period (for example, change period or switching period) in Multi-AP operation may be a temporary period.
  • the setting period of the primary channel for cooperative communication may be set to a period corresponding to the TXOP duration notified from AP 100 (eg, Sharing AP).
  • the end of the TXOP period is notified before the end of the period corresponding to the TXOP duration, the end of the setting period of the primary channel related to cooperative communication may also be notified.
  • a contention-free (CF)-end frame may be used to notify the end of the TXOP period.
  • the values such as the number of APs, the number of STAs, and the number of BSSs used in the above embodiment are examples and are not limited, and other values may be set.
  • a primary 20MHz channel is given as an example of a primary channel, but the primary channel is not limited to this, and may be another type of channel (for example, primary 40MHz channel or primary 80MHz channel). .
  • the parameter notified by the channel information is not limited to the channel number.
  • the channel information may be another parameter giving a channel number, or an offset value for a certain channel number (eg, the channel number of the Sharing AP).
  • the channel information may be information (eg, bitmap information) indicating whether each of a plurality of channels included in a certain frequency band is a channel corresponding to the operating channel, and the bandwidth of the operating channel, It may be combined with the starting or ending channel number (or the lowest or highest frequency channel number).
  • an embodiment of the present disclosure may be applied to UL communication, DL communication, or sidelink.
  • frame configurations for example, formats
  • present invention is not limited to these, and other configurations may be used.
  • some fields may not be set, and other fields may be set.
  • the capability information may include an information element (IE) individually indicating whether or not the STA 200 supports at least one of the functions, operations, or processes shown in each of the above-described embodiments.
  • the capability information may include an information element indicating whether or not the STA 200 supports a combination of two or more of the functions, operations or processes shown in each of the above embodiments.
  • Information elements are also simply called elements.
  • the AP 100 may determine (or determine or assume) the functions, operations, or processes supported (or not supported) by the source STA 200 of the capability information.
  • the AP 100 may perform operations, processes, or controls according to determination results based on capability information.
  • AP 100 may control Multi-AP coordination based on capability information received from STA 200 .
  • the STA 200 does not support some of the functions, operations, or processes shown in the above-described embodiments can be interpreted as limiting such functions, operations, or processes in the STA 200. good too.
  • the AP 100 may be notified of information or requests regarding such restrictions.
  • Information about the capabilities or limitations of STA 200 may be defined in a standard, or may be implicitly notified to AP 100 in association with known information in AP 100 or information transmitted to AP 100 .
  • Each functional block used in the description of the above embodiments is partially or wholly realized as an LSI, which is an integrated circuit, and each process described in the above embodiments is partially or wholly implemented as It may be controlled by one LSI or a combination of LSIs.
  • An LSI may be composed of individual chips, or may be composed of one chip so as to include some or all of the functional blocks.
  • the LSI may have data inputs and outputs.
  • LSIs are also called ICs, system LSIs, super LSIs, and ultra LSIs depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized with a dedicated circuit, a general-purpose processor, or a dedicated processor. Further, an FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • the present disclosure may be implemented as digital or analog processing.
  • a communication device may include a radio transceiver and processing/control circuitry.
  • a wireless transceiver may include a receiver section and a transmitter section, or functions thereof.
  • a wireless transceiver (transmitter, receiver) may include an RF (Radio Frequency) module and one or more antennas.
  • RF modules may include amplifiers, RF modulators/demodulators, or the like.
  • Non-limiting examples of communication devices include telephones (mobile phones, smart phones, etc.), tablets, personal computers (PCs) (laptops, desktops, notebooks, etc.), cameras (digital still/video cameras, etc.).
  • digital players digital audio/video players, etc.
  • wearable devices wearable cameras, smartwatches, tracking devices, etc.
  • game consoles digital book readers
  • telehealth and telemedicine (remote health care/medicine prescription) devices vehicles or mobile vehicles with communication capabilities (automobiles, planes, ships, etc.), and combinations of the various devices described above.
  • Communication equipment is not limited to portable or movable equipment, but any type of equipment, device or system that is non-portable or fixed, e.g. smart home devices (household appliances, lighting equipment, smart meters or measuring instruments, control panels, etc.), vending machines, and any other "Things" that can exist on the IoT (Internet of Things) network.
  • smart home devices household appliances, lighting equipment, smart meters or measuring instruments, control panels, etc.
  • vending machines and any other "Things” that can exist on the IoT (Internet of Things) network.
  • Communication includes data communication by cellular system, wireless LAN system, communication satellite system, etc., as well as data communication by a combination of these.
  • Communication apparatus also includes devices such as controllers and sensors that are connected or coupled to communication devices that perform the communication functions described in this disclosure. Examples include controllers and sensors that generate control and data signals used by communication devices to perform the communication functions of the communication device.
  • Communication equipment also includes infrastructure equipment, such as base stations, access points, and any other equipment, device, or system that communicates with or controls the various equipment, not limited to those listed above. .
  • An access point includes a control circuit that determines channel information related to control of cooperative communication based on channels allocated to each of a plurality of access points in non-cooperative communication, and a transmission circuit for transmitting to the access point.
  • the channel information includes information about a primary channel used in the cooperative communication by the first access point controlling the cooperative communication.
  • the channel information includes information about a primary channel used in the cooperative communication by the second access point controlled for the cooperative communication.
  • control circuit determines the content of the channel information according to the cooperative communication scheme.
  • the channel information is information on a primary channel specific to the second access point. including.
  • the channel information is the first access point that controls the cooperative communication. It includes information about a primary channel that is common with the second access point.
  • the channel information includes information on usable channels common to the plurality of access points in the coordinated communication.
  • the transmission circuit transmits the channel information using a second channel different from the first channel assigned to the access point.
  • the transmission circuit transmits the channel information using a public action frame of the second channel.
  • An access point includes a receiving circuit that receives, from other access points, channel information related to control of cooperative communication based on channels assigned to each of a plurality of access points in non-cooperative communication; and a control circuit that controls the cooperative communication based on channel information.
  • an access point determines channel information regarding control of cooperative communication based on channels assigned to each of a plurality of access points in non-cooperative communication, and transmits the channel information to others. to the access point of
  • an access point receives, from other access points, channel information regarding control of cooperative communication based on channels assigned to each of a plurality of access points in non-cooperative communication, The cooperative communication is controlled based on the channel information.
  • An embodiment of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

アクセスポイントは、非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づいて、協調通信の制御に関するチャネル情報を決定する制御回路と、チャネル情報を他のアクセスポイントへ送信する送信回路と、を具備する。

Description

アクセスポイント及び通信方法
 本開示は、アクセスポイント及び通信方法に関する。
 The Institute of Electrical and Electronics Engineers(IEEE)802.11の規格である802.11ax(以下、「11ax」と呼ぶ)の後継規格として、タスクグループ(TG:Task Group)において802.11be(以下、「11be」と呼ぶ)の技術仕様策定が進められている。
IEEE 802.11-19/1582r2, Coordinated AP time/Frequency Sharing in a Transmit Opportunity in 11be IEEE Std 802.11TM-2016 IEEE Std 802.11axTM-2021 IEEE 802.11-20/560r0, Multi-AP Configuration and Resource Allocation
 しかしながら、無線通信における協調通信の制御方法については検討の余地がある。
 本開示の非限定的な実施例は、無線通信における協調通信の通信効率を向上するアクセスポイント、及び、通信方法の提供に資する。
 本開示の一実施例に係るアクセスポイントは、非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づいて、協調通信の制御に関するチャネル情報を決定する制御回路と、前記チャネル情報を他のアクセスポイントへ送信する送信回路と、を具備する。
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一実施例によれば、無線通信における協調通信の通信効率を向上できる。
 本開示の一実施例における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
Multi-Access Point(MAP) coordinationの制御の一例を示す図 Access Point(AP)間のネゴシエーションの一例を示す図 High Throughput (HT) Operation elementの一例を示す図 High Efficient (HE) Operation elementの一例を示す図 Multi-AP coordinationにおけるprimary channelの割り当て例を示す図 Non-Multi-AP coordinationにおけるprimary channelの割り当て例を示す図 Non-Multi-AP coordinationにおけるprimary channelの割り当て例を示す図 Multi-AP coordinationにおけるprimary channelの割り当て例を示す図 AP及びStation(STA)の動作例を示すシーケンス図 APの一部の構成例を示すブロック図 STAの一部の構成例を示すブロック図 APの構成例を示すブロック図 STAの構成例を示すブロック図 AP及びSTAの動作例を示す図 Multi-AP coordination channel information elementの一例を示す図 Multi-AP coordination Trigger frameの一例を示す図 Multi-AP coordination channel information elementの一例を示す図 Multi-AP coordination Trigger frameの一例を示す図 Multi-AP coordination operating channelの一例を示す図 Multi-AP coordination operating channel information elementの一例を示す図 Multi-AP coordination operationg channel Trigger frameの一例を示す図 協調グループの一例を示す図 primary channel information frameの一例を示す図 APの動作例を示す図 channel switch announcement frameの一例を示す図
 以下、本開示の各実施の形態について図面を参照して詳細に説明する。
 [Multi-AP coordinationについて]
 11beでは、複数のアクセスポイント(「基地局」とも呼ばれる、以下「AP(Access Point)」と呼ぶ)が互いに協調して送受信を行うMulti-AP (MAP) coordination(例えば、「協調通信」とも呼ぶ)が検討されている。
 Multi-AP coordinationにおいて、例えば、チャネル使用期間(TXOP:Transmission Opportunity)を取得したAPを「Sharing AP」と呼ぶ。APは、例えば、Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)によってTXOPを取得してよい。Sharing APは、Multi-AP coordinationにおいて、例えば、協調通信を制御するAPでよい。
 また、Multi-AP coordinationにおいて、例えば、Sharing APによって協調通信を制御されるAPを「Shared AP」と呼ぶ。
 また、Multi-AP coordinationにおいて、例えば、Sharing APに属する(例えば、所属する、接続する、又はアソシエートする)端末(station(STA)又はnon-AP STAとも呼ぶ)は「Sharing STA」と呼ばれ、Shared APに属するSTAは「Shared STA」と呼ばれてよい。
 図1は、Multi-AP coordinationの制御方法の一例を示す図である。図1では、例えば、Multi-AP coordinationの処理を「Tx indication and request」phase、「Schedule allocation」phase、及び、「Data Tx」phaseの3つの段階に分けて行うことを想定する。
 図2は、Multi-AP coordinationにおけるAP(例えば、Sharing AP及びShared AP)間のネゴシエーション(例えば、Tx indication and request phase及びSchedule allocation phase)の例を示す図である。図2の例では、AP1はSharing APでよく、AP2及びAP3はShared APでよい。
 図2に示すように、1段階目のTx indication and request phaseにおいて、Sharing AP(AP1)は、Coordinated AP TXOP Indication(CTI)frameをShared AP(AP2及びAP3)に送信し、Multi-AP coordinationへの参加の可否の応答を要求する。Shared AP(AP2及びAP3)は、AP1からのCTIに対して、Coordinated AP TXOP Request(CTR)frameをSharing AP(AP1)に送信し、Multi-AP coordinationへの参加の可否を応答する。
 また、図2に示すように、2段階目のSchedule allocation phaseにおいて、Sharing AP(AP1)は、Coordinated AP TXOP AP Schedule(CTAS)frameをShared AP(AP2及びAP3)に送信し、各Shared APが使用可能なリソース情報(例えば、周波数リソース及び時間リソース)、及び、送信開始時間といった割当情報を通知する。次に、Sharing AP(AP1)及びShared AP(AP2及びAP3)は、例えば、Coordinated AP TXOP Local Schedule(CTLS)frameを送信し、各AP配下の端末(例えば、STA)に使用可能なリソース情報及び送信開始時間といった割当情報を通知する。
 そして、図1に示すように、3段目のData Tx(例えば、Data Tx phase)において、AP及びSTAは、割当情報に基づいて協調通信(又は、協調送信とも呼ぶ)を行う。例えば、Data TX phaseにおける協調通信には、Joint Transmission(JT)、Coordinated Beamforming(CBF)、Coordinated Spatial Reuse(CSR)、Coordinated Orthogonal Frequency Division Multiple Access(COFDMA)、又は、Coordinated Time Division Multiple Access(CTDMA)が含まれてよい。また、協調通信は、下りリンクの協調通信(Downlink協調通信)及び上りリンクの協調通信(Uplink協調通信)の何れでもよい。
 なお、図1及び図2に示すMulti-AP coordinationの制御方法は一例であり、図1及び図2に示す方法に限定されない。
 [プライマリチャネル(primary channel)の割り当てについて]
 11beでは、例えば、Multi-AP coodrinationにおけるプライマリチャネル(例えば、primary 20MHz channel)の割り当て方法について検討されている。
 一例として、primary 20MHz channelは、例えば、APとAP配下の複数のSTAとで構成されるBasic Service Set(BSS)に個別に規定されるチャネルであり、BSSに所属するAP及びSTAの信号の送受信に使用されてよい。primary 20MHz channelは、例えば、APの使用可能なチャネル(例えば、「操作チャネル」又は「operating channel」とも呼ぶ)の中から決定されてよい。
 例えば、primary channel(例えば、primary 20MHz channel)は、図3及び図4に示すOperation elementに含めてAPからSTAへ通知されてよい(例えば、非特許文献2又は3を参照)。
 図3は、High Throughput(HT) Operation elementの例を示す図である。図3に示すHT Operation elementは、例えば、「primary channel」fieldを使用して、2.4GHz帯及び5GHz帯のprimary channelに関する情報(例えば、チャネル番号(channel number又はchannel indexとも呼ぶ))を通知してよい。また、図4は、High Efficiency(HE) Operation elementの例を示す図である。図4に示すHE Operation elementは、例えば、「6GHz Operation Information」fieldに含まれる「Primary channel」subfieldを使用して、6GHz帯のprimary channelに関する情報(例えば、チャネル番号)を通知してよい。
 各Operation elementは、例えば、ビーコン信号、プローブ応答信号、又は、アソシエーション信号(例えば、アソシエーション応答信号、又は、再アソシエーション応答信号)といった信号(例えば、報知情報)に含めてAPからSTAへ通知されてよい。
 11beでは、例えば、Multi-AP coordinationにおいて、Sharing APとShared APとは同じprimary channelを使用しなくてもよい(例えば、非特許文献4を参照)。また、Sharing APのprimary channel(例えば、primary 20MHz channel)は、例えば、Shared APのoperating channel内に割り当てられてよい。同様に、Shared APのprimary channel(例えば、primary 20MHz channel)は、Sharing APのoperating channel内に割り当てられてよい。
 図5は、Sharing AP及びShared APのそれぞれのoperating channel及びprimary channel(例えば、primary 20MHz channel)の設定例を示す図である。図5の例1~例3では、Sharing AP及びShared APのそれぞれのprimary channelは、互いのOperating channel内に割り当てられるため、Sharing APとShared APとは、互いの信号を送受信できる。その一方で、図5の例4では、Shared APのprimary channelは、Sharing APのOperating channel外に割り当てられるため、Shared APは、Sharing APの送信信号を受信しない。
 以上、primary channelの割り当てについて説明した。
 Multi-AP coordinationにおけるprimary channelに関する制御方法については十分に議論されていない。例えば、非Multi-AP coordination(非協調通信、又は、Non-Multi-AP coordinationとも呼ぶ)と、Multi-AP coordinationとで異なるprimary channelが設定される場合があり得る。よって、例えば、Non-Multi-AP coordinationとMulti-AP coordinationとでprimary channelは変更される(又は、切り替えられる)場合があり得る。
 図6は、Non-Multi-AP coordinationにおけるprimary channel(例えば、primary 20MHz channel)の割り当て例を示す図である。図6に示すように、Non-Multi-AP coordinationにおいて、各AP(例えば、AP1及びAP2)は、互いのprimary 20MHz channel及びoperating channelを考慮しないため、互いのoperating channel外にprimary 20MHz channelを設定する場合があり得る。この場合、Multi-AP coordinationのために、各APのoperating channel内へprimary 20MHz channelが変更され得る。
 また、例えば、Multi-AP coordinationにおける協調通信の方法(又は,方式)に応じてAP間のprimary channelを一致させるか否かについて設定を変更する場合があり得る。例えば、図7に示すように、Non-Multi-AP coordinationにおいて、各AP(例えば、AP1及びAP2)のprimary channel(例えば、primary 20MHz channel)が一致する場合に、Multi-AP coordinationにおいてCOFDMAが適用される場合、図8に示すように、AP1及びAP2のそれぞれに割り当てられる周波数リソース(例えば、resource unit(RU))内へprimary 20MHz channelが変更され得る。
 本開示の非限定的な一実施例では、Multi-AP coordinationにおいて、チャネル(例えば、primary channel)の設定(例えば、割り当て、変更、又は、切り替え)を適切に行い、Multi-AP coordinationにおける協調通信の通信効率を向上する方法について説明する。
 本開示の非限定的な一実施例では、端末(例えば、AP又はSTA)は、例えば、他の端末(例えば、AP又はSTA)のチャネル情報(例えば、primary channelに関する情報)に基づいて、協調通信(例えば、Multi-AP coordination)に用いるチャネル(例えば、primary channel)に関する制御を決定してよい。本開示の非限定的な一実施例によれば、AP及びSTAは、Multi-AP coordinationの制御に関するチャネル情報に基づいて、Multi-AP coordinationにおいて使用されるチャネル(例えば、primary channel)を設定(例えば、変更又は切り替え)することにより、Multi-AP coordinationに関する信号を適切に送受信できる。
 なお、「端末」は、AP及び非AP端末(例えば、STA)の何れを指してもよい。
 [無線通信システムの構成]
 本開示の一実施例に係る無線通信システムは、少なくとも、Multi-AP coordinationを行う1つの協調グループを含む。協調グループは、例えば、複数のAP100、及び、少なくとも1つのSTA200を含む。例えば、Downlink(DL)通信では、AP100は「下り無線送信装置」に対応し、STA200は「下り無線受信装置」に対応する。また、Uplink(UL)通信では、AP100は「上り無線受信装置」に対応し、STA200は「上り無線送信装置」に対応する。例えば、AP100は、他のAP100又はSTA200に対してDL信号を送信する。また、例えば、STA200は、AP100から受信した信号に基づいて、UL信号を送信する。
 以下では、一例として、複数のAP100及び複数のSTA200がMulti-AP coordinationを行う。例えば、2つのAP100(AP1及びAP2)がAP間においてMulti-AP coordinationに関する制御信号を送受信し、Multi-AP coordinationにおいて使用されるprimary channel(例えば、primary 20MHz channel)を他のAP100へ通知する方法について説明する。
 図9は、本開示の一実施例に係る無線通信システムのAP100(例えば、AP1及びAP2を含む)及びSTA200(例えば、STA1及びSTA2を含む)によるMulti-AP coordinationに関する動作例を示すシーケンス図である。
 図9において、AP1及びSTA1はBSS1に属し、AP2及びSTA2はBSS2に属してよい。
 AP1は、例えば、BSS1(Non-Multi-AP coordination)のprimary channelに関する情報(以下、「primary channel情報」と呼ぶ)を含むビーコン信号を、AP1配下のSTA1宛てに送信する(S101)。STA1は、例えば、AP1から送信されるビーコン信号の受信処理を行う(S102-1)。例えば、STA1は、ビーコン信号に含まれるprimary channel情報に基づいてprimary channelを設定してよい。また、AP2は、例えば、AP1からSTA1へ送信されるビーコン信号を受信し、受信したビーコン信号に含まれるprimary channel情報に基づいて、BSS1において使用されるprimary channel情報をバッファに保存する(S102-2)。
 AP2は、例えば、AP1と同様に、BSS2(Non-Multi-AP coordination)のprimary channel情報を含むビーコン信号を、AP2配下のSTA2宛てに送信する(S103)。STA2は、例えば、AP2から送信されるビーコン信号の受信処理を行う(S104-2)。例えば、STA2は、ビーコン信号に含まれるprimary channel情報に基づいてprimary channelを設定してよい。また、AP1は、例えば、AP2からSTA2へ送信されるビーコン信号を受信し、受信したビーコン信号に含まれるprimary channel情報に基づいて、BSS2において使用されるprimary channel情報をバッファに保存する(S104-1)。
 AP1は、例えば、TXOPを獲得し、Multi-AP coordinationを制御(又は、主導)するSharing APとして動作する。AP1は、Multi-AP coordinationへの参加要求信号(例えば、CTI)をAP2宛に送信する(S105)。
 AP2は、例えば、Multi-AP coordination参加要求信号の受信処理を行う(S106)。例えば、AP2は、Multi-AP coordinationに関する能力情報(Capability)に基づいて、Multi-AP coordinationへの参加の可否を決定してよい。AP2は、例えば、Multi-AP coordinationへの参加可否を含むMulti-AP coordination参加応答情報(例えば、CTR)をAP1へ送信する(S107)。
 AP1は、Multi-AP coordination参加応答情報信号の受信処理を行う(S108)。例えば、AP1は、Multi-AP coordinationに参加するAP(例えば、Shared AP)に関する情報に基づいて、Multi-AP coordinationの方法(例えば、JT、CBF、CSR、COFDMA、又は、CTDMA)を決定してスケジューリングを行ってよい。そして、AP1は、例えば、Multi-AP coordinationのスケジューリング情報(例えば、CTAS)をShared AP(例えば、AP2を含む)宛に送信する(S109)。AP2は、例えば、AP1からのMulti-AP coordinationスケジューリング情報の受信処理を行う(S110)。
 Multi-AP coordinationのスケジューリング情報には、例えば、協調通信を行うAP100に関する情報(例えば、協調通信を行うAP100によって構成される協調グループに共通のService Set Identifier(SSID)、又は、各STAのAssociation Identifier(AID))、各AP100が使用可能なリソース情報(例えば、周波数リソース情報又は時間リソース情報)、協調通信における振幅又は位相への重み付け(ステアリング、空間マッピング(Spatial mapping)、送信precodingとも呼ぶ)に関する情報、又は、送信電力情報が含まれてよい。
 また、Multi-AP coordinationのスケジューリング情報には、例えば、Multi-AP coordinationのoperationに関するprimary channel情報(例えば、Sharing AP及びShared APのそれぞれのprimary channel情報又はoperating channel情報)が含まれてよい。
 AP1及びAP2は、例えば、Multi-AP coordination localスケジューリング情報(例えば、CTLS)を各AP配下のSTA(例えば、STA1及びSTA2)宛に送信する(S111-1及びS111-2)。
 Multi-AP coordination localスケジューリング情報には、例えば、STA1又はSTA2がDL Multi-AP coordination信号を受信するためのリソース情報(例えば、周波数リソース情報又は受信タイミング情報)、又は、STA1又はSTA2がUL Multi-AP coordination信号を送信するためのリソース情報(例えば、周波数リソース情報、送信タイミング情報、又は、送信電力情報)が含まれてよい。
 また、Multi-AP coordination localスケジューリング情報には、例えば、STA1及びSTA2がMulti-AP coordinationにおいて信号の送受信を行うためのMulti-AP coordinationに関するprimary channel情報(例えば、Shared APのprimary channel情報又はoperating channel情報)が含まれてよい。
 STA1及びSTA2は、Multi-AP coordination localスケジューリング情報の受信処理を行う(S112-1及びS112-2)。
 AP1とSTA1、及び、AP2とSTA2は、例えば、ビーコン信号によって通知されるBSSに個別のprimary channel情報、及び、各スケジューリング情報によって通知されるMulti-AP coordinationに関するprimary channel情報に基づいて、Multi-AP coordinationにおけるprimary channelを設定してよい(S113-1~S113-4)。例えば、AP1とSTA1、及び、AP2とSTA2は、BSSに個別のprimary channel情報に基づくprimary channelに対して、Multi-AP coordinationに基づくprimary channelが変更される場合、primary channelを切り替えてよい。
 以上、AP100及びSTA200によるMulti-AP coordinationに関する動作例について説明した。
 図10は、本開示の一実施例に係るAP100の一部の構成例を示すブロック図である。図10に示すAP100において、制御部(例えば、制御回路に対応)は、非協調通信(例えば、Non-Multi-AP coordination)において複数のAP100のそれぞれに割り当てられるチャネルに基づいて、協調通信(例えば、Multi-AP coordination)の制御に関するチャネル情報を決定する。送信部(例えば、送信回路に対応)は、チャネル情報を他のAP100へ送信する。
 図11は、本開示の一実施例に係るSTA200の一部の構成例を示すブロック図である。図11に示すSTA200において、受信部(例えば、受信回路に対応)は、非協調通信(例えば、Non-Multi-AP coordination)において複数のAP100のそれぞれに割り当てられるチャネルに基づく、協調通信(例えば、Multi-AP coordination)の制御に関するチャネル情報を、他のAP100から受信する。制御部(例えば、制御回路に対応)は、チャネル情報に基づいて、協調通信を制御する。
 [AP100の構成例]
 図12は、AP100(例えば、下り無線送信装置又は上り無線受信装置)の構成例を示すブロック図である。図12に示すAP100は、例えば、無線受信部101と、プリアンブル復調部102と、データ復調部103と、データ復号部104と、チャネル制御部105と、スケジューリング部106と、データ生成部107と、データ符号化部108と、データ変調部109と、プリアンブル生成部110と、無線送信部111とを含んでよい。
 なお、例えば、プリアンブル復調部102、データ復調部103、データ復号部104、チャネル制御部105、スケジューリング部106、データ生成部107、データ符号化部108、データ変調部109、及び、プリアンブル生成部110の少なくとも一つは、図10に示す制御部に含まれてよく、無線送信部111は、図10に示す送信部に含まれてよい。
 無線受信部101は、アンテナを介して、他のAP100(例えば、下り無線送信装置)又はSTA200(例えば、下り無線受信装置)から送信された信号を受信し、受信信号にダウンコンバート及びAnalog-to-Digital(A/D)変換といった無線受信処理を行う。無線受信部101は、例えば、無線受信処理後の受信信号を、プリアンブル部(プリアンブル信号とも呼ぶ)と、データ部(データ信号とも呼ぶ)とに分割し、プリアンブル信号をプリアンブル復調部102に出力し、データ信号をデータ復調部103に出力する。
 また、無線受信部101は、例えば、チャネル制御部105からチャネル情報(例えば、primary channel情報)が出力される場合、当該チャネル情報に基づいて、信号を受信するためのチャネル(例えば、primary channel)を設定(例えば、変更、又は、切り替え)してよい。
 プリアンブル復調部102は、例えば、無線受信部101から入力されるプリアンブル信号に対して、フーリエ変換(例えば、Fast Fourier Transform(FFT))といった復調処理を行い、プリアンブル信号に含まれる制御信号を抽出してよい。制御信号には、例えば、周波数帯域幅(Bandwidth(BW))、Modulation and Coding Scheme(MCS)、又は、誤り訂正符号といったデータ信号の復調及び復号に使用される受信制御情報が含まれてよい。
 また、プリアンブル復調部102は、例えば、プリアンブル信号に含まれる参照信号に基づいてチャネル推定を行い、チャネル推定値を導出する。プリアンブル復調部102は、例えば、受信制御情報をデータ復調部103及びデータ復号部104へ出力し、チャネル推定値をデータ復調部103へ出力する。
 データ復調部103は、例えば、無線受信部101から入力されるデータ信号に対してフーリエ変換(例えば、FFT)を行い、プリアンブル復調部102から入力される受信制御情報及びチャネル推定値に基づいて、FFT後のデータ信号を復調する。データ復調部103は、復調データ信号をデータ復号部104に出力する。
 データ復号部104は、例えば、プリアンブル復調部102から入力される受信制御情報に基づいて、データ復調部103から入力される復調データ信号に対して復号を行う。例えば、データ復号部104は、復号データ信号に対して、Cyclic Redundancy Check(CRC)といった誤り判定を行ってよい。データ復号部104は、例えば、復号データ信号に誤り(換言すると、復号誤り)が無い場合、復号データ信号をスケジューリング部106に出力する。また、データ復号部104は、例えば、復号データに誤りが無く、復号データ信号にチャネル情報(例えば、primary channel番号又はoperating channel情報といった情報)が含まれる場合、チャネル情報をチャネル制御部105に出力する。
 チャネル制御部105は、例えば、データ復号部104からチャネル情報が出力される場合、当該チャネル情報に基づいて、当該AP100が制御するBSSに設定されるprimary channel、及び、他のAP100が制御するBSSに設定されるprimary channelの設定を制御してよい。例えば、チャネル制御部105は、チャネル情報に基づいて、各AP100が制御するBSSに設定されるprimary channelを変更するか否か(又は、切り替えるか否か)を決定してよい。
 例えば、チャネル制御部105は、他のAP100に対応するprimary channelを切り替える場合、切り替え後のprimary channelに関する情報をスケジューリング部106に出力する。また、例えば、チャネル制御部105は、当該AP100に対応するprimary channelを切り替える場合、primary channelの切り替えタイミングの後、切り替え後のprimary channelに関する情報をスケジューリング部106及び無線受信部101に出力する。primary channelの切り替えタイミングは、例えば、Multi-AP coordination localスケジューリング情報を送信してから、規定時間(例えば、Short Inter Frame Space(SIFS))経過後のタイミングでもよい。
 また、例えば、チャネル制御部105は、primary channelを切り替えない場合、スケジューリング部106に信号を出力しなくてよい。
 スケジューリング部106は、例えば、協調通信の信号(例えば、協調信号とも呼ぶ)のスケジューリング情報を決定する。協調信号のスケジューリング情報には、例えば、Multi-AP coordinationにおける協調通信の方式、協調通信に参加するユーザ情報、ユーザに個別に使用可能なリソース情報、MCS又は誤り訂正符号といった情報が含まれてよい。
 また、スケジューリング部106は、例えば、チャネル制御部105から入力される情報に基づいて、Multi-AP coordinationにおけるprimary channelの制御に関するチャネル情報を決定する。例えば、Multi-AP coordinationにおけるprimary channelの制御に関するチャネル情報には、当該AP100(例えば、Sharing AP)の切り替え後のprimary channelに関する情報、他のAP100(例えば、Shared AP)のprimary channelに関する情報が含まれてよい。Multi-AP coordinationにおけるprimary channelの制御に関するチャネル情報は、例えば、協調信号のスケジューリング情報に含まれてもよい。また、スケジューリング部106は、例えば、他のAP100のprimary channelに関する情報に基づいて、周波数リソース情報を決定してもよい。
 また、スケジューリング部106は、データ復号部104から入力される復号データ信号によって通知されるスケジューリング情報に基づいて、協調信号のスケジューリング情報を決定してもよい。
 スケジューリング部106は、協調信号のスケジューリング情報をデータ生成部107、データ符号化部108、データ変調部109、及び、プリアンブル生成部110に出力する。
 データ生成部107は、例えば、スケジューリング部106から入力される協調信号のスケジューリング情報に基づいて、他のAP100(例えば、下り無線送信装置)又はSTA200(例えば、下り無線受信装置)に送信するデータ系列を生成し、データ系列をデータ符号化部108に出力する。
 例えば、他のAP100に送信されるデータ系列は、Multi-AP coordination参加要求(例えば、CTI)、又は、Multi-AP coordinationスケジューリング情報(例えば、CTAS)を含んでよい。また、例えば、他のAP100に送信されるデータ系列は、Multi-AP coordination参加要求(例えば、CTI)に対する応答信号(例えば、CTR)を含んでよい。また、例えば、STA200に送信されるデータ系列は、STA200が協調信号を送信又は受信するためのprimary channelに関する情報、リソース情報、UL信号の送信を要求するためのTrigger frame、STA200から送信された信号に対する応答信号(AckまたはBlock Ack)を含んでよい。
 データ符号化部108は、例えば、スケジューリング部106から入力されるスケジューリング情報に基づいて、データ生成部107から入力されるデータ系列の符号化を行い、符号化データをデータ変調部109に出力する。
 データ変調部109は、例えば、スケジューリング部106から入力されるスケジューリング情報に基づいて、データ符号化部108から入力される符号化データに対して、変調及び逆フーリエ変換(例えば、Inverse Fast Fourier Transform(IFFT))を行い、変調データ信号を無線送信部111に出力する。
 プリアンブル生成部110は、例えば、スケジューリング部106から入力されるスケジューリング情報に基づいて、プリアンブル信号を生成する。例えば、プリアンブル生成部110は、プリアンブル信号に対して変調及びIFFT処理を行い、プリアンブル信号を無線送信部111に出力する。
 無線送信部111は、データ変調部109から入力されるデータ信号と、プリアンブル生成部110から入力されるプリアンブル信号とを含む無線フレーム(例えば、「パケット信号」又は「パケット」と呼ばれてもよい)を生成する。無線送信部111は、生成した無線フレームに対して、Digital-to-Analog(D/A)変換、キャリア周波数にアップコンバートといった無線送信処理を行い、無線送信処理後の信号を、アンテナを介して、他のAP100又はSTA200へ送信する。
 <STA200の構成例>
 図13は、STA200(例えば、下り無線受信装置)の構成例を示すブロック図である。図13に示すSTA200は、例えば、無線受信部201と、プリアンブル復調部202と、データ復調部203と、データ復号部204と、チャネル制御部205と、送信信号生成部206と、無線送信部207とを含んでよい。
 なお、例えば、プリアンブル復調部202、データ復調部203、データ復号部204、チャネル制御部205、及び、送信信号生成部206の少なくとも一つは、図11に示す制御部に含まれてよく、無線受信部201は、図11に示す受信部に含まれてよい。
 無線受信部201は、アンテナを介してAP100(下り無線送信装置)から送信された信号を受信し、受信信号に対してダウンコンバート及びA/D変換といった無線受信処理を行う。無線受信部201は、無線受信処理後の信号からプリアンブルを抽出し、プリアンブル復調部202へ出力する。また、無線受信部201は、無線受信処理後の信号からデータ信号を抽出し、データ復調部203へ出力する。
 また、無線受信部201は、例えば、チャネル制御部205からチャネル情報(例えば、primary channel情報)が出力される場合、当該チャネル情報に基づいて、信号を受信するためのチャネル(例えば、primary channel)を設定(例えば、変更、又は、切り替え)してよい。
 プリアンブル復調部202は、無線受信部201から入力されるプリアンブル信号に対してFFTといった復調処理を行い、復調後のプリアンブル信号から、例えば、データ信号の復調及び復号に用いる受信制御情報(例えば、BW、MCS又は誤り訂正符号等)を抽出する。プリアンブル復調部202は、例えば、抽出した受信制御情報をデータ復調部203及びデータ復号部204へ出力する。また、プリアンブル復調部202は、例えば、プリアンブル信号に含まれる参照信号に基づいてチャネル推定を行い、チャネル推定値を導出する。プリアンブル復調部202は、チャネル推定値をデータ復調部203へ出力する。
 データ復調部203は、例えば、無線受信部201から入力されるデータ信号に対してフーリエ変換(例えば、FFT)を行い、プリアンブル復調部202から入力される受信制御情報及びチャネル推定値に基づいて、FFT後のデータ信号を復調し、STA200宛ての復調データ信号をデータ復号部204に出力する。
 データ復号部204は、例えば、プリアンブル復調部202から入力される受信制御情報に基づいて、データ復調部203から入力されるデータ信号を復号して、CRCといった誤り判定を行う。データ復号部204は、例えば、復号データに誤りが無い場合、復号データを送信信号生成部206に出力する。また、データ復号部204は、例えば、復号データ信号に誤りが無く、復号データ信号にチャネル情報が含まれる場合、チャネル情報をチャネル制御部205に出力する。
 チャネル制御部205は、例えば、データ復号部204からチャネル情報が出力される場合、当該チャネル情報に基づいて、primary channelの設定を制御する。例えば、チャネル制御部205は、primary channelを切り替える場合、規定のタイミングの後、切り替え後のprimary channelに関する情報を送信信号生成部206及び無線受信部201に出力する。規定のタイミングは、例えば、Multi-AP coordination localスケジューリング情報を送信してから、規定時間(例えば、SIFS)経過後のタイミングでもよい。
 送信信号生成部206は、例えば、データ復号部204から入力される復号データ信号に基づいて、送信信号を生成する。例えば、送信信号生成部206は、データ復号部204から入力される誤り判定に関する情報に基づいて、応答信号(例えば、ACK又はBlock ACK(BS))を含むデータ系列を生成してよい。また、例えば、復号データ信号にTrigger frameが含まれる場合、送信信号生成部206は、Trigger frameに含まれる制御情報に基づいて、Trigger-based Physical Layer Convergence Procedure Protocol Data Unit(TB PPDU)において送信するデータ系列を生成してよい。また、送信信号生成部206は、データ系列に対して符号化を行い、所定の周波数リソースにおいて変調及びIFFT処理を行うことによりデータ信号を生成する。また、送信信号生成部206は、例えば、チャネル制御部205から情報が出力される場合、当該情報に示される切り替え後のprimary channelを含む所定の周波数リソースに割り当てたデータ信号を生成してよい。送信信号生成部206は、データ信号にプリアンブル信号を付加し無線フレーム(例えば、パケット信号)を生成し、無線送信部207に出力する。
 無線送信部207は、送信信号生成部206から入力される無線フレームに対して、D/A変換、キャリア周波数へのアップコンバートといった無線送信処理を行い、無線送信処理後の信号を、アンテナを介してAP100へ送信する。
 [AP100及びSTA200の動作例]
 次に、本実施の形態のAP100及びSTA200の動作例について説明する。
 本開示の非限定的な一実施例では、例えば、Multi-AP coordinationにおいて、AP100(例えば、Sharing AP)は、協調通信(例えば、Multi-AP coordination)の制御に関するチャネル情報を他のAP100(例えば、Shared AP)宛の信号に含めてよい。チャネル情報には、例えば、協調通信の制御に関する情報を送信するためのprimary channelに関する情報、又は、協調通信を行うためのprimary channelに関する情報が含まれてよい。
 また、例えば、primary channelに関する情報には、少なくとも、Sharing APがMulti-AP coordinationにおいて使用するprimary channelに関する情報(例えば、primary channel番号)が含まれてよい。
 以下、Multi-AP coordinationにおけるチャネル制御の方法の例(例えば、方法1、方法2及び方法3)について説明する。
 <方法1>
 方法1では、例えば、チャネル情報には、Shared APがMulti-AP coordinationにおいて使用するprimary channelに関する情報(例えば、primary channel番号)が含まれてよい。
 図14は、方法1に係る動作例を示す図である。
 図14において、AP1及びAP2は、例えば、非協調通信(例えば、Non-Multi-AP coordination)時に、各AP配下のSTA(例えば、STA200)に対して送信されるビーコン信号を読み取り、非協調通信において他のAP100のそれぞれのprimary channel情報を取得する。ビーコン信号は、例えば、non-HT duplicate PPDUを用いて送信されてよい。
 AP1は、例えば、TXOPを取得してSharing APとして動作する。AP1は、例えば、Multi-AP coordination参加要求信号(例えば、CTI)をAP2へ送信してよい。Multi-AP coordination参加要求信号は、例えば、non-HT duplicate PPDUに含まれてよい。
 AP2は、例えば、AP1からのMulti-AP coordination参加要求信号に対して、Multi-AP coordination参加応答信号(例えば、CTR)をAP1へ送信してよい。Multi-AP coordination参加応答信号は、例えば、TB PPDUに含まれてよい。AP1(Sharing AP)は、例えば、各AP100からのMulti-AP coordination参加応答信号に基づいて、協調通信に参加するAP(例えば、Shared AP)を決定してよい。
 その後、AP1(Sharing AP)は、例えば、協調通信に参加するAP100(例えば、AP2)に対して、ビーコン信号から取得した非協調通信時のprimary channel情報に基づいて、Sharing APとShared APとが協調通信において使用するprimary channelに関する制御情報(例えば、primary channel情報)を決定してよい。AP1(Sharing AP)は、例えば、協調通信において使用するprimary channelに関する情報を含むMulti-AP coordinationスケジューリング情報(例えば、CTAS)をShared AP(例えば、AP2)へ通知してよい。Multi-AP coordinationスケジューリング情報は、例えば、non-HT DUPに含まれてよい。
 AP2(Shared AP)は、例えば、AP1(Sharing AP)から通知される協調通信におけるprimary channel情報を含むMulti-AP coordination localスケジューリング情報(例えば、CTLS)を、AP2配下のSTA200へ通知してよい。Multi-AP coordination localスケジューリング情報は、例えば、non-HT duplicate PPDUに含まれてよい。
 また、AP1(Sharing AP)は、例えば、協調通信におけるprimary channel情報を含むMulti-AP coordination localスケジューリング情報(例えば、CTLS)を、AP1配下のSTA200へ通知してよい。Multi-AP coordination localスケジューリング情報は、例えば、non-HT duplicate PPDUに含まれてよい。
 そして、協調通信(例えば、Multi-AP transmission)において、Sharing AP(例えば、AP1)、Shared AP(例えば、AP2を含む)、及び、各AP100配下のSTA200は、Multi-AP coordinationにおけるprimary channel情報に基づいて、primary channelを設定し、協調通信信号の送受信を行ってよい。例えば、AP100及びSTA200は、Non-Multi-AP coordinatioにおいて使用するprimary channelと、Multi-AP coordinationにおいて使用するprimary channelとが異なる場合、primary channelの変更処理(または切り替え処理)を行ってよい。
 以上、方法1に係る動作例について説明した。
 一例として、図6に示すように、非協調通信(例えば、Non-Multi-AP coordination)において、各AP100(例えば、AP1及びAP2)に対して、互いのoperating channel外にprimary channelが設定される場合があり得る。この場合、Sharing AP(例えば、AP1)は、例えば、協調通信に参加する、AP1のoperating channel内、かつ、AP2のoperating channel内のチャネルの何れかを、AP1及びAP2に対する協調通信のprimary channelに設定し、AP2へ通知してよい。換言すると、AP1は、AP2に対して、primary channelの変更を通知してよい。この通知により、AP1及びAP2には、互いのoperating channel内にprimary channelが割り当てられるため、協調通信において互いの信号を送受信できる。
 他の例として、図7に示すように、非協調通信(例えば、Non-Multi-AP coordination)において、各AP100(例えば、AP1及びAP2)に対して同じprimary channelが設定され、Multi-AP coordinationにおいてCOFDMAといった周波数分割多重方式が適用される場合があり得る。この場合、Sharing AP(例えば、AP1)は、例えば、図8に示すように、AP1及びAP2のそれぞれに割り当てられる周波数リソース(例えば、RU)内のチャネルの何れかを、AP1及びAP2のそれぞれに対する協調通信のprimary channelに設定し、AP2へ通知してよい。換言すると、AP1は、AP2に対して、primary channelの変更を通知してよい。この通知により、AP1及びAP2には、各AP100のそれぞれに割り当てられた周波数リソース内にprimary channelが割り当てられるため、協調通信において信号を送受信できる。
 図15は、方法1に係る協調通信のprimary channel情報をマネジメントフレームに含めて通知する例を示す図である。
 図15に示すマネジメントフレーム(例えば、Multi-AP coordination channel information elementと呼ぶ)は、例えば、Sharing APのprimary channelに関する情報(例えば、channel番号)を通知する「Sharing AP primary channel」subfield、協調通信に参加するShared AP数を示す「Number of Shared AP」subfield、及び、Shared APに個別のユーザ情報サブフィールド(例えば、「Primary channel Information of Shared AP」subfield)を含んでよい。
 図15に示すように、Shared APに個別のユーザ情報には、対応するAP100を識別する識別子(例えば、「AP ID」)、及び、Shared APのprimary channelに関する情報(例えば、channel番号)を通知する「Shared AP primary channel」subfieldが含まれてよい。
 Sharing APは、例えば、図15に示すMulti-AP coordination channel information elementをビーコン信号といった制御信号に含めてShared APへ通知してもよい。
 次に、図16は、方法1に係る協調通信のprimary channel情報をトリガフレーム(Trigger frame)に含めて通知する例を示す図である。
 図16に示すトリガフレーム(例えば、Multi-AP coordinationトリガフレームと呼ぶ)は、例えば、複数のAP100又はSTA200に共通の共通情報(例えば、Common Info field)に、Sharing APのprimary channelに関する情報(例えば、channel番号)を通知する「Sharing AP primary channel」subfieldを含んでよい。
 また、図16に示すMulti-AP coordinationトリガフレームは、例えば、複数のAP100又はSTA200に個別のユーザ情報(例えば、User Info field)に、各Shared APを識別するAP IDを通知する「AP ID」subfield、及び、Shared APのprimary channelに関する情報(例えば、channel番号)を通知する「Shared AP primary channel」subfieldを含んでよい。
 ここで、Shared APのprimary channelは、例えば、ユーザ情報の「Trigger Dependent User Info」subfieldを使用して通知されてもよい。例えば、Shared APは、Trigger frame type(例えば、図16の「Trigger type」subfield)が協調通信(例えば、Multi-AP coordination又はMulti-AP operation)に対応するタイプの場合に、Trigger Dependent User Info subfieldを、Shared AP primary channel subfield(例えば、Primary channel subfieldとも表す)として、Shared APのPrimary channel情報を取得してもよい。
 また、Shared APは、例えば、Sharing APが送信したMulti-AP coordinationトリガフレームによって通知されるprimary channelの設定について賛成(例えば、受け入れる)又は反対(例えば、受け入れない)に関する情報(例えば、賛否情報)を、Multi-AP coordinationトリガフレームに対する応答信号に含めて通知してもよい。
 方法1によれば、Sharing APは、非協調通信(non-Multi-AP coordination)における他のShared APのprimary channel情報に基づいて、協調通信における各APのprimary channelを適切に設定できる。これにより、協調通信に参加するAPのoperating channel外にprimary channelが設定されることを回避できるため、協調通信に関する信号を適切に送受信できる。
 次に、方法1における各AP100に対する協調通信のPrimary channel情報の通知例について説明する。
 例えば、各AP100に対する協調通信のPrimary channel情報の通知方法(又は、内容)は、協調通信方法(又は、協調通信方式)に応じて設定されてもよい。
 例えば、複数のAP100に対して異なる周波数リソースを使用する協調通信方法(例えば、COFDMA)の場合、Sharing APは、各AP100(例えば、Sharing AP及びShared AP)に個別のprimary channel情報を通知してよい。この場合、Sharing APは、例えば、各Shared APの割り当て周波数リソース内においてprimary channelをそれぞれ決定してよい。また、Sharing APは、例えば、図15又は図16に示すフレームを用いて、primary channel情報をShared APへ通知してもよい。
 また、例えば、複数のAP100に対して共通の周波数リソースを使用する協調通信方法(例えば、JT、CSR、CBF、CTDMA、又は、Joint sounding)の場合、Sharing APは、各AP(例えば、Sharing APとShared AP)に共通のprimary channel情報を通知してよい。この場合、Sharing AP及びShared APは、共通のprimary channelを使用してよい。
 図17及び図18は、複数のAP100に対して共通の周波数リソースを使用する協調通信方法を用いる場合の協調通信のprimary channel情報の通知例(又は、フォーマット例)を示す図である。
 図17に示すフレーム(例えば、Multi-AP coordination channel information element (JT/C-SR/C-BF/C-TDMA/Joint sounding))では、例えば、Sharing AP及びShared APが協調通信において共通して使用するprimary channelに関する情報(例えば、channel番号)は、「Sharing AP primary channel」subfieldによって通知されてよい。
 また、図18に示すMulti-AP coordinationトリガフレーム(JT/C-SR/C-BF/C-TDMA/Joint sounding)では、例えば、Sharing AP及びShared APが協調通信において共通して使用するprimary channelに関する情報(例えば、channel番号)は、共通情報のSharing AP primary channel subfieldによって通知されてよい。図18では、図16の場合と異なり、Multi-AP coordinationトリガフレームのユーザ情報において、Shared APのprimary channel情報は、Trigger Dependent User Infoに含まれなくてよい。
 また、例えば、協調通信方法(又は、協調通信タイプとも呼ぶ)に応じて、協調通信のprimary channel情報の通知に使用されるinformation element又はトリガフレームのタイプが変更されてもよい。例えば、複数のAP100に対して異なる周波数リソースを使用する協調通信方法であるか、複数のAP100に対して共通の周波数リソースを使用する協調通信方法であるかに応じて、それぞれ異なるトリガフレームタイプが定義されてもよい。
 例えば、複数のAP100に対して異なる周波数リソースを使用する協調通信方法に対応するトリガフレームタイプの場合、図16に示すMulti-AP coordinationトリガフレームによって、協調通信のprimary channel情報が通知されてよい。また、例えば、複数のAP100に対して共通の周波数リソースを使用する協調通信方法に対応するトリガフレームタイプの場合、図18に示すMulti-AP coordinationトリガフレームによって、協調通信のprimary channel情報が通知されてよい。
 また、例えば、Shared APは、協調通信方法に関する情報(例えば、協調通信タイプ情報)に基づいて、各ネゴシエーション信号又はトリガフレーム信号を読み替えてもよい。
 このように、Sharing APは、協調通信方法に基づいて、協調通信のprimary channel情報の通知方法を変更することにより、協調通信方法のそれぞれに適切なチャネル情報を通知できる。換言すれば、協調通信方法に応じて、primary channel情報として不要の情報の送信を抑制し、シグナリングオーバヘッドを削減できる。
 <方法2>
 方法2では、例えば、チャネル情報には、協調通信において、協調通信に参加する複数のAP100に共通の使用可能なoperating channelに関する情報(例えば、operation channel情報と呼ぶ)が含まれてよい。
 方法2に係る動作例では、例えば、図14に示す動作例と同様でよく、一部の処理が異なってよい。
 図14において、AP1及びAP2は、例えば、非協調通信(例えば、Non-Multi-AP coordination)時に、各AP配下のSTA(例えば、STA200)に対して送信されるビーコン信号を読み取り、非協調通信において他のAP100のそれぞれのoperating channel情報を取得する。
 また、図14において、例えば、TXOPを取得してSharing APとして動作するAP1は、Multi-AP coordination参加要求信号(例えば、CTI)をAP2へ送信してよい。AP2は、例えば、AP1からのMulti-AP coordination参加要求信号に対して、Multi-AP coordination参加応答信号(例えば、CTR)をAP1へ送信してよい。AP1(Sharing AP)は、例えば、各AP100からのMulti-AP coordination参加応答信号に基づいて、協調通信に参加するAP(例えば、Shared AP)を決定してよい。
 その後、AP1(Sharing AP)は、例えば、協調通信に参加するAP100(例えば、AP2)に対して、ビーコン信号から取得した非協調通信時のoperating channel情報に基づいて、Sharing APとShared APとが協調通信において使用するoperating channel(以下、「Multi-AP operating channel」と呼ぶ)を決定してよい。AP1(Sharing AP)は、例えば、Multi-AP operating channel内のチャネルから、協調通信においてSharing APの使用するPrimary channelを決定してよい。
 また、AP1(Sharing AP)は、例えば、協調通信におけるSharing APのprimary channelに関する情報、及び、Multi-AP operating channelを含むMulti-AP coordinationスケジューリング情報(例えば、CTAS)をShared AP(例えば、AP2)へ通知してよい。
 AP2(Shared AP)は、例えば、AP1から通知されるMulti-AP coordinationスケジューリング情報を受信すると、通知されたMulti-AP operating channel内、かつ、AP2に割り当てられた周波数リソース内において、AP2が協調通信において使用するprimary channelを決定してよい。そして、AP2は、協調通信におけるAP2のprimary channel情報を含むMulti-AP coordination localスケジューリング情報(例えば、CTLS)を、AP2配下のSTA200へ通知してよい。
 そして、協調通信(例えば、Multi-AP transmission)において、Sharing AP(例えば、AP1)、Shared AP(例えば、AP2を含む)、及び、各AP100配下のSTA200は、Multi-AP coordinationにおけるprimary channel情報に基づいて、primary channelを設定し、協調通信信号の送受信を行ってよい。例えば、AP100及びSTA200は、Non-Multi-AP coordinatioにおいて使用するprimary channelと、Multi-AP coordinationにおいて使用するprimary channelとが異なる場合、primary channelの変更処理(または切り替え処理)を行ってよい。
 以上、方法2に係る動作例について説明した。
 図19は、Multi-AP operating channelの設定例を示す図である。
 図19に示すように、協調通信に参加する各AP100(例えば、AP1、AP2及びAP3)のoperating channelのうち、共通のチャネル(換言すると、重複するチャネル)がMulti-AP operating channelに設定されてよい。
 なお、図19では、AP1、AP2及びAP3のそれぞれのoperating channelに共通する全てのチャネルがMulti-AP operating channelに設定される例を示すが、これに限定されず、AP1、AP2及びAP3のそれぞれのoperating channelに共通するチャネルの少なくとも一部がMulti-AP operating channelに設定されてもよい。
 例えば、AP1、AP2及びAP3のそれぞれは、Multi-AP operating channel内の何れかをprimary channelに設定してよい。これにより、AP1、AP2及びAP3は、協調通信においてShared AP及びShared APの双方のoperating channel内にprimary channelを設定できる。
 一例として、図6に示すように、非協調通信(例えば、Non-Multi-AP coordination)において、各AP100(例えば、AP1及びAP2)に対して、互いのoperating channel外にprimary channelが設定される場合があり得る。この場合、Sharing AP(例えば、AP1)は、例えば、協調通信に参加するAP1及びAP2に共通のoperating channelを、Multi-AP operating channelに設定し、Multi-AP operating channelをAP2へ通知してよい。AP1及びAP2のそれぞれは、Multi-AP operating channel内、かつ、AP1及びAP2のそれぞれの割り当てリソース(例えば、channel)内においてprimary channelを設定するため、協調通信において互いの信号を送受信できる。
 図20は、方法2に係る協調通信のprimary channel情報をマネジメントフレームに含めて通知する例を示す図である。
 図20に示すマネジメントフレーム(例えば、Multi-AP coordination operating channel information elementと呼ぶ)は、例えば、Sharing APのprimary channelに関する情報(例えば、channel番号)を通知する「Sharing AP primary channel」subfield、Multi-AP operating channelの帯域幅を通知する「Bandwidth(BW)」subfield、及び、Multi-AP operating channelの中心周波数を通知する「Channel Center Frequency」subfieldを含んでよい。
 Sharing APは、例えば、図20に示すMulti-AP coordination channel information elementをビーコン信号といった制御信号に含めてShared APへ通知してもよい。
 次に、図21は、方法2に係る協調通信のprimary channel情報をトリガフレーム(Trigger frame)に含めて通知する例を示す図である。
 図21に示すトリガフレーム(例えば、Multi-AP coordination operating channelトリガフレームと呼ぶ)は、例えば、共通情報(Common info field)に、Sharing AP primary channel subfield、Bandwidth(BW) subfield、及び、Channel Center Frequency subfieldを含んでよい。
 Shared APは、例えば、当該Shared APに割り当てられた周波数リソース(例えば、channel)、及び、図20又は図21のフレームによって通知されるMulti-AP operating channelに関する情報に基づいて、協調送信のprimary channelを決定してよい。例えば、Shared APは、「Channel Center Frequency」-「BW」/2によってMulti-AP operating channelの最低周波数を導出して、Multi-AP operating channelを特定してもよい。又は、例えば、Shared APは、「Channel Center Frequency」+「BW」/2によってMulti-AP operating channelの最高周波数を導出して、Multi-AP operating channelを特定してもよい。
 方法2によれば、各AP100(例えば、Sharing AP及びShared AP)は、当該AP100の使用する協調通信のprimary channelの設定(例えば、変更又は切り替えの有無)を決定し、適切なprimary channelを設定できる。
 また、例えば、方法1では、Sharing APがShared APのprimary channelを全て決定するのに対して、方法2では、各Shared APがprimary channelの制御(例えば、決定又は設定)を行うので、Sharing APの協調通信に関する演算処理の負荷を軽減できる。
 <方法3>
 方法3では、例えば、Sharing APは、協調グループ内のAP100に対して、primary channel情報の送信を指示する。
 協調グループは、例えば、Multi-AP coordinationを行うグループ(例えば、「coordination group」とも呼ぶ)である。協調グループとして、例えば、「AP candidate set」及び「Virtual Basic Service Set(Virtual BSS)が挙げられる。
 図22は、AP candidate set及びVirtual BSSの一例を示す図である。
 図22に示すように、AP canidate setは、複数のAP(例えば、AP1、AP2、AP3及びAP4)から構成されるグループでよい。例えば、AP candidate setに含まれるAPから、Multi-AP coordinationを行うSharing APとShared APとが選択されてよい。
 また、図22に示すように、Virtual BSSは、Multi-AP coordinationを行うための複数のBasic Service Set(BSS)(例えば、BSS1及びBSS2)から構成されるグループでよい。Virtual BSSに参加するAPは、例えば、共通のService Set identifier(SSID)を有してよい。また、Virtual BSSに含まれるAPは、例えば、各BSSに所属するSTAに関する情報(例えば、STAのAssociation identifier(AID))を共有してよい。
 方法3では、例えば、Sharing APは、Sharing APのoperation channel外のチャネルを用いて、他のAP100(例えば、Shared AP)との間においてprimary channel情報の送受信を行ってよい。一例として、Sharing APは、primary channel情報の送受信に、異なるBSS間の送受信に使用可能なフレーム(例えば、「public action frame」)を用いてよい。
 図23は、方法3に係るprimary channel情報を通知するpublic action frame(又は、「primary channel information frame」とも呼ぶ)の例を示す図である。
 図23に示すフレーム(例えば、primary channel information frame)は、例えば、frame typeを通知する「type」subfield、送信元APのprimary channelに関する情報(例えば、channel番号)を通知する「primary channel」subfield、送信元APのoperating channelの帯域幅を通知する「Bandwidth(BW)」subfield、及び、送信元APのoperating channelの中心周波数を通知する「Channel Center Frequency」subfieldを含んでよい。
 type subfieldにおいて、例えば、type=0の場合、primary channel information frameは、「channel information request」として動作してよい。channel information requestは、例えば、Sharing APが他のAP100(例えば、Shared AP)に対してSharing APのprimary channel情報を通知し、宛先APのprimary channel情報の送信を要求するために使用されてよい。
 また、type subfieldにおいて、例えば、type=1の場合、primary channel information frameは、「channel information response」として動作してよい。channel information responseは、例えば、channel information requestに対する応答信号として、送信元AP(例えば、Shared AP)のprimary channel情報をSharing APに通知するために使用されてよい。
 また、type subfieldにおいて、例えば、type=2の場合、primary channel information frameは、「Multi-AP channel information」として動作してよい。Multi-AP channel informationは、例えば、協調通信に関するネゴシエーション信号(例えば、図14のCTI、CTR又はCTAS)の送受信に使用するためのprimary channel情報を通知するために使用されてよい。
 図24は、方法3に係る動作例を示す図である。
 図24において、AP1(例えば、Sharing AP)及びAP2(例えば、Shared AP)は共通の協調グループに所属し、AP2のprimary channelがAP1のoperating channel外に設定される場合について説明する。
 AP1は、例えば、channel information request(例えば、type=0)をAP2宛に送信することにより、non-Multi-AP coordinationにおけるAP2のprimary channel情報の送信を要求する。また、channel information requestには、non-Multi-AP coordinationにおけるAP1のprimary channel情報が含まれてよい。
 AP2は、例えば、channel information requestにおいて取得したAP1のprimary channel情報に基づいて、channel information response(例えば、type=1)をAP1宛に送信することにより、channel information requestに応答する。
 AP1は、AP2からのchannel information responseにおいて取得したAP2のprimary channel情報に基づいて、協調通信に参加する全てのAP100が使用可能なoperating channel及びprimary channelを決定する。そして、AP1は、例えば、Multi-AP channel information(例えば、type=2)を、協調通信に参加するAP100(例えば、AP2を含む)宛に送信する。
 このように、AP1は、協調通信の制御に関するチャネル情報(例えば、channel information request、又は、Multi-AP channel information)を、AP1に割り当てられるチャネルと異なるチャネル(例えば、public action frameに対応するチャネル)を用いて他のAP(例えば、AP2)へ送信してよい。また、AP2は、例えば、非協調通信においてAP2に割り当てられるチャネル情報(例えば、channel information response)を、AP2に割り当てられるチャネルと異なるチャネルを用いて受信してよい。これにより、AP1のoperating channel外にAP2のprimary channelが設定される場合、又は、AP2のoperating channel外にAP1のprimary channelが設定される場合でも、AP1及びAP2は、public action frameを用いて、協調通信の制御に関するチャネル情報を送受信できる。
 図24において、Multi-AP channel informationの送信後、AP1及びAP2は、Multi-AP channel informationによって通知される協調通信のprimary channelを設定(例えば、変更または切り替え)し、Multi-AP coordinationに関するネゴシエーション信号(例えば、CTI、CTR又はCTAS)の送受信を行ってよい。
 一例として、図6に示すように、非協調通信(例えば、Non-Multi-AP coordination)において、各AP100(例えば、AP1及びAP2)に対して、互いのoperating channel外にprimary channelが設定される場合があり得る。この場合、AP1(例えば、Sharing AP)は、例えば、AP1のoperating channel外、かつ、AP2のoperating channel(例えば、primry channel)内の帯域においてpublic action frame(例えば、channel information request又はMulti-AP channel information)をAP2へ送信してもよい。また、例えば、AP2(例えば、Shared AP)は、AP2のoperating channel外、かつ、AP1のoperating channel(例えば、primry channel)内の帯域においてpublic action frame(例えば、channel information response)をAP1へ送信してもよい。これにより、AP1及びAP2は、各々のprimary channelが他のAP100のoperating channel外に設定される場合でも、他のAP100からのpublic action frameに基づいて協調通信に関する設定を行うことができるので、協調通信制御の効率を向上できる。
 方法3によれば、primary channel情報を通知するためのpublic action frameの使用により、AP100は、他のAP100のprimary channelがoperation channel外の場合でも、各AP100のprimary channel情報を共有し、協調通信に関するネゴシエーション信号を送信するためのprimary channelを決定できる。
 以上、Multi-AP coordinationにおけるチャネル制御の方法の例について説明した。
 このように、本実施の形態では、AP100(例えば、Sharing AP)は、非協調通信において複数のAP100のそれぞれに割り当てられるチャネル(例えば、primary channel情報)に基づいて、協調通信(例えば、Multi-AP coordination)の制御に関するチャネル情報(例えば、primary channel)を決定し、決定したprimary channelに関する情報を他のAP100へ送信する。そして、AP100(例えば、Sharing AP及びShared AP)及びSTA200は、協調通信の制御に関するチャネル情報に基づいて、協調通信の制御(例えば、Multi-AP coordinationのprimary channelの設定、変更又は切り替え)を行う。
 これにより、本実施の形態では、例えば、Non-Multi-AP coordinationにおける複数のAP100のprimary channelの設定、又は、Multi-AP coordinationにおける協調通信方式に応じて、AP100及びSTA200は、Multi-AP coordinationのprimary channelを適切に設定できる。よって、本実施の形態によれば、Multi-AP coordinationにおける協調通信の通信効率を向上できる。
 以上、本開示の一実施の形態について説明した。
 (他の実施の形態)
 (1)上述した実施の形態において、TXOPを取得するAP(又は、協調通信を制御するAP)を「Sharing AP」、Sharing APに協調制御されるAPを「Shared AP」としたが、これらの名称は異なってもよい。例えば、Sharing APは、「Coordination AP」又は「Master AP」と呼ばれてもよい。また、Shared APは、「Coordinated AP」又は「Slave AP」と呼ばれてもよい。
 (2)上述した実施の形態では、Non-Multi-AP coordinationのprimary channel情報がビーコン信号に含めて他のAP100へ通知される場合について説明したが、Non-Multi-AP coordinationのprimary channel情報の通知は、ビーコン信号を用いる方法に限定されず、他の通知方法でもよい。例えば、Non-Multi-AP coordinationのprimary channel情報は、Multi-AP coordination参加要求信号(例えば、図2のCTI)及びMulti-AP coordination参加応答信号(図2のCTR)の少なくとも一つに含まれてもよい。
 (3)上述した実施の形態において、チャネル情報によって通知されるチャネルは、BBSに個別に決定されるprimary channelに限定されない。
 例えば、BSSに個別に決定されるNon-Multi-AP coordination用のprimary channelが、チャネル情報によって、Multi-AP coordinationの期間において設定(例えば、変更)されてもよい。
 また、例えば、BSSに個別に決定されるNon-Multi-AP coordination用のprimary channelと異なるMulti-AP coordination用のprimary channelが、チャネル情報によって、新たに設定されてもよい。
 また、本開示の非限定的な実施例において、チャネル情報によって通知されるチャネルは、primary channelに限定されない。例えば、primary channelとは異なる名称でMulti-AP coordinationに使用されるチャネル(例えば、サブチャネル、オフチャネル、temporary primary channel)が定義される場合に、それらのチャネルに対して、本開示の非限定的な実施例が適用されてもよい。
 (4)本開示の非限定的な実施例は、例えば、peer-to-peer(P2Pとも呼ぶ)によりAP100とSTA200、又は、STA200とSTA200とが通信する場合に使用するチャネル情報を通知する場合に適用してもよい。
 (5)本開示の非限定的な実施例において、non-Multi-AP coordinationとMulti-AP coordinationとにおいて、共通の(同一の)primary channelが使用されてもよい。
 例えば、各AP100のnon-Multi-AP coordinationのprimary channelが互いのoperating channel内に含まれる場合、Multi-AP coordination用のprimary channelは、Non-Multi-AP coordinationのprimary channelと共通でもよい。換言すると、Non-Multi-AP coordinationとMulti-AP coordinationとでprimary channelの切り替え(又は、変更)が行われなくてもよい。
 primary channelが変更されない場合、各AP100は、primary channelの変更を通知しなくてもよい。また、primary channelが変更されない場合、各AP100は、non-Multi-AP coordinationと同じprimary channel情報を他のAP100へ通知してもよい。
 (6)方法1又は方法2と、方法3とは組み合わせて適用してもよい。例えば、方法3に基づいて、AP100間において、協調通信に関するネゴシエーション信号(例えば、CTI、CTR、CTAS、又は、CTLS)の送受信を行うためのprimary channelを決定してもよい。その後、例えば、Sharing APは、協調通信に関するネゴシエーション信号により決定した協調通信方法に基づいて、各AP100が協調通信で使用するprimary channelを決定してよい。例えば、各AP100が協調通信で使用するprimary channelは、方法1又は方法2に基づいて決定さ、通知されてもよい。
 (7)協調通信に関するネゴシエーション信号の送信フォーマットは、non-HT duplicate PPDUに限定されない。例えば、端末の能力情報(capability)を参照し、協調通信に参加する全ての端末(例えば、AP100及びSTA200)がnon-HTT duplicate PPDUよりも新しい他のフォーマット(例えば、HT PPDU又はHE PPDU、EHT PPDU)をサポートしている場合、他の送信フォーマットによって、協調通信に関するネゴシエーション信号が送信されてもよい。
 (8)上述した方法1~方法3では、一例として、primary channel情報の通知に使用されるフレームとして、マネジメントフレーム、トリガフレーム、及び、public action frameを新たに定義したが、primary channel情報の通知は、他の方法でものよい。
 図25は、Channel switch announcement frameを使用して協調通信に関するprimary channel情報を通知する例を示す図である。
 Channel switch announcement frameは、802.11nにおいて定義されるnon-Multi-AP coordinationにおけるチャネル切り替えの通知に使用される信号である。
 Channel switch announcement frameを使用して協調通信に関するprimary channel情報が通知される場合、例えば、図25に示す「Channel switch announcement element」fieldに含まれる「New channel number」subfieldにおいて、協調通信に関するprimary channel情報(例えば、変更先のprimary channel番号)が通知されてもよい。
 また、例えば、図25に示す「Wide bandwidth channel switch element」fieldに含まれる「New channel width」subfieldにおいて、協調通信に関するOperating channelの帯域幅が通知され、「New Channel Center Frequency Segment 0/1」subfieldにおいて、協調通信に関するOperating channelの中心周波数が通知されてもよい。
 (9)Multi-AP operationにおけるprimary channelの設定期間(例えば、変更期間又は切り替え期間)は、一時的な期間でもよい。
 例えば、協調通信に関するprimary channelの設定期間は、AP100(例えば、Sharing AP)から通知されるTXOP durationに対応する期間に設定されてもよい。
 また、例えば、TXOP durationに対応する期間の終了前に、TXOP期間の終了が通知される場合、協調通信に関するprimary channelの設定期間の終了も通知されてもよい。なお、TXOP期間の終了の通知には、例えば、contention-free(CF)-endフレームが使用されてもよい。
 (10)上述した実施の形態において使用されたAP数、STA数、BSS数といった値は一例であって限定されず、他の値が設定されてもよい。
 また、上述した実施の形態において、primary channelの一例として、primary 20MHz channelを挙げたが、primary channelはこれに限定されず、他の種別のチャネル(例えば、primary 40MHz channel又はprimary 80MHz channel)でもよい。
 また、上述した実施の形態では、一例として、方法1において、チャネル情報においてprimary channelのchannel番号が通知される場合について説明したが、チャネル情報によって通知されるパラメータは、channel番号に限定されない。例えば、チャネル情報は、channel番号を与える他のパラメータでもよく、或るchannel番号(例えば、Sharing APのchannel番号)に対するオフセット値でもよい。
 また、上述した実施の形態では、一例として、方法2において、チャネル情報においてoperating channelの帯域幅及び中心周波数が通知される場合について説明したが、チャネル情報によって通知されるパラメータは、帯域幅及び中心周波数に限定されない。例えば、チャネル情報は、或る周波数帯域に含まれる複数のチャネルのそれぞれがoperating channelに対応するchannelであるか否かを示す情報(例えば、ビットマップ情報)でもよく、operating channelの帯域幅と、開始又は終了のchannel番号(又は、最も低い又は最も高い周波数のchannel番号)との組み合わせでもよい。
 また、上記実施の形態では、一例として、11axのフレームフォーマットをベースにした構成例について説明したが、本開示の一実施例を適用するフォーマットは、11axのフォーマットに限定されない。
 また、本開示の一実施例は、UL通信、DL通信、又は、サイドリンクに適用されてよい。
 また、上記実施の形態において説明したフレームの構成(例えば、フォーマット)は一例であり、これらに限定されず、他の構成でもよい。例えば、これらのフレーム構成において、一部のフィールドが設定されなくてもよく、他のフィールドが更に設定されてもよい。
 (11)上述した実施の形態に示した機能、動作又は処理をSTA200がサポートするか否かを示す情報が、例えば、STA200の能力(capability)情報あるいは能力パラメータとして、STA200からAP100へ送信(あるいは通知)されてもよい。
 能力情報は、上述した各実施の形態に示した機能、動作又は処理の少なくとも1つをSTA200がサポートするか否かを個別に示す情報要素(IE)を含んでもよい。あるいは、能力情報は、上述した各実施の形態に示した機能、動作又は処理の何れか2以上の組み合わせをSTA200がサポートするか否かを示す情報要素を含んでもよい。情報要素は単に要素(element)とも呼ばれる。
 AP100は、例えば、STA200から受信した能力情報に基づいて、能力情報の送信元STA200がサポートする(あるいはサポートしない)機能、動作又は処理を判断(あるいは決定または想定)してよい。AP100は、能力情報に基づく判断結果に応じた動作、処理又は制御を実施してよい。例えば、AP100は、STA200から受信した能力情報に基づいて、Multi-AP coordinationを制御してよい。
 なお、上述した各実施の形態に示した機能、動作又は処理の一部をSTA200がサポートしないことは、STA200において、そのような一部の機能、動作又は処理が制限されることに読み替えられてもよい。例えば、そのような制限に関する情報あるいは要求が、AP100に通知されてもよい。
 STA200の能力あるいは制限に関する情報は、例えば、規格において定義されてもよいし、AP100において既知の情報あるいはAP100へ送信される情報に関連付けられて暗黙的(implicit)にAP100に通知されてもよい。
 (12)本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示は、通信機能を持つあらゆる種類の装置、デバイス、システム(通信装置と総称)において実施可能である。通信装置は無線送受信機(トランシーバー)と処理/制御回路を含んでもよい。無線送受信機は受信部と送信部、またはそれらを機能として、含んでもよい。無線送受信機(送信部、受信部)は、RF(Radio Frequency)モジュールと1または複数のアンテナを含んでもよい。RFモジュールは、増幅器、RF変調器/復調器、またはそれらに類するものを含んでもよい。通信装置の、非限定的な例としては、電話機(携帯電話、スマートフォン等)、タブレット、パーソナル・コンピューター(PC)(ラップトップ、デスクトップ、ノートブック等)、カメラ(デジタル・スチル/ビデオ・カメラ等)、デジタル・プレーヤー(デジタル・オーディオ/ビデオ・プレーヤー等)、着用可能なデバイス(ウェアラブル・カメラ、スマートウオッチ、トラッキングデバイス等)、ゲーム・コンソール、デジタル・ブック・リーダー、テレヘルス・テレメディシン(遠隔ヘルスケア・メディシン処方)デバイス、通信機能付きの乗り物又は移動輸送機関(自動車、飛行機、船等)、及び上述の各種装置の組み合わせがあげられる。
 通信装置は、持ち運び可能又は移動可能なものに限定されず、持ち運びできない又は固定されている、あらゆる種類の装置、デバイス、システム、例えば、スマート・ホーム・デバイス(家電機器、照明機器、スマートメーター又は計測機器、コントロール・パネル等)、自動販売機、その他IoT(Internet of Things)ネットワーク上に存在し得るあらゆる「モノ(Things)」をも含む。
 通信には、セルラーシステム、無線LANシステム、通信衛星システム等によるデータ通信に加え、これらの組み合わせによるデータ通信も含まれる。
 また、通信装置には、本開示に記載される通信機能を実行する通信デバイスに接続又は連結される、コントローラやセンサー等のデバイスも含まれる。例えば、通信装置の通信機能を実行する通信デバイスが使用する制御信号やデータ信号を生成するような、コントローラやセンサーが含まれる。
 また、通信装置には、上記の非限定的な各種装置と通信を行う、あるいはこれら各種装置を制御する、インフラストラクチャ設備、例えば、基地局、アクセスポイント、その他あらゆる装置、デバイス、システムが含まれる。
 本開示の一実施例に係るアクセスポイントは、非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づいて、協調通信の制御に関するチャネル情報を決定する制御回路と、前記チャネル情報を他のアクセスポイントへ送信する送信回路と、を具備する。
 本開示の一実施例において、前記チャネル情報は、前記協調通信を制御する第1アクセスポイントが前記協調通信において使用するプライマリチャネルに関する情報を含む。
 本開示の一実施例において、前記チャネル情報は、前記協調通信を制御される第2アクセスポイントが前記協調通信において使用するプライマリチャネルに関する情報を含む。
 本開示の一実施例において、前記制御回路は、前記協調通信の方式に応じて、前記チャネル情報の内容を決定する。
 本開示の一実施例において、前記協調通信の方式が、前記複数のアクセスポイントに対して異なる周波数リソースを使用する方式の場合、前記チャネル情報は、前記第2アクセスポイントに個別のプライマリチャネルに関する情報を含む。
 本開示の一実施例において、前記協調通信の方式が、前記複数のアクセスポイントに対して共通の周波数リソースを使用する方式の場合、前記チャネル情報は、前記協調通信を制御する第1アクセスポイントと前記第2アクセスポイントとで共通のプライマリチャネルに関する情報を含む。
 本開示の一実施例において、前記チャネル情報は、前記協調通信において前記複数のアクセスポイントに共通の使用可能なチャネルに関する情報を含む。
 本開示の一実施例において、前記送信回路は、前記チャネル情報を、前記アクセスポイントに割り当てられる第1チャネルと異なる第2チャネルを用いて送信する。
 本開示の一実施例において、前記送信回路は、前記第2チャネルのpublic action frameを用いて、前記チャネル情報を送信する。
 本開示の一実施例に係るアクセスポイントは、非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づく、協調通信の制御に関するチャネル情報を、他のアクセスポイントから受信する受信回路と、前記チャネル情報に基づいて、前記協調通信を制御する制御回路と、を具備する。
 本開示の一実施例に係る通信方法において、アクセスポイントは、非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づいて、協調通信の制御に関するチャネル情報を決定し、前記チャネル情報を他のアクセスポイントへ送信する。
 本開示の一実施例に係る通信方法において、アクセスポイントは、非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づく、協調通信の制御に関するチャネル情報を、他のアクセスポイントから受信し、前記チャネル情報に基づいて、前記協調通信を制御する。
 2021年11月4日出願の特願2021-180361の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示の一実施例は、無線通信システムに有用である。
 100 AP
 101,201 無線受信部
 102 プリアンブル復調部
 103 データ復調部
 104 データ復号部
 105,205 チャネル制御部
 106 スケジューリング部
 107 データ生成部
 108 データ符号化部
 109 データ変調部
 110 プリアンブル生成部
 111,207 無線送信部
 200 STA
 202 プリアンブル復調部
 203 データ復調部
 204 データ復号部
 206 送信信号生成部

Claims (12)

  1.  非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づいて、協調通信の制御に関するチャネル情報を決定する制御回路と、
     前記チャネル情報を他のアクセスポイントへ送信する送信回路と、
     を具備するアクセスポイント。
  2.  前記チャネル情報は、前記協調通信を制御する第1アクセスポイントが前記協調通信において使用するプライマリチャネルに関する情報を含む、
     請求項1に記載のアクセスポイント。
  3.  前記チャネル情報は、前記協調通信を制御される第2アクセスポイントが前記協調通信において使用するプライマリチャネルに関する情報を含む、
     請求項1に記載のアクセスポイント。
  4.  前記制御回路は、前記協調通信の方式に応じて、前記チャネル情報の内容を決定する、
     請求項3に記載のアクセスポイント。
  5.  前記協調通信の方式が、前記複数のアクセスポイントに対して異なる周波数リソースを使用する方式の場合、前記チャネル情報は、前記第2アクセスポイントに個別のプライマリチャネルに関する情報を含む、
     請求項4に記載のアクセスポイント。
  6.  前記協調通信の方式が、前記複数のアクセスポイントに対して共通の周波数リソースを使用する方式の場合、前記チャネル情報は、前記協調通信を制御する第1アクセスポイントと前記第2アクセスポイントとで共通のプライマリチャネルに関する情報を含む、
     請求項4に記載のアクセスポイント。
  7.  前記チャネル情報は、前記協調通信において前記複数のアクセスポイントに共通の使用可能なチャネルに関する情報を含む、
     請求項1に記載のアクセスポイント。
  8.  前記送信回路は、前記チャネル情報を、前記アクセスポイントに割り当てられる第1チャネルと異なる第2チャネルを用いて送信する、
     請求項1に記載のアクセスポイント。
  9.  前記送信回路は、前記第2チャネルのpublic action frameを用いて、前記チャネル情報を送信する、
     請求項8に記載のアクセスポイント。
  10.  非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づく、協調通信の制御に関するチャネル情報を、他のアクセスポイントから受信する受信回路と、
     前記チャネル情報に基づいて、前記協調通信を制御する制御回路と、
     を具備するアクセスポイント。
  11.  アクセスポイントは、
     非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づいて、協調通信の制御に関するチャネル情報を決定し、
     前記チャネル情報を他のアクセスポイントへ送信する、
     通信方法。
  12.  アクセスポイントは、
     非協調通信において複数のアクセスポイントのそれぞれに割り当てられるチャネルに基づく、協調通信の制御に関するチャネル情報を、他のアクセスポイントから受信し、
     前記チャネル情報に基づいて、前記協調通信を制御する、
     通信方法。
PCT/JP2022/037062 2021-11-04 2022-10-04 アクセスポイント及び通信方法 WO2023079887A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280070728.4A CN118202701A (zh) 2021-11-04 2022-10-04 接入点及通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180361 2021-11-04
JP2021180361 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023079887A1 true WO2023079887A1 (ja) 2023-05-11

Family

ID=86241335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037062 WO2023079887A1 (ja) 2021-11-04 2022-10-04 アクセスポイント及び通信方法

Country Status (2)

Country Link
CN (1) CN118202701A (ja)
WO (1) WO2023079887A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204147A1 (ja) * 2016-05-24 2017-11-30 オリンパス株式会社 無線通信端末、無線通信方法、およびプログラム
WO2021186588A1 (ja) * 2020-03-17 2021-09-23 日本電信電話株式会社 基地局、通信方法及び通信プログラム
JP2021180361A (ja) 2020-05-11 2021-11-18 キヤノン株式会社 情報処理装置とその制御方法、及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204147A1 (ja) * 2016-05-24 2017-11-30 オリンパス株式会社 無線通信端末、無線通信方法、およびプログラム
WO2021186588A1 (ja) * 2020-03-17 2021-09-23 日本電信電話株式会社 基地局、通信方法及び通信プログラム
JP2021180361A (ja) 2020-05-11 2021-11-18 キヤノン株式会社 情報処理装置とその制御方法、及びプログラム

Also Published As

Publication number Publication date
CN118202701A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
US9974098B2 (en) Method and apparatus for space division multiple access for wireless local area network system
CN114499797A (zh) Ppdu中空间复用参数字段的确定方法及相关装置
WO2022045963A1 (en) Communication apparatus and communication method for multiple access point based null data packet feedback report
WO2023079887A1 (ja) アクセスポイント及び通信方法
WO2021020083A1 (ja) 基地局、送信方法及び受信方法
WO2022190677A1 (ja) 端末、アクセスポイント、及び、通信方法
WO2021240958A1 (ja) アクセスポイント、端末、及び、通信方法
WO2023013254A1 (ja) 通信装置及び通信方法
JP2023521659A (ja) チャネルサウンディングのための通信装置および通信方法
KR20240104094A (ko) 액세스 포인트 및 통신 방법
WO2023149229A1 (ja) 通信装置及び通信方法
WO2022264571A1 (ja) アクセスポイント、端末、及び通信方法
WO2022239426A1 (ja) 基地局、端末、及び通信方法
WO2022249633A1 (ja) 端末、基地局、及び、通信方法
WO2022059359A1 (ja) 基地局、通信装置及び通信方法
WO2024018855A1 (ja) 通信装置及び通信方法
RU2816991C2 (ru) Базовая станция, способ передачи и способ приема
WO2022249634A1 (ja) 端末、基地局、及び、通信方法
WO2023024967A1 (zh) 资源配置方法及装置
WO2023100657A1 (ja) 通信装置及び通信方法
WO2021182109A1 (ja) 送信装置及び送信方法
WO2023176523A1 (ja) 通信装置及び通信方法
WO2024004596A1 (ja) アクセスポイント、端末、及び通信方法
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2023228566A1 (ja) アクセスポイント、端末、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023557905

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/004674

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022889711

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022889711

Country of ref document: EP

Effective date: 20240604