WO2023077346A1 - Solar module and method for producing the same - Google Patents

Solar module and method for producing the same Download PDF

Info

Publication number
WO2023077346A1
WO2023077346A1 PCT/CN2021/128594 CN2021128594W WO2023077346A1 WO 2023077346 A1 WO2023077346 A1 WO 2023077346A1 CN 2021128594 W CN2021128594 W CN 2021128594W WO 2023077346 A1 WO2023077346 A1 WO 2023077346A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
stone
wood
solar module
cover glass
Prior art date
Application number
PCT/CN2021/128594
Other languages
French (fr)
Inventor
Yilei SHEN
Original Assignee
Triumph Science & Technology Group Co., Ltd.
Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Triumph Science & Technology Group Co., Ltd., Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. filed Critical Triumph Science & Technology Group Co., Ltd.
Priority to CN202180005699.9A priority Critical patent/CN114616682A/en
Priority to PCT/CN2021/128594 priority patent/WO2023077346A1/en
Publication of WO2023077346A1 publication Critical patent/WO2023077346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Definitions

  • This disclosure relates to a technical field of solar energy, and in particular to a solar module and a method for producing the same.
  • BIPV Building Integrated Photovoltaic
  • BAPV Building Attached Photovoltaic
  • a nature stone imitation solar panel is produced by combining an artificial nature stone having a realistic texture of nature stone with a solar panel.
  • the stone or wood effect of such a solar panel is achieved by applying a stone or wood imitation coating on the solar panel.
  • the solar module 1 includes a cover glass 11, a full-area stone or wood imitation coating layer 15, a lamination layer 14, a photovoltaic layer stack (for power generation) 13 and a substrate 12 arranged in sequence.
  • the artificial natural stone or wood effect of detailed imitating texture can be manufactured in this way, the full coverage of stone or wood imitation coating on the surface of solar modules will cause very high optical loss, and thus lower electrical power yield can be expected. Accordingly, these marble/wood imitation solar modules can achieve merely 20 ⁇ 50%of the power generation amount achieved by solar modules without stone or wood imitation coating.
  • the related power loss of the traditional solar module with stone or wood imitation coating as shown in Fig. 1 is mostly caused by the full-area stone or wood imitation coating due to its high optical absorption.
  • the optical absorption of the stone or wood imitation coating will increase naturally with its darkness and related proportional area.
  • the object of the present application is to provide a highly transparent stone or wood imitation solar module and a method for producing the same, which is capable of maintaining aesthetic advantages such as detailed texture, elegant style and beautiful appearance of natural stone or wood, drastically improving the energy efficiency and decreasing the power loss.
  • An embodiment of the present application provides a solar module, comprising a substrate, a photovoltaic layer stack, a lamination layer and a cover glass disposed in sequence, and a background layer; wherein the cover glass has a stone or wood imitation pattern on a surface of the cover glass facing to the lamination layer, or on a surface of the cover glass facing to the exterior, and an area ratio of the stone or wood imitation pattern and the cover glass is 5%-35%.
  • the combination of the stone or wood imitation pattern and the background layer can achieve the stone or wood imitation appearance effect.
  • An embodiment of the present application further provides a method for producing a solar module, comprising: obtaining a stone or wood pattern by digitalized image scanning of a stone or wood surface; removing a background area from the stone or wood pattern to obtain a stone or wood texture pattern; transferring the stone or wood texture pattern on a surface of a cover glass facing to a lamination layer or on a surface of the cover glass facing to the exterior to obtain a stone or wood imitation pattern; solidifying the stone or wood imitation pattern; disposing the cover glass with the stone or wood imitation pattern on a photovoltaic layer stack.
  • a new structure for a highly transparent solar panel with a stone or wood imitation appearance is designed by using the combination of a digitally recorded stone or wood imitation pattern and a background layer of low optical absorption of 0 ⁇ 20%, so as to achieve high power yield without losing its aesthetics and color richness.
  • Fig. 1 is a diagram of a solar module with a stone or wood imitation coating in the prior art
  • Fig. 2 is a diagram of a solar module with a stone or wood imitation pattern according to an embodiment of the present application
  • Fig. 3 is a diagram of a solar module with a stone or wood imitation pattern according to another embodiment of the present application.
  • Fig. 4 is a flowchart of a method for producing a solar module with a stone or wood imitation pattern according to an embodiment of the present application
  • Fig. 5 shows a solar module with a stone or wood imitation pattern and a background layer and a cover glass with a stone or wood imitation pattern according to an embodiment of the present application.
  • An embodiment of the present application provides a solar module, comprising a substrate, a photovoltaic layer stack, a lamination layer and a cover glass disposed in sequence, and a background layer; wherein the cover glass has a stone or wood imitation pattern on a surface of the cover glass facing to the lamination layer, or on a surface of the cover glass facing to the exterior, and an area ratio of the stone or wood imitation pattern and the cover glass is 5%-35%.
  • Fig. 2 is a diagram of a solar module 2 with a stone or wood imitation pattern according to an embodiment of the present application.
  • the solar module 2 includes a cover glass 21, a substrate 22, a photovoltaic layer stack 23 and a lamination layer 24.
  • the photovoltaic layer stack 23 is disposed on the substrate 22.
  • the lamination layer 24 is disposed on the photovoltaic layer stack 23.
  • the cover glass 21 is disposed on the lamination layer 24.
  • the cover glass 21 has a stone or wood imitation pattern 25 on a surface of the cover glass facing to the lamination layer 24.
  • the cover glass 21 is located at the front side of the solar module 2, that is, a side from which the solar ray enters into the solar module 2.
  • the cover glass 21 may be made of soda-lime glass, or silicate glass, or special silicate glass (low-iron-glass) , or borosilicate glass, or aluminosilicate glass, or chemically strengthened glass (potassium glass) .
  • the cover glass 21 may be transparent or semitransparent, colored or colorless.
  • the cover glass 21 may be formed by float glass process, or rolled glass process.
  • the surface of the cover glass 21 may be flat or textured (acid etched, sand blasted, or rolled) .
  • the substrate 22 is located at the back side of the solar module 2 opposite to the front side of the solar module 2.
  • the substrate 22 may be made of materials such as glass, polymer or metal, etc.
  • the photovoltaic layer stack 23 is a photovoltaic circuit in the solar module 2, which converts the optical energy into the electric energy.
  • the photovoltaic layer stack 23 may be formed by various technologies, such as thin-film photovoltaic (PV) technology and silicon-based PV technology.
  • the lamination layer 24 is polymeric laminate in the solar module 1, which is used for glass bonding regarding safety requirements in the BIPV applications.
  • the lamination layer 24 may consist of EVA, or POE, or EVA-POE-EVA, or PDMS/Silicon, or PVB, or TPU.
  • the lamination layer may be formed by foil or non-foil (hot melt) laminating.
  • the optical absorption of the stone or wood imitation pattern 25 is 5%-35%, which is lower than that of a standard full-area stone or wood printed pattern.
  • the standard full-area stone or wood printed pattern denotes the full-area stone or wood imitation coating according to the state of art.
  • a typical optical absorption of standard full-area stone or wood printed pattern is 50 ⁇ 95%.
  • the stone or wood texture pattern is obtained by the digitalized image scanning of a stone or wood.
  • the stone may be a stone that can be used for the facades of buildings, such as marble, quartz stone, granite, brick, cement/concrete.
  • the wood may be a wood that can be used for the facades of buildings, such as black walnut.
  • the stone or wood imitation pattern 25 is a digitally recorded stone or wood imitation pattern, as shown in b) of Fig. 4.
  • the stone or wood imitation pattern 25 is obtained by obtaining the stone or wood pattern through digitalized image scanning of a stone or wood surface and removing a background area (that is, a rest area except stone or wood texture patterns) from the stone or wood pattern, and thus may contain typical stone or wood texture patterns, e.g. point, linear, area patterns.
  • the ratio of the area of the stone or wood imitation pattern that is, the area of the stone or wood texture patterns in the stone or wood imitation pattern, and the area of the cover glass is 5%-35%. If the ratio is lower than the 5%, the stone or wood imitation effect cannot be achieved.
  • the solar module with the black marble imitation pattern according to the embodiment of present application can achieve 65% ⁇ 95%power yield achieved by a solar module without any additional marble coating.
  • the stone or wood imitation pattern 25 may be made of an inorganic material with or without a color pigment.
  • the inorganic material includes ceramic frit, glass frit, and so on.
  • the stone or wood imitation pattern 25 may be made of a ceramic suspension with a certain percentage of glass frits.
  • the solar module 2 further includes a background layer 26.
  • the background layer has an optical absorption of 0-20%.
  • the background layer 26 may be a transparent conductive oxides (TCO) layer or an interface layer or a passivation layer.
  • TCO transparent conductive oxides
  • the position of the background layer 26 may be determined based on the technologies. As shown in Fig. 2, the background layer 26 may be located below the stone or wood imitation pattern 25 and over the photovoltaic layer stack 23.
  • the thickness of the TCO layer or interface layer or passivation layer may be varied to generate designed background color for the solar module with the stone or wood imitation pattern 25.
  • the photovoltaic circuit (photovoltaic layer stack on the substrate) in the solar module 2 may be formed by means of thin-film PV technology or Si-based PV technology.
  • a solar module manufactured by the thin-film PV technology can be referred to as a thin-film solar module.
  • the thin-film solar module may include, for example, copper indium gallium selenium (CIGS) thin-film solar module, cadmium telluride (CdTe) thin-film solar module, organic photovoltaic (OPV) thin-film solar module, Perovskite thin-film solar module, dye-sensitized solar cell (DSSC) module, Heterojunction with Intrinsic Thin film (HJT) solar cell modules, and so on.
  • CGS copper indium gallium selenium
  • CdTe cadmium telluride
  • OOV organic photovoltaic
  • Perovskite thin-film solar module Perovskite thin-film solar module
  • dye-sensitized solar cell (DSSC) module Heterojunction with Intrinsic Thin film (HJT) solar cell modules, and so on.
  • HJT Heterojunction with Intrin
  • the general structure of the thin-film solar module includes: a cover glass, a transparent conductive oxides (TCO) layer, other layers under the TCO layer for forming the photovoltaic circuit, and a substrate.
  • TCO transparent conductive oxides
  • the background layer 26 is the transparent conductive oxides layer.
  • the transparent conductive oxides layer may be an aluminum doped zinc oxide layer, a boron doped zinc oxide layer, an indium doped tin oxide layer or the like.
  • the transparent conductive oxides layer is directly deposited on the underlayers of the photovoltaic layer stack and serves as the front electrode layer of the photovoltaic layer stack, that is, the front electrode of the photovoltaic circuit.
  • a solar module manufactured by the Si-based PV technology can be referred to as a Si-based solar module.
  • the Si-based solar module may include, for example, Passivated Emitter and Rear Cell (PERC) solar module, Passivated Emitter with Rear Locally (PERL) diffused solar module, Passivated Emitter Rear Totally (PERT) diffused solar module, Tunnel Oxide Passivated Contact (TOPCon) solar module, Interdigitated Back Contact (IBC) solar module, and so on.
  • the general structure of the Si-based solar module includes: a cover glass, a background layer (interface layer or passivation layer) , other layers under the background layer for forming the photovoltaic circuit, and a substrate.
  • the specific structures and manufacturing methods of various Si-based solar modules are known in the art and will not be described in detail here.
  • the solar module may be manufactured by PERC technology.
  • the PERC solar module is modified conventional solar module. Specifically, compared with the conventional solar module, the PERC solar module has an extra dielectric layer on the back side of the solar module. This allows some of the sun rays passing through the solar module to be reflected back to the solar module, giving them another opportunity to be turned into electrical energy.
  • the process of producing the PERC solar module further includes: depositing a passivation layer, and then forming an opening on the passivation layer.
  • the passivation layer can be generated by many methods, such as plasma-enhanced chemical vapor deposition, thermal oxidation, atomic layer deposition, stacked passivation, and so on.
  • the opening on the passivation layer can be formed by laser or the like.
  • the interface layer or the passivation layer may be generated as the background layer 26.
  • the interface layer is not common in the conventional solar module. It is non-conductive, as transparent as possible.
  • the interface layer may include a silicon oxy-nitride (SiON) , alumina oxide (Al 2 O 3 ) or the like, or be made of silicon oxy-nitride (SiON) , alumina oxide (Al 2 O 3 ) or the like.
  • the passivation layer is common in the Si-based solar module.
  • the passivation layer may be a layer of the photovoltaic layer stack in the PERC solar module, and in particular, located on the rest of the photovoltaic layer stack except for the passivation layer.
  • the passivation layer may include a hydrogenated silicon nitride, silicon Oxide (SiO 2 ) , silicon nitride (SiNx) or the like, or be made of silicon oxy-nitride (SiON) , alumina (Al 2 O 3 ) or the like.
  • the interface layer or the passivation layer will be used to create/adjust color appearance of solar module without absorbing too much light.
  • the interface layer may be disposed on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern, or on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern. Specifically, when the stone or wood imitation pattern is located on the surface of the cover glass facing to the exterior, the interface layer may be located on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern. When the stone or wood imitation pattern is located on the surface of the cover glass facing to the lamination layer, the interface layer may be located on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern.
  • the passivation layer may be disposed below the stone or wood imitation pattern and on the rest of photovoltaic layer stack.
  • the thickness of the TCO layer or interface layer may be varied to generate designed background color for the solar module with the stone or wood imitation pattern 25.
  • the highly transparent stone or wood imitation solar panel with the stone or wood imitation pattern 25 could present rich color without high optical loss.
  • Fig. 3 shows a solar module 3 with a stone or wood imitation pattern according to another embodiment of the present application.
  • the configuration of the solar module 3 is similar to that of the solar module 2 as shown in Fig. 2. To avoid any confusion, the difference of the solar module 3 from the solar module 2 is merely described here.
  • the solar module 3 includes a cover glass 31, a substrate 32, a photovoltaic layer stack 33, a lamination layer 34 and a background layer 36.
  • the photovoltaic layer stack 33 is disposed on the substrate 32.
  • the lamination layer 34 is disposed on the photovoltaic layer stack 33.
  • the cover glass 31 is disposed on the lamination layer 34.
  • the cover glass 31 has a stone or wood imitation pattern 35 on a surface of the cover glass 31 facing to the exterior.
  • Fig. 5 shows a highly transparent solar module with the stone or wood imitation pattern and the photovoltaic circuit, and a highly transparent cover glass printed with the stone or wood imitation pattern and without the photovoltaic circuit. It can be seen that the solar module with the marble imitation pattern according to the present application exceeds the natural marble in aesthetics. And, the solar module with the black marble imitation pattern according to the present application can also achieve 65% ⁇ 95%power yield achieved by a solar module without any additional marble coating. In comparison, the solar panel with the marble imitation coating in the prior art might possess >50%power loss.
  • the solar module 2 may include a mounting element (s) (for example, back track) and a cooling structure.
  • the mounting element is fixedly connected to the back side of the solar module and used to install the solar module on the roof or facade of a building.
  • the solar module of the present application may be used as a part of a building roof or a building facade.
  • the cooling structure may include an active cooling structure and a passive cooling structure, which are not described in detail in this application.
  • Fig. 4 is a diagram of a method for a solar module according to an embodiment of the present application.
  • the photovoltaic circuit (photovoltaic layer stack on the substrate) in the solar module 2 may be formed by means of thin-film PV technology or Si-based PV technology.
  • the methods for forming the photovoltaic circuit (photovoltaic layer stack on the substrate) in the solar module by these two technologies are known in the prior art. Therefore, they are not described in detail here.
  • the method for producing a solar module as shown in Fig. 4 comprises: S401, obtaining a stone or wood pattern by digitalized image scanning of a stone or wood surface; S402, removing a background area from the stone or wood pattern, to obtain a stone or wood texture pattern; S403, transferring the stone or wood texture pattern on a surface of a cover glass facing to a lamination layer or on a surface of the cover glass facing to the exterior, to obtain a stone or wood imitation pattern; S404, solidifying the stone or wood imitation pattern; and S405, laminating the cover glass with the stone or wood imitation pattern on a photovoltaic layer stack.
  • the stone or wood imitation pattern is generated by digitalized image scanning and selection. This can be done by various electronic devices having digitalized image scanning and process functions. Specifically, the stone or wood pattern is obtained by digitalized image scanning of the stone or wood surface, and then the obtained stone or wood pattern is processed by a preset selection rule.
  • the preset selection rule may include: removing a background area from the stone or wood pattern. For example, the most dark/black area of high optical absorption is preferred to be removed, and the larger background area is also preferred to be removed. By this means, very high surface transparency can be achieved for the stone or wood imitation pattern.
  • the step S403 may comprise: transferring the stone or wood texture pattern on the surface of the cover glass facing to the lamination layer or on the surface of the cover glass facing to the exterior by screen printing, stencil printing, gravure or flexo printing, digital inkjet printing, to obtain the stone or wood imitation pattern.
  • the step 304 may comprise: drying the stone or wood imitation pattern at 150 ⁇ 250°C, and firing the stone or wood imitation pattern at 600 ⁇ 750°C.
  • the cover glass after cooling the temperature of the fired stone or wood imitation pattern down to the room temperature, the cover glass will be printed with busbar cover at the frame edges.
  • the color of the busbar cover will be selected as same as the main background of designed solar panel.
  • the step S405 includes depositing the photovoltaic layer stack on the substrate and laminating the cover glass on the photovoltaic layer stack.
  • the method for producing the solar module further comprises disposing a background layer in the solar module.
  • the background layer is a transparent conductive oxides layer, which is disposed on underlayers of the photovoltaic layer stack and serves as a front electrode layer of the photovoltaic layer stack, wherein the transparent conductive oxides layer is an aluminum doped zinc oxide layer, a boron doped zinc oxide layer or an indium doped tin oxide layer.
  • the solar module will present black stone or wood pattern with textures of certain color (e.g. white, light grey or colored lines) .
  • the background layer is an interface layer comprising a silicon oxy-nitride or aluminum oxide, wherein the interface layer is disposed on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern, or on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern.
  • the background layer is a passivation layer comprising a silicon oxide or silicon nitride or silicon oxynitride or alumina, wherein the passivation layer is disposed below the stone or wood imitation pattern and on the rest of the photovoltaic layer stack.
  • the method for producing the solar module further includes controlling the thickness of the background layer to generate a stone or wood imitation background color.
  • the thickness of the TCO layer or interface layer may be varied to generate designed background color for the solar module with the stone or wood imitation pattern.
  • a new structure for a highly transparent solar panel with a stone or wood imitation appearance is designed by using the combination of a digitally recorded stone or wood imitation pattern and a background layer of low optical absorption of 0 ⁇ 20%, so as to achieve high power yield without losing its aesthetics and color richness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar module, comprising a substrate (22), a photovoltaic layer stack (23), a lamination layer (24) and a cover glass (21) disposed in sequence, and a background layer (26); wherein the cover glass (21) has a stone or wood imitation pattern (25) on a surface of the cover glass (21) facing to the lamination layer (24), or on a surface of the cover glass (21) facing to the exterior, and an area ratio of the stone or wood imitation pattern (25) and the cover glass (21) is 5%-35%. In the present application, a new structure for a highly transparent solar panel with a stone or wood imitation appearance is designed by using the combination of a digitally recorded stone or wood imitation pattern (25) and a background layer (26) of low optical absorption of 0~20%, so as to achieve high power yield without losing its aesthetics and color richness.

Description

SOLAR MODULE AND METHOD FOR PRODUCING THE SAME Technical Field
This disclosure relates to a technical field of solar energy, and in particular to a solar module and a method for producing the same.
Background
At present, there are more and more BIPV (Building Integrated Photovoltaic) or BAPV (Building Attached Photovoltaic) modules installed for the roofs or facades of buildings in order to generate electricity. If traditional solar panels are installed on the roofs or facades of buildings, these solar panels will affect the original aesthetics of the buildings. In general, solar panels are mainly installed as the facades of buildings. For a modern architecture, these traditional solar panels can constitute design elements for the modern architecture, and will contribute to the building’s aesthetics. However, they have certain limitation to preserve the traditional architecture style, such as houses using nature stone/marble or wood as the main building material.
In the prior art, in order to blend solar panels with buildings in the traditional architecture style, a nature stone imitation solar panel is produced by combining an artificial nature stone having a realistic texture of nature stone with a solar panel. In general, the stone or wood effect of such a solar panel is achieved by applying a stone or wood imitation coating on the solar panel. As shown in Fig. 1, the solar module 1 includes a cover glass 11, a full-area stone or wood imitation coating layer 15, a lamination layer 14, a photovoltaic layer stack (for power generation) 13 and a substrate 12 arranged in sequence. Although the artificial natural stone or wood effect of detailed imitating texture can be manufactured in this way, the full coverage of stone or wood imitation coating on the surface of solar modules will cause very high optical loss, and thus lower electrical power yield can be expected. Accordingly, these marble/wood imitation solar modules can achieve merely 20~50%of the power generation amount achieved by solar modules without stone or wood imitation coating.
The related power loss of the traditional solar module with stone or wood imitation coating  as shown in Fig. 1 is mostly caused by the full-area stone or wood imitation coating due to its high optical absorption. The more detailed the stone or wood imitation effect is, the higher the power loss for the solar panel will be. Thus, the optical absorption of the stone or wood imitation coating will increase naturally with its darkness and related proportional area.
Therefore, there is a need for nature stone or wood imitation solar panels which can be installed on the roofs or facades of buildings to generate the clean and renewable energy, in order to improve their energy efficiency and carbon neutrality. In the meanwhile, the external appearance of these buildings can be enhanced with high-quality nature stone or wood imitation elements and will not be affected by aesthetical disturbance. In addition, these stone or wood imitation solar panels should generate enough electricity with less power loss, in view that the area for BIPV application is usually limited.
Summary
The object of the present application is to provide a highly transparent stone or wood imitation solar module and a method for producing the same, which is capable of maintaining aesthetic advantages such as detailed texture, elegant style and beautiful appearance of natural stone or wood, drastically improving the energy efficiency and decreasing the power loss.
An embodiment of the present application provides a solar module, comprising a substrate, a photovoltaic layer stack, a lamination layer and a cover glass disposed in sequence, and a background layer; wherein the cover glass has a stone or wood imitation pattern on a surface of the cover glass facing to the lamination layer, or on a surface of the cover glass facing to the exterior, and an area ratio of the stone or wood imitation pattern and the cover glass is 5%-35%. The combination of the stone or wood imitation pattern and the background layer can achieve the stone or wood imitation appearance effect.
An embodiment of the present application further provides a method for producing a solar module, comprising: obtaining a stone or wood pattern by digitalized image scanning of a stone or wood surface; removing a background area from the stone or wood pattern to obtain a stone or wood texture pattern; transferring the stone or wood texture pattern on a surface of a cover glass facing to a lamination layer or on a surface of the cover glass facing to the exterior to obtain a  stone or wood imitation pattern; solidifying the stone or wood imitation pattern; disposing the cover glass with the stone or wood imitation pattern on a photovoltaic layer stack.
In the present application, a new structure for a highly transparent solar panel with a stone or wood imitation appearance is designed by using the combination of a digitally recorded stone or wood imitation pattern and a background layer of low optical absorption of 0~20%, so as to achieve high power yield without losing its aesthetics and color richness.
Brief Description of the Drawings
In order to more clearly describe the technical solutions of the embodiments of the present disclosure or of the prior art, drawings that need to be used in embodiments and the prior art will be briefly described below. Obviously, the drawings provided below are for only some embodiments of the present disclosure. Those skilled in the art can also obtain other drawings based on these drawings.
Fig. 1 is a diagram of a solar module with a stone or wood imitation coating in the prior art;
Fig. 2 is a diagram of a solar module with a stone or wood imitation pattern according to an embodiment of the present application;
Fig. 3 is a diagram of a solar module with a stone or wood imitation pattern according to another embodiment of the present application;
Fig. 4 is a flowchart of a method for producing a solar module with a stone or wood imitation pattern according to an embodiment of the present application;
Fig. 5 shows a solar module with a stone or wood imitation pattern and a background layer and a cover glass with a stone or wood imitation pattern according to an embodiment of the present application.
Detailed Description
In order to make the objectives, technical solutions, and advantages of the present application clearer and more understandable, the present application will be described in detail below with reference to the appended drawings and embodiments. Obviously, the described embodiments are only some, and not all, of the embodiments of the present application. All other  embodiments obtained based on the embodiments of the present disclosure by those skilled in the art without any creative efforts fall into the scope of protection defined by the present disclosure.
An embodiment of the present application provides a solar module, comprising a substrate, a photovoltaic layer stack, a lamination layer and a cover glass disposed in sequence, and a background layer; wherein the cover glass has a stone or wood imitation pattern on a surface of the cover glass facing to the lamination layer, or on a surface of the cover glass facing to the exterior, and an area ratio of the stone or wood imitation pattern and the cover glass is 5%-35%.
Fig. 2 is a diagram of a solar module 2 with a stone or wood imitation pattern according to an embodiment of the present application.
The solar module 2 includes a cover glass 21, a substrate 22, a photovoltaic layer stack 23 and a lamination layer 24. The photovoltaic layer stack 23 is disposed on the substrate 22. The lamination layer 24 is disposed on the photovoltaic layer stack 23. The cover glass 21 is disposed on the lamination layer 24. The cover glass 21 has a stone or wood imitation pattern 25 on a surface of the cover glass facing to the lamination layer 24.
The cover glass 21 is located at the front side of the solar module 2, that is, a side from which the solar ray enters into the solar module 2. The cover glass 21 may be made of soda-lime glass, or silicate glass, or special silicate glass (low-iron-glass) , or borosilicate glass, or aluminosilicate glass, or chemically strengthened glass (potassium glass) . The cover glass 21 may be transparent or semitransparent, colored or colorless. The cover glass 21 may be formed by float glass process, or rolled glass process. The surface of the cover glass 21 may be flat or textured (acid etched, sand blasted, or rolled) .
The substrate 22 is located at the back side of the solar module 2 opposite to the front side of the solar module 2. The substrate 22 may be made of materials such as glass, polymer or metal, etc.
The photovoltaic layer stack 23 is a photovoltaic circuit in the solar module 2, which converts the optical energy into the electric energy. The photovoltaic layer stack 23 may be formed by various technologies, such as thin-film photovoltaic (PV) technology and  silicon-based PV technology.
The lamination layer 24 is polymeric laminate in the solar module 1, which is used for glass bonding regarding safety requirements in the BIPV applications. The lamination layer 24 may consist of EVA, or POE, or EVA-POE-EVA, or PDMS/Silicon, or PVB, or TPU. The lamination layer may be formed by foil or non-foil (hot melt) laminating.
The optical absorption of the stone or wood imitation pattern 25 is 5%-35%, which is lower than that of a standard full-area stone or wood printed pattern.. The standard full-area stone or wood printed pattern denotes the full-area stone or wood imitation coating according to the state of art. A typical optical absorption of standard full-area stone or wood printed pattern is 50~95%. The stone or wood texture pattern is obtained by the digitalized image scanning of a stone or wood. For example, the stone may be a stone that can be used for the facades of buildings, such as marble, quartz stone, granite, brick, cement/concrete. The wood may be a wood that can be used for the facades of buildings, such as black walnut.
In the embodiment, the stone or wood imitation pattern 25 is a digitally recorded stone or wood imitation pattern, as shown in b) of Fig. 4. Specifically, the stone or wood imitation pattern 25 is obtained by obtaining the stone or wood pattern through digitalized image scanning of a stone or wood surface and removing a background area (that is, a rest area except stone or wood texture patterns) from the stone or wood pattern, and thus may contain typical stone or wood texture patterns, e.g. point, linear, area patterns. In this case, the ratio of the area of the stone or wood imitation pattern, that is, the area of the stone or wood texture patterns in the stone or wood imitation pattern, and the area of the cover glass is 5%-35%. If the ratio is lower than the 5%, the stone or wood imitation effect cannot be achieved.
In view of above, the solar module with the black marble imitation pattern according to the embodiment of present application can achieve 65%~95%power yield achieved by a solar module without any additional marble coating.
In the embodiment, the stone or wood imitation pattern 25 may be made of an inorganic material with or without a color pigment. The inorganic material includes ceramic frit, glass frit, and so on. For example, the stone or wood imitation pattern 25 may be made of a ceramic  suspension with a certain percentage of glass frits.
In the embodiment, the solar module 2 further includes a background layer 26. The background layer has an optical absorption of 0-20%. Based on technologies for forming the photovoltaic circuit in the solar module 2, the background layer 26 may be a transparent conductive oxides (TCO) layer or an interface layer or a passivation layer. Furthermore, the position of the background layer 26 may be determined based on the technologies. As shown in Fig. 2, the background layer 26 may be located below the stone or wood imitation pattern 25 and over the photovoltaic layer stack 23. The thickness of the TCO layer or interface layer or passivation layer may be varied to generate designed background color for the solar module with the stone or wood imitation pattern 25. By this means, the highly transparent stone or wood imitation solar module according to the embodiment of the present application could present rich color without high optical loss.
In an embodiment, the photovoltaic circuit (photovoltaic layer stack on the substrate) in the solar module 2 may be formed by means of thin-film PV technology or Si-based PV technology.
A solar module manufactured by the thin-film PV technology can be referred to as a thin-film solar module. The thin-film solar module may include, for example, copper indium gallium selenium (CIGS) thin-film solar module, cadmium telluride (CdTe) thin-film solar module, organic photovoltaic (OPV) thin-film solar module, Perovskite thin-film solar module, dye-sensitized solar cell (DSSC) module, Heterojunction with Intrinsic Thin film (HJT) solar cell modules, and so on. The general structure of the thin-film solar module includes: a cover glass, a transparent conductive oxides (TCO) layer, other layers under the TCO layer for forming the photovoltaic circuit, and a substrate. The specific structures and manufacturing methods of various thin-film solar modules are known in the art and will not be described in detail here.
In an embodiment, when the photovoltaic circuit in the solar module 2 is formed by the thin-film PV technology, the background layer 26 is the transparent conductive oxides layer. The transparent conductive oxides layer may be an aluminum doped zinc oxide layer, a boron doped zinc oxide layer, an indium doped tin oxide layer or the like. The transparent conductive oxides layer is directly deposited on the underlayers of the photovoltaic layer stack and serves as the front electrode layer of the photovoltaic layer stack, that is, the front electrode of the  photovoltaic circuit.
A solar module manufactured by the Si-based PV technology can be referred to as a Si-based solar module. The Si-based solar module may include, for example, Passivated Emitter and Rear Cell (PERC) solar module, Passivated Emitter with Rear Locally (PERL) diffused solar module, Passivated Emitter Rear Totally (PERT) diffused solar module, Tunnel Oxide Passivated Contact (TOPCon) solar module, Interdigitated Back Contact (IBC) solar module, and so on. The general structure of the Si-based solar module includes: a cover glass, a background layer (interface layer or passivation layer) , other layers under the background layer for forming the photovoltaic circuit, and a substrate. The specific structures and manufacturing methods of various Si-based solar modules are known in the art and will not be described in detail here.
For example, the solar module may be manufactured by PERC technology. The PERC solar module is modified conventional solar module. Specifically, compared with the conventional solar module, the PERC solar module has an extra dielectric layer on the back side of the solar module. This allows some of the sun rays passing through the solar module to be reflected back to the solar module, giving them another opportunity to be turned into electrical energy.
Compared with the conventional solar module, the process of producing the PERC solar module further includes: depositing a passivation layer, and then forming an opening on the passivation layer. The passivation layer can be generated by many methods, such as plasma-enhanced chemical vapor deposition, thermal oxidation, atomic layer deposition, stacked passivation, and so on. The opening on the passivation layer can be formed by laser or the like.
In an embodiment, when the photovoltaic circuit in the solar module 2 is formed by the Si-based PV technology, the interface layer or the passivation layer (not shown) may be generated as the background layer 26. The interface layer is not common in the conventional solar module. It is non-conductive, as transparent as possible. Furthermore, the interface layer has an index of refraction between the index of refraction of cover glass and lamination layer (e.g., lamination foil) (n=1.5) and the index of refraction of the TCO layer (n=2) . The interface layer may include a silicon oxy-nitride (SiON) , alumina oxide (Al 2O 3) or the like, or be made of silicon oxy-nitride (SiON) , alumina oxide (Al 2O 3) or the like. The passivation layer is common  in the Si-based solar module. For example, the passivation layer may be a layer of the photovoltaic layer stack in the PERC solar module, and in particular, located on the rest of the photovoltaic layer stack except for the passivation layer. It is transparent as possible and has an index of refraction between the index of refraction of cover glass and lamination layer (e.g., lamination foil) (n=1.5) and the index of refraction of the TCO layer (n=2) . The passivation layer may include a hydrogenated silicon nitride, silicon Oxide (SiO 2) , silicon nitride (SiNx) or the like, or be made of silicon oxy-nitride (SiON) , alumina (Al 2O 3) or the like. The interface layer or the passivation layer will be used to create/adjust color appearance of solar module without absorbing too much light. The interface layer may be disposed on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern, or on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern. Specifically, when the stone or wood imitation pattern is located on the surface of the cover glass facing to the exterior, the interface layer may be located on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern. When the stone or wood imitation pattern is located on the surface of the cover glass facing to the lamination layer, the interface layer may be located on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern. The passivation layer may be disposed below the stone or wood imitation pattern and on the rest of photovoltaic layer stack.
In an embodiment, the thickness of the TCO layer or interface layer may be varied to generate designed background color for the solar module with the stone or wood imitation pattern 25. By this means, the highly transparent stone or wood imitation solar panel with the stone or wood imitation pattern 25 could present rich color without high optical loss.
Fig. 3 shows a solar module 3 with a stone or wood imitation pattern according to another embodiment of the present application. The configuration of the solar module 3 is similar to that of the solar module 2 as shown in Fig. 2. To avoid any confusion, the difference of the solar module 3 from the solar module 2 is merely described here.
The solar module 3 includes a cover glass 31, a substrate 32, a photovoltaic layer stack 33, a lamination layer 34 and a background layer 36. The photovoltaic layer stack 33 is disposed on the substrate 32. The lamination layer 34 is disposed on the photovoltaic layer stack 33. The  cover glass 31 is disposed on the lamination layer 34. The cover glass 31 has a stone or wood imitation pattern 35 on a surface of the cover glass 31 facing to the exterior.
Fig. 5 shows a highly transparent solar module with the stone or wood imitation pattern and the photovoltaic circuit, and a highly transparent cover glass printed with the stone or wood imitation pattern and without the photovoltaic circuit. It can be seen that the solar module with the marble imitation pattern according to the present application exceeds the natural marble in aesthetics. And, the solar module with the black marble imitation pattern according to the present application can also achieve 65%~95%power yield achieved by a solar module without any additional marble coating. In comparison, the solar panel with the marble imitation coating in the prior art might possess >50%power loss.
Furthermore, the solar module 2 may include a mounting element (s) (for example, back track) and a cooling structure. The mounting element is fixedly connected to the back side of the solar module and used to install the solar module on the roof or facade of a building. In addition, the solar module of the present application may be used as a part of a building roof or a building facade. The cooling structure may include an active cooling structure and a passive cooling structure, which are not described in detail in this application.
Fig. 4 is a diagram of a method for a solar module according to an embodiment of the present application. As mentioned, the photovoltaic circuit (photovoltaic layer stack on the substrate) in the solar module 2 may be formed by means of thin-film PV technology or Si-based PV technology. The methods for forming the photovoltaic circuit (photovoltaic layer stack on the substrate) in the solar module by these two technologies are known in the prior art. Therefore, they are not described in detail here.
The method for producing a solar module as shown in Fig. 4 comprises: S401, obtaining a stone or wood pattern by digitalized image scanning of a stone or wood surface; S402, removing a background area from the stone or wood pattern, to obtain a stone or wood texture pattern; S403, transferring the stone or wood texture pattern on a surface of a cover glass facing to a lamination layer or on a surface of the cover glass facing to the exterior, to obtain a stone or wood imitation pattern; S404, solidifying the stone or wood imitation pattern; and S405, laminating the cover glass with the stone or wood imitation pattern on a photovoltaic layer stack.
In the embodiment, the stone or wood imitation pattern is generated by digitalized image scanning and selection. This can be done by various electronic devices having digitalized image scanning and process functions. Specifically, the stone or wood pattern is obtained by digitalized image scanning of the stone or wood surface, and then the obtained stone or wood pattern is processed by a preset selection rule. The preset selection rule may include: removing a background area from the stone or wood pattern. For example, the most dark/black area of high optical absorption is preferred to be removed, and the larger background area is also preferred to be removed. By this means, very high surface transparency can be achieved for the stone or wood imitation pattern.
In the embodiment, in order to obtain the highly transparent cover glass with the stone or wood imitation pattern, only the digitally recorded stone or wood texture pattern is printed on the cover glass. In an embodiment, the step S403 may comprise: transferring the stone or wood texture pattern on the surface of the cover glass facing to the lamination layer or on the surface of the cover glass facing to the exterior by screen printing, stencil printing, gravure or flexo printing, digital inkjet printing, to obtain the stone or wood imitation pattern.
In an embodiment, the step 304 may comprise: drying the stone or wood imitation pattern at 150~250℃, and firing the stone or wood imitation pattern at 600~750℃.
In an embodiment, after cooling the temperature of the fired stone or wood imitation pattern down to the room temperature, the cover glass will be printed with busbar cover at the frame edges. The color of the busbar cover will be selected as same as the main background of designed solar panel.
In an embodiment, the step S405 includes depositing the photovoltaic layer stack on the substrate and laminating the cover glass on the photovoltaic layer stack.
In an embodiment, the method for producing the solar module further comprises disposing a background layer in the solar module. When the photovoltaic circuit in the solar module is formed by means of thin-film PV technology, the background layer is a transparent conductive oxides layer, which is disposed on underlayers of the photovoltaic layer stack and serves as a front electrode layer of the photovoltaic layer stack, wherein the transparent conductive oxides  layer is an aluminum doped zinc oxide layer, a boron doped zinc oxide layer or an indium doped tin oxide layer. For example, in case of black thin-film photovoltaic circuits (CIGS, CdTe) , the solar module will present black stone or wood pattern with textures of certain color (e.g. white, light grey or colored lines) .
In an embodiment, when the photovoltaic circuit in the solar module is formed by means of Si-based PV technology, the background layer is an interface layer comprising a silicon oxy-nitride or aluminum oxide, wherein the interface layer is disposed on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern, or on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern. Alternatively, the background layer is a passivation layer comprising a silicon oxide or silicon nitride or silicon oxynitride or alumina, wherein the passivation layer is disposed below the stone or wood imitation pattern and on the rest of the photovoltaic layer stack.
In an embodiment, the method for producing the solar module further includes controlling the thickness of the background layer to generate a stone or wood imitation background color.
In an embodiment, the thickness of the TCO layer or interface layer may be varied to generate designed background color for the solar module with the stone or wood imitation pattern. By this means, the highly transparent stone or wood imitation solar panel with the stone or wood imitation pattern could present rich color without high optical loss.
In the present application, a new structure for a highly transparent solar panel with a stone or wood imitation appearance is designed by using the combination of a digitally recorded stone or wood imitation pattern and a background layer of low optical absorption of 0~20%, so as to achieve high power yield without losing its aesthetics and color richness.
The embodiments described above are simply preferable embodiments of the present application, and are not intended to limit the scope of protection of the present application. Any modifications, alternatives, improvements, or the like within the spirit and principle of the present application shall be included within the scope of protection of the present application.

Claims (19)

  1. A solar module, comprising a substrate, a photovoltaic layer stack, a lamination layer and a cover glass disposed in sequence, and a background layer; wherein the cover glass has a stone or wood imitation pattern on a surface of the cover glass facing to the lamination layer, or on a surface of the cover glass facing to the exterior, and an area ratio of the stone or wood imitation pattern and the cover glass is 5%-35%.
  2. The solar module of claim 1, wherein the stone or wood imitation pattern has an optical absorption of 5%-35%.
  3. The solar module of claim 1, wherein the background layer has an optical absorption of 0-20%.
  4. The solar module of claim 1, wherein the stone or wood imitation pattern is made of an inorganic material with or without a color pigment, the inorganic material including ceramic frit and/or glass frit.
  5. The solar module of claim 1, wherein a thickness of the background layer is controlled to generate a stone or wood imitation background color.
  6. The solar module of claim 1, wherein, when a photovoltaic circuit in the solar module is formed by means of a thin-film PV technology, the background layer is a transparent conductive oxides layer, which is an aluminum doped zinc oxide layer, a boron doped zinc oxide layer or an indium doped tin oxide layer.
  7. The solar module of claim 6, wherein the transparent conductive oxides layer is disposed on underlayers of the photovoltaic layer stack and serves as a front electrode layer of the photovoltaic layer stack.
  8. The solar module of claim 1, wherein, when a photovoltaic circuit in the solar module is formed by means of Si-based PV technology, the background layer is an interface layer or a passivation layer that has an index of refraction being 1.5 to 2.
  9. The solar module of claim 8, wherein the interface layer comprises a silicon oxy-nitride  or an aluminum oxide, and the passivation layer comprises a hydrogenated silicon nitride, a silicon oxide, a silicon nitride, a silicon oxynitride or an alumina.
  10. The solar module of claim 8, wherein the interface layer is disposed on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern, or on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern.
  11. The solar module of claim 8, wherein the passivation layer is disposed below the stone or wood imitation pattern and on the rest of the photovoltaic layer stack.
  12. A method for producing a solar module, comprising:
    obtaining a stone or wood pattern by digitalized image scanning of a stone or wood surface;
    removing a background area from the stone or wood pattern, to obtain a stone or wood texture pattern;
    transferring the stone or wood texture pattern on a surface of a cover glass facing to a lamination layer or on a surface of the cover glass facing to the exterior, to obtain a stone or wood imitation pattern;
    solidifying the stone or wood imitation pattern; and
    laminating the cover glass with the stone or wood imitation pattern on a photovoltaic layer stack.
  13. The method of claim 12, wherein transferring the stone or wood texture pattern on a surface of a cover glass facing to a lamination layer or on a surface of the cover glass facing to the exterior to obtain a stone or wood imitation pattern comprises: transferring the stone or wood texture pattern on the surface of the cover glass facing to the lamination layer or on the surface of the cover glass facing to the exterior by screen printing, stencil printing, gravure or flexo printing, digital inkjet printing, to obtain the stone or wood imitation pattern.
  14. The method of claim 12 or 13, wherein solidifying the stone or wood imitation pattern comprises:
    drying the stone or wood imitation pattern at 150~250℃, and firing the stone or wood imitation pattern at 600~750℃.
  15. The method of claim 12 or 13, further comprising: disposing a background layer in the solar module.
  16. The method of claim 15, wherein the background layer is a transparent conductive oxides layer, which is disposed on underlayers of the photovoltaic layer stack and serves as a front electrode layer of the photovoltaic layer stack, wherein the transparent conductive oxides layer is an aluminum doped zinc oxide layer, a boron doped zinc oxide layer or an indium doped tin oxide layer.
  17. The method of claim 15, wherein the background layer is an interface layer comprising a silicon oxy-nitride or aluminum oxide, wherein the interface layer is disposed on the surface of the cover glass facing to the exterior over the stone or wood imitation pattern, or on the surface of the cover glass facing to the lamination layer over or below the stone or wood imitation pattern.
  18. The method of claim 15, wherein the background layer is a passivation layer comprising a hydrogenated silicon nitride, a silicon oxide, a silicon nitride, a silicon oxynitride or an alumina, wherein the passivation layer is disposed below the stone or wood imitation pattern and on the rest of photovoltaic layer stack.
  19. The method of claim 15, wherein a thickness of the background layer is controlled to generate a stone or wood imitation background color.
PCT/CN2021/128594 2021-11-04 2021-11-04 Solar module and method for producing the same WO2023077346A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180005699.9A CN114616682A (en) 2021-11-04 2021-11-04 Solar cell module and manufacturing method thereof
PCT/CN2021/128594 WO2023077346A1 (en) 2021-11-04 2021-11-04 Solar module and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128594 WO2023077346A1 (en) 2021-11-04 2021-11-04 Solar module and method for producing the same

Publications (1)

Publication Number Publication Date
WO2023077346A1 true WO2023077346A1 (en) 2023-05-11

Family

ID=81857345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128594 WO2023077346A1 (en) 2021-11-04 2021-11-04 Solar module and method for producing the same

Country Status (2)

Country Link
CN (1) CN114616682A (en)
WO (1) WO2023077346A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557708B (en) * 2022-08-22 2024-03-15 宸光(常州)新材料科技有限公司 Photovoltaic glass coated with stone-like paint and preparation method and application thereof
CN115603656B (en) * 2022-10-17 2023-09-19 新源劲吾(北京)科技有限公司 Photovoltaic module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299190A (en) * 2011-06-20 2011-12-28 江苏秀强玻璃工艺股份有限公司 Building integrated photovoltaic (BIPV) hollow-type amorphous silicon solar module and manufacturing method thereof
CN105023956A (en) * 2014-04-28 2015-11-04 陈彩惠 Solar panel structure with pattern
CN207602580U (en) * 2017-10-10 2018-07-10 盐城普兰特新能源有限公司 A kind of thin-film solar cells
CN208484465U (en) * 2018-05-08 2019-02-12 北京汉能光伏投资有限公司 A kind of imitation stone product
WO2019201775A1 (en) * 2018-04-16 2019-10-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Photovoltaic modules and methods of manufacture thereof
CN110746681A (en) * 2018-07-24 2020-02-04 张伟 Photovoltaic module imitating natural stone pattern and preparation method thereof
CN110911513A (en) * 2018-09-14 2020-03-24 杭州纤纳光电科技有限公司 BIPV assembly structure and preparation method
CN111600532A (en) * 2020-06-19 2020-08-28 高格绿建太阳能科技(北京)有限公司 Three-dimensional plane-imitating power generation tile and manufacturing method thereof
CN112002776A (en) * 2019-05-08 2020-11-27 李翠煌 Method for manufacturing surface pattern of solar panel and structure thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299190A (en) * 2011-06-20 2011-12-28 江苏秀强玻璃工艺股份有限公司 Building integrated photovoltaic (BIPV) hollow-type amorphous silicon solar module and manufacturing method thereof
CN105023956A (en) * 2014-04-28 2015-11-04 陈彩惠 Solar panel structure with pattern
CN207602580U (en) * 2017-10-10 2018-07-10 盐城普兰特新能源有限公司 A kind of thin-film solar cells
WO2019201775A1 (en) * 2018-04-16 2019-10-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Photovoltaic modules and methods of manufacture thereof
CN208484465U (en) * 2018-05-08 2019-02-12 北京汉能光伏投资有限公司 A kind of imitation stone product
CN110746681A (en) * 2018-07-24 2020-02-04 张伟 Photovoltaic module imitating natural stone pattern and preparation method thereof
CN110911513A (en) * 2018-09-14 2020-03-24 杭州纤纳光电科技有限公司 BIPV assembly structure and preparation method
CN112002776A (en) * 2019-05-08 2020-11-27 李翠煌 Method for manufacturing surface pattern of solar panel and structure thereof
CN111600532A (en) * 2020-06-19 2020-08-28 高格绿建太阳能科技(北京)有限公司 Three-dimensional plane-imitating power generation tile and manufacturing method thereof

Also Published As

Publication number Publication date
CN114616682A (en) 2022-06-10

Similar Documents

Publication Publication Date Title
CN101651157B (en) Solar cells provided with color modulation and method for fabricating the same
WO2023077346A1 (en) Solar module and method for producing the same
US20090165849A1 (en) Transparent solar cell module
CN101499492B (en) Transparent solar cell module
KR102360087B1 (en) Color film applied solar module and manufacturing method thereof
CN110931592A (en) Copper indium gallium selenide solar cell for BIPV
AU2018101583A4 (en) Solar cell module
US20100101624A1 (en) Photovoltaic module and modular panel made with it to collect radiant solar energy
CN102237441B (en) Method for realizing light transmission of thin film solar module by using vibrating mirror laser equipment
US20200403557A1 (en) Power-generating building materials and preparation process therefof
EP4186102A1 (en) Photovoltaic panel
CN101593791B (en) Manufacturing method of photovoltaic device
CN101752453A (en) Preparation method of glass-substrate double-side CIGS thin film solar cell module
CN202259357U (en) Copper-indium-selenium thin-film solar light-transmitting assembly
CN101499491B (en) Transparent solar cell module
KR20180098492A (en) Solar cell and process of preparing the same
CN210607294U (en) Copper indium gallium selenide solar cell for BIPV
TW201248888A (en) Full color picture thin-film solar cell and manufacturing method thereof
CN111146301A (en) Photovoltaic building material and preparation method thereof
Karasu et al. Solar glass panels: a review
CN113782622B (en) Thin film solar cell panel and manufacturing method thereof
CN114695585A (en) Photovoltaic tile assembly and preparation method thereof
CN105023958A (en) CIGS (Copper Indium Gallium Selenide)-based thin-film solar cell and manufacturing method thereof
CN102587545A (en) Photovoltaic building glass curtain wall component
CN215451422U (en) Solar energy assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021962863

Country of ref document: EP

Effective date: 20240604