WO2023072616A1 - Cuve étanche et thermiquement isolante - Google Patents

Cuve étanche et thermiquement isolante Download PDF

Info

Publication number
WO2023072616A1
WO2023072616A1 PCT/EP2022/078557 EP2022078557W WO2023072616A1 WO 2023072616 A1 WO2023072616 A1 WO 2023072616A1 EP 2022078557 W EP2022078557 W EP 2022078557W WO 2023072616 A1 WO2023072616 A1 WO 2023072616A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tank
collar
guide device
fixed
Prior art date
Application number
PCT/EP2022/078557
Other languages
English (en)
Inventor
Erwan MICHAUT
Emmanuel HIVERT
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to KR1020247012501A priority Critical patent/KR20240088872A/ko
Priority to CN202280072784.1A priority patent/CN118176384A/zh
Publication of WO2023072616A1 publication Critical patent/WO2023072616A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0379Manholes or access openings for human beings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating membrane tanks.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162°C.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the liquefied gas can also be, for example, ammonia, carbon dioxide, hydrogen, ethanol or even ethylene.
  • These tanks can be installed on land or on a floating structure. In the case of a floating structure, the tank may be intended for the transport of liquefied gas or to receive liquefied gas used as fuel for the propulsion of the floating structure.
  • the loading/unloading tower has a tripod structure, i.e. it has three vertical masts which are each fixed to each other by crosspieces. Each of the vertical masts is hollow. Thus, two of the masts form a line for unloading the tank and to do this each are associated with an unloading pump carried by the loading/unloading tower, close to its lower end.
  • the third mast forms an emergency well allowing the descent of an emergency pump and an unloading line in the event of failure of the other unloading pumps.
  • the loading/unloading tower also carries loading lines which are not one of the three masts. Such loading/unloading towers are for example described in the document WO2019211551.
  • a tank can include one or more loading/unloading towers depending on the case.
  • the loading/unloading tower is also equipped with a base which is attached to the lower end of the three masts and which supports the unloading pumps.
  • the loading/unloading tower further comprises a guide device which is fixed against the underside of the base and which cooperates with a support foot which is fixed to the bottom wall of the supporting structure.
  • a guide device aims to allow the relative movements of the loading/unloading tower with respect to the support leg in the height direction of the tank in order to allow the loading/unloading tower to contract or to expand in depending on the temperatures to which it is subjected while preventing horizontal movements of the base of the loading/unloading tower.
  • One idea underlying the invention is to simplify the sealed and thermally insulating tank and in particular the structure crossing the tank formed by the loading and unloading pipes while taking into account the phenomena of thermal contraction and expansion of the pipes.
  • the invention provides a sealed and thermally insulating liquefied gas storage tank integrated into a supporting structure, the tank comprising a bottom wall and a ceiling wall opposite the bottom wall in a height direction of the tank, the bottom wall and the ceiling wall being fixed to the supporting structure, in which the ceiling wall is crossed by at least a first pipe and a second pipe, in which the tank is equipped with a support foot passing through the bottom wall and fixed to the supporting structure, and with a guiding device fixed to the supporting foot, the guiding device being configured to ensure guiding in translation in the height direction of the first pipe and of the second pipe, wherein the guide device comprises a first collar disposed all around the first pipe, a second collar disposed all around the second pipe, a support plate fixed to the support foot, a first connecting arm connecting the first collar to the support plate, and a second link arm connecting the second collar to the support plate.
  • the pipes are guided directly by the guide device which is itself fixed to the support foot, without requiring an intermediary as in the prior art with the base of the loading/unloading tower.
  • each of the pipes is individually guided by each of the collars.
  • the guiding device makes it possible to guide the lower end of the pipes in translation according to the height direction of the tank independently of one another. Clamps also help prevent the lower end of the lines from shifting.
  • the connecting arms and the support plate make it possible to transfer the forces undergone by the pipes which would have a component in the plane parallel to the bottom wall, to the support foot.
  • such a tank may comprise one or more of the following characteristics.
  • stiffeners are formed along the first connecting arm and/or the second connecting arm.
  • the first connecting arm and/or the second connecting arm comprises a connecting tube, preferably of circular section, comprising a first end and a second end, and a base connected to the first end of the tube connection, the base being fixed, for example by screwing or welding, to the support plate.
  • one end of at least one of the stiffeners is located against the base of the first link arm or of the second link arm.
  • one end of at least one of the stiffeners formed on the first connecting arm is located against the first collar, preferably welded to the first collar.
  • one end of at least one of the stiffeners formed on the second connecting arm is located against the second collar, preferably welded to the second collar.
  • the stiffeners comprise primary stiffeners and secondary stiffeners, the primary stiffeners extending from the first or second collar to the base of the first link arm or of the second link arm, the secondary stiffeners comprising a first end located against the first or second collar and a second end located at a non-zero distance from the base of the first or second connecting arm.
  • the stiffeners are distributed all around the connecting tube according to a regular angular pitch.
  • the stiffeners make it possible to increase the stiffness and in particular the resistance to bending of the connecting arms.
  • the stiffeners are formed in the form of a gusset.
  • the first collar comprises a first cylindrical portion fixed to the first connecting arm and a second cylindrical portion fixed to said first cylindrical portion of the first collar.
  • the collar has the shape of a right cylinder with a circular, square or rectangular base, preferably with a circular base.
  • the second collar comprises a first cylindrical portion fixed to the second connecting arm and a second cylindrical portion fixed to said first cylindrical portion of the second collar.
  • the second cylindrical portion is fixed to the first cylindrical portion in a removable manner, by bolting.
  • an internal surface of the first collar and/or an internal surface of the second collar is equipped with at least one anti-friction pad extending for example in the height direction.
  • an internal surface of the first collar and/or an internal surface of the second collar is equipped with a plurality of anti-friction pads extending for example in the direction of height and distributed uniformly on the internal surface.
  • the anti-friction buffer is made of a material whose coefficient of static friction on steel is less than or equal to 0.2, preferably less than or equal to 0.1, for example equal to 0.04 in the case of Teflon anti-friction pad
  • the first pipe is a liquefied gas loading pipe connected to a loading pump and the second pipe is a liquefied gas unloading pipe connected to an unloading pump.
  • the guide device is a main guide device, and in which the ceiling wall is crossed by at least one third pipe, the tank being equipped with at least one secondary guide device, the secondary guide being fixed to the first pipe or to the second pipe, the secondary guide device being configured to ensure a guide in translation according to the direction of height of the third pipe, and in which the secondary guide device comprises a third collar disposed all around the third pipe, a third connecting arm connecting the third collar to the first pipe or to the second pipe.
  • the tank comprises, in a thickness direction from the outside towards the inside of the tank, at least one thermally insulating barrier and at least one sealing membrane supported by the thermally insulating barrier and intended to be in contact with the fluid contained in the tank.
  • the tank successively comprises, in a direction of thickness from the outside towards the inside of the tank, a secondary thermally insulating barrier comprising insulating elements resting against the load-bearing structure, a secondary sealing membrane anchored to the insulating elements of the secondary thermally insulating barrier, a primary thermally insulating barrier comprising insulating elements resting against the secondary sealing membrane and a primary sealing membrane anchored to the insulating elements of the primary thermally insulating barrier and intended to be in contact with the fluid contained in the tank.
  • the invention also provides a vessel for the transport of a cold liquid product, the vessel comprising a double hull and an aforementioned tank arranged in the double hull, the vessel extending in a longitudinal direction.
  • the first link arm and the second link arm extend orthogonally to the longitudinal direction.
  • the liquefied gas storage tanks are subject to phenomena of sloshing of the cargo, called "sloshing" in English. These phenomena are likely to be very violent inside the vessel and consequently to generate significant forces in the vessel and in particular on its equipment, such as the first pipe and the second pipe. These sloshing phenomena are greater in a transverse direction of the ship, namely a direction orthogonal to the longitudinal direction of the ship.
  • the guide device is capable of withstanding the main sloshing forces.
  • the first link arm and the second link arm extend in an arm direction forming an angle between 75° and 105° with the longitudinal direction.
  • the arm direction is contained in a plane parallel to the bottom wall.
  • the first pipe and the second pipe are located on either side of a transverse plane passing through the support foot and which is orthogonal to the longitudinal direction, the support plate being positioned in a plane orthogonal to a transverse direction, the transverse direction being perpendicular to the longitudinal direction.
  • the support plate is fixed to the support foot using at least two link plates, the link plates being positioned in a plane orthogonal to the direction of height, the link plates being arranged against the support plate in the longitudinal direction so as to stiffen the support plate in bending.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation or land and a pump to cause a flow of cold liquid product through the insulated pipes from or to the floating or land storage facility to or from the tank of the ship.
  • the invention also provides a method for loading or unloading such a ship, in which a cold liquid product is conveyed through insulated pipes from or to a floating or terrestrial storage installation to or from the ship's tank.
  • FIG. 1 There shows a partial sectional view of a watertight and thermally insulating tank according to one embodiment, comprising in particular on the ceiling wall a dome structure and a manhole structure, and on the bottom wall a support foot .
  • FIG. 1 There is a partial top view of a bottom wall of the sealed and thermally insulating tank, comprising a support leg and a guide device according to one embodiment.
  • FIG. 1 There is a perspective view of a support leg provided with a guide device according to a first embodiment.
  • FIG. 1 There is a perspective view of a support leg provided with a guide device according to a second embodiment.
  • the terms "internal” and “external” designate relative positions of elements of the sealed and thermally insulating tank 71 with respect to the interior of the tank, the so-called internal elements being closer to the interior. of the tank than the so-called external elements.
  • a sealed and thermally insulating tank 71 for liquefied gas which is housed inside the support structure 1 and anchored thereto, the support structure 3 being for example formed by the double hull 72 of a ship 70, such than represented on the .
  • Tank 71 is a membrane tank for storing liquefied gas.
  • the tank 71 has a multilayer structure comprising, from the outside towards the inside along a direction of wall thickness, a secondary thermally insulating barrier comprising insulating elements resting against the supporting structure 1, a secondary sealing membrane resting against the secondary thermally insulating barrier, a primary thermally insulating barrier comprising insulating elements resting against the secondary sealing membrane and a primary sealing membrane 2 intended to be in contact with the liquefied gas contained in the tank 71.
  • the membrane of primary sealing 2 defines an internal space 3 intended to receive the liquefied gas.
  • such membrane tanks are described in particular in patent applications WO14057221, FR2691520 and FR2877638.
  • the liquefied gas intended to be stored in the tank 1 can in particular be a liquefied natural gas (LNG), that is to say a gas mixture mainly comprising methane as well as one or more other hydrocarbons.
  • Liquefied gas can also be ethane or liquefied petroleum gas (LPG), i.e. a mixture of hydrocarbons resulting from petroleum refining comprising mainly propane and butane.
  • the tank 71 is a polyhedral tank comprising in particular a ceiling wall 4 fixed to an upper load-bearing wall 5 of the load-bearing structure 1, and a bottom wall 6 fixed to a lower load-bearing wall 7 of the load-bearing structure 1, the ceiling wall 4 and the bottom wall 6 being spaced from each other in a direction of height H.
  • the tank 71 also comprises a front wall and a rear wall 20, visible on the , spaced from the front wall in a longitudinal direction L.
  • the tank 71 also comprises side walls which close the internal space 3 with the bottom wall 6, the ceiling wall 4, the front wall and the rear wall 20. The side walls are arranged on either side of the bottom wall 6 in a transverse direction T perpendicular to the longitudinal direction L.
  • the longitudinal direction L corresponds to the longitudinal direction of the vessel 70.
  • the tank 71 comprises a dome structure 8 and a manhole structure 9, each structure 8, 9 passing through an opening made in the ceiling wall 4 and the upper load-bearing wall 5.
  • the hole structure manhole 9 is located at a distance from the dome structure 8 as shown in the .
  • the dome structure 8 allows in particular the liquefied gas loading and unloading pipes 10, 11 to pass through the ceiling wall 4 in a sealed manner.
  • the manhole structure 9, for its part, makes it possible to maintain access for an operator who leads to the internal space 3 of the tank 1, for example for repair operations.
  • the loading line 10 and the unloading line 11 open into the internal space 3 of the tank 1 in order to load or unload the latter with liquefied gas.
  • a support foot 12 passing through the bottom wall 6 and fixed to the lower bearing wall 7.
  • the support foot 12 is provided with a guide device 13 configured to ensure a guide in translation according to the direction of height of the loading pipe 10 and the unloading pipe 11, and maintain the loading and unloading pipes 10, 11 vertically in the axis of the dome structure 8.
  • the support foot 12 is thus positioned close to the axis of the dome structure 8.
  • the dome structure 8 and the support foot 12 are respectively located in a zone of the ceiling wall 4 and of the bottom wall 6 closer to the rear wall 20 than to the wall before, as shown in .
  • the support foot 12 and the guide device 13 will be described in more detail below.
  • Figures 2 to 5 show the support foot 12 equipped with a guide device 13 according to different embodiments.
  • the support foot 12 has a shape of revolution with a circular section extending in the direction of height H, with a frustoconical lower part 14 which is connected at its end of smaller diameter to a cylindrical upper part 15.
  • the larger diameter base of the frustoconical part 14 is fixed to the lower supporting wall 7 of the supporting structure 3.
  • the lower frustoconical part 14 extends through the thickness of the bottom wall 6 of the tank 71 beyond from the level of the primary sealing membrane 2.
  • the upper cylindrical part 15 is sealed in a sealed manner, for example using a circular plate.
  • the secondary and primary sealing membranes 2 are connected in a sealed manner to the tapered lower part 14 using a secondary collar 16 and a primary collar 17.
  • the guide device 13 is welded to the upper cylindrical part 15 of the support foot 12.
  • the guide device 13 comprises a support plate 18 which is fixed to the upper cylindrical part 15 by means of two connecting plates 19, as seen in notably.
  • the connecting plates 19 are for example welded on the one hand to the upper cylindrical part 15 and on the other hand to the support plate 18.
  • the support plate 18 is positioned in a plane orthogonal to the longitudinal direction L while the plates connecting 19 are arranged parallel to each other in planes orthogonal to the direction of height H.
  • the connecting plates 19 play a role both fixing the support plate 18 but also a role of stiffener.
  • the guide device 13 also comprises a first link arm 21 and a second link arm 22.
  • Each link arm 21, 22 comprises a base 23, for example in the form of a rectangular plate, which is fixed for example by screwing to the support plate 18.
  • the base 23 of the first link arm 21 and the base 23 of the second link arm are arranged at two ends of the support plate 18.
  • Each connecting arm 21, 22 further comprises a connecting tube 24 connected to the base 23 at a first end and extending along an axis parallel to the transverse direction T.
  • the guide device 13 finally comprises a first collar 25 disposed all around the loading pipe 10 and fixed to a second end of the first connecting arm 21 and a second collar 26 placed all around the unloading pipe 11 and fixed to a second end of the second connecting arm 22.
  • the first collar 25 and the second collar 26 have a central axis which is oriented vertically so as to guide the pipes 10, 11 in translation along the height direction of the tank.
  • Each collar 25, 26 is formed of a first cylindrical portion 27 welded to the second end of the connecting tube 24.
  • the first cylindrical portion 27 which comprises attachment zones 28 on either side of the first cylindrical portion 27
  • Each collar 25, 26 is also formed of a second cylindrical portion 29 comprising attachment zones 28 on either side of the second cylindrical portion 29 and arranged opposite the attachment zones 28 of the first cylindrical portion 27.
  • the first cylindrical portion 27 is removably fixed, by bolting, to the second cylindrical portion 29 so as to form a cylindrical collar surrounding one of the pipes 10, 11.
  • the inner surface of the first collar 25 and the inner surface of the second collar 26 are equipped with a plurality of anti-friction pads 30 each extending in the height direction and evenly distributed on the inner surface.
  • the anti-friction buffers 30 are configured to serve as a friction-limiting contact surface for the pipes 10, 11.
  • the anti-friction buffers are made of a material chosen from, for example, polytetrafluoroethylene (PTFE) or high-density polyethylene (HDPE).
  • stiffeners 31, 32 extending in the longitudinal direction of the connection arms 21, 22 are welded along the tubes of link 24.
  • FIG. 1 There shows a first embodiment of the guide device 13 while Figures 4 and 5 show a second embodiment which differs in the number and arrangement of the stiffeners 31, 32 on the connecting tubes 24.
  • the connecting tube 24 of the first connecting arm 21 comprises two primary stiffeners 31 arranged on either side of the connecting tube 24 as well as two primary stiffeners 31 positioned in a plane orthogonal to the direction of height H passing through the central axis of the connecting tube 24.
  • the primary stiffeners 31 of the first connecting arm 21 further comprise a first end welded against the first collar 25 and a second end opposite the first end welded against the base 23 of the first connecting arm 21 so that the primary stiffeners 31 extend over the entire dimension of the connecting tube 24 taken in the longitudinal direction L.
  • the connecting tube 24 of the second connecting arm 22 comprises two secondary stiffeners 32 arranged on either side of the connecting tube 24 as well as two secondary stiffeners 32 positioned in a plane orthogonal to the direction of height H passing through the axis of the connecting tube 24.
  • the secondary stiffeners 32 of the second connecting arm 22 further comprise a first end welded against the second collar 26 and a second end opposite the first end located at a distance from the base 23 of the second connecting arm 22 so that the secondary stiffeners 32 extend over a portion of the dimension of the connecting tube 24 taken in the longitudinal direction L.
  • connection tubes 24 can be equipped with at least two stiffeners 31, 32, the stiffeners possibly being exclusively primary 31 or secondary 32 stiffeners or else an alternation of primary stiffeners 31 and secondary stiffeners 32.
  • the loading pipe 10 and secondary pipes 33 have been represented with the support foot 12 and the guide device 13.
  • the loading pipe 10 thus passes the first collar 26 of the guide device 13.
  • these are also guided in translation in the direction of height H using secondary guide devices 34.
  • the secondary guide devices 34 comprise on the one hand a secondary collar 36 disposed all around one of the secondary pipes 33 and a secondary connecting arm 35 fixed on the one hand to the secondary collar 36 and on the other hand to the one of the pipes 10, 11.
  • the secondary guide devices 35 are fixed to the loading pipe 10 and each secondary pipe 33 is guided by a plurality of secondary guide devices 35 distributed in the height direction H.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary leaktight barrier intended to be in contact with the LNG contained in the tank, a secondary leaktight barrier arranged between the primary leaktight barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank 71.
  • the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading/unloading pipes 73.
  • the orientable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)

Abstract

L'invention concerne une cuve étanche et thermiquement isolante (71) comprenant une paroi de fond (6) et une paroi de plafond (4), dans laquelle la paroi de plafond (4) est traversée par au moins une première conduite (10) et une deuxième conduite (11), dans laquelle la cuve (71) est équipée d'un pied de support (12) passant au travers de la paroi de fond (6) et fixé à la structure porteuse (1), et d'un dispositif de guidage (13) fixé au pied de support (12), le dispositif de guidage (13) étant configuré pour assurer un guidage en translation selon la direction de hauteur (H) de la première conduite (10) et de la deuxième conduite (11), dans laquelle le dispositif de guidage (13) comporte un premier collier (25) disposé tout autour de la première conduite (10), un deuxième collier (26) disposé tout autour de la deuxième conduite (11), une plaque de support (18) fixée au pied de support (12), un premier bras de liaison (21) reliant le premier collier (25) à la plaque de support (18), et un deuxième bras de liaison (22) reliant le deuxième collier (26) à la plaque de support (18).

Description

Cuve étanche et thermiquement isolante
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C. Le gaz liquéfié peut également être par exemple de l’ammoniac, du gaz carbonique, de l’hydrogène, de l’éthanol ou encore de l’éthylène. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Arrière-plan technologique
Il est connu des cuves étanches et thermiquement isolantes de stockage de gaz naturel liquéfié (GNL) embarquées dans un navire et équipées d’une tour de chargement/déchargement. La tour de chargement/déchargement comporte une structure tripode, c’est-à-dire qu’elle comporte trois mâts verticaux qui sont chacun fixés les uns aux autres par des traverses. Chacun des mâts verticaux est creux. Ainsi, deux des mâts forment une ligne de déchargement de la cuve et sont pour ce faire chacun associés à une pompe de déchargement portée par la tour de chargement/déchargement, à proximité de son extrémité inférieure. Le troisième mât forme quant à lui un puit de secours permettant la descente d’une pompe de secours et d’une ligne de déchargement en cas de défaillance des autres pompes de déchargement. La tour de chargement/déchargement porte également des lignes de chargement qui ne constituent pas l’un des trois mâts. De telles tours de chargement/déchargement sont par exemple décrites dans le document WO2019211551. Une cuve peut comporter une ou plusieurs tours de chargement/déchargement selon le cas.
La tour de chargement/déchargement est également équipée d’une base qui est fixée à l’extrémité inférieure des trois mâts et qui supporte les pompes de déchargement.
La tour de chargement/déchargement comporte de plus un dispositif de guidage qui est fixé contre la face inférieure de la base et qui coopère avec un pied de support qui est fixé à la paroi de fond de la structure porteuse. Un tel dispositif de guidage vise à autoriser les mouvements relatifs de la tour de chargement/déchargement par rapport au pied de support selon la direction de hauteur de la cuve afin de permettre à la tour de chargement/déchargement de se contracter ou de se dilater en fonction des températures à laquelle elle est soumise tout en empêchant les mouvements horizontaux de la base de la tour de chargement/déchargement.
Résumé
Une idée à la base de l’invention est de simplifier la cuve étanche et thermiquement isolante et notamment la structure traversant la cuve formée par les conduites de chargement et de déchargement tout en prenant en compte les phénomènes de contraction et dilation thermique des conduites.
Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante de stockage de gaz liquéfié intégrée dans une structure porteuse, la cuve comprenant une paroi de fond et une paroi de plafond opposée à la paroi de fond dans une direction de hauteur de la cuve, la paroi de fond et la paroi de plafond étant fixées à la structure porteuse,
dans laquelle la paroi de plafond est traversée par au moins une première conduite et une deuxième conduite,
dans laquelle la cuve est équipée d’un pied de support passant au travers de la paroi de fond et fixé à la structure porteuse, et d’un dispositif de guidage fixé au pied de support, le dispositif de guidage étant configuré pour assurer un guidage en translation selon la direction de hauteur de la première conduite et de la deuxième conduite,
dans laquelle le dispositif de guidage comporte un premier collier disposé tout autour de la première conduite, un deuxième collier disposé tout autour de la deuxième conduite, une plaque de support fixée au pied de support, un premier bras de liaison reliant le premier collier à la plaque de support, et un deuxième bras de liaison reliant le deuxième collier à la plaque de support.
Grâce à ces caractéristiques, les conduites sont directement guidées par le dispositif de guidage qui est lui-même fixé au pied de support, sans nécessiter d’intermédiaire comme dans l’art antérieur avec la base de la tour de chargement/déchargement. De plus, chacune des conduites est guidée individuellement par chacun des colliers. Ainsi, si les conduites sont amenées à avoir un comportement différent en contraction/dilatation thermique, le dispositif de guidage permet de guider l’extrémité inférieure des conduites en translation selon la direction de hauteur de la cuve indépendamment l’une de l’autre. Les colliers permettent également d’empêcher l’extrémité inférieure des conduites de se déplacer.
Les bras de liaison et la plaque de support permettent de transférer les efforts subis par les conduites qui auraient une composante dans le plan parallèle à la paroi de fond, au pied de support.
Selon des modes de réalisation, une telle cuve peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, des raidisseurs sont formés le long du premier bras de liaison et/ou du deuxième bras de liaison.
Selon un mode de réalisation, le premier bras de liaison et/ou le deuxième bras de liaison comporte un tube de liaison, de préférence à section circulaire, comprenant une première extrémité et une deuxième extrémité, et une base reliée à la première extrémité du tube de liaison, la base étant fixée, par exemple par vissage ou soudage, à la plaque de support.
Selon un mode de réalisation, une extrémité d’au moins un des raidisseurs est située contre la base du premier bras de liaison ou du deuxième bras de liaison.
Selon un mode de réalisation, une extrémité d’au moins un des raidisseurs formés sur le premier bras de liaison est située contre le premier collier, de préférence soudée au premier collier.
Selon un mode de réalisation, une extrémité d’au moins un des raidisseurs formés sur le deuxième bras de liaison est située contre le deuxième collier, de préférence soudée au deuxième collier.
Selon un mode de réalisation, les raidisseurs comportent des raidisseurs primaires et des raidisseurs secondaires, les raidisseurs primaires s’étendant du premier ou deuxième collier jusqu’à la base du premier bras de liaison ou du deuxième bras de liaison, les raidisseurs secondaires comportant une première extrémité située contre le premier ou le deuxième collier et une deuxième extrémité située à une distance non nulle de la base du premier ou du deuxième bras de liaison.
Selon un mode de réalisation, les raidisseurs sont répartis tout autour du tube de liaison selon un pas angulaire régulier.
Ainsi, les raidisseurs permettent d’augmenter la raideur et notamment la résistance à la flexion des bras de liaison.
Selon un mode de réalisation, les raidisseurs sont formés sous la forme de gousset.
Selon un mode de réalisation, le premier collier comporte une première portion cylindrique fixée au premier bras de liaison et une deuxième portion cylindrique fixée à ladite première portion cylindrique du premier collier.
Selon un mode de réalisation, le collier présente une forme de cylindre droit à base circulaire, carrée ou rectangulaire, de préférence à base circulaire.
Selon un mode de réalisation, le deuxième collier comporte une première portion cylindrique fixée au deuxième bras de liaison et une deuxième portion cylindrique fixée à ladite première portion cylindrique du deuxième collier.
Selon un mode de réalisation, la deuxième portion cylindrique est fixée à la première portion cylindrique de manière amovible, par boulonnage.
Selon un mode de réalisation, une surface interne du premier collier et/ou une surface interne du deuxième collier est équipée d’au moins un tampon anti-frottement s’étendant par exemple selon la direction de hauteur.
Selon un mode de réalisation, une surface interne du premier collier et/ou une surface interne du deuxième collier est équipée d’une pluralité de tampons anti-frottement s’étendant par exemple selon la direction de hauteur et répartis uniformément sur la surface interne.
Selon un mode de réalisation, le tampon anti-frottement est réalisé dans un matériau dont le coefficient de friction statique sur de l’acier est inférieur ou égal à 0,2, de préférence inférieur ou égal à 0,1, par exemple égal à 0,04 dans le cas de tampon anti-frottement en Téflon
Selon un mode de réalisation, la première conduite est une conduite de chargement en gaz liquéfié raccordée à une pompe de chargement et la deuxième conduite est une conduite de déchargement en gaz liquéfié raccordée à une pompe de déchargement.
Selon un mode de réalisation, le dispositif de guidage est un dispositif de guidage principal, et dans laquelle la paroi de plafond est traversée par au moins une troisième conduite, la cuve étant équipée d’au moins un dispositif de guidage secondaire, le dispositif de guidage secondaire étant fixé à la première conduite ou à la deuxième conduite , le dispositif de guidage secondaire étant configuré pour assurer un guidage en translation selon la direction de hauteur de la troisième conduite, et dans laquelle le dispositif de guidage secondaire comporte un troisième collier disposé tout autour de la troisième conduite, un troisième bras de liaison reliant le troisième collier à la première conduite ou à la deuxième conduite.
Selon un mode de réalisation, la cuve comporte, dans une direction d’épaisseur de l’extérieur vers l’intérieur de la cuve, au moins une barrière thermiquement isolante et au moins une membrane d’étanchéité supportée par la barrière thermiquement isolante et destinée à être en contact avec le fluide contenu dans la cuve.
Selon un mode de réalisation, la cuve comporte successivement, dans une direction d’épaisseur de l’extérieur vers l’intérieur de la cuve une barrière thermiquement isolante secondaire comportant des éléments isolants reposant contre la structure porteuse, une membrane d’étanchéité secondaire ancrée aux éléments isolants de la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire comportant des éléments isolants reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire ancrée aux éléments isolants de la barrière thermiquement isolante primaire et destinée à être en contact avec le fluide contenu dans la cuve.
Selon un mode de réalisation, l’invention fournit aussi un navire pour le transport d’un produit liquide froid, le navire comportant une double coque et une cuve précitée disposée dans la double coque, le navire s’étendant selon une direction longitudinale.
Selon un mode de réalisation, le premier bras de liaison et le deuxième bras de liaison s’étendent orthogonalement à la direction longitudinale.
En mer, sous l’action de la houle, les cuves de stockage de gaz liquéfié sont sujettes à des phénomènes de ballottement de la cargaison, appelés « sloshing » en langue anglaise. Ces phénomènes sont susceptibles d’être très violents à l’intérieur de la cuve et par conséquent de générer des efforts importants dans la cuve et notamment sur ses équipements, tels que la première conduite et la deuxième conduite. Ces phénomènes de ballotement sont plus importants dans une direction transversale du navire, à savoir une direction orthogonale à la direction longitudinale du navire.
Ainsi, en disposant les bras de liaison dans la direction où les phénomènes de ballotement sont les plus forts, il est possible de faire travailler principalement en traction/compression les bras de liaison et ainsi limiter les risques d’endommagement en flexion. Dès lors, le dispositif de guidage est susceptible de supporter les efforts principaux de ballotement.
Selon un mode de réalisation, le premier bras de liaison et le deuxième bras de liaison s’étendent dans une direction de bras formant un angle compris 75° et 105° avec la direction longitudinale.
La direction de bras est contenue dans un plan parallèle à la paroi de fond.
Selon un mode de réalisation, la première conduite et la deuxième conduite sont situées et de part et d’autre d’un plan transversal passant par le pied de support et qui est orthogonal à la direction longitudinale, la plaque de support étant positionnée dans un plan orthogonal à une direction transversale, la direction transversale étant perpendiculaire à la direction longitudinale.
Selon un mode de réalisation, la plaque de support est fixée au pied de support à l’aide d’au moins deux plaques de liaison, les plaques de liaison étant positionnées dans un plan orthogonal à la direction de hauteur, les plaques de liaison étant disposées contre la plaque de support dans la direction longitudinale de sorte à raidir en flexion la plaque de support.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
La représente une vue en coupe partielle d’une cuve étanche et thermiquement isolante selon un mode de réalisation, comportant notamment sur la paroi de plafond une structure de dôme et une structure de trou d’homme, et sur la paroi de fond un pied de support.
La est une vue de dessus partielle d’une paroi de fond de la cuve étanche et thermiquement isolante, comportant un pied de support et un dispositif de guidage selon un mode de réalisation.
La est une vue en perspective d’un pied de support muni d’un dispositif de guidage selon un premier mode de réalisation.
La est une vue en perspective d’un pied de support muni d’un dispositif de guidage selon un deuxième mode de réalisation.
La est une vue en perspective partielle d’une paroi de fond munie d’un pied de support et du dispositif de guidage selon le deuxième mode de réalisation, la conduite de chargement et des conduites secondaires étant représentées.
La est une représentation schématique écorchée d’un navire méthanier comprenant une cuve étanche et thermiquement isolante et d’un terminal de chargement/déchargement de cette cuve.
Dans la présente demande, les termes « interne » et « externe » désignent des positions relatives d’éléments de la cuve étanche et thermiquement isolante 71 par rapport à l’intérieur de la cuve, les éléments dits internes étant plus proches de l’intérieur de la cuve que les éléments dits externes.
La représente une cuve étanche et thermiquement isolante 71 pour gaz liquéfié qui est logée à l’intérieur de la structure porteuse 1 et ancrée à celle-ci, la structure porteuse 3 étant par exemple formée par la double coque 72 d’un navire 70, telle que représentée sur la .
La cuve 71 est une cuve à membranes permettant de stocker du gaz liquéfié. La cuve 71 présente une structure multicouche comportant, depuis l’extérieur vers l’intérieur selon une direction d’épaisseur de paroi, une barrière thermiquement isolante secondaire comportant des éléments isolants reposant contre la structure porteuse 1, une membrane d’étanchéité secondaire reposant contre la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire comportant des éléments isolants reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire 2 destinée à être en contact avec le gaz liquéfié contenu dans la cuve 71. La membrane d’étanchéité primaire 2 définit un espace interne 3 destiné à recevoir le gaz liquéfié. A titre d’exemple, de telles cuves à membranes sont notamment décrites dans les demandes de brevet WO14057221, FR2691520 et FR2877638.
Le gaz liquéfié destiné à être stocké dans la cuve 1 peut notamment être un gaz naturel liquéfié (GNL), c’est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu’un ou plusieurs autres hydrocarbures. Le gaz liquéfié peut également être de l’éthane ou un gaz de pétrole liquéfié (GPL), c’est-à-dire un mélange d’hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.
La cuve 71 est une cuve polyédrique comportant notamment une paroi de plafond 4 fixée à une paroi porteuse supérieure 5 de la structure porteuse 1, et une paroi de fond 6 fixée à une paroi porteuse inférieure 7 de la structure porteuse 1, la paroi de plafond 4 et la paroi de fond 6 étant espacées l’une de l’autre dans une direction de hauteur H. La cuve 71 comporte également une paroi avant et une paroi arrière 20, visible sur la , espacée de la paroi avant dans une direction longitudinale L. La cuve 71 comporte également des parois latérales venant fermées l’espace interne 3 avec la paroi de fond 6, la paroi de plafond 4, la paroi avant et la paroi arrière 20. Les parois latérales sont disposées de part et d’autre de la paroi de fond 6 dans une direction transversale T perpendiculaire à la direction longitudinale L. Lorsque la cuve 71 est disposée dans un navire 70, la direction longitudinale L correspond à la direction longitudinale du navire 70.
La représente une partie de la cuve 71 pour laquelle seule une portion de la paroi de plafond 4 et une portion de la paroi de fond 6 correspondante ont été représentées.
Comme visible sur la , la cuve 71 comprend une structure de dôme 8 et une structure de trou d’homme 9, chaque structure 8, 9 passant au travers d’une ouverture réalisée dans la paroi de plafond 4 et la paroi porteuse supérieure 5. La structure de trou d’homme 9 est située à distance de la structure de dôme 8 comme représenté sur la .
La structure de dôme 8 permet notamment aux conduites de chargement et de déchargement 10, 11 en gaz liquéfié de traverser de manière étanche la paroi de plafond 4. La structure de trou d’homme 9, quant à elle, permet de conserver un accès pour un opérateur qui mène à l’espace interne 3 de la cuve 1, par exemple pour des opérations de réparation.
Ainsi, la conduite de chargement 10 et la conduite de déchargement 11 débouchent dans l’espace interne 3 de la cuve 1 afin de charger ou décharger celle-ci en gaz liquéfié. De plus comme visible sur la , il est prévu un pied de support 12 traversant la paroi de fond 6 et fixé à la paroi porteuse inférieure 7. Le pied de support 12 est muni d’un dispositif de guidage 13 configuré pour assurer un guidage en translation selon la direction de hauteur de la conduite de chargement 10 et de la conduite de déchargement 11, et maintenir les conduites de chargement et de déchargement 10, 11 verticalement dans l’axe de la structure de dôme 8. Le pied de support 12 est ainsi positionné à proximité de l’axe de la structure de dôme 8. La structure de dôme 8 et le pied de support 12 sont situées respectivement dans une zone de la paroi de plafond 4 et de la paroi de fond 6 plus proche de la paroi arrière 20 que de la paroi avant, comme représenté en .
Il va être décrit par la suite plus en détail le pied de support 12 et le dispositif de guidage 13.
Les figures 2 à 5 représentent le pied de support 12 équipé d’un dispositif de guidage 13 selon différents modes de réalisation.
Comme visible en , le pied de support 12 présente une forme de révolution à section circulaire s’étendant selon la direction de hauteur H, avec une partie inferieure tronconique 14 qui se raccorde au niveau de son extrémité de plus petit diamètre à une partie supérieure cylindrique 15. La base de plus grand diamètre de la partie tronconique 14 est fixée à la paroi porteuse inférieure 7 de la structure porteuse 3. La partie inferieure tronconique 14 s'étend à travers l'épaisseur de la paroi de fond 6 de la cuve 71 au-delà du niveau de la membrane d’étanchéité primaire 2. La partie supérieure cylindrique 15 est fermée de manière étanche par exemple à l’aide d’une plaque circulaire. Les membranes d’étanchéité secondaire et primaire 2 sont raccordées de manière étanche à la partie inferieure tronconique 14 à l’aide d’une collerette secondaire 16 et d’une collerette primaire 17.
Le dispositif de guidage 13 est soudé sur la partie supérieure cylindrique 15 du pied de support 12. Le dispositif de guidage 13 comporte une plaque de support 18 qui est fixée à la partie supérieure cylindrique 15 à l’aide de deux plaques de liaison 19, comme visible en notamment. Les plaques de liaison 19 sont par exemple soudées d’une part la partie supérieure cylindrique 15 et d’autre part à la plaque de support 18. La plaque de support 18 est positionnée dans un plan orthogonal à la direction longitudinale L tandis que les plaques de liaison 19 sont disposées parallèlement l’une à l’autre dans des plans orthogonaux à la direction de hauteur H. Les plaques de liaison 19 jouent un rôle à la fois de fixation de la plaque de support 18 mais également un rôle de raidisseur.
Le dispositif de guidage 13 comporte également un premier bras de liaison 21 et un deuxième bras de liaison 22. Chaque bras de liaison 21, 22 comporte une base 23, par exemple sous la forme d’une plaque rectangulaire, qui est fixée par exemple par vissage à la plaque de support 18. La base 23 du premier bras de liaison 21 et la base 23 du deuxième bras de liaison sont disposées à deux extrémités de la plaque de support 18.
Chaque bras de liaison 21, 22 comprend de plus un tube de liaison 24 reliée à la base 23 à une première extrémité et s’étendant selon un axe parallèle à la direction transversale T.
Le dispositif de guidage 13 comporte enfin un premier collier 25 disposé tout autour de la conduite de chargement 10 et fixé à une deuxième extrémité du premier bras de liaison 21 et un deuxième collier 26 disposé tout autour de la conduite de déchargement 11 et fixé à une deuxième extrémité du deuxième bras de liaison 22. Le premier collier 25 et le deuxième collier 26 présentent une axe central qui est orienté verticalement de sorte à guider les conduites 10, 11 en translation selon la direction de hauteur de la cuve.
Chaque collier 25, 26 est formé d’une première portion cylindrique 27 soudée à la deuxième extrémité du tube de liaison 24. La première portion cylindrique 27 qui comporte des zones d’attache 28 de part et d’autre de la première portion cylindrique 27. Chaque collier 25, 26 est formée également d’une deuxième portion cylindrique 29 comportant des zones d’attache 28 de part et d’autre de la deuxième portion cylindrique 29 et disposée en vis-à-vis des zones d’attaches 28 de la première portion cylindrique 27. La première portion cylindrique 27 est fixée de manière amovible, par boulonnage, à la deuxième portion cylindrique 29 de sorte à former un collier cylindrique entourant l’une des conduites 10, 11.
Comme représenté notamment en , la surface interne du premier collier 25 et la surface interne du deuxième collier 26 sont équipées d’une pluralité de tampon anti-frottement 30 s’étendant chacun dans la direction de hauteur et réparties régulièrement sur la surface interne. Les tampons anti-frottement 30 son configurées pour servir de surface de contact limitant le frottement pour les conduites 10, 11. Les tampon anti-frottement sont réalisés dans un matériau choisi parmi par exemple le Polytétrafluoroéthylène (PTFE) ou le polyéthylène à haute densité (HDPE).
Afin de raidir les tubes de liaison 24 des bras de liaison 21, 22 notamment pour résister aux efforts de flexion éventuels, des raidisseurs 31, 32 s’étendant dans la direction longitudinale des bras de liaison 21, 22 sont soudées le long des tubes de liaison 24.
La représente un premier mode de réalisation du dispositif de guidage 13 tandis que les figures 4 et 5 représentent un deuxième mode de réalisation qui différent par le nombre et la disposition des raidisseurs 31, 32 sur les tubes de liaison 24.
Dans le premier mode de réalisation, illustré en , le tube de liaison 24 du premier bras de liaison 21 comporte deux raidisseurs primaires 31 disposés de part et d’autre du tube de liaison 24 ainsi que deux raidisseurs primaires 31 positionnés dans un plan orthogonal à la direction de hauteur H passant par l’axe central du tube de liaison 24. Les raidisseurs primaires 31 du premier bras de liaison 21 comportent de plus une première extrémité soudée contre le premier collier 25 et une deuxième extrémité opposée à la première extrémité soudée contre la base 23 du premier bras de liaison 21 de sorte que les raidisseurs primaires 31 s’étendent sur toute la dimension du tube de liaison 24 prise dans la direction longitudinale L.
Également dans le premier mode de réalisation, le tube de liaison 24 du deuxième bras de liaison 22 comporte deux raidisseurs secondaires 32 disposés de part et d’autre du tube de liaison 24 ainsi que deux raidisseurs secondaires 32 positionnés dans un plan orthogonal à la direction de hauteur H passant par l’axe du tube de liaison 24. Les raidisseurs secondaires 32 du deuxième bras de liaison 22 comportent de plus une première extrémité soudée contre le deuxième collier 26 et une deuxième extrémité opposée à la première extrémité située à distance de la base 23 du deuxième bras de liaison 22 de sorte que les raidisseurs secondaires 32 s’étendent sur une portion de la dimension du tube de liaison 24 prise dans la direction longitudinale L.
Dans le deuxième mode de réalisation illustré en figures 4 et 5, des raidisseurs primaires 31 ont été ajoutés tout autour du tube de liaison 24 du premier bras de liaison 21 comparativement au premier mode de réalisation. Ainsi, dans ce mode de réalisation, le tube de liaison 24 du premier bras de liaison 21 est équipé de six raidisseurs primaires 31 réparties régulièrement tout autour du tube de liaison 24 en s’étendant du premier collier 26 jusqu’à la base 23.
Dans d’autres modes de réalisation non représentés, le nombre et l’agencement des raidisseurs 31, 32 sur les tubes de liaison 24 des bras de liaison 21, 22 peuvent varier. En effet, les tubes de liaison 24 peuvent être équipés d’au moins deux raidisseurs 31, 32, les raidisseurs pouvant être exclusivement des raidisseurs primaires 31 ou secondaires 32 ou bien une alternance de raidisseurs primaires 31 et de raidisseurs secondaires 32.
Sur la , la conduite de chargement 10 et des conduites secondaires 33 ont été représentées avec le pied de support 12 et le dispositif de guidage 13. La conduite de chargement 10 passe ainsi le premier collier 26 du dispositif de guidage 13. Concernant les conduites secondaires 33, celles-ci sont également guidées en translation dans la direction de hauteur H à l’aide de dispositifs de guidage secondaire 34.
Les dispositifs de guidage secondaire 34 comportent d’une part un collier secondaire 36 disposé tout autour de l’une des conduites secondaires 33 et un bras de liaison secondaire 35 fixé d’une part au collier secondaire 36 et d’autre part à l’une des conduites 10, 11. Dans mode de réalisation représenté en , les dispositifs de guidage secondaire 35 sont fixés à la conduite de chargement 10 et chaque conduite secondaire 33 est guidée par une pluralité de dispositifs de guidage secondaire 35 réparties dans la direction de hauteur H.
En référence à la , une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims (15)

  1. Cuve (71) étanche et thermiquement isolante de stockage de gaz liquéfié intégrée dans une structure porteuse (1), la cuve (71) comprenant une paroi de fond (6) et une paroi de plafond (4) opposée à la paroi de fond (6) dans une direction de hauteur (H) de la cuve (71), la paroi de fond (6) et la paroi de plafond (4) étant fixées à la structure porteuse (1),
    dans laquelle la paroi de plafond (4) est traversée par au moins une première conduite (10) et une deuxième conduite (11),
    dans laquelle la cuve (71) est équipée d’un pied de support (12) passant au travers de la paroi de fond (6) et fixé à la structure porteuse (1), et d’un dispositif de guidage (13) fixé au pied de support (12), le dispositif de guidage (13) étant configuré pour assurer un guidage en translation selon la direction de hauteur (H) de la première conduite (10) et de la deuxième conduite (11),
    la cuve étant caractérisée en ce que le dispositif de guidage (13) comporte un premier collier (25) disposé tout autour de la première conduite (10) et configuré pour guider en translation selon la direction de hauteur (H) la première conduite (10) lors d’une contraction ou dilatation thermique de la première conduite (10), un deuxième collier (26) disposé tout autour de la deuxième conduite (11) et configuré pour guider en translation la deuxième conduite (11) selon la direction de hauteur (H) lors d’une contraction ou dilatation thermique de la deuxième conduite (12), une plaque de support (18) fixée au pied de support (12), un premier bras de liaison (21) reliant le premier collier (25) à la plaque de support (18), et un deuxième bras de liaison (22) reliant le deuxième collier (26) à la plaque de support (18).
  2. Cuve (71) selon la revendication 1, dans laquelle des raidisseurs sont formés le long du premier bras de liaison (21) et/ou du deuxième bras de liaison (22).
  3. Cuve (71) selon la revendication 2, dans laquelle les raidisseurs sont formés sous la forme de gousset.
  4. Cuve (71) selon l’une des revendications 1 à 3, dans laquelle le premier collier (25) comporte une première portion cylindrique (27) fixée au premier bras de liaison (21) et ’une deuxième portion cylindrique (29) fixée à ladite première portion cylindrique (27) du premier collier (25) et dans laquelle le deuxième collier (26) comporte une première portion cylindrique (27) fixée au deuxième bras de liaison (22) et une deuxième portion cylindrique (29) fixée à ladite première portion cylindrique (27) du deuxième collier (26).
  5. Cuve (71) selon l’une des revendications 1 à 4, dans laquelle une surface interne du premier collier (25) et/ou une surface interne du deuxième collier (26) est équipée d’au moins un tampon anti-frottement (30).
  6. Cuve (71) selon la revendication 5, dans laquelle le tampon anti-frottement (30) est réalisé dans un matériau dont le coefficient de friction statique sur de l’acier est inférieur ou égal à 0,2.
  7. Cuve (71) selon l’une des revendications 1 à 6, dans laquelle la première conduite (10) est une conduite de chargement en gaz liquéfié raccordée à une pompe de chargement et la deuxième conduite (11) est une conduite de déchargement en gaz liquéfié raccordée à une pompe de déchargement.
  8. Cuve (71) selon l’une des revendications 1 à 7, dans laquelle le dispositif de guidage (13) est un dispositif de guidage (13) principal, et dans laquelle la paroi de plafond (4) est traversée par au moins une troisième conduite (33), la cuve (71) étant équipée d’au moins un dispositif de guidage secondaire (34), le dispositif de guidage secondaire (34) étant fixé à la première conduite (10) ou à la deuxième conduite (11) , le dispositif de guidage secondaire (34) étant configuré pour assurer un guidage en translation selon la direction de hauteur (H) de la troisième conduite (33), et dans laquelle le dispositif de guidage secondaire (34) comporte un troisième collier (36) disposé tout autour de la troisième conduite (33), un troisième bras de liaison (35) reliant le troisième collier (36) à la première conduite (10) ou à la deuxième conduite (11).
  9. Cuve (71) selon l’une des revendications 1 à 8, dans laquelle la cuve (71) comporte, dans une direction d’épaisseur de l’extérieur vers l’intérieur de la cuve (71), au moins une barrière thermiquement isolante et au moins une membrane d’étanchéité supportée par la barrière thermiquement isolante et destinée à être en contact avec le fluide contenu dans la cuve (71).
  10. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71) selon l’une des revendications 1 à 8 disposée dans la double coque, le navire s’étendant selon une direction longitudinale (L).
  11. Navire selon la revendication 10, dans lequel le premier bras de liaison (21) et le deuxième bras de liaison (22) s’étendent orthogonalement à la direction longitudinale (L).
  12. Navire selon la revendication 10 ou la revendication 11, dans lequel la première conduite (10) et la deuxième conduite (11) sont situées et de part et d’autre d’un plan transversal passant par le pied de support (12) et qui est orthogonal à la direction longitudinale (L), la plaque de support (18) étant positionnée dans un plan orthogonal à une direction transversale (T), la direction transversale (T) étant perpendiculaire à la direction longitudinale (L).
  13. Navire selon l’une des revendications 10 à 12, dans lequel la plaque de support (18) est fixée au pied de support (12) à l’aide d’au moins deux plaques de liaison (19), les plaques de liaison (19) étant positionnées dans un plan orthogonal à la direction de hauteur (H), les plaques de liaison (19) étant disposées contre la plaque de support (18) dans la direction longitudinale (L) de sorte à raidir en flexion la plaque de support (18).
  14. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon l’une des revendications 10 à 13, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve (71) du navire.
  15. Procédé de chargement ou déchargement d’un navire (70) selon l’une des revendications 10 à 13, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve (71) du navire.
PCT/EP2022/078557 2021-10-27 2022-10-13 Cuve étanche et thermiquement isolante WO2023072616A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247012501A KR20240088872A (ko) 2021-10-27 2022-10-13 밀봉 및 단열 탱크
CN202280072784.1A CN118176384A (zh) 2021-10-27 2022-10-13 密封且热隔绝的罐

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2111402 2021-10-27
FR2111402A FR3128509B1 (fr) 2021-10-27 2021-10-27 Cuve étanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
WO2023072616A1 true WO2023072616A1 (fr) 2023-05-04

Family

ID=79018505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/078557 WO2023072616A1 (fr) 2021-10-27 2022-10-13 Cuve étanche et thermiquement isolante

Country Status (5)

Country Link
KR (1) KR20240088872A (fr)
CN (1) CN118176384A (fr)
FR (1) FR3128509B1 (fr)
TW (1) TW202327960A (fr)
WO (1) WO2023072616A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
JPH0761393A (ja) * 1993-08-27 1995-03-07 Nkk Corp Lng船パイプタワー動揺軽減装置
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
KR20140041065A (ko) * 2012-09-27 2014-04-04 삼성중공업 주식회사 펌프타워 파이프구조물
WO2014057221A2 (fr) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
KR20150013972A (ko) * 2013-07-24 2015-02-06 삼성중공업 주식회사 베이스플레이트 및 이를 포함하는 화물창
WO2019211551A1 (fr) 2018-05-02 2019-11-07 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
KR20190136623A (ko) * 2018-05-31 2019-12-10 한국가스공사 바닥 고정용 브래킷을 갖춘 펌프타워
KR20190142937A (ko) * 2018-06-19 2019-12-30 대우조선해양 주식회사 펌프 타워의 진동 저감장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691520A1 (fr) 1992-05-20 1993-11-26 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
JPH0761393A (ja) * 1993-08-27 1995-03-07 Nkk Corp Lng船パイプタワー動揺軽減装置
FR2877638A1 (fr) 2004-11-10 2006-05-12 Gaz Transp Et Technigaz Soc Pa Cuve etanche et thermiquement isolee a elements calorifuges resistants a la compression
KR20140041065A (ko) * 2012-09-27 2014-04-04 삼성중공업 주식회사 펌프타워 파이프구조물
WO2014057221A2 (fr) 2012-10-09 2014-04-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante comportant une membrane métallique ondulée selon des plis orthogonaux
KR20150013972A (ko) * 2013-07-24 2015-02-06 삼성중공업 주식회사 베이스플레이트 및 이를 포함하는 화물창
WO2019211551A1 (fr) 2018-05-02 2019-11-07 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
KR20190136623A (ko) * 2018-05-31 2019-12-10 한국가스공사 바닥 고정용 브래킷을 갖춘 펌프타워
KR20190142937A (ko) * 2018-06-19 2019-12-30 대우조선해양 주식회사 펌프 타워의 진동 저감장치

Also Published As

Publication number Publication date
FR3128509B1 (fr) 2024-05-31
TW202327960A (zh) 2023-07-16
CN118176384A (zh) 2024-06-11
KR20240088872A (ko) 2024-06-20
FR3128509A1 (fr) 2023-04-28

Similar Documents

Publication Publication Date Title
EP3788293A1 (fr) Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
EP3472509B1 (fr) Structure de dome gaz pour une cuve etanche et thermiquement isolante
FR2973098A1 (fr) Cuve etanche et thermiquement isolante
EP3942219B1 (fr) Cuve étanche et thermiquement isolante
EP3361138A1 (fr) Structure de dome gaz pour une cuve etanche et thermiquement isolante
WO2019211551A1 (fr) Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
FR3054872A1 (fr) Structure de paroi etanche
WO2017174938A1 (fr) Cuve étanche et thermiquement isolante
FR3112588A1 (fr) Paroi d'une cuve de stockage d'un gaz liquéfiée
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
WO2023072616A1 (fr) Cuve étanche et thermiquement isolante
FR2923453A1 (fr) Installation de transfert d'un fluide entre un premier navire et un deuxieme navire flottant sur une etendue d'eau, ensemble de transport et procede assoces.
WO2021053055A1 (fr) Cuve etanche et thermiquement isolante
FR3083843A1 (fr) Installation de stockage de fluide
EP3755939A2 (fr) Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire
EP4019388B1 (fr) Navire comprenant une cuve
EP4083494A1 (fr) Installation de stockage pour gaz liquefie
WO2023001678A1 (fr) Installation de stockage pour gaz liquéfié
WO2023025501A1 (fr) Installation de stockage pour gaz liquéfié
EP4198375A1 (fr) Installation de stockage d'un gaz liquefie comportant une cuve et une structure de dome
FR3133900A1 (fr) Cuve étanche et thermiquement isolante
EP4399434A1 (fr) Installation de stockage pour gaz liquéfié
FR3118796A1 (fr) Installation de stockage pour gaz liquéfié
EP4350203A1 (fr) Dispositif de support d au moins un instrument sur une tour de chargement et/ou de déchargement d'une cuve d'un navire destinée à contenir un gaz liquéfié
FR3103534A1 (fr) Installation pour le stockage d’un gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22801788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022801788

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022801788

Country of ref document: EP

Effective date: 20240527