WO2023073923A1 - ゴムの混練方法 - Google Patents

ゴムの混練方法 Download PDF

Info

Publication number
WO2023073923A1
WO2023073923A1 PCT/JP2021/040025 JP2021040025W WO2023073923A1 WO 2023073923 A1 WO2023073923 A1 WO 2023073923A1 JP 2021040025 W JP2021040025 W JP 2021040025W WO 2023073923 A1 WO2023073923 A1 WO 2023073923A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
kneading
composition
lot
cross
Prior art date
Application number
PCT/JP2021/040025
Other languages
English (en)
French (fr)
Inventor
賢一 長良
崇之 松原
雄太 尾崎
千明 内山
壮 久々宮
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to CN202180062397.5A priority Critical patent/CN116367980B/zh
Priority to JP2022523475A priority patent/JP7133119B1/ja
Priority to PCT/JP2021/040025 priority patent/WO2023073923A1/ja
Priority to EP21962465.7A priority patent/EP4339237A1/en
Priority to US17/939,923 priority patent/US20230135651A1/en
Publication of WO2023073923A1 publication Critical patent/WO2023073923A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • the present disclosure relates to a rubber kneading method in which compounding agents are added to raw rubber and kneaded.
  • kneaded rubber (rubber composition) is used, which is kneaded by mixing compounding agents such as fillers and cross-linking agents with raw rubber.
  • the kneaded rubber is prepared by first masticating the raw rubber if necessary, then adding the non-crosslinking agents among the compounding agents and kneading (A kneading), and finally adding the crosslinking agents and kneading ( B kneading).
  • a kneading non-crosslinking agents among the compounding agents and kneading
  • B kneading crosslinking agents and kneading
  • natural rubber has excellent properties such as high tensile strength and little heat generation due to vibration, so it is used for various rubber products such as tires, anti-vibration rubber, and belts.
  • Raw rubber for natural rubber (raw rubber) has a large molecular weight and high viscosity. Therefore, the rubber molecules are cut by mastication to reduce the molecular weight and give plasticity, and then the compounding agent is added and kneaded.
  • the viscosity of the raw rubber varies depending on the place of production, processing method, etc., and also varies depending on the storage environment such as temperature.
  • Patent Document 1 as a mastication method for obtaining a desired rubber viscosity at the completion of mastication without being affected by variations in natural rubber lots, A method is described for monitoring the instantaneous power of the motor and stopping mastication when the instantaneous power falls below a predetermined value. Further, Patent Document 2 describes a kneading method in which the viscosity of raw rubber is measured or estimated before and/or during kneading, and the amount of at least one of the compounding agents is determined based on the measured value.
  • Patent Literature 3 describes a kneading control device that determines the end time of the kneading process based on the viscoelastic properties of the elastomer during the kneading process.
  • the viscosity of the rubber material during mastication or kneading is estimated, and the kneading time is adjusted or the blending amount of the compounding agent is adjusted based on the estimated viscosity. , suppressing variations in viscosity in the rubber material after mastication or kneading.
  • the quality of natural rubber has large variations derived from natural products. According to the study of the present inventor, even if the viscosity of the rubber material is controlled in the kneading process, it is found that the characteristics of the kneaded rubber obtained, specifically the hardness after cross-linking, the static spring constant, etc., vary.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a rubber kneading method capable of obtaining kneaded rubber with small variations in spring characteristics.
  • the rubber kneading method of the present disclosure prepares a reference rubber composition by blending and kneading a raw rubber of a reference lot and an auxiliary material in a specific composition, and crosslinks the reference rubber composition.
  • a target rubber composition is prepared by blending and kneading the raw rubber and sub-materials of the target lot with the same specific composition as in the first step, and A second step of measuring the spring characteristics of the target cross-linked rubber product obtained by cross-linking the target rubber composition, and comparing the spring characteristics of the target cross-linked rubber product with the spring characteristics of the reference cross-linked rubber product, and a third step of setting one or more of the compounding conditions and kneading conditions adopted when rubber is kneaded according to the product composition, and the raw material of the target lot under the conditions set in the third step.
  • the product composition is obtained by kneading the rubber with the product composition.
  • the quality of natural rubber varies greatly, and the quality often differs depending on the lot of raw rubber.
  • the present inventor believed that variations in the characteristics of the rubber material after mastication (hereinafter referred to as "masticated rubber” as appropriate) would cause variations in the characteristics of the kneaded rubber.
  • masticated rubber a cross-linked rubber produced by adding only the agents necessary for cross-linking to a cross-linked rubber kneaded rubber produced according to the product composition.
  • the rubber kneading method of the present disclosure has been made based on this knowledge. Variation in the properties of the resulting rubber composition (kneaded rubber) is reduced.
  • the spring characteristics of the kneaded rubber are predicted based on the spring characteristics of the raw rubber. Then, the blending conditions and kneading conditions necessary for kneading are set so that the desired values are obtained.
  • the spring characteristics of the reference rubber cross-linked product using the raw rubber of the reference lot are measured.
  • the spring properties of the target rubber cross-linked product using the raw rubber of the target lot are measured.
  • the specific composition consists of raw rubber and sub-materials, and differs from the actual product composition. For example, by using only the minimum amount of chemicals necessary for measuring spring characteristics as secondary materials, it is possible to determine the characteristics of the raw rubber itself while minimizing the influence of compounding agents.
  • the spring characteristics of the target cross-linked rubber product are compared with the spring characteristics of the reference cross-linked rubber product.
  • One or more of compounding conditions and kneading conditions are set. As a result, the difference between the spring characteristics of the product rubber composition obtained using the raw material rubber of the target lot and the spring characteristics of the product rubber composition obtained using the raw rubber of the reference lot becomes small. That is, variations in spring characteristics are reduced.
  • the rubber kneading method of the present disclosure it is possible to reduce variations in the spring characteristics of the product rubber composition. As a result, quality improvement and quality uniformity of rubber products can be achieved. In addition, since the variation in the spring characteristics of the product rubber composition is reduced, the defective rate of the rubber product is reduced, and the waste of raw material rubber lots can be reduced.
  • the rubber kneading method of the present disclosure has a first step, a second step, and a third step. A rubber composition is obtained. Details of each step will be described below.
  • a reference rubber composition is prepared by blending and kneading raw rubber and sub-materials of a reference lot in a specific composition, and the spring properties of the cross-linked reference rubber obtained by crosslinking the reference rubber composition are measured. do.
  • the "lots" of the reference lot and target lot in this disclosure differ depending on the management form of the manufacturer of the raw rubber, but mean, for example, the minimum unit of raw rubber manufactured on the same production date or under the same conditions.
  • the reference lot is a lot different from the target lot, but the reference lot and the target lot have the same type of raw rubber.
  • the type of raw rubber is not limited, and may be appropriately selected according to the rubber product to be manufactured.
  • natural rubber or synthetic rubber such as isoprene rubber, butadiene rubber, styrene-butadiene rubber, and chloroprene rubber may be used.
  • Natural rubber is suitable for producing anti-vibration rubber using the product rubber composition obtained by the rubber kneading method of the present disclosure.
  • Raw rubber includes not only rubber after production but also masticated rubber after production.
  • the standard rubber composition is prepared by blending and kneading secondary materials into raw rubber.
  • the specific composition which is the composition of the reference rubber composition, is a crosslinkable composition that is different from the composition of the rubber composition for products, that is, the product composition when actually manufacturing rubber products using the raw rubber of the target lot. is not particularly limited.
  • a pure rubber composition in which secondary materials are limited to fatty acid, zinc oxide, a cross-linking agent, and a vulcanization accelerator is desirable.
  • a standard composition of a pure rubber composition plus a reinforcing agent is desirable.
  • a pure rubber composition is more suitable from the standpoint of minimizing the influence of compounding agents to determine the properties of the raw rubber itself.
  • Each chemical agent may be appropriately selected according to the type of raw rubber.
  • Fatty acids include stearic acid, palmitic acid and the like.
  • cross-linking agents include sulfur, organic sulfur compounds such as alkylphenol disulfides, and organic peroxides.
  • vulcanization accelerators include guanidine-based, thiuram-based, thiazole-based, sulfenamide-based, and dithiocarbamate-based compounds.
  • Examples of reinforcing agents include carbon black and silica.
  • the kneading may be performed using a Banbury mixer, a closed kneader such as a kneader, an open roll, or the like. All of the secondary materials to be added to the raw rubber may be added at the same time, but from the viewpoint of suppressing the cross-linking reaction, the non-cross-linking agent is first added and kneaded, and then the cross-linking agent is added and mixed. It is desirable to knead.
  • the reference rubber composition prepared in this manner is crosslinked by holding it at a predetermined temperature for a predetermined time. For example, when the raw material rubber is natural rubber, it may be held at a temperature of 140 to 180° C. for 5 to 30 minutes. Then, the spring characteristics of the obtained reference rubber cross-linked product are measured.
  • static spring constant As spring characteristics, it is desirable to measure one or more selected from static spring constant, dynamic spring constant, and hardness. Among others, the measurement of the static spring constant is preferable because it serves as an index of the anti-vibration performance.
  • the static spring constant and dynamic spring constant may be measured according to the method specified in JIS K6385:2012, for example.
  • type A durometer hardness specified in JIS K6253-3:2012 may be measured.
  • the target rubber composition is prepared by blending and kneading the raw rubber of the target lot and the sub-material in the same specific composition as in the first step, and cross-linking the target rubber composition by cross-linking the target rubber composition. Measures the spring properties of an object.
  • the spring characteristics of the raw rubber of the target lot to be kneaded are measured in the same manner as in the first step.
  • the specific compositions of the raw rubber and the target rubber composition are the same as those of the reference lot described above.
  • the kneading method, the cross-linking method, and the method for measuring the spring properties of the target cross-linked rubber are also the same as in the first step.
  • ⁇ Third step> the spring characteristics of the target cross-linked rubber measured in the second step are compared with the spring characteristics of the reference cross-linked rubber measured in the first step, and the raw rubber of the target lot is determined according to the product composition.
  • One or more of the compounding conditions and kneading conditions to be adopted for kneading are set.
  • the spring characteristics of the target cross-linked rubber product are compared with the spring characteristics of the reference cross-linked rubber product to confirm whether the values are equivalent, how large or small they are.
  • the spring characteristics of the reference cross-linked rubber product to be compared are the spring characteristics measured using the raw rubber of one reference lot, or the spring characteristics measured for each reference lot using the raw rubber of a different reference lot. Average value should be used.
  • the previous lot is the lot subjected to kneading immediately before the target lot.
  • a number (lot number) for management is usually assigned to a lot of raw rubber. For example, if the lot number of the raw rubber is given as consecutive natural numbers such as 1, 2, . becomes the previous lot (n is a natural number of 2 or more).
  • the product composition when actually kneading the raw rubber of the target lot can be appropriately selected according to the rubber product to be manufactured.
  • compounding agents added to raw rubber include fatty acids, zinc oxide, reinforcing agents, non-reinforcing fillers (calcium carbonate, talc, etc.), anti-aging agents, softening agents, coloring agents, cross-linking agents, and vulcanization accelerators. etc.
  • a composition for anti-vibration rubber a composition comprising natural rubber (raw rubber), fatty acid, zinc oxide, reinforcing agent, anti-aging agent, softening agent, cross-linking agent and vulcanization accelerator is suitable.
  • stearic acid, palmitic acid, or the like may be used as the fatty acid.
  • Carbon black, silica, or the like may be used as the reinforcing agent.
  • Carbamate-based, phenylenediamine-based, phenol-based, diphenylamine-based, quinoline-based, imidazole-based compounds, waxes, and the like may be used as anti-aging agents.
  • Naphthenic oils, paraffinic oils, aromatic oils, and the like may be used as the softening agent.
  • sulfur an organic sulfur compound such as alkylphenol disulfide, or the like may be used.
  • the vulcanization accelerator compounds such as guanidine-based, thiuram-based, thiazole-based, sulfenamide-based, and dithiocarbamate-based compounds may be used.
  • the compounding conditions set in this step include the blend amount of raw rubber, the amount of carbon black (amount of reinforcing agent), the amount of cross-linking agent, and the amount of oil (amount of softening agent). etc.
  • the amount of carbon black, the amount of cross-linking agent, or the amount of oil may be increased from the preset standard specifications.
  • the kneading conditions set in this step include the electric power value of the internal kneader to be used, the rotational speed of the rotor, the temperature of the rubber material during kneading, the kneading time, and the like. For example, if the spring characteristics of the target cross-linked rubber product are different from the spring characteristics of the reference cross-linked rubber product, the integrated power consumption of the internal kneader, the rotation speed of the rotor, and the It is advisable to adjust the temperature and kneading time of the rubber material. In this step, either one of the blending conditions and the kneading conditions may be set, or both may be set.
  • the setting of conditions includes not only changes from the standard specifications, but also adoption of the standard specifications as they are. For example, if the spring characteristics of the target rubber cross-linked product are equivalent to those of the reference rubber cross-linked product, and if it is determined that there is no need to change the preset standard specifications, the standard specifications will be adopted as they are. That is, the mixing conditions and kneading conditions may be set without adjusting.
  • the raw rubber of the target lot is kneaded according to the product composition under the conditions set in the third step to obtain the product rubber composition.
  • Kneading may be carried out using a Banbury mixer, a closed kneader such as a kneader, an open roll, or the like. All of the compounding agents to be added to the raw rubber may be added at the same time, but from the viewpoint of suppressing the cross-linking reaction, the non-cross-linking agent is first added and kneaded, and then the cross-linking agent is added and mixed. It is desirable to knead.
  • Example 1 a reference rubber composition was prepared by blending natural rubber of Lot 1 as a reference lot and auxiliary materials according to the pure rubber composition shown in Table 1 and kneading the mixture. Details of the submaterials used in Table 1 are as follows.
  • the natural rubber used was previously masticated masticated rubber (hereinafter, the same applies to the natural rubber of the target lot).
  • Fatty acid stearic acid (“Lunac (registered trademark) S-70V” manufactured by Kao Corporation).
  • Zinc oxide Type 2 zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.).
  • Cross-linking agent sulfur (Hosoi Chemical Industry Co., Ltd., fine sulfur powder).
  • Vulcanization accelerator thiazole-based (“Sancellar (registered trademark) MG” manufactured by Sanshin Chemical Industry Co., Ltd.).
  • Preparation of the reference rubber composition was carried out by the following procedures (a) to (f) using an open roll provided with two left and right rolls.
  • (d) Alternately turn left and right three times each.
  • the rubber material is cut off from the roll, and the gap between the rolls is set to 0.8 mm and rolled through 6 times.
  • the obtained reference rubber composition was placed in a mold and held at 150°C for 30 minutes for cross-linking to produce a cylindrical sample of the cross-linked reference rubber.
  • the size of the sample was 29.0 ⁇ 0.5 mm in diameter and 12.5 ⁇ 0.5 mm in thickness.
  • the static spring constant of the reference cross-linked rubber was measured.
  • the static spring constant was measured according to the method specified in JIS K6385:2012. Specifically, a load was applied in the thickness direction of the sample, the sample was compressed at a rate of 10 ⁇ 1 mm/min, and when the amount of deformation of the sample reached a predetermined amount, the load was immediately removed at the same rate to restore the sample. Then, the static spring constant was obtained from the obtained load-deformation curve. As a result, the static spring constant of the reference cross-linked rubber was 80 N/mm.
  • the target rubber composition was prepared by blending and kneading the natural rubber of lot 2 as the target lot and the auxiliary materials according to the pure rubber composition shown in Table 1 above.
  • the preparation method of the target rubber composition was the same as the preparation method of the reference rubber composition described above, and an open roll was used.
  • the target rubber composition is crosslinked to produce a sample of the target cross-linked rubber by the same method as the above-described method for producing the sample of the reference cross-linked rubber, and the sample is measured by the above-described method for measuring the static spring constant. was measured.
  • the static spring constant of the target rubber crosslinked product of Lot 2 was 80 N/mm.
  • ⁇ Kneading in product composition The natural rubber of Lot 2 and compounding agents were blended according to the product composition for anti-vibration rubber shown in Table 2, and kneaded to prepare a rubber composition for anti-vibration rubber. Details of the compounding agents used in Table 2 are as follows. Fatty acid: stearic acid (“Lunac (registered trademark) S-70V” manufactured by Kao Corporation). Zinc oxide: Type 2 zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.). Antiaging agent: Phenylenediamine-based ("Antigen (registered trademark) 6C” manufactured by Sumitomo Chemical Co., Ltd.).
  • Reinforcing agent HAF grade carbon black ("SEAST (registered trademark) 3" manufactured by Tokai Carbon Co., Ltd.)
  • Softening agent Naphthenic oil (“SUNTHENE410” manufactured by Nippon Sun Oil Co., Ltd.)
  • Cross-linking agent sulfur (Hosoi Chemical Industry Co., Ltd., fine sulfur powder).
  • Vulcanization accelerator sulfenamide-based (“Sancellar (registered trademark) CM-G” manufactured by Sanshin Chemical Industry Co., Ltd.).
  • the rubber composition for anti-vibration rubber was prepared as follows. First, chemicals other than the cross-linking agent and the vulcanization accelerator were added to lot 2 natural rubber, and kneaded at 60 to 160° C. for 5 minutes using a Banbury mixer. Next, the kneaded product was transferred to an open roll, a cross-linking agent and a vulcanization accelerator were added, and kneaded at 80 to 100° C. for 5 minutes.
  • Example 2 (2) Example 2 ⁇ First step> Lot 1 of Example 1 was used as the reference lot, and the static spring constant of the same reference cross-linked rubber product as in Example 1 was used as the spring characteristic to be compared with the subject cross-linked rubber product in the third step.
  • the target rubber composition was prepared by blending the natural rubber of Lot 3 as the target lot and the auxiliary materials according to the pure rubber composition shown in Table 1 above and kneading the mixture.
  • the preparation method of the target rubber composition was the same as the preparation method of the reference rubber composition of Example 1, and an open roll was used.
  • the target rubber composition was crosslinked to produce a sample of the target cross-linked rubber by the same method as the sample of the reference cross-linked rubber in Example 1, and the static spring constant was measured in the same manner as in Example 1.
  • the static spring constant of the same sample was measured by the method.
  • the static spring constant of the target rubber crosslink of Lot 3 was 84 N/mm.
  • ⁇ Kneading in product composition The natural rubber of lot 3, the natural rubber for adjustment, and the compounding agent were blended according to the product composition for anti-vibration rubber shown in Table 3, and kneaded to prepare a rubber composition for anti-vibration rubber. All of the compounding agents used are the same as those used in preparing the rubber composition for anti-vibration rubber of Example 1.
  • the kneading method was also the same as in Example 1, except that the natural rubber of Lot 2 was changed to the natural rubber of Lot 3 and the natural rubber for adjustment.
  • Example 3 The third step in Example 2 was changed, and lot 3 natural rubber was used to prepare a rubber composition for anti-vibration rubber.
  • the condition for kneading the natural rubber of Lot 3 according to the product composition was not the blending amount of the raw material rubber but the kneading condition of the power consumption of the internal kneader. set by changing the value. Specifically, the target value of the integrated power consumption in the kneading process using the Banbury mixer was set to 20 kWh, which is larger than the standard specification of 16 kWh.
  • the product composition of Lot 3 natural rubber and compounding agents is as shown in Table 4. All of the compounding agents used are the same as those used in preparing the rubber composition for anti-vibration rubber of Example 1.
  • agents other than the cross-linking agent and the vulcanization accelerator were added to lot 3 natural rubber, and kneaded at 60 to 160° C. for 5 minutes using a Banbury mixer. At this time, the target value of the cumulative power consumption of the Banbury mixer was set to 20 kWh.
  • the kneaded product was transferred to an open roll, a cross-linking agent and a vulcanization accelerator were added, and kneaded at 80 to 100° C. for 5 minutes.
  • the static spring constant of the produced anti-vibration rubber was measured according to the method specified in JIS K6385:2012.
  • a rubber composition for anti-vibration rubber was prepared by kneading the standard specifications of compounding conditions, kneading conditions, etc., without considering the spring characteristics of each lot. It was crosslinked to produce an anti-vibration rubber.
  • This kneading method is hereinafter referred to as a “comparative kneading method”.
  • 65 lots of natural rubber were used.
  • a total of 283 anti-vibration rubbers were obtained.
  • the static spring constant of the manufactured anti-vibration rubber was measured by the same method as in Example 2.
  • FIG. 1 shows the measurement results of the static spring constants of the anti-vibration rubbers obtained by each kneading method.
  • Table 5 shows values such as the standard deviation calculated from the static spring constant measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ゴムの混練方法は、基準ロットの原料ゴムと副材料とを特定組成で配合し混練することにより基準ゴム組成物を調製し、該基準ゴム組成物を架橋した基準ゴム架橋物のばね特性を測定する第一工程と、対象ロットの原料ゴムと副材料とを該第一工程と同じ特定組成で配合し混練することにより対象ゴム組成物を調製し、該対象ゴム組成物を架橋した対象ゴム架橋物のばね特性を測定する第二工程と、該対象ゴム架橋物のばね特性を、該基準ゴム架橋物のばね特性と比較して、該対象ロットの原料ゴムを製品組成で混練する場合に採用する配合条件および練り条件のうちの一つ以上を設定する第三工程と、を有し、該第三工程において設定される条件で、該対象ロットの原料ゴムを該製品組成で混練して、ばね特性のばらつきが小さい製品用ゴム組成物を得る。

Description

ゴムの混練方法
 本開示は、原料ゴムに配合剤を加えて混練りするゴムの混練方法に関する。
 ゴム製品の製造には、原料ゴムに充填剤、架橋剤などの配合剤を混ぜ合わせて練り込んだ練りゴム(ゴム組成物)が用いられる。練りゴムは、まず原料ゴムを必要に応じて素練りし、次に配合剤のうち架橋系以外の薬剤を加えて混練り(A練り)し、最後に架橋系の薬剤を加えて混練り(B練り)することにより製造される。練りゴムの特性は、後工程における架橋性、加工性などに影響するだけでなく、最終的にはゴム製品の品質に関わる。したがって、ゴム製品の品質向上および品質均一化を図るためには、練りゴムの特性のばらつきを低減することが重要である。
特開平2-227209号公報 特開2005-199503号公報 特開平2-26709号公報
 例えば天然ゴムは、引張り強さが大きく、振動による発熱が少ないなどの優れた性質を有しているため、タイヤ、防振ゴム、ベルトなどの様々なゴム製品に用いられる。天然ゴムの原料ゴム(生ゴム)は、分子量が大きく粘度が高いため、素練りによりゴム分子を切断し分子量を低下させて可塑性を付与してから、配合剤を加える混練りが行われる。原料ゴムの粘度は、産地、加工方法などにより異なる他、温度などの保管環境によっても変化する。このため、同じ練り条件で素練りや混練りを行っても、粘度の違いによりゴムに加わるせん断力などが変化し、配合剤の分散状態が変化するなどして、得られる練りゴムの特性に大きなばらつきが生じてしまう。
 この点、例えば特許文献1には、天然ゴムのロットによるばらつきの影響を受けることなく、素練り完了時に所望のゴム粘度を得る素練り方法として、素練り中にゴム温度と混練装置の駆動用モータの瞬時電力とを監視して、当該瞬時電力が所定の値以下になった時に素練りを停止する方法が記載されている。また、特許文献2には、混練り前および/または混練り中に、原料ゴムの粘度を測定または推測し、その値に基づいて、配合剤の少なくとも一種の配合量を決定する混練方法が記載されている。また、特許文献3には、混練工程中のエラストマーの粘弾性特性に基づいて、混練工程の終了時を決定する混練制御装置が記載されている。
 特許文献1、2に記載されている方法によると、素練り中または混練り中のゴム材料の粘度を推測し、それに基づいて練り時間を調整したり配合剤の配合量を調整したりして、素練りまたは混練り後のゴム材料における粘度のばらつきを抑制している。しかしながら、そもそも天然ゴムの品質には、天然物由来の大きなばらつきがある。本発明者の検討によると、練り工程においてゴム材料の粘度を制御したとしても、得られる練りゴムの特性、具体的には架橋後の硬さ、静的ばね定数などにばらつきが生じることがわかった。練りゴムの特性のばらつきは、最終製品の性能のばらつきに直結する。特に、防振ゴムなどのゴム製品においては、硬さ、静的ばね定数などのばね特性の管理が重要になる。よって、安定した品質のゴム製品を製造するためには、練り工程における粘度管理だけでは充分ではない。特許文献3に記載されている装置によると、混練り中のゴム材料の粘弾性特性を測定し、それに基づいて練り時間を調整して、練りゴムの弾性率のばらつきを抑制している。しかしながら、混練り中に粘弾性特性を測定することは煩雑であり、適用できる装置も限られる。
 本開示は、このような実情に鑑みてなされたものであり、ばね特性のばらつきが小さい練りゴムを得ることができるゴムの混練方法を提供することを課題とする。
 上記課題を解決するため、本開示のゴムの混練方法は、基準ロットの原料ゴムと副材料とを特定組成で配合し混練することにより基準ゴム組成物を調製し、該基準ゴム組成物を架橋した基準ゴム架橋物のばね特性を測定する第一工程と、対象ロットの原料ゴムと副材料とを該第一工程と同じ特定組成で配合し混練することにより対象ゴム組成物を調製し、該対象ゴム組成物を架橋した対象ゴム架橋物のばね特性を測定する第二工程と、該対象ゴム架橋物のばね特性を、該基準ゴム架橋物のばね特性と比較して、該対象ロットの原料ゴムを製品組成で混練する場合に採用する配合条件および練り条件のうちの一つ以上を設定する第三工程と、を有し、該第三工程において設定される条件で、該対象ロットの原料ゴムを該製品組成で混練して製品用ゴム組成物を得ることを特徴とする。
 前述したように、天然ゴムの品質にはばらつきが大きく、原料ゴムのロットが違えば品質も異なる場合が多い。本発明者は、素練り後のゴム材料(以下適宜、「素練りゴム」と称す)の特性のばらつきが、練りゴムの特性のばらつきの要因になると考えて検討を重ねた結果、素練りゴムに架橋に必要な薬剤のみを添加して製造されたゴム架橋物と、製品組成で製造された練りゴムの架橋物と、を比較した場合、ばね特性に相関があることを見いだした。本開示のゴムの混練方法は、この知見に基づいてなされたものであり、予め原料ゴム(素練りゴムを含む)が有するばね特性を把握し、その情報を実際の混練りに活かすことにより、得られるゴム組成物(練りゴム)の特性のばらつきを低減している。すなわち、本開示のゴムの混練方法においては、混練り中のゴム材料の粘度を推測したり粘弾性特性を測定するのではなく、原料ゴムが有するばね特性に基づいて練りゴムのばね特性を予測して、それが所望の値になるよう、混練りに必要な配合条件、練り条件を設定する。
 第一工程においては、基準ロットの原料ゴムを用いた基準ゴム架橋物のばね特性を測定する。第二工程においては、対象ロットの原料ゴムを用いた対象ゴム架橋物のばね特性を測定する。ここで、基準ゴム架橋物と対象ゴム架橋物とは、同じ特定組成を有する。特定組成は、原料ゴムと副材料とからなり、実際の製品組成とは異なる。例えば、副材料を、ばね特性を測定するために必要な最低限の薬剤のみにすることにより、配合剤の影響を極力少なくして原料ゴム自体の特性を求めることができる。第三工程においては、対象ゴム架橋物のばね特性を、基準ゴム架橋物のばね特性と比較して、得られた結果に基づいて、対象ロットの原料ゴムを実際の製品組成で混練する際の配合条件および練り条件のうちの一つ以上を設定する。これにより、対象ロットの原料ゴムを用いて得られる製品用ゴム組成物のばね特性と、基準ロットの原料ゴムを用いて得られる製品用ゴム組成物のばね特性と、の差が小さくなる。すなわち、ばね特性のばらつきが小さくなる。
 このように、本開示のゴムの混練方法によると、製品用ゴム組成物のばね特性のばらつきを低減することができる。結果、ゴム製品の品質向上および品質均一化を図ることができる。また、製品用ゴム組成物のばね特性のばらつきが低減されるため、ゴム製品の不良率が低減し、原料ゴムのロットの無駄を少なくすることができる。
防振ゴムの静的ばね定数の測定結果を示すヒストグラムである。
 本開示のゴムの混練方法の実施の形態について説明する。なお、実施の形態は以下の形態に限定されるものではなく、当業者が行いうる種々の変形的形態、改良的形態で実施することができる。本開示のゴムの混練方法は、第一工程、第二工程、および第三工程を有し、該第三工程において設定される条件で、対象ロットの原料ゴムを製品組成で混練して製品用ゴム組成物を得る。以下、各工程の詳細を説明する。
 <第一工程>
 第一工程においては、基準ロットの原料ゴムと副材料とを特定組成で配合し混練することにより基準ゴム組成物を調製し、該基準ゴム組成物を架橋した基準ゴム架橋物のばね特性を測定する。
 本開示における基準ロット、対象ロットの「ロット」とは、原料ゴムの製造者の管理形態により異なるが、例えば、同一製造日または同一条件で製造された原料ゴムの最小単位を意味する。基準ロットは、対象ロットとは異なるロットであるが、基準ロットと対象ロットとにおける原料ゴムの種類は同じである。原料ゴムの種類は限定されず、製造するゴム製品に応じて適宜選択すればよい。例えば、天然ゴムでも、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、クロロプレンゴムなどの合成ゴムでもよい。本開示のゴムの混練方法で得られる製品用ゴム組成物を用いて防振ゴムを製造する場合には、天然ゴムが好適である。原料ゴムには、製造後のゴムの他、製造後に素練りした素練りゴムも含まれる。
 基準ゴム組成物は、原料ゴムに副材料を配合し混練して調製される。基準ゴム組成物の組成である特定組成は、製品用ゴム組成物の組成、すなわち、対象ロットの原料ゴムを用いて実際にゴム製品を製造する際の製品組成と異なり、架橋可能な組成であれば、特に限定されない。特定組成としては、副材料を脂肪酸、酸化亜鉛、架橋剤、および加硫促進剤に限定した純ゴム組成が望ましい。あるいは、純ゴム組成に補強剤を加えた標準組成が望ましい。配合剤の影響を極力少なくして原料ゴム自体の特性を求めるという観点においては、純ゴム組成がより好適である。各々の薬剤については、原料ゴムの種類に応じて適宜選択すればよい。脂肪酸としては、ステアリン酸、パルミチン酸などが挙げられる。架橋剤としては、硫黄、アルキルフェノールジスルフィドなどの有機硫黄化合物、有機過酸化物などが挙げられる。加硫促進剤としては、グアニジン系、チウラム系、チアゾール系、スルフェンアミド系、ジチオカルバミン酸塩系などの化合物が挙げられる。補強剤としては、カーボンブラック、シリカなどが挙げられる。
 混練は、バンバリーミキサー、ニーダーなどの密閉式混練機、オープンロールなどを用いて行えばよい。原料ゴムに加える副材料は、全てを同時に添加してもよいが、架橋反応を抑制するという観点から、まずは架橋系以外の薬剤を加えて混練りし、その後で架橋系の薬剤を加えて混練りすることが望ましい。このようにして調製された基準ゴム組成物を、所定の温度下で所定時間保持することにより架橋する。例えば、原料ゴムが天然ゴムの場合には、140~180℃の温度下で、5~30分間保持すればよい。そして、得られた基準ゴム架橋物のばね特性を測定する。
 ばね特性としては、静的ばね定数、動的ばね定数、および硬さから選ばれる一つ以上を測定することが望ましい。なかでも、防振性能の指標になるという理由から、静的ばね定数の測定が好適である。静的ばね定数、動的ばね定数については、例えばJIS K6385:2012に規定される方法に従って測定すればよい。硬さについては、例えばJIS K6253-3:2012に規定されるタイプAデュロメータ硬さを測定すればよい。
 <第二工程>
 第二工程においては、対象ロットの原料ゴムと副材料とを該第一工程と同じ特定組成で配合し混練することにより対象ゴム組成物を調製し、該対象ゴム組成物を架橋した対象ゴム架橋物のばね特性を測定する。
 本工程においては、混練対象の対象ロットの原料ゴムについて、第一工程と同様にばね特性を測定する。原料ゴム、対象ゴム組成物の特定組成については、前述した基準ロットのそれと同じである。また、混練方法、架橋方法、対象ゴム架橋物のばね特性の測定方法についても第一工程と同じである。
 <第三工程>
 第三工程においては、第二工程で測定された対象ゴム架橋物のばね特性を、第一工程で測定された基準ゴム架橋物のばね特性と比較して、対象ロットの原料ゴムを製品組成で混練する場合に採用する配合条件および練り条件のうちの一つ以上を設定する。
 本工程においては、対象ゴム架橋物のばね特性を基準ゴム架橋物のばね特性と比較して、その値が同等であるか、どの程度大きいかまたは小さいかを確認する。比較対象である基準ゴム架橋物のばね特性は、一つの基準ロットの原料ゴムを用いて測定されるばね特性、または異なる基準ロットの原料ゴムを用いて該基準ロットごとに測定されるばね特性の平均値にするとよい。比較が容易であるという理由から、比較対象である基準ゴム架橋物のばね特性として、一つの基準ロットの原料ゴムを用いて測定されるばね特性を採用するとよい。この場合、一つの基準ロットをどのロットにするかは限定されないが、管理しやすいという理由から、対象ロットの一つ前のロットを基準ロットにするとよい。一つ前のロットとは、対象ロットの直前に混練に供されたロットである。原料ゴムのロットには、通常、管理するための番号(ロット番号)が付与される。例えば、原料ゴムのロット番号が、混練される順に1、2、・・・と連続する自然数で付与される場合、対象ロットのロット番号が「n」であれば、ロット番号「n-1」のロットが一つ前のロットになる(nは2以上の自然数)。
 実際に対象ロットの原料ゴムを混練する際の製品組成は、製造するゴム製品に応じて適宜選択すればよい。例えば、原料ゴムに添加する配合剤として、脂肪酸、酸化亜鉛、補強剤、非補強性充填剤(炭酸カルシウム、タルクなど)、老化防止剤、軟化剤、着色剤、架橋剤、および加硫促進剤などが挙げられる。例えば、防振ゴム用の製品組成としては、天然ゴム(原料ゴム)、脂肪酸、酸化亜鉛、補強剤、老化防止剤、軟化剤、架橋剤、および加硫促進剤からなる組成が好適である。この場合、脂肪酸としては、ステアリン酸、パルミチン酸などを用いればよい。補強剤としては、カーボンブラック、シリカなどを用いればよい。老化防止剤としては、カルバメート系、フェニレンジアミン系、フェノール系、ジフェニルアミン系、キノリン系、イミダゾール系の化合物、ワックス類などを用いればよい。軟化剤としては、ナフテン系オイル、パラフィン系オイル、アロマ系オイルなどを用いればよい。架橋剤としては、硫黄、アルキルフェノールジスルフィドなどの有機硫黄化合物などを用いればよい。加硫促進剤としては、グアニジン系、チウラム系、チアゾール系、スルフェンアミド系、ジチオカルバミン酸塩系などの化合物を用いればよい。
 混練する際に設定が必要な条件は種々あるが、本工程において設定する配合条件としては、原料ゴムのブレンド量、カーボンブラック量(補強剤量)、架橋剤量、オイル量(軟化剤量)などが挙げられる。例えば、対象ゴム架橋物のばね特性が、基準ゴム架橋物のばね特性よりも大きい場合、対象ロットの原料ゴムと同種で、ばね特性がより小さい(より軟らかい)ゴムをブレンドするとよい。これ以外にも、予め設定されている基準仕様より、カーボンブラック量を少なくしたり、架橋剤量を少なくしたり、オイル量を多くしてもよい。本工程において設定する練り条件としては、使用する密閉式混練機の電力値、ローターの回転速度、混練時のゴム材料の温度、練り時間などが挙げられる。例えば、対象ゴム架橋物のばね特性が、基準ゴム架橋物のばね特性と異なる場合、予め設定されている基準仕様に対して、密閉式混練機の積算電力量、ローターの回転速度、混練時のゴム材料の温度、練り時間などを調整するとよい。本工程においては、配合条件、練り条件のいずれか一方を設定してもよく、両方を設定してもよい。条件の設定としては、基準仕様からの変更だけでなく、基準仕様をそのまま採用することも含まれる。例えば、対象ゴム架橋物のばね特性が、基準ゴム架橋物のばね特性と同等の場合など、予め設定されている基準仕様を変更する必要がないと判断した場合には、当該基準仕様をそのまま採用して、すなわち配合条件、練り条件を調整せずに設定すればよい。
 本開示のゴムの混練方法においては、第三工程において設定される条件で、対象ロットの原料ゴムを製品組成で混練して製品用ゴム組成物を得る。混練は、バンバリーミキサー、ニーダーなどの密閉式混練機、オープンロールなどを用いて行えばよい。原料ゴムに加える配合剤は、全てを同時に添加してもよいが、架橋反応を抑制するという観点から、まずは架橋系以外の薬剤を加えて混練りし、その後で架橋系の薬剤を加えて混練りすることが望ましい。防振ゴム用の製品組成を一例としてより詳しく説明すると、まず原料ゴムとしての天然ゴムに、架橋剤および加硫促進剤を除いた配合剤を加えてバンバリーミキサーにより混練した後、混練物をオープンロールに移し、架橋剤および加硫促進剤を加えて、さらに混練すればよい。得られた製品用ゴム組成物は、射出成形などの方法で架橋、成形することにより、防振ゴムなどのゴム製品になる。なお、同一ロットの原料ゴムを複数回に分けて混練する場合がある。この場合、各々の混練工程において、配合条件および練り条件を追加調整しても構わない。
 次に、実施例を挙げて本開示をより具体的に説明する。
 (1)実施例1
 <第一工程>
 まず、基準ロットとしてのロット1の天然ゴムと副材料とを、表1に示す純ゴム組成で配合し、混練することにより基準ゴム組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
表1中、使用した副材料の詳細は、次のとおりである。なお、使用した天然ゴムは、予め素練りしておいた素練りゴムである(以下、対象ロットの天然ゴムについても同じ)。
脂肪酸:ステアリン酸(花王(株)製「ルナック(登録商標)S-70V」)。
酸化亜鉛:酸化亜鉛2種(堺化学工業(株)製)。
架橋剤:硫黄(細井化学工業(株)製、微粉硫黄)。
加硫促進剤:チアゾール系(三新化学工業(株)製「サンセラー(登録商標)M-G」)。
 基準ゴム組成物の調製は、左右二本のロールを備えるオープンロールを用いて、次の(a)~(f)の手順で行った。
(a)ロール間隙を0.2mmにして、天然ゴムをロールに巻き付けないで2回通す。
(b)ロール間隙を1.4mmにして、天然ゴムをロールに巻き付けて練り、平滑な帯状になったらロール間隙を1.8mmに広げる。
(c)副材料を全て加える。
(d)左右交互に切り返しを各3回行う。
(e)ゴム材料をロールから切り放し、ロールの間隙を0.8mmにして丸め通しを6回行う。
(f)ゴム材料が厚さ2.2mmのシート状になったらロールから取り出す。
 次に、得られた基準ゴム組成物を金型に収容し、150℃で30分間保持することにより架橋して、基準ゴム架橋物の円柱状のサンプルを製造した。サンプルの大きさは、直径29.0±0.5mm、厚さ12.5±0.5mmとした。製造したサンプルを用いて、基準ゴム架橋物の静的ばね定数を測定した。静的ばね定数の測定は、JIS K6385:2012に規定される方法に従って行った。具体的には、サンプルの厚さ方向に荷重を加えてサンプルを10±1mm/minの速度で圧縮し、サンプルの変形量が所定量に達したら直ちに同じ速度で除荷して復元した。そして、得られた荷重-変形曲線から静的ばね定数を求めた。結果、基準ゴム架橋物の静的ばね定数は、80N/mmであった。
 <第二工程>
 対象ロットとしてのロット2の天然ゴムと副材料とを、先の表1に示した純ゴム組成で配合し、混練することにより対象ゴム組成物を調製した。対象ゴム組成物の調製方法は、前述した基準ゴム組成物の調製方法と同じであり、オープンロールを用いて行った。そして、前述した基準ゴム架橋物のサンプルの製造方法と同様の方法で、対象ゴム組成物を架橋して対象ゴム架橋物のサンプルを製造し、前述した静的ばね定数の測定方法により、同サンプルの静的ばね定数を測定した。ロット2の対象ゴム架橋物の静的ばね定数は、80N/mmであった。
 <第三工程>
 ロット2の対象ゴム架橋物の静的ばね定数を、基準ゴム架橋物の静的ばね定数と比較したところ、いずれも80N/mmで両者は同等であった。したがって、ロット2の天然ゴムを製品組成で混練する場合の配合条件、練り条件については、予め設定されている基準仕様を変更する必要がないと判断し、基準仕様のまま設定した。ちなみに、基準仕様においては、原料ゴムのブレンドは行わない設定(「原料ゴムのブレンド量0」)になっている。
 <製品組成での混練>
 ロット2の天然ゴムと配合剤とを、表2に示す防振ゴム用の製品組成で配合し、混練することにより防振ゴム用ゴム組成物を調製した。
Figure JPOXMLDOC01-appb-T000002
表2中、使用した配合剤の詳細は、次のとおりである。
脂肪酸:ステアリン酸(花王(株)製「ルナック(登録商標)S-70V」)。
酸化亜鉛:酸化亜鉛2種(堺化学工業(株)製)。
老化防止剤:フェニレンジアミン系(住友化学(株)製「アンチゲン(登録商標)6C」。
補強剤:HAF級カーボンブラック(東海カーボン(株)製「シースト(登録商標)3」)
軟化剤:ナフテン系オイル(日本サン石油(株)製「SUNTHENE410」)
架橋剤:硫黄(細井化学工業(株)製、微粉硫黄)。
加硫促進剤:スルフェンアミド系(三新化学工業(株)製「サンセラー(登録商標)CM-G」)。
 防振ゴム用ゴム組成物の調製は、次のようにして行った。まず、ロット2の天然ゴムに架橋剤および加硫促進剤以外の薬剤を加え、バンバリーミキサーを用いて60~160℃で5分間混練した。次に、混練物をオープンロールに移し、架橋剤および加硫促進剤を加えて80~100℃で5分間混練した。
 (2)実施例2
 <第一工程>
 基準ロットを実施例1のロット1とし、後の第三工程で対象ゴム架橋物と比較するばね特性を、実施例1と同じ基準ゴム架橋物の静的ばね定数とした。
 <第二工程>
 対象ロットとしてのロット3の天然ゴムと副材料とを、先の表1に示した純ゴム組成で配合し、混練することにより対象ゴム組成物を調製した。対象ゴム組成物の調製方法は、実施例1の基準ゴム組成物の調製方法と同じであり、オープンロールを用いて行った。そして、実施例1の基準ゴム架橋物のサンプルの製造方法と同様の方法で、対象ゴム組成物を架橋して対象ゴム架橋物のサンプルを製造し、実施例1と同じ静的ばね定数の測定方法により、同サンプルの静的ばね定数を測定した。ロット3の対象ゴム架橋物の静的ばね定数は、84N/mmであった。
 <第三工程>
 ロット3の対象ゴム架橋物の静的ばね定数を、基準ゴム架橋物の静的ばね定数と比較したところ、ロット3の対象ゴム架橋物の静的ばね定数の方が4N/mm大きかった。したがって、ロット3の天然ゴムを製品組成で混練する場合に、配合条件の「原料ゴムのブレンド量」を変更して設定することにした。具体的には、調整用ゴムとして、ロット3の対象ゴム架橋物と同じ純ゴム組成で測定された静的ばね定数が76N/mmの天然ゴムを準備して、ロット3の天然ゴムと当該調整用天然ゴムとが質量比で1:1になるようにブレンドすることにした。
 <製品組成での混練>
 ロット3の天然ゴムおよび調整用天然ゴムと配合剤とを、表3に示す防振ゴム用の製品組成で配合し、混練することにより防振ゴム用ゴム組成物を調製した。
Figure JPOXMLDOC01-appb-T000003
使用した配合剤は全て、実施例1の防振ゴム用ゴム組成物を調製した際に使用したものと同じである。また、混練方法についても、ロット2の天然ゴムを、ロット3の天然ゴムおよび調整用天然ゴムに変更した点以外は、実施例1と同じである。
 (3)実施例3
 実施例2における第三工程を変更し、ロット3の天然ゴムを用いて防振ゴム用ゴム組成物を調製した。本実施例3の第三工程においては、ロット3の天然ゴムを製品組成で混練する場合の条件として、配合条件の「原料ゴムのブレンド量」ではなく、練り条件の「密閉式混練機の電力値」を変更して設定した。具体的には、バンバリーミキサーを用いた混練工程における積算電力量の狙い値を、基準仕様の16kWhよりも大きい20kWhに設定した。
 ロット3の天然ゴムと配合剤との製品組成は、表4に示すとおりである。
Figure JPOXMLDOC01-appb-T000004
使用した配合剤は全て、実施例1の防振ゴム用ゴム組成物を調製した際に使用したものと同じである。まず、ロット3の天然ゴムに架橋剤および加硫促進剤以外の薬剤を加え、バンバリーミキサーを用いて60~160℃で5分間混練した。この際、バンバリーミキサーの積算電力量の狙い値を20kWhに設定した。次に、混練物をオープンロールに移し、架橋剤および加硫促進剤を加えて80~100℃で5分間混練した。
 (4)ばね特性のばらつきの評価
 実施例2の混練方法、すなわち、第三工程において、対象ゴム架橋物の静的ばね定数と基準ゴム架橋物の静的ばね定数とを比較した結果に基づいて「原料ゴムのブレンド量」を設定する混練方法により、天然ゴムのロットごとに防振ゴム用ゴム組成物を調製し、それを架橋して防振ゴムを製造した。静的ばね定数の比較は、対象ロットとその一つ前のロットとを用いて行った。使用した天然ゴムのロット数は60ロットである。なお、同一ロットの防振ゴム用ゴム組成物から複数の防振ゴムを製造したため、最終的に得られた防振ゴムの個数は265個であった。そして、製造された防振ゴムの静的ばね定数を、前述したJIS K6385:2012に規定される方法に従って測定した。これとは別に、比較のため、ロットごとのばね特性を考慮せず、配合条件、練り条件などを基準仕様のまま一定にして混練することにより防振ゴム用ゴム組成物を調製し、それを架橋して防振ゴムを製造した。以下、この混練方法を「比較例の混練方法」と称す。比較例の混練方法においては、使用した天然ゴムのロット数は65ロットであり、実施例2の場合と同様、同一ロットの防振ゴム用ゴム組成物から複数の防振ゴムを製造したため、最終的に得られた防振ゴムの個数は283個であった。そして、製造された防振ゴムの静的ばね定数を、実施例2と同じ方法で測定した。
 図1に、各々の混練方法により得られた防振ゴムの静的ばね定数の測定結果を示す。表5に、静的ばね定数の測定結果から算出された標準偏差などの値を示す。
Figure JPOXMLDOC01-appb-T000005
 図1および表5に示すように、実施例2の混練方法を用いた場合、比較例の混練方法を用いた場合と比較して、静的ばね定数のばらつきが小さくなった。すなわち、本開示のゴムの混練方法を用いると、ばね特性のばらつきが小さく、安定した品質の防振ゴムを製造できることが確認された。

Claims (12)

  1.  基準ロットの原料ゴムと副材料とを特定組成で配合し混練することにより基準ゴム組成物を調製し、該基準ゴム組成物を架橋した基準ゴム架橋物のばね特性を測定する第一工程と、
     対象ロットの原料ゴムと副材料とを該第一工程と同じ特定組成で配合し混練することにより対象ゴム組成物を調製し、該対象ゴム組成物を架橋した対象ゴム架橋物のばね特性を測定する第二工程と、
     該対象ゴム架橋物のばね特性を、該基準ゴム架橋物のばね特性と比較して、該対象ロットの原料ゴムを製品組成で混練する場合に採用する配合条件および練り条件のうちの一つ以上を設定する第三工程と、
    を有し、
     該第三工程において設定される条件で、該対象ロットの原料ゴムを該製品組成で混練して製品用ゴム組成物を得ることを特徴とするゴムの混練方法。
  2.  前記特定組成は、前記副材料が脂肪酸、酸化亜鉛、架橋剤、および加硫促進剤からなる純ゴム組成、または該副材料が脂肪酸、酸化亜鉛、補強剤、架橋剤、および加硫促進剤からなる標準組成である請求項1に記載のゴムの混練方法。
  3.  前記特定組成は、前記副材料が脂肪酸、酸化亜鉛、架橋剤、および加硫促進剤からなる純ゴム組成である請求項1に記載のゴムの混練方法。
  4.  前記第三工程における前記基準ゴム架橋物のばね特性は、一つの基準ロットの原料ゴムを用いて測定されるばね特性、または異なる基準ロットの原料ゴムを用いて該基準ロットごとに測定されるばね特性の平均値である請求項1ないし請求項3のいずれかに記載のゴムの混練方法。
  5.  前記第三工程における前記基準ゴム架橋物のばね特性は、一つの基準ロットの原料ゴムを用いて測定されるばね特性である請求項1ないし請求項3のいずれかに記載のゴムの混練方法。
  6.  前記一つの基準ロットは、前記対象ロットの一つ前のロットである請求項4または請求項5に記載のゴムの混練方法。
  7.  前記ばね特性は、静的ばね定数、動的ばね定数、および硬さから選ばれる一つ以上である請求項1ないし請求項6のいずれかに記載のゴムの混練方法。
  8.  前記ばね特性は、静的ばね定数である請求項1ないし請求項6のいずれかに記載のゴムの混練方法。
  9.  前記第三工程における前記配合条件は、原料ゴムのブレンド量、カーボンブラック量、架橋剤量、およびオイル量から選ばれる一つ以上である請求項1ないし請求項8のいずれかに記載のゴムの混練方法。
  10.  前記第三工程における前記練り条件は、使用する密閉式混練機の電力値、ローターの回転速度、混練時のゴム材料の温度、および練り時間から選ばれる一つ以上である請求項1ないし請求項9のいずれかに記載のゴムの混練方法。
  11.  前記基準ロットおよび前記対象ロットの前記原料ゴムは、天然ゴムである請求項1ないし請求項10のいずれかに記載のゴムの混練方法。
  12.  前記第三工程における前記製品組成は、防振ゴム用の組成であり、
     該第三工程において設定される条件で、前記対象ロットの原料ゴムを該製品組成で混練して防振ゴム用ゴム組成物を得る請求項1ないし請求項11のいずれかに記載のゴムの混練方法。
PCT/JP2021/040025 2021-10-29 2021-10-29 ゴムの混練方法 WO2023073923A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180062397.5A CN116367980B (zh) 2021-10-29 2021-10-29 橡胶的混炼方法
JP2022523475A JP7133119B1 (ja) 2021-10-29 2021-10-29 ゴムの混練方法
PCT/JP2021/040025 WO2023073923A1 (ja) 2021-10-29 2021-10-29 ゴムの混練方法
EP21962465.7A EP4339237A1 (en) 2021-10-29 2021-10-29 Rubber kneading method
US17/939,923 US20230135651A1 (en) 2021-10-29 2022-09-07 Method for kneading rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040025 WO2023073923A1 (ja) 2021-10-29 2021-10-29 ゴムの混練方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/939,923 Continuation US20230135651A1 (en) 2021-10-29 2022-09-07 Method for kneading rubber

Publications (1)

Publication Number Publication Date
WO2023073923A1 true WO2023073923A1 (ja) 2023-05-04

Family

ID=83191732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040025 WO2023073923A1 (ja) 2021-10-29 2021-10-29 ゴムの混練方法

Country Status (5)

Country Link
US (1) US20230135651A1 (ja)
EP (1) EP4339237A1 (ja)
JP (1) JP7133119B1 (ja)
CN (1) CN116367980B (ja)
WO (1) WO2023073923A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226709A (ja) 1988-07-18 1990-01-29 Nok Corp エラストマーの混練制御装置
JPH02227209A (ja) 1989-02-28 1990-09-10 Tokai Rubber Ind Ltd 天然ゴムの素練り方法
JP2001232632A (ja) * 2000-02-22 2001-08-28 Nok Corp 混練システムおよび混練方法
JP2005199503A (ja) 2004-01-14 2005-07-28 Bridgestone Corp ゴムの混練方法
JP2013170268A (ja) * 2012-02-23 2013-09-02 Tokai Rubber Ind Ltd 防振ゴム組成物および防振ゴム部材
JP2019104109A (ja) * 2017-12-08 2019-06-27 横浜ゴム株式会社 未加硫ゴム材料の製造方法および製造システム
JP2019202507A (ja) * 2018-05-25 2019-11-28 横浜ゴム株式会社 ゴム材料の混練方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124942A (ja) * 1993-10-29 1995-05-16 Hitachi Ltd インターナルミキサの混練り制御方法
JP4443811B2 (ja) 2000-01-31 2010-03-31 三井化学株式会社 ゴム組成物の混練状態の試験方法およびゴム組成物の製造方法
CN101043994B (zh) * 2004-10-19 2010-06-09 横滨橡胶株式会社 橡胶材料的混炼装置以及混炼方法
US9259856B2 (en) * 2011-07-12 2016-02-16 Toyo Tire & Rubber Co., Ltd. Methods for controlling the mixing process of processing rubber
JP2015214119A (ja) * 2014-05-13 2015-12-03 横浜ゴム株式会社 ゴム混練物の品質評価方法
DE102016103823A1 (de) * 2016-03-03 2017-09-07 Kraiburg Tpe Gmbh & Co. Kg Thermoplastische Elastomerzusammensetzung aus einem Elastomer und einem nicht-elastomeren Polyolefin, das mit einem Anhydrid einer organischen Carbonsäure funktionalisiert ist
CN112143047B (zh) * 2020-09-23 2022-12-30 常熟市海虞橡胶有限公司 一种橡胶的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226709A (ja) 1988-07-18 1990-01-29 Nok Corp エラストマーの混練制御装置
JPH02227209A (ja) 1989-02-28 1990-09-10 Tokai Rubber Ind Ltd 天然ゴムの素練り方法
JP2001232632A (ja) * 2000-02-22 2001-08-28 Nok Corp 混練システムおよび混練方法
JP2005199503A (ja) 2004-01-14 2005-07-28 Bridgestone Corp ゴムの混練方法
JP2013170268A (ja) * 2012-02-23 2013-09-02 Tokai Rubber Ind Ltd 防振ゴム組成物および防振ゴム部材
JP2019104109A (ja) * 2017-12-08 2019-06-27 横浜ゴム株式会社 未加硫ゴム材料の製造方法および製造システム
JP2019202507A (ja) * 2018-05-25 2019-11-28 横浜ゴム株式会社 ゴム材料の混練方法

Also Published As

Publication number Publication date
CN116367980A (zh) 2023-06-30
US20230135651A1 (en) 2023-05-04
JP7133119B1 (ja) 2022-09-07
JPWO2023073923A1 (ja) 2023-05-04
EP4339237A1 (en) 2024-03-20
CN116367980B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US5710218A (en) Ethylene-propylene-diene rubber, elastomer composition and vulcanized rubber thereof
US4396051A (en) Pneumatic tires
JP2012092243A (ja) ブラダー用ゴム組成物及びブラダー
JP6488118B2 (ja) ブラダー用ゴム組成物およびその製造方法、ならびにブラダー
US4215021A (en) Coating rubber composition for tire cords
EP0446380B1 (en) Ethylene-propylene-diene rubber, elastomer composition, and vulcanized rubber prepared therefrom
WO2023073923A1 (ja) ゴムの混練方法
US7678855B2 (en) Rubber composition
US20030018113A1 (en) Method of testing rubber composition for kneaded state and process for producing rubber composition
JP7124698B2 (ja) インナーライナー用ゴム組成物及び空気入りタイヤ
US20080085970A1 (en) Rubber composition for tire inner liner and pneumatic tire using the same
Severe et al. Dynamically vulcanized blends of oil‐resistant elastomers with HNBR
US5698639A (en) Ethylene-propylene-diene rubber, elastomer composition and vulcanized rubber thereof
Biswas et al. SBR–XNBR blends: a novel approach towards compatibilization
JP7225939B2 (ja) ゴム組成物の製造方法
CN113881114B (zh) 一种改性橡胶及其制备方法
Chattaraj et al. Effect of high crystalline trans-polyoctenylene (TOR) on different cure systems of NR compounds
WO2024095549A1 (ja) ゴム材料及びその製造方法、並びにタイヤ
KR100454265B1 (ko) 고내구성 고무조성물
JP4128210B2 (ja) タイヤインナーライナー用ゴム組成物およびこれを用いた空気入りタイヤ
EP3998782A1 (en) Composition for acoustic member and acoustic member
JP2005199503A (ja) ゴムの混練方法
JP2018193484A (ja) ブラダー用ゴム組成物の製造方法
JP2009275165A (ja) ゴム組成物及びその製造方法
US20230183447A1 (en) Conductive rubber compositions and articles composed of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022523475

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962465

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023017686

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021962465

Country of ref document: EP

Ref document number: 21962465.7

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021962465

Country of ref document: EP

Effective date: 20231214

ENP Entry into the national phase

Ref document number: 112023017686

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230831