WO2023078121A1 - 天线和基站设备 - Google Patents

天线和基站设备 Download PDF

Info

Publication number
WO2023078121A1
WO2023078121A1 PCT/CN2022/127224 CN2022127224W WO2023078121A1 WO 2023078121 A1 WO2023078121 A1 WO 2023078121A1 CN 2022127224 W CN2022127224 W CN 2022127224W WO 2023078121 A1 WO2023078121 A1 WO 2023078121A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
cavity
phase shifter
signal transmission
signal
Prior art date
Application number
PCT/CN2022/127224
Other languages
English (en)
French (fr)
Inventor
黄臣
道坚丁九
薛成戴
任超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078121A1 publication Critical patent/WO2023078121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna and base station equipment.
  • An antenna and base station equipment can reduce the interference between radiation units in different frequency bands, thereby improving the coverage capability of the antenna and improving communication performance.
  • an antenna including: a plurality of first frequency band antenna groups, each first frequency band antenna group including a phase shifter and a plurality of first frequency band radiation units; a plurality of second frequency band radiation units; a reflector;
  • the reflection plate is provided with reflection plate through holes corresponding to each first frequency band radiation unit;
  • each first frequency band radiation unit includes: a first radiation structure, the first radiation structure is located on the first side of the reflection plate; the first bar A part of the first balun structure is located on the first side of the reflector and connected to the first radiation structure, the first balun structure passes through the through hole of the reflector, and the other part of the first balun structure is located on the first side of the reflector On both sides, the first balun structure and the reflection plate are spaced apart; the first signal transmission structure is spaced apart from the first signal transmission structure and the first balun structure, and the first signal transmission structure passes through the through hole of the reflection plate; phase shifting The phase shifter is located on the second side of the reflector, and the phase shifter
  • each radiation unit of the first frequency band further includes a second signal transmission structure, the second signal transmission structure is spaced apart from the first balun structure, and the second signal transmission structure passes through the through hole of the reflector;
  • the phase shifter also includes a second phase shifter cavity and a second feed network signal transmission structure located in the second phase shifter cavity, the choke cavity and the second phase shifter cavity share part of the cavity wall, The first phase shifter cavity and the second phase shifter cavity are respectively located on opposite sides of the choke cavity; in each first frequency band antenna group, the second signal transmission structure in each first frequency band radiating unit It is electrically connected to the signal transmission structure of the second feeding network.
  • each first frequency band radiating unit further includes a first signal derivation structure located outside the choke cavity and outside the first phase shifter cavity; the first phase shifter cavity A first signal connection hole corresponding to each first signal lead-out structure is provided on the cavity wall on the side away from the reflector; The second signal connection hole corresponding to the derivation structure; the first signal derivation structure is connected to the first signal transmission structure through the corresponding second signal connection hole, and the first signal derivation structure is connected to the first power feed through the corresponding first signal connection hole Network signal transmission structure; each first frequency band radiating unit also includes a second signal derivation structure located outside the choke cavity and outside the second phase shifter cavity; the second phase shifter cavity is far away from the reflection plate A third signal connection hole corresponding to each second signal lead-out structure is provided on one side of the cavity wall; The fourth signal connection hole; the second signal derivation structure is connected to the second signal transmission structure through the corresponding fourth signal connection hole, and the second signal derivation structure is connected to the second feed network signal
  • the cavity wall of the choke cavity is electrically connected to the reflector; the end of the part of the first balun structure located in the choke cavity away from the reflector is connected to the cavity wall of the choke cavity .
  • each first frequency band antenna group a plurality of first frequency band radiating elements are arranged along the first direction, and the first phase shifter cavity, the choke cavity and the second phase shifter
  • the cavities are arranged along the second direction, the first direction is perpendicular to the second direction, and the first direction and the second direction are parallel to the plane where the reflector is located; the height of the choke cavity is smaller than the center frequency point of the working frequency band of the second frequency band radiating unit One-half of the corresponding wavelength, the height of the choke cavity is the size of the choke cavity in the direction perpendicular to the plane where the reflector is located; the width of the choke cavity is smaller than the center frequency point of the working frequency band of the second frequency band radiating unit Corresponding to one-third of the wavelength, the width of the choke cavity is the size of the choke cavity in the second direction.
  • the first frequency band radiating unit is a dual-polarized radiating unit
  • the first signal transmission structure is used to feed power in the first polarization direction
  • the second signal transmission structure is used to feed power in the second polarization direction feed.
  • the first balun structure is covered with a dielectric material.
  • the working frequency band of the radiation unit in the first frequency band is greater than the working frequency band of the radiation unit in the second frequency band.
  • each second frequency band radiating unit includes a second radiating structure and a second balun structure, the second radiating structure and the second balun structure are located on the first side of the reflector, and the second balun structure The structure is attached to the reflector.
  • a base station device including the above-mentioned antenna.
  • the phase shifter and the first frequency band radiation unit are combined together, and a part of the cavity wall of the first phase shifter cavity in the phase shifter is used to form a choke cavity.
  • the cavity can suppress the signal of the radiation unit in the second frequency band during the signal transmission or feeding process, thereby reducing the interference between radiation units in different frequency bands, improving the coverage capability of the antenna, and improving the communication performance.
  • the choke cavity is formed by the combination of the phase shifter and the first frequency band radiating unit, thereby improving the space utilization; and, for multiple first frequency band radiating units in the same first frequency band antenna group, since each The radiating elements are not isolated, therefore, multiple radiating elements can be excited by using 1to2 or other forms of power splitters, thereby increasing the applicable scenarios of the antenna.
  • FIG. 1 is a schematic structural diagram of a base station device in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an antenna in an embodiment of the present application.
  • FIG. 3 is a top view of an antenna in the related art
  • Fig. 4 is a three-dimensional schematic diagram of part of the structure in Fig. 3;
  • FIG. 5 is a schematic diagram of a partial structure of an antenna in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another viewing angle of the antenna in FIG. 5;
  • Fig. 7 is a kind of plan view of part structure in Fig. 5;
  • Fig. 8 is a top view when the radiation unit of the second frequency band is omitted in Fig. 5;
  • Fig. 9 is a top view when the second frequency band radiation unit is included in Fig. 5;
  • Fig. 10 is a schematic cross-sectional view of part of the structure in Fig. 5;
  • Fig. 11 is a bottom view of part of the structure in Fig. 5;
  • Fig. 12 is a schematic diagram of the internal structure of part of the phase shifter and the choke cavity in Fig. 5;
  • Fig. 13 is a three-dimensional enlarged schematic diagram of part of the structure in Fig. 5;
  • Fig. 14 is another schematic diagram of Fig. 10;
  • FIG. 15 is a schematic diagram of a simulation of a gain curve in a frequency band from 0.69 GHz to 0.96 GHz in one polarization direction of the antenna in the embodiment of the present application and the comparative example;
  • FIG. 16 is a schematic diagram of a simulation gain curve of another polarization direction of the antenna in the frequency band from 0.69 GHz to 0.96 GHz in the embodiment of the present application and the comparative example;
  • Fig. 17 is the directional diagram of the antenna in Comparative Example 1;
  • Fig. 18 is the directional diagram of the antenna in comparative example 2.
  • Fig. 19 is a directional diagram of the antenna in the embodiment of the present application.
  • the embodiment of the present application relates to base station equipment.
  • the base station equipment includes a base station antenna system.
  • the grounding device 500, etc., the feeder 200 is provided with a joint sealing member 600, and the joint sealing member 600 can be made of insulating sealing tape or polyvinyl chloride (Polyvinyl Chloride, PVC) insulating tape, for example.
  • the radiation unit also known as antenna oscillator, oscillator, etc., belongs to the unit that constitutes the basic structure of the antenna array, and it can effectively radiate or receive radio waves.
  • the antenna includes at least one antenna array composed of a plurality of radiating elements and reflectors.
  • the frequencies corresponding to different radiating elements may be the same or different.
  • the radiating elements are usually placed above the reflector, and the reflector is usually made of metal materials.
  • the reflector also known as the base plate, antenna panel, metal reflector, etc., is used to improve the receiving sensitivity of the antenna signal and gather the reflection of the antenna signal on the receiving point. It not only enhances the receiving/transmitting capability of the antenna, but also blocks and shields other radio waves from the back (reverse direction) from interfering with the received signal.
  • the antenna also includes a feed network through which the antenna array receives or transmits radio frequency signals.
  • the feed network feeds the signal to the radiation unit according to a certain amplitude and phase, or sends the received wireless signal to the signal processing unit of the base station according to a certain amplitude and phase.
  • the feed network includes controlled impedance transmission lines for impedance matching.
  • the feed network includes a phase shifter, which is used to adjust the phase of the received or transmitted signal, and the feed network may also include combiners, filters and other devices for extending performance.
  • the antenna can also include a transmission part, through which the adjustment of different radiation beam directions can be realized, and the antenna can also include a calibration network for obtaining a calibration signal.
  • the components in the above antenna can be arranged in the radome, and the feed network is connected to the signal processing unit (not shown in the figure) of the base station through the antenna joint.
  • the radome is a structural member that protects the antenna system from the external environment. In terms of electrical performance, it has good electromagnetic wave penetration characteristics, and in terms of mechanical performance, it can withstand the effects of harsh external environments.
  • the antenna system in the related art includes multiple antenna sub-arrays, one of which operates in the 690MHz-960MHz frequency band and is composed of low-frequency radiation units, and the other antenna sub-array operates in the 1.4GHz-2.7GHz frequency band and is composed of high-frequency radiation units , when the antenna sub-array working in the 690MHz-960MHz frequency band is working, a signal in the 690MHz-960MHz frequency band will be induced on another antenna sub-array, and the secondary radiation of this induced signal can interfere with the existing low-frequency signal, affecting The integrity of the pattern of the 690MHz ⁇ 960MHz frequency band.
  • an antenna structure as shown in Fig. 3 and Fig.
  • each high-frequency radiation unit 01 is connected to a corresponding Part of the balun structure 04 is wrapped to reduce signal interference between radiating units in different frequency bands.
  • this structure will bring two problems, one is that additional space is required to set the structure 04, thereby increasing the volume of the antenna; the other problem is that the balun structure 04 of each high-frequency radiation unit 01 is individually wrapped And isolation, so each high-frequency radiation unit 01 can only be excited separately.
  • each first frequency band antenna group 10 includes a phase shifter 20 and a plurality of first frequency band radiation Unit 1; a plurality of radiation units 2 in the second frequency band; a reflector 3; the reflector 3 is provided with reflector through holes 30 respectively corresponding to each first frequency band radiation unit 1; each first frequency band radiation unit 1 includes: The first radiating structure 41, the first radiating structure 41 is located on the first side of the reflector 3, the first side refers to the upper side of the reflector 3 in Figure 10; the first balun structure 51, a part of the first balun structure 51 Located on the first side of the reflector 3 and connected to the first radiating structure 41, the first balun structure 51 passes through the through hole 30 of the reflector, and the other part of the first balun structure 51 is located on the second side of the reflector 3.
  • the two sides refer to the lower side of the reflection plate 3 in FIG. 10 , the first balun structure 51 and the reflection plate 3 are arranged at intervals; the first signal transmission structure 61, the first signal transmission structure 61 is spaced from the first balun structure 51 Set, the first signal transmission structure 61 passes through the reflection plate through hole 30, that is, a part of the first signal transmission structure 61 is located on the first side of the reflection plate 3, and the other part is located on the second side of the reflection plate 3, the first signal transmission structure 61 is used to feed power to the radiation unit 1 in the first frequency band, wherein the first signal transmission structure 61 can be separated from the first balun structure 51 through a dielectric layer, or through air, if the first signal transmission structure 61 and the first balun structure 51 are spaced by air, so support structures need to be provided at some positions between the two to realize the support and fixation of the first signal transmission structure 61; the phase shifter 20 is located on the reflector 3, the phase shifter 20 includes a first phase shifter cavity 101, a choke cavity
  • each first frequency band antenna group 10 each first The part of the first balun structure 51 located on the second side of the reflector 3 in the first frequency band radiation unit 1 is located in the choke cavity 111, and the choke cavity 111 is used to suppress the signal of the second frequency band radiation unit 2;
  • the first signal transmission structure 61 in each first frequency band radiating unit 1 is electrically connected to the first feed network signal transmission structure 71, and the first feed network signal transmission structure 71
  • the phase shifter cavity 101 extends along the cavity to transmit signals, and the first phase shifter cavity 101 extends to the vicinity of each first frequency band radiating unit 1 in the first frequency band antenna group 10, and is electrically connected to the same Each first signaling structure 61 in the group.
  • FIG. 5 to FIG. 13 are only schematic diagrams, and the structures in different schematic diagrams may be different or not completely correspond, but they do not affect the relationship between the main structures.
  • a first frequency band antenna group 10 corresponds to a plurality of first frequency band radiating units 1 and a phase shifter 20, and the first balun structure 51 of each first frequency band radiating unit 1 in the same first frequency band antenna group 10 Some of them are located in the same choke cavity 111, and the first signal transmission structure 61 of each first frequency band radiating unit 1 in the same first frequency band antenna group 10 is electrically connected to the same first phase shifter cavity 101 The same first feeder network signal transmission structure 71 in.
  • the radio frequency signal is first transmitted to the first feed network signal transmission structure 71 in the first phase shifter cavity 101, and transmitted along the first feed network signal transmission structure 71, and then the signal The signal is transmitted to a plurality of first signal transmission structures 61 , fed to the radiation unit 1 of the first frequency band through the first signal transmission structures 61 , and radiated through the first radiation structure 41 .
  • the phase shifter 20 and the radiation unit 1 of the first frequency band are combined, and a part of the cavity wall of the first phase shifter cavity 101 in the phase shifter 20 is used to form a choke cavity 111, through the choke cavity 111, the signal of the radiation unit 2 in the second frequency band can be suppressed during the signal transmission or feeding process, thereby reducing the interference between radiation units in different frequency bands, improving the coverage of the antenna, and improving the communication performance.
  • the choke cavity 111 is formed by the combination of the phase shifter 20 and the first frequency band radiating unit 1, thereby improving the space utilization; and, for multiple first frequency band radiations in the same first frequency band antenna group 10 In unit 1, since the radiating elements are not isolated, multiple radiating elements can be excited by using power dividers including 1to2 or other forms, thereby increasing the applicable scenarios of the antenna.
  • each radiation unit 1 of the first frequency band further includes a second signal transmission structure 62, the second signal transmission structure 62 is spaced apart from the first balun structure 51, and the second signal transmission structure 62 passes through The reflection plate through hole 30;
  • the phase shifter 20 also includes a second phase shifter cavity 102 and a second feed network signal transmission structure 72 located in the second phase shifter cavity 102, the choke cavity 111 and the second
  • the phase shifter cavity 102 shares part of the cavity wall, and the first phase shifter cavity 101 and the second phase shifter cavity 102 are respectively located on opposite sides of the choke cavity 111; in each first frequency band antenna group 10 Among them, the second signal transmission structure 62 in each first frequency band radiating unit 1 is electrically connected to the second feeding network signal transmission structure 72 .
  • the first signal transmission structure 61 and the second signal transmission structure 62 can be used to realize feeding in different polarization directions, so that the radiation unit 1 of the first frequency band can radiate in two polarization directions, realizing, for example, a dual-polarization antenna .
  • the signals corresponding to the two polarization directions are fed through different signal transmission structures, and two phase shifter cavities corresponding to the two polarization direction signals need to be set, and the two phase shifter cavities are set in the choke cavity
  • the opposite sides of the body 111 are used to form the side walls of the choke cavity 111 by using the side walls of the two phase shifter cavities, so as to improve the space utilization rate and make the choke cavity 111 have better suppression of other frequency bands. The effect of the antenna signal.
  • the first phase shifter cavity 101 is located on the left side of the choke cavity 111, the two share a part of the cavity wall between the two, and the second phase shifter cavity 102 is located in the choke cavity The right side of 111, the two share a part of the cavity wall between the two.
  • each radiation unit 1 of the first frequency band further includes a second A signal derivation structure 81; a first signal connection hole 401 corresponding to each first signal derivation structure 81 is provided on the cavity wall of the first phase shifter cavity 101 away from the reflection plate 3; a choke cavity 111 A second signal connection hole 402 corresponding to each first signal lead-out structure 81 is provided on the side cavity wall away from the reflection plate 3; the first signal lead-out structure 81 is connected to the first signal lead-out structure 81 through the corresponding second signal connection hole 402.
  • each first frequency band radiating unit 1 also includes a second signal derivation structure located outside the choke cavity 111 and outside the second phase shifter cavity 102 82; the cavity wall of the second phase shifter cavity 102 away from the reflection plate 3 is provided with a third signal connection hole 403 corresponding to each second signal derivation structure 82; the choke cavity 111 is far away from the reflection plate 3
  • a fourth signal connection hole 404 corresponding to each second signal lead-out structure 82 is provided on one side of the cavity wall; the second signal lead-out structure 82 is connected to the second signal transmission structure 62 through the corresponding fourth signal connection hole 404 , the second signal derivation structure 82 is connected to the second feed network signal transmission structure 72 through the corresponding third signal connection hole
  • the cavity wall of the choke cavity 111 is electrically connected to the reflector 3, so that the reflector 3 is connected to a fixed potential, for example, when grounded, the cavity wall of the choke cavity 111 is also grounded;
  • the end of the first balun structure 51 located in the choke cavity 111 away from the reflection plate 3 is connected to the cavity wall of the choke cavity 111, that is, the first balun structure 51 will not be directly connected at the position of the reflection plate 3
  • the reflection plate 3 is used to achieve grounding, but the bottom of the choke cavity 111 is connected to the cavity wall after passing through the through hole 30 of the reflection plate to achieve grounding.
  • each first frequency band antenna group 10 a plurality of first frequency band radiating units 1 are arranged along the first direction Y, for example, the embodiment of the present application shows four rows of first frequency band radiating units 1 and two rows of radiation units 2 in the second frequency band, the first phase shifter cavity 101, the choke cavity 111 and the second phase shifter cavity 102 are arranged along the second direction X, and the first direction Y is perpendicular to the second direction X , the first direction Y and the second direction X are parallel to the plane where the reflector 3 is located; the height h of the choke cavity 111 is less than half of the wavelength corresponding to the center frequency point of the working frequency band of the second frequency band radiation unit 2, and the choke The height h of the flow cavity 111 is the size of the choke cavity 111 in the direction perpendicular to the plane where the reflector 3 is located, that is, the size of the choke cavity 111 in the first direction Y; the width w of the choke cavity 111 is less than One-
  • the first frequency band radiating unit 1 is a dual-polarized radiating unit
  • the first signal transmission structure 61 is used to feed power in the first polarization direction
  • the second signal transmission structure 62 is used to feed power in the second polarization direction.
  • the polarization direction is fed, and the first polarization direction may be perpendicular to the second polarization direction, so as to form a vertical dual-polarization radiating unit. As shown in FIG.
  • the radiation unit 1 of the first frequency band includes four first radiation structures 41, two opposite first radiation structures 41 form a group, a total of two groups of radiation structures, wherein one group of radiation structures corresponds to one polarization direction , another group of radiation structures corresponds to another polarization direction, the first signal transmission structure 61 feeds power from one radiation structure in the same group to another radiation structure, and the second signal transmission structure 62 feeds power from one radiation structure in another group Feed another radiating structure.
  • the first balun structure 51 is covered with a dielectric material 60 , and the choke cavity 111 and the first balun structure 51 A choke device is formed.
  • the working frequency band of the choke device is used to suppress the signal of the corresponding frequency band.
  • the effective length of the first balun structure 51 is used to control the working frequency band of the formed choke device.
  • the working frequency band of the radiation unit 1 in the first frequency band is greater than the working frequency band of the radiation unit 2 in the second frequency band, that is, the radiation unit 1 in the first frequency band is a high-frequency unit in the antenna, and the radiation unit 2 in the second frequency band It is a low frequency unit in the antenna, for example, the working frequency band of the first frequency band radiating unit 1 is 1.4GHz-2.7GHz, and the working frequency band of the second frequency band radiating unit 2 is 0.69GHz to 0.96GHz.
  • each second frequency band radiating unit 2 includes a second radiating structure 42 and a second balun structure 52, and the second radiating structure 42 and the second balun structure 52 are located on the first On the side, the second balun structure 52 is connected to the reflector 3 .
  • Figure 15 shows a polarization of the antenna in the embodiment of the application and the comparative example
  • Figure 16 shows the simulation diagram of the gain curve in the other polarization direction of the antenna in the frequency band from 0.69GHz to 0.96GHz in the embodiment of the present application and the comparative example.
  • the comparative example 1 Indicates that only the low-frequency radiation unit with a working frequency range of 0.69GHz to 0.96GHz is set to work, and the antenna gain curve simulation diagram without setting other frequency band radiation units is set.
  • Comparative Example 2 shows that the low-frequency radiation unit with a working frequency range of 0.69GHz to 0.96GHz and a working frequency range of The 1.4GHz-2.7GHz high-frequency radiation units are all directly connected together, that is, the low-frequency radiation unit and the high-frequency radiation unit are directly connected to the antenna gain curve simulation diagram of the reflector. According to the comparison of the above three curves, it can be seen that the embodiment of the application The gain index of the medium antenna is basically the same as that without the high-frequency radiation unit, that is, the interference between the radiation units of different frequency bands in the embodiment of the present application is very small.
  • Figure 17 shows the directional diagram of the antenna in Comparative Example 1
  • Figure 18 shows the directional diagram of the antenna in Comparative Example 2
  • Figure 19 shows the directional diagram of the antenna in the embodiment of the present application
  • An embodiment of the present application further provides a base station device, including the antenna in any of the foregoing embodiments.
  • the specific structure and principle of the antenna are the same as those in the foregoing embodiments, and will not be repeated here.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, or B exists alone. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, wherein a, b, and c may be single or multiple.

Abstract

本申请实施例提供一种天线和基站设备,涉及通信技术领域,可以降低不同频段辐射单元之间的干扰,从而提高天线的覆盖能力,改善通信性能。天线包括:多个第一频段天线组;多个第二频段辐射单元;反射板上设置有反射板通孔;每个第一频段辐射单元包括;第一巴伦结构,第一巴伦结构穿过反射板通孔;第一信号传输结构,第一信号传输结构穿过反射板通孔;移相器包括第一移相器腔体、扼流腔体以及位于第一移相器腔体中的第一馈电网络信号传输结构,第一频段辐射单元中第一巴伦结构位于反射板的第二侧的部分位于扼流腔体内;在每个第一频段天线组中,每个第一频段辐射单元中的第一信号传输结构电连接于第一馈电网络信号传输结构。

Description

天线和基站设备
本申请要求于2021年11月03日提交中国专利局、申请号为202111294511.5、申请名称为“天线和基站设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种天线和基站设备。
背景技术
随着无线通信技术的快速发展,对通信性能的要求也越来越高,多频天线应运而生,但是当工作在不同频段的辐射单元共存时,由于存在频段间的干扰(特别是不同频段的辐射单元在辐射过程中在周围其他频段的辐射单元上产生的感应信号导致的二次辐射),这种干扰会对于正常的通信信号产生干扰,影响天线的覆盖能力,进而影响通信性能。
发明内容
一种天线和基站设备,可以降低不同频段辐射单元之间的干扰,从而提高天线的覆盖能力,改善通信性能。
第一方面,提供一种天线,包括:多个第一频段天线组,每个第一频段天线组包括移相器和多个第一频段辐射单元;多个第二频段辐射单元;反射板;反射板上设置有与每个第一频段辐射单元分别对应的反射板通孔;每个第一频段辐射单元包括:第一辐射结构,第一辐射结构位于反射板的第一侧;第一巴伦结构,第一巴伦结构的一部分位于反射板的第一侧并连接于第一辐射结构,第一巴伦结构穿过反射板通孔,第一巴伦结构的另一部分位于反射板的第二侧,第一巴伦结构与反射板之间间隔设置;第一信号传输结构,第一信号传输结构与第一巴伦结构间隔设置,第一信号传输结构穿过反射板通孔;移相器位于反射板的第二侧,移相器包括第一移相器腔体、扼流腔体以及位于第一移相器腔体中的第一馈电网络信号传输结构,扼流腔体和第一移相器腔体共用部分腔体壁;在每个第一频段天线组中,每个第一频段辐射单元中第一巴伦结构位于反射板的第二侧的部分位于扼流腔体内;在每个第一频段天线组中,每个第一频段辐射单元中的第一信号传输结构电连接于第一馈电网络信号传输结构。
在一种可能的实施方式中,每个第一频段辐射单元还包括第二信号传输结构,第二信号传输结构与第一巴伦结构间隔设置,第二信号传输结构穿过反射板通孔;移相器还包括第二移相器腔体和位于第二移相器腔体中的第二馈电网络信号传输结构,扼流腔体和第二移相器腔体共用部分腔体壁,第一移相器腔体和第二移相器腔体分别位于扼流腔体的相对两侧;在每个第一频段天线组中,每个第一频段辐射单元中的第二信号传输结构电连接于第二馈电网络信号传输结构。
在一种可能的实施方式中,每个第一频段辐射单元还包括位于扼流腔体之外以及位于第一移相器腔体之外的第一信号导出结构;第一移相器腔体远离反射板的一侧腔体壁上设置有与每个第一信号导出结构对应的第一信号连接孔;扼流腔体远离反射板的一侧腔体壁上设置有与每个第一信号导出结构对应的第二信号连接孔;第一信号导出结构通过对应的第二信号连接孔连接于第一信号传输结构,第一信号导出结构通过对应的第一信号连接孔连接于第一馈电网络信号传输结构;每个第一频段辐射单元还包括位于扼流腔体之外以及位于第二移相器腔体之外的第二信号导出结构;第二移相器腔体远离反射板的一侧腔体壁上设置有与每个第二信号导出结构对应的第三信号连接孔;扼流腔体远离反射板的一侧腔体壁上设置有与每个第二信号导出结构对应的第四信号连接孔;第二信号导出结构通过对应的第四信号连接孔连接于第二信号传输结构,第二信号导出结构通过对应的第三信号连接孔连接于第二馈电网络信号传输结构。
在一种可能的实施方式中,扼流腔体的腔体壁电连接于反射板;第一巴伦结构位于扼流腔体内的部分远离反射板的一端连接于扼流腔体的腔体壁。
在一种可能的实施方式中,在每个第一频段天线组中,多个第一频段辐射单元沿第一方向排列,第一移相器腔体、扼流腔体和第二移相器腔体沿第二方向排列,第一方向垂直于第二方向,第一方向和第二方向均平行于反射板所在平面;扼流腔体的高度小于第二频段辐射单元的工作频段中心频点对应的波长的二分之一,扼流腔体的高度为扼流腔体在垂直于反射板所在平面方向上的尺寸;扼流腔体的宽度小于第二频段辐射单元的工作频段中心频点对应的波长的三分之一,扼流腔体的宽度为扼流腔体在第二方向上的尺寸。
在一种可能的实施方式中,第一频段辐射单元为双极化辐射单元,第一信号传输结构用于以第一极化方向馈电,第二信号传输结构用于以第二极化方向馈电。
在一种可能的实施方式中,在扼流腔体中,第一巴伦结构的周围包覆有介质材料。
在一种可能的实施方式中,第一频段辐射单元的工作频段大于第二频段辐射单元的工作频段。
在一种可能的实施方式中,每个第二频段辐射单元包括第二辐射结构和第二巴伦结构,第二辐射结构和第二巴伦结构位于反射板的第一侧,第二巴伦结构连接于反射板。
第二方面,提供一种基站设备,包括上述的天线。
本申请实施例中的天线,将移相器和第一频段辐射单元组合在一起,并且利用移相器中第一移相器腔体的部分腔体壁来形成扼流腔体,通过扼流腔体,可以在信号传输或者说馈电过程中抑制第二频段辐射单元的信号,从而降低不同频段辐射单元之间的干扰,提高了天线的覆盖能力,改善了通信性能。并且,通过移相器和第一频段辐射单元的组合来形成扼流腔体,从而提高了空间利用率;以及,对于同一个第一频段天线组中的多个第一频段辐射单元,由于各辐射单元之间没有被隔离,因此,可以利用包括1to2或其他形式的功分器对其中的多个辐射单元进行激励,从而增加了天线可应用的场景。
附图说明
图1为本申请实施例中一种基站设备的结构示意图;
图2为本申请实施例中一种天线的结构示意图;
图3为相关技术中一种天线的俯视图;
图4为图3中部分结构的立体示意图;
图5为本申请实施例中一种天线的部分结构示意图;
图6为图5中天线的另一种视角下的示意图;
图7为图5中部分结构的一种俯视图;
图8为图5中省略第二频段辐射单元时的一种俯视图;
图9为图5中包含第二频段辐射单元时的一种俯视图;
图10为图5中部分结构的剖面示意图;
图11为图5中部分结构的仰视图;
图12为图5中部分移相器和扼流腔体的内部结构示意图;
图13为图5中部分结构的立体放大示意图;
图14为图10的另一种示意图;
图15为本申请实施例和对比例中天线一个极化方向在0.69GHz至0.96GHz频段的增益曲线仿真示意图;
图16为本申请实施例和对比例中天线另一个极化方向在0.69GHz至0.96GHz频段的增益曲线仿真示意图;
图17为对比例1中天线的方向图;
图18为对比例2中天线的方向图;
图19为本申请实施例中天线的方向图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
首先对本申请实施例的基本架构进行说明,本申请实施例涉及基站设备,基站设备包括基站天线系统,如图1所示,基站天线系统包括天线100、馈线200、抱杆300、天线调整支架400、接地装置500等,馈线200上具有接头密封件600,接头密封件600例如可以由绝缘密封胶带或聚氯乙烯(Polyvinyl Chloride,PVC)绝缘胶带构成。如图2所示,辐射单元又称、天线振子、振子等,属于构成天线阵列基本结构的单元,它能有效地辐射或接收无线电波。天线包括由多个辐射单元和反射板组成的至少一个天线阵列,不同辐射单元对应的频率可以相同或不同,辐射单元通常放置于反射板上方,反射板通常为金属材料制成。反射板又称底板、天线面板、金属反射面等,用于提高天线信号的接收灵敏度,把天线信号反射聚集在接收点上。不但增强了天线的接收/发射能力,还起到阻挡、屏蔽来自后背(反方向)的其它电波对接收信号的干扰作用。天线还包括馈电网络,天线阵列通过各自的馈电网络接收或发射射频信号。即馈电网络把信号按照一定的幅度、相位馈送到辐射单元或者将接收到的无线 信号按照一定的幅度、相位发送到基站的信号处理单元。馈电网络包括受控的阻抗传输线,用于实现阻抗匹配。馈电网络包括移相器,移相器用于对接收或发射的信号相位进行调节,馈电网络还可以包括合路器、滤波器等用于扩展性能的器件。天线还可以包括传动部件,通过传动部件可以实现不同辐射波束指向的调节,天线还可以包括校准网络,用于获取校准信号。以上天线中的部件可以设置于天线罩中,馈电网络通过天线接头连通至基站的信号处理单元(图中未示出),天线罩为保护天线系统免受外部环境影响的结构件,它在电气性能上具有良好的电磁波穿透特性,机械性能上能经受外部恶劣环境的作用。
在介绍本申请实施例之前,对相关技术及其技术问题进行说明。
相关技术中天线系统包括多个天线子阵,其中一个天线子阵工作于690MHz~960MHz频段,由低频辐射单元组成,另一个天线子阵工作于1.4GHz~2.7GHz频段,由高频辐射单元组成,当工作于690MHz~960MHz频段的天线子阵工作时,会在另一个天线子阵上感应出690MHz~960MHz频段的信号,这种感应信号的二次辐射就能够干扰现有的低频信号,影响690MHz~960MHz频段的方向图的完整性。为了解决这个问题,提供了如图3和图4所示的天线结构,其中包括高频辐射单元01和低频辐射单元02,在该结构中,通过结构03将每个高频辐射单元01对应的巴伦结构04的部分包裹起来,以此来减弱不同频段辐射单元之间信号干扰。然而,这种结构会带来两个问题,一个是需要额外的空间来设置结构04,从而增加了天线的体积;另一个问题是由于每个高频辐射单元01的巴伦结构04被单独包裹而隔离,因此只能使每个高频辐射单元01单独被激励,如果需要通过一个1to2的功分器激励两个高频辐射单元01,由于这两个高频辐射单元01的巴伦结构04之间被结构04隔离,从而无法实现通过一个1to2功分器同时激励两个高频辐射单元01,因此减少了天线可应用的场景。为解决以上问题,提供了本申请实施例的技术方案,以下对本申请实施例的技术方案进行说明。
如图5至图13所示,本申请实施例提供了一种天线,包括:多个第一频段天线组10,每个第一频段天线组10包括移相器20和多个第一频段辐射单元1;多个第二频段辐射单元2;反射板3;反射板3上设置有与每个第一频段辐射单元1分别对应的反射板通孔30;每个第一频段辐射单元1包括:第一辐射结构41,第一辐射结构41位于反射板3的第一侧,第一侧是指图10中反射板3的上侧;第一巴伦结构51,第一巴伦结构51的一部分位于反射板3的第一侧并连接于第一辐射结构41,第一巴伦结构51穿过反射板通孔30,第一巴伦结构51的另一部分位于反射板3的第二侧,第二侧是指图10中反射板3的下侧,第一巴伦结构51与反射板3之间间隔设置;第一信号传输结构61,第一信号传输结构61与第一巴伦结构51间隔设置,第一信号传输结构61穿过反射板通孔30,即第一信号传输结构61的一部分位于反射板3的第一侧,另一部分位于反射板3的第二侧,第一信号传输结构61用于向第一频段辐射单元1馈电,其中,第一信号传输结构61可以与第一巴伦结构51之间通过介质层实现间隔,也可以通过空气实现间隔,如果第一信号传输结构61和第一巴伦结构51之间通过空气实现间隔,则需要在两者之间的一些位置设置支撑结构,以实现对第一信号传输结构61的支撑固定作用;移相器20位于反射板3的第二侧,移相 器20包括第一移相器腔体101、扼流腔体111以及位于第一移相器腔体101中的第一馈电网络信号传输结构71,扼流腔体111和第一移相器腔体101共用部分腔体壁,第一馈电网络信号传输结构71用于在第一移相器腔体101中传输信号,第一移相器腔体101可以改变第一馈电网络信号传输结构71所传输信号的相位(图5至图9中未示出第一馈电网络信号传输结构71);在每个第一频段天线组10中,每个第一频段辐射单元1中第一巴伦结构51位于反射板3的第二侧的部分位于扼流腔体111内,扼流腔体111用于抑制第二频段辐射单元2的信号;在每个第一频段天线组10中,每个第一频段辐射单元1中的第一信号传输结构61电连接于第一馈电网络信号传输结构71,第一馈电网络信号传输结构71在第一移相器腔体101中沿着腔体延伸,以传输信号,而第一移相器腔体101延伸至第一频段天线组10中每个第一频段辐射单元1的附近,并电连接于同一组中的每个第一信号传输结构61。
需要说明的是,图5至图13中的各附图仅为示意图,不同示意图中的结构可以会有所差异或者无法完全对应,但是并不影响各主要结构之间的关系。
具体地,一个第一频段天线组10对应多个第一频段辐射单元1和一个移相器20,同一个第一频段天线组10中每个第一频段辐射单元1的第一巴伦结构51均有一部分位于同一个扼流腔体111内,同一个第一频段天线组10中每个第一频段辐射单元1的第一信号传输结构61电连接于同一个第一移相器腔体101中的同一个第一馈电网络信号传输结构71。例如在天线辐射信号的过程中,射频信号首先传输至第一移相器腔体101中的第一馈电网络信号传输结构71,并沿第一馈电网络信号传输结构71传输,然后将信号传输至多个第一信号传输结构61,通过第一信号传输结构61向第一频段辐射单元1进行馈电,并通过第一辐射结构41进行辐射。
本申请实施例中的天线,将移相器20和第一频段辐射单元1组合在一起,并且利用移相器20中第一移相器腔体101的部分腔体壁来形成扼流腔体111,通过扼流腔体111,可以在信号传输或者说馈电过程中抑制第二频段辐射单元2的信号,从而降低不同频段辐射单元之间的干扰,提高了天线的覆盖能力,改善了通信性能。并且,通过移相器20和第一频段辐射单元1的组合来形成扼流腔体111,从而提高了空间利用率;以及,对于同一个第一频段天线组10中的多个第一频段辐射单元1,由于各辐射单元之间没有被隔离,因此,可以利用包括1to2或其他形式的功分器对其中的多个辐射单元进行激励,从而增加了天线可应用的场景。
在一种可能的实施方式中,每个第一频段辐射单元1还包括第二信号传输结构62,第二信号传输结构62与第一巴伦结构51间隔设置,第二信号传输结构62穿过反射板通孔30;移相器20还包括第二移相器腔体102和位于第二移相器腔体102中的第二馈电网络信号传输结构72,扼流腔体111和第二移相器腔体102共用部分腔体壁,第一移相器腔体101和第二移相器腔体102分别位于扼流腔体111的相对两侧;在每个第一频段天线组10中,每个第一频段辐射单元1中的第二信号传输结构62电连接于第二馈电网络信号传输结构72。第一信号传输结构61和第二信号传输结构62可以用于实现不同极化方向上的馈电,从而使第一频段辐射单元1在两个极化方向上进行辐射,实现例如双极化天线。对应两种极化方向的信号通过不同的信号传输结构实现馈电,且需要设置对应两种极化方向信号的两个移相器腔体,将两个移相 器腔体设置在扼流腔体111的相对两侧,以利用两个移相器腔体的侧壁来形成扼流腔体111的侧壁,以提高空间利用率,且使扼流腔体111具有较好的抑制其他频段天线信号的效果。例如图10所示,第一移相器腔体101位于扼流腔体111的左侧,两者共用两者之间的一部分腔体壁,第二移相器腔体102位于扼流腔体111的右侧,两者共用两者之间的一部分腔体壁。
在一种可能的实施方式中,如图5至图13所示,每个第一频段辐射单元1还包括位于扼流腔体111之外以及位于第一移相器腔体101之外的第一信号导出结构81;第一移相器腔体101远离反射板3的一侧腔体壁上设置有与每个第一信号导出结构81对应的第一信号连接孔401;扼流腔体111远离反射板3的一侧腔体壁上设置有与每个第一信号导出结构81对应的第二信号连接孔402;第一信号导出结构81通过对应的第二信号连接孔402连接于第一信号传输结构61,第一信号导出结构81通过对应的第一信号连接孔401连接于第一馈电网络信号传输结构71,以使第一馈电网络信号传输结构71电连接于同一个第一频段天线组10中的所有第一信号传输结构61;每个第一频段辐射单元1还包括位于扼流腔体111之外以及位于第二移相器腔体102之外的第二信号导出结构82;第二移相器腔体102远离反射板3的一侧腔体壁上设置有与每个第二信号导出结构82对应的第三信号连接孔403;扼流腔体111远离反射板3的一侧腔体壁上设置有与每个第二信号导出结构82对应的第四信号连接孔404;第二信号导出结构82通过对应的第四信号连接孔404连接于第二信号传输结构62,第二信号导出结构82通过对应的第三信号连接孔403连接于第二馈电网络信号传输结构72,以使第二馈电网络信号传输结构72电连接于同一个第一频段天线组10中的所有第二信号传输结构62。
在一种可能的实施方式中,扼流腔体111的腔体壁电连接于反射板3,以使反射板3连接固定电位,例如接地时,扼流腔体111的腔体壁同样接地;第一巴伦结构51位于扼流腔体111内的部分远离反射板3的一端连接于扼流腔体111的腔体壁,即第一巴伦结构51不会在反射板3的位置直接连接反射板3以实现接地,而是穿过反射板通孔30后在扼流腔体111的底部连接腔体壁以实现接地。
在一种可能的实施方式中,在每个第一频段天线组10中,多个第一频段辐射单元1沿第一方向Y排列,例如本申请实施例示意了四列第一频段辐射单元1和两列第二频段辐射单元2,第一移相器腔体101、扼流腔体111和第二移相器腔体102沿第二方向X排列,第一方向Y垂直于第二方向X,第一方向Y和第二方向X均平行于反射板3所在平面;扼流腔体111的高度h小于第二频段辐射单元2的工作频段中心频点对应的波长的二分之一,扼流腔体111的高度h为扼流腔体111在垂直于反射板3所在平面方向上的尺寸,即扼流腔体111在第一方向Y上的尺寸;扼流腔体111的宽度w小于第二频段辐射单元2的工作频段中心频点对应的波长的三分之一,例如扼流腔体111的宽度w等于第二频段辐射单元2的工作频段中心频点对应的波长的四分之一,扼流腔体111的宽度为扼流腔体111在第二方向X上的尺寸,在上述尺寸下,可以使扼流腔体111的扼流效果更加显著。需要说明的是,本申请实施例对于第一频段辐射单元1和第二频段辐射单元2之间的布局关系没有特别的限制,只要满足机械尺寸限制,能够在同一物理口径下部署即可。
在一种可能的实施方式中,第一频段辐射单元1为双极化辐射单元,第一信号传输结构61用于以第一极化方向馈电,第二信号传输结构62用于以第二极化方向馈电,第一极化方向可以垂直于第二极化方向,以形成垂直的双极化辐射单元。如图13所示,第一频段辐射单元1包括四个第一辐射结构41,相对的两个第一辐射结构41组成一组,共两组辐射结构,其中一组辐射结构对应一个极化方向,另外一组辐射结构对应另外一个极化方向,第一信号传输结构61从同一组中的一个辐射结构向另一个辐射结构馈电,第二信号传输结构62从另外一组中的一个辐射结构向另一个辐射结构馈电。
在一种可能的实施方式中,如图14所示,在扼流腔体111中,第一巴伦结构51的周围包覆有介质材料60,扼流腔体111和第一巴伦结构51构成了扼流装置,扼流装置的工作频段用于抑制对应频段的信号,通过对介质材料60的介电常数的设置,可以配合扼流腔体111的尺寸以及伸入扼流腔体111内的第一巴伦结构51的有效长度来控制所构成的扼流装置的工作频段。
在一种可能的实施方式中,第一频段辐射单元1的工作频段大于第二频段辐射单元2的工作频段,即第一频段辐射单元1为天线中的高频单元,第二频段辐射单元2为天线中的低频单元,例如,第一频段辐射单元1的工作频段为1.4GHz-2.7GHz,第二频段辐射单元2的工作频段为0.69GHz至0.96GHz。
在一种可能的实施方式中,每个第二频段辐射单元2包括第二辐射结构42和第二巴伦结构52,第二辐射结构42和第二巴伦结构52位于反射板3的第一侧,第二巴伦结构52连接于反射板3。
以下通过本申请实施例和对比例之间的仿真曲线对比,来说明本申请实施例的效果:如图15和图16所示,图15示意了本申请实施例和对比例中天线一个极化方向在0.69GHz至0.96GHz频段的增益曲线仿真示意图,图16示意了本申请实施例和对比例中天线另一个极化方向在0.69GHz至0.96GHz频段的增益曲线仿真示意图,其中,对比例1表示仅设置工作频段为0.69GHz至0.96GHz的低频辐射单元工作,没有设置其他频段辐射单元的天线增益曲线仿真示意图,对比例2表示工作频段为0.69GHz至0.96GHz的低频辐射单元和工作频段为1.4GHz-2.7GHz的高频辐射单元均直接连接在一起,即低频辐射单元和高频辐射单元直接连接至反射板的天线增益曲线仿真示意图,根据上述三种曲线的对比可知,本申请实施例中天线的增益指标与无高频辐射单元时基本相当,即本申请实施例中不同频段的辐射单元之间的干扰很小。如图17至图19所示,图17表示对比例1中天线的方向图,图18表示对比例2中天线的方向图,图19表示本申请实施例中天线的方向图,可见,本申请实施例中天线的方向图指标与无高频辐射单元时基本相当,即本申请实施例中不同频段的辐射单元之间的干扰很小。
本申请实施例还提供一种基站设备,包括上述任意实施例中的天线。天线的具体结构和原理与上述实施例相同,在此不再赘述,关于基站设备的基本结构可以参考图1和图2所示,以及相关的描述。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以 上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种天线,其特征在于,包括:
    多个第一频段天线组,每个所述第一频段天线组包括移相器和多个第一频段辐射单元;
    多个第二频段辐射单元;
    反射板;
    所述反射板上设置有与每个所述第一频段辐射单元分别对应的反射板通孔;
    每个所述第一频段辐射单元包括:
    第一辐射结构,所述第一辐射结构位于所述反射板的第一侧;
    第一巴伦结构,所述第一巴伦结构的一部分位于所述反射板的第一侧并连接于所述第一辐射结构,所述第一巴伦结构穿过所述反射板通孔,所述第一巴伦结构的另一部分位于所述反射板的第二侧,所述第一巴伦结构与所述反射板之间间隔设置;
    第一信号传输结构,所述第一信号传输结构与所述第一巴伦结构间隔设置,所述第一信号传输结构穿过所述反射板通孔;
    所述移相器位于反射板的第二侧,所述移相器包括第一移相器腔体、扼流腔体以及位于所述第一移相器腔体中的第一馈电网络信号传输结构,所述扼流腔体和第一移相器腔体共用部分腔体壁;
    在每个所述第一频段天线组中,每个所述第一频段辐射单元中所述第一巴伦结构位于所述反射板的第二侧的部分位于所述扼流腔体内;
    在每个所述第一频段天线组中,每个所述第一频段辐射单元中的所述第一信号传输结构电连接于所述第一馈电网络信号传输结构。
  2. 根据权利要求1所述的天线,其特征在于,
    每个所述第一频段辐射单元还包括第二信号传输结构,所述第二信号传输结构与所述第一巴伦结构间隔设置,所述第二信号传输结构穿过所述反射板通孔;
    所述移相器还包括第二移相器腔体和位于所述第二移相器腔体中的第二馈电网络信号传输结构,所述扼流腔体和所述第二移相器腔体共用部分腔体壁,所述第一移相器腔体和所述第二移相器腔体分别位于所述扼流腔体的相对两侧;
    在每个所述第一频段天线组中,每个所述第一频段辐射单元中的所述第二信号传输结构电连接于所述第二馈电网络信号传输结构。
  3. 根据权利要求2所述的天线,其特征在于,
    每个所述第一频段辐射单元还包括位于所述扼流腔体之外以及位于所述第一移相器腔体之外的第一信号导出结构;
    所述第一移相器腔体远离所述反射板的一侧腔体壁上设置有与每个所述第一信号导出结构对应的第一信号连接孔;
    所述扼流腔体远离所述反射板的一侧腔体壁上设置有与每个所述第一信号导出结构对应的第二信号连接孔;
    所述第一信号导出结构通过对应的所述第二信号连接孔连接于所述第一信号传输结构,所述第一信号导出结构通过对应的所述第一信号连接孔连接于所述第一馈电网络信号传输结构;
    每个所述第一频段辐射单元还包括位于所述扼流腔体之外以及位于所述第二移相器腔体之外的第二信号导出结构;
    所述第二移相器腔体远离所述反射板的一侧腔体壁上设置有与每个所述第二信号导出结构对应的第三信号连接孔;
    所述扼流腔体远离所述反射板的一侧腔体壁上设置有与每个所述第二信号导出结构对应的第四信号连接孔;
    所述第二信号导出结构通过对应的所述第四信号连接孔连接于所述第二信号传输结构,所述第二信号导出结构通过对应的所述第三信号连接孔连接于所述第二馈电网络信号传输结构。
  4. 根据权利要求1所述的天线,其特征在于,
    所述扼流腔体的腔体壁电连接于所述反射板;
    所述第一巴伦结构位于所述扼流腔体内的部分远离所述反射板的一端连接于所述扼流腔体的腔体壁。
  5. 根据权利要求2所述的天线,其特征在于,
    在每个所述第一频段天线组中,所述多个第一频段辐射单元沿第一方向排列,所述第一移相器腔体、所述扼流腔体和所述第二移相器腔体沿第二方向排列,所述第一方向垂直于所述第二方向,所述第一方向和所述第二方向均平行于所述反射板所在平面;
    所述扼流腔体的高度小于所述第二频段辐射单元的工作频段中心频点对应的波长的二分之一,所述扼流腔体的高度为所述扼流腔体在垂直于所述反射板所在平面方向上的尺寸;
    所述扼流腔体的宽度小于所述第二频段辐射单元的工作频段中心频点对应的波长的三分之一,所述扼流腔体的宽度为所述扼流腔体在所述第二方向上的尺寸。
  6. 根据权利要求2所述的天线,其特征在于,
    所述第一频段辐射单元为双极化辐射单元,所述第一信号传输结构用于以第一极化方向馈电,所述第二信号传输结构用于以第二极化方向馈电。
  7. 根据权利要求1所述的天线,其特征在于,
    在所述扼流腔体中,所述第一巴伦结构的周围包覆有介质材料。
  8. 根据权利要求1所述的天线,其特征在于,
    所述第一频段辐射单元的工作频段大于所述第二频段辐射单元的工作频段。
  9. 根据权利要求1所述的天线,其特征在于,
    每个所述第二频段辐射单元包括第二辐射结构和第二巴伦结构,所述第二辐射结构和所述第二巴伦结构位于所述反射板的第一侧,所述第二巴伦结构连接于所述反射板。
  10. 一种基站设备,其特征在于,包括如权利要求1至9中任意一项所述的天线。
PCT/CN2022/127224 2021-11-03 2022-10-25 天线和基站设备 WO2023078121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111294511.5 2021-11-03
CN202111294511.5A CN116073112A (zh) 2021-11-03 2021-11-03 天线和基站设备

Publications (1)

Publication Number Publication Date
WO2023078121A1 true WO2023078121A1 (zh) 2023-05-11

Family

ID=86170432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127224 WO2023078121A1 (zh) 2021-11-03 2022-10-25 天线和基站设备

Country Status (2)

Country Link
CN (1) CN116073112A (zh)
WO (1) WO2023078121A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816098A (zh) * 2007-10-05 2010-08-25 Ace天线株式会社 具有扼流构件的天线
CN107819198A (zh) * 2017-09-19 2018-03-20 上海华为技术有限公司 一种基站天线的馈电网络,基站天线及基站
CN108767452A (zh) * 2018-04-24 2018-11-06 昆山恩电开通信设备有限公司 一种高性能双极化辐射单元及隔离度调节方法
CN111048896A (zh) * 2019-12-25 2020-04-21 京信通信技术(广州)有限公司 通信系统、天线及其馈电结构
CN111525248A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 一种天线
CN111600126A (zh) * 2020-06-30 2020-08-28 京信通信技术(广州)有限公司 小型化天线
US20210273344A1 (en) * 2020-02-28 2021-09-02 Viettel Group Printed Impedance Transformer for Broadband Dual-Polarized Antenna
CN113346251A (zh) * 2021-04-26 2021-09-03 广东通宇通讯股份有限公司 一种基于辐射单元高度和频段的天线设置方法及天线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101816098A (zh) * 2007-10-05 2010-08-25 Ace天线株式会社 具有扼流构件的天线
CN107819198A (zh) * 2017-09-19 2018-03-20 上海华为技术有限公司 一种基站天线的馈电网络,基站天线及基站
CN108767452A (zh) * 2018-04-24 2018-11-06 昆山恩电开通信设备有限公司 一种高性能双极化辐射单元及隔离度调节方法
CN111048896A (zh) * 2019-12-25 2020-04-21 京信通信技术(广州)有限公司 通信系统、天线及其馈电结构
US20210273344A1 (en) * 2020-02-28 2021-09-02 Viettel Group Printed Impedance Transformer for Broadband Dual-Polarized Antenna
CN111525248A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 一种天线
CN111600126A (zh) * 2020-06-30 2020-08-28 京信通信技术(广州)有限公司 小型化天线
CN113346251A (zh) * 2021-04-26 2021-09-03 广东通宇通讯股份有限公司 一种基于辐射单元高度和频段的天线设置方法及天线

Also Published As

Publication number Publication date
CN116073112A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2020233477A1 (zh) 天线单元及终端设备
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
KR102589691B1 (ko) 안테나 유닛 및 단말 장비
KR102614892B1 (ko) 안테나 유닛 및 단말 장비
WO2021104191A1 (zh) 天线单元及电子设备
WO2021000705A1 (zh) 天线装置及电子设备
KR20090057537A (ko) 고격리 무선 중계기용 광대역 스택 패치 배열 안테나
WO2020233474A1 (zh) 天线单元和电子设备
WO2016138763A1 (zh) 双极化天线
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
CN113659325B (zh) 集成基片间隙波导阵列天线
CN109390669B (zh) 一种双频天线
CN211455960U (zh) 高增益射频前端装置
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2023078121A1 (zh) 天线和基站设备
WO2021233353A1 (zh) 天线装置和无线电通信设备
WO2021083218A1 (zh) 天线单元及电子设备
CN115020990A (zh) 龙勃透镜天线
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
CN110600858A (zh) 一种天线单元及终端设备
US5877729A (en) Wide-beam high gain base station communications antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022889146

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022889146

Country of ref document: EP

Effective date: 20240422