WO2023079877A1 - 酸化物イオン伝導性固体電解質 - Google Patents

酸化物イオン伝導性固体電解質 Download PDF

Info

Publication number
WO2023079877A1
WO2023079877A1 PCT/JP2022/036725 JP2022036725W WO2023079877A1 WO 2023079877 A1 WO2023079877 A1 WO 2023079877A1 JP 2022036725 W JP2022036725 W JP 2022036725W WO 2023079877 A1 WO2023079877 A1 WO 2023079877A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
oxide ion
oxide
ion conductive
mayenite
Prior art date
Application number
PCT/JP2022/036725
Other languages
English (en)
French (fr)
Inventor
洋史 加賀
喜丈 戸田
暁 留野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023079877A1 publication Critical patent/WO2023079877A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/164Calcium aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to oxide ion conductive solid electrolytes.
  • Solid electrolytes with oxide ion conductivity can be used as various electrical devices such as solid oxide fuel cells (SOFC), solid oxide electrolysis cells (SOEC), oxygen sensors, and oxygen pumps.
  • SOFC solid oxide fuel cells
  • SOEC solid oxide electrolysis cells
  • oxygen sensors oxygen sensors
  • oxygen pumps oxygen pumps
  • Both SOFC and SOEC are electrochemical cells that operate at high temperatures.
  • the former can handle various fuels such as hydrogen, carbon monoxide, and methane, while the latter electrolyzes the water and carbon dioxide produced by SOFC operation. It can be converted back to hydrogen and carbon monoxide.
  • SOFC and SOEC have a solid electrolyte provided between two electrodes, and operate by conducting oxide ions in this solid electrolyte.
  • YSZ yttria-stabilized zirconia
  • ScSZ scandia-stabilized zirconia
  • Mayenite-type compounds exhibit oxide ion conductivity (Non-Patent Document 1). Mayenite-type compounds have a crystal structure that contains free oxide ions within cages. Therefore, it is possible that this free oxide ion can contribute to ion conduction.
  • the ionic conductivity of conventional mayenite-type compounds is not very high (for example, about 1/10 that of YSZ).
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a solid electrolyte containing a mayenite-type compound and having significantly high oxide ion conductivity.
  • an oxide ion conductive solid electrolyte a mayenite-type compound having a representative composition represented by Ca 12 Al 14 O 33 ; a crystalline phase of cerium oxide (CeO 2 );
  • An oxide ion conductive solid electrolyte is provided having:
  • the present invention can provide a solid electrolyte having a mayenite compound and having significantly high oxide ion conductivity.
  • FIG. 1 is a diagram schematically showing an example of the configuration of an SOFC having an oxide ion-conducting solid electrolyte according to one embodiment of the present invention
  • FIG. 1 is a diagram schematically showing an example of the configuration of an SOEC having an oxide ion-conducting solid electrolyte according to one embodiment of the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed typically an example of the flow of the manufacturing method of the oxide ion conductive solid electrolyte by one Embodiment of this invention.
  • FIG. 4 is a diagram schematically showing an example flow of another method for producing an oxide ion conductive solid electrolyte according to one embodiment of the present invention.
  • an oxide ion-conducting solid electrolyte comprising: a mayenite-type compound having a representative composition represented by Ca 12 Al 14 O 33 ; a crystalline phase of cerium oxide (CeO 2 ); An oxide ion conductive solid electrolyte is provided having:
  • first solid electrolyte contains a mayenite type compound having a C12A7 structure.
  • the mayenite type compound has a typical composition represented by 12CaO.7Al 2 O 3 and has a characteristic crystal structure with three-dimensionally connected voids (cages) with a diameter of about 0.4 nm.
  • the framework that makes up this cage is positively charged, forming 12 cages per unit cell.
  • One-sixth of this cage is occupied with oxide ions in order to satisfy the electroneutrality condition of the crystal.
  • the caged oxide ions have chemically different properties from the other oxygen ions that make up the framework, and for this reason the caged oxide ions are specifically called free oxide ions.
  • the mayenite type compound is also represented by the composition formula [Ca 24 Al 28 O 64 ] 4+ (O 2 ⁇ ) 2 (Non-Patent Document 2).
  • the mayenite-type compound contains free oxide ions in the cage, so it may function as an oxide ion conductor (Non-Patent Document 1).
  • the inventors of the present application have been earnestly conducting research and development on measures for increasing the oxide ion conductivity of materials containing mayenite type compounds.
  • the inventors of the present application have found that a mixture of a mayenite-type compound and cerium oxide (CeO 2 ) has high ionic conductivity, and have completed the present invention. Therefore, the first solid electrolyte has a mayenite-type compound and CeO 2 in the crystalline phase.
  • CeO2 has a high oxide ion conductivity. Therefore, in the first solid electrolyte, the oxide ion conductivity can be enhanced by mixing the mayenite type compound and CeO 2 .
  • CeO 2 in the present application may be a stoichiometric composition lacking oxygen (for example, a composition represented by CeO 2- ⁇ ). Oxygen-deficient conditions, that is, the introduction of oxygen vacancies lead to higher ionic conductivity. Further, CeO 2 may contain another metal element for the purpose of introducing oxygen vacancies.
  • the first solid electrolyte contains Ce in the CeO 2 crystal phase
  • Ce may also be contained in the mayenite type compound.
  • Ce may in particular be arranged on the site of the Ca atom in the mayenite-type compound.
  • the mayenite type compound contains Ce, it is possible to increase the oxide ion conductivity of the mayenite type compound itself. Moreover, this can further increase the oxide ion conductivity of the first solid electrolyte.
  • the following reasons are considered as reasons why the ionic conductivity is increased by including Ce in the mayenite compound.
  • the Ce atom is thought to be preferentially substituted and arranged at the site of the Ca atom.
  • Ca atoms are divalent, but Ce atoms are tetravalent. Therefore, when Ca atoms are replaced with Ce atoms, the concentration of oxide ions increases in order to maintain electrical neutrality. In addition, it is considered that the concentration of free oxide ions in the cage increases along with this, resulting in an improvement in ionic conductivity.
  • Ce is preferably contained in the first solid electrolyte in an amount of 80 mol% or less in terms of CeO 2 , more preferably in the range of 1 mol% to 70 mol%, and more preferably 1 mol% to 20 mol. %, more preferably 2 mol % to 16 mol %.
  • the content of Ce contained in the first solid electrolyte is too high, the resistance to reduction of the first solid electrolyte may decrease.
  • the Ce content is set to 70 mol % or less in terms of CeO 2 , such reduction in resistance to reduction can be suppressed.
  • first solid electrolyte may further contain titanium (Ti).
  • Ti may be contained in the range of 0.1 mol % to 30 mol % in terms of TiO 2 with respect to the entire first solid electrolyte.
  • the Ti content is preferably 8.1 mol % or more in terms of TiO2 .
  • Ti is considered to be substituted and arranged at the site of the aluminum (Al) atom of the mayenite type compound.
  • a molar ratio Ti/Al of Ti atoms to Al atoms may be 0.015 ⁇ Ti/Al ⁇ 0.50.
  • the ionic conductivity is further improved. This is expected for the following reasons.
  • Ti When Ti is added to the mayenite type compound, it is believed that the Ti atoms are preferentially substituted and arranged at Al atom sites. However, Al atoms are trivalent, but Ti atoms are tetravalent. Therefore, when Al atoms are replaced with Ti atoms, the concentration of oxide ions increases in order to maintain electrical neutrality. In addition, it is considered that the concentration of free oxide ions in the cage increases along with this, resulting in an improvement in ionic conductivity.
  • Such a first solid electrolyte has significantly higher ionic conductivity than conventional mayenite compounds. Therefore, the first solid electrolyte can be expected to be used as a solid electrolyte in SOFC, SOEC, and the like.
  • the first solid electrolyte has a significantly higher oxide ion conductivity. Therefore, the first solid electrolyte can be applied as, for example, a solid oxide fuel cell (SOFC) cell solid electrolyte and a solid electrolyte for SOEC.
  • SOFC solid oxide fuel cell
  • FIG. 1 schematically shows a configuration example of an SOFC cell.
  • the SOFC cell 100 has an oxygen electrode 110, a fuel electrode 120, and a solid electrolyte 130 between the electrodes.
  • the following reactions occur: O 2 +4e ⁇ ⁇ 2O 2 ⁇ (1)
  • Oxide ions generated at the oxygen electrode 110 pass through the solid electrolyte 130 and reach the fuel electrode 120 on the opposite side.
  • the following reactions occur: 2H 2 +2O 2 ⁇ ⁇ 2H 2 O+4e ⁇ Equation (2) Therefore, when the SOFC cell 100 is connected to the external load 140 , the reactions of equations (1) and (2) continue and the external load 140 can be powered.
  • the first solid electrolyte can be applied as the solid electrolyte 130, for example.
  • FIG. 2 schematically shows a configuration example of an SOEC cell.
  • the SOEC cell 200 has an oxygen electrode 210, a fuel electrode 220, and a solid electrolyte 230 between the electrodes.
  • the first solid electrolyte can be applied as the solid electrolyte 230, for example.
  • the oxide ion-conducting solid electrolyte according to one embodiment of the present invention is used as an "electrolyte layer" placed between two electrodes in such an electrochemical cell, and is also used as an “electrolyte component” contained in the electrodes. can also be used as
  • the solid electrolyte according to one embodiment of the present invention may be used in any form.
  • a solid electrolyte according to one embodiment of the invention may be provided as a powder.
  • the solid electrolyte according to an embodiment of the present invention may be provided in the form of slurry, paste or dispersion by mixing with a solvent and/or binder.
  • FIG. 3 schematically shows an example flow of a method for producing an oxide ion conductive solid electrolyte according to one embodiment of the present invention (hereinafter referred to as "first production method").
  • the first manufacturing method includes: (1) a step of mixing a Ca source, an Al source, and cerium oxide in a predetermined ratio to obtain a mixed powder (step S110); (2) a step of calcining the mixed powder to obtain a calcined powder (step S120); (3) a step of sintering the calcined powder to obtain a sintered body (step S130); have
  • Step S110 First, a mixed powder is prepared. Therefore, Ca source, Al source, and cerium oxide are mixed in a predetermined ratio.
  • the Ca source may be selected from, for example, metallic calcium, calcium carbonate, calcium oxide, calcium hydroxide, calcium nitrate, and calcium acetate.
  • the Al source may be selected from, for example, metallic aluminum, ⁇ -alumina, ⁇ -alumina, aluminum hydroxide, aluminum nitrate, and aluminum sulfate.
  • the mixing method is not particularly limited as long as a uniform mixed powder can be obtained.
  • Step S120 Next, the mixed powder is calcined.
  • the calcination process is carried out to desorb compounds such as carbonic acid and nitric acid contained in the mixed powder, and to facilitate the formation of the desired mayenite type compound in the next sintering process.
  • the calcination conditions are not particularly limited, but the calcination temperature is preferably 1000°C or higher in order to obtain the desired mixed oxide. However, if the calcining temperature is too high, crystallization will proceed excessively in the mixed powder. Therefore, the calcination temperature is preferably 1300° C. or less.
  • the calcination time is, for example, about 5 hours to 24 hours. However, the calcining time varies depending on the calcining temperature, and the higher the calcining temperature, the shorter the calcining time.
  • the calcined powder may be pulverized as necessary.
  • the average particle size after pulverization may range, for example, from 0.1 ⁇ m to 100 ⁇ m.
  • Step S130 Next, the calcined powder is sintered.
  • the sintering process is carried out to obtain a dense sintered body with the desired crystal phase.
  • the calcined powder Before the sintering process, the calcined powder may be molded and the sintering process may be performed using the obtained molded body.
  • the molding conditions are not particularly limited, and a general molding method such as uniaxial molding or hydrostatic molding may be employed.
  • the sintering method is not particularly limited.
  • the calcined powder or compact may be sintered by a pressureless sintering method under normal pressure.
  • the calcined powder may be sintered using a pressure sintering method such as hot press sintering or discharge plasma sintering.
  • a pressure sintering method such as hot press sintering or discharge plasma sintering.
  • molding and sintering may be performed at once.
  • the sintering temperature is not particularly limited as long as a proper sintered body can be obtained, but is preferably in the range of 1200°C to 1400°C. If the sintering temperature is too low, a dense sintered body may not be obtained. Also, if the sintering temperature is too high, the object to be processed may melt.
  • the optimum sintering time varies depending on the sintering temperature, but in the case of pressureless sintering, it is, for example, about 5 to 48 hours, and in the case of pressure sintering by discharge plasma, it is, for example, 5 minutes. ⁇ 60 minutes.
  • carbon may adhere to the surface of the sintered body.
  • the adhered carbon can be removed by heat-treating in the air at 800° C. to 1000° C. for about 5 hours.
  • an oxide ion conductive solid electrolyte according to one embodiment of the present invention can be produced.
  • FIG. 4 schematically shows an example flow of another method for producing an oxide ion conductive solid electrolyte according to one embodiment of the present invention (hereinafter referred to as "second production method").
  • the second manufacturing method includes: (1) a step of mixing a Ca source and an Al source in a predetermined ratio to obtain a first mixed powder (step S210); (2) a step of calcining the first mixed powder to obtain a first calcined powder (step S220); (3) a step of mixing the first calcined powder and cerium oxide in a predetermined ratio to obtain a second mixed powder (step S230); (4) a step of calcining the second mixed powder to obtain a second calcined powder (step S240); (5) Sintering the second calcined powder to obtain a sintered body (step S250); have
  • each step included in the second manufacturing method can be easily understood by a person skilled in the art from the description of each step S110 to S130 in the first manufacturing method. Therefore, detailed description of each step is omitted here.
  • the oxide ion conductive solid electrolyte is manufactured through two calcination steps (steps S220 and S240).
  • the mayenite-type compound and the cerium oxide crystal phase are formed more reliably.
  • the method for producing an oxide ion conductive solid electrolyte according to one embodiment of the present invention has been described above using the first production method and the second production method as examples.
  • the above description is merely an example, and the oxide ion conductive solid electrolyte according to one embodiment of the present invention may be produced by other methods such as a hydrothermal method, a sol-gel method, and a liquid-phase combustion method. good.
  • Examples 1 to 8 are examples, and Examples 21 and 22 are comparative examples.
  • Example 1 A sintered body was produced by the following method.
  • sample 1 The obtained sintered body is called "Sample 1".
  • the Ce content is 1.3 mol % in terms of CeO2 .
  • Examples 2 to 6 A sintered body was produced in the same manner as in Example 1. However, in Examples 2 to 6, mixed powders were prepared by changing the compounding ratio of each raw material in the above-described [Preparation step] from that in Example 1. Other steps are the same as in Example 1.
  • Example 2 The obtained sintered bodies are referred to as “Sample 2" to “Sample 6", respectively.
  • Example 7 A sintered body was produced in the same manner as in Example 1. However, in Example 7, titanium dioxide powder was added as raw materials in addition to calcium carbonate powder, ⁇ -alumina powder, and cerium oxide powder in the above-described [Preparation step]. Titanium dioxide powder was added so as to be 5.1 mol % with respect to the whole. The Ti/Al ratio in the mixed powder is 0.077.
  • the obtained sintered body is called "Sample 7".
  • Example 8 A sintered body was produced in the same manner as in Example 7. However, in Example 8, the blending ratio of each raw material was changed from that in Example 7 to prepare a mixed powder. Other steps are the same as in Example 7.
  • the obtained sintered body is called "Sample 8".
  • Example 21 A sintered body was produced in the same manner as in Example 1. However, in Example 21, only calcium carbonate (4.33 g) and ⁇ -alumina (2.57 g) were mixed in the above-described [Preparation step] to prepare a mixed powder. That is, a mixed powder was prepared without adding cerium oxide powder. Other steps are the same as in Example 1.
  • the obtained sintered body is called "Sample 21".
  • Example 22 A sintered body was produced in the same manner as in Example 1. However, in Example 22, a sintered body was produced using only cerium oxide powder.
  • the obtained sintered body is called "Sample 22".
  • Table 1 summarizes the contents of Ce and Ti contained in each sample.
  • resistivity measurement A resistivity measurement was performed using each sample. The impedance method was used for resistivity measurements.
  • each sample was polished with #80 to #1000 sandpaper to remove the surface layer and smooth it.
  • a platinum electrode with a diameter of 6 mm and a thickness of 10 ⁇ m was placed on the polished surface via platinum paste. This sample was heat treated at 1000° C. for 15 minutes in an air atmosphere to solidify the platinum paste.
  • the sample was placed in an electric furnace in an air atmosphere.
  • the sample was also connected to a potentiogalvanostat (Biologic SP-150) via a platinum wire coupled to a platinum electrode.
  • the measurement frequency was 1 MHz to 100 mHz.
  • the resistivity was obtained from the intersection with the horizontal axis (real number axis).
  • Each sample was placed in a furnace, and nitrogen gas was circulated at a flow rate of 30 mL/min. After holding the inside of the furnace at 900° C. for 1 hour, it was slowly cooled and each sample was collected.
  • Table 3 summarizes the reduction resistance evaluation test results obtained for each sample.
  • the present invention can have the following aspects.
  • SOFC cell 110 oxygen electrode 120 fuel electrode 130 solid electrolyte 140 external load 200 SOEC cell 210 oxygen electrode 220 fuel electrode 230 solid electrolyte 240 external power supply

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Conductive Materials (AREA)

Abstract

酸化物イオン伝導性固体電解質であって、Ca12Al14O33で表される代表組成を有するマイエナイト型化合物と、酸化セリウム(CeO2)の結晶相と、を有する、酸化物イオン伝導性固体電解質。

Description

酸化物イオン伝導性固体電解質
 本発明は、酸化物イオン伝導性固体電解質に関する。
 酸化物イオン伝導性を有する固体電解質は、固体酸化物型燃料電池(SOFC)、固体酸化物型電解セル(SOEC)、酸素センサー、および酸素ポンプ等、各種電気学デバイスとしての利用が考えられる。
 近年、再生可能エネルギーの普及のために着目されているPower to Gas/Chemicalという技術コンセプトの実現形態の一つとしてSOFCとSOECを組み合わせた高効率エネルギーシステムが着目されている。
 SOFC、SOECは共に高温で作動する電気化学セルであり、前者は水素や一酸化炭素、メタン等、様々な燃料に対応でき、後者はSOFCの動作により生成する水や二酸化炭素を電気分解し、水素や一酸化炭素に戻すことができる。
 SOFC、SOECは2つの電極間に設けられた固体電解質を有し、この固体電解質中を酸化物イオンが伝導することにより作動する。
国際公開第2019/189701号
M.Lacerda et al.,"High Oxide ion conductivity in Ca12Al14O33"Nature,vol.332,P525,7,April(1988) F.M.Lea,C.H.Desch,The Chemistryof Cement and Concrete,2nd ed.,p.52,Edward Arnold&Co.,London,1956 A.Pedone et al.J.Phys.Chem.B 110、11780-11795(2006) L.B.Skinner et al.Phys.Rev.Lett. 112、157801(2014)
 SOFCおよびSOEC用の固体電解質としては、これまで、イットリア安定化ジルコニア(YSZ)やスカンジア安定化ジルコニア(ScSZ)などの材料が提案されている。
 また、最近では、マイエナイト型化合物が酸化物イオン伝導性を示すことが報告されている(非特許文献1)。マイエナイト型化合物は、ケージ内にフリー酸化物イオンを含有する結晶構造を有する。従って、このフリー酸化物イオンがイオン伝導に寄与できる可能性がある。
 しかしながら、本願発明者らによれば、従来のマイエナイト型化合物のイオン伝導性は、あまり高くないことが認められている(例えば、YSZの1/10程度)。
 従って、マイエナイト型化合物を酸化物イオン伝導性固体電解質に適用するためには、さらなる対策が必要となる。
 本発明は、このような背景に鑑みなされたものであり、本発明では、マイエナイト型化合物を含み、有意に高い酸化物イオン伝導性を有する固体電解質を提供することを目的とする。
 本発明では、酸化物イオン伝導性固体電解質であって、
 Ca12Al1433で表される代表組成を有するマイエナイト型化合物と、
 酸化セリウム(CeO)の結晶相と、
 を有する、酸化物イオン伝導性固体電解質が提供される。
 本発明では、マイエナイト型化合物を有し、有意に高い酸化物イオン伝導性を有する固体電解質を提供することができる。
本発明の一実施形態による酸化物イオン伝導性固体電解質を有するSOFCの構成の一例を模式的に示した図である。 本発明の一実施形態による酸化物イオン伝導性固体電解質を有するSOECの構成の一例を模式的に示した図である。 本発明の一実施形態による酸化物イオン伝導性固体電解質の製造方法のフローの一例を模式的に示した図である。 本発明の一実施形態による酸化物イオン伝導性固体電解質の別の製造方法のフローの例を模式的に示した図である。
 以下、本発明の一実施形態について説明する。
 (本発明の一実施形態による酸化物イオン伝導性固体電解質)
 本発明の一実施形態では、酸化物イオン伝導性固体電解質であって、
 Ca12Al1433で表される代表組成を有するマイエナイト型化合物と、
 酸化セリウム(CeO)の結晶相と、
 を有する、酸化物イオン伝導性固体電解質が提供される。
 本発明の一実施形態による酸化物イオン伝導性固体電解質(以下、「第1の固体電解質」と称する)は、C12A7構造のマイエナイト型化合物を含む。
 マイエナイト型化合物は、12CaO・7Alで表される代表組成を有し、三次元的に連結された直径約0.4nmの空隙(ケージ)を有する特徴的な結晶構造を持つ。
 このケージを構成する骨格は、正電荷を帯びており、単位格子当たり12個のケージを形成する。このケージの1/6は、結晶の電気的中性条件を満たすため、内部が酸化物イオンで占められている。しかしながら、このケージ内の酸化物イオンは、骨格を構成する他の酸素イオンとは化学的に異なる特性を有しており、このため、ケージ内の酸化物イオンは、特にフリー酸化物イオンと呼ばれている。
 マイエナイト型化合物は、組成式[Ca24Al28644+(O2-とも表記される(非特許文献2)。
 前述のように、マイエナイト型化合物は、ケージ内にフリー酸化物イオンを含むため、酸化物イオン伝導体として機能できる可能性がある(非特許文献1)。
 しかしながら、本願発明者らによる解析によれば、上記組成式を有する一般的なマイエナイト型化合物のイオン伝導性は、あまり高くないことが認められている(例えば、YSZの1/10程度)。
 従って、マイエナイト型化合物を酸化物イオン伝導性固体電解質に適用するためには、さらなる対策が必要となる。
 これまで、本願発明者らは、マイエナイト型化合物を含む材料の酸化物イオン伝導性を高めるための方策について、鋭意研究開発を進めてきた。そして、本願発明者らは、マイエナイト型化合物と酸化セリウム(CeO)の混合物が高いイオン伝導性を有することを見出し、本願発明に至った。従って、第1の固体電解質は、マイエナイト型化合物と、結晶相のCeOとを有する。
 CeOは、高い酸化物イオン伝導性を有する。従って、第1の固体電解質では、マイエナイト型化合物とCeOとを混合することにより、酸化物イオン伝導性を高めることができる。
 本願におけるCeOは、化学量論組成から酸素が欠乏した組成(例えば、CeO2―δで表される組成)であってもよい。酸素欠乏の状態、すなわち、酸素空孔が導入されることにより、より高いイオン伝導性が発現する。また、酸素空孔を導入させることを目的として、CeOに別の金属元素を含ませてもよい。
 なお、第1の固体電解質は、CeO結晶相中にCeを含むが、これに加えて、Ceは、マイエナイト型化合物中にも含まれてもよい。この場合、Ceは、特に、マイエナイト型化合物におけるCa原子のサイトに配置されてもよい。
 マイエナイト型化合物にCeを含有させた場合、マイエナイト型化合物自体の酸化物イオン伝導性を高めることが可能となる。またこれにより、よりいっそう第1の固体電解質の酸化物イオン伝導性を高めることができる。
 なお、現時点では、本発明の一実施形態において、マイエナイト型化合物中にCeを含有させることによりイオン伝導性が高まる理由として、以下のことが考えられる。
 マイエナイト型化合物にCeを含有させた場合、Ce原子は、Ca原子のサイトに優先的に置換配置されると考えられる。
 ここで、Ca原子は2価であるが、Ce原子は4価である。このため、Ca原子がCe原子と置換されると、電気的中性を保つため、酸化物イオンの濃度が上昇する。また、これに伴い、ケージ内のフリー酸化物イオンの濃度も高くなる結果、イオン伝導性が向上するものと考えられる。
 Ceは、第1の固体電解質中に、CeO換算で80モル%以下含有されることが好ましく、1モル%~70モル%の範囲で含有されることがより好ましく、1モル%~20モル%の範囲で含有されることがさらに好ましく、2モル%~16モル%の範囲で含有されることが特に好ましい。
 なお、第1の固体電解質に含まれるCeの含有量が多すぎると、第1の固体電解質の還元耐性が低下する場合がある。しかしながら、Ceの含有量を、CeO換算で、70モル%以下とすることにより、そのような還元耐性の低下を抑制できる。
 また、第1の固体電解質は、さらに、チタン(Ti)を含有してもよい。
 Tiは、第1の固体電解質の全体に対して、TiO換算で、0.1モル%~30モル%の範囲で含有されてもよい。特に、Tiの含有量は、TiO換算で、8.1モル%以上であることが好ましい。
 なお、第1の固体電解質において、Tiは、マイエナイト型化合物のアルミニウム(Al)原子のサイトに置換配置されているものと考えられる。Al原子に対するTi原子のモル比Ti/Alは、0.015≦Ti/Al≦0.50であってもよい。
 第1の固体電解質がTiを含む場合、イオン導電性がさらに向上する。これは、以下の理由によると予想される。
 マイエナイト型化合物にTiを添加した場合、Ti原子は、Al原子のサイトに優先的に置換配置されると考えられる。ただし、Al原子は3価であるが、Ti原子は4価である。このため、Al原子がTi原子と置換されると、電気的中性を保つため、酸化物イオンの濃度が上昇する。また、これに伴い、ケージ内のフリー酸化物イオンの濃度も高くなる結果、イオン伝導性が向上するものと考えられる。
 このような第1の固体電解質は、従来のマイエナイト型化合物に比べて、有意に高いイオン伝導性を有する。従って、第1の固体電解質は、SOFCおよびSOEC等における固体電解質としての利用が期待できる。
 (用途)
 第1の固体電解質は、有意に高い酸化物イオン伝導性を有する。従って、第1の固体電解質は、例えば、固体酸化物型燃料電池(SOFC)セルの固体電解質、およびSOEC用の固体電解質として適用できる。
 図1には、SOFCセルの一構成例を模式的に示す。
 図1に示すように、SOFCセル100は、酸素極110、燃料極120、および両電極の間の固体電解質130を有する。
 酸素極110では、例えば、以下の反応が生じる:
 
   O+4e→2O2-   (1)式
 
 酸素極110で生じた酸化物イオンは、固体電解質130内を通り、反対側の燃料極120に達する。燃料極120では、例えば、以下の反応が生じる:
 
   2H+2O2-→2HO+4e   (2)式
 
 従って、SOFCセル100を外部負荷140に接続した場合、(1)式および(2)式の反応が継続され、外部負荷140に給電することができる。
 このようなSOFCセル100において、例えば固体電解質130として、第1の固体電解質を適用することができる。
 このようなSOFCセル100では、固体電解質130が有意に高い酸化物イオン伝導性を有するため、有意に高い発電効率を得ることが可能となる。
 図2には、SOECセルの一構成例を模式的に示す。
 図2に示すように、SOECセル200は、酸素極210、燃料極220、および両電極の間の固体電解質230を有する。
 酸素極210では、例えば、以下の反応が生じる:
 
   2O2-→O+4e   (3)式
 
 また、燃料極220では、例えば、以下の反応が生じる:
 
   2HO+4e→2H+2O2-   (4)式
 
 燃料極220で生じた酸化物イオンは、固体電解質230内を通り、反対側の酸素極210に達する。従って、SOECセル200を外部電源240に接続した場合、(3)式および(4)式の反応が継続される。
 このようなSOECセル200において、例えば固体電解質230として、第1の固体電解質を適用することができる。
 このようなSOECセル200では、固体電解質230が有意に高い酸化物イオン伝導性を有するため、有意に高い電解効率を得ることが可能となる。
 本発明の一実施形態による酸化物イオン伝導性固体電解質は、このような電気化学セルにおいて、2つの電極の間に設置される「電解質層」として使用される他、電極に含まれる「電解質成分」としても使用することができる。
 また、本発明の一実施形態による固体電解質は、いかなる形態で使用されてもよい。例えば、本発明の一実施形態による固体電解質は、粉末として提供されてもよい。あるいは、本発明の一実施形態による固体電解質は、溶媒および/またはバインダなどと混合して、スラリー、ペーストまたは分散液の形態で提供されてもよい。
 この他にも、各種使用形態が想定され得る。
 (本発明の一実施形態による酸化物イオン伝導性固体電解質の製造方法)
 次に、図3を参照して、本発明の一実施形態による酸化物イオン伝導性固体電解質の製造方法の一例について説明する。
 図3には、本発明の一実施形態による酸化物イオン伝導性固体電解質の製造方法(以下、「第1の製造方法」と称する)のフローの例を模式的に示す。
 図3に示すように、第1の製造方法は、
(1)Ca源、Al源、および酸化セリウムを所定の割合で混合して、混合粉末を得る工程(工程S110)と、
(2)混合粉末を仮焼して、仮焼粉を得る工程(工程S120)と、
(3)仮焼粉を焼結させて、焼結体を得る工程(工程S130)と、
 を有する。
 以下、各工程について、説明する。
 (工程S110)
 まず、混合粉末が調製される。このため、Ca源、Al源、および酸化セリウムが所定の割合で混合される。
 Ca源は、例えば、金属カルシウム、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、硝酸カルシウム、および酢酸カルシウムなどから選定されてもよい。
 Al源は、例えば、金属アルミニウム、αアルミナ、γアルミナ、水酸化アルミニウム、硝酸アルミニウム、および硫酸アルミニウムなどから選定されてもよい。
 混合方法は、均一な混合粉末が得られれば、特に限られない。
 (工程S120)
 次に、混合粉末が仮焼される。
 仮焼工程は、混合粉末に含まれる炭酸および硝酸などの化合物を脱離させ、次の焼結工程において、目的のマイエナイト型化合物を生成し易くするために実施される。
 仮焼の条件は、特に限られないが、目的の混合酸化物を得るためには、仮焼温度は、1000℃以上が好ましい。ただし、仮焼温度が高すぎると、混合粉末において、過度に結晶化が進行してしまう。従って、仮焼温度は、1300℃以下が好ましい。
 仮焼時間は、例えば、5時間~24時間程度である。ただし、仮焼時間は、仮焼温度によっても変化し、仮焼温度が高いほど、仮焼時間を短くできる。
 これにより、仮焼粉が得られる。
 なお、仮焼粉は、必要に応じて粉砕してもよい。粉砕後の平均粒径は、例えば、0.1μm~100μmの範囲であってもよい。
 (工程S130)
 次に、仮焼粉が焼結される。
 焼結工程は、目的の結晶相を有する緻密な焼結体を得るために実施される。
 なお、焼結工程の前に、仮焼粉を成形し、得られた成形体を用いて、焼結工程を実施してもよい。
 成形の条件等は、特に限られず、一軸成形法または静水圧成形法等、一般的な成形方法が採用されてもよい。
 焼結の方法は、特に限られず、例えば、常圧下における無加圧焼結法により、仮焼粉または成形体を焼結させてもよい。
 あるいは、ホットプレス焼結または放電プラズマ焼結のような、加圧焼結法を用いて、仮焼粉を焼結させてもよい。なお、この場合、成形と焼結が一度に実施されてもよい。
 焼結温度は、適正な焼結体が得られる限り、特に限られないが、1200℃~1400℃の範囲が好ましい。焼結温度が低すぎると、緻密な焼結体が得られない場合がある。また、焼結温度が高すぎると、被処理体の溶融が生じる場合がある。
 焼結時間は、焼結温度に応じて最適な時間を選択することが望ましい。一般に、焼結温度が高い程、短時間で焼結が完了する。
 最適な焼結時間は、焼結温度によっても異なるが、無加圧焼結処理の場合、例えば、5時間~48時間程度であり、放電プラズマによる加圧焼結処理の場合、例えば、5分~60分程度である。
 なお、カーボン製の容器を使用して、加圧焼結処理を実施すると、焼結体の表面にカーボンが付着する場合がある。そのような場合、大気下、800℃~1000℃で5時間程度、熱処理することにより、付着カーボンを除去することができる。
 以上の工程により、本発明の一実施形態による酸化物イオン伝導性固体電解質を製造することができる。
 (本発明の一実施形態による酸化物イオン伝導性固体電解質の別の製造方法)
 次に、図4を参照して、本発明の一実施形態による酸化物イオン伝導性固体電解質の別の製造方法の例について説明する。
 図4には、本発明の一実施形態による酸化物イオン伝導性固体電解質の別の製造方法(以下、「第2の製造方法」と称する)のフローの例を模式的に示す。
 図4に示すように、第2の製造方法は、
(1)Ca源およびAl源を所定の割合で混合して、第1の混合粉末を得る工程(工程S210)と、
(2)第1の混合粉末を仮焼して、第1の仮焼粉を得る工程(工程S220)と、
(3)第1の仮焼粉および酸化セリウムを所定の割合で混合して、第2の混合粉末を得る工程(工程S230)と、
(4)第2の混合粉末を仮焼して、第2の仮焼粉を得る工程(工程S240)と、
(5)第2の仮焼粉を焼結させて、焼結体を得る工程(工程S250)と、
 を有する。
 第2の製造方法に含まれる各工程は、前述の第1の製造方法における各工程S110~工程S130に関する記載から、当業者には容易に理解することができる。従って、ここでは、各工程についての詳細な説明は省略する。
 ただし、第2の製造方法では、第1の製造方法とは異なり、2回の仮焼工程(工程S220および工程S240)を経て、酸化物イオン伝導性固体電解質が製造される。
 この場合、第1の製造方法のように、Ca源、Al源および酸化セリウムを含む混合粉末を一度に仮焼処理する場合に比べて、より確実に、マイエナイト型化合物と酸化セリウムの結晶相とを有する酸化物イオン伝導性固体電解質を製造することができる。
 以上、第1の製造方法および第2の製造方法を例に、本発明の一実施形態による酸化物イオン伝導性固体電解質の製造方法について説明した。しかしながら、上記記載は、単なる一例に過ぎず、本発明の一実施形態による酸化物イオン伝導性固体電解質は、水熱法、ゾルゲル法、および液相燃焼法など、別の方法により製造されてもよい。
 以下、本発明の実施例について説明する。
 なお、以下の記載において、例1~例8は実施例であり、例21~例22は比較例である。
 (例1)
 以下の方法で、焼結体を作製した。
 [調合工程]
 炭酸カルシウム粉末(4.15g)と、αアルミナ粉末(2.52g)と、酸化セリウム粉末(0.152g)とをそれぞれ秤量した。これらを、φ5mmのジルコニアボールおよび10ccのイソプロパノールが入ったポットに投入し、遊星ボールミル法により3時間粉砕混合した。次に、混合粉末を100℃で乾燥し、イソプロパノールを除去した。さらに、ふるいにより、混合粉末をジルコニアボールと分離した。
 [仮焼工程]
 得られた混合粉末をアルミナ坩堝に入れ、大気中、1200℃で5時間仮焼した。得られた試料をメノー乳鉢で粉砕し、仮焼粉を作製した。
 [焼結工程]
 仮焼粉1gをφ1.5cmの超硬金属ダイスに入れ、油圧プレス器で20kNの圧力を印加し、一軸成形を実施した。さらに、196MPaで静水圧成形処理を行い、φ1.5cmのペレットを作製した。ペレットを大気中、1200℃で12時間熱処理し、φ1.3cmφ、厚さ2mmの焼結体を得た。
 得られた焼結体を「サンプル1」と称する。サンプル1において、Ceの含有量は、CeO換算で、1.3モル%である。
 (例2~例6)
 例1と同様の方法により、焼結体を作製した。ただし、例2~例6では、前述の[調合工程]における各原料の配合比を例1の場合とは変化させて、混合粉末を調製した。その他の工程は、例1の場合と同様である。
 得られた焼結体を、それぞれ、「サンプル2」~「サンプル6」と称する。
 (例7)
 例1と同様の方法により、焼結体を作製した。ただし、この例7では、前述の[調合工程]において、原料として、炭酸カルシウム粉末、αアルミナ粉末、および酸化セリウム粉末に加えて、二酸化チタン粉末を添加した。二酸化チタン粉末は、全体に対して、5.1モル%となるように添加した。混合粉末におけるTi/Al比は、0.077である。
 その他の工程は、例1の場合と同様である。
 得られた焼結体を「サンプル7」と称する。
 (例8)
 例7と同様の方法により、焼結体を作製した。ただし、この例8では、各原料の配合比を例7の場合とは変化させて、混合粉末を調製した。その他の工程は、例7の場合と同様である。
 得られた焼結体を「サンプル8」と称する。
 (例21)
 例1と同様の方法により、焼結体を作製した。ただし、この例21では、前述の[調合工程]において、炭酸カルシウム(4.33g)とαアルミナ(2.57g)のみを混合して、混合粉末を調製した。すなわち、酸化セリウム粉末を添加せずに混合粉末を調製した。その他の工程は、例1の場合と同様である。
 得られた焼結体を「サンプル21」と称する。
 (例22)
 例1と同様の方法により、焼結体を作製した。ただし、この例22では、酸化セリウム粉末のみを使用して、焼結体を作製した。
 得られた焼結体を、「サンプル22」と称する。
 以下の表1には、各サンプルに含まれるCeおよびTiの含有量をまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 各サンプルを用いて、以下の評価を評価した。
 (X線回折分析)
 各サンプルを用いて、X線回折分析を実施した。サンプル21以外の各サンプルにおいて、CeO結晶のピークが観察された。
 (抵抗率測定)
 各サンプルを用いて、抵抗率の測定を実施した。抵抗率の測定には、インピーダンス法を使用した。
 まず、各サンプルの表面を、#80~#1000の紙やすりで研磨し、表面層を除去するとともに、平滑化した。
 次に、研磨表面に、白金ペーストを介して、φ6mm、厚さ10μmの白金電極を設置した。このサンプルを、大気雰囲気において、1000℃で15分間熱処理し、白金ペーストを固化させた。
 次に、サンプルを大気雰囲気の電気炉内に設置した。また、白金電極に結合された白金線を介して、サンプルをポテンショガルバノスタット(バイオロジック社SP―150)と接続した。
 次に、サンプルを850℃に加熱した後、120分間保持し、サンプルの温度を安定化させた。
 サンプルの温度が安定化した後、インピーダンス測定を実施し、Cole-Coleプロットを作成した。測定周波数は、1MHz~100mHzとした。
 得られたCole-Coleプロットにおいて、横軸(実数軸)との交点から抵抗率を求めた。
 以下の表2には、各サンプルにおいて得られた抵抗率測定結果をまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 表2において、各サンプルの抵抗率は、相対抵抗率、すなわちサンプル21において得られた抵抗率の比で示した。
 (還元耐性評価試験)
 以下の方法により、一部のサンプルにおいて、還元耐性を評価した。
 各サンプルを炉内に入れ、30mL/分の流量で窒素ガスを流通させた。炉内を900℃に1時間保持した後、徐冷し、各サンプルを回収した。
 サンプルの試験前後の色の変化を目視で評価した。試験後のサンプルの色がクリーム色および薄灰色の場合、還元耐性を「A」(良好)と判定した。また、試験後のサンプルの色が灰色の場合、還元耐性を「B」(普通)と判定した。さらに、試験後のサンプルの色が黒色の場合、還元耐性を「C」(悪い)と判定した。
 以下の表3には、各サンプルにおいて得られた還元耐性評価試験結果をまとめて示した。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、サンプル1~サンプル5およびサンプル7~サンプル8では、サンプル21に比べて、抵抗率が大きく低減されていることがわかった。また、サンプル3~4およびサンプル6では、サンプル22に比べて、有意に高い還元耐性を有することがわかった。
 (本発明の一態様)
 本発明は、以下の態様を有し得る。
 (態様1)
 酸化物イオン伝導性固体電解質であって、
 Ca12Al1433で表される代表組成を有するマイエナイト型化合物と、
 酸化セリウム(CeO)の結晶相と、
 を有する、酸化物イオン伝導性固体電解質。
 (態様2)
 前記マイエナイト型化合物中には、セリウム(Ce)が含有されている、態様1に記載の酸化物イオン伝導性固体電解質。
 (態様3)
 CeO換算で、Ceを2モル%~16モル%含む、態様1に記載の酸化物イオン伝導性固体電解質。
 (態様4)
 さらに、チタン(Ti)を、TiO換算で0.1モル%~30モル%含む、態様1乃至3のいずれか一つに記載の酸化物イオン伝導性固体電解質。
 (態様5)
 前記Tiは、前記マイエナイト型化合物におけるAl原子のサイトに配置されている、態様4に記載の酸化物イオン伝導性固体電解質。
 (態様6)
 態様1乃至5のいずれか一つに記載の酸化物イオン伝導性固体電解質を備える電気化学デバイス。
 本願は、2021年11月8日に出願した日本国特許出願第2021-182099号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 100   SOFCセル
 110   酸素極
 120   燃料極
 130   固体電解質
 140   外部負荷
 200   SOECセル
 210   酸素極
 220   燃料極
 230   固体電解質
 240   外部電源

Claims (6)

  1.  酸化物イオン伝導性固体電解質であって、
     Ca12Al1433で表される代表組成を有するマイエナイト型化合物と、
     酸化セリウム(CeO)の結晶相と、
     を有する、酸化物イオン伝導性固体電解質。
  2.  前記マイエナイト型化合物中には、セリウム(Ce)が含有されている、請求項1に記載の酸化物イオン伝導性固体電解質。
  3.  CeO換算で、Ceを2モル%~16モル%含む、請求項1に記載の酸化物イオン伝導性固体電解質。
  4.  さらに、チタン(Ti)を、TiO換算で0.1モル%~30モル%含む、請求項1または2に記載の酸化物イオン伝導性固体電解質。
  5.  前記Tiは、前記マイエナイト型化合物におけるAl原子のサイトに配置されている、請求項4に記載の酸化物イオン伝導性固体電解質。
  6.  請求項1または2に記載の酸化物イオン伝導性固体電解質を備える電気化学デバイス。
PCT/JP2022/036725 2021-11-08 2022-09-30 酸化物イオン伝導性固体電解質 WO2023079877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021182099 2021-11-08
JP2021-182099 2021-11-08

Publications (1)

Publication Number Publication Date
WO2023079877A1 true WO2023079877A1 (ja) 2023-05-11

Family

ID=86241332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036725 WO2023079877A1 (ja) 2021-11-08 2022-09-30 酸化物イオン伝導性固体電解質

Country Status (1)

Country Link
WO (1) WO2023079877A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238247A (ja) * 2001-12-04 2003-08-27 Ngk Spark Plug Co Ltd 酸素イオン伝導性固体電解質並びにこれを用いた電気化学デバイス及び固体電解質型燃料電池
JP2012126618A (ja) * 2010-12-16 2012-07-05 Asahi Glass Co Ltd 導電性マイエナイト化合物の製造方法
WO2014192701A1 (ja) * 2013-05-28 2014-12-04 旭硝子株式会社 半導体装置および半導体装置の製造方法
JP2018065707A (ja) * 2016-10-17 2018-04-26 旭硝子株式会社 導電性マイエナイト化合物の製造方法および導電性マイエナイト化合物の焼結体
WO2019189701A1 (ja) 2018-03-29 2019-10-03 国立大学法人東京工業大学 電解セル及び電解装置
JP2021025103A (ja) * 2019-08-06 2021-02-22 三井金属鉱業株式会社 固体電解質接合体
WO2021145288A1 (ja) * 2020-01-17 2021-07-22 Agc株式会社 酸化物焼結体および酸化物焼結体の製造方法
JP2021182099A (ja) 2020-05-20 2021-11-25 アルバック成膜株式会社 マスクブランクスの製造方法、マスクブランクス、フォトマスク

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238247A (ja) * 2001-12-04 2003-08-27 Ngk Spark Plug Co Ltd 酸素イオン伝導性固体電解質並びにこれを用いた電気化学デバイス及び固体電解質型燃料電池
JP2012126618A (ja) * 2010-12-16 2012-07-05 Asahi Glass Co Ltd 導電性マイエナイト化合物の製造方法
WO2014192701A1 (ja) * 2013-05-28 2014-12-04 旭硝子株式会社 半導体装置および半導体装置の製造方法
JP2018065707A (ja) * 2016-10-17 2018-04-26 旭硝子株式会社 導電性マイエナイト化合物の製造方法および導電性マイエナイト化合物の焼結体
WO2019189701A1 (ja) 2018-03-29 2019-10-03 国立大学法人東京工業大学 電解セル及び電解装置
JP2021025103A (ja) * 2019-08-06 2021-02-22 三井金属鉱業株式会社 固体電解質接合体
WO2021145288A1 (ja) * 2020-01-17 2021-07-22 Agc株式会社 酸化物焼結体および酸化物焼結体の製造方法
JP2021182099A (ja) 2020-05-20 2021-11-25 アルバック成膜株式会社 マスクブランクスの製造方法、マスクブランクス、フォトマスク

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. PEDONE ET AL., J. PHYS. CHEM. B, vol. 110, 2006, pages 11780 - 11795
F. M. LEAC. H. DESCH: "The Chemistry of Cement and Concrete", 1956, EDWARD ARNOLD CO., pages: 52
L. B. SKINNER ET AL., PHYS. REV. LETT., vol. 112, 2014, pages 157801
M. LACERDA ET AL.: "High Oxide ion conductivity in Ca A1 0", NATURE, vol. 332, 7 April 1988 (1988-04-07), pages 525, XP002558548, DOI: 10.1038/332525a0

Similar Documents

Publication Publication Date Title
JP5306726B2 (ja) 燃料電池用電極−電解質複合体粉末及びその調製方法
Ni et al. A B-site doped perovskite ferrate as an efficient anode of a solid oxide fuel cell with in situ metal exsolution
Kato et al. Synthesis and oxide ion conductivity of new layered perovskite La1− xSr1+ xInO4− d
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
Lenka et al. Comparative investigation on the functional properties of alkaline earth metal (Ca, Ba, Sr) doped Nd2NiO4+ δ oxygen electrode material for SOFC applications
CN102731090A (zh) 一种直接碳氢化合物固体氧化物燃料电池阳极材料及其制备方法
Ni et al. Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell
KR20170027242A (ko) 저온 소결용 세리아 전해질 및 이를 이용한 고체산화물연료전지
Pikalova et al. Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate–Part 1: Structure, oxygen transport and electrochemistry evaluation
Chen et al. Ca and Fe co-doped NdBaCo2O5+ δ double perovskites as high-performance cathodes for solid oxide fuel cells
Bucevac et al. Effect of preparation route on the microstructure and electrical conductivity of co-doped ceria
WO2023079877A1 (ja) 酸化物イオン伝導性固体電解質
Arias-Serrano et al. Oxygen-Deficient Nd0. 8Sr1. 2Ni0. 8M0. 2O4-δ (M= Ni, Co, Fe) nickelates as oxygen electrode materials for SOFC/SOEC
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
AU2021103649A4 (en) Tuning sodium and oxygen mixed-ion conduction in the A-site nonstoichiometric NaNbO3-based ceramics
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
WO2023032787A1 (ja) 酸化物イオン伝導性固体電解質
WO2023032584A1 (ja) 酸化物イオン伝導性固体電解質
WO2023079892A1 (ja) 酸化物イオン伝導性固体電解質
Gdula‐Kasica et al. Synthesis of acceptor‐doped Ba‐Ce‐Zr‐O perovskites
Gong et al. Characterization of B‐Site Sc‐doped La2Ni1-xScxO4+ δ (x= 0, 0.05, 0.10, and 0.15) perovskites as cathode materials for IT-SOFCs
WO2023079910A1 (ja) 酸化物イオン伝導性固体電解質
WO2022230686A1 (ja) 酸化物イオン伝導性固体電解質
Benipayo et al. Influence of Carbon Black Pore Former on the Synthesis of LSM-YSZ Composite Electrode Material via Solid-State Reaction and Glycine-Nitrate Process
Cheng et al. Preparation and electrical properties of gadolinium-doped strontium tungstate electrolyte for SOFC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023557898

Country of ref document: JP

Kind code of ref document: A