WO2023072184A1 - 一种镀锌板的生产方法及生产线 - Google Patents

一种镀锌板的生产方法及生产线 Download PDF

Info

Publication number
WO2023072184A1
WO2023072184A1 PCT/CN2022/127900 CN2022127900W WO2023072184A1 WO 2023072184 A1 WO2023072184 A1 WO 2023072184A1 CN 2022127900 W CN2022127900 W CN 2022127900W WO 2023072184 A1 WO2023072184 A1 WO 2023072184A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
substrate
plating
vacuum
galvanized sheet
Prior art date
Application number
PCT/CN2022/127900
Other languages
English (en)
French (fr)
Inventor
熊斐
李山青
汪义如
张春伟
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2023072184A1 publication Critical patent/WO2023072184A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a production method and a production line of a plate, in particular to a production method and a production line of a galvanized plate.
  • Zinc-repelling method Before the steel plate enters the annealing furnace, one side is coated with paint (magnesium oxide, magnesium hydroxide, sodium silicate and other zinc-repelling materials). It cannot be galvanized, and the unpainted side is galvanized as usual;
  • Indirect method firstly control the differential thickness of the coating in the zinc pot, and after the strip steel comes out of the zinc pot and wait for the zinc layer to solidify, then use a special grinding wheel to grind off the thin coating side to form a single-sided galvanized sheet;
  • Double-layer separation method Firstly, the strips of the same width are overlapped together, and then welded with high-frequency resistance, and a vent hole is left. After galvanizing, the welded parts on both sides are cut off to obtain a single strip. Hot-dip galvanized sheet.
  • the electroplating process can also be used to produce single-sided galvanized sheets.
  • the production process is relatively simple and can effectively prepare single-sided electro-galvanized sheets.
  • One of the anodes in the lower anode is energized, and the other anode is not energized to obtain single-sided electrogalvanizing.
  • this electroplating process it is also possible to produce a double-sided differential galvanized sheet with different thicknesses of the galvanized layers on the two surfaces of the sheet as required.
  • the single-side hot-dip galvanizing is prepared by the hot-dip process or the single-side electro-galvanized is prepared by the electroplating process, there are certain defects in both; among them, the single-side hot-dip galvanizing process is complicated, and it will be difficult to implement in the process of implementation. Encountered many difficulties; although the process of single-sided electrogalvanizing is relatively simple, the electroplating process itself has environmental protection problems.
  • the present invention expects to develop a new production method of galvanized sheet, which can adopt PVD (Physical Vapor Deposition) coating process different from conventional hot dipping and electroplating to produce and prepare plated plate with coating.
  • the process can perform double-sided differential plating on the substrate.
  • One of the purposes of the present invention is to provide a production method of galvanized sheet, which adopts a PVD (Physical Vapor Deposition) coating process different from conventional hot dipping and electroplating, and it can double-coat the substrate by adopting the PVD process.
  • PVD Physical Vapor Deposition
  • the present invention proposes a production method of galvanized sheet, which adopts the method of physical vapor deposition to carry out double-sided differential plating on the substrate, wherein the coating formed by double-sided differential plating is a pure zinc layer or a zinc alloy layer;
  • the double-sided differential plating includes one of the following situations:
  • Both surfaces of the substrate have coatings, and the thicknesses of the coatings on the two surfaces are different;
  • Both surfaces of the substrate have coatings, and the coating composition and coating thickness of the two surfaces are different.
  • the present invention can adopt the method for PVD (Physical Vapor Deposition) to carry out double-sided difference plating to substrate, and its double-sided difference plating can comprise four kinds of different results:
  • Both surfaces of the substrate have coatings, and the thicknesses of the coatings on the two surfaces are different. At this time, the components of the coatings on the two surfaces of the substrate are the same, which can be both pure zinc layers or zinc alloy layers.
  • Both surfaces of the substrate have coatings, but the components of the coatings coated on the two surfaces of the substrate are different. At this time, the thicknesses of the coatings on the two surfaces of the substrate are the same.
  • the physical vapor deposition method is to deposit zinc vapor or zinc alloy vapor on the surface of the substrate by means of evaporation plating.
  • PVD Physical Vapor Deposition
  • the present invention is to galvanize or zinc alloy the surface of the substrate, while the prior art is to plate titanium and aluminum on the stainless steel strip.
  • the prior art generally adopts the method of magnetron sputtering, while the present invention adopts the method of evaporation plating, and the method of evaporation plating in the present invention can greatly improve the coating efficiency.
  • the current speed of PVD stainless steel plating unit is generally around 10mpm, while the unit speed of vacuum galvanizing by evaporation will exceed 100mpm.
  • the substrate is preheated to 150-220° C. in a vacuum environment.
  • the surface of the substrate still inevitably has an oxide layer of tens to tens of nanometers, which makes the pretreatment of the present invention before PVD deposition also different from that of the prior art scheme.
  • Stainless steel PVD is different. Therefore, in the present invention, before evaporative plating, the substrate is preheated to 150-220° C., the purpose is to remove the moisture adsorbed by the substrate and evaporate the rolling oil and other substances in the grain boundaries.
  • induction heating is used for preheating.
  • the induction heating power is set based on the following model formula:
  • P represents the induction heating power, and its unit parameter is W; k is an empirical coefficient, and its value ranges from 0.25 to 0.60; c p represents the specific heat of the substrate, and its unit parameter is J/(kg ⁇ °C); ⁇ s represents the substrate density, and its unit parameter is kg/m 3 ; B represents the substrate width, and its unit parameter is m; h represents the substrate thickness, and its unit parameter is m; T 1 represents the preheating temperature, and its unit parameter is °C; RT Indicates the ambient temperature, and its unit parameter is °C; v indicates the unit speed, and its unit parameter is m/s. As the temperature rises, the specific heat value will also increase. For details, you can check the material manual to obtain the c p value of the corresponding substrate, or use conventional methods to test the specific heat of the substrate.
  • the process gas is an inert gas, such as Ar, or a mixed gas of an inert gas and a small amount (5-25% by volume) of H 2 .
  • the degree of vacuum is controlled to be 0.1-10.0 Pa.
  • the vacuum degree during evaporation plating is controlled to be 0.1-100Pa.
  • the evaporation rate of zinc or zinc alloy is controlled according to the following model formula:
  • Q represents the evaporation rate of zinc or zinc alloy, and its unit parameter is kg/s
  • represents the empirical coefficient, and its value ranges from 1.01 to 1.053
  • B represents the substrate width, and its unit parameter is m
  • represents the coating thickness, Its unit parameter is m
  • v represents the speed of the unit, and its unit parameter is m/s
  • ⁇ c represents the density of zinc or zinc alloy, and its unit parameter is kg/m 3 (for zinc, the density is 7.15kg/m 3 ; for zinc The alloy takes 6.4 ⁇ 6.5kg/m 3 ).
  • the PVD (Physical Vapor Deposition) method that the present invention adopts has no special restriction to substrate, and its substrate can be common carbon steel plate, also can be soft steel plate, high-strength steel plate, stainless steel plate, aluminum plate and copper plate.
  • the physical vapor deposition method includes depositing zinc vapor or zinc alloy vapor on the surface of the substrate by means of evaporation plating.
  • PVD Physical Vapor Deposition
  • evaporation plating to deposit zinc vapor or zinc alloy vapor on the surface of the substrate to produce double-sided differential galvanized panels.
  • the zinc vapor or zinc alloy vapor is generated by resistance heating, electron beam heating or induction heating of the zinc liquid.
  • the formation of the plating layers on both surfaces of the substrate is carried out successively or simultaneously.
  • the substrate is selected from: ordinary carbon steel, mild steel, high-strength steel, stainless steel, aluminum or copper.
  • another object of the present invention is to provide a production line for galvanized sheets, which can be used to implement the above-mentioned production method for galvanized sheets.
  • Double-sided differential galvanized sheet is obtained by one coating, which has high production efficiency and economy.
  • the present invention proposes a production line of galvanized sheet, which is used to implement the above-mentioned production method of galvanized sheet of the present invention.
  • the production line includes in turn:
  • a vacuum section, a PVD deposition section and a post-plating cooling section are arranged in the vacuum section along the conveying direction of the raw material; wherein the vacuum section is a vacuum environment, and the PVD deposition section is used to form a coating on the substrate, and the coating The post-cooling section cools the plated plate;
  • Leveling section which levels the board.
  • the present invention in order to implement the production method of the galvanized sheet described in the present invention, the present invention also designs and proposes a production line of the galvanized sheet.
  • the production line according to the present invention may sequentially include a vacuum section and a leveling section along the conveying direction of the raw material.
  • the vacuum section is a vacuum environment.
  • the vacuum section is further provided with a PVD deposition section and a post-plating cooling section.
  • the PVD deposition section is used for galvanizing on the substrate, and the post-plating cooling section cools the plated sheet.
  • the plate after the plate passes through the vacuum section, it can be flattened in the subsequent flattening section (ie, flattened under atmospheric pressure).
  • the production line described in the present invention can be arranged after the continuous annealing unit, or can be arranged independently. If the production line is combined with a continuous annealing unit, the raw materials will enter the subsequent vacuum section and smoothing section after passing through the continuous annealing unit.
  • the upstream of the PVD deposition section in the vacuum section can preferably be provided with a pre-plating cooling section, so that the strip from the continuous annealing unit is further cooled according to the process requirements .
  • a pretreatment section may be preferably further provided upstream of the PVD deposition section in the vacuum section to preheat, clean and activate the substrate.
  • a pretreatment section located upstream of the PVD deposition section is also provided in the vacuum section, and the pretreatment section includes: a preheating section for preheating the substrate and a preheating section for the substrate Cleaning section for cleaning and activation.
  • an alloying section is also provided between the PVD deposition section and the post-plating cooling section in the vacuum section.
  • a post-processing section is provided downstream of the leveling section, and the post-processing section includes a passivation treatment section and/or an oiling section.
  • the galvanized sheet production line described in the present invention includes a PVD deposition section, a post-plating cooling section and a smoothing section.
  • the vacuum degree in the PVD deposition section is 0.1-100Pa.
  • the PVD deposition section is provided with two sets of nozzles, the plating material evaporating crucible connected to the two sets of nozzles respectively connected to the vacuum chamber, and the plating material melting pot connected to the plating material evaporating crucible placed in the atmosphere .
  • the two groups of nozzles are respectively arranged on both sides of the plate to be galvanized, and the spraying width of the nozzles is the same as the width of the plate to be galvanized.
  • the bottom of the evaporating crucible is connected with the plating material melting pot through a pipeline to obtain the plating material melt.
  • the crucible supplies pure zinc vapor and/or zinc alloy vapor to the two groups of nozzles respectively. Therefore, the PVD deposition section is further provided with a heating device for heating the crucible to generate the zinc vapor and/or zinc alloy vapor.
  • the heating means include resistance heating, electron beam heating or induction heating.
  • the post-plating cooling section is configured to cool by roll cooling and/or by inert gas. In some embodiments, the interior of the post-plating cooling section is set to a vacuum environment.
  • an alloying section is also provided between the PVD deposition section and the post-plating cooling section.
  • the alloying section is used for alloying the steel strip, and its interior is set as a vacuum environment.
  • a post-treatment section is included after the smoothing section.
  • the post-treatment section includes a passivation treatment section and/or an oiling section.
  • the PVD deposition stage further includes a pretreatment stage, which includes a preheating stage for preheating the substrate and a cleaning stage for cleaning the substrate.
  • the preheating section is set to preheat the substrate to 150-220°C.
  • the vacuum degree in the preheating section is ⁇ 0.05Pa.
  • the cleaning section includes a plasma cleaning section and/or an inverse magnetron sputtering cleaning section; preferably, the vacuum degree in the cleaning section is 0.1-10.0 Pa.
  • the cleaning section is configured to perform cleaning and activation using plasma etching.
  • the cleaning section is provided with equipment for supplying a process gas, and the process gas may be an inert gas such as Ar, or an inert gas containing a small amount (eg 5-25% by volume) of hydrogen.
  • the galvanized sheet production line of the present invention sequentially includes along the conveying direction of the strip: an uncoiler 1, a continuous annealing machine 2, an inlet vacuum lock 3, a PVD deposition section 4, a cooling section 5, a smoothing section, and an outlet vacuum Lock 6, post-processing section 7 and coiler 8.
  • the galvanized sheet production line of the present invention sequentially includes along the conveying direction of the strip: an uncoiler 1, an inlet vacuum lock 3, a pretreatment section 9, a PVD deposition section 4, a cooling section 5, a smoothing section, and an outlet Vacuum lock 6, post-processing section 7 and coiler 8.
  • the production method and production line of the galvanized sheet of the present invention have the following advantages and beneficial effects:
  • galvanized sheet of the present invention has adopted the PVD (Physical Vapor Deposition) coating process that is different from conventional hot dipping, electroplating, and it can carry out double-sided difference plating to substrate by adopting PVD process, with Obtain double-sided differential galvanized sheet at one time.
  • PVD Physical Vapor Deposition
  • the production method of the galvanized sheet of the present invention can effectively overcome the defects of the hot-dip or electroplating process used in the prior art, and the galvanized sheet produced by it has good promotion prospects and application value.
  • the present invention also provides a production line for galvanized sheets, which can be used to implement the above-mentioned production method for galvanized sheets, by rationally arranging the on-line unit and cooperating with the above-mentioned production method for galvanized sheets, it can be achieved by One-time coating to obtain double-sided differential galvanized sheet, which has high production efficiency and economy.
  • Fig. 1 schematically shows the process flow chart of treating the substrate by the production method of galvanized sheet according to the present invention.
  • Fig. 2 schematically shows the structure diagram of the production line according to the present invention arranged after the continuous annealing unit in one embodiment.
  • Fig. 3 schematically shows the structure diagram of the independent arrangement of the production line according to another embodiment of the present invention.
  • the present invention designs a production method of galvanized sheet, which adopts the method of evaporation plating to carry out double-sided differential plating on the substrate, so as to obtain double-sided differential galvanized sheet at one time.
  • Specific steps can include:
  • the process gas is Ar or Ar mixed with a small amount (5-25% by volume) of H 2 , and the vacuum degree is controlled to be 0.1-10.0Pa ;
  • the substrate is not particularly limited, and it may be a plain carbon steel plate, or a mild steel plate, a high-strength steel plate, a stainless steel plate, an aluminum plate, or a copper plate.
  • cooling before plating can also be carried out in a vacuum environment.
  • induction heating is used for preheating.
  • the induction heating power is set based on the following model formula:
  • P represents the induction heating power, and its unit parameter is W; k is an empirical coefficient, and its value ranges from 0.25 to 0.60; c p represents the specific heat of the substrate, and its unit parameter is J/(kg ⁇ °C); ⁇ s Indicates the substrate density, and its unit parameter is kg/m 3 ; B indicates the substrate width, and its unit parameter is m; h indicates the substrate thickness, and its unit parameter is m; T 1 indicates the preheating temperature, and its unit parameter is °C; RT indicates Ambient temperature, its unit parameter is °C; v represents unit speed, its unit parameter is m/s.
  • step (3) the evaporation rate of zinc or zinc alloy is controlled according to the following model formula:
  • Q represents the evaporation rate of zinc or zinc alloy, and its unit parameter is kg/s
  • represents the empirical coefficient, and its value ranges from 1.01 to 1.053
  • B represents the substrate width, and its unit parameter is m
  • represents the coating thickness, Its unit parameter is m
  • v represents the speed of the unit, and its unit parameter is m/s
  • ⁇ c represents the density of zinc or zinc alloy, and its unit parameter is kg/m 3 (for zinc, the density is 7.15kg/m 3 ; for zinc The alloy takes 6.4 ⁇ 6.5kg/m 3 ).
  • the unit speed v is controlled to be ⁇ 1.67m/s.
  • an alloying step is also included between step (3) and step (4), and the alloying step is also performed in a vacuum environment.
  • the present invention further designs a production line for implementation, and the process flow of the production line can be referred to the following FIG. 1 .
  • Fig. 1 schematically shows the process flow chart of processing the sheet by using the production line of galvanized sheet according to the present invention.
  • the existing hot-dip galvanizing unit can be transformed to obtain a production line, which can be produced by PVD to obtain double-sided differential galvanized sheets.
  • the production line of the present invention is arranged after the continuous annealing unit, along the conveying direction of raw material, the production line of the present invention can comprise: PVD deposition section, post-plating cooling section, leveling section and post-processing section.
  • both the PVD deposition section and the post-plating cooling section are in a vacuum environment.
  • the PVD deposition section is used to galvanize the substrate, and the post-plating cooling section is used to cool the plate.
  • the vacuum requirements of the two can be different. Therefore, Modular design can be adopted, independent of each other, which will also make the operation and maintenance of the equipment more convenient.
  • the plate can be leveled in the leveling section.
  • the post-processing section in the production line of the present invention may further include: a passivation treatment section and/or an oiling section.
  • the production line of the present invention is set separately, and it can include a pretreatment section, a PVD deposition section, a post-plating cooling section, a smoothing section and a post-treatment section along the conveying direction of the raw material.
  • a pretreatment section can be preferably further set up upstream of the PVD deposition section in the vacuum section, and the pretreatment section can further include: a preheating process for preheating the substrate A segment and a cleaning segment for cleaning the substrate to preheat and clean the substrate.
  • the cleaning section may include: a plasma cleaning section and/or an inverse magnetron sputtering cleaning section.
  • the methods corresponding to the above process flow 1 and process flow 2 are PVD deposition, the difference is that the layout of the production line connected with the continuous annealing unit can save the pretreatment section.
  • the pre-plating cooling section is preferably set before the PVD deposition section in the vacuum section, and the strip steel from the continuous annealing unit can be further cooled according to the process requirements.
  • an alloying section may be further preferably provided between the PVD deposition section and the cooling section, so as to play an important role in the alloying process. Effect.
  • Fig. 2 schematically shows the structure diagram of the production line of galvanized sheet according to the present invention arranged after the continuous annealing unit in one embodiment.
  • the direction of the arrow shown in Figure 2 is the conveying direction of the sheet material 10.
  • it can include: uncoiler 1, continuous annealing machine 2, inlet vacuum lock 3, PVD Deposition section 4 , cooling section 5 , smoothing section (not shown in the figure), exit vacuum lock 6 , post-processing section 7 and coiler 8 .
  • Fig. 3 schematically shows the structure diagram of the production line of galvanized sheet according to the present invention arranged independently in another embodiment.
  • the direction of the arrow shown in Figure 3 is the conveying direction of the plate 10.
  • it can include: uncoiler 1, inlet vacuum lock 3, pretreatment section 9, PVD Deposition section 4 , cooling section 5 , smoothing section (not shown in the figure), exit vacuum lock 6 , post-processing section 7 and coiler 8 .
  • the present invention adopts the following two specific examples for further illustration and demonstration.
  • Embodiment 1 is manufactured based on the process route shown in Figure 2, which inputs a roll of strip steel, which is input into a continuous annealing machine according to conventional production requirements, and after continuous reduction annealing (annealing temperature is about 700 ° C), cooled to 250 ° C, Then enter the PVD deposition section through the inlet vacuum lock.
  • annealing temperature is about 700 ° C
  • nozzles covering wide bandwidths are arranged on both sides of the steel strip. These two nozzles are respectively connected to a plating material evaporation crucible (placed in a vacuum chamber). The pot is connected to obtain the plating material melt. The two crucibles supply pure zinc vapor to the nozzle respectively, and the vapor is deposited on the surface of the strip through the nozzle, so that the two sides of the strip have different thicknesses of pure zinc coating.
  • the temperature of the strip will rise sharply. Therefore, after PVD deposition, the strip will be fed into the cooling section to be cooled, and the strip can be cooled by roll cooling. For cooling, the strip can also be cooled with a trace of inert gas.
  • the cooled strip enters the atmosphere through the outlet vacuum lock, and is input into the leveling section for leveling, and then processed in the post-processing section according to user requirements, and finally coiled.
  • Embodiment 2 is manufactured based on the process route shown in Figure 3, which inputs a volume of strip steel with a clean surface, passes through the inlet vacuum lock, and then enters the pretreatment section, in which the strip steel is preheated to 150-200°C, Afterwards, it is cleaned and surface activated in the form of a plasma discharge. After the above process operations are completed, the steel strip is controlled to enter the PVD deposition section.
  • nozzles covering wide bandwidths are arranged on both sides of the steel strip. These two nozzles are respectively connected to a plating material evaporation crucible (placed in a vacuum chamber). The pot is connected to obtain the plating material melt. The two crucibles supply pure zinc vapor and zinc-magnesium mixed vapor to the nozzle respectively. The vapor is deposited on the surface of the strip through the nozzle, so that one side of the strip has a pure zinc coating and the other side has a ZnMg coating.
  • the deposition of plating material is a physical process of condensation and exotherm, the temperature of the strip will rise sharply. Therefore, after PVD deposition, the strip will be fed into the cooling section to be cooled, and the strip can be cooled by roll cooling. The steel is cooled, and the strip steel can also be cooled with a trace of inert gas.
  • the cooled strip enters the atmosphere through the outlet vacuum lock, and is input into the leveling section for leveling, and then processed in the post-processing section according to user requirements, and finally coiled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种镀锌板的生产方法,采用物理气相沉积的方法对基板进行双面差镀,其中双面差镀形成的镀层为纯锌层或锌合金层;其中双面差镀包括下述各情况的其中一种:仅对基板进行单面镀;基板的两个表面均具有镀层,两个表面的镀层的厚度不同;基板的两个表面均具有镀层,两个表面的镀层成分不同;基板的两个表面均具有镀层,两个表面的镀层成分和镀层厚度均不同;其中所述物理气相沉积的方法为采用蒸发镀的方式将锌蒸气或锌合金蒸气沉积在基板表面。相应地,本发明还公开了一种镀锌板的生产线。

Description

一种镀锌板的生产方法及生产线 技术领域
本发明涉及一种板材生产方法及生产线,尤其涉及一种镀锌板生产方法及生产线。
背景技术
自1936年出现了第一条连续热镀锌作业线至今,现有技术中所采用的所有热镀锌作业线均是用于生产双面镀锌板的,本领域内通常提及的镀锌板也同样指的就是这种双面镀锌板。
近年来,随着汽车工业的迅速发展,市场和用户对于汽车车体的钢板要求也变得越来越苛刻,其不仅需要具有耐腐蚀性,同时又要具有优良的涂装性;而单面镀锌板就能满足这种要求,其不镀锌的一面在经过磷化处理后有利于表面涂漆和焊接,可以有效用于汽车面板外部;其镀锌的一面能够有效应用于汽车面板内部,以起到防腐蚀的作用。
因此,为了满足汽车领域对于单面镀锌板的这一需求,诸多钢铁企业开发了各种各样的单面连续热镀锌生产工艺;在现有技术中,通常所采用的单面热镀锌板的生产方法有四种:
(1)疏锌法:在钢板进入退火炉之前,先将其一面涂上涂料(氧化镁、氢氧化镁、硅酸钠等疏锌物料),镀锌时带有涂料的一面排斥锌料,就镀不上锌,未涂料的一面照常镀锌;
(2)直接法:当带钢进入锌锅,通过沉没辊时,使用电磁泵、超声波或配重陀等方法,使液态锌只接触带钢下表面,带钢上表面不接触锌液,以确保带钢的单面镀锌;
(3)间接法:在锌锅先控制差厚镀层,带钢出锌锅待锌层凝固之后,再把薄镀层一面使用一个专用砂轮磨掉,便形成单面镀锌板;
(4)双层分离法:首先把相同宽度的带钢重叠在一起,然后用高频电阻焊接起来,并留有排气孔,经镀锌后,再把两边焊接部分切除,即可获得单面热镀锌板。
另外,不同于上述所采用的热镀工艺,在现有技术中,还可以采用电镀工艺生产单面镀锌板,其生产工艺较为简单,且可以有效制备单面电镀锌,仅需使上、下阳极中的其中一个阳极通电,另一个阳极不通电即可获得单面电镀锌。此外,在采用这种电镀工艺时,还可以根据需要生产出板材的两个表面的镀锌层的厚度不同的双面差镀锌板。
但是,无论是采用热镀工艺制备单面热镀锌,还是采用电镀工艺制备单面电镀锌,二者均存在一定的缺陷;其中,单面热镀锌的工艺复杂,其在实施过程中会遇到许多的困难;单面电镀锌的工艺虽然较为简单,但其所采用的电镀工艺本身就存在着环保问题。
基于以上原因,本发明期待开发一种新的镀锌板的生产方法,其可以采用不同于常规热镀、电镀的PVD(物理气相沉积)涂镀工艺生产制备带镀层的板材,其通过采用PVD工艺可以对基板进行双面差镀。
发明内容
本发明的目的之一在于提供一种镀锌板的生产方法,该生产方法采用了不同于常规热镀、电镀的PVD(物理气相沉积)涂镀工艺,其通过采用PVD工艺可以对基板进行双面差镀,以一次性获得双面差镀锌板,工艺简单,同时不存在环保问题。
为了实现上述目的,本发明提出了一种镀锌板的生产方法,其采用物理气相沉积的方法对基板进行双面差镀,其中双面差镀形成的镀层为纯锌层或锌合金层;其中双面差镀包括下述各情况的其中一种:
仅对基板进行单面镀;
基板的两个表面均具有镀层,两个表面的镀层的厚度不同;
基板的两个表面均具有镀层,两个表面的镀层成分不同;
基板的两个表面均具有镀层,两个表面的镀层成分和镀层厚度均不同。
在本发明上述技术方案中,本发明可以采用PVD(物理气相沉积)的方法,对基板进行双面差镀,其双面差镀可以包括四种不同的结果:
(1)仅对基板进行单面镀,此时基板的一面具有镀层,另一面没有镀层,其表示为单面镀锌板,实质上也是一种双面差镀锌板。
(2)基板的两个表面均具有镀层,两个表面的镀层的厚度不同,此时基板的两个表面的镀层成分相同,其可以均为纯锌层或锌合金层。
(3)基板的两个表面均具有镀层,但在基板的两个表面镀上的镀层成分不同,此时基板的两个表面的镀层的厚度相同。
(4)基板的两个表面均具有镀层,且基板的两个表面镀上的镀层成分和镀层厚度均不同;
其中所述物理气相沉积的方法为采用蒸发镀的方式将锌蒸气或锌合金蒸气沉积在基板表面。
需要说明的是,本技术方案采用的PVD(物理气相沉积)的方法较之现有技术中的PVD方式具有本质区别。现有技术中虽然也有采用PVD的方式,但是其应用客体与本发明并不相同,本发明是在基板上差面镀锌或锌合金,而现有技术是对不锈钢带进行镀钛、铝。基于此,现有技术一般采用磁控溅射的方式,而本发明采用蒸发镀的方式,并且本发明采用蒸发镀的方式能够极大地提高涂镀效率。例如,目前PVD镀不锈钢的机组速度一般在10mpm左右,而采用蒸发方式进行真空镀锌的机组速度将超过100mpm。
进一步地,在蒸发镀之前,先将基板在真空环境内预热至150~220℃。
对于本发明来说,尽管经过前序化学清洗,但基板表面仍然不可避免地带有十几至几十纳米的氧化层,这使得本发明在PVD沉积之前的预处理也与现有技术方案中的不锈钢PVD有所不同。因此,在本发明中,在蒸发镀之前,先将基板预热至150~220℃,目的是除去基板吸附的水分,并将晶界中的轧制油等物质蒸发出来。
更进一步地,为了满足在基板高速运行的时候还能保证高效加热,采用感应加热的方式进行预热。感应加热功率基于下述模型公式设定:
P=k·c p·ρ s·B·h·(T 1-RT)·v
其中,P表示感应加热功率,其单位参量为W;k为经验系数,其取值范围为0.25~0.60;c p表示基板的比热,其单位参量为J/(kg·℃),;ρ s表示基板密度,其单位参量为kg/m 3;B表示基板宽度,其单位参量为m;h表示基板厚度,其单位参量为m;T 1表示预热温度,其单位参量为℃;RT表示环境温度,其单位参量为℃;v表示机组速度,其单位参量为m/s。随着温度的上升,比热值也会升高,具体可以查询材料手册获得相应基板的c p值,或采用常规的方法测试获得基板的比热。
进一步地,在预热时维持真空度≤0.05Pa。
进一步地,在蒸发镀之前,对于经过预热的基板,采用等离子蚀刻的方式对基板表面进行清洗和活化。工艺气体选择惰性气体,如Ar,或者惰性气体和少量(体 积百分比为5~25%)的H 2的混合气体。
更进一步地,在清洗和活化时,控制真空度为0.1~10.0Pa。
在本发明所述的镀锌板的生产方法中,蒸发镀时的真空度控制为0.1~100Pa。
更进一步地,在蒸发镀的过程中,锌或锌合金的蒸发速率按照下述模型公式控制:
Q=α·B·δ·v·ρ c
其中,Q表示锌或锌合金的蒸发速率,其单位参量为kg/s;α表示经验系数,其取值范围为1.01~1.053;B表示基板宽度,其单位参量为m;δ表示镀层厚度,其单位参量为m;v表示机组速度,其单位参量为m/s;ρ c表示锌或锌合金的密度,其单位参量为kg/m 3(对于锌,密度取7.15kg/m 3;锌合金取6.4~6.5kg/m 3)。
在本技术方案中,机组速度v≥1.67m/s(即1000mpm)。
在本发明中,本发明所采用的PVD(物理气相沉积)方法对于基板没有特别的限制,其基板可以是普碳钢板,也可以是软钢板、高强钢板、不锈钢板、铝板和铜板。
进一步地,在本发明所述的镀锌板的生产方法中,所述物理气相沉积的方法包括采用蒸发镀的方式将锌蒸气或锌合金蒸气沉积在基板表面。
在本发明上述技术方案中,由于锌熔点较低,所以PVD(物理气相沉积)可以采用蒸发镀的方式,将锌蒸气或锌合金蒸气沉积在基板表面,来生产双面差镀锌板。
进一步地,在本发明所述的镀锌板的生产方法中,所述锌蒸气或锌合金蒸气通过将锌液电阻加热、电子束加热或感应加热的方式生成。
进一步地,在本发明所述的镀锌板的生产方法中,在双面差镀时,基板两个表面的镀层的形成相继进行或同时进行。
进一步地,在本发明所述的镀锌板的生产方法中,所述基板选自:普碳钢、软钢、高强钢、不锈钢、铝或铜。
相应地,本发明的另一目的在于提供一种镀锌板的生产线,该生产线可以用于实施上述镀锌板的生产方法,其通过合理布置线上机组,并配合上述镀锌板的生产方法,通过一次涂镀获得双面差镀锌板,其具有较高的生产效率和经济性。
为了实现上述目的,本发明提出了一种镀锌板的生产线,其用以实施本发明上述的镀锌板的生产方法,沿原料的输送方向,所述生产线依次包括:
真空段,沿原料的输送方向所述真空段内设有PVD沉积段以及镀后冷却段;其 中所述真空段内为真空环境,所述PVD沉积段用以在基板上形成镀层,所述镀后冷却段对镀后板材进行冷却;
平整段,其对板材进行平整。
在本发明中,为了实施本发明所述的镀锌板的生产方法,本发明还设计并提出了一种镀锌板的生产线。
在本发明上述技术方案中,本发明所述的生产线沿原料的输送方向,可以依次包括:真空段和平整段。其中,真空段内为真空环境,沿原料输送方向,真空段内进一步设置有PVD沉积段以及镀后冷却段,PVD沉积段用以基板上镀锌,镀后冷却段对镀后板材进行冷却。
相应地,板材经真空段后可以再在后续的平整段中进行平整(即在大气压下进行平整)。
需要说明的是,在本发明中,本发明所述的生产线可以布置在连续退火机组之后,也可以独立布置。倘若生产线与连续退火机组联合,则原料在经过连续退火机组后,再进入到后续的真空段和平整段。
另外,在本发明所述的生产线布置在连续退火机组之后的情况下,真空段内PVD沉积段上游优选地可以设置镀前冷却段,从而按工艺要求将来自连续退火机组的带钢进行进一步冷却。
倘若本发明所述的生产线独立布置,则可以优选地在真空段中PVD沉积段的上游进一步设置预处理段,以对基板进行预热、清洁和活化。基于此,在本发明所述的生产线中,所述真空段内还设有位于PVD沉积段上游的预处理段,所述预处理段包括:对基板进行预热的预热段以及对于基板进行清洗和活化的清洗段。
进一步地,在本发明所述的生产线中,在所述真空段内,所述PVD沉积段和镀后冷却段之间还设有合金化段。
进一步地,在本发明所述的生产线中,在所述平整段下游还设有后处理段,所述后处理段包括钝化处理段和/或涂油段。
在一些实施方案中,本发明所述的镀锌板生产线包括PVD沉积段、镀后冷却段和平整段。所述PVD沉积段内的真空度为0.1~100Pa。其中,所述PVD沉积段内设有两组喷嘴、与两组喷嘴分别连接的置于真空腔体内的镀材蒸发坩埚连接、以及与镀材蒸发坩埚连接的置于大气中的镀材熔锅。所述两组喷嘴分别布置在待镀锌板两侧,喷嘴喷射的宽度与待镀锌板的宽度相同。所述蒸发坩埚底部通过管道与所述镀 材熔锅连接,以获得镀材熔体。所述坩埚分别向所述两组喷嘴供应纯锌蒸气和/或锌合金蒸气。因此,所述PVD沉积段还设有加热装置,用以加热所述坩埚以生成所述锌蒸气和/或锌合金蒸气。本文中,加热方式包括电阻加热、电子束加热或感应加热。所述镀后冷却段设置成以辊冷的方式进行冷却和/或以惰性气体的方式进行冷却。在一些实施方案中,镀后冷却段内部设为真空环境。
在一些实施方案中,PVD沉积段和镀后冷却段之间还设有合金化段。优选地,该合金化段用于对带钢实施合金化处理,其内部设为真空环境。
在一些实施方案中,平整段之后还包括后处理段。在一些实施方案中,所述后处理段包括钝化处理段和/或涂油段。
在一些实施方案中,所述PVD沉积段前还包括预处理段,其包括对基板进行预热的预热段以及对于基板进行清洗的清洗段。所述预热段设为将基板预热到150~220℃。优选地,所述预热段内的真空度为≤0.05Pa。所述清洗段包括等离子清洗段和/或反磁控溅射清洗段;优选地,所述清洗段内的真空度为0.1~10.0Pa。在一些实施方案中,所述清洗段设为采用采用等离子蚀刻的方式进行清洁和活化。优选地,所述清洗段设有提供工艺气体的设备,所述工艺气体可以是惰性气体如Ar,或含有少量(如以体积百分比比计5~25%)氢气的惰性气体。
在一些实施方案中,所述PVD沉积段前无预处理段,而设有镀前冷却段,用于冷却来自退火机组的带钢。
在一些实施方案中,本发明的镀锌板生产线沿带钢的输送方向依次包括:开卷机1、连续退火机2、入口真空锁3、PVD沉积段4、冷却段5、平整段、出口真空锁6、后处理段7和卷取机8。在另外一些实施方案中,本发明的镀锌板生产线沿带钢的输送方向依次包括:开卷机1、入口真空锁3、预处理段9、PVD沉积段4、冷却段5、平整段、出口真空锁6、后处理段7和卷取机8。
相较于现有技术,本发明所述的镀锌板的生产方法及生产线具有如下所述的优点以及有益效果:
在本发明所述的镀锌板的生产方法中,其采用了不同于常规热镀、电镀的PVD(物理气相沉积)涂镀工艺,其通过采用PVD工艺可以对基板进行双面差镀,以一次性获得双面差镀锌板。
采用本发明所述的镀锌板的生产方法可以有效克服现有技术中所采用的热镀或电镀工艺所存在的缺陷,其所制得的镀锌板具有良好的推广前景和应用价值。
相应地,本发明还提供了一种镀锌板的生产线,该生产线可以用于实施上述镀锌板的生产方法,其通过合理布置线上机组,并配合上述镀锌板的生产方法,可以通过一次涂镀获得双面差镀锌板,其具有较高的生产效率和经济性。
附图说明
图1示意性地显示了采用本发明所述的镀锌板的生产方法对基板进行处理的工艺流程图。
图2示意性地显示了本发明所述的生产线在一种实施方式下布置在连续退火机组后的结构示意图。
图3示意性地显示了本发明所述的生产线在另一种实施方式下独立布置的结构示意图。
具体实施方式
下面将结合具体的实施例和说明书附图对本发明所述的本发明所述的镀锌板的生产方法及生产线做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
在本发明中,本发明设计了一种镀锌板的生产方法,其采用蒸发镀的方法将对基板进行双面差镀,以一次性获得双面差镀锌板。具体步骤可以包括:
(1)先将基板在真空环境内预热至150~220℃,例如200℃左右,在预热时维持真空度≤0.05Pa;
(2)在真空环境下采用等离子蚀刻的方式对基板表面进行清洗和活化,工艺气体选择Ar或者混有少量(体积百分比为5~25%)H 2的Ar,控制真空度为0.1~10.0Pa;
(3)通过将锌液电阻加热、电子束加热或感应加热的方式生成锌蒸气或锌合金蒸气,对基板进行蒸发镀,蒸发镀时的真空度控制为0.1~100Pa;
(4)在真空环境下进行镀后冷却;
(5)平整;
(6)钝化、涂油。
需要说明的是,在本发明中,基板没有特别的限制,其可以是普碳钢板,也可以是软钢板、高强钢板、不锈钢板、铝板和铜板。
另外,在步骤(3)之前,还可以在真空环境下进行镀前冷却。
其中,在优选的实施方式中,在步骤(1)中采用感应加热的方式进行预热。感应加热功率基于下述模型公式设定:
P=k·c p·ρ s·B·h·(T 1-RT)·v
其中,P表示感应加热功率,其单位参量为W;k为经验系数,其取值范围为0.25~0.60;c p表示基板的比热,其单位参量为J/(kg·℃);ρ s表示基板密度,其单位参量为kg/m 3;B表示基板宽度,其单位参量为m;h表示基板厚度,其单位参量为m;T 1表示预热温度,其单位参量为℃;RT表示环境温度,其单位参量为℃;v表示机组速度,其单位参量为m/s。
在步骤(3)中,锌或锌合金的蒸发速率按照下述模型公式控制:
Q=α·B·δ·v·ρ c
其中,Q表示锌或锌合金的蒸发速率,其单位参量为kg/s;α表示经验系数,其取值范围为1.01~1.053;B表示基板宽度,其单位参量为m;δ表示镀层厚度,其单位参量为m;v表示机组速度,其单位参量为m/s;ρ c表示锌或锌合金的密度,其单位参量为kg/m 3(对于锌,密度取7.15kg/m 3;锌合金取6.4~6.5kg/m 3)。
其中,机组速度v控制为≥1.67m/s。
另外,在某些实施方式下,在步骤(3)和步骤(4)之间,还包括合金化的步骤,该合金化步骤也是在真空环境下进行。
相应地,为了实施本发明上述生产方法,本发明进一步地设计了一种生产线以进行实施,该生产线的工艺流程可以参阅下述图1。
图1示意性地显示了采用本发明所述的镀锌板的生产线对板材进行处理的工艺流程图。
如图1所示,在本发明中,可以对现有热镀锌机组进行改造,以获得生产线,其可以采用PVD方式生产得到双面差镀锌板。
进一步参阅图1,在工艺流程①中,本发明所述的生产线布置在连续退火机组之后,沿原料的输送方向,本发明所述的生产线可以包括:PVD沉积段、镀后冷却段、平整段和后处理段。
其中,PVD沉积段和镀后冷却段内均为真空环境,PVD沉积段用以在基板上镀锌,镀后冷却段用以对板材进行冷却,二者对真空度的要求可以不同,因此,可以采用模块化设计,彼此独立,如此设计也将使设备的运行维护更加便捷。另外,在平整段中可以对板材进行平整。
此外,在某些实施方式中,本发明所述生产线中的后处理段可以进一步包括有:钝化处理段和/或涂油段。
进一步参阅图1,在工艺流程②中,本发明所述的生产线单独设置,其沿原料的输送方向,可以包括:预处理段、PVD沉积段、镀后冷却段、平整段和后处理段。
在本发明中,倘若本发明所述的生产线独立布置,则可以优选地在真空段中PVD沉积段的上游进一步设置预处理段,预处理段可以进一步包括有:对基板进行预热的预热段以及对于基板进行清洗的清洗段,以对基板进行预热处理,并进行清洗。其中,清洗段可以包括:等离子清洗段和/或反磁控溅射清洗段。
综上所述可以看出,上述工艺流程①和工艺流程②所对应的方法都是PVD沉积,所不同的是与连续退火机组相连的生产线布置可以省去预处理段。在与连续退火机组相连的生产线布置中,真空段内PVD沉积段之前优选地设置镀前冷却段,可以按工艺要求将来自连续退火机组的带钢进行进一步冷却。
需要说明的是,在某些实施方式中,在本发明所述的生产线的真空段内,还可以进一步地在PVD沉积段和冷却段之间优选地设置合金化段,以起到合金化的效果。
图2示意性地显示了本发明所述的镀锌板的生产线在一种实施方式下布置在连续退火机组后的结构示意图。
如图2所示,图2所示箭头方向为板材10的输送方向,在本发明中,沿板材10的输送方向,可以依次包括:开卷机1、连续退火机2、入口真空锁3、PVD沉积段4、冷却段5、平整段(图中未示出)、出口真空锁6、后处理段7和卷取机8。
图3示意性地显示了本发明所述的镀锌板的生产线在另一种实施方式下独立布置的结构示意图。
如图3所示,图3所示箭头方向为板材10的输送方向,在本发明中,沿板材10的输送方向,可以依次包括:开卷机1、入口真空锁3、预处理段9、PVD沉积段4、冷却段5、平整段(图中未示出)、出口真空锁6、后处理段7和卷取机8。
相应地,为了进一步说明本发明所述的镀锌板的生产方法及生产线的技术方案,本发明采用了下述两个具体的实施例,进行了进一步地说明论证。
实施例1:
实施例1基于图2所示工艺路线进行制造,其输入一卷带钢,按常规产生要求,输入到连续退火机中,经过连续还原退火(退火温度约700℃)之后,冷却至250℃, 而后通过入口真空锁,进入PVD沉积段。
在PVD沉积段内,带钢的两面布置有覆盖带宽的喷嘴,这两个喷嘴分别连接一个镀材蒸发坩埚(置于真空腔体内),蒸发坩埚底部通过管道与置于大气中的镀材熔锅相连,以获得镀材熔体。两个坩埚分别向喷嘴供应纯锌蒸气,蒸气通过喷嘴沉积在带钢的表面,使带钢两面具有不同厚度的纯锌镀层。
由于镀材沉积是一个凝结放热的物理过程,带钢的温度将急剧升高,因此在PVD沉积之后,带钢将被输入到冷却段中被冷却,其可以采用辊冷的方式对带钢进行冷却,也可以用微量惰性气体冷却带钢。
冷却后的带钢通过出口真空锁进入大气,输入到平整段中进行平整,而后按用户要求在后处理段进行处理,最后进行卷取。
实施例2:
实施例2基于图3所示工艺路线进行制造,其输入一卷表面洁净的带钢,通过入口真空锁,而后进入预处理段中,在该段中带钢被预热至150~200℃,之后,再以等离子放电的形式对其进行清洁和表面活化。完成上述工艺操作之后,控制带钢进入PVD沉积段。
在PVD沉积段内,带钢的两面布置有覆盖带宽的喷嘴,这两个喷嘴分别连接一个镀材蒸发坩埚(置于真空腔体内),蒸发坩埚底部通过管道与置于大气中的镀材熔锅相连,以获得镀材熔体。两个坩埚分别向喷嘴供应纯锌蒸气和锌镁混合蒸气,蒸气通过喷嘴沉积在带钢的表面,使带钢一面具有纯锌镀层,而另一面具有ZnMg镀层。
由于镀材沉积是一个凝结放热的物理过程,带钢的温度将急剧升高,因此,在PVD沉积之后,带钢将被输入到冷却段中被冷却,其可以采用辊冷的方式对带钢进行冷却,也可以用微量惰性气体冷却带钢。
冷却后的带钢通过出口真空锁进入大气,输入到平整段中进行平整,而后按用户要求在后处理段进行处理,最后进行卷取。
需要说明的是,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (15)

  1. 一种镀锌板的生产方法,其特征在于:采用物理气相沉积的方法对基板进行双面差镀,其中双面差镀形成的镀层为纯锌层或锌合金层;其中双面差镀包括下述各情况的其中一种:
    仅对基板进行单面镀;
    基板的两个表面均具有镀层,两个表面的镀层的厚度不同;
    基板的两个表面均具有镀层,两个表面的镀层成分不同;
    基板的两个表面均具有镀层,两个表面的镀层成分和镀层厚度均不同;
    其中所述物理气相沉积的方法为采用蒸发镀的方式将锌蒸气或锌合金蒸气沉积在基板表面。
  2. 如权利要求1所述的镀锌板的生产方法,其特征在于:在蒸发镀之前,先将基板在真空环境内预热至150~220℃;和/或在蒸发镀之前,对于经过预热的基板,采用等离子蚀刻的方式对基板表面进行清洗和活化。
  3. 如权利要求2所述的镀锌板的生产方法,其特征在于,预热采用感应加热的方式,感应加热功率基于下述模型公式设定:
    P=k·c p·ρ s·B·h·(T 1-RT)·v
    其中,P表示感应加热功率,其单位参量为W;k为经验系数,其取值范围为0.25~0.60;c p表示基板的比热,其单位参量为J/(kg·℃);ρ s表示基板密度,其单位参量为kg/m 3;B表示基板宽度,其单位参量为m;h表示基板厚度,其单位参量为m;T 1表示预热温度,其单位参量为℃;RT表示环境温度,其单位参量为℃;v表示机组速度,其单位参量为m/s。
  4. 如权利要求2所述的镀锌板的生产方法,其特征在于,在预热时维持真空度≤0.05Pa;和/或在清洗和活化时,控制真空度为0.1~10.0Pa。
  5. 如权利要求1所述的镀锌板的生产方法,其特征在于,所述锌蒸气或锌合金蒸气通过将锌液电阻加热、电子束加热或感应加热的方式生成。
  6. 如权利要求1所述的镀锌板的生产方法,其特征在于,蒸发镀时的真空度控制为0.1~100Pa。
  7. 如权利要求1所述的镀锌板的生产方法,其特征在于,在蒸发镀的过程中,锌或锌合金的蒸发速率按照下述模型公式控制:
    Q=α·B·δ·v·ρ c
    其中,Q表示锌或锌合金的蒸发速率,其单位参量为kg/s;α表示经验系数,其取值范围为1.01~1.053;B表示基板宽度,其单位参量为m;δ表示镀层厚度,其单位参量为m;v表示机组速度,其单位参量为m/s;ρ c表示锌或锌合金的密度,其单位参量为kg/m 3
  8. 如权利要求3或7所述的镀锌板的生产方法,其特征在于,机组速度v≥1.67m/s。
  9. 如权利要求1所述的镀锌板的生产方法,其特征在于,所述基板选自:普碳钢、软钢、高强钢、不锈钢、铝或铜。
  10. 一种镀锌板的生产线,其特征在于,其用以实施如权利要求1-9中任意一项所述的镀锌板的生产方法,其特征在于,沿原料的输送方向,所述生产线依次包括:
    真空段,沿原料的输送方向所述真空段内设有PVD沉积段以及镀后冷却段;其中所述真空段内为真空环境,所述PVD沉积段用以在基板上形成镀层,所述冷却段对镀后板材进行冷却;
    平整段,其对板材进行平整。
  11. 如权利要求10所述的生产线,其特征在于,所述真空段内还设有位于PVD沉积段上游的镀前冷却段;或所述真空段内还设有位于PVD沉积段上游的预处理段,所述预处理段包括:对基板进行预热的预热段以及对于基板进行清洗和活化的清洗段。
  12. 如权利要求10或11所述的生产线,其特征在于:在所述真空段内,所述PVD沉积段和镀后冷却段之间还设有合金化段;和/或,在所述平整段下游还设有后处理段,所述后处理段包括钝化处理段和/或涂油段。
  13. 一种镀锌板生产线,其特征在于,所述生产线包括PVD沉积段、镀后冷却段和平整段;优选地,所述PVD沉积段内设有两组喷嘴、与两组喷嘴分别连接的置于真空腔体内的镀材蒸发坩埚连接、以及与镀材蒸发坩埚连接的置于大气中的镀材熔锅;所述两组喷嘴分别布置在待镀锌板两侧,喷嘴喷射的宽度与待镀锌板的宽度相同;所述蒸发坩埚底部通过管道与所述镀材熔锅连接,以获得镀材熔体;所述坩埚分别向所述两组喷嘴供应纯锌蒸气和/或锌合金蒸气;所述PVD沉积段还设有加热装置,用以加热所述坩埚以生成所述锌蒸气和/或锌合金蒸气;优选地,所述PVD沉积段内的真空度为0.1~100Pa;优选地,所述镀 后冷却段设置成以辊冷的方式进行冷却和/或以惰性气体的方式进行冷却;优选地,镀后冷却段内部设为真空环境。
  14. 如权利要求13所述的镀锌板生产线,其特征在于,所述PVD沉积段和镀后冷却段之间还设有合金化段,优选地,所述合金化段内部设为真空环境;和/或,所述平整段之后还包括后处理段,所述后处理段包括钝化处理段和/或涂油段;和/或,所述PVD沉积段前还设有预处理段,其包括对基板进行预热的预热段以及对于基板进行清洗的清洗段,其中,所述预热段设为将基板预热到150~220℃,优选地,所述预热段内的真空度为≤0.05Pa,所述清洗段包括等离子清洗段和/或反磁控溅射清洗段,优选地,所述清洗段内的真空度为0.1~10.0Pa;和/或,所述PVD沉积段前无预处理段,而设有镀前冷却段,用于冷却来自退火机组的带钢。
  15. 如权利要求13或14所述的镀锌板生产线,其特征在于,所述镀锌板生产线沿带钢的输送方向依次包括:开卷机1、连续退火机2、入口真空锁3、PVD沉积段4、冷却段5、平整段、出口真空锁6、后处理段7和卷取机8;或所述镀锌板生产线沿带钢的输送方向依次包括:开卷机1、入口真空锁3、预处理段9、PVD沉积段4、冷却段5、平整段、出口真空锁6、后处理段7和卷取机8。
PCT/CN2022/127900 2021-10-27 2022-10-27 一种镀锌板的生产方法及生产线 WO2023072184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111255974.0A CN116024529A (zh) 2021-10-27 2021-10-27 一种镀锌板的生产方法及生产线
CN202111255974.0 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023072184A1 true WO2023072184A1 (zh) 2023-05-04

Family

ID=86071085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127900 WO2023072184A1 (zh) 2021-10-27 2022-10-27 一种镀锌板的生产方法及生产线

Country Status (2)

Country Link
CN (1) CN116024529A (zh)
WO (1) WO2023072184A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208467A (ja) * 1988-02-17 1989-08-22 Mitsubishi Heavy Ind Ltd 帯鋼の連続真空蒸着めっき方法
US20070224439A1 (en) * 2003-11-04 2007-09-27 Sandvik Ab Stainless Steel Strip Coated with a Metallic Layer
CN107723663A (zh) * 2017-09-26 2018-02-23 常州大学 一种在高强度钢表面连续真空蒸镀金属锑的装置和方法
CN111945113A (zh) * 2019-05-15 2020-11-17 宝山钢铁股份有限公司 一种带镀层钢卷的生产方法及其涂镀机组
CN113151784A (zh) * 2021-05-17 2021-07-23 中冶赛迪工程技术股份有限公司 用于带材的纳米复合热镀锌装置、生产工艺及带材生产线
CN113227437A (zh) * 2018-12-19 2021-08-06 Posco公司 加工性和耐蚀性优异的异种镀覆钢板及其制造方法
CN113684454A (zh) * 2020-05-19 2021-11-23 宝山钢铁股份有限公司 一种金属合金涂布基体的方法及其真空沉积装置
CN113846291A (zh) * 2020-06-28 2021-12-28 宝山钢铁股份有限公司 一种镀锌钢板/卷的清洗涂镀联合机组及其生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208467A (ja) * 1988-02-17 1989-08-22 Mitsubishi Heavy Ind Ltd 帯鋼の連続真空蒸着めっき方法
US20070224439A1 (en) * 2003-11-04 2007-09-27 Sandvik Ab Stainless Steel Strip Coated with a Metallic Layer
CN107723663A (zh) * 2017-09-26 2018-02-23 常州大学 一种在高强度钢表面连续真空蒸镀金属锑的装置和方法
CN113227437A (zh) * 2018-12-19 2021-08-06 Posco公司 加工性和耐蚀性优异的异种镀覆钢板及其制造方法
CN111945113A (zh) * 2019-05-15 2020-11-17 宝山钢铁股份有限公司 一种带镀层钢卷的生产方法及其涂镀机组
CN113684454A (zh) * 2020-05-19 2021-11-23 宝山钢铁股份有限公司 一种金属合金涂布基体的方法及其真空沉积装置
CN113846291A (zh) * 2020-06-28 2021-12-28 宝山钢铁股份有限公司 一种镀锌钢板/卷的清洗涂镀联合机组及其生产方法
CN113151784A (zh) * 2021-05-17 2021-07-23 中冶赛迪工程技术股份有限公司 用于带材的纳米复合热镀锌装置、生产工艺及带材生产线

Also Published As

Publication number Publication date
CN116024529A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
JP5450445B2 (ja) シーラー接着性及び耐食性に優れた亜鉛系合金めっき鋼板及びその製造方法
CN101994147B (zh) 一种金属基材表面处理的方法
US20090139872A1 (en) Method for producing a sheet steel product protected against corrosion
EP3126540B1 (en) Multi-layer substrate and fabrication method
CN110423971A (zh) 一种焊接性能和耐蚀性能优异的热浸镀锌钢板及其制备方法
CN103866322A (zh) 铝材真空镀膜工艺
CN105177573A (zh) 钢带连续热镀锌与镀锌镁合金的联合机组及其生产方法
CN104911554B (zh) 一种锌镁合金镀层钢带的工业化全连续型pvd生产工艺
WO2023072184A1 (zh) 一种镀锌板的生产方法及生产线
CN107523780B (zh) 热浸镀用沉没辊的复合保护涂层及制备方法
CN101333642A (zh) 带钢镀膜方法及其系统
CN109487214A (zh) 一种镁合金表面镀膜方法及由其制备的抗腐蚀镁合金
JPH02194162A (ja) Zn―Mg合金めっき金属材料の製造方法
CN107354424A (zh) 一种抑制高强钢钢板表面选择性氧化的蒸镀锌预处理工艺
WO2013004913A2 (en) Method, arrangement and raw material for producing metal coating, and steel product
JPS60116787A (ja) メツキ方法およびその装置
CN105296906A (zh) 钢板的镀锌方法
JPH051357A (ja) 溶融金属めつき方法
CN111945112A (zh) 一种真空镀锡板的制造方法
CN103334072A (zh) 热镀锌钢板的镀锌方法
JPH06240432A (ja) Tiを含有する溶融めっき鋼板の製造方法
JPH05222550A (ja) 多層合金めっき鋼板及びその製造方法
CN106827764A (zh) 一种连续pvd‑uv彩涂联合机组及生产工艺
JPS634057A (ja) 合金化蒸着亜鉛メツキ鋼帯の製造方法
CN116926428A (zh) 汽车外板用热镀锌铝镁镀层钢板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886059

Country of ref document: EP

Kind code of ref document: A1