WO2023075421A1 - 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물 - Google Patents

수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물 Download PDF

Info

Publication number
WO2023075421A1
WO2023075421A1 PCT/KR2022/016492 KR2022016492W WO2023075421A1 WO 2023075421 A1 WO2023075421 A1 WO 2023075421A1 KR 2022016492 W KR2022016492 W KR 2022016492W WO 2023075421 A1 WO2023075421 A1 WO 2023075421A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
seq
flab
cells
treating
Prior art date
Application number
PCT/KR2022/016492
Other languages
English (en)
French (fr)
Inventor
이준행
이시은
비벡버마
푸뜨사오
홍설희
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to CN202280046109.1A priority Critical patent/CN117580852A/zh
Priority to US18/555,988 priority patent/US20240207380A1/en
Publication of WO2023075421A1 publication Critical patent/WO2023075421A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a novel peptide targeting dendritic cells in vivo, and a composition for treating cancer comprising the same. Specifically, it relates to a composition for treating or preventing cancer comprising a novel peptide targeting dendritic cells in vivo, a tumor antigen, and flagellin.
  • the novel peptide targeting dendritic cells in vivo, the tumor antigen, and flagellin of the present invention may be linked as one peptide or included as individual peptides.
  • Existing cancer treatment methods include methods to remove cancer cells as much as possible through surgery, radiation therapy, and chemotherapy using anticancer agents, and these can be used for cancer treatment relatively widely, but have side effects and are difficult to cure. There is currently no cure. In particular, in the case of metastatic cancer or recurrent cancer, most of them are inoperable and often have resistance to chemical treatments, so the development of new treatments for these cancer patients is urgently required.
  • Anticancer immunotherapy is a method of treating cancer by increasing immune activity against cancer cells using the characteristics of immune cells in the body or suppressing the way cancer cells evade from immune cell attack. , immune checkpoint inhibitors, therapeutic cancer vaccines, and therapeutic antibodies.
  • Therapeutic cancer vaccines are anti-cancer vaccines using intact tumor cells, tumor cell lysates or tumor antigens derived from cancer cell lines, and cancer cell-derived antigens or There is a DC-based cancer vaccine using autologous dendritic cells (DC) generated by exposing cancer lysates.
  • DC autologous dendritic cells
  • dendritic cell cancer vaccines can be used as a treatment that can prevent metastasis and recurrence after surgical removal of primary cancer, which will give it considerable competitiveness in the cancer treatment market.
  • Dendritic cells are antigen-presenting cells of the mammalian immune system, and have membranous or thorn-like twig-like projections. The primary function of dendritic cells is to process and present antigenic material to the T cells of the immune system. Therefore, dendritic cells are major antigen-marking cells that activate non-sensitized T lymphocytes and serve as messengers between the innate and adaptive immune systems. Until now, cancer treatment using the immune system has been demonstrated through many animal experiments, and the identification of tumor-specific antigens recognized by human T lymphocytes is facilitating the development of immunotherapy.
  • dendritic cells are differentiated from blood cells taken from a patient. That is, they are cultured and matured in vitro together with tumor antigen peptides, tumor lysates, apoptotic tumor cells, or heat shock proteins extracted from autologous tumors, and finally injected back into the patient.
  • dendritic cells when immature dendritic cells are used as a cell therapy, it rather activates cancer more, so there is a problem that sufficiently matured mature dendritic cells must be used, and a customized treatment tailored to the individual is expensive. Lifting is also a downside. In the latter case, stimulation of dendritic cells occurs after injection into the patient of peptides, proteins, irradiated tumor cells or other viruses containing antigenic peptides targeting dendritic cells. However, since the activation of dendritic cells affects the ability to effectively activate cytolytic T lymphocytes, the degree of dendritic cell activation is considered to be a tricky factor.
  • flagellin the structural unit protein constituting the filament of the flagellum is called flagellin, and flagellin is regularly combined to form a filament so that bacteria can move.
  • Flagellin is a substance that stimulates pattern recognition receptors and has been studied as a target for developing vaccine carrier proteins or vaccine adjuvants.
  • a fusion protein of antigen and flagellin has been demonstrated to be effective as an experimental vaccine against various infectious diseases including pneumonia, West Nile fever, malaria, tuberculosis, and bacterial periodontal disease. It has been reported to protect gastrointestinal tissue and affect the survival and growth of cancer cells.
  • flagellin a component of Vibrio sepsis, acts on Toll-like receptor 5 of host cells to induce a strong immunomodulatory effect, thereby making an excellent mucosal vaccine adjuvant. (adjuvant) proved to be effective.
  • the inventors of the present invention discovered novel peptides targeting dendritic cells in vivo through biopanning, and developed a recombinant integral polypeptide vaccine containing the novel peptides targeting dendritic cells, tumor antigen and flagellin. Thus, a composition having a more excellent effect in cancer treatment was completed.
  • Patent Document 1 Korean Patent Registration No. 10-0795839
  • Non-Patent Document 1 Lee SE, Kim SY, Jeong BC, Kim YR, Bae SJ, Ahn OS, et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect Immun. 2006;74(1):694-702.
  • An object of the present invention is to provide novel peptides that target dendritic cells in vivo.
  • An object of the present invention is to provide a novel peptide targeting dendritic cells in vivo, a peptide for treating or preventing cancer, including a tumor antigen and flagellin.
  • An object of the present invention is to provide a pharmaceutical composition for treating or preventing cancer containing a novel peptide targeting dendritic cells in vivo, a tumor antigen, and flagellin.
  • An object of the present invention is to provide a vaccine composition for treating or preventing cancer, which includes a novel peptide targeting dendritic cells in vivo, a tumor antigen, and flagellin.
  • the present invention provides a peptide for treating or preventing cancer that targets dendritic cells.
  • a polynucleotide comprising a nucleic acid sequence encoding the peptide is provided.
  • the peptide for treating or preventing cancer targeting dendritic cells may include an amino acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 11, and preferably, the peptide is SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, It may include any one amino acid sequence selected from the group consisting of SEQ ID NO: 9 and SEQ ID NO: 10. More preferably, it may include any one amino acid sequence selected from the group consisting of SEQ ID NO: 6, SEQ ID NO: 9, and SEQ ID NO: 10, and most preferably may include the amino acid sequence of SEQ ID NO: 6.
  • the dendritic cell-targeting peptide for cancer treatment or prevention may bind to dendritic cells in vivo and induce their activity.
  • the dendritic cell-targeting peptide for cancer treatment or prevention may further contain at least one selected from the group consisting of a tumor antigen and flagellin, and may contain four consecutive tumor antigens.
  • the tumor antigen may include the amino acid sequence of SEQ ID NO: 22, and the flagellin may include the amino acid sequence of SEQ ID NO: 23.
  • the peptide for treating or preventing cancer targeting the dendritic cells may include the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 22, and the amino acid sequence of SEQ ID NO: 23, preferably the amino acid sequence of SEQ ID NO: 25 can include
  • the dendritic cell-targeting peptide for treating or preventing cancer may induce long-term survival and may have an immune enhancing effect.
  • the present invention provides a pharmaceutical composition for treating or preventing cancer comprising a peptide for treating or preventing cancer that targets the dendritic cells.
  • the present invention provides a vaccine composition for treating or preventing cancer comprising a peptide for treating or preventing cancer that targets the dendritic cells.
  • the pharmaceutical composition for treating or preventing cancer including the peptide for treating or preventing cancer targeting the dendritic cells, or the vaccine composition may further include at least one selected from the group consisting of a tumor antigen and flagellin, and the tumor It may contain 4 antigens in a row.
  • a pharmaceutical composition or vaccine composition for treating or preventing cancer comprising the dendritic cell-targeting peptide for cancer treatment or prevention, or a vaccine composition, wherein the dendritic cell-targeting peptide, tumor antigen, and flagellin are linked as one peptide, or each peptide can be included with
  • composition comprising a novel peptide targeting dendritic cells in vivo, a tumor antigen, and flagellin of the present invention induces potent dendritic cell activation and immunostimulant effect, thereby increasing tumor antigen-specific anti-cancer immune response and excellent cancer suppression have an effect
  • FIG 1 shows an overall schematic of the present invention.
  • Figure 2 is a schematic diagram of the in vivo biopanning process in mice.
  • Figure 3 shows the concentration and frequency of phagemid particles according to rounds of in vivo biopanning in mice.
  • Figure 4 shows the sequences of peptides obtained following rounds of in vivo biopanning in mice.
  • Figure 5 shows six peptides selected after two rounds of in vivo biopanning in mice.
  • Figure 6 shows the results of measuring cellular uptake of the dendritic cell-targeting peptide of the present invention in bone marrow-derived dendritic cells (BMDC).
  • BMDC bone marrow-derived dendritic cells
  • Figure 7 shows the results of measuring cellular uptake of the dendritic cell-targeting peptides of the present invention in lymph node cells, spleen dendritic cells, and bone marrow-derived dendritic cells (BMDC).
  • BMDC bone marrow-derived dendritic cells
  • Figure 8 shows the localization of the DCpep6 peptide of the present invention in cervical lymph node (cLN) cells through confocal microscopy after administration of the peptide to the mouse nasal cavity.
  • cLN cervical lymph node
  • FIG. 9 is a schematic diagram of the peptide component of the present invention.
  • 11 and 12 show the tumor volume and size of mice according to single administration and mixed administration of E7 FL , E7 ⁇ NLS, and FlaB.
  • FIG. 13 shows the activity levels of NF- ⁇ B by TLR-5 stimulation of FlaB, EF, and DEF.
  • Figure 14 shows the results of measuring cellular uptake of EF and DEF in bone marrow-derived dendritic cells (BMDC) through flow cytometry.
  • BMDC bone marrow-derived dendritic cells
  • Figure 15 shows the location of EF and DEF in bone marrow-derived dendritic cells (BMDC) and Raw264.7 cells through confocal microscopy.
  • BMDC bone marrow-derived dendritic cells
  • Figure 16 shows the distribution in living lymph nodes over time after administration of EF and DEF.
  • FIG. 17 shows the results of measuring cellular uptake of EF and DEF in draining inguinal lymph node (iLN) cells.
  • BMDC bone marrow-derived dendritic cells
  • 21 and 22 show the results of measuring tetramer-positive cells selective for the E7-CTL epitope in peripheral blood CD8 + cells of mice following administration of E7 ⁇ NLS, EF, and DEF.
  • WT wild-type
  • TLR5-/- TLR5-deficient mice
  • NLRC4-/- mice mice following EF and DEF administration.
  • Figure 26 shows the division index of CD8 + T cells of wild-type (WT) and NLRC4 deficient (NLRC4-/-) mice according to EF and DEF administration.
  • the present invention provides a novel peptide targeting dendritic cells in vivo discovered through biopanning.
  • the novel peptide targeting dendritic cells in vivo has excellent ability to target dendritic cells isolated from spleen and lymph nodes and dendritic cells derived from various bone marrows, and thus can effectively activate dendritic cells in vivo.
  • the novel peptide targeting dendritic cells in vivo of the present invention may include an amino acid sequence of SEQ ID NO: 1 to SEQ ID NO: 11, preferably SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6 , It may be one comprising the amino acid sequences of SEQ ID NO: 9 and SEQ ID NO: 10. More preferably, it may include the amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 9, and SEQ ID NO: 10, and most preferably, it may include the amino acid sequence of SEQ ID NO: 6.
  • biopanning refers to various displays such as bacterial display including phage display or mRNA display, ribosome display, yeast display, and the like. It is a technology that selects peptides having affinity for a given target from a peptide library constructed by the technology.
  • the “dendritic cell (DC)” of the present invention interacts with the T cell receptor through the major histocompatibility complex (MHC)/peptide complex to regulate the activation and differentiation of T cells, thereby leading to an innate immune response and These are specialized antigen-presenting cells that play a central role in linking the adaptive immune response. It is known that dendritic cells are CD14 positive when derived from human peripheral circulating blood, and show positive CD11c and CD68 cell markers as they differentiate into dendritic cells.
  • MHC major histocompatibility complex
  • CD11c is one of the integrin CD18 family and forms a heterodimer in the form of CD11c/CD18, and is involved in phagocytosis as complement receptor 4.
  • CD11c in humans is known to be expressed mainly in the plasma membrane of monocytes, macrophages, natural killer cells, and most dendritic cells, but in mice It is expressed almost exclusively in dendritic cells and is known as the best marker for dendritic cells.
  • the present invention provides a peptide for treating or preventing cancer that targets dendritic cells.
  • a polynucleotide comprising a nucleic acid sequence encoding the peptide is provided.
  • the peptide may include an amino acid sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 11, and preferably the peptide is SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 9 and sequence It may include any one amino acid sequence selected from the group consisting of number 10. More preferably, it may include any one amino acid sequence selected from the group consisting of SEQ ID NO: 6, SEQ ID NO: 9, and SEQ ID NO: 10, and most preferably may include the amino acid sequence of SEQ ID NO: 6.
  • the peptide can bind to dendritic cells in vivo and induce their activity.
  • the dendritic cell-targeting peptide for treating or preventing cancer may further include at least one selected from the group consisting of a tumor antigen and flagellin.
  • the peptide may include the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 22, and the amino acid sequence of SEQ ID NO: 23.
  • the peptide may include four consecutive amino acid sequences of SEQ ID NO: 22, and may preferably include an amino acid sequence of SEQ ID NO: 25 (DCpep6-4xE7 ⁇ NLS-FlaB).
  • the amino acid sequence of SEQ ID NO: 22 represents a tumor antigen, and the tumor antigen is a tumor-specific antigen expressed only in tumor cells, and may be a protein by mutation, a tumor-specific oncogene, or a viral oncogene.
  • the tumor antigen may be E7NLS in which the N-terminal nuclear localization sequence (NLS) is deleted from HPV16 E7 (E7 FL ).
  • NLS N-terminal nuclear localization sequence
  • the amino acid sequence of SEQ ID NO: 23 represents flagellin B (FlaB) derived from Vibrio vunificus , and the flagellin is a major protein constituting the filament of bacterial flagellum, and the flagellar bacteria are infected.
  • an immune response can be induced in the infected host.
  • TLR5 Toll-like receptor 5
  • NF- ⁇ B a transcription factor
  • NAIP NLR family, apoptosis inhibitory protein
  • NLRC4 NLR containing a caspase activating and recruitment domain protein 4
  • NF- ⁇ B a transcription factor
  • the flagellin may be flagellin B (FlaB) derived from Vibrio vunificus , and may be prepared according to a method disclosed in Korean Patent Registration No. 10-0795839, which is described in these documents. Its entirety is incorporated herein by reference.
  • FeB flagellin B
  • the present invention provides a pharmaceutical composition for treating or preventing cancer comprising a peptide for treating or preventing cancer that targets dendritic cells in vivo.
  • the present invention provides a vaccine composition for treating or preventing cancer comprising a peptide for treating or preventing cancer that targets dendritic cells in vivo.
  • a pharmaceutical composition for treating or preventing cancer, or a vaccine composition comprising the dendritic cell-targeting peptide for treating or preventing cancer may further include at least one selected from the group consisting of a tumor antigen and flagellin.
  • a pharmaceutical composition or vaccine composition for treating or preventing cancer comprising the dendritic cell-targeting peptide for cancer treatment or prevention, or a vaccine composition, wherein the dendritic cell-targeting peptide, tumor antigen, and flagellin are linked as one peptide, or each peptide can be included with
  • the pharmaceutical composition or vaccine composition comprises a peptide comprising the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 22, and the amino acid sequence of SEQ ID NO: 23, or comprising the amino acid sequence of SEQ ID NO: 6
  • a peptide, a peptide having the amino acid sequence of SEQ ID NO: 22, and a peptide including the amino acid sequence of SEQ ID NO: 23 may be included, respectively.
  • the peptide may include four consecutive amino acid sequences of SEQ ID NO: 22, and may preferably include an amino acid sequence of SEQ ID NO: 25 (DCpep6-4xE7 ⁇ NLS-FlaB).
  • the pharmaceutical composition or vaccine composition of the present invention may induce an overall immune response in vivo and a specific immune response to a specific antigen, including antigen-specific and specific immunity-inducing substances.
  • the pharmaceutical composition or vaccine composition of the present invention may exhibit an antitumor effect.
  • the pharmaceutical composition or vaccine composition of the present invention may exhibit an immune enhancing effect.
  • the pharmaceutical composition or vaccine composition of the present invention can induce long-term survival in a subject receiving the composition.
  • the term “pharmaceutical composition” refers to a composition administered for a specific purpose.
  • the pharmaceutical composition of the present invention is a composition for treating or preventing cancer containing a peptide targeting dendritic cells in vivo, a tumor antigen, and flagellin.
  • the term "vaccine” refers to preventing infection or re-infection of a pathogen by inducing an immune response against the pathogen in an animal, including a human, as a host, reducing the severity of symptoms caused by the pathogen, or eliminating symptoms, or corresponding It is meant to include the substantial or complete elimination of a pathogen or a disease caused by that pathogen.
  • the term “vaccine” used in the present invention refers to reducing the severity of disease symptoms or eliminating symptoms associated with the antigen by modulating the immune response to the specific antigen in an animal, including human, as a host, or substantially or completely eliminating the disease. It means to include removal. Therefore, the "vaccine composition" of the present invention can be administered to animals, including humans, prophylactically before infection with the corresponding pathogen or therapeutically after infection with the corresponding pathogen.
  • treatment refers to all activities that improve or beneficially change the symptoms of a suspected or affected subject of a disease by administration of a composition
  • prevention inhibits or delays the onset of a disease by administration of a composition. means all actions.
  • dendritic cells not only can dendritic cells be effectively activated, but also tumor cell-specific immunity can be effectively induced, thereby significantly improved anticancer immunity can be induced.
  • mice For in vivo biopanning, 10 ⁇ l of the CPL3 peptide phagemid library (10 12 pfu/ml) was injected into each nostril of Balb/c mice. Library phages were injected into 3 mice. After 6 hours of in vivo panning, mice were euthanized and cervical lymph nodes (cLNs) harvested. The collected cLNs were centrifuged, washed three or more times with 0.2% PBST, and then washed once with 100 ⁇ l of 0.2M glycine-HCl buffer, pH 2.2. Then, cLNs were put in the same buffer and incubated at room temperature for 10 minutes, and then the glycine buffer was replaced with cold 1x PBS.
  • CPL3 peptide phagemid library 10 12 pfu/ml
  • Library phages were injected into 3 mice. After 6 hours of in vivo panning, mice were euthanized and cervical lymph nodes (cL
  • the cLN's capsule was gently broken and the cell suspension passed through a 40 ⁇ m cell strainer (Falcon, 352340). The resulting single cell suspension was centrifuged and treated with glycine buffer for 5 minutes, then the cells were washed with PBS and suspended in MACS buffer.
  • Cell suspensions were labeled with CD11c + MicroBeads MACS (Miltenyi Biotec, 130-052-001), and DCs were purified by applying a magnetic field according to the manufacturer's recommendations. After the purified DCs were added to glycine buffer for another 5 minutes, the cells were washed three or more times using PBST (1 x PBS + 0.05% Tween20). Then, in order to elute intracellular phages, they were suspended in 100 ⁇ l glycine buffer and disrupted by 5 freeze-thaw cycles using high-speed centrifugation (13000 rpm, 10 minutes). Cell destruction was confirmed by trypan blue staining.
  • the glycine buffer was neutralized by adding an equal volume of 1 x PBS (pH 7.5). Finally, the preparation was centrifuged, and the supernatant containing the eluted phage was collected and stored at -20 °C. Phage titres of preparations were determined by standard protocols. Individual bacterial clones containing phagemids were cultured in Luria Broth containing ampicillin (200 ⁇ g/ml) until an OD 600 value of 0.5. Equal volumes of all 45 bacterial clones were mixed together, and phages were eluted using M13KO7 helper phage for 13 hours before amplification in E. coli TG1.
  • Phage in the cell-free supernatant were recovered by PEG/NaCl precipitation (4 °C/o/n).
  • 2 rounds of panning were performed using the phages amplified in round 1, and the DNA sequences of the phages obtained in round 1 were determined by dideoxy sequencing.
  • the femurs and tibias of C57BL/6 mice were flushed to separate bone marrow cells, and red blood cells (RBCs) were removed by ACK lysis (Gibco, A10492-01). After centrifugation, the cells were filtered through a 70 ⁇ m filter and suspended in RPMI 1640 medium supplemented with 10% heat-inactivated FBS, 100 units/ml penicillin and 100 ⁇ g/ml streptomycin.
  • BMDCs bone marrow-derived DCs
  • DCs dendritic cells
  • the peptide was synthesized using 9-fluorenylmethyoxycarbonyl chemistry, purified to a purity of 95% or more using high-pressure liquid chromatography, and biotinylated on the side chain (Anygen Inc., Korea). Peptides were dissolved at a concentration of 0.5 mg/ml in an appropriate solvent.
  • dendritic cell CD11c +
  • cervical lymph node (cLN) cells, spleen dendritic cells and bone marrow-derived dendritic cells (BMDC) were treated with the six peptides in RPMI 1640 medium and cultured for 2 hours.
  • DCpep 1, 2 and 5 As shown in FIG. 6, as a result of measuring the cellular uptake of the peptide in bone marrow-derived dendritic cells, the targeting ability of DCpep 1, 2 and 5 was similar to that of the negative control group, whereas DCpep 3, 4 and 6 showed CD11c It was shown to efficiently target + -BMDC. In particular, DCpep 6 peptide showed a remarkably high value.
  • DCpep 3, 4, and 6 exhibiting excellent efficiency showed an increased pattern in all of cervical lymph node cells, spleen DCs, and bone marrow-derived DCs.
  • DCpep6 peptide SEQ ID NO: 6
  • SEQ ID NO: 6 showed a remarkably high value.
  • DCpep 3 DCpep 4
  • DCpep 6 peptide SEQ ID NO: 6
  • Example 2 In order to confirm the ability of the DCpep 6 peptide selected in Example 2 to target dendritic cells in vivo, the following procedure was performed.
  • mice were intranasally administered with appropriate concentrations of the peptides in a total volume of 10 ⁇ l/nostril.
  • a scrambled peptide previously shown to be non-specific for dendritic cells was used as a negative control.
  • mice were sacrificed and cervical lymph nodes (cLNs) were harvested.
  • the cLN's capsule was gently torn to prepare a single cell suspension. After gently washing with 1 x PBS, cells were stained with anti-mouse CD11c + APC-conjugated antibody (eBioscience, Clone: N418, 170114-82) or Streptaviden-AF488 and analyzed using FACS.
  • the DCpep 6 peptide of the present invention was clearly localized in the cytoplasm of CD11c + cells in the cervical lymph node. Therefore, the ability of the DCpep 6 peptide (SEQ ID NO: 6) of the present invention discovered through biopanning to target dendritic cells (CD11c + ) was confirmed.
  • the E7NLS peptide an HPV16 E7 (E7 FL ) mutant in which the N-terminal nuclear localization sequence (NLS) was deleted to exclude the possibility of tumor formation by HPV16 E7
  • E7 FL an HPV16 E7
  • NLS N-terminal nuclear localization sequence
  • a pET30a+ plasmid Novagen, 69909 - Merck Millipore
  • the insert DNA fragment was amplified by PCR using a codon-optimized DNA template and primers of SEQ ID NOs: 14 and 15.
  • FlaB from Vibrio vunificus was described by Lee SE, et al.
  • a bacterial flagellin, Vibrio vulnificus FlaB has a strong mucosal adjuvant activity to induce protective immunity.
  • the synthesized 4xE7 ⁇ NLS DNA fragment ( NdeI -E7 ⁇ NLS- EcoRI -E7 ⁇ NLS- SalI -E7 ⁇ NLS- SalI -E7 ⁇ NLS- HindIII ) was firstly digested with specific restriction enzymes (RE) of NdeI and HindIII . cloned into a pET30a+ plasmid with an overhang recognized by Next, DNA fragments of FlaB were generated through PCR using primers of SEQ ID NOs: 18 and 19 having HindIII and XhoI overhangs, respectively. The DNA fragment of FlaB was digested with HindIII and XhoI restriction enzymes and fused to the C-terminus of 4xE7 ⁇ NLS to generate pET30a+::4xE7 ⁇ NLS::FlaB.
  • RE specific restriction enzymes
  • the DNA fragment of the synthesized DCpep6-E7 ⁇ NLS ( NdeI -DCpep6-E7 ⁇ NLS- EcoRI ) was amplified by PCR using primers of SEQ ID NOs: 16 and 20 with NdeI and EcoRI overhangs, respectively, and pET30a+::3xE7 ⁇ NLS::FlaB was cloned into the N-terminus of pET30a+::DCpep6::4xE7 ⁇ NLS::FlaB.
  • the DNA nucleotide sequence of the expression vector was confirmed by dideoxy-chain termination sequencing using the Macrogen Online Sequencing Order System (http://dna.macrogen.com/kor/).
  • the resulting plasmid was transformed into competent E. coli BL21 cells. Protein expression was induced by treatment with 0.2 mM isopropyl- ⁇ -D-thiogalactoside (IPTG) and incubation at 20 °C for 18 hours, and the cells were pelleted by centrifugation and stored at -80 °C.
  • IPTG isopropyl- ⁇ -D-thiogalactoside
  • Bacterial cell pellets were lysed with 50 ml of lysis buffer (pH 8; 50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% Triton X-100, 0.1% Tween and 20 ⁇ M phenylmethylsulfonyl fluoride). After centrifugation at 18,000 rpm for 30 minutes, the cell-free supernatant was loaded onto a column containing Ni-NTA agarose beads (Qiagen, Hilden, Germany) according to the manufacturer's instructions.
  • lysis buffer pH 8; 50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% Triton X-100, 0.1% Tween and 20 ⁇ M phenylmethylsulfonyl fluoride. After centrifugation at 18,000 rpm for 30 minutes, the cell-free supernatant was loaded onto a column containing Ni-NTA agarose beads (Q
  • E7 FL E7 ⁇ NLS
  • FlaB F
  • 4xE7 ⁇ NLS::FlaB EF
  • DCpep6::4xE7 ⁇ NLS::FlaB DCpep6::4xE7 ⁇ NLS::FlaB
  • TC-1 cells were cultured at 37 °C, 5% CO 2 in 10% heat-inactivated FBS, 100 units/ml penicillin and 100 ⁇ g/ml penicillin. It was cultured in RPMI 1640 medium supplemented with ml streptomycin. Tumors were established by subcutaneous injection of 5 x 10 4 TC-1 cells in 100 ⁇ l PBS into the right central flank of each mouse.
  • tumor-bearing mice were randomly divided, anesthetized, and treated with 200 ⁇ l PBS, 4 ⁇ g FlaB (F), 10 ⁇ g E7 FL (E FL ), 10 ⁇ g E7 FL + 4 ⁇ g FlaB ( E FL +F), 8 ⁇ g E7 ⁇ NLS and 8 ⁇ g E7 ⁇ NLS + 4 ⁇ g FlaB (E+F) were administered 3 times at 5-day intervals around the tumor.
  • E7 ⁇ NLS (E) and E7 FL (E FL ) induced tumor suppression at a similar level, and flagellin (F) was reinforced with E7 ⁇ NLS + FlaB ( E+F) and E7 FL +FlaB (E FL +F) appeared to induce better tumor suppression.
  • flagellin (F) administration alone did not inhibit tumor growth.
  • the E7 ⁇ NLS peptide of the present invention is an optimal tumor antigen, and that flagellin (FlaB) can enhance antigen-mediated tumor suppression.
  • 4xE7 ⁇ NLS::FlaB (EF) and DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention do not interfere with TLR5 binding activity and stabilize the TLR5 binding motif. Furthermore, it can be seen that DCpep6::4xE7 ⁇ NLS::FlaB (DEF) shows a more excellent effect compared to 4xE7 ⁇ NLS::FlaB (EF).
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention stably maintains its biological activity even though structurally or functionally different peptides are included.
  • Bone marrow-derived dendritic cells prepared in the same manner as in Example 2 were treated with 4xE7 ⁇ NLS::FlaB (EF) and DCpep6::4xE7 ⁇ NLS::FlaB (DEF) at each concentration in RMPI 1640 medium and cultured for 2 hours. .
  • Cells treated with only PBS were used as a negative control. After incubation, cells were washed twice with cold 1x PBS containing 3% FBS and stained with anti-mouse CD11c + antibody (eBioscience, Clone: N418, 25-0114-82) for 1 hour at 4 °C. , and fixed with 4% paraformaldehyde (T&I, BPP-9004) for 10 min at room temperature.
  • BMDC or Raw264.7 cells were treated with 20 ⁇ g/ml of 4xE7 ⁇ NLS::FlaB (EF) and DCpep6::4xE7 ⁇ NLS::FlaB (DEF) in RMPI 1640 medium and cultured for 2 hours. After incubation, the cells were harvested, washed, fixed with 100% methanol for 15 minutes at room temperature, and stained with anti-mouse CD11c + APC-conjugated antibody and DAPI for nuclei staining at room temperature for 1 hour. After washing twice with cold 1 x PBS, the localization of dendritic cells (CD11c + ) was observed using a confocal microscope. The results are shown in FIG. 15 .
  • DCpep6::4xE7 ⁇ NLS::FlaB is 4xE7 ⁇ NLS::FlaB (EF) exhibited little, whereas cell uptake in a dependent manner.
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) was located in the cytoplasm of CD11c + cells and accumulated in a punctuated pattern.
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention has excellent dendritic cell (CD11c + ) targeting ability by including the dendritic cell targeting peptide (DCpep6).
  • PBS, 50 ⁇ g EF-FNR675 and 50 ⁇ g DEF-FNR675 were administered subcutaneously to the right side of the groin of C57BL/6 mice.
  • Draining inguinal lymph nodes (iLNs) were isolated and determined for fluorescence imaging at 1, 6, 12 and 24 hours after administration and are shown in FIG. 16 .
  • draining inguinal lymph node (iLN) cells were prepared 6 hours after administration and the dendritic cell (CD11c + ) population was analyzed using FACS, as shown in FIG. 17 .
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention when administered in vivo, not only efficiently reached the draining lymph node through the lymphatic circulation, but also could interact with dendritic cells (CD11c + ) in vivo. .
  • DEF administered in vivo is removed from the draining lymph node within 24 hours of administration.
  • the integrated vaccine of the present invention was administered to tumor-bearing mice, and the survival rate and tumor volume of the mice were measured.
  • an HPV16 E7 CTL peptide (amino acids 49-57: RAHYNIVTF) known as a cytotoxic T lymphocyte (CTL) inducing peptide was administered.
  • CTL cytotoxic T lymphocyte
  • the group administered with E7 ⁇ NLS + FlaB (E+F) and DCpep6-4xE7 ⁇ NLS-FlaB (DEF) showed longer survival than the group administered with E7 ⁇ NLS (E), especially DCpep6-4xE7 ⁇ NLS- Administration of FlaB (DEF) showed the longest survival.
  • survival was significantly longer than that of the group administered with HPV16 E7 CTL peptide + FlaB (E7 Pep+F).
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention not only has excellent in vivo antitumor efficacy, but also maintains long-term survival.
  • the peptide of the present invention comprising a peptide (DCpep6) targeting dendritic cells in vivo, a tumor antigen (E7 ⁇ NLS), and flagellin (FlaB) has better antitumor efficacy than a peptide containing only a tumor antigen and flagellin. confirmed that
  • Bone marrow-derived dendritic cells prepared in the same manner as in Example 2 were treated with PBS, 0.5 ⁇ g/ml 4xE7 ⁇ NLS::FlaB (EF) and 0.5 ⁇ g/ml DCpep6::4xE7 ⁇ NLS::FlaB (DEF) for 24 hours. After that, they were stained on ice with fluorescently labeled antibodies and analyzed by flow cytometry.
  • CD80 and CD86 expression on the surface of BMDC was measured, and DCpep6::4xE7 ⁇ NLS::FlaB (DEF) enhanced the expression of CD80 and CD86, whereas 4xE7 ⁇ NLS::FlaB (EF) enhanced CD80 and CD80 and CD86 expression. It was found that it did not induce a statistically significant change in the expression of CD86.
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention activates antigen presenting cells (APCs).
  • the peptides of the present invention were administered to tumor-bearing mice and tumor-free mice, and the peripheral blood of the mice was collected.
  • RBC-free blood using RBC lysis buffer was stained with a tetramer antibody (PE-conjugated HPV16 H-2Db-RAHYNIVTF, TB-5008-1, MBL) and CD8 antibody and analyzed by flow cytometry.
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention effectively induces an antigen-specific T cell immune response.
  • CTL Cytotoxic T lymphocyte
  • a single cell suspension was prepared from the spleen (SPL) or tumor lymph node (TDLN) of the mouse by administering the peptide of the present invention to tumor-bearing mice and tumor-free mice in the same manner as in Example 5.
  • 1 x 10 6 SPL or 2.5 x 10 5 TDLN cells were placed in a 96-well Filtration ELISpot plate (Merc, HAMAS4510) and stimulated with 1 ⁇ g/ml E7 CTL peptide (amino acids 49-57: RAHYNIVTF). Cells stimulated with 10 ng/ml concanavalin A were used as a positive control.
  • IFN was performed using Mouse IFN- ⁇ ELISpot Set (BD Bioscience, 551083) according to the manufacturer's instructions. - ⁇ producing cells were detected. IFN- ⁇ producing cells (SPOT) were analyzed using CTL-ImmunoSpot Analyzer and ImmunoSpot Professional Software version 5.0 (Cellular Technology, Shaker Heights, OH, USA).
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention effectively induces a specific immune response by the CTL peptide.
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention effectively induces an antigen-specific immune response in vivo, and that an excellent anti-tumor immune response can be induced through the induction of such immunoregulatory activity. Able to know.
  • TC-1 cells were transplanted into the right middle flank of groups of wild-type (WT), TLR5-deficient (TLR5 -/- ) and NLRC4-deficient (NLRC4 -/- ) mice, and the tumor size reached approximately 3-5 mm in diameter.
  • 200 ⁇ l of PBS alone, 20 ⁇ g of 4xE7 ⁇ NLS::FlaB (EF), and 20 ⁇ g of DCpep6::4xE7 ⁇ NLS::FlaB (DEF) were administered around the tumor three times at 5-day intervals. Tumor volume and survival of tumor-bearing mice were measured and shown in FIG. 25 . Additionally, prior experiments confirmed that TLR5 or NLRC4 deficiency (knockout) did not affect TC-1 tumor growth.
  • Bone marrow-derived dendritic cells prepared in the same manner as in Example 2 were activated with 4xE7 ⁇ NLS::FlaB (EF) and DCpep6::4xE7 ⁇ NLS::FlaB (DEF) at 1 ⁇ g/mL for 24 hours.
  • CD8 + splenocytes from TC-1 tumor-bearing mice were prepared using the MagniSortTM Mouse CD8 T Cells Enrichment kit (Invitrogen, 8804-6822) according to the manufacturer's instructions and labeled with 5 ⁇ M CFSE.
  • BMDC stimulated with EF or DEF were treated with 10% fetal bovine serum (Hyclone, Logan, UT) and 1% penicillin/streptomycin (Life Tech-nologies, Grand Island, NY, USA) and 50 mM 2-mercaptoethanol (Sigma , 516732) were co-cultured with CFSE-stained CD8 + cells at a ratio of 1:5 for 3 days in RPMI 1640 medium.
  • CD8 + T cell proliferation was assessed by CFSE dilution using flow cytometry.
  • DCpep6::4xE7 ⁇ NLS::FlaB (DEF) of the present invention activates CD8 + T cells, which is influenced by the NLRC4 inflammasome signaling pathway.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물에 관한 것이다. 구체적으로, 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 암 치료 또는 예방용 조성물에 관한 것이다. 또한, 본 발명의 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린은 하나의 펩타이드로 연결되거나, 각각의 펩타이드로 포함될 수 있다.

Description

수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물
본 발명은 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물에 관한 것이다. 구체적으로, 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 암 치료 또는 예방용 조성물에 관한 것이다. 또한, 본 발명의 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린은 하나의 펩타이드로 연결되거나, 각각의 펩타이드로 포함될 수 있다.
기존의 암 치료 방법으로는 수술, 방사선 요법 및 항암제를 이용한 화학 요법 등으로 최대한 암 세포를 제거하는 방법이 있으며, 이들은 비교적 광범위하게 암 치료에 사용할 수 있으나, 부작용이 따르고 또한 완치가 어려워 암의 근본적인 치료법은 되지 못하는 실정이다. 특히 전이 암이나 재발 암의 경우 대부분 수술이 불가능하며 화학적 치료제에 저항성을 가지는 경우가 많아 이러한 암환자들을 위한 새로운 치료제의 개발이 절실히 요구되는 실정이다.
이러한 종래 암 치료법의 한계를 극복하기 위해 최근 항암 면역 치료 연구가 활발히 진행되고 있으며 최근 국내 외적으로 임상에서의 사용 허가가 이루어지고 있다. 항암 면역 치료는 체내 면역 세포의 특성들을 이용하여 암 세포에 대한 면역 활성을 높이거나 암 세포가 면역 세포의 공격으로부터 회피하는 방법을 억제시킴으로써 암을 치료하는 방법으로, 면역세포요법 (Immune cell therapy), 면역관문억제제 (Immune checkpoint inhibitor), 치료용 암 백신 (Therapeutic cancer vaccine), 항체 치료제 (Therapeutic antibodies) 등이 있다.
치료용 암 백신은 자생적으로 생긴 암 조직 (intact tumour cell), 암 세포주에서 유래한 암 용해물 (tumor cell lysate)이나 종양 항원 (tumor antigen)을 이용한 항암 백신 (cancer vaccine)과 암 세포 유래 항원이나 암 용해물을 노출시켜 생성시킨 자가 유래 수지상 세포 (dendritic cell, DC)를 이용한 DC 암 백신 (DC-based cancer vaccine)이 있다.
최근에 연구 개발되고 있는 수지상 세포를 이용한 암 치료제는 기존의 어떠한 치료제보다 환자 지향적이며, 기억면역에 의해 장기적으로 효능을 볼 수 있어 동일 암에 대한 전이나 재발 방지에 매우 효과적일 뿐만 아니라 안전하다. 따라서 새로운 항암 면역 치료법으로 기대되어 다양한 종류의 암에 대한 치료용 백신으로 개발되고 있다. 특히 수지상세포 암 백신은 원발암을 수술로 제거한 후 전이 및 재발을 방지할 수 있는 치료제로 사용할 수 있어 암 치료시장에서 상당한 경쟁력을 갖게 될 것이다.
수지상 세포 (Dendritic Cell, DC)는 포유류 면역계의 항원 제시 세포이며, 막성 혹은 가시와 같은 나뭇가지 모양의 돌기를 가지고 있다. 수지상 세포의 주요 기능은 항원 물질을 처리하여 면역계의 T 세포에 제시하는 것이다. 따라서 수지상 세포는 비감작 T 림프구를 활성화시키는 주요한 항원표지세포로, 내재면역 체계와 적응 면역 체계 사이의 메신저 역할을 한다. 현재까지 면역시스템을 이용한 암 치료가 많은 동물실험을 통해 증명되었으며, 인간의 T 림프구에 의해 인식되는 종양 특이적 항원의 동정이 면역요법의 발달을 촉진하고 있다.
수지상 세포를 표적으로 하는 여러 항암 백신 전략들이 연구되어 왔다. 일부는 수지상 세포를 시험관 내 (in vitro)에서 조작하는 것을 기반으로 하며, 다른 것들은 체내 (in vivo)에서 수지상 세포를 자극하는 것을 기반으로 한다. 전자의 경우, 수지상 세포는 환자로부터 채취된 혈액 세포로부터 분화된다. 즉, 체외에서 종양 항원 펩타이드, 종양 용해물 (lysates), 사멸 종양세포 또는 자가 종양에서 추출된 열충격 단백질과 함께 배양 및 성숙되고, 최종적으로는 환자에 다시 주입된다. 그러나 최근 연구 결과에 따르면, 미성숙 수지상 세포를 세포 치료제로 사용하였을 경우 오히려 암을 더 활성화시키는 결과를 나타내어 충분히 성숙된 성숙 수지상 세포를 이용하여야 한다는 문제점이 있고, 개인에 맞추어진 맞춤형 치료제로서 많은 비용이 드는 것 또한 단점이다. 후자의 경우, 수지상 세포의 자극은 펩타이드, 단백질, 방사선 조사 종양세포 또는 수지상 세포를 타겟으로 하는 항원성 펩타이드를 함유하는 다른 바이러스들을 환자 내로 주입한 이후에 이루어진다. 그러나 수지상 세포의 활성화는 세포용해성 T 림프구를 효과적으로 활성화하는 능력이 영향을 미치기 때문에 수지상 세포 활성화의 정도는 까다로운 요소인 것으로 판단된다.
한편, 편모의 필라멘트를 구성하는 구성 단위 단백질을 플라젤린 (flagellin)이라 하며, 플라젤린이 규칙적으로 조합되어 필라멘트를 형성하여 박테리아가 움직일 수 있도록 기능한다. 이러한 플라젤린은 패턴인식 수용체를 자극하는 물질로서 백신 담체 단백질 또는 백신 보조제 개발의 대상으로 연구되어왔다. 항원과 플라젤린의 융합 단백질은 폐렴, 웨스트 나일 발열, 말라리아, 결핵, 및 세균성 치주질환을 비롯한 다양한 감염성 질병에 대한 실험용 백신으로 효과적인 것이 입증되었고, 플라젤린에 의한 TLR5 활성화는 조혈 세포와 방사선으로 인한 위장 조직을 보호하고 암 세포의 생존과 성장에 영향을 미치는 것으로 보고된 바 있다. 또한, 한국 등록특허 제10-0795839호에서, 본 발명자들은 패혈증 비브리오균의 구성성분인 플라젤린 (FlaB)이 숙주세포의 Toll-like receptor 5에 작용하여 강력한 면역 조절 효과를 유도함으로써 우수한 점막 백신 보조제 (adjuvant) 효능이 있는 것을 증명하였다.
따라서, 본 발명의 발명자들은 생체 내 수지상 세포를 표적하는 신규한 펩타이드를 바이오패닝을 통해 발굴하였고, 상기 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 재조합 일체형 폴리펩타이드 백신을 개발하여, 암 치료에 보다 우수한 효과를 갖는 조성물을 완성하였다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 등록특허 제10-0795839호
[비특허문헌]
(비특허문헌 1) Lee SE, Kim SY, Jeong BC, Kim YR, Bae SJ, Ahn OS, et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect Immun. 2006;74(1):694-702.
본 발명은 생체 내 수지상 세포를 표적하는 신규한 펩타이드를 제공하는 것을 목적으로 한다.
본 발명은 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 암 치료 또는 예방용 펩타이드를 제공하는 것을 목적으로 한다.
본 발명은 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 암 치료 또는 예방용 약학 조성물을 제공하는 것을 목적으로 한다.
본 발명은 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 암 치료 또는 예방용 백신 조성물을 제공하는 것을 목적으로 한다.
본 발명은 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 제공한다.
또한, 상기 펩타이드를 코딩하는 핵산 서열을 포함하는 폴리뉴클레오타이드를 제공한다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드는 서열번호 1 내지 서열번호 11로 이루어진 군에서 선택된 아미노산 서열을 포함할 수 있고, 바람직하게는 펩타이드는 서열번호 3, 서열번호 4, 서열번호 6, 서열번호 9 및 서열번호 10으로 이루어진 군에서 선택된 어느 하나의 아미노산 서열을 포함할 수 있다. 더욱 바람직하게는 서열번호 6, 서열번호 9 및 서열번호 10으로 이루어진 군에서 선택된 어느 하나의 아미노산 서열을 포함할 수 있고, 가장 바람직하게는 서열번호 6의 아미노산 서열을 포함할 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드는 생체 내 수지상 세포와 결합하여 이의 활성을 유도하는 것일 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드는 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함하는 것일 수 있고, 상기 종양 항원을 4개 연속하여 포함하는 것일 수 있다.
상기 종양 항원은 서열번호 22의 아미노산 서열을 포함할 수 있고, 상기 플라젤린은 서열번호 23의 아미노산 서열을 포함할 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드는 서열번호 6의 아미노산 서열, 서열번호 22의 아미노산 서열, 및 서열번호 23의 아미노산 서열을 포함할 수 있고, 바람직하게는 서열번호 25의 아미노산 서열을 포함할 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드는 장기 생존을 유도하는 것일 수 있고, 면역 증강 효과를 갖는 것일 수 있다.
또한, 본 발명은 상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물을 제공한다.
또한, 본 발명은 상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 백신 조성물을 제공한다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물, 또는 백신 조성물은 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함하는 것일 수 있고, 상기 종양 항원을 4개 연속하여 포함하는 것일 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물, 또는 백신 조성물은 수지상 세포를 표적하는 펩타이드, 종양 항원 및 플라젤린이 하나의 펩타이드로 연결되거나, 각각의 펩타이드로 포함할 수 있다.
본 발명의 생체 내 수지상 세포를 표적하는 신규한 펩타이드, 종양 항원 및 플라젤린을 포함하는 조성물은 강력한 수지상 세포의 활성화 및 면역증강제 효능을 유도하여 종양 항원-특이 항암 면역 반응을 증가시키고, 우수한 암억제 효과를 갖는다.
도 1은 본 발명의 전반적인 도식을 나타낸다.
도 2는 마우스에서의 생체 내 바이오패닝 과정의 개략도이다.
도 3은 마우스에서 생체 내 바이오패닝의 라운드에 따른 파지미드 입자의 농축 및 빈도를 나타낸다.
도 4는 마우스에서 생체 내 바이오패닝의 라운드에 따라 얻어진 펩타이드의 서열을 나타낸다.
도 5는 마우스에서 두 번의 생체 내 바이오패닝 후 선택된 6개의 펩타이드를 나타낸다.
도 6은 골수 유래 수지상 세포 (BMDC)에서 본 발명의 수지상 세포 표적 펩타이드의 세포 흡수를 측정한 결과를 나타낸다.
도 7은 림프절 세포, 비장 수지상 세포 및 골수 유래 수지상 세포 (BMDC)에서 본 발명의 수지상 세포 표적 펩타이드의 세포 흡수를 측정한 결과를 나타낸다.
도 8은 마우스 비강으로 펩타이드를 투여한 후 공초점 현미경 관찰을 통한 경부 림프절 (cLN) 세포에서 본 발명의 DCpep6 펩타이드의 위치를 나타낸다.
도 9는 본 발명의 펩타이드 성분의 개략도이다.
도 10은 FlaB, E7ΔNLS, EF 및 DEF의 SDS-PAGE 및 웨스턴 블롯 결과를 나타낸다.
도 11 및 12는 E7FL, E7ΔNLS, FlaB의 단독 투여 및 혼합 투여에 따른 마우스의 종양 부피 및 크기를 나타낸다.
도 13은 FlaB, EF 및 DEF의 TLR-5 자극에 의한 NF-κB의 활성 수준을 나타낸다.
도 14는 골수 유래 수지상 세포 (BMDC)에서 EF 및 DEF의 세포 흡수를 유세포 분석을 통해 측정한 결과를 나타낸다.
도 15는 공초점 현미경 관찰을 통한 골수 유래 수지상 세포 (BMDC) 및 Raw264.7 세포에서 EF 및 DEF의 위치를 나타낸다.
도 16은 EF 및 DEF 투여 후 시간에 따른 생체 림프절 내 분포를 나타낸다.
도 17은 배액 사타구니 림프절 (iLN) 세포에서 EF 및 DEF의 세포 흡수를 측정한 결과를 나타낸다.
도 18 및 19는 E7 Pep+F, E7ΔNLS, EF 및 DEF 투여에 따른 마우스의 생존율 및 종양 부피를 나타낸다.
도 20은 EF 및 DEF에 따른 골수 유래 수지상 세포 (BMDC)의 CD80 및 CD86 발현 정도를 나타낸다.
도 21 및 22는 E7ΔNLS, EF 및 DEF 투여에 따른 마우스의 말초 혈액 CD8+ 세포에서 E7-CTL 에피토프에 선택적인 테트라머 양성 세포를 측정한 결과를 나타낸다.
도 23 및 24는 E7ΔNLS, EF 및 DEF 투여에 따른 마우스의 비장 또는 종양 림프절에서 IFN-γ 분비 세포를 측정한 결과를 나타낸다.
도 25는 EF 및 DEF 투여에 따른 야생형 (WT), TLR5 결핍 (TLR5-/-) 및 NLRC4 결핍 (NLRC4-/-) 마우스의 생존율 및 종양 부피를 나타낸다.
도 26은 EF 및 DEF 투여에 따른 야생형 (WT) 및 NLRC4 결핍 (NLRC4-/-) 마우스의 CD8+ T 세포의 분열 지수를 나타낸다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시태양 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 형태로 구현될 수 있으며 여기에서 설명하는 실시태양 및 실시예에 한정되지 않는다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명은 바이오패닝 (biopanning)을 통해 발굴한 생체 내 수지상 세포를 표적하는 신규한 펩타이드를 제공한다.
상기 생체 내 수지상 세포를 표적하는 신규한 펩타이드는 비장 및 림프절에서 분리된 수지상 세포, 및 다양한 골수에서 유도된 수지상 세포를 표적하는 능력이 우수하여 생체 내에서 수지상 세포를 효과적으로 활성화시킬 수 있다.
일 실시태양에서, 본 발명의 생체 내 수지상 세포를 표적하는 신규한 펩타이드는 서열번호 1 내지 서열번호 11의 아미노산 서열을 포함하는 것일 수 있고, 바람직하게는 서열번호 3, 서열번호 4, 서열번호 6, 서열번호 9 및 서열번호 10의 아미노산 서열을 포함하는 것일 수 있다. 더욱 바람직하게는 서열번호 6, 서열번호 9 및 서열번호 10의 아미노산 서열을 포함하는 것일 수 있고, 가장 바람직하게는 서열번호 6의 아미노산 서열을 포함하는 것일 수 있다.
본 발명에서 “바이오패닝 (biopanning)”은 파지 디스플레이 (phage display)를 비롯한 박테리아 디스플레이 (bacterial display) 또는 mRNA 디스플레이 (mRNA display), 리보솜 디스플레이 (ribosome display), 효모 디스플레이 (yeast display) 등과 같은 다양한 디스플레이 기술에 의해 구성된 펩타이드 라이브러리 (peptide library)에서부터 주어진 타겟에 친화성을 가지는 펩타이드를 선별해내는 기술이다.
본 발명의 “수지상 세포 (dendritic cell, DC)”는 주조직적합복합체 (major histocompatibility complex, MHC)/peptide 복합체를 통해 T 세포 수용체와 상호 작용하여 T 세포의 활성화 및 분화를 조절함으로써 내재면역반응과 적응면역반응을 연결하는데 중심적인 역할을 하는 전문적인 항원제시세포이다. 수지상 세포는 사람 말초 순환 혈액에서 유래될 경우 CD14가 양성이며, 수지상 세포로 분화됨에 따라 CD11c 및 CD68 세포표시인자가 양성을 나타내는 것으로 알려져 있다.
본 발명에서 “CD11c”는 integrin CD18 family 중 하나로 CD11c/CD18의 형태로 이질이합체 (heterodimer) 형태를 이루고 있으며, 보체 리셉터4 (complement receptor 4)로 포식작용에 관여한다. 사람의 CD11c는 주로 단핵구 (monocytes)의 원형질막 (plasma membrane), 대식세포 (macrophage), 자연살해세포 (natural killer cell), 및 대부분의 수지상 세포 (denritic cell)에서 발현되는 것으로 알려져 있지만, 마우스의 경우 거의 수지상세포에서만 발현되어 수지상세포의 가장 좋은 표지자 (marker)로 알려져 있다.
본 발명은 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 제공한다.
또한, 상기 펩타이드를 코딩하는 핵산 서열을 포함하는 폴리뉴클레오타이드를 제공한다.
일 실시태양에서, 상기 펩타이드는 서열번호 1 내지 서열번호 11로 이루어진 군에서 선택된 아미노산 서열을 포함할 수 있고, 바람직하게는 펩타이드는 서열번호 3, 서열번호 4, 서열번호 6, 서열번호 9 및 서열번호 10으로 이루어진 군에서 선택된 어느 하나의 아미노산 서열을 포함할 수 있다. 더욱 바람직하게는 서열번호 6, 서열번호 9 및 서열번호 10으로 이루어진 군에서 선택된 어느 하나의 아미노산 서열을 포함할 수 있고, 가장 바람직하게는 서열번호 6의 아미노산 서열을 포함할 수 있다.
상기 펩타이드는 생체 내 수지상 세포와 결합하여 이의 활성을 유도할 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드는 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함할 수 있다.
일 실시태양에서, 상기 펩타이드는 서열번호 6의 아미노산 서열, 서열번호 22의 아미노산 서열, 및 서열번호 23의 아미노산 서열을 포함할 수 있다.
일 실시태양에서, 상기 펩타이드는 서열번호 22의 아미노산 서열을 4개 연속하여 포함할 수 있으며, 바람직하게 서열번호 25의 아미노산 서열 (DCpep6-4xE7ΔNLS-FlaB)을 포함할 수 있다.
상기 서열번호 22의 아미노산 서열은 종양 항원을 나타내고, 상기 종양 항원은 종양 세포에만 발현하는 종양 특이적 항원으로, 돌연변이에 의한 단백질, 종양 특이적 암유전자 또는 바이러스성 암유전자일 수 있다.
일 실시태양에서, 상기 종양 항원은 HPV16 E7 (E7FL)에서 N-말단 핵위치 서열 (nuclear localization sequence; NLS)이 결실된 E7NLS일 수 있다.
상기 서열번호 23의 아미노산 서열은 패혈증 비브리오균 (Vibrio vunificus)에서 유래된 플라젤린 B (FlaB)를 나타내고, 상기 플라젤린 (flagellin)은 박테리아 편모의 필라멘트를 구성하는 주요 단백질로, 편모성 세균이 감염된 경우에 감염된 숙주 내에서 면역 반응을 유도할 수 있다. 구체적으로 인체의 세포막 표면에 존재하는 톨-유사수용체 5 (TLR5; Toll like receptor 5)는 상기 플라젤린과 상호작용을 통하여 세포 내 신호 전달을 유발하고, 이를 통하여 전사인자인 NF-κB의 발현이 증가되어 선천성 면역신호 활성화를 유도할 뿐만 아니라, 획득 면역 반응을 조절할 수 있다. 또한, 인체의 세포내에 존재하는 NAIP (NLR family, apoptosis inhibitory protein)는 상기 플라젤린과 상호작용을 통하여 NLRC4 (NLR containing a caspase activating and recruitment domain protein 4) 인플라마솜 (inflammasome) 활성화를 유발하고, 이를 통하여 전사인자인 NF-κB의 발현이 증가되어 선천성 면역신호 활성화를 유도할 뿐만 아니라, 획득 면역 반응을 조절할 수 있다.
일 실시태양에서, 상기 플라젤린은 패혈증 비브리오균 (Vibrio vunificus)에서 유래된 플라젤린 B (FlaB)일 수 있으며, 한국 등록특허 제10-0795839호에 개시된 방법에 따라 제조될 수 있고, 이들 문헌은 그 전문이 본 발명에 참조로 인용된다.
본 발명은 생체 내 수지상 세포를 표적하는 암 치료용 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물을 제공한다.
또한, 본 발명은 생체 내 수지상 세포를 표적하는 암 치료용 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 백신 조성물을 제공한다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물, 또는 백신 조성물은 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함할 수 있다.
상기 수지상 세포를 표적하는 암 치료 또는 예방용 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물, 또는 백신 조성물은 수지상 세포를 표적하는 펩타이드, 종양 항원 및 플라젤린이 하나의 펩타이드로 연결되거나, 각각의 펩타이드로 포함할 수 있다.
일 실시태양에서, 상기 약학 조성물 또는 백신 조성물은 서열번호 6의 아미노산 서열, 서열번호 22의 아미노산 서열, 및 서열번호 23의 아미노산 서열을 포함하는 펩타이드를 포함하거나, 서열번호 6의 아미노산 서열을 포함하는 펩타이드, 서열번호 22의 아미노산 서열을 갖는 펩타이드, 및 서열번호 23의 아미노산 서열을 포함하는 펩타이드를 각각 포함할 수 있다.
일 실시태양에서, 상기 펩타이드는 서열번호 22의 아미노산 서열을 4개 연속하여 포함할 수 있으며, 바람직하게 서열번호 25의 아미노산 서열 (DCpep6-4xE7ΔNLS-FlaB)을 포함할 수 있다.
본 발명의 약학 조성물 또는 백신 조성물은 항원 비특이적 및 특이적 면역 유도 물질을 포함하여, 생체 내 전반적인 면역 반응 및 특정 항원에 대한 특이적인 면역 반응을 유도할 수 있다.
본 발명의 약학 조성물 또는 백신 조성물은 항종양 효과를 나타낼 수 있다.
본 발명의 약학 조성물 또는 백신 조성물은 면역 증강 효과를 나타낼 수 있다.
본 발명의 약학 조성물 또는 백신 조성물은 상기 조성물을 투여받은 대상에서 장기 생존을 유도할 수 있다.
본 발명에 사용된 용어 "약학 조성물"은 특정한 목적을 위해 투여되는 조성물을 의미한다. 본 발명의 목적상, 본 발명의 약학 조성물은 생체 내 수지상 세포를 표적하는 펩타이드, 종양 항원 및 플라젤린을 포함하는 암 치료 또는 예방용 조성물이다.
본 발명에 사용된 용어 "백신"은 숙주인 인간을 포함한 동물에게서 해당 병원체에 대한 면역 반응을 유도함으로써 해당 병원체의 감염 또는 재감염의 예방, 해당 병원체에 의한 증상의 중증도 감소 또는 증상의 제거, 또는 해당 병원체나 그 병원체에 의한 질환의 실질적 또는 완전한 제거를 포함하는 의미이다. 또한, 본 발명에 사용된 용어 "백신"은 숙주인 인간을 포함한 동물에게서 해당 특정 항원에 대한 면역 반응을 조절함으로써 해당 항원과 연관된 질환 증상의 중증도 감소 또는 증상의 제거, 또는 해당 질환의 실질적 또는 완전한 제거를 포함하는 의미이다. 따라서 본 발명의 "백신 조성물"은 해당 병원체의 감염 전에 예방적으로, 또는 해당 병원체의 감염 후에 치료적으로 인간을 포함한 동물에게 투여될 수 있다.
본원에 사용된 용어 "치료"는 조성물의 투여에 의해 질환의 의심 및 발병 개체의 증상이 호전되거나 이롭게 변경되는 모든 행위를 의미하고, "예방"은 조성물의 투여에 의해 질환의 발병을 억제 또는 지연시키는 모든 행위를 의미한다.
본 발명에 의하면 수지상 세포를 효과적으로 활성화시킬 수 있을 뿐만 아니라 종양 세포 특이적 면역을 효과적으로 유도할 수 있어 현저하게 향상된 항암 면역을 유도할 수 있다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원 발명의 범위를 한정하고자 하는 것은 아니다.
[실시예 1]
수지상 세포 표적 펩타이드를 발굴하기 위한 생체 내 바이오패닝 (biopanning)
도 2에 나타낸 바와 같이, 본 발명의 생체 내 수지상 세포 (DC)를 표적하는 펩타이드를 발굴하기 위해 하기와 같이 수행하였다.
생체 내 바이오패닝을 위해 10 μl의 CPL3 펩타이드 파지미드 라이브러리 (1012 pfu/ml)를 Balb/c 마우스의 각 콧구멍에 주입하였다. 라이브러리 파지는 3마리의 마우스에 주입하였다. 생체 내 패닝 6시간 후, 마우스를 안락사시키고 경부 림프절 (cLN)을 채취하였다. 채취한 cLN을 원심 분리하고 0.2% PBST로 3회 이상 세척한 후 100 μl의 0.2M glycine-HCl buffer, pH 2.2로 1회 세척하였다. 그 후 cLN을 동일한 버퍼에 넣고 상온에서 10분 동안 배양한 후 글리신 버퍼 (glycine buffer)를 차가운 1 x PBS로 교체하였다. cLN의 캡슐을 부드럽게 부수고, 세포 현탁액을 40 μm 세포 여과기 (Falcon, 352340)에 통과시켰다. 생성된 단일 세포 현탁액을 원심 분리하고 글리신 버퍼로 5분 동안 처리한 후 세포를 PBS로 세척하고 MACS 버퍼에 현탁시켰다.
세포 현탁액은 CD11c+ MicroBeads MACS (Miltenyi Biotec, 130-052-001)로 표지시켰고, DC는 제조업체의 권장 사항에 따라 자기장을 적용하여 정제하였다. 정제된 DC를 글리신 버퍼에 5분 더 넣은 후, 세포를 PBST (1 x PBS + 0.05% Tween20)를 이용하여 3회 이상 세척하였다. 그 후 세포 내 파지를 용출하기 위해 100 μl 글리신 버퍼에 현탁하고 고속 원심 분리 (13000 rpm, 10분)을 이용하여 5번의 동결 해동 사이클로 파괴하였다. 세포 파괴는 트리판블루 염색으로 확인하였다. 사이클의 끝에서 동일한 부피의 1 x PBS (pH 7.5)를 첨가하여 글리신 버퍼를 중화하였다. 최종적으로 조제물을 원심 분리하고 용출된 파지를 포함하는 상층액을 수거하여 -20 ℃에서 보관하였다. 조제물의 파지 역가는 표준 프로토콜에 의해 결정되었다. 파지미드를 포함하는 개별 박테리아 클론은 암피실린 (200 μg/ml)을 포함하는 Luria Broth에서 OD600 값이 0.5가 될 때까지 배양하였다. 모든 45개의 박테리아 클론의 동일한 볼륨을 함께 혼합하고, 13시간 동안 M13KO7 helper phage를 사용하여 파지를 용출시킨 후 대장균 TG1에서 증폭시켰다. 세포가 없는 상층액의 파지는 PEG/NaCl 침전에 의해 회수되었다 (4 ℃/o/n). 상기 (1 라운드)와 유사한 방식으로, 1 라운드에서 증폭된 파지를 사용하여 2 라운드의 패닝을 수행하였고, 라운드에 따라 얻어진 파지의 DNA 서열은 디데옥시 염기서열법 (dideoxy sequencing)을 통해 결정되었다.
상기 두 번의 생체 내 바이오패닝 후, 라운드에 따른 파지 회수율을 계산하여 도 3에 나타내었고, 라운드에 따라 얻어진 펩타이드의 서열을 도 4에 나타내었다.
도 3 및 4에 나타낸 바와 같이, 두 번의 생체 내 바이오패닝 후 파지의 회수율은 증가하였고, 펩타이드 서열의 다양성이 감소하였고 반복적으로 나타난 펩타이드 서열을 확인하였다.
또한, 상기 2 라운드에서 시퀀싱된 50개의 펩타이드 중에서, 수지상 세포 (DC) 표적화를 테스트하기 위해 다중 결정된 6개의 펩타이드를 선택하여, 하기 표 1에 나타내었다.
펩타이드 아미노산 서열 서열번호
1 ARPGVSMRIEAHGG 서열번호 1
2 ARQYNGIFHPVRS 서열번호 2
3 SPACLDLGLVPWRI 서열번호 3
4 VDLYPCYTFHSRVV 서열번호 4
5 HFAWRTILWGTTHH 서열번호 5
6 RFFCLGPLGFTKVD 서열번호 6
수지상 세포 표적 능력을 확인하기 위해 펩타이드의 시각화가 필요하고, 시각화를 위해서는 비오틴 (biotin)을 태깅 (tagging)해야한다. 또한, 상기 비오틴 태깅을 위해서는 라이신 (Lys; K) 잔기가 필요하나 상기 펩타이드 1 내지 5는 아미노산 서열 중 라이신을 포함하지 않기 때문에, 아미노산 특성상 라이신과 유사한 전기화학적 특성을 갖는 아르기닌 (Arg; R)을 라이신으로 치환하였다. 따라서 최종 결정된 6개의 펩타이드 (DCpep 1 내지 6)를 하기 표 2 및 도 5에 나타내었다.
펩타이드 아미노산 서열 서열번호
DCpep1 ARPGVSMKIEAHGG 서열번호 7
DCpep2 ARQYNGIFHPVKS 서열번호 8
DCpep3 SPACLDLGLVPWKI 서열번호 9
DCpep4 VDLYPCYTFHSKVV 서열번호 10
DCpep5 HFAWKTILWGTTHH 서열번호 11
DCpep6 RFFCLGPLGFTKVD 서열번호 6
[실시예 2]
수지상 세포 표적 펩타이드의 표적 효율 확인
상기 실시예 1에서 결정된 6개의 펩타이드의 수지상 세포 (DC) 표적 효율을 확인하기 위해 하기와 같이 수행하였다.
C57BL/6 마우스의 대퇴골 및 경골을 플러싱하여 골수 세포를 분리한 후 적혈구 (RBC)를 ACK lysis (Gibco, A10492-01)에 의해 제거하였다. 세포를 원심 분리한 후 70 μm 필터를 통해 걸러내고, 10 % 열-불활성화 FBS, 100 units/ml 페니실린 및 100 μg/ml 스트렙토마이신이 첨가된 RPMI 1640 배지에 현탁하였다. 세포를 GM-CSF (10 ng/mL; R&D systems, 415-ML-010) 및 IL-4 (10 ng/mL; R&D systems, 415-ML-010)를 포함하는 RPMI 1640 배양 배지에 현탁하고, 세포 배양 접시에 접종하여 37℃ 5% CO2에서 배양하였다. 배양 배지는 2일 마다 새로 갈아주었다. 7-8일에 바닥에 약하게 붙어있는 수지상 세포 (DC)를 부드러운 파이펫팅으로 수집하여 골수 유래 수지상 세포 (BMDC)를 준비하였다. 비장 수지상 세포는 제조업체 지시에 따라 CD11c+ MicroBeads MACS (Miltenyi Biotec, 130-052-001)에 의해 준비되었다.
펩타이드는 9-fluorenylmethyoxycarbonyl chemistry를 사용하여 합성하였고, 고압 액체 크로마토그래피를 사용하여 순도 95% 이상으로 정제하였으며, 측쇄에 비오틴화 시켰다 (한국, Anygen Inc.). 펩타이드는 적절한 용매에 0.5 mg/ml의 농도로 용해시켰다. 합성된 펩타이드의 수지상 세포 (CD11c+) 표적화를 테스트하기 위해, 경부 림프절 (cLN) 세포, 비장 수지상 세포 및 골수 유래 수지상 세포 (BMDC)를 RPMI 1640 배지에서 상기 6개의 펩타이드를 처리하여 2시간 동안 배양하였다. 배양한 후, 세포를 채취하여 세척하고, 항-마우스 CD11c+ APC-접합 항체 (eBioscience, Clone: N418, 170114-82) 또는 Streptaviden-AF488로 염색하였다. FACS를 이용하여 수지상 세포 (CD11c+) 집단을 분석하였고, 그 결과를 도 6 및 7에 나타내었다.
도 6에 나타난 바와 같이, 골수 유래 수지상 세포에서 펩타이드의 세포 흡수를 측정한 결과, DCpep 1, 2 및 5의 표적 능력은 음성대조군의 표적 능력과 유사하게 나타난 반면, DCpep 3, 4 및 6은 CD11c+-BMDC를 효율적으로 표적화한 것으로 나타났다. 특히, DCpep 6 펩타이드가 현저하게 높은 값을 나타내었다.
또한, 도 7에 나타난 바와 같이, 상기 우수한 효율을 나타낸 3개의 펩타이드 (DCpep 3, 4 및 6)는 경부 림프절 세포, 비장 수지상 세포 및 골수 유래 수지상 세포 모두에서 증가된 양상을 나타내었다. 특히, DCpep6 펩타이드 (서열번호 6)가 현저하게 높은 값을 나타내었다.
따라서, 바이오패닝을 통해 발굴한 본 발명의 생체 내 수지상 세포 표적 펩타이드 중 DCpep 3, DCpep 4 및 DCpep 6 펩타이드가 우수한 표적 효율을 나타내는 것을 확인하였고, 특히 DCpep 6 펩타이드 (서열번호 6)가 가장 우수한 표적 효율을 갖는 것을 알 수 있다. 또한, 림프절 및 비장에서 분리된 수지상 세포, 및 골수에서 유도된 수지상 세포 모두에 표적하는 것을 알 수 있다.
[실시예 3]
수지상 세포 표적 펩타이드의 표적 능력 확인
상기 실시예 2에서 선택된 DCpep 6 펩타이드의 생체 내 수지상 세포에 대한 표적 능력을 확인하기 위해 하기와 같이 수행하였다.
BALB/c 마우스에 10 μl/nostril의 총 부피에서 적절한 농도의 펩타이드를 비강으로 투여하였다. 이전에 수지상 세포에 비특이적인 것으로 나타난 스크램블된 펩타이드를 음성대조군으로 사용하였다. 접종 6.5시간 후, 마우스를 희생시키고, 경부 림프절 (cLN)을 채취하였다. cLN의 캡슐을 부드럽게 찢어 단일 세포 현탁액을 준비하였다. 1 x PBS로 부드럽게 세척한 후, 세포를 항-마우스 CD11c+ APC-접합 항체 (eBioscience, Clone: N418, 170114-82) 또는 Streptaviden-AF488로 염색하고 FACS를 이용하여 분석하였다.
도 8에 나타낸 바와 같이, 음성대조군과 비교하여 본 발명의 DCpep 6 펩타이드는 경부 림프절에서 CD11c+ 세포의 세포질에 명확하게 국한되는 것으로 나타났다. 따라서, 바이오패닝을 통해 발굴한 본 발명의 DCpep 6 펩타이드 (서열번호 6)의 수지상 세포 (CD11c+) 표적 능력을 확인하였다.
[실시예 4]
펩타이드의 제조
하기 표 3 및 도 9에 나타낸 바와 같이, HPV16 E7에 의한 종양 형성의 가능성을 배제하기 위한 N-말단 핵위치 서열 (nuclear localization sequence; NLS)이 결실된 HPV16 E7 (E7FL) 변이체인 E7NLS 펩타이드를 생산하기 위하여, 절단된 E7에 해당하는 DNA 단편을 포함하는 pET30a+ 플라스미드 (Novagen, 69909 - Merck Millipore)를 구축하였다. 삽입 DNA 단편은 코돈-최적화된 DNA 주형과 서열번호 14 및 15의 프라이머를 이용하여 PCR로 증폭하였다.
Vibrio vunificus 유래 FlaB는 Lee SE, et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect Immun. 2006;74(1):694-702에 개시된 방법에 따라 생산되었다.
4xE7ΔNLS-FlaB (EF)의 펩타이드를 생산하기 위하여, 먼저 합성된 4xE7ΔNLS DNA 단편 (NdeI-E7ΔNLS-EcoRI-E7ΔNLS-SalI-E7ΔNLS-SalI-E7ΔNLS-HindIII)을 NdeI HindIII의 특정 제한 효소 (RE)에 의해 인식되는 오버행을 갖는 pET30a+ 플라스미드로 복제하였다. 다음으로, FlaB의 DNA 단편은 각각 HindIII XhoI 오버행을 갖는 서열번호 18 및 19의 프라이머를 이용하여 PCR을 통해 생성하였다. 상기 FlaB의 DNA 단편은 HindIII XhoI 제한 효소에 의해 분해되고, 4xE7ΔNLS의 C-말단에 융합하여 pET30a+::4xE7ΔNLS::FlaB를 생성하였다.
DCpep6-4xE7ΔNLS-FlaB (DEF)의 펩타이드를 생성하기 위하여, 3xE7ΔNLS::FlaB의 DNA 단편을 EcoRI-XhoI 제한 효소를 통해 pET30a+::4xE7ΔNLS::FlaB로부터 추출하고 pET30a+ 플라스미드로 클로닝하여 pET30a+::3xE7ΔNLS::FlaB를 생성하였다. 다음으로, 합성된 DCpep6-E7ΔNLS (NdeI-DCpep6-E7ΔNLS-EcoRI)의 DNA 단편을 각각 NdeIEcoRI 오버행을 갖는 서열번호 16 및 20의 프라이머를 이용하여 PCR로 증폭하였고, pET30a+::3xE7ΔNLS::FlaB의 N-말단으로 클로닝하여 pET30a+::DCpep6::4xE7ΔNLS::FlaB을 생성하였다.
발현 벡터의 DNA 염기 서열은 Macrogen Online Sequencing Order System (http://dna. macrogen.com/kor/)을 통해 디데옥시-사슬 종결 염기서열법 (dideoxy-chain termination sequencing)으로 확인하였다. 생성된 플라스미드를 적격 대장균 BL21 세포로 형질 전환시켰다. 단백질 발현은 0.2 mM isopropyl-β-D-thiogalactoside (IPTG)를 처리하여 20 ℃에서 18시간 동안 배양하여 유도하고, 세포는 원심분리로 펠릿화하여 -80 ℃에 보관하였다. 박테리아 세포 펠릿은 50 ml의 용해 버퍼 (pH 8; 50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.1% Triton X-100, 0.1% Tween and 20 μM phenylmethylsulfonyl fluoride)로 용해시켰다. 18,000 rpm에서 30분 동안 원심 분리한 후, 제조업체의 지침에 따라 무세포 상층액을 Ni-NTA agarose beads (Qiagen, Hilden, Germany)가 포함된 컬럼에 로딩하였다.
재조합 펩타이드의 순도는 SDS-PAGE 및 BALB/c 마우스에서 생성된 항-E7 또는 항-FlaB 항체를 사용한 웨스턴 블롯을 통해 확인하였고, 그 결과를 도 10에 나타내었다. 지질다당류 (LPS) 오염은 TritonX-114 (Sigma-Aldrich, St. Louis, MO)를 이용하여 제거하였으며, 남은 TritonX-114의 잔여물은 1 ml의 단백질에 대해 0.3 g의 Bio-beadsTM-2와 함께 배양하여 제조업체의 지침에 따라 Bio-Beads™ SM-2 (Bio-Rad Laboratories, Inc., Hercules, CA)를 이용하여 제거하였다. 잔류 LPS 함량은 gel-clotting Endosafe LAL kit (Charles River, Charleston, SC)를 사용하여 결정하였다. 단백질 제제의 LPS 수준은 FDA 지침 (마우스당 0.15 EU/30 g 미만) 이하로 유지되었다.
프라이머 염기 서열 (5'→3') 서열번호
E7 full length (E7FL) E7-F (NdeI) GGGAATTCCATATGCATGGTGACACGCCCAC 서열번호 12
E7-R (XhoI) CCGCTCGAGTGGTTTCTGGGAGCATAT 서열번호 13
E7ΔNLS(E) E7ΔNLS-F (NdeI) GGGAATTCCATATGATCGATGGGCCGGCCGGT 서열번호 14
E7ΔNLS-R (XhoI) CCGCTCGAGTGGTTTCTGGGAGCATAT 서열번호 15
4xE7ΔNLS::FlaB (EF) E7ΔNLS-F (NdeI) GGGAATTCCATATGATCGATGGGCCGGCCGGT 서열번호 14
E7ΔNLS-F (EcoRI) CCGGAATTCAATTGGATCGATGTACGCTA 서열번호 16
E7ΔNLS-R (HindIII) CCCAAGCTTTGGTTTCTGGGAGCATAT 서열번호 17
FlaB-F (HindIII) CCCAAGCTTATGGCAGTGAATGTAAATAC 서열번호 18
FlaB-R (XhoI) CCGCTCGAGGCCTAGTAGACTTAGCGCTG 서열번호 19
DCpep6::4xE7ΔNLS::FlaB (DEF) DCpep6-F (NdeI) GGGAATTCCATATGCGCTTCTTCTGTTTGGGTCCA 서열번호 20
E7ΔNLS-F (EcoRI) CCGGAATTCAATTGGATCGATGTACGCTA 서열번호 16
E7ΔNLS-R (HindIII) CCCAAGCTTTGGTTTCTGGGAGCATAT 서열번호 17
FlaB-F (HindIII) CCCAAGCTTATGGCAGTGAATGTAAATAC 서열번호 18
FlaB-R (XhoI) CCGCTCGAGGCCTAGTAGACTTAGCGCTG 서열번호 19
상기 방법을 통해 제조된 E7FL, E7ΔNLS (E), FlaB (F), 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)의 펩타이드 서열을 하기 표 4에 나타내었다.
아미노산 서열 서열번호
E7FL MHGDTPTLHEYMLDLQPETTDLYCYEQLNDSSEEEDEIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTVDIRTLEDLLMGTLGIVCPICSQKPLEHHHHHH 서열번호 21
E7ΔNLS (E) MIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPLEHHHHHH 서열번호 22
FlaB (F) MAVNVNTNVAAMTAQRYLNNANSAQQTSMERLSSGFKINSAKDDAAGLQISNRLNVQSRGLDVAVRNANDGISIAQTAEGAMNETTNILQRMRDLSLQSANGSNSKSERVAIQEEVTALNDELNRIAETTSFGGNKLLNGTYGTKAMQIGADNGEAVMLSLKDMRSDNVMMGGVSYQAEEGKDKNWNVAAGDNDLTIALTDSFGNEQEIEINAKAGDDIEELATYINGQTDLVKASVGEGGKLQIFAGNNKVQGEIAFSGSLAGELGLGEGKNVTVDTIDVTTVQGAQESVAIVDAALKYVDSHRAELGAFQNRFNHAISNLDNINENVNASKSRIKDTDFAKETTQLTKTQILSQASSSILAQAKQAPNSALSLLG 서열번호 23
4xE7ΔNLS::FlaB (EF) MIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPEFIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPVDIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPVDIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPKLMAVNVNTNVAAMTAQRYLNNANSAQQTSMERLSSGFKINSAKDDAAGLQISNRLNVQSRGLDVAVRNANDGISIAQTAEGAMNETTNILQRMRDLSLQSANGSNSKSERVAIQEEVTALNDELNRIAETTSFGGNKLLNGTYGTKAMQIGADNGEAVMLSLKDMRSDNVMMGGVSYQAEEGKDKNWNVAAGDNDLTIALTDSFGNEQEIEINAKAGDDIEELATYINGQTDLVKASVGEGGKLQIFAGNNKVQGEIAFSGSLAGELGLGEGKNVTVDTIDVTTVQGAQESVAIVDAALKYVDSHRAELGAFQNRFNHAISNLDNINENVNASKSRIKDTDFAKETTQLTKTQILSQASSSILAQAKQAPNSALSLLGLEHHHHHH 서열번호 24
DCpep6::4xE7ΔNLS::FlaB (DEF) MRFFCLGPLGFTKVDIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPEFIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPVDIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPVDIDGPAGQAEPDRAHYNIVTFCCKCDSTLRLCVQSTHVDIRTLEDLLMGTLGIVCPICSQKPKLMAVNVNTNVAAMTAQRYLNNANSAQQTSMERLSSGFKINSAKDDAAGLQISNRLNVQSRGLDVAVRNANDGISIAQTAEGAMNETTNILQRMRDLSLQSANGSNSKSERVAIQEEVTALNDELNRIAETTSFGGNKLLNGTYGTKAMQIGADNGEAVMLSLKDMRSDNVMMGGVSYQAEEGKDKNWNVAAGDNDLTIALTDSFGNEQEIEINAKAGDDIEELATYINGQTDLVKASVGEGGKLQIFAGNNKVQGEIAFSGSLAGELGLGEGKNVTVDTIDVTTVQGAQESVAIVDAALKYVDSHRAELGAFQNRFNHAISNLDNINENVNASKSRIKDTDFAKETTQLTKTQILSQASSSILAQAKQAPNSALSLLGLEHHHHHH 서열번호 25
[실시예 5]
E7ΔNLS의 종양 항원 효능 평가
7-8주된 암컷 SPF C57BL/6 마우스는 ORIENT (경기도 성남시)에서 구입하였고, TC-1 세포는 37 ℃, 5 % CO2에서 10 % 열-불활성화 FBS, 100 units/ml 페니실린 및 100 μg/ml 스트렙토마이신이 첨가된 RPMI 1640 배지에서 배양하였다. 종양은 각 마우스의 오른쪽 중앙 옆구리에 100 μl PBS에 5 x 104 TC-1 세포를 피하 주사하여 확립하였다. 종양 직경이 3-5 mm에 도달하면 종양이 있는 마우스를 무작위로 나누고 마취한 후 200 μl PBS, 4 μg FlaB (F), 10 μg E7FL (EFL), 10 μg E7FL + 4 μg FlaB (EFL+F), 8 μg E7ΔNLS 및 8 μg E7ΔNLS + 4 μg FlaB (E+F)를 종양 주변에 5일 간격으로 3번 투여하였다. 종양 크기는 3일 간격으로 측정하였고, 종양 부피는 종양 부피 (V) = (종양 길이) x (종양 폭) x (종양 높이) /2 로 계산하였다.
도 11 및 12에 나타낸 바와 같이, 항종양 활성을 측정한 결과, E7ΔNLS (E) 및 E7FL (EFL)은 유사한 수준으로 종양 억제를 유도하였고, 플라젤린 (F)이 보강된 E7ΔNLS+FlaB (E+F) 및 E7FL+FlaB (EFL+F)는 보다 우수하게 종양 억제를 유도한 것으로 나타났다. 반면, 플라젤린 (F) 투여만으로는 종양의 성장을 억제하지 못한 것으로 나타났다.
따라서, 본 발명의 E7ΔNLS 펩타이드는 최적의 종양 항원인 것을 확인하였고, 그뿐만 아니라 플라젤린 (FlaB)이 항원 매개 종양 억제를 향상시킬 수 있는 것을 확인하였다.
[실시예 6]
펩타이드의 TLR5 활성 능력 평가
HEK-BlueTM hTLR5 세포 (InvivoGen, hκb-htlr-5) 및 HEK-BlueTM 검출 (InvivoGen, hb-det2) 분석 시스템을 사용하여 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)의 TLR5 의존적 NF-κB 자극 활성을 측정하였다. 또한, EC50은 광범위한 단백질 농도 (AAT Bioquest 웹사이트, 0.0375 nM ~ 19.29 nM)에서 각 단백질 농도에 대해 3중 OD 620 nm 값을 사용하여 계산하였다.
도 13에 나타낸 바와 같이, NF-κB의 활성 수준을 측정한 결과, 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)는 용량 의존적으로 활성이 증가하는 것으로 나타나 TLR5 자극 활성을 유도하는 것을 확인하였다. 또한, 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)의 EC50은 각각 0.38 nM 및 0.32 nM로 FlaB의 EC50 (0.73 nM)보다 월등하게 낮은 것으로 나타났으며, 이를 통해 본 발명의 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)가 TLR5 결합 활성을 방해하지 않고 TLR5 결합 모티프를 안정화시키는 것을 알 수 있다. 더욱이 DCpep6::4xE7ΔNLS::FlaB (DEF)가 4xE7ΔNLS::FlaB (EF)와 비교하여 더욱 우수한 효과를 나타내는 것을 알 수 있다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 구조적 또는 기능적으로 다른 펩타이드를 포함함에도 불구하고 생물학적 활성을 안정적으로 유지하는 것을 확인하였다.
[실시예 7]
펩타이드의 수지상 세포 (CD11c+ ) 표적 능력 평가
상기 실시예 2와 동일한 방법으로 준비한 골수 유래 수지상 세포 (BMDC)를 RMPI 1640 배지에서 각 농도의 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)로 처리하여 2시간 동안 배양하였다. PBS만 처리한 세포를 음성대조군으로 사용하였다. 배양한 후, 세포를 3 %의 FBS가 포함된 차가운 1 x PBS로 두 번 세척하고 항-마우스 CD11c+ 항체 (eBioscience, Clone: N418, 25-0114-82)로 4 ℃에서 1시간 동안 염색하고, 실온에서 10분 동안 4 % 파라포름알데하이드 (T&I, BPP-9004)로 고정시켰다. 제조업체 지침 (Invitrogen, 00-8333-56)에 따라 세포를 투과 키트를 이용하여 투과한 후 항-FlaB 항체를 이용하여 염색하고, FACS를 이용하여 수지상 세포 (CD11c+) 집단을 분석하였다. 그 결과를 도 14에 나타내었다.
또한, BMDC 또는 Raw264.7 세포를 RMPI 1640 배지에서 20 μg/ml의 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)로 처리하여 2시간 동안 배양하였다. 배양한 후, 세포를 채취하여 세척하고 실온에서 15분 동안 100 % 메탄올로 고정시킨 후 항-마우스 CD11c+ APC-접합 항체와 핵을 염색하는 DAPI를 넣고 실온에서 1시간 동안 염색하였다. 차가운 1 x PBS로 두 번 세척한 후 공초점 현미경을 이용하여 수지상 세포 (CD11c+) 내 위치를 관찰하였다. 그 결과를 도 15에 나타내었다.
도 14에 나타낸 바와 같이, 골수 유래 수지상 세포에서 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)의 세포 흡수를 측정한 결과, DCpep6::4xE7ΔNLS::FlaB (DEF)는 농도 의존적 방식으로 세포 흡수를 나타낸 반면, 4xE7ΔNLS::FlaB (EF)는 거의 나타나지 않았다.
또한, 도 15에 나타낸 바와 같이, DCpep6::4xE7ΔNLS::FlaB (DEF)가 CD11c+ 세포의 세포질에 위치하고, 구두점 패턴 (punctuated pattern)으로 축적되는 것을 확인하였다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 수지상 세포 표적 펩타이드 (DCpep6)를 포함함으로써 우수한 수지상 세포 (CD11c+) 표적 능력을 갖는 것을 알 수 있다.
[실시예 8]
펩타이드의 생체 내 분포 확인
정제된 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)를 4 ℃에서 FNR675-NHS ester (BioActs, Korea)와 혼합하고, 어두운 곳에서 밤새 교반하면서 유지하였다. 표지된 EF-FNR675 또는 DEF-FNR675를 원심 필터 (10 kDa 컷오프) (Amicon Ultra® -4, UFC801024)를 사용하여 비접합 염료로부터 분리한 후 PBS를 이용하여 세척하였다. 그 다음, UV-Vis spectrophotometer (UV-2700, Shimadzu, Japan)를 사용하여 FNR675-NHS ester의 검량선을 통해 접합된 단백질의 양을 결정하였다.
C57BL/6 마우스의 사타구니 우측에 PBS, 50 μg EF-FNR675 및 50 μg DEF-FNR675를 피하 투여하였다. 투여 후 1, 6, 12 및 24시간에 배액 사타구니 림프절 (iLN)을 분리하고 형광 이미징을 결정하여 도 16에 나타내었다. 또한, 투여 6시간 후의 배액 사타구니 림프절 (iLN) 세포를 준비하고 FACS를 이용하여 수지상 세포 (CD11c+) 집단을 분석하여 도 17에 나타내었다.
도 16에 나타낸 바와 같이, DEF-FNR675 (DEF)를 투여한 경우 투여 6시간 후에 형광 신호가 검출되었고 투여 12시간 후에 더 강한 형광 신호가 검출되었으며, 투여 24시간 후에 형광 신호가 감소한 것으로 나타났다. 반면, EF-FNR675 (EF)는 DEF-FNR675 (DEF)와 비교하여 보다 낮은 형광 신호를 나타내었다.
또한, 도 17에 나타낸 바와 같이, DEF-FNR675 (DEF)를 투여한 경우 보다 높은 형광 신호를 나타내어 투여 6시간 후에 CD11c+ 세포에서 검출되는 것으로 나타났다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 생체 내로 투여되면 림프 순환을 통해 배수 림프절에 효율적으로 도달할 뿐만 아니라, 생체 내 수지상 세포 (CD11c+)와 상호 작용할 수 있다는 것을 확인하였다. 또한, 생체 내로 투여된 DEF는 투여 24시간 이내에 배수 림프절에서 제거되는 것을 알 수 있다.
[실시예 9]
펩타이드의 항종양 효능 평가
상기 실시예 5와 동일한 방법으로 종양 보유 마우스에 본 발명의 일체형 백신을 투여하여 마우스의 생존율 및 종양 부피를 측정하였다. 양성 대조군으로는 세포독성 T 림프구 (CTL) 유도 펩타이드로 알려진 HPV16 E7 CTL 펩타이드 (아미노산 49-57: RAHYNIVTF)를 투여하였다.
도 18에 나타낸 바와 같이, E7ΔNLS + FlaB (E+F) 및 DCpep6-4xE7ΔNLS-FlaB (DEF)를 투여한 군은 E7ΔNLS (E)를 투여한 군보다 길게 생존하는 것을 나타내었고, 특히 DCpep6-4xE7ΔNLS-FlaB (DEF)를 투여한 경우 가장 긴 생존을 유지하는 것으로 나타났다. 또한, HPV16 E7 CTL 펩타이드 + FlaB (E7 Pep+F)를 투여한 군보다도 현저하게 긴 생존을 나타내었다.
또한, 도 19에 나타낸 바와 같이, DCpep6-4xE7ΔNLS-FlaB (DEF)를 투여한 경우 종양 부피가 가장 적게 나타났으며, HPV16 E7 CTL 펩타이드 + FlaB (E7 Pep+F)를 투여한 군보다도 현저하게 적은 부피를 나타내었다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 우수한 생체 내 항종양 효능을 갖는 것을 확인하였을 뿐만 아니라, 장기적으로 생존을 유지시킬 수 있는 것을 확인하였다. 또한, 생체 내 수지상 세포를 표적하는 펩타이드 (DCpep6), 종양 항원 (E7ΔNLS) 및 플라젤린 (FlaB)을 포함하는 본 발명의 펩타이드는 종양 항원과 플라젤린만을 포함하는 펩타이드보다 더욱 우수한 항종양 효능을 갖는 것을 확인하였다.
[실시예 10]
펩타이드의 면역 반응 평가
10-1. 항원제시세포 활성화
상기 실시예 2와 동일한 방법으로 준비한 골수 유래 수지상 세포 (BMDC)를 PBS, 0.5 μg/ml 4xE7ΔNLS::FlaB (EF) 및 0.5 μg/ml DCpep6::4xE7ΔNLS::FlaB (DEF)로 24시간 동안 처리한 후, 형광물질로 표지된 항체로 얼음 위에서 염색한 다음 유세포 분석으로 분석하였다.
도 20에 나타낸 바와 같이, BMDC 표면상의 CD80 및 CD86 발현을 측정한 결과, DCpep6::4xE7ΔNLS::FlaB (DEF)는 CD80 및 CD86의 발현을 향상시킨 반면, 4xE7ΔNLS::FlaB (EF)는 CD80 및 CD86의 발현에 통계적으로 유의미한 변화를 유도하지 않은 것으로 나타났다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 항원제시세포 (Antigen presenting cell; APC)를 활성화시키는 것을 확인하였다.
10-2. 항원 특이적 T 세포 면역 반응
상기 실시예 5와 동일한 방법으로 종양 보유 마우스 및 종양 미보유 마우스에 본 발명의 펩타이드를 투여하여 마우스의 말초 혈액을 수집하였다. RBC lysis buffer를 이용하여 RBC를 제거한 혈액을 테트라머 항체 (PE-conjugated HPV16 H-2Db-RAHYNIVTF, TB-5008-1, MBL) 및 CD8 항체로 염색하고 유세포 분석으로 분석하였다.
도 21에 나타낸 바와 같이, 종양을 보유한 마우스의 CD8+ 세포에서 세포독성 T 림프구 (CTL) 에피토프 특이적 테트라머+ 세포를 측정한 결과, DCpep6::4xE7ΔNLS::FlaB (DEF)를 투여한 군에서 PBS, E7ΔNLS (E) 및 4xE7ΔNLS::FlaB (EF)를 투여한 군과 비교하여 현저히 높은 수준을 나타내었다.
또한, 도 22에 나타낸 바와 같이, 종양을 보유하지 않은 마우스에서도 DCpep6::4xE7ΔNLS::FlaB (DEF)를 투여한 군에서 현저히 높은 수준을 나타내었다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 항원 특이적 T 세포 면역 반응을 효과적으로 유도하는 것을 확인하였다.
10-3. 세포독성 T 림프구 (CTL) 펩타이드 특이적 면역 반응
상기 실시예 5와 동일한 방법으로 종양 보유 마우스 및 종양 미보유 마우스에 본 발명의 펩타이드를 투여하여 마우스의 비장 (SPL) 또는 종양 림프절 (TDLN)에서의 단일 세포 현탁액을 준비하였다. 1 x 106 SPL 또는 2.5 x 105 TDLN 세포를 96-웰 Filtration ELISpot 플레이트 (Merc, HAMAS4510)에 넣고, 1 μg/ml E7 CTL 펩타이드 (아미노산 49-57: RAHYNIVTF)로 자극하였다. 10 ng/ml 콘카나발린 A로 자극된 세포를 양성 대조군으로 사용하였다. 비장 (SPL)에서 분리한 세포는 배양 2일 후 또는 종양 림프절 (TDLN)에서 분리한 세포는 배양 5일 후, 제조사의 지침에 따라 Mouse IFN-γ ELISpot Set (BD Bioscience, 551083)을 사용하여 IFN-γ 생산 세포를 검출하였다. IFN-γ 생산 세포 (SPOT)는 CTL-ImmunoSpot Analyzer 및 ImmunoSpot Professional Software 버전 5.0 (Cellular Technology, Shaker Heights, OH, USA)을 사용하여 분석하였다.
도 23에 나타낸 바와 같이, 종양을 보유한 마우스의 비장 (SPL) 및 종양 림프절 (TDLN)에서 IFN-γ 분비 세포를 측정한 결과, DCpep6::4xE7ΔNLS::FlaB (DEF)를 투여한 군에서 PBS, E7ΔNLS (E) 및 4xE7ΔNLS::FlaB (EF)를 투여한 군과 비교하여 현저히 높은 수준을 나타내었다.
또한, 도 24에 나타낸 바와 같이, 종양을 보유하지 않은 마우스에서도 DCpep6::4xE7ΔNLS::FlaB (DEF)를 투여한 군에서 현저히 높은 수준을 나타내었다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 CTL 펩타이드에 의한 특이적 면역 반응을 효과적으로 유도하는 것을 확인하였다.
결국, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 생체 내에서 항원 특이적 면역 반응을 효과적으로 유도하는 것을 확인하였고, 이러한 면역 조절 활성 유도를 통해 우수한 항종양 면역 반응을 유도할 수 있는 것을 알 수 있다.
[실시예 11]
펩타이드 매개 면역 반응의 신호 전달 경로 평가
야생형 (WT), TLR5 결핍 (TLR5-/-) 및 NLRC4 결핍 (NLRC4-/-) 마우스 그룹의 오른쪽 중간 옆구리에 TC-1 세포를 이식하고, 종양 크기의 직경이 약 3-5 mm에 도달했을 때 PBS 단독 200 μl, 4xE7ΔNLS::FlaB (EF) 20 μg, 및 DCpep6::4xE7ΔNLS::FlaB (DEF) 20 μg을 5일 간격으로 3회 종양 주위로 투여하였다. 종양 보유 마우스의 종양 부피 및 생존을 측정하여, 도 25에 나타내었다. 추가로, TLR5 또는 NLRC4 결핍 (녹아웃)이 TC-1 종양 성장에 영향을 미치지 않는 것을 사전 실험을 통해 확인하였다.
도 25에 나타낸 바와 같이, TLR5 결핍 (TLR5-/-) 마우스에서 DCpep6::4xE7ΔNLS::FlaB (DEF)를 투여한 경우 PBS 그룹과 비교하여 유의하게 더 긴 생존을 유도하고 종양 부피가 감소하는 것으로 나타났으나, 야생형 마우스에서의 경우와 비교하여 현저히 낮은 수준이었다. 또한, NLRC4 결핍 (NLRC4-/-) 마우스에서는 DCpep6::4xE7ΔNLS::FlaB (DEF)를 투여한 경우 종양 부피 및 생존 기간이 개선되지 않은 것으로 나타났다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)의 어주번트 (보조제) 기능, 즉 FlaB (F)가 TLR5보다 NLRC4 인플라마솜 (inflammasome) 매개 활성화를 통해 작용하는 것을 확인하였다.
[실시예 12]
펩타이드 매개 CD8 + T 세포 활성화 평가
상기 실시예 2와 동일한 방법으로 준비한 골수 유래 수지상 세포 (BMDC)에 24시간 동안 1 μg/mL의 4xE7ΔNLS::FlaB (EF) 및 DCpep6::4xE7ΔNLS::FlaB (DEF)로 활성화하였다. TC-1 종양 보유 마우스의 CD8+ 비장세포는 제조사의 지시에 따라 MagniSortTM Mouse CD8 T Cells Enrichment kit (Invitrogen, 8804-6822)를 사용하여 제조하였으며 5 μM CFSE로 표지하였다. EF 또는 DEF로 자극한 BMDC는 10 % 소 태아 혈청 (Hyclone, Logan, UT) 및 1 % 페니실린/스트렙토마이신 (Life Tech-nologies, Grand Island, NY, USA)과 50 mM 2-메르캅토에탄올 (Sigma, 516732)이 보충된 RPMI 1640 배지에서 3일 동안 1:5의 비율로 CFSE로 염색된 CD8+ 세포와 공동 배양하였다. CD8+ T 세포 증식은 유세포 분석을 사용하여 CFSE 희석에 의해 평가하였다.
도 26에 나타낸 바와 같이, DCpep6::4xE7ΔNLS::FlaB (DEF)로 자극한 경우 야생형 (WT) 마우스에서 CD8+ T 세포의 분열 지수가 현저히 증가하였으나, NLRC4 결핍 (NLRC4-/-) 마우스에서는 오히려 감소하는 것으로 나타났다.
따라서, 본 발명의 DCpep6::4xE7ΔNLS::FlaB (DEF)는 CD8+ T 세포를 활성화 시키는 것을 확인하였고, 이는 NLRC4 인플라마솜 (inflammasome) 신호 전달 경로의 영향을 받는 것을 알 수 있다.

Claims (22)

  1. 수지상 세포를 표적하는, 서열번호 1 내지 서열번호 11로 이루어진 군에서 선택된 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  2. 제1항에 있어서, 서열번호 3, 서열번호 4, 서열번호 6, 서열번호 9 및 서열번호 10으로 이루어진 군에서 선택된 어느 하나의 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  3. 제1항에 있어서, 서열번호 6, 서열번호 9 및 서열번호 10으로 이루어진 군에서 선택된 어느 하나의 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  4. 제1항에 있어서, 서열번호 6의 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  5. 제1항에 있어서, 생체 내 수지상 세포와 결합하여 이의 활성을 유도하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  6. 제1항에 있어서, 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  7. 제6항에 있어서, 상기 종양 항원 4개를 연속하여 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  8. 제6항에 있어서, 상기 종양 항원은 서열번호 22의 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  9. 제6항에 있어서, 상기 플라젤린은 서열번호 23의 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  10. 제6항에 있어서, 서열번호 6의 아미노산 서열, 서열번호 22의 아미노산 서열, 및 서열번호 23의 아미노산 서열을 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  11. 제6항에 있어서, 서열번호 25의 아미노산 서열을 포함하는, 암 치료 또는 예방용 펩타이드.
  12. 제6항에 있어서, 장기 생존을 유도하는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  13. 제6항에 있어서, 면역 증강 효과를 갖는 것을 특징으로 하는, 암 치료 또는 예방용 펩타이드.
  14. 제1항 내지 제11항 중 어느 한 항의 펩타이드를 코딩하는 핵산 서열을 포함하는 폴리뉴클레오타이드.
  15. 제1항의 펩타이드를 포함하는 암 치료 또는 예방용 약학 조성물.
  16. 제15항에 있어서, 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 약학 조성물.
  17. 제16항에 있어서, 상기 종양 항원 4개를 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 약학 조성물.
  18. 제16항에 있어서, 상기 제1항의 펩타이드, 종양 항원 및 플라젤린은 하나의 펩타이드로 연결되거나, 각각의 펩타이드로 포함될 수 있는 것을 특징으로 하는, 암 치료 또는 예방용 약학 조성물.
  19. 제1항의 펩타이드를 포함하는 암 치료 또는 예방용 백신 조성물.
  20. 제19항에 있어서, 종양 항원 및 플라젤린으로 이루어진 군에서 선택된 하나 이상을 추가로 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 백신 조성물.
  21. 제20항에 있어서, 상기 종양 항원 4개를 포함하는 것을 특징으로 하는, 암 치료 또는 예방용 백신 조성물.
  22. 제20항에 있어서, 상기 제1항의 펩타이드, 종양 항원 및 플라젤린은 하나의 펩타이드로 연결되거나, 각각의 펩타이드로 포함될 수 있는 것을 특징으로 하는, 암 치료 또는 예방용 백신 조성물.
PCT/KR2022/016492 2021-10-28 2022-10-26 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물 WO2023075421A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280046109.1A CN117580852A (zh) 2021-10-28 2022-10-26 靶向树突状细胞的新型肽及包含该新型肽的癌症治疗用组合物
US18/555,988 US20240207380A1 (en) 2021-10-28 2022-10-26 Novel peptide targeting dendritic cells, and composition for treating cancer comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210146081A KR102514849B1 (ko) 2021-10-28 2021-10-28 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물
KR10-2021-0146081 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023075421A1 true WO2023075421A1 (ko) 2023-05-04

Family

ID=85800205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016492 WO2023075421A1 (ko) 2021-10-28 2022-10-26 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물

Country Status (4)

Country Link
US (1) US20240207380A1 (ko)
KR (1) KR102514849B1 (ko)
CN (1) CN117580852A (ko)
WO (1) WO2023075421A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092195A2 (en) * 2003-04-09 2004-10-28 Administrators Of The Tulane Educational Fund Dendritic cell binding proteins and uses thereof
KR100795839B1 (ko) 2004-01-12 2008-01-17 전남대학교산학협력단 세균의 편모 구성인자 플라젤린을 유효성분으로 함유하는점막 백신 보조제
KR20170031251A (ko) * 2014-07-30 2017-03-20 클리브랜드 바이오랩스, 아이엔씨. 플라젤린 조성물 및 용도
JP2018100243A (ja) * 2016-12-21 2018-06-28 ジェムバックス アンド カエル カンパニー,リミティド テロメラーゼ由来のペプチドを含む樹状細胞治療剤及び免疫治療剤、及びこれを用いる治療方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092195A2 (en) * 2003-04-09 2004-10-28 Administrators Of The Tulane Educational Fund Dendritic cell binding proteins and uses thereof
KR100795839B1 (ko) 2004-01-12 2008-01-17 전남대학교산학협력단 세균의 편모 구성인자 플라젤린을 유효성분으로 함유하는점막 백신 보조제
KR20170031251A (ko) * 2014-07-30 2017-03-20 클리브랜드 바이오랩스, 아이엔씨. 플라젤린 조성물 및 용도
JP2018100243A (ja) * 2016-12-21 2018-06-28 ジェムバックス アンド カエル カンパニー,リミティド テロメラーゼ由来のペプチドを含む樹状細胞治療剤及び免疫治療剤、及びこれを用いる治療方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CURIEL TYLER J., MORRIS CINDY, BRUMLIK MICHAEL, LANDRY SAMUEL J., FINSTAD KRISTIAAN, NELSON ANNE, JOSHI VIRENDRA, HAWKINS CHRISTOP: "Peptides Identified through Phage Display Direct Immunogenic Antigen to Dendritic Cells", THE JOURNAL OF IMMUNOLOGY, vol. 172, no. 12, 15 June 2004 (2004-06-15), US , pages 7425 - 7431, XP093060492, ISSN: 0022-1767, DOI: 10.4049/jimmunol.172.12.7425 *
LEE SEKIM SYJEONG BCKIM YRBAE SJAHN OS ET AL.: "A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity", INFECT IMMUN., vol. 74, no. 1, 2006, pages 694 - 702, XP008117348, DOI: 10.1128/IAI.74.1.694-702.2006

Also Published As

Publication number Publication date
US20240207380A1 (en) 2024-06-27
CN117580852A (zh) 2024-02-20
KR102514849B1 (ko) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2021221486A1 (en) Vaccine composition for preventing or treating infection of sars-cov-2
WO2018097540A2 (ko) 무혈청면역세포배양용 배지첨가키트, 상기 키트를 이용한 면역세포배양방법, 상기 키트 또는 배양방법에 의해 얻어진 무혈청면역세포배양액 및 상기 배양액을 포함하는 화장료조성물
WO2010147268A1 (ko) 자궁경부암 백신
WO2021172971A1 (ko) 수두 대상포진 바이러스 융합 단백질 및 이를 포함하는 면역원성 조성물
WO2020159169A2 (ko) 당화된 ag85a 단백질을 포함하는 결핵 예방용 백신 조성물 및 이의 제조방법
WO2017034244A1 (ko) 중추신경계 질환에 대한 예방 또는 치료효과를 갖는 펩타이드 및 이를 유효성분으로 하는 중추신경계 질환 예방 및 치료용 약학적 조성물
WO2019151759A1 (ko) 신규 백신 면역보조제
WO2023075421A1 (ko) 수지상 세포를 표적하는 신규한 펩타이드, 및 이를 포함하는 암 치료용 조성물
WO2021040064A1 (ko) 백시니아 바이러스 및 히드록시유레아를 유효성분으로 포함하는 암 치료용 약학 조성물
WO2016027990A1 (ko) Dusp5를 유효성분으로 모두 포함하는 골대사성 질환의 예방 또는 치료용 약학적 조성물
WO2021107635A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 nk 세포를 포함하는 항암 치료용 조성물
WO2023048530A1 (ko) 종양 연관 항원으로부터 유래된 펩타이드 및 리포펩타이드와 면역활성물질로 구성되는 아쥬번트를 포함하는 항암 백신 조성물 및 이의 용도
WO2024147503A1 (ko) Trop2 면역원성 펩타이드
WO2023003380A1 (ko) 신규 세포 투과성 펩타이드 및 이의 용도
WO2018182301A1 (ko) 세포투과성 펩타이드와 ctCTLA4 펩타이드가 융합된 융합단백질을 유효성분으로 하는 염증성 호흡기 질환 예방 또는 치료용 약학 조성물
WO2022050520A1 (ko) 코로나바이러스 유래 수용체 결합 도메인 및 뉴클레오캡시드 단백질을 포함하는 융합단백질 및 이의 용도
WO2021167418A2 (ko) 신규한 종양-관련 항원 단백질 olfm4 및 이의 용도
WO2020032780A1 (ko) 암항원 특이적 세포독성 t세포
Rafiee et al. Induction of systemic antitumor immunity by gene transfer of mammalian heat shock protein 70.1 into tumors in situ
WO2023128378A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 대장암의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2023048532A1 (ko) 레오바이러스 기반 신규한 백신플랫폼 및 이의 용도
WO2022131700A1 (ko) 펩타이드를 이용하는 줄기세포 유래 고순도 세포외 소포체의 대량 생산 방법
WO2023128381A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 흑색종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2023128377A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 폐 유두상 선암종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법
WO2023128380A1 (ko) K-ras 특이적 활성화 t 세포를 포함하는 폐 선암종의 예방 및 치료용 약제학적 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887617

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18555988

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280046109.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022887617

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022887617

Country of ref document: EP

Effective date: 20240528