WO2023077856A1 - 一种微铣削加工未变形切削厚度测量方法及系统 - Google Patents

一种微铣削加工未变形切削厚度测量方法及系统 Download PDF

Info

Publication number
WO2023077856A1
WO2023077856A1 PCT/CN2022/105062 CN2022105062W WO2023077856A1 WO 2023077856 A1 WO2023077856 A1 WO 2023077856A1 CN 2022105062 W CN2022105062 W CN 2022105062W WO 2023077856 A1 WO2023077856 A1 WO 2023077856A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
tooth
micro
milling
adjacent
Prior art date
Application number
PCT/CN2022/105062
Other languages
English (en)
French (fr)
Inventor
刘同舜
张克栋
王呈栋
郭旭红
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US18/032,445 priority Critical patent/US11869180B1/en
Publication of WO2023077856A1 publication Critical patent/WO2023077856A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30136Metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to the technical field of micro-milling machining measurement, in particular to a method and system for measuring the undeformed cutting thickness of micro-milling machining.
  • Micro-milling is an efficient micro-processing technology, which has broad application prospects in the field of micro-component processing.
  • the undeformed cutting thickness corresponds to the chip load, which directly affects the cutting performance such as cutting force, vibration and surface quality of micro-milling.
  • Accurate measurement of undeformed cutting thickness is of great significance for improving the performance of micro-milling.
  • the undeformed cutting thickness of traditional milling can be determined by the feed per tooth, but the feed per tooth of micro-milling is small, and the tool runout and the asymmetric wear caused by it have a significant impact on the undeformed cutting thickness.
  • the measurement of undeformed cutting thickness in micro-milling usually needs to determine the amount of tool runout and wear in advance, which greatly reduces the measurement efficiency. It is particularly urgent to develop an efficient measurement method for undeformed cutting thickness in micro-milling without measuring tool runout and wear.
  • the technical problem to be solved by the present invention is to provide a method for measuring the undeformed cutting thickness of micro-milling without prior measurement of tool runout and wear, which can greatly shorten the measurement process and improve the measurement efficiency. .
  • the present invention provides a method for measuring the undeformed cutting thickness of micro-milling, which comprises the following steps:
  • step S3 As a further improvement of the present invention, in step S3:
  • d k, k-1 is the distance between adjacent tool marks
  • f z is the feed rate of each tool tooth.
  • step S3 As a further improvement of the present invention, in step S3:
  • the difference between the equivalent radius of the tooth that does not participate in cutting and the equivalent radius of any tooth is set to negative infinity; for the tooth that participates in cutting, calculate the adjacent tooth according to the following formula
  • the difference of equivalent radius, the formula is as follows:
  • i is the difference between the serial numbers of two adjacent teeth involved in cutting.
  • the serial number of the tooth that does not participate in cutting is determined according to the periodicity of the cutting force signal.
  • step S4 the instantaneous undeformed cutting thickness of the micro-milling process is reconstructed according to the difference between the equivalent cutting radii of any two cutter teeth, the formula is as follows:
  • h k ( ⁇ ) is the instantaneous undeformed cutting thickness of the kth tooth at the reference tooth position angle ⁇
  • ⁇ R k,m is the difference between the equivalent radii of any two teeth
  • ⁇ k is the kth
  • M is the number of cutter teeth
  • ⁇ m,k is the angle at which the m-th cutter tooth leads the k-th cutter tooth along the rotation direction of the cutter.
  • step S1 the surface topography picture of the bottom of the groove after micro-milling is collected by an optical microscope.
  • the present invention also provides a micro-milling processing undeformed cutting thickness measurement system, which includes the following modules:
  • the collection module is used to collect the surface topography picture of the bottom of the groove after micro-milling
  • a tool mark extraction module used to extract the tool marks at the centerline of the groove from the surface topography picture
  • the calculation module for the distance between adjacent tool marks is used to calculate the distance between adjacent tool marks
  • the equivalent cutting radius difference calculation module is used to calculate the difference between the equivalent cutting radii of adjacent cutter teeth according to the distance between adjacent tool marks;
  • the undeformed cutting thickness calculation module is used to reconstruct the instantaneous undeformed cutting thickness of the micro-milling process according to the difference between the equivalent cutting radii of adjacent teeth.
  • the calculation of the difference between the equivalent cutting radii of adjacent cutter teeth according to the distance between adjacent tool marks includes:
  • d k, k-1 is the distance between adjacent tool marks
  • f z is the feed rate of each tool tooth.
  • the calculation of the difference between the equivalent cutting radii of adjacent cutter teeth according to the distance between adjacent tool marks also includes:
  • the difference between the equivalent radius of the tooth that does not participate in cutting and the equivalent radius of any tooth is set to negative infinity; for the tooth that participates in cutting, calculate the adjacent tooth according to the following formula
  • the difference of equivalent radius, the formula is as follows:
  • i is the difference between the serial numbers of two adjacent teeth involved in cutting.
  • the instantaneous undeformed cutting thickness of the micro-milling process is reconstructed according to the difference between the equivalent cutting radii of any two cutter teeth, and the formula is as follows:
  • h k ( ⁇ ) is the instantaneous undeformed cutting thickness of the kth tooth at the reference tooth position angle ⁇
  • ⁇ R k,m is the difference between the equivalent radii of any two teeth
  • ⁇ k is the kth
  • M is the number of cutter teeth
  • ⁇ m,k is the angle at which the m-th cutter tooth leads the k-th cutter tooth along the rotation direction of the cutter.
  • the method and system for measuring the undeformed cutting thickness in micro-milling processing of the present invention can realize the measurement of the undeformed cutting thickness in micro-milling without prior measurement of the tool run-out and wear amount, greatly shorten the measurement process, improve the measurement efficiency, and effectively ensure the measurement accuracy.
  • FIG. 1 is a flow chart of a method for measuring undeformed cutting thickness in micro-milling according to Embodiment 1 of the present invention.
  • Fig. 2 is the instantaneous undeformed cutting thickness obtained by the method of measuring the undeformed cutting thickness in micro-milling in the first embodiment of the present invention.
  • S1 Collecting surface topography pictures of the bottom of the groove after micro-milling.
  • the surface topography picture of the groove bottom after micro-milling is collected by an optical microscope, which has high contrast and resolution.
  • step S3 includes:
  • d k, k-1 is the distance between adjacent tool marks
  • f z is the feed rate of each tool tooth.
  • step S3 also includes:
  • i is the difference between the serial numbers of two adjacent teeth involved in cutting.
  • the serial number of the tooth that does not participate in cutting is determined according to the periodicity of the cutting force signal.
  • the combined steps S31 and S32 can determine the difference ⁇ R k,m between the equivalent radii of any two cutter teeth.
  • k represents the kth tooth
  • m represents the mth tooth.
  • the instantaneous undeformed cutting thickness of micro-milling is reconstructed according to the difference between the equivalent cutting radii of any two cutter teeth, and the formula is as follows:
  • h k ( ⁇ ) is the instantaneous undeformed cutting thickness of the kth tooth at the reference tooth position angle ⁇
  • ⁇ R k,m is the difference between the equivalent radii of any two teeth
  • ⁇ k is the kth
  • M is the number of cutter teeth
  • ⁇ m,k is the angle at which the m-th cutter tooth leads the k-th cutter tooth along the rotation direction of the cutter.
  • ⁇ m,k is also affected by the asymmetry of runout and wear, since the asymmetry of runout and wear is much smaller than the actual cutting radius, this effect can be ignored.
  • ⁇ m,k is determined by the original The tool spacing angle is determined.
  • the method for measuring the undeformed cutting thickness of the micro-milling process of the present invention can realize the measurement of the undeformed cutting thickness of the micro-milling without measuring the tool run-out and wear amount in advance, greatly shortens the measurement process, improves the measurement efficiency, and effectively ensures the measurement accuracy.
  • Step 1 Select a distance on the centerline of the bottom of the groove whose length is equal to the feed rate per revolution (8 ⁇ m), and extract the corresponding surface profile height.
  • the peak value of the profile height represents the tool mark.
  • Step 3 According to the formula (1), calculate the difference between the equivalent radius of adjacent teeth as:
  • ⁇ R 1,4 0.2 ⁇ m
  • d 4,3 ⁇ 0.2 ⁇ m
  • d 3,2 0.3 ⁇ m
  • d 2,1 ⁇ 0.3 ⁇ m.
  • Step 4 Calculate the instantaneous undeformed cutting thickness of each tooth at any tooth position angle according to formula (3), and the results are shown in Figure 2. It is highly consistent with the actual data, and it is verified that the method for measuring the thickness of the undeformed cut in the micro-milling process of the present invention can effectively guarantee the measurement accuracy.
  • This embodiment discloses a micro-milling processing undeformed cutting thickness measurement system, which includes the following modules:
  • the collection module is used to collect the surface topography picture of the bottom of the groove after micro-milling; optionally, the topography picture of the bottom surface of the groove after micro-milling is collected through an optical microscope, which has high contrast and resolution.
  • a tool mark extraction module used to extract the tool marks at the centerline of the groove from the surface topography picture
  • the calculation module for the distance between adjacent tool marks is used to calculate the distance between adjacent tool marks
  • the difference calculation module of the equivalent cutting radius is used to calculate the difference of the equivalent cutting radius of adjacent cutter teeth according to the distance between adjacent tool marks;
  • the calculation of the difference between the equivalent cutting radii of adjacent cutter teeth according to the distance between adjacent tool marks includes:
  • d k, k-1 is the distance between adjacent tool marks
  • f z is the feed rate of each tool tooth.
  • the calculation of the difference between the equivalent cutting radii of adjacent cutter teeth according to the distance between adjacent tool marks also includes:
  • the difference between the equivalent radius of the tooth that does not participate in cutting and the equivalent radius of any tooth is set to negative infinity; for the tooth that participates in cutting, calculate the adjacent tooth according to the following formula
  • the difference of equivalent radius, the formula is as follows:
  • i is the difference between the serial numbers of two adjacent teeth involved in cutting.
  • the serial number of the tooth that does not participate in cutting is determined according to the periodicity of the cutting force signal.
  • Combining formulas (1) and (2) can determine the difference ⁇ R k,m between the equivalent radii of any two teeth.
  • k represents the kth tooth
  • m represents the mth tooth.
  • the undeformed cutting thickness calculation module is used to reconstruct the instantaneous undeformed cutting thickness of the micro-milling process according to the difference between the equivalent cutting radii of adjacent teeth.
  • the instantaneous undeformed cutting thickness of the micro-milling process is reconstructed according to the difference between the equivalent cutting radii of any two cutter teeth, and the formula is as follows:
  • h k ( ⁇ ) is the instantaneous undeformed cutting thickness of the kth tooth at the reference tooth position angle ⁇
  • ⁇ R k,m is the difference between the equivalent radii of any two teeth
  • ⁇ k is the kth
  • M is the number of cutter teeth
  • ⁇ m,k is the angle at which the m-th cutter tooth leads the k-th cutter tooth along the rotation direction of the cutter.
  • ⁇ m,k is also affected by the asymmetry of runout and wear, since the asymmetry of runout and wear is much smaller than the actual cutting radius, this effect can be ignored.
  • ⁇ m,k is determined by the original The tool spacing angle is determined.
  • the micro-milling undeformed cutting thickness measurement system of the present invention can realize the measurement of the micro-milling undeformed cutting thickness without prior measurement of tool run-out and wear, greatly shorten the measurement process, improve measurement efficiency, and effectively ensure measurement accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Numerical Control (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及微铣削加工测量技术领域,公开了一种微铣削加工未变形切削厚度测量方法及系统,该方法包括以下步骤:S1、采集微铣削加工后的凹槽底部表面形貌图片;S2、从所述表面形貌图片中提取凹槽中线处的刀痕;S3、计算相邻刀痕间隔距离,并根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差;S4、根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。本发明微铣削加工未变形切削厚度测量方法及系统无需事先测定刀具跳动和磨损量便可实现微铣削未变形切削厚度的测量,极大缩短测量流程,提高测量效率,并且有效保证测量精度。

Description

一种微铣削加工未变形切削厚度测量方法及系统 技术领域
本发明涉及微铣削加工测量技术领域,特别涉及一种微铣削加工未变形切削厚度测量方法及系统。
背景技术
微铣削是一种高效的微加工技术,在微型零部件加工领域具有广阔的应用前景。未变形切削厚度对应切屑负载,直接影响微铣削加工的切削力、振动和表面质量等切削性能。实现未变形切削厚度的精准测量对于提升微铣削加工性能具有重要意义。传统铣削加工的未变形切削厚度可由每齿进给量来确定,但是微铣削加工的每齿进给量较小,刀具跳动及其引起的非对称磨损对未变形切削厚度的影响十分显著,实现微铣削未变形切削厚度的测量通常需要事先测定刀具跳动和磨损量,极大降低测量效率。发展一种高效的无需测定刀具跳动和磨损的微铣削加工未变形切削厚度测量方法显得尤为迫切。
目前,学界和工业界针对微铣削刀具跳动和磨损量的测量展开了大量的研究,但是针对未变形切削厚度的测量方法研究鲜见报道。尽管通过测量刀具跳动和刀具磨损的非对称性可以实现未变形切削厚度的估计,但该方法难以进行在线测量,且事先测定跳动和磨损会极大降低测量效率。
发明内容
本发明要解决的技术问题是提供一种无需事先测定刀具跳动和磨损量便可实现微铣削未变形切削厚度的测量、极大缩短测量流程、提高测量效率的微铣削加工未变形切削厚度测量方法。
为了解决上述问题,本发明提供了一种微铣削加工未变形切削厚度测量方法,其包括以下步骤:
S1、采集微铣削加工后的凹槽底部表面形貌图片;
S2、从所述表面形貌图片中提取凹槽中线处的刀痕;
S3、计算相邻刀痕间隔距离,并根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差;
S4、根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。
作为本发明的进一步改进,步骤S3中:
如果所有刀齿均参与切削,根据相邻刀痕间隔计算相邻刀齿的等效切削半径之差ΔR k,k-1,公式如下:
ΔR k,k-1=d k,k-1-f z
其中,d k,k-1为相邻刀痕间隔距离,f z为每个刀齿进给量。
作为本发明的进一步改进,步骤S3中:
如果存在刀齿不参与切削,则将不参与切削的刀齿的等效半径与任一刀齿的等效半径之差设置为负无穷;对参与切削的刀齿,根据以下公式计算相邻刀齿等效半径之差,公式如下:
ΔR k,k-i=d k,k-i-i·f z
其中,i为两相邻的参与切削的刀齿序号之差。
作为本发明的进一步改进,如果存在刀齿不参与切削,根据切削力信号的周期性确定不参与切削的刀齿序号。
作为本发明的进一步改进,步骤S4中,根据任意两个刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度,公式如下:
Figure PCTCN2022105062-appb-000001
其中,h k(θ)为第k个刀齿在参考齿位角θ处的瞬时未变形切削厚度,ΔR k,m为任意两个刀齿的等效半径之差,θ k为第k个刀齿在参考齿位角为θ时的旋转角度,M为刀齿个数,Δθ m,k为第m个刀齿沿刀具旋转方向领先第k个刀齿的角度。
作为本发明的进一步改进,步骤S1中,通过光学显微镜采集微铣削加工后 的凹槽底部表面形貌图片。
为了解决上述问题,本发明还提供了一种微铣削加工未变形切削厚度测量系统,其包括以下模块:
采集模块,用于采集微铣削加工后的凹槽底部表面形貌图片;
刀痕提取模块,用于从所述表面形貌图片中提取凹槽中线处的刀痕;
相邻刀痕间隔距离计算模块,用于计算相邻刀痕间隔距离;
等效切削半径之差计算模块,用于根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差;
未变形切削厚度计算模块,用于根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。
作为本发明的进一步改进,所述根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差,包括:
如果所有刀齿均参与切削,根据相邻刀痕间隔计算相邻刀齿的等效切削半径之差ΔR k,k-1,公式如下:
ΔR k,k-1=d k,k-1-f z
其中,d k,k-1为相邻刀痕间隔距离,f z为每个刀齿进给量。
作为本发明的进一步改进,所述根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差,还包括:
如果存在刀齿不参与切削,则将不参与切削的刀齿的等效半径与任一刀齿的等效半径之差设置为负无穷;对参与切削的刀齿,根据以下公式计算相邻刀齿等效半径之差,公式如下:
ΔR k,k-i=d k,k-i-i·f z
其中,i为两相邻的参与切削的刀齿序号之差。
作为本发明的进一步改进,所述根据任意两个刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度,公式如下:
Figure PCTCN2022105062-appb-000002
其中,h k(θ)为第k个刀齿在参考齿位角θ处的瞬时未变形切削厚度,ΔR k,m为任意两个刀齿的等效半径之差,θ k为第k个刀齿在参考齿位角为θ时的旋转角度,M为刀齿个数,Δθ m,k为第m个刀齿沿刀具旋转方向领先第k个刀齿的角度。
本发明的有益效果:
本发明微铣削加工未变形切削厚度测量方法及系统无需事先测定刀具跳动和磨损量便可实现微铣削未变形切削厚度的测量,极大缩短测量流程,提高测量效率,并且有效保证测量精度。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明实施例一中微铣削加工未变形切削厚度测量方法的流程图。
图2是本发明实施例一中微铣削加工未变形切削厚度测量方法得到的瞬时未变形切削厚度。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
如图1所示,为本发明优选实施例中微铣削加工未变形切削厚度测量方法,其包括以下步骤:
S1、采集微铣削加工后的凹槽底部表面形貌图片。可选地,通过光学显微镜采集微铣削加工后的凹槽底部表面形貌图片,具有高对比度和分辨率。
S2、从所述表面形貌图片中提取凹槽中线处的刀痕。
S3、计算相邻刀痕间隔距离,并根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差。
具体地,步骤S3包括:
S31、如果所有刀齿均参与切削,根据相邻刀痕间隔计算相邻刀齿的等效切削半径之差ΔR k,k-1,公式如下:
ΔR k,k-1=d k,k-1-f z           (1)
其中,d k,k-1为相邻刀痕间隔距离,f z为每个刀齿进给量。
进一步地,步骤S3还包括:
S32、如果存在刀齿不参与切削,则将不参与切削的刀齿的等效半径与任一刀齿的等效半径之差设置为负无穷;对参与切削的刀齿,根据以下公式计算相邻刀齿等效半径之差,公式如下:
ΔR k,k-i=d k,k-i-i·f z            (2)
其中,i为两相邻的参与切削的刀齿序号之差。
其中,如果存在刀齿不参与切削,根据切削力信号的周期性确定不参与切削的刀齿序号。
综合步骤S31和S32可以确定任意两个刀齿的等效半径之差ΔR k,m。其中,k表示第k个刀齿,m表示第m个刀齿。
S4、根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。
具体地,根据任意两个刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度,公式如下:
Figure PCTCN2022105062-appb-000003
其中,h k(θ)为第k个刀齿在参考齿位角θ处的瞬时未变形切削厚度,ΔR k,m为任意两个刀齿的等效半径之差,θ k为第k个刀齿在参考齿位角为θ时的旋转角度,M为刀齿个数,Δθ m,k为第m个刀齿沿刀具旋转方向领先第k个刀齿的角度。
其中,需要注意的是:虽然Δθ m,k也会受跳动和磨损的非对称的影响,但由于跳动和磨损的非对称量远小于实际切削半径,此影响可以忽略,Δθ m,k由原始的刀具间隔角度确定。
本发明微铣削加工未变形切削厚度测量方法无需事先测定刀具跳动和磨损量便可实现微铣削未变形切削厚度的测量,极大缩短测量流程,提高测量效率,并且有效保证测量精度。
为了验证本发明微铣削加工未变形切削厚度测量方法的有效性,以四刀齿平头铣刀微铣直槽为例,每齿进给量为2μm,则每转进给量为8μm。来测量微铣削未变形切削厚度,详细步骤如下:
第一步:选取凹槽底部中线上一段长度等于每转进给量(8μm)的一段距离,提取相应的表面轮廓高度,轮廓高度峰值代表刀痕。
第二部:在提取的长度为8μm的中线上有4个刀痕,表明所有四个刀齿均参与切削,测量相邻的刀痕间隔为d 1,4=2.2μm,d 4,3=1.9μm,d 3,2=2.3μm,d 2,1=1.7μm。
第三步:根据公式(1)计算相邻刀齿等效半径之差为:
ΔR 1,4=0.2μm,d 4,3=-0.2μm,d 3,2=0.3μm,d 2,1=-0.3μm。
第四步:根据公式(3)计算各个刀齿在任一齿位角处的瞬时未变形切削厚度,结果如图2所示。与实际数据高度吻合,验证了本发明微铣削加工未变形切削厚度测量方法可以有效保证测量精度。
实施例二
本实施例公开了一种微铣削加工未变形切削厚度测量系统,其包括以下模块:
采集模块,用于采集微铣削加工后的凹槽底部表面形貌图片;可选地,通过光学显微镜采集微铣削加工后的凹槽底部表面形貌图片,具有高对比度和分辨率。
刀痕提取模块,用于从所述表面形貌图片中提取凹槽中线处的刀痕;
相邻刀痕间隔距离计算模块,用于计算相邻刀痕间隔距离;
等效切削半径之差计算模块,用于根据相邻刀痕间隔距离计算相邻刀齿的 等效切削半径之差;
具体地,所述根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差,包括:
如果所有刀齿均参与切削,根据相邻刀痕间隔计算相邻刀齿的等效切削半径之差ΔR k,k-1,公式如下:
ΔR k,k-1=d k,k-1-f z
其中,d k,k-1为相邻刀痕间隔距离,f z为每个刀齿进给量。
进一步地,所述根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差,还包括:
如果存在刀齿不参与切削,则将不参与切削的刀齿的等效半径与任一刀齿的等效半径之差设置为负无穷;对参与切削的刀齿,根据以下公式计算相邻刀齿等效半径之差,公式如下:
ΔR k,k-i=d k,k-i-i·f z
其中,i为两相邻的参与切削的刀齿序号之差。
其中,如果存在刀齿不参与切削,根据切削力信号的周期性确定不参与切削的刀齿序号。
综合公式(1)和(2)可以确定任意两个刀齿的等效半径之差ΔR k,m。其中,k表示第k个刀齿,m表示第m个刀齿。
未变形切削厚度计算模块,用于根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。
具体地,所述根据任意两个刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度,公式如下:
Figure PCTCN2022105062-appb-000004
其中,h k(θ)为第k个刀齿在参考齿位角θ处的瞬时未变形切削厚度,ΔR k,m为任意两个刀齿的等效半径之差,θ k为第k个刀齿在参考齿位角为θ时的旋转角 度,M为刀齿个数,Δθ m,k为第m个刀齿沿刀具旋转方向领先第k个刀齿的角度。
其中,需要注意的是:虽然Δθ m,k也会受跳动和磨损的非对称的影响,但由于跳动和磨损的非对称量远小于实际切削半径,此影响可以忽略,Δθ m,k由原始的刀具间隔角度确定。
本发明微铣削加工未变形切削厚度测量系统无需事先测定刀具跳动和磨损量便可实现微铣削未变形切削厚度的测量,极大缩短测量流程,提高测量效率,并且有效保证测量精度。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种微铣削加工未变形切削厚度测量方法,其特征在于,包括以下步骤:
    S1、采集微铣削加工后的凹槽底部表面形貌图片;
    S2、从所述表面形貌图片中提取凹槽中线处的刀痕;
    S3、计算相邻刀痕间隔距离,并根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差;
    S4、根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。
  2. 如权利要求1所述的微铣削加工未变形切削厚度测量方法,其特征在于,步骤S3中:
    如果所有刀齿均参与切削,根据相邻刀痕间隔计算相邻刀齿的等效切削半径之差ΔR k,k-1,公式如下:
    ΔR k,k-1=d k,k-1-f z
    其中,d k,k-1为相邻刀痕间隔距离,f z为每个刀齿进给量。
  3. 如权利要求2所述的微铣削加工未变形切削厚度测量方法,其特征在于,步骤S3中:
    如果存在刀齿不参与切削,则将不参与切削的刀齿的等效半径与任一刀齿的等效半径之差设置为负无穷;对参与切削的刀齿,根据以下公式计算相邻刀齿等效半径之差,公式如下:
    ΔR k,k-i=d k,k-i-i·f z
    其中,i为两相邻的参与切削的刀齿序号之差。
  4. 如权利要求3所述的微铣削加工未变形切削厚度测量方法,其特征在于,如果存在刀齿不参与切削,根据切削力信号的周期性确定不参与切削的刀齿序号。
  5. 如权利要求1所述的微铣削加工未变形切削厚度测量方法,其特征在于,步骤S4中,根据任意两个刀齿的等效切削半径之差重构微铣削加工的瞬时 未变形切削厚度,公式如下:
    Figure PCTCN2022105062-appb-100001
    其中,h k(θ)为第k个刀齿在参考齿位角θ处的瞬时未变形切削厚度,ΔR k,m为任意两个刀齿的等效半径之差,θ k为第k个刀齿在参考齿位角为θ时的旋转角度,M为刀齿个数,Δθ m,k为第m个刀齿沿刀具旋转方向领先第k个刀齿的角度。
  6. 如权利要求1所述的一种微铣削加工未变形切削厚度测量方法,其特征在于,步骤S1中,通过光学显微镜采集微铣削加工后的凹槽底部表面形貌图片。
  7. 一种微铣削加工未变形切削厚度测量系统,其特征在于,包括:
    采集模块,用于采集微铣削加工后的凹槽底部表面形貌图片;
    刀痕提取模块,用于从所述表面形貌图片中提取凹槽中线处的刀痕;
    相邻刀痕间隔距离计算模块,用于计算相邻刀痕间隔距离;
    等效切削半径之差计算模块,用于根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差;
    未变形切削厚度计算模块,用于根据相邻刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度。
  8. 如权利要求7所述的微铣削加工未变形切削厚度测量系统,其特征在于,所述根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差,包括:
    如果所有刀齿均参与切削,根据相邻刀痕间隔计算相邻刀齿的等效切削半径之差ΔR k,k-1,公式如下:
    ΔR k,k-1=d k,k-1-f z
    其中,d k,k-1为相邻刀痕间隔距离,f z为每个刀齿进给量。
  9. 如权利要求8所述的微铣削加工未变形切削厚度测量系统,其特征在于,所述根据相邻刀痕间隔距离计算相邻刀齿的等效切削半径之差,还包括:
    如果存在刀齿不参与切削,则将不参与切削的刀齿的等效半径与任一刀齿的等效半径之差设置为负无穷;对参与切削的刀齿,根据以下公式计算相邻刀 齿等效半径之差,公式如下:
    ΔR k,k-i=d k,k-i-i·f z
    其中,i为两相邻的参与切削的刀齿序号之差。
  10. 如权利要求7所述的微铣削加工未变形切削厚度测量系统,其特征在于,所述根据任意两个刀齿的等效切削半径之差重构微铣削加工的瞬时未变形切削厚度,公式如下:
    Figure PCTCN2022105062-appb-100002
    其中,h k(θ)为第k个刀齿在参考齿位角θ处的瞬时未变形切削厚度,ΔR k,m为任意两个刀齿的等效半径之差,θ k为第k个刀齿在参考齿位角为θ时的旋转角度,M为刀齿个数,Δθ m,k为第m个刀齿沿刀具旋转方向领先第k个刀齿的角度。
PCT/CN2022/105062 2021-11-05 2022-07-12 一种微铣削加工未变形切削厚度测量方法及系统 WO2023077856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/032,445 US11869180B1 (en) 2021-11-05 2022-07-12 Measurement method and system of undeformed chip thickness in micro-milling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111306045.8A CN114119501B (zh) 2021-11-05 2021-11-05 一种微铣削加工未变形切削厚度测量方法及系统
CN202111306045.8 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023077856A1 true WO2023077856A1 (zh) 2023-05-11

Family

ID=80380943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105062 WO2023077856A1 (zh) 2021-11-05 2022-07-12 一种微铣削加工未变形切削厚度测量方法及系统

Country Status (3)

Country Link
US (1) US11869180B1 (zh)
CN (1) CN114119501B (zh)
WO (1) WO2023077856A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114119501B (zh) * 2021-11-05 2023-03-17 苏州大学 一种微铣削加工未变形切削厚度测量方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089379A1 (en) * 2003-10-24 2005-04-28 Francis Mark A. Helical end mill type cutter configured to compensate for radial runout
CN110270705A (zh) * 2019-06-26 2019-09-24 东北大学 考虑刀具跳动影响的微细铣削加工切削力仿真预测方法
CN113297696A (zh) * 2021-05-26 2021-08-24 西安理工大学 一种基于半解析法的球头铣刀静态铣削力的建模方法
CN114119501A (zh) * 2021-11-05 2022-03-01 苏州大学 一种微铣削加工未变形切削厚度测量方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287405B2 (ja) * 2009-03-23 2013-09-11 三菱マテリアル株式会社 エンドミル
CN107679335B (zh) * 2017-10-20 2021-01-05 西北工业大学 考虑刀具振动下动态切屑厚度的实时切削力系数计算方法
CN109032074B (zh) * 2018-07-12 2020-11-17 苏州大学 一种手机金属中框机加工翘曲变形重构方法
CN109062140B (zh) * 2018-10-17 2020-08-18 清华大学 一种五轴侧铣加工过程中瞬时未变形切屑厚度计算方法
CN110032794B (zh) * 2019-04-10 2022-06-24 哈尔滨理工大学 一种振动作用下的铣刀动态切削力模型构建与验证方法
CN110103079B (zh) * 2019-06-17 2020-10-13 中国科学院合肥物质科学研究院 一种微铣削过程中刀具磨损的在线监测方法
CN110262397B (zh) * 2019-06-24 2020-10-23 北京理工大学 车铣加工空间螺旋次摆线运动轨迹及瞬时切削力建模方法
CN110807254A (zh) * 2019-10-29 2020-02-18 江苏长虹智能装备股份有限公司 一种五轴侧铣加工过程中基于恒力的进给速度优化方法
CN111339634B (zh) * 2019-12-30 2023-03-28 重庆大学 弱刚度微铣削系统的切削力建模方法
WO2021174518A1 (zh) * 2020-03-06 2021-09-10 大连理工大学 一种无颤振铣削加工表面形貌仿真方法
CN112100810B (zh) * 2020-08-11 2022-05-20 清华大学 一种平底铣刀多轴铣削力预测方法
CN113145905B (zh) * 2021-03-26 2021-12-24 力度工业智能科技(苏州)有限公司 发动机缸体顶面铣削刀痕测量预测及优化方法及装置
CN113158371A (zh) * 2021-04-21 2021-07-23 江苏电子信息职业学院 一种高速铣削加工动态切削力预测系统及参数优化方法
CN113385984B (zh) * 2021-07-13 2023-02-17 深圳职业技术学院 一种刀具径向跳动识别方法、装置、终端及存储介质
CN113569353B (zh) * 2021-07-21 2023-09-26 扬州力创机床有限公司 一种微铣削加工参数的可靠性优化方法、装置及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089379A1 (en) * 2003-10-24 2005-04-28 Francis Mark A. Helical end mill type cutter configured to compensate for radial runout
CN110270705A (zh) * 2019-06-26 2019-09-24 东北大学 考虑刀具跳动影响的微细铣削加工切削力仿真预测方法
CN113297696A (zh) * 2021-05-26 2021-08-24 西安理工大学 一种基于半解析法的球头铣刀静态铣削力的建模方法
CN114119501A (zh) * 2021-11-05 2022-03-01 苏州大学 一种微铣削加工未变形切削厚度测量方法及系统

Also Published As

Publication number Publication date
US11869180B1 (en) 2024-01-09
US20240029229A1 (en) 2024-01-25
CN114119501B (zh) 2023-03-17
CN114119501A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN103753353B (zh) 一种快速测定铣刀偏心的非接触式激光测量方法
WO2023077856A1 (zh) 一种微铣削加工未变形切削厚度测量方法及系统
CN102411337B (zh) 零件被加工表面几何误差的刀位规划补偿方法
CN106141808B (zh) 一种变切深调节装置及径向切削参数优化工艺方法
CN110874500B (zh) 一种基于振动监测的飞机结构件加工方案评估方法
CN111975453B (zh) 一种数值仿真驱动的加工过程刀具状态监测方法
CN109202535B (zh) 一种基于加工形貌检测估测主轴轴向跳动的方法
CN107679335B (zh) 考虑刀具振动下动态切屑厚度的实时切削力系数计算方法
CN102591260B (zh) 五轴铣削加工过程中刀具与工件瞬态接触域判断方法
CN114166153A (zh) 一种直柄麻花钻同轴度误差测量方法
CN113770805A (zh) 一种基于刀具参数和材料参数的车削表面粗糙度预测方法
Zhong et al. Fabrication of PCD micro cutting tool and experimental investigation on machining of copper grating
CN103033083B (zh) 一种孔条和检测该孔条的工装及加工和检验该孔条的方法
CN110253341B (zh) 一种微铣削加工刀具跳动参数的快速识别方法
CN116167983A (zh) 基于dtw距离最小的钢轨轨腰对齐方法、系统及终端
CN108942112A (zh) 一种定位夹爪的加工方法
CN208772643U (zh) 汇流环检测工装
CN201511253U (zh) 万能a型导流片切割模
Xu et al. Experimental research on the critical conditions and critical equation of chip splitting when turning a C45E4 disc workpiece symmetrically with a high-speed steel double-edged turning tool
CN110021027B (zh) 一种基于双目视觉的切边点计算方法
CN210499250U (zh) 一种回转部件
CN109325275B (zh) 一种精密车削进给量的计算方法
Li et al. Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083
CN113865504B (zh) 一种提高轮胎断面扫描图像精度的方法
JP2016162102A (ja) 加工評価システム、加工評価方法及び加工評価プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18032445

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22888891

Country of ref document: EP

Kind code of ref document: A1