WO2020233474A1 - 天线单元和电子设备 - Google Patents

天线单元和电子设备 Download PDF

Info

Publication number
WO2020233474A1
WO2020233474A1 PCT/CN2020/090051 CN2020090051W WO2020233474A1 WO 2020233474 A1 WO2020233474 A1 WO 2020233474A1 CN 2020090051 W CN2020090051 W CN 2020090051W WO 2020233474 A1 WO2020233474 A1 WO 2020233474A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna branch
branch
layer
electrically connected
Prior art date
Application number
PCT/CN2020/090051
Other languages
English (en)
French (fr)
Inventor
黄奂衢
马荣杰
简宪静
邾志民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20809670.1A priority Critical patent/EP3975333A4/en
Publication of WO2020233474A1 publication Critical patent/WO2020233474A1/zh
Priority to US17/531,603 priority patent/US11757195B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/265Open ring dipoles; Circular dipoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present disclosure relates to the field of antenna technology, and more particularly to an antenna unit and electronic equipment.
  • the forms of antennas mainly include patch antennas, Yagi-Uda antennas, and dipole antennas.
  • the beam transmission performance of the antenna has different requirements in different scenarios. For example, in some scenarios, the antenna is required to have a wide radiation performance; in some scenarios, the antenna is required to have a high directivity radiation performance, or in other words, the antenna is required to have a strong end-fire performance.
  • the embodiments of the present disclosure provide an antenna unit with strong endfire performance and an electronic device using the antenna unit.
  • an antenna unit including:
  • a substrate the substrate having a floor
  • a vertically polarized dipole antenna includes a first antenna branch and a second antenna branch, the first antenna branch and the second antenna branch are arranged in the substrate at intervals;
  • a reflector the reflector includes a plurality of reflecting columns, and the plurality of reflecting columns are arranged in the substrate at intervals along a parabola;
  • a first feeding structure where the first antenna branch and the second antenna branch are electrically connected to the floor through the first feeding structure;
  • first antenna branch and the second antenna branch are located on the side where the focal point of the parabola is located.
  • an embodiment of the present disclosure provides an electronic device including the antenna unit described in the first aspect of the embodiment of the present disclosure.
  • the vertically polarized dipole antenna and the reflector arranged along the parabola are arranged in the substrate, and the vertically polarized dipole antenna is arranged on the side where the focal point of the parabola is located, so that the vertical polarization Most of the beams of the dipole antenna radiate toward the front end, which can enhance the endfire performance of the vertically polarized dipole antenna.
  • FIG. 1 is a schematic diagram of the external structure of an antenna unit provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structure diagram of an antenna unit provided by an embodiment of the present disclosure
  • 3 to 7 are schematic diagrams of an exploded structure of an antenna unit provided by embodiments of the present disclosure.
  • FIG. 8 is a schematic top view of the internal structure of an antenna unit provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic side view of the internal structure of an antenna unit provided by an embodiment of the present disclosure.
  • FIG. 10 is a simulation diagram of reflection coefficient of an antenna unit provided by an embodiment of the present disclosure.
  • FIG. 11 is a 26 GHz vertical polarization dipole pattern of an antenna unit provided by an embodiment of the present disclosure.
  • FIG. 12 is a 26GHz horizontally polarized dipole pattern of an antenna unit provided by an embodiment of the present disclosure
  • FIG. 13 is a 28 GHz vertical polarization dipole pattern of an antenna unit provided by an embodiment of the present disclosure
  • 15 is a schematic diagram of the external structure of another antenna unit provided by an embodiment of the present disclosure.
  • 16 is a schematic cross-sectional structure diagram of another antenna unit provided by an embodiment of the present disclosure.
  • 17 to 20 are schematic diagrams of an exploded structure of another antenna unit provided by an embodiment of the present disclosure.
  • FIG. 21 is a simulation diagram of the reflection coefficient of another antenna unit provided by an embodiment of the present disclosure.
  • FIG. 22 is a 26 GHz pattern of another antenna unit provided by an embodiment of the present disclosure.
  • FIG. 23 is a 28 GHz directional diagram of an antenna unit provided by an embodiment of the present disclosure.
  • FIG. 24 is one of the schematic structural diagrams of an antenna array provided by an embodiment of the present disclosure.
  • FIG. 25 is the second structural diagram of an antenna array provided by an embodiment of the present disclosure.
  • an antenna unit including:
  • the substrate 1, the substrate 1 has a floor 11;
  • the vertically polarized dipole antenna 2 includes a first antenna branch 21 and a second antenna branch 22, the first antenna branch 21 and the second antenna branch 22 are arranged in the substrate 1 at intervals;
  • the reflector 3 includes a plurality of reflecting columns 31, which are arranged in the substrate 1 at intervals along a parabola;
  • the first feeding structure 4, the first antenna branch 21 and the second antenna branch 22 are electrically connected to the floor 11 through the first feeding structure 4;
  • first antenna branch 21 and the second antenna branch 22 are both located on the side where the focal point of the parabola is located.
  • the first antenna branch 21 and the second antenna branch 22 of the vertically polarized dipole antenna 2 are both vertically arranged in the substrate 1.
  • the first antenna branch 21 and the second antenna branch 22 may be arranged in the substrate 1 perpendicular to the substrate 1, or may be arranged in the substrate 1 slightly deviated from the vertical direction.
  • the central axis of the first antenna branch 21 and the central axis of the second antenna 22 may be completely coincident, or may be slightly offset from each other by a certain angle, or slightly offset by a certain distance.
  • the length of the first antenna branch 21 and the length of the second antenna branch 22 may be equal to or approximately the same.
  • the length of the first antenna branch 21 and the second antenna branch 22 is approximately one-quarter of the medium wavelength.
  • each reflecting column 31 in the substrate 1 should be matched with the first antenna branch 21 and the second antenna branch 22, so that each reflector
  • the column 31 also needs to be vertically arranged in the substrate 1.
  • each reflective column 31 may be arranged in the substrate 1 perpendicular to the substrate 1, or may be arranged in the substrate 1 slightly offset from the vertical direction.
  • the vertically polarized dipole antenna 2 and the reflector 3 arranged along the parabola in the substrate 1, and setting the vertically polarized dipole antenna 2 on the side where the focus of the parabola is located Therefore, most of the beams of the vertically polarized dipole antenna 2 are radiated toward the front end, and the backward radiation is reduced, so that the end-fire performance of the dipole antenna can be enhanced.
  • the antenna unit of the embodiment of the present disclosure can be set as a millimeter wave antenna unit, which is suitable for signal transmission in the 5G millimeter wave band. That is, the vertically polarized dipole antenna 2 may be a millimeter wave antenna, and the length of the first antenna branch 21 and the second antenna branch 22 of the vertically polarized dipole antenna 2 may be set according to the millimeter wave wavelength.
  • the central axis of the first antenna branch 21 and the central axis of the second antenna branch 22 both pass through the focal point of the parabola. In this way, the gain of the vertically polarized dipole antenna 2 can be increased, and the front-to-back ratio of its pattern can be improved.
  • the left area of the substrate 1 is provided with a floor 11
  • the right area of the substrate 1 is the clearance area 12
  • the reflector 3 can be installed in the area where the floor 11 is located.
  • Both the branch 21 and the second antenna branch 22 can be arranged in the clearance area 12, and the first feeding structure 4 extends from the clearance area 12 to the area where the floor 11 is located.
  • the reflector 3 as a whole is located in the edge area of the floor 11 close to the clearance area 12.
  • the distance between the reflector 3 and the vertically polarized dipole antenna 2 can be shortened, the reflection effect of the reflector 3 on the vertically polarized dipole antenna 2 can be improved, and the vertically polarized dipole antenna can be improved
  • the front-to-back ratio of the 2 direction map on the other hand, the horizontal space of the floor 11 area occupied by the reflector 3 as a whole can be reduced, and more floor 11 areas can be reserved for other components.
  • the reflecting columns 31 on both sides of the reflector 3 are located at the junction of the floor 11 and the clearance area 12, or in other words, the reflecting columns 31 on both sides of the reflector 3 are partially located in the area where the floor 11 is located, and partially located Clearance area 12.
  • the spacing between the adjacent reflecting columns 31 of the reflector 3 may be all equal, or partly equal. In order to improve the reflection effect of the reflector 3, the spacing between the adjacent reflecting columns 31 should not be too large. If a certain adjacent reflecting column 31 of the reflector 3 needs to pass through related components, the adjacent reflecting column 31 The spacing between the two can be appropriately increased, and the spacing between other adjacent reflective columns 31 can be relatively reduced. 1, 3, etc. show an embodiment in which the distance between the middle two reflective columns 31 of the reflector 3 is relatively large, and the distances between other adjacent reflective columns 31 are all equal.
  • the substrate 1 includes N layers of dielectric plates 13, and N is greater than or equal to 3;
  • the first antenna branch 21 and the second antenna branch 22 are respectively arranged in two non-adjacent dielectric plates 13, and the first antenna branch 21 and the second antenna branch 22 respectively penetrate the corresponding dielectric plate 13;
  • the reflector 3 penetrates the N-layer dielectric plate 13 as a whole.
  • each reflection column 31 of the reflector 3 penetrates the N-layer dielectric plate 13.
  • the substrate 1 is configured as a multi-layer dielectric plate 13, so that the corresponding dielectric plate 13 can be processed separately to form the first antenna branch 21, the second antenna branch 22 and the reflector 3. In this way, the antenna unit can be simplified Craftsmanship. Moreover, by setting the substrate 1 as a multilayer dielectric plate 13, the lengths of the first antenna branch 21, the second antenna branch 22, and the reflection column 31 can be easily controlled, and the length of the first antenna branch 21 and the second antenna branch 22 can be easily controlled. In particular, the length of the first antenna branch 21 and the second antenna branch 22 can be more accurately controlled, so that the length of the first antenna branch 21 and the second antenna branch 22 is as close as possible to a quarter of the wavelength of the medium. Improve the performance of the antenna unit.
  • each reflection post 31 of the reflector 3 penetrates the N-layer dielectric plate 13 so that the vertically polarized dipole antenna 2 is located in the reflection area of the reflector 3, which can further improve the reflection effect.
  • the substrate 1 includes four layers of dielectric plates 13, and the first antenna branch 21 is arranged on the first layer of dielectric plate 13a, and the second antenna branch 22 is arranged on the fourth layer of dielectric plate 13d; It shows an embodiment in which the substrate 1 includes three layers of dielectric plates 13, and the first antenna branch 21 is arranged on the first layer of dielectric plate 13a, and the second antenna branch 22 is arranged on the third layer of dielectric plate 13c.
  • the first antenna branch 21 and the second antenna branch 22 are respectively formed by metal pillars penetrating the corresponding dielectric plate 13;
  • Each reflection column 31 of the reflector 3 is formed by a number of metal columns penetrating through the N-layer dielectric plate 13.
  • the dielectric plate 13 corresponding to the first antenna branch 21 and the second antenna branch 22 is provided with a through hole (not shown in the figure) that penetrates the dielectric plate 13 vertically, and the first antenna branch 21 and the second antenna branch 22 It is formed by metal pillars filled in through holes.
  • the N-layer dielectric plate 13 is spaced along a parabola with a plurality of through holes vertically penetrating the N-layer dielectric plate 13, and each reflection column 31 of the reflector 3 is formed by metal columns filled in the plurality of through holes.
  • the first antenna branch 21, the second antenna branch 22, and the reflection column 31 are formed by punching holes in the dielectric plate 13 and inserting metal pillars into the holes.
  • the process is simple and mature, and no additional production costs are added. .
  • the antenna unit of the embodiment of the present disclosure may only be provided with a vertically polarized dipole antenna as a single polarized dipole antenna.
  • the antenna unit of the embodiment of the present disclosure may also be configured as a dual-polarized dipole antenna. The specific implementation of the dual-polarized dipole antenna will be described below.
  • the antenna unit includes:
  • the substrate 1, the substrate 1 has a floor 11;
  • the vertically polarized dipole antenna 2 includes a first antenna branch 21 and a second antenna branch 22, the first antenna branch 21 and the second antenna branch 22 are arranged in the substrate 1 at intervals;
  • the horizontally polarized dipole antenna 5 includes a third antenna branch 51 and a fourth antenna branch 52, and the third antenna branch 51 and the fourth antenna branch 52 are arranged in the substrate 1 at intervals;
  • the reflector 3 includes a plurality of reflecting columns 31, which are arranged in the substrate 1 at intervals along a parabola;
  • the first feeding structure 4, the first antenna branch 21 and the second antenna branch 22 are electrically connected to the floor 11 through the first feeding structure 4;
  • the second feeding structure 6 electrically connects the third antenna branch 51 and the fourth antenna branch 52 with the floor 11 respectively;
  • the first antenna branch 21, the second antenna branch 22, the third antenna branch 51, and the fourth antenna branch 52 are all located on the side where the focal point of the parabola is located;
  • the first antenna branch 21 and the second antenna branch 22 are respectively located on both sides of the plane where the third antenna branch 51 and the fourth antenna branch 52 are located, and the third antenna branch 51 and the fourth antenna branch 52 are respectively located in the first antenna branch 21 and the second antenna branch.
  • the first antenna branch 21 and the second antenna branch 22 of the vertically polarized dipole antenna 2 are both vertically arranged in the substrate 1.
  • the first antenna branch 21 and the second antenna branch 22 may be arranged in the substrate 1 perpendicular to the substrate 1, or may be arranged in the substrate 1 slightly deviated from the vertical direction.
  • the central axis of the first antenna branch 21 and the central axis of the second antenna 22 may be completely coincident, or may be slightly offset from each other by a certain angle, or slightly deviated from a certain distance.
  • the length of the first antenna branch 21 and the length of the second antenna branch 22 may be equal to or approximately the same.
  • the length of the first antenna branch 21 and the second antenna branch 22 is approximately one-quarter of the medium wavelength.
  • the third antenna branch 51 and the fourth antenna branch 52 of the horizontal polarization dipole antenna 5 are both laterally (or horizontally) arranged in the substrate 1.
  • the third antenna branch 51 and the fourth antenna branch 52 may be arranged in the substrate 1 parallel to the substrate 1, or may be arranged in the substrate 1 slightly offset from the parallel direction.
  • the central axes of the third antenna branch 51 and the fourth antenna branch 52 may be completely coincident, or may be slightly offset from each other by a certain angle, or slightly deviated by a certain distance.
  • the length of the third antenna branch 51 and the length of the fourth antenna branch 52 may be equal to or approximately the same.
  • the length of the third antenna branch 51 and the fourth antenna branch 52 is about one-quarter of the medium wavelength.
  • the shape of the third antenna branch 51 and the fourth antenna branch 52 can be rectangular, triangular, or elliptical.
  • the shape changes smoothly, causing the impedance of the antenna to change It is more gentle, which is beneficial to expand the bandwidth of the horizontally polarized dipole antenna 5.
  • the left area of the substrate 1 is provided with a floor 11, and the right area of the substrate 1 is a clearance area 12, and the reflector 3 as a whole can be installed in the area where the floor 11 is located.
  • the branches 21, the second antenna branches 22, the third antenna branches 51 and the fourth antenna branches 52 can all be arranged in the clearance area 12.
  • the first feeding structure 4 and the second feeding structure 6 extend from the clearance area 12 to the floor 11 Area.
  • the reflector 3 is used as the reflector of the vertically polarized dipole antenna 2, and the reflector of the horizontally polarized dipole antenna 5 can be used as the floor 11 of the substrate 1, that is, the floor 11 of the substrate 1 can be used as the horizontal polarization.
  • the third antenna branch 51 and the fourth antenna branch 52 of the horizontally polarized dipole antenna 5 may be located on the plane where the floor 11 of the substrate 1 is located.
  • the vertically polarized dipole antenna is combined with the horizontally polarized dipole antenna to realize the design of the dual polarized dipole antenna.
  • MIMO Multiple Input and Multiple Output
  • the vertically polarized dipole antenna 2 and the horizontally polarized dipole antenna 5 are staggered in the vertical direction (that is, the direction perpendicular to the substrate 1), they are arranged in the horizontal direction (that is, parallel to the substrate).
  • the positional relationship between the vertically polarized dipole antenna 2 and the horizontally polarized dipole antenna 5 may not be limited.
  • the vertically polarized dipole antenna 2 may be located in the area between the horizontally polarized dipole antenna 5 and the reflector 3, or the horizontally polarized dipole antenna 5 may be located in the vertically polarized dipole antenna 2.
  • the area between the reflector 3 and the vertically polarized dipole antenna 2 and the horizontally polarized dipole antenna 5 may be located on the same vertical plane.
  • FIG. 7 and 8 show an embodiment in which the third antenna branch 51 and the fourth antenna branch 52 are both located in the area between the vertically polarized dipole antenna 2 and the reflector 3. In this embodiment, it is possible to save The space of the clearance area 12 occupied by the horizontally polarized dipole antenna 5 and the vertically polarized dipole antenna 2.
  • the antenna unit of the embodiment of the present disclosure may be configured as a millimeter wave antenna unit, that is, both the vertically polarized dipole antenna 2 and the horizontally polarized dipole antenna 5 are millimeter wave antennas.
  • the global mainstream 5G millimeter wave bands defined by 3GPP (3rd Generation Partnership Project) include n258 (24.25GHz-27.5GHz) based on 26GHz, n257 (26.5GHz-29.5GHz) and n261 based on 28GHz (27.5GHz-28.35GHz), n260 (37.0GHz-40.0GHz) based on 39GHz.
  • the reflection coefficient graph shown in Figure 10 shows that the horizontally polarized dipole antenna and the vertical
  • the common bandwidth of the -10dB S parameter of the polarized dipole antenna is 24.17GHz-29.51GHz, which basically covers the global mainstream 5G millimeter wave bands n257, n258 and n261.
  • the first antenna branch 21 and the second antenna branch 22 are symmetrical with respect to the plane where the third antenna branch 51 and the fourth antenna branch 52 are located;
  • the third antenna branch 51 and the fourth antenna branch 52 are symmetrical with respect to the first antenna branch 21 and the second antenna branch 22.
  • the two antenna branches of the horizontally polarized dipole antenna are inserted into the middle position between the two antenna branches of the vertically polarized dipole antenna, and the two antenna branches of the vertically polarized dipole antenna are inserted into the horizontal pole.
  • the intermediate position between the two antenna branches of the dipole antenna maintains strict horizontal and vertical symmetry in the overall structure, thereby preventing the angular deviation of the main radiation direction of the pattern.
  • Fig. 11, Fig. 12, Fig. 13 and Fig. 14 respectively show the corresponding directional patterns of the dual-polarized dipole antenna at the frequency points of 26.0 GHz and 28.0 GHz. It can be seen from the figure that they are all end-fire radiation patterns, with less backward radiation.
  • the first power feeding structure 4 includes:
  • the first feeding point 41 is electrically connected to the floor 11;
  • the first feeder 42 one end of the first feeder 42 is electrically connected to the first antenna branch 21, and the other end of the first feeder 42 is electrically connected to the first feed point 41;
  • the second feeding point 43 is electrically connected to the floor 11;
  • a second feeder line 44 one end of the second feeder line 44 is electrically connected to the second antenna branch 22, and the other end of the second feeder line 44 is electrically connected to the second feed point 43;
  • the second feeding structure 6 includes:
  • the third feeding point 61 is electrically connected to the floor 11;
  • the third feeder 62 one end of the third feeder 62 is electrically connected to the third antenna branch 51, and the other end of the third feeder 62 is electrically connected to the third feed point 61;
  • the fourth feeding point 63 is electrically connected to the floor 11;
  • one end of the fourth feeder 64 is electrically connected to the fourth antenna branch 52, and the other end of the fourth feeder 64 is electrically connected to the fourth feed point 64.
  • the signal sources connected by the two feeders have the same amplitude and a phase difference of 180°. That is to say, both the vertically polarized dipole antenna 2 and the horizontally polarized dipole antenna 5 adopt a differential feeding mode.
  • the use of differential feed can improve the common mode rejection and anti-interference ability of the antenna, and can improve the differential end-to-end isolation (isolation) and the purity of polarization.
  • the radiation power of the antenna can be improved.
  • the first feeding structure 4 can also adopt the above-mentioned double-ended feeding structure, because it is easy to understand To avoid repetition, I won’t repeat it.
  • the two antenna branches of the vertically polarized dipole antenna 2 both adopt coaxial line differential feed
  • the two antenna branches of the horizontally polarized dipole antenna 5 both adopt coaxial line differential feed.
  • the third feeder 62 and the fourth feeder 64 are mainly composed of: a coplanar wave guide (CPW) is connected to a coaxial line and then connected to the third antenna branch 51 and the fourth antenna branch 52 respectively.
  • CPW coplanar wave guide
  • the multi-layer circuit substrate (LTCC) process is used for processing, in other words, when the substrate 1 includes a multi-layer dielectric board 13, a radio frequency integrated circuit (RFIC) chip can be buried in the dielectric board 13, directly The vertically polarized dipole antenna 2 feeds power, thereby shortening the length of the first feeder 42 and the second feeder 44 and reducing the loss.
  • LTCC multi-layer circuit substrate
  • RFIC radio frequency integrated circuit
  • the reflector 3 as a whole can be located on the edge area of the floor 11 close to the clearance area 12 .
  • the first feeding point 41 and the second feeding point 43 are located on the side of the reflector 3 away from the vertically polarized dipole antenna 2; the third feeding point 61 and the fourth feeding point 63 Located on the side of the reflector 3 away from the horizontally polarized dipole antenna 5.
  • the first feeder 42, the second feeder 44, the third feeder 62 and the fourth feeder 64 all need to pass through the gap between the reflection posts 31 of the reflector 3. Therefore, the gap between the reflective columns 31 can be flexibly adjusted according to the arrangement of the feeder.
  • the first feeder 42, the second feeder 44, the third feeder 62, and the fourth feeder 64 respectively pass through the gap between the two adjacent reflecting columns 31 in the middle of the reflector 3 to the corresponding feeding point. Therefore, the gap between the two adjacent reflection posts 31 in the middle of the reflector 3 can be appropriately increased, so that each feeder can pass directly.
  • the two antenna branches of the vertically polarized dipole antenna 2 are both located in the middle position between the two antenna branches of the horizontally polarized dipole antenna 5. Therefore, in the horizontal direction, the first feeder 42 and the second feeder 44 are both located between the third feeder 62 and the fourth feeder 64, respectively.
  • the substrate 1 includes the multilayer dielectric plate 13
  • the following embodiments can be adopted for the arrangement of the components of the above-mentioned dual-polarized dipole antenna.
  • the substrate 1 includes four layers of dielectric plates 13;
  • the first antenna branch 21 is arranged in the first layer of dielectric plate 13a and penetrates the first layer of dielectric plate 13a;
  • the first feeder 42 is arranged on the surface of the second layer of dielectric plate 13b close to the first layer of dielectric plate 13a;
  • the third antenna branch 51, the fourth antenna branch 52, the third feeder 62, the fourth feeder 64 and the floor 11 are all arranged on the surface of the third layer of dielectric plate 13c close to the second layer of dielectric plate 13b;
  • the second feeder 44 is arranged on the surface of the fourth layer of dielectric plate 13d close to the third layer of dielectric plate 13c;
  • the second antenna branch 22 is arranged in the fourth layer of dielectric plate 13d and penetrates the fourth layer of dielectric plate 13d;
  • the reflector 3 penetrates the four-layer dielectric plate 13, that is, the reflector 3 penetrates the first-layer dielectric plate 13a to the fourth-layer dielectric plate 13d.
  • the floor 11 can be used as a reflector for the third antenna branch 51 and the fourth antenna branch 52. Better improve its reflection performance.
  • the fourth layer of dielectric plate 13d can also be located close to the third layer of dielectric plate.
  • a floor 11 is provided on the surface of 13c, as shown in FIG. 6.
  • the floor 11 can be provided only on the surface of the third layer of dielectric plate 13c close to the second layer of dielectric plate 13b.
  • each reflection column 31 of the reflector 3 penetrates the first layer of dielectric plate 13a to the fourth layer of dielectric plate 13d.
  • the first feeding structure 4 can adopt the above-mentioned double-ended feeding structure.
  • the following single-ended feed structure can also be used.
  • the first power feeding structure 4 includes:
  • the first feeding point 41 is electrically connected to the floor 11;
  • the first feeder 42, the first end of the first feeder 42 is electrically connected to the first antenna branch 21, and the second end of the first feeder 42 is electrically connected to the first feed point 41;
  • the second feeder 43, the first end of the second feeder 43 is electrically connected to the second antenna branch 22, and the second end of the second feeder 43 is electrically connected to the floor 11 through the trapezoidal balun structure 45;
  • the first feeder 42 is coupled with the second feeder 43.
  • FIG 21 shows the reflection coefficient diagram of the vertically polarized dipole antenna 2.
  • the bandwidth of the -10dB S11 is 23.83GHz-29.67GHz, which basically covers the global mainstream 5G millimeter wave bands n257, n258 and n261 defined by 3GPP.
  • Figure 22 and Figure 23 show the directional patterns of the vertically polarized dipole antenna 2 at the frequency of 26 GHz and 28 GHz, respectively.
  • the maximum radiation direction of the vertically polarized dipole antenna 2 is slightly offset, but The amount is small, less than 2 degrees.
  • the second antenna branch 22 of the vertically polarized dipole antenna 2 is directly grounded through the trapezoidal balun structure 45, and only single-ended feed is used. Electrically feeding the first antenna branch 21 of the vertically polarized dipole antenna 2 can reduce one channel and reduce cost.
  • the substrate 1 includes the multilayer dielectric board 13
  • the following embodiments can be adopted for the arrangement of the components of the single-polarized dipole antenna.
  • the substrate 1 includes a three-layer dielectric board 13;
  • the first antenna branch 21 is arranged in the first layer of dielectric plate 13a and penetrates the first layer of dielectric plate 13a;
  • the first feeder 42 is arranged on the surface of the second layer of dielectric plate 13b close to the first layer of dielectric plate 13a;
  • the second antenna branch 22 is arranged in the third layer of dielectric plate 13c and penetrates the third layer of dielectric plate 13c;
  • the second feeder 44 and the floor 11 are both arranged on the surface of the third layer of dielectric plate 13c close to the second layer of dielectric plate 13b.
  • the antenna unit of the embodiment of the present disclosure can be applied to Wireless Metropolitan Area Network (WMAN), Wireless Wide Area Network (WWAN), Wireless Local Area Network (WLAN), and Wireless Personal Area Network (Wireless Local Area Network, WLAN).
  • Wireless Personal Area Network (WPAN) Multiple Input Multiple Output (MIMO), Radio Frequency Identification (RFID), Near Field Communication (NFC), Wireless Charging (Wireless Power Consortium, WPC), Frequency Modulation (Frequency) Modulation, FM) and other wireless communication scenarios.
  • the antenna unit of the embodiment of the present disclosure can also be applied to the compliance testing, design and application of SAR and HAC and other wearable electronic devices related to human safety and health (such as hearing aids or heart rate regulators).
  • the embodiment of the present disclosure also relates to an electronic device including the antenna unit of any one of the embodiments of the present disclosure.
  • the specific implementation of the antenna unit in the electronic device can be referred to the above description, and can achieve the same technical effect. In order to avoid repetition, this will not be repeated.
  • the number of antenna elements is greater than or equal to two, and each antenna element is arranged in sequence to form an antenna array.
  • an isolator 9 is provided between two adjacent antenna units.
  • the isolator 9 By arranging the isolator 9 between the adjacent antenna units, the mutual coupling between the adjacent antenna units can be effectively reduced, and the working performance of the antenna array can be guaranteed.
  • the isolator 9 includes a plurality of spacers 91 arranged at intervals, and the spacers 91 are perpendicular to the substrate 1 and penetrate the substrate 1.
  • the above-mentioned electronic devices can be computers (Computer), mobile phones, tablet computers (Tablet Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistant, PDA), mobile Internet devices (Mobile Internet Device, MID) ), wearable devices, e-readers, navigators, digital cameras, etc.
  • computers Computer
  • Tablet Computer Tablet Computer
  • laptop computers laptop computers
  • personal digital assistants personal digital assistant, PDA
  • mobile Internet devices Mobile Internet Device, MID)
  • wearable devices e-readers, navigators, digital cameras, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本公开提供一种天线单元和电子设备,其中天线单元包括:基板,具有地板;垂直极化偶极子天线,包括第一天线枝和第二天线枝,所述第一天线枝和所述第二天线枝间隔设置于所述基板中;反射器,包括若干反射柱,所述若干反射柱沿抛物线依次间隔排布于所述基板中;第一馈电结构,所述第一天线枝和所述第二天线枝通过所述第一馈电结构与所述地板电连接。

Description

天线单元和电子设备
相关申请的交叉引用
本申请主张在2019年5月22日在中国提交的中国专利申请号No.201910430954.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及天线技术领域,尤其涉及一种天线单元和电子设备。
背景技术
目前,天线的形式主要包括贴片(patch)天线、八木宇田(Yagi-Uda)天线和偶极子(dipole)天线等类型。天线的波束传输性能在不同的场景下其要求也不同。例如,在某些场景下,要求天线具有较宽的辐射性能;而在某些场景下,需要天线具有高指向性的辐射性能,或者说,需要天线具有较强的端射性能。
发明内容
本公开实施例提供一种具有较强的端射性能的天线单元和使用该天线单元的电子设备。
本公开是这样实现的:
第一方面,本公开实施例提供一种天线单元,包括:
基板,所述基板具有地板;
垂直极化偶极子天线,所述垂直极化偶极子天线包括第一天线枝和第二天线枝,所述第一天线枝和所述第二天线枝间隔设置于所述基板中;
反射器,所述反射器包括若干反射柱,所述若干反射柱沿抛物线依次间隔排布于所述基板中;
第一馈电结构,所述第一天线枝和所述第二天线枝通过所述第一馈电结构与所述地板电连接;
其中,所述第一天线枝和所述第二天线枝位于所述抛物线的焦点所在的 一侧。
第二方面,本公开实施例提供一种电子设备,包括本公开实施例的第一方面中所述的天线单元。
本公开实施例中,通过在基板中设置垂直极化偶极子天线和沿抛物线排布的反射器,并将垂直极化偶极子天线设置于抛物线的焦点所在的一侧,使得垂直极化偶极子天线的绝大部分波束朝向前端辐射,从而能够增强垂直极化偶极子天线的端射性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种天线单元的外部结构示意图;
图2是本公开实施例提供的一种天线单元的剖面结构示意图;
图3至图7是本公开实施例提供的一种天线单元的分解结构示意图;
图8是本公开实施例提供的一种天线单元的内部结构俯视示意图;
图9是本公开实施例提供的一种天线单元的内部结构侧视示意图;
图10是本公开实施例提供的一种天线单元的反射系数模拟图;
图11是本公开实施例提供的一种天线单元的26GHz垂直极化偶极子方向图;
图12是本公开实施例提供的一种天线单元的26GHz水平极化偶极子方向图;
图13是本公开实施例提供的一种天线单元的28GHz垂直极化偶极子方向图;
图14是本公开实施例提供的一种天线单元的28GHz水平极化偶极子方向图;
图15是本公开实施例提供的另一种天线单元的外部结构示意图;
图16是本公开实施例提供的另一种天线单元的剖面结构示意图;
图17至图20是本公开实施例提供的另一种天线单元的分解结构示意图;
图21是本公开实施例提供的另一种天线单元的反射系数模拟图;
图22是本公开实施例提供的另一种天线单元的26GHz方向图;
图23是本公开实施例提供的一种天线单元的28GHz方向图;
图24是本公开实施例提供的一种天线阵列的结构示意图之一;
图25是本公开实施例提供的一种天线阵列的结构示意图之二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1至图9、图16至图21所示,本公开实施例提供一种天线单元,包括:
基板1,基板1具有地板11;
垂直极化偶极子天线2,垂直极化偶极子天线2包括第一天线枝21和第二天线枝22,第一天线枝21和第二天线枝22间隔设置于基板1中;
反射器3,反射器3包括若干反射柱31,若干反射柱31沿抛物线依次间隔排布于基板1中;
第一馈电结构4,第一天线枝21和第二天线枝22通过第一馈电结构4与地板11电连接;
其中,第一天线枝21和第二天线枝22均位于抛物线的焦点所在的一侧。
上述垂直极化偶极子天线2的第一天线枝21和第二天线枝22均竖向设置在基板1中。具体的,第一天线枝21和第二天线枝22可垂直于基板1设置于基板1中,也可稍微偏离垂直方向设置于基板1中。第一天线枝21的中心轴线与第二天线22的中心轴线可完全重合,也可稍微相互错开一定的角度,或稍微偏离一定的距离。第一天线枝21的长度与和第二天线枝22的长度可相等,也可近似相等,第一天线枝21和第二天线枝22的长度约为四分之一介质波长。
上述反射器3作为垂直极化偶极子天线2的反射器,每个反射柱31在基板1中的设置方向应与第一天线枝21和第二天线枝22相配合,这样,每个反射柱31也需要竖向设置在基板1中。具体的,每个反射柱31可垂直于基板1设置于基板1中,也可稍微偏离垂直方向设置于基板1中。
本公开实施例中,通过在基板1中设置垂直极化偶极子天线2和沿抛物线排布的反射器3,并将垂直极化偶极子天线2设置于抛物线的焦点所在的一侧,使得垂直极化偶极子天线2的绝大部分波束朝向前端辐射,减少后向辐射,从而能够增强偶极子天线的端射性能。
由于具有较强的端射性能,本公开实施例的天线单元可设置为毫米波天线单元,适用于5G毫米波段的信号传输。即,垂直极化偶极子天线2可以为毫米波天线,垂直极化偶极子天线2的第一天线枝21和第二天线枝22的长度可根据毫米波波长设置。
可选的,第一天线枝21的中心轴线和第二天线枝22的中心轴线均穿过抛物线的焦点。这样,可以提高垂直极化偶极子天线2的增益,改善其方向图的前后比。
需要说明的是,基板1的一部分区域,例如基板1的左侧区域设置地板11,则基板1的右侧区域为净空区12,反射器3整体可设置在地板11所在的区域,第一天线枝21和第二天线枝22均可设置在净空区12,第一馈电结构4从净空区12延伸至地板11所在的区域。
可选的,反射器3整体位于地板11的靠近净空区12的边缘区域。这样,一方面,可拉近反射器3与垂直极化偶极子天线2之间的距离,提高反射器3对垂直极化偶极子天线2的反射效果,改善垂直极化偶极子天线2方向图的前后比。另一方面,可降低反射器3整体占用的地板11区域的水平空间,可留置更多的地板11区域供其它元器件使用。
可选的,反射器3的位于两侧的反射柱31位于地板11和净空区12的交界处,或者说,反射器3的位于两侧的反射柱31部分位于地板11所在的区域,部分位于净空区12。
反射器3的各相邻反射柱31之间的间距可以全部相等,也可以部分相等。为了提高反射器3的反射效果,各相邻反射柱31之间的间距不宜过大, 若反射器3的某相邻反射柱31之间需要穿过相关元器件,则该相邻反射柱31之间的间距可适当增大,其他相邻反射柱31之间的间距可相对减小。图1、图3等示出了反射器3的中间两反射柱31之间的间距较大,其他相邻反射柱31之间的间距均相等的实施方式。
以下对天线单元的各部件的具体设置方式进行说明。
可选的,如图2和图16所示,基板1包括N层介质板13,N大于或等于3;
第一天线枝21和第二天线枝22分别设置于两层不相邻的介质板13中,第一天线枝21和第二天线枝22分别贯穿对应的介质板13;
反射器3整体贯穿N层介质板13。
进一步的,反射器3的各反射柱31均贯穿N层介质板13。
将基板1设置成多层介质板13,这样,可单独对相应的介质板13进行加工处理,以形成第一天线枝21、第二天线枝22和反射器3,这样,能够简化天线单元的制作工艺。并且,通过将基板1设置成多层介质板13,能够很方便地控制第一天线枝21、第二天线枝22和反射柱31的长度,以及第一天线枝21和第二天线枝22之间的间距,尤其是能够更精确地控制第一天线枝21和第二天线枝22的长度,使第一天线枝21和第二天线枝22的长度尽可能接近四分之一介质波长,从而提高天线单元的性能。
此外,将反射器3的各反射柱31贯穿N层介质板13,使得垂直极化偶极子天线2位于反射器3的反射区域内,能够进一步提高反射效果。
其中,图2示出了基板1包括四层介质板13,且第一天线枝21设置于第一层介质板13a,第二天线枝22设置于第四层介质板13d的实施方式;图16示出了基板1包括三层介质板13,且第一天线枝21设置于第一层介质板13a,第二天线枝22设置于第三层介质板13c的实施方式。
可选的,第一天线枝21和第二天线枝22分别由贯穿对应介质板13的金属柱形成;
反射器3的各反射柱31由贯穿N层介质板13的若干金属柱形成。
具体的,第一天线枝21和第二天线枝22对应的介质板13中均开设有垂直贯穿介质板13的通孔(图中未示出),第一天线枝21和第二天线枝22由 填充于通孔中的金属柱形成。N层介质板13沿抛物线间隔开设有垂直贯穿N层介质板13的若干通孔,反射器3的各反射柱31由填充于若干通孔中的金属柱形成。
通过在介质板13中打孔并向孔中置入金属柱的方式来分别形成第一天线枝21、第二天线枝22和反射柱31,工艺简单且成熟,基本不会增加额外的生产成本。
本公开实施例的天线单元可以仅设置垂直极化偶极子天线,作为一种单极化偶极子天线。本公开实施例的天线单元还可以设置为双极化偶极子天线。以下对双极化偶极子天线的具体实施方式进行说明。
如图2至图9所示,天线单元包括:
基板1,基板1具有地板11;
垂直极化偶极子天线2,垂直极化偶极子天线2包括第一天线枝21和第二天线枝22,第一天线枝21和第二天线枝22间隔设置于基板1中;
水平极化偶极子天线5,水平极化偶极子天线5包括第三天线枝51和第四天线枝52,第三天线枝51和第四天线枝52间隔设置于基板1中;
反射器3,反射器3包括若干反射柱31,若干反射柱31沿抛物线依次间隔排布于基板1中;
第一馈电结构4,第一天线枝21和第二天线枝22通过第一馈电结构4与地板11电连接;
第二馈电结构6,第二馈电结构6分别将第三天线枝51和第四天线枝52与地板11电连接;
其中,第一天线枝21、第二天线枝22、第三天线枝51和第四天线枝52均位于抛物线的焦点所在的一侧;
第一天线枝21和第二天线枝22分别位于第三天线枝51和第四天线枝52所在平面的两侧,第三天线枝51和第四天线枝52分别位于第一天线枝21和第二天线枝22的两侧。
上述垂直极化偶极子天线2的第一天线枝21和第二天线枝22均竖向设置在基板1中。具体的,第一天线枝21和第二天线枝22可垂直于基板1设置于基板1中,也可稍微偏离垂直方向设置于基板1中。第一天线枝21的中 心轴线与第二天线22的中心轴线可完全重合,也可稍微相互错开一定的角度,或稍微偏离一定的距离。第一天线枝21的长度与和第二天线枝22的长度可相等,也可近似相等,第一天线枝21和第二天线枝22的长度约为四分之一介质波长。
上述水平极化偶极子天线5的第三天线枝51和第四天线枝52均横向(或水平)设置在基板1中。具体的,第三天线枝51和第四天线枝52可平行于基板1设置于基板1中,也可稍微偏离平行方向设置于基板1中。第三天线枝51和第四天线枝52的中心轴线可完全重合,也可稍微相互错开一定的角度,或稍微偏离一定的距离。第三天线枝51的长度与和第四天线枝52的长度可相等,也可近似相等,第三天线枝51和第四天线枝52的长度约为四分之一介质波长。
水平极化偶极子天线5中,第三天线枝51和第四天线枝52的形状可以是矩形、三角形或椭圆形,当采用椭圆形时,由于其形状变化较平缓,使得天线的阻抗变化更平缓,从而有利于拓展水平极化偶极子天线5的带宽。
需要说明的是,基板1的一部分区域,例如基板1的左侧区域设置地板11,则基板1的右侧区域为净空区12,反射器3整体可设置在地板11所在的区域,第一天线枝21、第二天线枝22、第三天线枝51和第四天线枝52均可设置在净空区12,第一馈电结构4和第二馈电结构6从净空区12延伸至地板11所在的区域。
其中,反射器3作为垂直极化偶极子天线2的反射器,而水平极化偶极子天线5的反射器可由基板1的地板11充当,即,基板1的地板11可作为水平极化偶极子天线5的反射器。为了达到较好的反射效果,水平极化偶极子天线5的第三天线枝51和第四天线枝52可位于基板1的地板11所在的平面。
本公开实施例中,将垂直极化偶极子天线与水平极化偶极子天线相结合,实现了双极化偶极子天线的设计。一方面,可以实现多输入多输出(Multiple Input and Multiple Output,MIMO)功能,以提升数据的传输速率;另一方面,可以增加天线的无线连接能力,降低通信断线的机率,提升通信效果和用户体验。
本公开实施例中,由于垂直极化偶极子天线2和水平极化偶极子天线5在垂直方向(即垂直于基板1的方向)上错开设置,因此,在水平方向(即平行于基板1的方向)上,垂直极化偶极子天线2和水平极化偶极子天线5之间的位置关系可以不作限定。例如,可以是垂直极化偶极子天线2位于水平极化偶极子天线5与反射器3之间的区域,也可以是水平极化偶极子天线5位于垂直极化偶极子天线2与反射器3之间的区域,还可以是垂直极化偶极子天线2和水平极化偶极子天线5位于同一垂直面上。
其中,图7和图8示出了第三天线枝51和第四天线枝52均位于垂直极化偶极子天线2与反射器3之间的区域的实施方式,该实施方式中,可节省水平极化偶极子天线5和垂直极化偶极子天线2所占用的净空区12的空间。
如前所述,本公开实施例的天线单元可设置为毫米波天线单元,即,垂直极化偶极子天线2和水平极化偶极子天线5均为毫米波天线。
3GPP(3rd Generation Partnership Project,第三代合作计划)定义的全球主流5G毫米波段包括以26GHz为主的n258(24.25GHz-27.5GHz),以28GHz为主的n257(26.5GHz-29.5GHz)、n261(27.5GHz-28.35GHz),以39GHz为主的n260(37.0GHz-40.0GHz)。
以垂直极化偶极子天线2和水平极化偶极子天线5的参考频点为28.0GHz为例,图10示出的反射系数图中可看出,水平极化偶极子天线和垂直极化偶极子天线的-10dB的S参数的共同带宽为24.17GHz-29.51GHz,基本覆盖了全球主流5G毫米波频段n257、n258和n261。
可选的,第一天线枝21和第二天线枝22相对第三天线枝51和第四天线枝52所在的平面对称;
第三天线枝51和第四天线枝52相对第一天线枝21和第二天线枝22对称。
从整体结构上看去,水平极化偶极子天线的两天线枝插入垂直极化偶极子天线的两天线枝之间的中间位置,垂直极化偶极子天线的两天线枝插入水平极化偶极子天线的两天线枝之间的中间位置,在整体结构保持了水平和垂直方向的严格对称,从而可以防止方向图主射方向的角度偏移。
图11、图12、图13和图14分别示出了双极化偶极子天线在26.0GHz 和28.0GHz频点对应的方向图。从图中可看出,均为端射的辐射方向图,后向辐射较少。
以下对天线单元的相关馈电结构的具体设置方式进行说明。
如图3至图9所示,第一馈电结构4包括:
第一馈电点41,第一馈电点41与地板11电连接;
第一馈线42,第一馈线42的一端与第一天线枝21电连接,第一馈线42的另一端与第一馈电点41电连接;
第二馈电点43,第二馈电点43与地板11电连接;
第二馈线44,第二馈线44的一端与第二天线枝22电连接,第二馈线44的另一端与第二馈电点43电连接;
第二馈电结构6包括:
第三馈电点61,第三馈电点61与地板11电连接;
第三馈线62,第三馈线62的一端与第三天线枝51电连接,第三馈线62的另一端与第三馈电点61电连接;
第四馈电点63,第四馈电点63与地板11电连接;
第四馈线64,第四馈线64的一端与第四天线枝52电连接,第四馈线64的另一端与第四馈电点64电连接。
上述垂直极化偶极子天线2和水平极化偶极子天线5的馈电结构,即第一馈电结构4和第二馈电结构6均采用双端馈电,每组馈电结构的两根馈线连接的信号源的幅值相等,相位相差180°,也就是说,垂直极化偶极子天线2和水平极化偶极子天线5均采用差分馈电方式。采用差分馈电可以提升天线的共模抑制能力和抗干扰能力,且可以提升差分的端到端的隔离度(isolation)以及提升极化的纯度。此外,相对于单端馈电的结构,可提升天线的辐射功率。
需要说明的是,对于单极化的天线单元而言,即只包含垂直极化偶极子天线2的天线单元,第一馈电结构4也可以采用上述双端馈电的结构,由于容易理解,为避免重复,对此不作赘述。
可选的,垂直极化偶极子天线2的两天线枝均采用同轴线差分馈电,水平极化偶极子天线5的两天线枝均采用同轴线差分馈电。
其中,第三馈线62和第四馈线64主要构成是:同轴线连接共面波导(CoPlanar Waveguide,CPW)然后分别连接到第三天线枝51和第四天线枝52。
此外,如果采用多层电路基板(LTCC)工艺加工,或者说,基板1包括多层介质板13时,可以将射频集成电路(Radiao Frquency Intergarted Circuit,RFIC)芯片埋在介质板13中,直接对垂直极化偶极子天线2馈电,从而缩短第一馈线42和第二馈线44的长度,减小损耗。
如前所述,为了降低反射器3整体占用的地板11区域的水平空间,以留置更多的地板11区域供其它元器件使用,反射器3整体可位于地板11的靠近净空区12的边缘区域。
在上述设置方式中,第一馈电点41和第二馈电点43位于反射器3的远离垂直极化偶极子天线2的一侧;第三馈电点61和第四馈电点63位于反射器3的远离水平极化偶极子天线5的一侧。
这样,第一馈线42、第二馈线44、第三馈线62和第四馈线64均需要穿过反射器3的反射柱31之间的间隙。因此,可根据馈线的布置方式,灵活调整反射柱31之间的间隙。
可选的,第一馈线42、第二馈线44、第三馈线62和第四馈线64均分别穿过反射器3的中间两相邻反射柱31之间的间隙至对应的馈电点。因此,反射器3的中间两相邻反射柱31之间的间隙可适当增大,以使各馈线能够直接通过。
可选的,在水平方向上(即平行于基板1的方向),由于垂直极化偶极子天线2的两天线枝均位于水平极化偶极子天线5的两天线枝之间的中间位置,因此,在水平方向上,第一馈线42和第二馈线44均分别位于第三馈线62和第四馈线64之间。
以下就基板1包括多层介质板13的实施方式,对上述双极化偶极子天线的各元器件的设置可采用以下实施方式。
如图2至图7所示,基板1包括四层介质板13;
第一天线枝21设置于第一层介质板13a中,且贯穿第一层介质板13a;
第一馈线42设置于第二层介质板13b的靠近第一层介质板13a的表面;
第三天线枝51、第四天线枝52、第三馈线62、第四馈线64和地板11均设置于第三层介质板13c的靠近第二层介质板13b的表面;
第二馈线44设置于第四层介质板13d的靠近第三层介质板13c的表面;
第二天线枝22设置于第四层介质板13d中,且贯穿第四层介质板13d;
反射器3贯穿四层介质板13,即,反射器3贯穿第一层介质板13a至第四层介质板13d。
其中,由于第三天线枝51、第四天线枝52和地板11均设置于同一层介质板13的同一表面,这使得地板11作为第三天线枝51、第四天线枝52的反射器,能够更好地提高其反射性能。
需要说明的是,该实施方式中,除了在第三层介质板13c的靠近第二层介质板13b的表面设置地板11之外,还可以在第四层介质板13d的靠近第三层介质板13c的表面设置地板11,如图6所示。若为了确保地板11与各天线枝之间的对称性,提高各天线枝的工作性能,可仅在第三层介质板13c的靠近第二层介质板13b的表面设置地板11。
此外,通过将基板1设置成多层介质板13的结构,这样,通过控制各层介质板13的厚度即可使双极化偶极子天线获得较好的对称性,工艺简单,容易实现。
进一步的,反射器3的各反射柱31均贯穿第一层介质板13a至第四层介质板13d。
本公开实施例中,对于单极化的天线单元而言,即只包含垂直极化偶极子天线2的天线单元,第一馈电结构4除了可采用上述双端馈电的结构之外,还可采用以下的单端馈电结构。
如图17至图20所示,第一馈电结构4包括:
第一馈电点41,第一馈电点41与地板11电连接;
第一馈线42,第一馈线42的第一端与第一天线枝21电连接,第一馈线42的第二端与第一馈电点41电连接;
第二馈线43,第二馈线43的第一端与第二天线枝22电连接,第二馈线43的第二端通过梯形巴伦结构45与地板11电连接;
第一馈线42与第二馈线43耦合。
其中,通过引入等幅反相作用的梯形巴伦结构45,使得上述单端馈电结构能够达到差分馈电的性能。图21示出了垂直极化偶极子天线2的反射系数图,-10dB的S11的带宽为23.83GHz-29.67GHz,基本覆盖了3GPP定义的全球主流5G毫米波频段n257、n258和n261。图22和图23分别示出了垂直极化偶极子天线2在26GHz频点和28GHz频点的方向图,该垂直极化偶极子天线2的最大辐射方向稍有偏移,但偏移量较小,小于2度。
本公开实施例中,通过调整垂直极化偶极子天线2的馈电结构,将垂直极化偶极子天线2的第二天线枝22通过梯形巴伦结构45直接接地,只用单端馈电对垂直极化偶极子天线2的第一天线枝21馈电,能够减少一个通道,降低成本。
以下就基板1包括多层介质板13的实施方式,对上述单极化偶极子天线的各元器件的设置可采用以下实施方式。
如图16所示,基板1包括三层介质板13;
第一天线枝21设置于第一层介质板13a中,且贯穿第一层介质板13a;
第一馈线42设置于第二层介质板13b的靠近第一层介质板13a的表面;
第二天线枝22设置于第三层介质板13c中,且贯穿第三层介质板13c;
第二馈线44和地板11均设置于第三层介质板13c的靠近第二层介质板13b的表面。
本公开实施例的天线单元可应用于无线城际网(Wireless Metropolitan Area Network,WMAN)、无线广域网(Wireless Wide Area Network,WWAN)、无线局域网(Wireless Local Area Network,WLAN)、无线个域网(Wireless Personal Area Network,WPAN)、多输入多输出(MIMO)、射频识别(Radio Frequency Identification,RFID)、近场通信(Near Field Communication,NFC)、无线充电(Wireless Power Consortium,WPC)、调频(Frequency Modulation,FM)等无线通信场景。本公开实施例的天线单元还可应用于SAR与HAC等与人体安全、健康有关的佩戴电子器件(如助听器或心率调整器等)相容性的法规测试、设计及应用上。
本公开实施例还涉及一种电子设备,包括本公开实施例中任一项的天线单元。
电子设备中天线单元的具体实施方式均可以参照上述说明,并能够达到相同的技术效果,为避免重复,对此不作赘述。
可选的,如图24所示,天线单元的数量大于或等于2,各天线单元依次排布形成天线阵列。
可选的,如图25所示,相邻两天线单元之间设置有隔离器9。
通过在相邻的天线单元之间设置隔离器9,能够有效地减小相邻天线单元之间的互耦,保障了天线阵列的工作性能。
可选的,隔离器9包括若干间隔排布的隔离柱91,隔离柱91垂直于基板1并贯穿基板1。
上述电子设备可为计算机(Computer)、手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网电子设备(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)、电子阅读器、导航仪、数码相机等。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种天线单元,包括:
    基板,所述基板具有地板;
    垂直极化偶极子天线,所述垂直极化偶极子天线包括第一天线枝和第二天线枝,所述第一天线枝和所述第二天线枝间隔设置于所述基板中;
    反射器,所述反射器包括若干反射柱,所述若干反射柱沿抛物线间隔排布于所述基板中;
    第一馈电结构,所述第一天线枝和所述第二天线枝通过所述第一馈电结构与所述地板电连接;
    其中,所述第一天线枝和所述第二天线枝均位于所述抛物线的焦点所在的一侧。
  2. 根据权利要求1所述的天线单元,其中,所述基板包括N层介质板,所述N大于或等于3;
    所述第一天线枝和所述第二天线枝分别设置于两层不相邻的介质板中,所述第一天线枝和所述第二天线枝分别贯穿对应的介质板;
    所述若干反射柱贯穿所述N层介质板。
  3. 根据权利要求2所述的天线单元,其中,所述第一天线枝和所述第二天线枝分别由贯穿对应介质板的金属柱形成;
    所述若干反射柱由贯穿所述N层介质板的若干金属柱形成。
  4. 根据权利要求1至3中任一项所述的天线单元,还包括:
    水平极化偶极子天线,所述水平极化偶极子天线包括第三天线枝和第四天线枝,所述第三天线枝和所述第四天线枝间隔设置于所述基板中;
    第二馈电结构,所述第三天线枝和所述第四天线枝通过所述第二馈电结构与所述地板电连接;
    其中,所述第三天线枝和所述第四天线枝均位于所述抛物线的焦点所在的一侧;
    所述第一天线枝和所述第二天线枝分别位于所述第三天线枝和所述第四天线枝所在平面的两侧,所述第三天线枝和所述第四天线枝分别位于所述第 一天线枝和所述第二天线枝的两侧。
  5. 根据权利要求4所述的天线单元,其中,所述第一天线枝和所述第二天线枝相对所述第三天线枝和所述第四天线枝所在的平面对称,所述第三天线枝和所述第四天线枝相对所述第一天线枝和所述第二天线枝对称。
  6. 根据权利要求4所述的天线单元,其中,所述第三天线枝和所述第四天线枝均位于所述垂直极化偶极子天线与所述反射器之间的区域。
  7. 根据权利要求4所述的天线单元,其中,所述第一馈电结构包括:
    第一馈电点,所述第一馈电点与所述地板电连接;
    第一馈线,所述第一馈线的一端与所述第一天线枝电连接,所述第一馈线的另一端与所述第一馈电点电连接;
    第二馈电点,所述第二馈电点与所述地板电连接;
    第二馈线,所述第二馈线的一端与所述第二天线枝电连接,所述第二馈线的另一端与所述第二馈电点电连接;
    所述第二馈电结构包括:
    第三馈电点,所述第三馈电点与所述地板电连接;
    第三馈线,所述第三馈线的一端与所述第三天线枝电连接,所述第三馈线的另一端与所述第三馈电点电连接;
    第四馈电点,所述第四馈电点与所述地板电连接;
    第四馈线,所述第四馈线的一端与所述第四天线枝电连接,所述第四馈线的另一端与所述第四馈电点电连接。
  8. 根据权利要求7所述的天线单元,其中,所述基板包括四层介质板;
    所述第一天线枝设置于第一层介质板中,且贯穿所述第一层介质板;
    所述第一馈线设置于第二层介质板的靠近所述第一层介质板的表面;
    所述第三天线枝、所述第四天线枝、所述第三馈线、所述第四馈线和所述地板均设置于第三层介质板的靠近所述第二层介质板的表面;
    所述第二馈线设置于第四层介质板的靠近所述第三层介质板的表面;
    所述第二天线枝设置于第四层介质板中,且贯穿所述第四层介质板;
    所述反射器贯穿所述四层介质板。
  9. 根据权利要求1至3中任一项所述的天线单元,其中,所述第一馈电 结构包括:
    第一馈电点,所述第一馈电点与所述地板电连接;
    第一馈线,所述第一馈线的第一端与所述第一天线枝电连接,所述第一馈线的第二端与所述第一馈电点电连接;
    第二馈线,所述第二馈线的第一端与所述第二天线枝电连接,所述第二馈线的第二端通过梯形巴伦结构与所述地板电连接;
    所述第一馈线与所述第二馈线耦合。
  10. 根据权利要求9所述的天线单元,其中,所述基板包括三层介质板;
    所述第一天线枝设置于第一层介质板中,且贯穿所述第一层介质板;
    所述第一馈线设置于第二层介质板的靠近所述第一层介质板的表面;
    所述第二天线枝设置于第三层介质板中,且贯穿所述第三层介质板;
    所述第二馈线、所述梯形巴伦结构和所述地板均设置于第三层介质板的靠近所述第二层介质板的表面。
  11. 根据权利要求1至3中任一项所述的天线单元,其中,所述第一天线枝的中心轴线和所述第二天线枝的中心轴线均穿过所述抛物线的焦点。
  12. 根据权利要求4所述的天线单元,其中,所述垂直极化偶极子天线和所述水平极化偶极子天线中的至少之一为毫米波天线。
  13. 一种电子设备,包括如权利要求1至12中任一项所述的天线单元。
  14. 根据权利要求13所述的电子设备,其中,所述天线单元的数量大于或等于2,各所述天线单元依次排布形成天线阵列。
PCT/CN2020/090051 2019-05-22 2020-05-13 天线单元和电子设备 WO2020233474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20809670.1A EP3975333A4 (en) 2019-05-22 2020-05-13 ANTENNA UNIT AND ELECTRONIC DEVICE
US17/531,603 US11757195B2 (en) 2019-05-22 2021-11-19 Antenna element and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430954.9A CN110148828B (zh) 2019-05-22 2019-05-22 天线单元和电子设备
CN201910430954.9 2019-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/531,603 Continuation US11757195B2 (en) 2019-05-22 2021-11-19 Antenna element and electronic device

Publications (1)

Publication Number Publication Date
WO2020233474A1 true WO2020233474A1 (zh) 2020-11-26

Family

ID=67592808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090051 WO2020233474A1 (zh) 2019-05-22 2020-05-13 天线单元和电子设备

Country Status (4)

Country Link
US (1) US11757195B2 (zh)
EP (1) EP3975333A4 (zh)
CN (1) CN110148828B (zh)
WO (1) WO2020233474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708060A (zh) * 2021-08-16 2021-11-26 中国电子科技集团公司第四十三研究所 一种基于三维差分馈电结构的偶极子天线

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148828B (zh) * 2019-05-22 2021-06-04 维沃移动通信有限公司 天线单元和电子设备
US11217894B2 (en) * 2019-05-30 2022-01-04 Cyntec Co., Ltd. Antenna structure
CN110401020B (zh) * 2019-07-24 2021-01-08 维沃移动通信有限公司 天线单元和电子设备
CN112909521B (zh) * 2019-11-19 2022-06-10 华为技术有限公司 天线装置、芯片和终端
CN113067121B (zh) * 2021-03-24 2023-12-22 Oppo广东移动通信有限公司 电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060061513A1 (en) * 2004-09-21 2006-03-23 Fujitsu Limited Planar antenna and radio apparatus
CN101599578A (zh) * 2009-06-04 2009-12-09 南京大学 一种线源定向辐射增强装置
TW201110463A (en) * 2009-09-14 2011-03-16 Htc Corp Planar directional antenna
CN104901004A (zh) * 2015-06-01 2015-09-09 电子科技大学 一种高增益端射毫米波天线
CN110148828A (zh) * 2019-05-22 2019-08-20 维沃移动通信有限公司 天线单元和电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326922B1 (en) * 2000-06-29 2001-12-04 Worldspace Corporation Yagi antenna coupled with a low noise amplifier on the same printed circuit board
US6567055B1 (en) * 2001-05-01 2003-05-20 Rockwell Collins, Inc. Method and system for generating a balanced feed for RF circuit
KR101366784B1 (ko) * 2013-02-15 2014-02-21 국방과학연구소 대수주기 다이폴 배열 안테나
US9496623B2 (en) 2014-11-21 2016-11-15 Sony Corporation Dual band multi-layer dipole antennas for wireless electronic devices
KR101942343B1 (ko) * 2017-08-30 2019-01-25 한국과학기술원 공동 분극화 기생 패치를 갖는 직렬 급전 e-형 패치 안테나 어레이
CN109301461B (zh) * 2018-11-22 2024-03-08 华诺星空技术股份有限公司 一种小型化超宽带平面八木天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060061513A1 (en) * 2004-09-21 2006-03-23 Fujitsu Limited Planar antenna and radio apparatus
CN101599578A (zh) * 2009-06-04 2009-12-09 南京大学 一种线源定向辐射增强装置
TW201110463A (en) * 2009-09-14 2011-03-16 Htc Corp Planar directional antenna
CN104901004A (zh) * 2015-06-01 2015-09-09 电子科技大学 一种高增益端射毫米波天线
CN110148828A (zh) * 2019-05-22 2019-08-20 维沃移动通信有限公司 天线单元和电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708060A (zh) * 2021-08-16 2021-11-26 中国电子科技集团公司第四十三研究所 一种基于三维差分馈电结构的偶极子天线

Also Published As

Publication number Publication date
CN110148828A (zh) 2019-08-20
CN110148828B (zh) 2021-06-04
US20220085511A1 (en) 2022-03-17
EP3975333A1 (en) 2022-03-30
US11757195B2 (en) 2023-09-12
EP3975333A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
WO2021031854A1 (zh) 天线模组和电子设备
WO2020233474A1 (zh) 天线单元和电子设备
WO2020233477A1 (zh) 天线单元及终端设备
WO2021013010A1 (zh) 天线单元和电子设备
US10673135B2 (en) 5G terminal antenna with reconfigurable radiation pattern
CN109037935B (zh) 毫米波低剖面宽带天线
KR102614892B1 (ko) 안테나 유닛 및 단말 장비
WO2019165915A1 (zh) 毫米波天线阵列及移动终端
WO2021104191A1 (zh) 天线单元及电子设备
WO2020233518A1 (zh) 天线单元和电子设备
WO2021083214A1 (zh) 天线单元及电子设备
WO2021083223A1 (zh) 天线单元及电子设备
US20220263250A1 (en) Zig-zag antenna array and system for polarization control
CN112670708A (zh) 一种毫米波天线模组及通信设备
KR101605359B1 (ko) 이동통신 기지국용 광대역 배열안테나
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
CN214411516U (zh) 一种毫米波天线模组及通信设备
WO2021083213A1 (zh) 天线单元及电子设备
KR20140049453A (ko) 원형 편파 안테나
US10992044B2 (en) Antenna system, communication terminal and base station
JP2015201821A (ja) 片面放射デュアルバンドスロットアレイアンテナ
WO2020133390A1 (zh) 一种天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809670

Country of ref document: EP

Effective date: 20211222