WO2023078081A1 - 双向节流阀、第一空调系统及第二空调系统 - Google Patents

双向节流阀、第一空调系统及第二空调系统 Download PDF

Info

Publication number
WO2023078081A1
WO2023078081A1 PCT/CN2022/125871 CN2022125871W WO2023078081A1 WO 2023078081 A1 WO2023078081 A1 WO 2023078081A1 CN 2022125871 W CN2022125871 W CN 2022125871W WO 2023078081 A1 WO2023078081 A1 WO 2023078081A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
way
way throttle
valve core
Prior art date
Application number
PCT/CN2022/125871
Other languages
English (en)
French (fr)
Inventor
林元阳
宣利华
冯晶
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122707906.5U external-priority patent/CN216644630U/zh
Priority claimed from CN202111307151.8A external-priority patent/CN116086054A/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2023078081A1 publication Critical patent/WO2023078081A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present application relates to the technical field of valves, in particular to a two-way throttle valve, a first air conditioning system and a second air conditioning system.
  • Throttle valves are mainly used in air conditioning and refrigeration systems and are an important part of the refrigeration system.
  • the two-way throttle valve is mainly used in heating and cooling air-conditioning systems, and two throttle valve components are connected in parallel or in series to realize the two-way flow function.
  • the functions of the related one-way throttle valve and the two-way throttle valve have limitations.
  • the one-way throttle valve can only realize one-way flow, while the two-way throttle valve has a small flow when it realizes two-way flow, which cannot meet the two-way flow of some models.
  • a two-way throttle valve is provided.
  • the present application provides a two-way throttle valve, which includes a valve tube, and the two ends of the valve tube are respectively provided with a first valve core assembly and a second valve core assembly, the first valve core assembly includes a first valve core, the There is a first valve port in the first valve core assembly, the first valve core is movably arranged in the valve tube and can open/close the first valve port, the first valve core and the first valve core
  • the inner walls of a valve port cooperate to form a first communication channel
  • the second valve core assembly includes a second valve core, and the second valve core assembly has a second valve port inside, and the second valve core can move It is arranged in the valve tube and can open/close the second valve port, and the second valve core cooperates with the inner wall of the second valve port to form a second communication channel; when the first valve port and the When the second valve port is opened, the flow area of the first flow passage is larger than the flow area of the second flow passage, and the second valve core cooperates with the second valve port to realize throttling
  • the valve pipe is connected to the pipeline of the air conditioning system, and there is also a connecting piece inside the valve pipe, and the first valve core assembly is installed at one end of the connecting piece; the connecting piece is provided with The first channel, the first channel communicates with the first valve port; the diameter of the first valve port is D 1 , the diameter of the first channel is D 2 , and the diameter of the air conditioning system pipeline
  • D 1 , D 2 and D 3 satisfy the following relationship: D 2 ⁇ D 1 ⁇ D 3 .
  • valve pipe is connected to the pipeline of the air conditioning system, and a connecting piece is also arranged in the valve pipe, and the first valve core assembly is installed at one end of the connecting piece; the first valve port
  • the caliber at the location is D 1
  • the diameter of the air conditioning system pipeline is D 3
  • D 1 and D 3 satisfy the following relationship: D 1 ⁇ D 3 .
  • the diameter of the second valve port is D 4
  • D 1 and D 4 satisfy the following relationship: D 4 >D 1 >(1/3)D 4 .
  • the first valve core assembly includes a first valve seat, the first valve core is movably arranged in the first valve seat, and the first valve port is opened on the first valve seat.
  • the second valve core assembly includes a second valve seat, the second valve core is movably arranged in the second valve seat, and the second valve port is opened on the first valve seat.
  • the first valve core assembly includes a first valve seat, and the first valve core is movably arranged in the first valve seat; the first valve seat is far away from the second valve seat.
  • One end cap of the valve core assembly is provided with a first sealing head.
  • the second valve core assembly includes a second valve seat, and the second valve core is movably arranged in the second valve seat; Two sealing heads and an elastic member, the second sealing head is arranged at the end of the second valve seat away from the first valve core assembly, and the two ends of the elastic member abut against the second valve core and the second valve core respectively
  • the second seal head is used so that the second valve core has a tendency to reduce the flow area of the second flow channel.
  • the first channel is arranged as a linear channel inclined relative to the axial direction of the connecting member.
  • the present application also provides a first air conditioning system
  • the first air conditioning system includes a compressor, a first heat exchanger, a second heat exchanger, a four-way valve and at least two two-way throttle valves
  • the two-way throttle The valve includes a first two-way throttle valve and a second two-way throttle valve
  • the first heat exchanger is connected to the C port of the four-way valve and the first two-way throttle valve is close to the second spool
  • the second heat exchanger is connected between the E port of the four-way valve and the end of the second two-way throttle valve close to the second valve core assembly
  • the first One end of the two-way throttle valve close to the first spool assembly is connected to one end of the second two-way throttle valve close to the first spool assembly
  • the compressor is connected to the four-way valve Between port D and port S of the four-way valve.
  • each of the second heat exchangers is connected to the four-way valve.
  • each of the second two-way throttle valves is connected to one end close to its first spool assembly .
  • the present application also provides a second air conditioning system
  • the second air conditioning system includes a compressor, a first heat exchanger, a second heat exchanger, a four-way valve and at least one two-way throttle valve, the first heat exchanger
  • the heat exchanger is connected between port C of the four-way valve and the end of the two-way throttle valve close to the first valve core assembly
  • the second heat exchanger is connected to port E of the four-way valve
  • the compressor is connected between the D port of the four-way valve and the S port of the four-way valve and between the end of the two-way throttle valve close to the second valve core assembly.
  • Fig. 1 is a schematic structural diagram of a two-way throttle valve provided according to the present application.
  • Fig. 2 is a schematic diagram of the two-way flow direction of the two-way throttle valve provided by the present application.
  • FIG. 3 is a schematic diagram of the internal structure of the valve tube of the two-way throttle valve provided by the present application.
  • FIG. 4 is a schematic structural diagram of the connecting member provided by the present application.
  • Fig. 5 is a schematic structural diagram of the first valve seat provided by the present application.
  • Fig. 6 is a schematic structural diagram of the second valve seat provided by the present application.
  • FIG. 7 is a schematic diagram of a cross-sectional structure at A-A in FIG. 1 .
  • FIG. 8 is a schematic cross-sectional structure diagram at B-B in FIG. 1 .
  • Fig. 9 is a schematic diagram of the first air conditioning system provided by the present application.
  • FIG. 10 is a partially enlarged schematic view at X in FIG. 9 .
  • FIG. 11 is a partially enlarged schematic diagram of Y in FIG. 9 .
  • Fig. 12 is a schematic diagram of the second air conditioning system provided by the present application.
  • Two-way throttle valve 10. Valve pipe; 11. First valve chamber; 12. Second valve chamber; 20. First valve core assembly; 21. First valve seat; 211. First valve port; 212. 22, the first valve core; 23, the first head; 30, the second valve core assembly; 31, the second valve seat; 311, the second valve port; 312, the second seat cavity; 32, The second spool; 33, the second head; 34, the elastic member; 40, the connecting member; 41, the first channel; 42, the second channel; 43, the first chamber; 44, the second chamber; 200, Air conditioning system; 201, first air conditioning system; 202, second air conditioning system; 50, compressor; 60, first heat exchanger; 61, second heat exchanger; 70, four-way valve; 80, first two-way joint Throttle valve; 81, the second two-way throttle valve; 90, air conditioning system pipeline.
  • a component when a component is said to be “mounted on” another component, it can be directly on the other component or there can also be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the terms “vertical,” “horizontal,” “left,” “right,” and similar expressions are used herein for purposes of illustration only and are not intended to represent the only embodiments.
  • a two-way throttle valve 100 provided in an embodiment of the present application, the two-way throttle valve 100 is applied in an air conditioning system 200 , and the two-way throttle valve 100 is mainly used in a cooling and heating air conditioning system 200 Among them, two throttling valve components are used in parallel or in series to realize the two-way flow function.
  • the functions of the related one-way throttle valve and the two-way throttle valve have limitations.
  • the one-way throttle valve can only realize one-way flow, while the two-way throttle valve has a small flow when it realizes two-way flow, which cannot meet the two-way flow of some models.
  • an embodiment of the present application provides a two-way throttle valve 100, which includes a valve pipe 10, and the two ends of the valve pipe 10 are respectively provided with a first valve core assembly 20 and a
  • the second valve core assembly 30 includes a second valve core 32, and the second valve core assembly 30
  • the present application increases the flow rate by making the flow area of the first flow passage larger than the flow area of the second flow passage, not only realizing the two-way flow of the two-way throttle valve 100
  • a communication piece 40 is also provided in the valve tube 10 .
  • the communication member 40 is disposed in the valve tube 10 and divides the inside of the valve tube 10 into a first valve cavity 11 and a second valve cavity 12 .
  • the connecting member 40 is provided with a first chamber 43, a second chamber 44, a first passage 41 and a second passage 42, the first chamber 43 is located at one end of the connecting member 40 close to the first valve chamber 11, and the second chamber 44 Located at one end of the communication member 40 close to the second valve cavity 12 , the first channel 41 communicates with the first cavity 43 and the second valve cavity 12 , and the second channel 42 communicates with the second cavity 44 and the first valve cavity 11 .
  • the first spool assembly 20 is installed in the first chamber 43 for automatically adjusting the flow between the first channel 41 and the first valve chamber 11 .
  • the second spool assembly 30 is installed at the second chamber 44 for adjusting the flow between the second passage 42 and the second valve chamber 12 .
  • the fluid can enter the second channel 42 from the first valve chamber 11, then enter the second chamber 44, then enter the second valve core assembly 30, and finally enter the to the second valve chamber 12.
  • the fluid can also enter the first channel 41 from the second valve chamber 12 , then enter the first chamber 43 , then enter the first valve core assembly 20 , and finally enter the first valve chamber 11 .
  • the two-way throttle valve 100 can realize two-way flow through the valve pipe 10 , the communication piece 40 , the first valve core assembly 20 and the second valve core assembly 30 , with fewer components and a very simple structure.
  • the first channel 41 is arranged as a linear channel inclined relative to the axial direction of the connecting member 40 .
  • the second channel 42 is also configured as a linear channel inclined relative to the axial direction of the connecting member 40 .
  • the flow resistance is small, so the stability of the two-way throttle valve 100 is better.
  • the communication member 40 , the first valve core assembly 20 and the second valve core assembly 30 are arranged coaxially.
  • the coaxial arrangement makes the overall occupied space of the connecting piece 40, the first valve core assembly 20 and the second valve core assembly 30 smaller, thereby facilitating the miniaturization design of the valve pipe 10 and greatly reducing the occupation of the two-way throttle valve 100 space.
  • the first valve core assembly 20 includes a first valve seat 21 .
  • the first valve seat 21 has a first seat cavity 212 inside, the first valve core 22 is movably disposed in the first seat cavity 212 , and the first valve port 211 is opened on the first valve seat 21 .
  • the end cover of the first valve seat 21 away from the second valve core assembly 30 is provided with a first sealing head 23, and there is a gap between the first sealing head 23 and the first valve seat 21 communicating with the first seat cavity 212 and the first valve cavity 11. gap for fluid to pass through.
  • the fluid pushes the first valve core 22 to move to open the first valve port 211 or increase the flow area of the first valve port 211, and the fluid flows from the first valve core 22 A channel 41 flows through the first valve port 211 and the first seat chamber 212 in sequence, and finally enters the first valve chamber 11 .
  • the first valve core 22 moves in reverse and reduces the flow area of the first valve port 211 , even closes the first valve port 211 .
  • the second valve core assembly 30 includes a second valve seat 31 .
  • the second valve seat 31 has a second seat cavity 312 inside, the second valve core 32 is movably disposed in the second seat cavity 312 , and the second valve port 311 is opened on the second valve seat 31 .
  • the end cover of the second valve seat 31 away from the first valve core assembly 20 is provided with a second seal head 33, and there is a second seat cavity 312 communicating with the second valve cavity 12 between the second seal head 33 and the second valve seat 31. gap for fluid to pass through.
  • an elastic member 34 is also provided in the second valve seat 31, and the two ends of the elastic member 34 abut against the second valve core 32 and the second sealing head 33 respectively, so that the second valve core 32 has a reduced second Trend of the flow area of the flow channel.
  • the second valve port 311 When the flow area of the second valve port 311 is zero, the second valve port 311 is in a closed state, and when the flow area of the second valve port 311 is greater than zero, the second valve port 311 is in an open state. Adjusting the size of the flow area of the second valve port 311 includes not only adjusting the size of the flow area of the second valve port 311 in the open state, but also including switching the second valve port 311 between the open state and the closed state.
  • the second valve port 311 When the flow area of the second valve port 311 decreases to zero, the second valve port 311 is closed.
  • the fluid pressure in the second channel 42 is greater than the elastic force of the elastic member 34, the fluid pushes the second valve core 32 to move so as to compress the elastic member 34 and open the second valve port 311 or increase the flow area of the second valve port 311, The greater the fluid pressure in the second passage 42, the larger the flow area of the second valve port 311, so that the fluid flows from the second passage 42 through the second valve port 311 and the second seat chamber 312 in sequence, and finally enters the second valve chamber 12.
  • the related two-way throttle valve is usually a two-way flow and two-way throttling structure
  • the flow rate of the fluid is usually small.
  • a sufficient amount of fluid is usually required to control the air conditioning system 200. If the condensed water in the condensate is defrosted, if the two-way throttling valve 100 is used for two-way throttling, it will not be able to meet the large flow requirement under the defrosting working condition.
  • one spool assembly is set in a full flow or small hole throttling structure, and the other spool assembly is set in a throttling structure. It should be noted that the flow rate of the full flow or small hole throttling structure is greater than that of the throttling structure. In this way, the two-way throttle valve 100 can satisfy both throttling and large flow under the defrosting working condition.
  • the first valve core assembly 20 is set as a full flow or a small orifice throttling structure.
  • the second valve core assembly 30 may also be set in a full-flow or small-hole throttling structure, which is not limited here.
  • the diameter of the first valve port 211 is D 1
  • the diameter of the first channel 41 is D 2
  • the diameter of the air conditioning system pipeline 90 is D 3
  • D 1 , D 2 and D 3 satisfy the relationship: D 2 ⁇ D 1 ⁇ D 3 .
  • D 1 , D 2 and D 3 satisfy the relational formula: D 2 ⁇ D 1 ⁇ D 3 , so that when the first valve port 211 is opened, The first spool assembly 20 does not cause throttling, and realizes full circulation.
  • the fluid flows into the second valve chamber 12 from the air conditioning system pipeline 90, the fluid flows into the first channel 41 from the gap between the second valve seat 31 and the valve tube 10, because the diameter of the first channel 41 is larger than that of the air conditioning system pipeline The diameter of 90, at this time the area of the flow channel becomes larger to achieve full flow.
  • the diameter of the first valve port 211 is D 1
  • the diameter of the air conditioning system pipeline 90 is D 3
  • D 1 and D 3 satisfy the following relationship: D 1 ⁇ D3 .
  • D 1 and D 3 satisfy the relational formula: D 1 ⁇ D 3 , so that when the first valve port 211 is opened, the first valve core assembly 20 is partially throttled to achieve a small Hole throttling.
  • the fluid flows into the second valve cavity 12 from the air conditioning system pipeline 90, the fluid flows into the first valve port 211 from the gap between the second valve seat 31 and the valve pipe 10, because the diameter of the first valve port 211 is smaller than that of the air conditioning system.
  • the diameter of the pipeline 90 at this time, the area of the flow channel becomes smaller, so as to realize the throttling of small holes.
  • the caliber at the second valve port 311 is D 4 , and D 1 and D 4 satisfy the relationship: D 4 >D 1 >(1/3 ) D 4 .
  • D 1 and D 4 satisfy the relational formula: D 4 >D 1 >(1/3)D 4 , so that when the first valve port 211 When opened, the first valve port 211 further realizes small orifice throttling.
  • the second valve core assembly 30 is set as a throttling structure.
  • the fluid flows into the first valve cavity 11 from the air conditioning system pipeline 90, the fluid flows into the second valve port from the gap between the first valve seat 21 and the valve pipe 10 311. Since the diameter of the second valve port 311 is also smaller than the diameter of the air-conditioning system pipeline 90, the flow channel area is also reduced at this time, so as to realize throttling.
  • the flow rate of the second spool assembly 30 is still smaller than the flow rate of the first spool assembly 20 when it is designed as an orifice throttling, mainly due to the following structural differences between the first spool assembly 20 and the second spool assembly 30 .
  • the first is the difference in flow area.
  • the flow area S1 of the gap between the side wall of the first valve core 22 and the inner wall of the first valve seat 21 is larger than the flow area S2 at the first valve port 211 .
  • the flow area of the gap between the side wall of the second valve core 32 and the inner wall of the second valve seat 31 is smaller than the flow area at the second valve port 311 .
  • the second is the difference about the elastic structure. That is, only the first valve core 22 capable of moving in the first seat cavity 212 is provided in the first seat cavity 212, that is to say, when the fluid pushes the first valve core 22 away from the first valve port 211, It only needs to overcome the gravity of the first valve core 22 itself, and since the first valve core 22 is not connected with other components, after the fluid pushes the first valve core 22 away, unless the impact force of the fluid is gradually smaller than that of the first valve core 22 gravity, otherwise the first spool 22 would not move towards the direction of the first valve port 211.
  • the first valve port 211 realizes a large flow rate; the second seat cavity 312 is provided with the second valve
  • there is also an elastic member 34 whose two ends are respectively connected to the second head 33 and the second valve core 32, that is to say, when the fluid pushes the second valve core 32 away from the second valve port 311,
  • the elastic force of the elastic member 34 it is also necessary to overcome the elastic force of the elastic member 34, and after the fluid pushes the second valve core 32 away, the second valve core 32 is due to the elastic recovery force of the elastic member 34.
  • the action will also have a tendency to move toward the second valve port 311 , which will also make the flow rate at the second valve port 311 gradually decrease.
  • the first valve port 211 is designed as a small orifice throttling structure, the first valve port 211 The flow rate at the second valve port 311 is still larger than the flow rate at the second valve port 311.
  • the elastic member 34 adopts a spring; of course, in other embodiments, the elastic member 34 can also adopt other elastic structures, which are not limited herein.
  • the present application also provides a first air conditioning system 201 , the first air conditioning system 201 includes a compressor 50 , a first heat exchanger 60 , a second heat exchanger 61 , and a four-way valve 70
  • the two-way throttle valve 100 includes a first two-way throttle valve 80 and a second two-way throttle valve 81
  • the first heat exchanger 60 is connected to the C port of the four-way valve 70 and the first two-way throttle valve
  • the valve 80 is close to one end of the second spool assembly 30 of the first two-way throttle valve 80
  • the second heat exchanger 61 is connected to the E port of the four-way valve 70
  • the second two-way throttle valve 81 is close to the second Between one end of the second spool assembly 30 of the two-way throttle valve 81 , the end of the first spool assembly 20 of the first two-way throttle valve 80 close to the first two-way throttle valve 80 and the second two-way throttle valve 81
  • the first air-conditioning system 201 is mainly a system with many components and a long air-conditioning system pipeline 90 , and the applicable two-way throttle valve 100 at this time is a two-way throttle valve 100 with throttle at one end and full flow at the other end.
  • the low-temperature and low-pressure gas is compressed by the compressor 50 to form high-temperature and high-pressure gas, and the high-temperature and high-pressure gas enters the first heat exchanger 60 through the four-way valve 70 and condenses through the first heat exchanger 60
  • the medium-temperature and high-pressure liquid enters the second valve chamber 12 of the first two-way throttle valve 80, then flows into the first channel 41 through the gap between the second valve seat 31 and the valve tube 10, and then enters the second A valve port 211.
  • the medium-temperature and high-pressure liquid pushes away the first valve core 22, enters the first seat chamber 212, and then enters the first valve chamber 11.
  • the medium-temperature and high-pressure liquid flowing through the first two-way throttle valve 80 is equivalent to flowing through an air-conditioning system pipeline 90 without throttling effect.
  • 11 and then flows into the first valve chamber 11 of the second two-way throttle valve 81 flows into the second channel 42 through the gap between the first valve seat 21 and the valve tube 10, and then flows into the second valve port 311, After the second valve core 32 is pushed back, it flows into the second seat chamber 312, and finally enters the second valve chamber 12.
  • the medium-temperature and high-pressure liquid is throttled at the second valve port 311 to become a low-temperature and low-pressure liquid, and then enters the second heat exchange chamber.
  • the gas is evaporated by the second heat exchanger 61 to form a low-temperature and low-pressure gas, and finally enters the compressor 50 through the four-way valve 70, thereby completing the refrigeration cycle.
  • the low-temperature and low-pressure gas is compressed by the compressor 50 to form high-temperature and high-pressure gas, and the high-temperature and high-pressure gas enters the second heat exchanger 61 through the four-way valve 70 and passes through the second heat exchanger 61
  • the heat is released into a medium-temperature and high-pressure liquid, and the medium-temperature and high-pressure liquid enters the second valve chamber 12 of the second two-way throttle valve 81, and then flows into the first channel 41 through the gap between the second valve seat 31 and the valve tube 10, and then Entering the first valve port 211, at this time, the medium-temperature and high-pressure liquid pushes the first valve core 22 away, enters the first seat chamber 212, and then enters the first valve chamber 11, because the fluid is fully circulated at the first valve port 211 , so at this time, the medium-temperature and high-pressure liquid flowing through the second two-way throttle valve 81 is equivalent to flowing through an air-conditioning system pipeline 90 without th
  • the second heat exchanger 61 and the second two-way throttle valve 81 can be connected in parallel with multiple pipelines, and the specific number depends on the specific conditions of the air-conditioning system 200 . That is to say, the first air-conditioning system 201 includes at least two second heat exchangers 61 and at least two second two-way throttle valves 81, and each second heat exchanger 61 is connected to the port E of the four-way valve 70 and Each second two-way throttle valve 81 is between one end of the second spool assembly 30 close to the second two-way throttle valve 81 , and each second two-way throttle valve 81 is close to the first end of the second two-way throttle valve 81 .
  • One end of a spool assembly 20 is connected to each other.
  • the two-way throttle valve 100 with the full flow of the first valve core assembly 20 and the throttling of the second valve core assembly 30 is applied to the first air conditioning system 201.
  • the cooling capacity loss along the way is relatively large.
  • the present application also provides a second air conditioning system 202
  • the second air conditioning system 202 includes a compressor 50, a first heat exchanger 60, a second heat exchanger 61, a four-way valve 70 and a two-way Throttle valve 100
  • the first heat exchanger 60 is connected between the C port of the four-way valve 70 and the end of the two-way throttle valve 100 close to the first valve core assembly 20 of the second two-way throttle valve 100
  • the device 61 is connected between the E port of the four-way valve 70 and the end of the second spool assembly 30 of the two-way throttle valve 100 close to the second two-way throttle valve 100
  • the compressor 50 is connected between the D port of the four-way valve 70 and Between the S ports of the four-way valve 70.
  • the second air-conditioning system 202 is mainly a system with few components and a short air-conditioning system pipeline 90 , and the applicable two-way throttle valve 100 at this time is a two-way throttle valve 100 that throttles at one end and communicates through a small hole at the other end.
  • the low-temperature and low-pressure gas is compressed by the compressor 50 to form high-temperature and high-pressure gas, and the high-temperature and high-pressure gas enters the first heat exchanger 60 through the four-way valve 70 and condenses through the first heat exchanger 60
  • the medium temperature and high pressure liquid enters the first valve cavity 11 of the two-way throttle valve 100, then flows into the second channel 42 through the gap between the first valve seat 21 and the valve tube 10, and then enters the second valve port 311, at this time, the medium-temperature and high-pressure liquid pushes away the second valve core 32, enters the second seat chamber 312, and then enters the second valve chamber 12.
  • the medium-temperature and high-pressure liquid flows through the two-way throttle valve 100 and is throttled into a low-temperature and low-pressure liquid or a low-temperature and low-pressure gas-liquid two-phase state.
  • the steam is evaporated by the second heat exchanger 61 to form low-temperature and low-pressure steam, and finally enters the compressor 50 through the four-way valve 70, thereby completing the refrigeration cycle.
  • the low-temperature and low-pressure gas is compressed by the compressor 50 to form high-temperature and high-pressure gas, and the high-temperature and high-pressure gas enters the second heat exchanger 61 through the four-way valve 70 and passes through the second heat exchanger 61 Condensed into medium temperature and high pressure liquid, the medium temperature and high pressure liquid enters the second valve cavity 12 of the two-way throttle valve 100, then flows into the first channel 41 through the gap between the second valve seat 31 and the valve tube 10, and then enters the first Valve port 211, at this time, the medium-temperature and high-pressure liquid pushes away the first valve core 22, enters the first seat cavity 212, and then enters the first valve cavity 11, because the fluid is throttling into small holes at the first valve port 211.
  • the two-way throttle valve 100 in which the small hole of the first spool assembly 20 throttles and the second spool assembly 30 throttles, is applied to the second air conditioning system 202. It is mainly used in refrigeration and freezing occasions, and solves the problem of air conditioning systems in long-term refrigeration environments. 200 The problem that the refrigerant flow rate needs to be greatly increased during defrosting.
  • the air conditioning system 200 mentioned above is either the first air conditioning system 201 or the second air conditioning system 202 .
  • the two-way throttling valve 100 provided by this application, when the first valve port 211 and the second valve port 311 are opened, by making the flow area of the first flow passage larger than the flow area of the second flow passage, not only can realize two-way throttling
  • the two-way flow and one-way throttling function of the valve 100 and when the two-way throttling valve 100 is in the defrosting working condition, it can also meet the requirement of low pressure and large flow in the working condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种双向节流阀(100)及具有其的空调系统(200)。该双向节流阀(100)包括阀管(10),第一阀芯(22)和第一阀口(211)的内壁之间配合形成第一流通通道;第二阀芯(32)和第二阀口(311)的内壁之间配合形成第二流通通道;当第一阀口(211)和第二阀口(311)开启时,第一流通通道的流通面积大于第二流通通道的流通面积,且第二阀芯(32)与第二阀口(311)之间配合以实现节流。本申请还提供一种空调系统(200),该空调系统(200)包括上述双向节流阀(100)。

Description

双向节流阀、第一空调系统及第二空调系统
相关申请
本申请要求2021年11月5日申请的,申请号为202111307151.8,发明名称为“双向节流阀、第一空调系统及第二空调系统”以及2021年11月5日申请的,申请号为202122707906.5,发明名称为“双向节流阀、第一空调系统及第二空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及阀门技术领域,特别是涉及一种双向节流阀、第一空调系统及第二空调系统。
背景技术
节流阀主要应用于空调制冷系统中,是制冷系统的重要组成部分。双向节流阀主要应用于冷暖型空调系统中,采用两个节流阀组件并联或串联设置,实现双向流通功能。
相关的单向节流阀和双向节流阀功能都具有局限性,单向节流阀只能实现单向流通,而双向节流阀在实现双向流通时流量较小,无法满足部分机型双向流通和单向节流的要求,以及除霜工况下除霜一侧低压大流量的要求。
发明内容
根据本申请的各种实施例,提供一种双向节流阀。
本申请提供一种双向节流阀,包括阀管,所述阀管内的两端分别设有第一阀芯组件和第二阀芯组件,所述第一阀芯组件包括第一阀芯,所述第一阀芯组件内具有第一阀口,所述第一阀芯可活动的设于所述阀管内并能够启/闭所述第一阀口,所述第一阀芯和所述第一阀口的内壁之间配合形成第一流通通道;所述第二阀芯组件包括第二阀芯,所述第二阀芯组件内具有第二阀口,所述第二阀芯可活动的设于所述阀管内并能够启/闭所述第二阀口,所述第二阀芯和所述第二阀口的内壁之间配合形成第二流通通道;当所述第一阀口和所述第二阀口开启时,所述第一流通通道的流通面积大于所述第二流通通道的流通面积,且所述第二阀芯与所述第二阀口之间配合以实现节流。
在其中一个实施例中,所述阀管连接于空调系统管路,所述阀管内还设有连通件,所 述第一阀芯组件安装于所述连通件的一端;所述连通件设有第一通道,所述第一通道连通于所述第一阀口;所述第一阀口处的口径为D 1,所述第一通道的直径为D 2,所述空调系统管路的直径为D 3,D 1、D 2和D 3满足以下关系式:D 2≥D 1≥D 3
在其中一个实施例中,所述阀管连接于空调系统管路,所述阀管内还设有连通件,所述第一阀芯组件安装于所述连通件的一端;所述第一阀口处的口径为D 1,所述空调系统管路的直径为D 3,D 1和D 3满足以下关系式:D 1<D 3
在其中一个实施例中,所述第二阀口处的口径为D 4,D 1和D 4满足以下关系式:D 4>D 1>(1/3)D 4
在其中一个实施例中,所述第一阀芯组件包括第一阀座,所述第一阀芯可活动的设置于所述第一阀座内,所述第一阀口开设于所述第一阀座;所述第一阀芯的侧壁和所述第一阀座的内壁之间的间隙流通面积S1大于所述第一阀口处的流通面积S2。
在其中一个实施例中,所述第二阀芯组件包括第二阀座,所述第二阀芯可活动的设置于所述第二阀座内,所述第二阀口开设于所述第二阀座;所述第二阀芯的侧壁和所述第二阀座的内壁之间的间隙流通面积小于所述第二阀口处的流通面积。
在其中一个实施例中,所述第一阀芯组件包括第一阀座,所述第一阀芯可活动的设置于所述第一阀座内;所述第一阀座远离所述第二阀芯组件的一端盖设有第一封头。
在其中一个实施例中,所述第二阀芯组件包括第二阀座,所述第二阀芯可活动的设置于所述第二阀座内;所述第二阀座内还设有第二封头和弹性件,所述第二封头设于所述第二阀座远离所述第一阀芯组件一端,所述弹性件的两端分别抵接于所述第二阀芯和所述第二封头,以使所述第二阀芯具有减小所述第二流通通道的流通面积的趋势。
在其中一个实施例中,所述第一通道设置为相对于所述连通件的轴向倾斜的直线型通道。
本申请还提供一种第一空调系统,所述第一空调系统包括压缩机、第一换热器、第二换热器、四通阀以及至少2个双向节流阀,所述双向节流阀包括第一双向节流阀和第二双向节流阀,所述第一换热器连接于所述四通阀的C口和所述第一双向节流阀靠近其所述第二阀芯组件的一端之间,所述第二换热器连接于所述四通阀的E口和所述第二双向节流阀靠近其所述第二阀芯组件的一端之间,所述第一双向节流阀靠近其所述第一阀芯组件的一端与所述第二双向节流阀靠近其所述第一阀芯组件的一端相连接,所述压缩机连接于所述四通阀的D口和所述四通阀的S口之间。
在其中一个实施例中,所述第二换热器至少为两个,所述第二双向节流阀至少为两个,每个所述第二换热器均连接于所述四通阀的E口和每个所述第二双向节流阀靠近其所述第 二阀芯组件的一端之间,每个所述第二双向节流阀靠近其所述第一阀芯组件的一端互相连接。
本申请还提供一种第二空调系统,所述第二空调系统包括压缩机、第一换热器、第二换热器、四通阀以及至少1个双向节流阀,所述第一换热器连接于所述四通阀的C口和所述双向节流阀靠近其所述第一阀芯组件的一端之间,所述第二换热器连接于所述四通阀的E口和所述双向节流阀靠近其所述第二阀芯组件的一端之间,所述压缩机连接于所述四通阀的D口和所述四通阀的S口之间。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
图1为根据本申请提供的双向节流阀的结构示意图。
图2为本申请提供的双向节流阀双向流通方向的示意图。
图3为本申请提供的双向节流阀阀管内部的结构示意图。
图4为本申请提供的连通件的结构示意图。
图5为本申请提供的第一阀座的结构示意图。
图6为本申请提供的第二阀座的结构示意图。
图7为图1中A-A处的截面结构示意图。
图8为图1中B-B处的截面结构示意图。
图9为本申请提供的第一空调系统的示意图。
图10为图9中X处的局部放大示意图。
图11为图9中Y处的局部放大示意图。
图12为本申请提供的第二空调系统的示意图。
图中各符号表示含义如下:
100、双向节流阀;10、阀管;11、第一阀腔;12、第二阀腔;20、第一阀芯组件;21、第一阀座;211、第一阀口;212、第一座腔;22、第一阀芯;23、第一封头;30、第二阀芯组件;31、第二阀座;311、第二阀口;312、第二座腔;32、第二阀芯;33、第二封头;34、弹性件;40、连通件;41、第一通道;42、第二通道;43、第一腔室;44、第二腔室; 200、空调系统;201、第一空调系统;202、第二空调系统;50、压缩机;60、第一换热器;61、第二换热器;70、四通阀;80、第一双向节流阀;81、第二双向节流阀;90、空调系统管路。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本申请进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本申请,并不限定本申请的保护范围。
需要说明的是,当组件被称为“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参见图1至图12,本申请一实施方式中提供的一种双向节流阀100,该双向节流阀100应用于空调系统200中,双向节流阀100主要应用于冷暖型空调系统200中,采用两个节流阀组件并联或串联设置,实现双向流通功能。
相关的单向节流阀和双向节流阀功能都具有局限性,单向节流阀只能实现单向流通,而双向节流阀在实现双向流通时流量较小,无法满足部分机型双向流通和单向节流的要求,以及除霜工况下除霜一侧低压大流量的要求。
为解决相关的双向节流阀存在的问题,本申请一实施方式中提供了一种双向节流阀100,包括阀管10,阀管10内的两端分别设有第一阀芯组件20和第二阀芯组件30,第一阀芯组件20包括第一阀芯22,第一阀芯组件20内具有第一阀口211,第一阀芯22可活动的设于阀管10内并能够启/闭第一阀口211,第一阀芯22和第一阀口211的内壁之间配合形成第一流通通道;第二阀芯组件30包括第二阀芯32,第二阀芯组件30内具有第二阀口311,第二阀芯32可活动的设于阀管10内并能够启/闭第二阀口311,第二阀芯32和第二阀口311的内壁之间配合形成第二流通通道;当第一阀口211和第二阀口311开启时, 第一流通通道的流通面积大于第二流通通道的流通面积,且第二阀芯32与第二阀口311之间配合以实现节流。
当第一阀口211和第二阀口311开启时,本申请通过使得第一流通通道的流通面积大于第二流通通道的流通面积,从而加大流通量,不仅实现双向节流阀100的双向流通单向节流功能,而且,当双向节流阀100处在除霜工况下时,也能满足该工况下低压大流量的要求。
如图1和图4所示,阀管10内还设有连通件40。连通件40设于阀管10内并将阀管10内部分隔为第一阀腔11和第二阀腔12。连通件40设有第一腔室43、第二腔室44、第一通道41和第二通道42,第一腔室43位于连通件40靠近第一阀腔11的一端,第二腔室44位于连通件40靠近第二阀腔12的一端,第一通道41连通第一腔室43和第二阀腔12,第二通道42连通第二腔室44和第一阀腔11。第一阀芯组件20安装于第一腔室43,用以自动调节第一通道41和第一阀腔11之间的流量大小。第二阀芯组件30安装于第二腔室44处,用以调节第二通道42和第二阀腔12之间的流量大小。
如图2所示,双向节流阀100工作时,流体可从第一阀腔11进入到第二通道42,再进入到第二腔室44,然后进入到第二阀芯组件30,最后进入到第二阀腔12。流体还可以从第二阀腔12进入到第一通道41,再进入到第一腔室43,然后进入到第一阀芯组件20,最后进入到第一阀腔11。如此,该双向节流阀100通过阀管10、连通件40、第一阀芯组件20以及第二阀芯组件30即可实现双向流通作用,零部件较少,结构非常简单。安装时,只需要将连通件40安装于阀管10内,并将第一阀芯组件20和第二阀芯组件30分别安装于连通件40两端,即可完成该双向节流阀100的组装工作,安装过程也非常简单,减少了装配过程中出现不良的概率,有利于产品一致性的提高,从而大大降低了双向节流阀100的生产成本。“产品一致性”指的是批量生产时,不同的产品之间基本保持相同。
如图3及图4所示,第一通道41设置为相对于连通件40的轴向倾斜的直线型通道。如此,流体在第一通道41内流动时,流阻较小,从而该双向节流阀100的稳定性更好。相应地,第二通道42也设置为相对于连通件40的轴向倾斜的直线型通道。同样地,流体在第二通道42内流动时,流阻较小,从而该双向节流阀100的稳定性更好。
本实施例中,连通件40、第一阀芯组件20以及第二阀芯组件30同轴设置。同轴设置使得连通件40、第一阀芯组件20和第二阀芯组件30的整体占用空间较小,从而有利于阀管10的小型化设计,大大降低了该双向节流阀100的占用空间。
如图3和图5所示,第一阀芯组件20包括第一阀座21。第一阀座21内具有第一座腔212,第一阀芯22可活动的设置于第一座腔212内,第一阀口211开设于第一阀座21。第 一阀座21远离第二阀芯组件30的一端盖设有第一封头23,第一封头23与第一阀座21之间留有连通第一座腔212和第一阀腔11的空隙,以供流体通过。当第一阀口211的流通面积减小为零时,即关闭第一阀口211。当第一通道41内的流体压力大于第一阀芯22的自身重力时,流体推动第一阀芯22移动从而打开第一阀口211或增大第一阀口211的流通面积,流体从第一通道41依次流经第一阀口211和第一座腔212,最后进入第一阀腔11。当第一通道41内的流体压力小于第一阀芯22的自身重力时,第一阀芯22反向移动并减小第一阀口211的流通面积,甚至关闭第一阀口211。
如图6所示,第二阀芯组件30包括第二阀座31。第二阀座31内具有第二座腔312,第二阀芯32可活动的设置于第二座腔312内,第二阀口311开设于第二阀座31。第二阀座31远离第一阀芯组件20的一端盖设有第二封头33,第二封头33与第二阀座31之间留有连通第二座腔312和第二阀腔12的空隙,以供流体通过。
进一步地,第二阀座31内还设有弹性件34,弹性件34的两端分别抵接于第二阀芯32和第二封头33,以使第二阀芯32具有减小第二流通通道的流通面积的趋势。当第二阀口311的流通面积为零时,第二阀口311处于关闭状态,当第二阀口311的流通面积大于零时,第二阀口311处于打开状态。调节第二阀口311的流通面积的大小既包括第二阀口311的打开状态下流通面积大小的调节,也包括第二阀口311在打开状态和关闭状态之间切换。当第二阀口311的流通面积减小为零时,即关闭第二阀口311。当第二通道42内的流体压力大于弹性件34的弹性力时,流体推动第二阀芯32移动从而压缩弹性件34并打开第二阀口311或增大第二阀口311的流通面积,第二通道42内的流体压力越大,第二阀口311的流通面积越大,从而流体从第二通道42依次流经第二阀口311和第二座腔312,最后进入第二阀腔12。当第二通道42内的流体压力小于弹性件34的弹性力时,在弹性件34的弹性回复力作用下,第二阀芯32反向移动并减小第二阀口311的流通面积,甚至关闭第二阀口311。
由于相关的双向节流阀通常为双向流通、双向节流结构,因此流体的流通量通常较少,对于在空调系统200当中的除霜工况下,通常需要足量的流体才能对空调系统200中的冷凝水进行除霜,如若在双向节流阀100双向节流的情况下,根本无法满足除霜工况下的大流量要求。
在双向节流阀100中的两个阀芯组件中,其中一个阀芯组件设置为全流通或者小孔节流结构,另一个阀芯组件设置为节流结构。需要说明的是,全流通或者小孔节流结构的流通量大于节流结构。如此便实现了在双向节流阀100中既能满足节流,又能满足除霜工况下大流量的情况。
在本实施例中,将第一阀芯组件20设置为全流通或者小孔节流结构。当然,在其他实施例中,也可以将第二阀芯组件30设置为全流通或者小孔节流结构,在此不作限定。
当第一阀芯组件20实现全流通时,第一阀口211处的口径为D 1,第一通道41的直径为D 2,空调系统管路90的直径为D 3,D 1、D 2和D 3满足关系式:D 2≥D 1≥D 3。在设计第一阀口211和第一通道41的直径时,将D 1、D 2和D 3满足关系式:D 2≥D 1≥D 3,即可使得当第一阀口211开启时,第一阀芯组件20不产生节流,实现全流通。
当流体从空调系统管路90中流入第二阀腔12时,流体从第二阀座31与阀管10之间的间隙流入第一通道41,由于第一通道41的直径大于空调系统管路90的直径,此时流道面积变大,实现全流通。
当第一阀芯组件20实现小孔节流时,第一阀口211处的口径为D 1,空调系统管路90的直径为D 3,D 1和D 3满足以下关系式:D 1<D 3。在设计第一阀口211口径时,将D 1和D 3满足关系式:D 1<D 3,即可使得当第一阀口211开启时,第一阀芯组件20部分节流,实现小孔节流。
当流体从空调系统管路90中流入第二阀腔12时,流体从第二阀座31与阀管10之间的间隙流入第一阀口211,由于第一阀口211的直径小于空调系统管路90的直径,此时流道面积变小,实现小孔节流。
进一步地,为了第一阀芯组件20更好的实现小孔节流,第二阀口311处的口径为D 4,D 1和D 4满足关系式:D 4>D 1>(1/3)D 4。在设计第一阀口211和第二阀口311的口径时,将D 1和D 4满足关系式:D 4>D 1>(1/3)D 4,即可使得当第一阀口211开启时,第一阀口211处进一步实现小孔节流。
设置为节流结构的第二阀芯组件30,当流体从空调系统管路90中流入第一阀腔11时,流体从第一阀座21与阀管10之间的间隙流入第二阀口311,由于第二阀口311的直径也是小于空调系统管路90的直径,因此此时流道面积也是变小的,以此实现节流。第二阀芯组件30的流通量仍然小于设计为小孔节流时的第一阀芯组件20的流通量,主要在于第一阀芯组件20和第二阀芯组件30之间结构的以下区别。
如图7至图8所示,首先是关于流通面积的区别。第一阀芯22的侧壁和第一阀座21的内壁之间的间隙流通面积S1大于第一阀口211处的流通面积S2。第二阀芯32的侧壁和第二阀座31的内壁之间的间隙流通面积小于第二阀口311处的流通面积。基于此可知,由于压差的关系,流体顶开第一阀芯22的过程明显要比流体顶开第二阀芯32的过程更加容易,第一阀口211的开启通道面积要大于第二阀口311的开启通道面积,因此第一阀芯组件20的流通量要大于第二阀芯组件30的流通量。
其次是关于弹性结构的区别。即,第一座腔212内仅设有能够在第一座腔212内运动的第一阀芯22,也就是说,当流体将第一阀芯22从第一阀口211处顶开时,只需要克服第一阀芯22自身的重力即可,而且由于第一阀芯22不跟其他部件连接,因此流体将第一阀芯22顶开后,除非流体的冲击力逐渐小于第一阀芯22的重力,不然第一阀芯22是不会朝向第一阀口211的方向运动的,此时第一阀口211处实现了大流量流通;第二座腔312内除了设有第二阀芯32外,还设有两端分别连接第二封头33和第二阀芯32的弹性件34,也就是说,当流体将第二阀芯32从第二阀口311处顶开时,除了需要克服第二阀芯32的自身重力以外,还需要克服弹性件34的弹性力,并且,在流体将第二阀芯32顶开后,第二阀芯32由于弹性件34弹性回复力的作用还会有朝向第二阀口311处运动的趋势,该趋势也会使得第二阀口311处的流通量逐渐变小。
综上,由于第一阀芯组件20和第二阀芯组件30之间存在流通面积和弹性结构的区别,因此尽管将第一阀口211设计为小孔节流结构,第一阀口211处的流通量仍然大于第二阀口311处的流通量。
可选地,弹性件34采用弹簧;当然,在其他实施例中,弹性件34还可以采用其他弹性结构,在此不作限定。
如图9至图11所示,本申请还提供了一种第一空调系统201,第一空调系统201包括压缩机50、第一换热器60、第二换热器61、四通阀70以及双向节流阀100,双向节流阀100包括第一双向节流阀80和第二双向节流阀81,第一换热器60连接于四通阀70的C口和第一双向节流阀80靠近该第一双向节流阀80的第二阀芯组件30的一端之间,第二换热器61连接于四通阀70的E口和第二双向节流阀81靠近该第二双向节流阀81的第二阀芯组件30的一端之间,第一双向节流阀80靠近该第一双向节流阀80的第一阀芯组件20的一端与第二双向节流阀81靠近该第二双向节流阀81的第一阀芯组件20的一端相连接,压缩机50连接于四通阀70的D口和四通阀70的S口之间。
第一空调系统201主要为一些部件较多,空调系统管路90较长的系统,且此时适用的双向节流阀100是一端节流另一端全流通的双向节流阀100。当第一空调系统201制冷时,低温低压的气体经压缩机50压缩形成高温高压的气体,高温高压的气体经四通阀70进入第一换热器60,并经过第一换热器60冷凝成中温高压的液体,中温高压的液体进入第一双向节流阀80的第二阀腔12中,再经过第二阀座31与阀管10之间的间隙流入第一通道41,然后进入第一阀口211,此时中温高压的液体将第一阀芯22顶开,进入第一座腔212中,然后进入第一阀腔11,由于流体在第一阀口211处为全流通,因此此时中温高压的液体流经第一双向节流阀80只是相当于流过一条空调系统管路90,并无节流作用,中 温高压的液体从第一双向节流阀80的第一阀腔11中流出后再流入第二双向节流阀81的第一阀腔11中,经由第一阀座21与阀管10之间的间隙流入第二通道42中,然后流入第二阀口311,将第二阀芯32顶开后流入第二座腔312,最后进入第二阀腔12中,中温高压的液体在第二阀口311处节流成低温低压的液体,然后进入第二换热器61中,经第二换热器61蒸发形成低温低压的气体,最后再通过四通阀70进入压缩机50中,从而完成制冷循环。
当第一空调系统201制热时,低温低压的气体经压缩机50压缩形成高温高压的气体,高温高压的气体经四通阀70进入第二换热器61,并经过第二换热器61放热成中温高压的液体,中温高压的液体进入第二双向节流阀81的第二阀腔12中,再经过第二阀座31与阀管10之间的间隙流入第一通道41,然后进入第一阀口211,此时中温高压的液体将第一阀芯22顶开,进入第一座腔212中,然后进入第一阀腔11,由于流体在第一阀口211处为全流通,因此此时中温高压的液体流经第二双向节流阀81只是相当于流过一条空调系统管路90,并无节流作用,中温高压的气体从第二双向节流阀81的第一阀腔11中流出后再流入第一双向节流阀80的第一阀腔11中,经由第一阀座21与阀管10之间的间隙流入第二通道42中,然后流入第二阀口311,将第二阀芯32顶开后流入第二座腔312,最后进入第二阀腔12中,中温高压的液体在第二阀口311处节流成低温低压的液体或气液两相的介质,然后进入第一换热器60中,经第一换热器60蒸发形成低温低压的气体,最后再通过四通阀70进入压缩机50中,从而完成制热循环。
第二换热器61和第二双向节流阀81串联的管路可以并联多条,具体数量根据空调系统200的具体情况而定。也就是说,第一空调系统201包括至少2个第二换热器61以及至少2个第二双向节流阀81,每个第二换热器61均连接于四通阀70的E口和每个第二双向节流阀81靠近该第二双向节流阀81的第二阀芯组件30的一端之间,每个第二双向节流阀81靠近该第二双向节流阀81的第一阀芯组件20的一端互相连接。
将第一阀芯组件20全流通、第二阀芯组件30节流的双向节流阀100应用于第一空调系统201中,主要应用于一拖多的场合,解决当空调系统管路90较长时,制冷制热循环共用一个双向节流阀100时冷量沿途损失较大的问题。
如图12所示,本申请还提供一种第二空调系统202,第二空调系统202包括压缩机50、第一换热器60、第二换热器61、四通阀70以及1个双向节流阀100,第一换热器60连接于四通阀70的C口和双向节流阀100靠近该第双向节流阀100的第一阀芯组件20的一端之间,第二换热器61连接于四通阀70的E口和双向节流阀100靠近该第双向节流阀100的第二阀芯组件30的一端之间,压缩机50连接于四通阀70的D口和四通阀70的S 口之间。
第二空调系统202主要为一些部件较少,空调系统管路90较短的系统,且此时适用的双向节流阀100是一端节流另一端小孔流通的双向节流阀100。当第二空调系统202制冷时,低温低压的气体经压缩机50压缩形成高温高压的气体,高温高压的气体经四通阀70进入第一换热器60,并经过第一换热器60冷凝成中温高压的液体,中温高压的液体进入双向节流阀100的第一阀腔11中,再经过第一阀座21与阀管10之间的间隙流入第二通道42,然后进入第二阀口311,此时中温高压的液体将第二阀芯32顶开,进入第二座腔312中,然后进入第二阀腔12,由于流体在第二阀口311处为节流,因此此时中温高压的液体流经双向节流阀100被节流成低温低压的液体或低温低压的气液两相状态,再从双向节流阀100的第二阀腔12中流出后再流入第二换热器61中,经第二换热器61蒸发形成低温低压的蒸气,最后再通过四通阀70进入压缩机50中,从而完成制冷循环。
当第二空调系统202除霜时,低温低压的气体经压缩机50压缩形成高温高压的气体,高温高压的气体经四通阀70进入第二换热器61,并经过第二换热器61冷凝成中温高压的液体,中温高压的液体进入双向节流阀100的第二阀腔12中,再经过第二阀座31与阀管10之间的间隙流入第一通道41,然后进入第一阀口211,此时中温高压的液体将第一阀芯22顶开,进入第一座腔212中,然后进入第一阀腔11,由于流体在第一阀口211处为小孔节流成低温低压的液体或气液两相的介质,因此此时流通面积增大,流体量随之增大,成低温低压的液体或气液两相的介质从双向节流阀100的第一阀腔11中流出后再流入第一换热器60中,经第一换热器60蒸发形成低温低压的气体,最后再通过四通阀70进入压缩机50中,从而完成除霜循环。
将第一阀芯组件20小孔节流、第二阀芯组件30节流的双向节流阀100应用于第二空调系统202中,主要应用于冷藏冷冻的场合,解决长期制冷环境下空调系统200除霜时冷媒流量需大幅提升的问题。
需要解释的是,上述的空调系统200或为第一空调系统201,或为第二空调系统202。
本申请提供的双向节流阀100,当第一阀口211和第二阀口311开启时,通过使得第一流通通道的流通面积大于第二流通通道的流通面积,从而不仅能够实现双向节流阀100的双向流通单向节流功能,而且,当双向节流阀100处在除霜工况下时,也能满足该工况下低压大流量的要求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种双向节流阀,包括阀管,所述阀管内的两端分别设有第一阀芯组件和第二阀芯组件,所述第一阀芯组件包括第一阀芯,所述第一阀芯组件内具有第一阀口,所述第一阀芯可活动的设于所述阀管内并能够启/闭所述第一阀口,所述第一阀芯和所述第一阀口的内壁之间配合形成第一流通通道;
    所述第二阀芯组件包括第二阀芯,所述第二阀芯组件内具有第二阀口,所述第二阀芯可活动的设于所述阀管内并能够启/闭所述第二阀口,所述第二阀芯和所述第二阀口的内壁之间配合形成第二流通通道;
    其特征在于,当所述第一阀口和所述第二阀口开启时,所述第一流通通道的流通面积大于所述第二流通通道的流通面积,且所述第二阀芯与所述第二阀口之间配合以实现节流。
  2. 根据权利要求1所述的双向节流阀,其中,所述阀管连接于空调系统管路,所述阀管内还设有连通件,所述第一阀芯组件安装于所述连通件的一端;
    所述连通件设有第一通道,所述第一通道连通于所述第一阀口;
    所述第一阀口处的口径为D 1,所述第一通道的直径为D 2,所述空调系统管路的直径为D 3,D 1、D 2和D 3满足以下关系式:
    D 2≥D 1≥D 3
  3. 根据权利要求1所述的双向节流阀,其中,所述阀管连接于空调系统管路,所述阀管内还设有连通件,所述第一阀芯组件安装于所述连通件的一端;
    所述第一阀口处的口径为D 1,所述空调系统管路的直径为D 3,D 1和D 3满足以下关系式:
    D 1<D 3
  4. 根据权利要求3所述的双向节流阀,其中,所述第二阀口处的口径为D 4,D 1和D 4满足以下关系式:
    D 4>D 1>(1/3)D 4
  5. 根据权利要求1所述的双向节流阀,其中,所述第一阀芯组件包括第一阀座,所述第一阀芯可活动的设置于所述第一阀座内,所述第一阀口开设于所述第一阀座;
    所述第一阀芯的侧壁和所述第一阀座的内壁之间的间隙的流通面积大于所述第一阀口处的流通面积。
  6. 根据权利要求1所述的双向节流阀,其中,所述第二阀芯组件包括第二阀座,所述第二阀芯可活动的设置于所述第二阀座内,所述第二阀口开设于所述第二阀座;
    所述第二阀芯的侧壁和所述第二阀座的内壁之间的间隙的流通面积小于所述第二阀口处的流通面积。
  7. 根据权利要求1所述的双向节流阀,其中,所述第一阀芯组件包括第一阀座,所述第一阀芯可活动的设置于所述第一阀座内;
    所述第一阀座远离所述第二阀芯组件的一端盖设有第一封头。
  8. 根据权利要求1所述的双向节流阀,其中,所述第二阀芯组件包括第二阀座,所述第二阀芯可活动的设置于所述第二阀座内;
    所述第二阀座内设有第二封头和弹性件,所述第二封头设于所述第二阀座远离所述第一阀芯组件一端,所述弹性件的两端分别抵接于所述第二阀芯和所述第二封头。
  9. 根据权利要求2所述的双向节流阀,其中,所述第一通道设置为相对于所述连通件的轴向倾斜的直线型通道。
  10. 一种第一空调系统,其特征在于,所述第一空调系统包括压缩机、第一换热器、第二换热器、四通阀以及至少2个如权利要求1、2、5-9任一项所述的双向节流阀,所述双向节流阀包括第一双向节流阀和第二双向节流阀,所述第一换热器连接于所述四通阀的C口和所述第一双向节流阀靠近其所述第二阀芯组件的一端之间,所述第二换热器连接于所述四通阀的E口和所述第二双向节流阀靠近其所述第二阀芯组件的一端之间,所述第一双向节流阀靠近其所述第一阀芯组件的一端与所述第二双向节流阀靠近其所述第一阀芯组件的一端相连接,所述压缩机连接于所述四通阀的D口和所述四通阀的S口之间。
  11. 根据权利要求10所述的第一空调系统,其中,所述第二换热器至少为两个,所述第二双向节流阀至少为两个,每个所述第二换热器均连接于所述四通阀的E口和每个所述第二双向节流阀靠近其所述第二阀芯组件的一端之间,每个所述第二双向节流阀靠近其所述第一阀芯组件的一端互相连接。
  12. 一种第二空调系统,其特征在于,所述第二空调系统包括压缩机、第一换热器、第二换热器、四通阀以及至少1个如权利要求1、3-9任一项所述的双向节流阀,所述第一换热器连接于所述四通阀的C口和所述双向节流阀靠近其所述第一阀芯组件的一端之间,所述第二换热器连接于所述四通阀的E口和所述双向节流阀靠近其所述第二阀芯组件的一端之间,所述压缩机连接于所述四通阀的D口和所述四通阀的S口之间。
PCT/CN2022/125871 2021-11-05 2022-10-18 双向节流阀、第一空调系统及第二空调系统 WO2023078081A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122707906.5U CN216644630U (zh) 2021-11-05 2021-11-05 双向节流阀、第一空调系统及第二空调系统
CN202111307151.8 2021-11-05
CN202111307151.8A CN116086054A (zh) 2021-11-05 2021-11-05 双向节流阀、第一空调系统及第二空调系统
CN202122707906.5 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023078081A1 true WO2023078081A1 (zh) 2023-05-11

Family

ID=86240637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125871 WO2023078081A1 (zh) 2021-11-05 2022-10-18 双向节流阀、第一空调系统及第二空调系统

Country Status (1)

Country Link
WO (1) WO2023078081A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232224A (ja) * 2005-07-22 2007-09-13 Pacific Ind Co Ltd 双方向定圧膨張弁
CN209181325U (zh) * 2018-09-10 2019-07-30 浙江盾安禾田金属有限公司 双向膨胀阀
CN209944791U (zh) * 2019-05-30 2020-01-14 邯郸美的制冷设备有限公司 空调系统
CN111750575A (zh) * 2019-03-29 2020-10-09 浙江盾安禾田金属有限公司 双向节流阀
CN111998577A (zh) * 2020-07-15 2020-11-27 盾安环境技术有限公司 双向节流阀
CN216644630U (zh) * 2021-11-05 2022-05-31 浙江盾安禾田金属有限公司 双向节流阀、第一空调系统及第二空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232224A (ja) * 2005-07-22 2007-09-13 Pacific Ind Co Ltd 双方向定圧膨張弁
CN209181325U (zh) * 2018-09-10 2019-07-30 浙江盾安禾田金属有限公司 双向膨胀阀
CN111750575A (zh) * 2019-03-29 2020-10-09 浙江盾安禾田金属有限公司 双向节流阀
CN209944791U (zh) * 2019-05-30 2020-01-14 邯郸美的制冷设备有限公司 空调系统
CN111998577A (zh) * 2020-07-15 2020-11-27 盾安环境技术有限公司 双向节流阀
CN216644630U (zh) * 2021-11-05 2022-05-31 浙江盾安禾田金属有限公司 双向节流阀、第一空调系统及第二空调系统

Similar Documents

Publication Publication Date Title
JP6581313B2 (ja) 圧縮機及びそれを備えた冷凍システム
US9945595B2 (en) Defrosting valve
CN114165946A (zh) 换热器和空调器
CN105466088B (zh) 热力膨胀阀和具有该热力膨胀阀的热泵系统
CN216644630U (zh) 双向节流阀、第一空调系统及第二空调系统
CN107091540B (zh) 一种带旁通功能的四通换向阀及其工作模式
CN209512174U (zh) 一种制冷空调节流装置
WO2023078081A1 (zh) 双向节流阀、第一空调系统及第二空调系统
CN101852307B (zh) 热力膨胀阀
CN201391676Y (zh) 热力膨胀阀
CN116086054A (zh) 双向节流阀、第一空调系统及第二空调系统
JP2966597B2 (ja) 双方向電磁弁
CN210510379U (zh) 一种空调用四通阀
CN101684974B (zh) 应用于空调系统中的带旁路的热力膨胀阀
KR20240089154A (ko) 양방향 스로틀 밸브, 제1 공조 시스템 및 제2 공조 시스템
CN208779749U (zh) 空调系统
CN105987198B (zh) 自力式四通阀及其空调系统
CN110793354A (zh) 适用于电动汽车的可变流程换热器装置
CN217381757U (zh) 单向阀和具有其的空调器
CN217303667U (zh) 套管换热器及双向逆流系统
CN205784053U (zh) 节流组件及空调器
CN2775570Y (zh) 一种空调制冷热力膨胀管
CN211503341U (zh) 一种膨胀阀
CN214701319U (zh) 一种制冷系统及空调系统
CN110397758B (zh) 一种膨胀阀及补气增焓系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247014203

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401002797

Country of ref document: TH