WO2023072157A1 - 一种干扰确定方法及其装置 - Google Patents

一种干扰确定方法及其装置 Download PDF

Info

Publication number
WO2023072157A1
WO2023072157A1 PCT/CN2022/127739 CN2022127739W WO2023072157A1 WO 2023072157 A1 WO2023072157 A1 WO 2023072157A1 CN 2022127739 W CN2022127739 W CN 2022127739W WO 2023072157 A1 WO2023072157 A1 WO 2023072157A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
terminal device
channel quality
interference
quality information
Prior art date
Application number
PCT/CN2022/127739
Other languages
English (en)
French (fr)
Inventor
张立文
徐舟
居双双
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023072157A1 publication Critical patent/WO2023072157A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technologies, and in particular to an interference determining method and device thereof.
  • Filters in end equipment can filter out interference outside the continuous spectrum.
  • the filter cannot filter out the interference caused by other spectrums between the discrete spectrums.
  • the interference cannot be quantified, which may cause the terminal device to work under strong interference, which will have a great impact on the performance of the terminal device.
  • Embodiments of the present application provide an interference determination method and device thereof. By determining the interference received by a terminal device when accessing the aggregated bandwidth, and sending bandwidth configuration information to the terminal device according to the interference, it is beneficial to prevent the terminal device from working when the interference is strong. Under the bandwidth, it is beneficial to improve the performance of terminal equipment.
  • the embodiment of the present application provides a method for determining interference
  • the execution body of the method may be a network device, or may be a chip applied in the network device.
  • the method includes: the network device receives first channel quality information corresponding to the first bandwidth from the terminal device, and the first channel quality information is sent by the terminal device when accessing the first bandwidth; the network device receives the aggregated information from the terminal device The second channel quality information corresponding to the bandwidth, the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth; wherein, the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the frequency spectrum of the first bandwidth and The frequency spectrum of the second bandwidth is separated by the frequency spectrum of the third bandwidth; the network device determines the interference received by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information; and according to the interference, sends a message to the terminal The device sends bandwidth configuration information.
  • the interference received by the terminal device when accessing the aggregation bandwidth is determined, and the interference can be quantified. And it is beneficial to adaptively adjust whether the terminal device works in a large bandwidth or a small bandwidth according to the interference, which is beneficial for the terminal device to work in a working bandwidth with less interference, that is, to prevent the terminal device from working in a bandwidth with strong interference. Therefore, it is beneficial to improve the performance of the terminal device.
  • the bandwidth configuration information is used to indicate that the operating bandwidth of the terminal device is the first bandwidth.
  • the bandwidth configuration information is used to indicate that the operating bandwidth of the terminal device is the aggregated bandwidth.
  • the network device determines the interference suffered by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information may be: the evaluation value of the second channel quality information
  • the ratio between the value and the evaluation value of the first channel quality information is determined as the interference value of the interference received by the terminal device when accessing the aggregation bandwidth.
  • both the first bandwidth and the second bandwidth correspond to the first operator, and the third bandwidth corresponds to the second operator.
  • the method may further include: the network device receives capability information of the terminal device from the terminal device, the capability information is used to indicate that the terminal device supports access to aggregated bandwidth; and according to the capability information, determine that the terminal device Support access aggregation bandwidth.
  • the method may further include: the network device sending a channel state information reference signal CSI-RS of a cell corresponding to the first bandwidth, and the first channel quality information is obtained according to the channel state information when the terminal device accesses the cell.
  • CSI-RS determined.
  • the method may further include: the network device sends CSI-RS configuration information to the terminal device,
  • the CSI-RS configuration information includes CSI-RS configuration information corresponding to the first bandwidth and CSI-RS configuration information corresponding to the second bandwidth.
  • the channel quality information includes one or more items of a received signal strength indicator (RSSI) or a channel quality indicator (CQI).
  • RSSI received signal strength indicator
  • CQI channel quality indicator
  • the embodiment of the present application provides another method for determining interference.
  • the subject of execution of the method may be a terminal device, or may be a chip applied to the terminal device.
  • the method includes: when the terminal device accesses the first bandwidth, sending the first channel quality information corresponding to the first bandwidth to the network device; when accessing the aggregated bandwidth, sending the second channel quality information corresponding to the aggregated bandwidth to the network device Channel quality information; wherein, the aggregated bandwidth is obtained by at least aggregation of the first bandwidth and the second bandwidth, and the spectrum of the first bandwidth and the spectrum of the second bandwidth are separated by a spectrum of the third bandwidth; the terminal device receives the bandwidth configuration from the network device Information, the bandwidth configuration information is sent by the network device according to the interference encountered by the terminal device when accessing the aggregated bandwidth; the interference is determined according to the first channel quality information and the second channel quality information.
  • the network device can determine the interference received by the terminal device when accessing the aggregated bandwidth.
  • the interference can be quantified, and it is beneficial to adaptively adjust whether the terminal device works in a large bandwidth or a small bandwidth according to the interference, which is beneficial for the terminal device to work in a working bandwidth with less interference, that is, it is beneficial to avoid the terminal device Work in a bandwidth with strong interference, which is beneficial to improve the performance of the terminal equipment.
  • the bandwidth configuration information is used to indicate that the operating bandwidth of the terminal device is the first bandwidth.
  • the bandwidth configuration information is used to indicate that the operating bandwidth of the terminal device is the aggregated bandwidth.
  • the interference value of the interference is a ratio between the estimated value of the second channel quality information and the estimated value of the first channel quality information.
  • both the first bandwidth and the second bandwidth correspond to the first operator, and the third bandwidth corresponds to the second operator.
  • the method may further include: the terminal device sends capability information of the terminal device to the network device, where the capability information is used to indicate that the terminal device supports access to aggregated bandwidth.
  • the method may further include: the terminal device receiving a channel state information reference signal CSI-RS of a cell corresponding to the first bandwidth from the network device; and determining the first channel quality information according to the CSI-RS.
  • CSI-RS channel state information reference signal
  • the method may further include: the terminal device receives CSI-RS configuration information from the network device, the CSI-RS configuration information includes CSI-RS configuration information corresponding to the first bandwidth, and CSI-RS configuration information corresponding to the second bandwidth CSI-RS configuration information.
  • the channel quality information includes one or more items of a received signal strength indicator (RSSI) or a channel quality indicator (CQI).
  • RSSI received signal strength indicator
  • CQI channel quality indicator
  • the embodiment of the present application provides a communication device, which has the function of realizing some or all of the network equipment in the method example described in the first aspect above, for example, the function of the communication device may have some functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the function of the network device in the above method.
  • the communication unit is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage unit, which is used to be coupled with the processing unit and the sending unit, and stores necessary computer programs and data of the communication device.
  • the communication apparatus includes: a communication unit, configured to receive first channel quality information corresponding to a first bandwidth from a terminal device, where the first channel quality information is a condition of the terminal device accessing the first bandwidth
  • the communication unit is further configured to receive second channel quality information corresponding to the aggregated bandwidth from the terminal device, and the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth; where the aggregated bandwidth is at least composed of The aggregation of the first bandwidth and the second bandwidth is obtained, and there is a frequency spectrum of a third bandwidth between the frequency spectrum of the first bandwidth and the frequency spectrum of the second bandwidth;
  • the processing unit is configured to determine according to the first channel quality information and the second channel quality information
  • the communication unit is further configured to send bandwidth configuration information to the terminal device according to the interference.
  • the foregoing processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the communication apparatus includes: a transceiver, configured to receive first channel quality information corresponding to a first bandwidth from a terminal device, where the first channel quality information refers to the condition that the terminal device accesses the first bandwidth
  • the transceiver is further configured to receive second channel quality information corresponding to the aggregated bandwidth from the terminal device, where the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth; where the aggregated bandwidth is at least composed of The first bandwidth and the second bandwidth are aggregated, and the frequency spectrum of the first bandwidth and the frequency spectrum of the second bandwidth are separated by the frequency spectrum of the third bandwidth;
  • the processor is configured to determine according to the first channel quality information and the second channel quality information
  • the transceiver is also used to send bandwidth configuration information to the terminal device according to the interference.
  • the embodiment of the present application provides a communication device, the communication device has some or all functions of the terminal equipment in the method example mentioned in the second aspect above, for example, the function of the communication device may have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the function of the terminal device in the above method.
  • the communication unit is used to support communication between the communication device and other equipment.
  • the communication device may also include a storage unit for coupling with the processing unit and the sending unit, which stores necessary computer programs and data of the communication device.
  • the communication device includes: a processing unit, configured to call the communication unit to send the first channel quality information corresponding to the first bandwidth to the network device when the first bandwidth is accessed; the processing unit further In the case of accessing the aggregated bandwidth, calling the communication unit to send the second channel quality information corresponding to the aggregated bandwidth to the network device; wherein the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the frequency spectrum of the first bandwidth and the The frequency spectrum of the second bandwidth is separated by the frequency spectrum of the third bandwidth; the processing unit is also used to call the communication unit to receive the bandwidth configuration information from the network equipment, the bandwidth configuration information is received by the network equipment according to the access aggregate bandwidth of the communication device interference transmission; the interference is determined according to the first channel quality information and the second channel quality information.
  • the foregoing processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the communication device includes: a processor, configured to call a transceiver to send the first channel quality information corresponding to the first bandwidth to the network device when the first bandwidth is accessed; the processor further In the case of accessing the aggregated bandwidth, calling the transceiver to send the second channel quality information corresponding to the aggregated bandwidth to the network device; wherein the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the frequency spectrum of the first bandwidth and the The frequency spectrum of the second bandwidth is separated by the frequency spectrum of the third bandwidth; the processor is also used to call the transceiver to receive the bandwidth configuration information from the network equipment, and the bandwidth configuration information is received by the network equipment according to the access aggregation bandwidth of the communication device interference transmission; the interference is determined according to the first channel quality information and the second channel quality information.
  • the embodiment of the present application also provides a communication system, which may include the network device described in the first aspect and the terminal device described in the second aspect, or may include the communication system described in the third aspect device and the communication device described in the fourth aspect.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are executed by the communication device, the communication device Execute the method of the first aspect above.
  • the embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are executed by the communication device, the communication device Execute the method of the second aspect above.
  • the present application also provides a computer program product including a computer program or instruction, when the computer program or instruction is run on a computer, it causes the computer to execute the method described in the first aspect above.
  • the present application also provides a computer program product including a computer program or instruction, which, when the computer program or instruction is run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system, which includes at least one processor and an interface, configured to implement the functions involved in the first aspect, for example, determine or process the data and information involved in the above method at least one of .
  • the chip system further includes a memory, and the memory is used for storing necessary computer programs and data of the sending end.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, which includes at least one processor and an interface, configured to implement the functions involved in the second aspect, for example, to determine or process the data and information involved in the above method at least one of the
  • the chip system further includes a memory, and the memory is used for storing necessary computer programs and data of the receiving end.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • Figure 1a is a schematic diagram of frequency spectrum division
  • Figure 1b is a schematic diagram of interference in four directions that may exist in a large-bandwidth practical application
  • Figure 1c is a working schematic diagram of a 2-stage filter
  • Fig. 1d is a schematic structural diagram of a communication system disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining interference disclosed in an embodiment of the present application
  • Fig. 3 is a schematic flowchart of another interference determination method disclosed in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication device disclosed in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a chip disclosed in an embodiment of the present application.
  • Aggregated bandwidth is a section of bandwidth obtained by aggregating multiple sections of spectrum, or it can be understood as a large bandwidth obtained by aggregating multiple sections of small bandwidth.
  • the agencies responsible for allocating spectrum divide the available spectrum into segments for use by different operators.
  • the small bandwidth may be a section of spectrum obtained through spectrum division
  • the large bandwidth may be a section of spectrum aggregated by multiple small bandwidths.
  • the small bandwidth and the large bandwidth are used to facilitate the understanding of the concepts proposed in this solution, where "small” and "large” are not used to measure the width of the frequency spectrum.
  • large bandwidth and aggregated bandwidth may have the same meaning.
  • the small bandwidth may also be referred to as a partial bandwidth (bandwidth part, BWP).
  • the spectrum 1710.5-1785 is used for uplink transmission
  • the spectrum 1805-1880 is used for downlink transmission.
  • Figure 1a describes which spectrums in the spectrums 1710.5-1785 and 1805-1880 are allocated to operator a and which are allocated to operator b.
  • the spectrum in each column can represent a spectrum of a small bandwidth.
  • two small bandwidths allocated to operator a can be aggregated into a large bandwidth, and the spectrum width of the large bandwidth is 10M.
  • the two segments of small-bandwidth spectrum aggregated into a large bandwidth are discontinuous, in the case of scheduling the large bandwidth, the 10M discrete spectrum can be fully utilized through discontinuous scheduling to provide a large-bandwidth experience.
  • Fig. 1b includes terminal device 1 (101), terminal device 2 (103), network device 1 (102) and network device 2 (104).
  • the interference in direction A, direction B, and direction D can be solved, but the interference in direction C cannot be solved at present.
  • a blocking phenomenon may occur in the terminal device 101, that is, the terminal device 101 cannot acquire useful signals. The reason why the terminal device 101 cannot filter out this interference is described below.
  • discontinuous spectrum of two segments of small bandwidth aggregated in FIG. 1a is used as an example.
  • multiple segments of small bandwidth with continuous spectrum may also be aggregated into a large bandwidth.
  • the frequency spectrum 1805-1812.5 allocated to operator a and the frequency spectrum 1812.5-1827.5 allocated to operator b may be aggregated into a large bandwidth.
  • 1812.5 in the spectrum 1805-1812.5 is the same as 1812.5 in the spectrum 1812.5-1827.5, indicating that these two spectrums are continuous.
  • the terminal equipment includes 2 stages of filters: a radio frequency (radio frequency, RF) filter and an intermediate frequency (intermediate frequency, IF) filter.
  • the RF filter is a band-pass filter, which can filter out signals outside the target bandwidth (Band), and useful signals and other carrier frequency signals or interference within the target Band will be received.
  • the IF filter can automatically adjust the filter width according to the carrier bandwidth of the useful signal, and filter out the interference outside the carrier width.
  • the working schematic diagram of the 2-stage filter shown in Figure 1c is an example, the left side of Figure 1c is the filtering process of the 2-stage filter for single carrier, and the right side of Figure 1c is the filtering process of the 2-stage filter for discrete multi-carrier filtering process.
  • the column is used to represent the useful signal, and the triangle is used to represent the interference. It can be known from the left side in Figure 1c that, for a single carrier, the interference can be filtered out after passing through a 2-stage filter.
  • the current discrete spectrum solution uses the large bandwidth of multi-segment discrete spectrum aggregation as a single carrier, and the RF filter can filter out the interference outside the band between the lowest frequency and the highest frequency corresponding to the large bandwidth.
  • the RF filter can filter out interference outside the Band (1805-1830).
  • the IF filter adaptively adjusts the filter width according to the width of the single carrier, and will receive signals from other spectrums (1812.5-1827.5), which are interference. Therefore, interference caused by this other spectrum cannot be filtered out by a 2-stage filter in the terminal equipment.
  • a single carrier may be understood as a carrier with a small bandwidth
  • a multi-carrier may be understood as a plurality of carriers with a small bandwidth
  • a discrete multi-carrier may be understood as a frequency discontinuity of a plurality of carriers with a small bandwidth.
  • the total signal power (that is, the total power of the useful signal + noise) will be amplified to the dynamic range of the analog-to-digital converter (ADC), but when the interference intensity is much higher than the useful signal.
  • ADC analog-to-digital converter
  • the useful signal is actually amplified by a small factor, so that the power of the amplified useful signal is very small, and it will not even be recognized as a useful signal, thus causing the terminal device to be blocked.
  • it is currently impossible to quantify the interference in the direction C which may cause the terminal device to work under strong interference and have a great impact on the performance of the terminal device.
  • the embodiment of the present application determines the interference received by the terminal device when accessing the aggregated bandwidth, and sends bandwidth configuration information to the terminal device according to the interference, which is beneficial to prevent the terminal device from working in a bandwidth with strong interference, thereby effectively It is beneficial to improve the performance of the terminal equipment.
  • FIG. 1d is a schematic structural diagram of a communication system disclosed in an embodiment of the present application. As shown in FIG. 1d , the communication system includes: a terminal device 101 and a network device 102 .
  • the terminal device 101 may be configured to send the first channel quality information corresponding to the first bandwidth to the network device 102 when accessing the first bandwidth; and send the aggregated channel quality information to the network device 102 when accessing the aggregated bandwidth.
  • the aggregation bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the frequency spectrum of the first bandwidth and the frequency spectrum of the second bandwidth are separated by the frequency spectrum of the third bandwidth.
  • the network device 102 may be configured to receive the first channel quality information and the second channel quality information from the terminal device 101; received interference; and send bandwidth configuration information to the terminal device 101 according to the interference.
  • the terminal device 101 may also be configured to receive the bandwidth configuration information.
  • the terminal device 101 may determine the working bandwidth according to the bandwidth configuration information. In this manner, it is beneficial for the terminal device to work in a working bandwidth with less interference, that is, it is beneficial to prevent the terminal device from working in a bandwidth with strong interference, thereby improving the performance of the terminal device.
  • the terminal device 101 may be an entity on the user side for receiving or transmitting signals.
  • the terminal device may be called a terminal (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, and artificial satellites, etc.).
  • Terminal devices include handheld devices, vehicle-mounted devices, wearable devices, or computing devices with wireless communication functions.
  • the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a smart vehicle (smart vehicle) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving , drones, drone controllers, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • smart vehicle smart vehicle terminal device
  • wireless terminal in industrial control a wireless terminal in unmanned driving , drones, drone controllers, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 102 may be an entity on the network side for transmitting or receiving signals.
  • the network device may be an access network device, and the access network device may provide functions such as wireless resource management, service quality management, data encryption and compression for the terminal device.
  • the access network device may be a radio access network (radio access network, RAN) device.
  • the access network device may include a base station (base station, BS), which may be a device deployed in a wireless access network and capable of performing wireless communication with a terminal device.
  • the base station may have various forms, such as macro base station, micro base station, relay station, access point, satellite, drone, etc.
  • the access network device may be a base station in a fifth generation communication ( 5th generation, 5G) system or a base station in a long term evolution (long term evolution, LTE) system, where the base station in 5G may also be referred to as A transmission reception point (transmission reception point, TRP) or a next generation base station node (next generation Node B, gNB).
  • 5th generation 5th generation
  • LTE long term evolution
  • TRP transmission reception point
  • gNB next generation base station node
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the technology described in the embodiments of the present application can be used in various communication systems, such as a fifth generation communication (5 th generation, 5G) system, a system in which multiple communication systems are integrated, or a communication system that evolves in the future, such as a 6G communication system.
  • 5G fifth generation communication
  • 6G 6th generation communication system
  • the network element names and message names mentioned in the embodiments of the present application are used as examples. They are applied in different communication systems, and the network element and message names may be different, which is not limited in the embodiments of the present application.
  • Figure 2 is a schematic flow chart of a method for determining interference provided in an embodiment of the present application. The method includes but is not limited to the following steps:
  • Step S201 When the terminal device accesses the first bandwidth, it sends the first channel quality information corresponding to the first bandwidth to the network device.
  • the network device receives the first channel quality information from the terminal device, where the first channel quality information is sent by the terminal device when accessing the first bandwidth.
  • the first bandwidth is a small bandwidth.
  • the terminal device may access the first bandwidth during random access, and determine the first channel quality information corresponding to the first bandwidth when accessing the first bandwidth, and then send the network device Send the first channel quality information.
  • the channel quality information (such as first channel quality information, second channel quality information) may include but not limited to received signal strength indication (received signal strength indication, RSSI) or channel quality indication (channel quality indication, One or more of CQI).
  • accessing a certain bandwidth by a terminal device may be understood as accessing a cell corresponding to the bandwidth by the terminal device.
  • a cell may correspond to one or more bandwidths, and the one or more bandwidths corresponding to the cell may include small bandwidths and aggregated bandwidths, and the number of small bandwidths and large bandwidths may be one or more.
  • the first bandwidth may be configured by the network device as the terminal device.
  • the terminal device may determine the first channel quality information corresponding to the first bandwidth in the following manner: the terminal device receives channel state information-reference signal (channel state information-reference signal) of a cell corresponding to the first bandwidth from the network device. reference signal, CSI-RS); and according to the CSI-RS, measure and obtain the first channel quality information.
  • channel state information-reference signal channel state information-reference signal
  • CSI-RS channel state information-reference signal
  • Step S202 In the case of accessing the aggregated bandwidth, the terminal device sends to the network device the second channel quality information corresponding to the aggregated bandwidth; wherein, the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the frequency spectrum of the first bandwidth The frequency spectrum of the third bandwidth is spaced apart from the frequency spectrum of the second bandwidth.
  • the network device receives the second channel quality information from the terminal device, and the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth.
  • the terminal device After accessing the first bandwidth (that is, the small bandwidth), the terminal device may switch from the first bandwidth to the aggregated bandwidth. That is, the working bandwidth of the terminal device changes from the first bandwidth to the aggregated bandwidth.
  • the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the spectrum of the first bandwidth and the spectrum of the second bandwidth are separated by a spectrum of the third bandwidth.
  • the first bandwidth, the second bandwidth and the third bandwidth may all be small bandwidths.
  • the first bandwidth and the second bandwidth are small bandwidths, and the number of third bandwidths may be one or more.
  • the terminal device works under the aggregated bandwidth, and the signal of the third bandwidth will cause interference to the terminal device.
  • the signal of the third bandwidth may refer to the signal carried on the carrier corresponding to the frequency spectrum of the third bandwidth.
  • Carriers corresponding to different spectrums may be different.
  • the small bandwidth and aggregated bandwidth in the embodiments of the present application may be frequency division duplex (frequency division duplexing, FDD) bandwidth, time division duplex (time division duplex, TDD) bandwidth, standard bandwidth or non-standard bandwidth.
  • FDD frequency division duplexing
  • TDD time division duplex
  • standard bandwidth may refer to the bandwidth defined by the standard protocol
  • the non-standard bandwidth may refer to the bandwidth other than the bandwidth defined by the standard protocol.
  • both the first bandwidth and the second bandwidth may correspond to the first operator, and the third bandwidth may correspond to the second operator.
  • the interference received by the terminal device when accessing the aggregated bandwidth is the interference of a different operator.
  • the first bandwidth corresponds to the first operator may indicate that the first bandwidth is allocated to the first operator, and the first operator has the right to schedule and allocate the first bandwidth.
  • the first bandwidth and the second bandwidth may correspond to different operators, for example, the first bandwidth corresponds to operator a, the second bandwidth corresponds to operator b, and the third bandwidth corresponds to operator c, wherein, Operator a and operator b may be operators sharing bandwidth resources.
  • the cell corresponding to the first bandwidth and the cell corresponding to the aggregated bandwidth may be the same cell.
  • the aforementioned network device may be a network device (such as an access network device) corresponding to the cell.
  • the terminal device may receive first bandwidth configuration information from the network device, where the first bandwidth configuration information may indicate the aggregated bandwidth; then, the terminal device may receive the first bandwidth configuration information according to the first bandwidth configuration information , determine the working bandwidth of the terminal device as the aggregated bandwidth. If the working bandwidth of the terminal device is the first bandwidth when the first bandwidth configuration information is received, the terminal device may switch from the first bandwidth to the aggregated bandwidth. If the working bandwidth of the terminal device is the aggregated bandwidth when the first bandwidth configuration information is received, the terminal device can keep working under the aggregated bandwidth.
  • the terminal device may also access the aggregated bandwidth autonomously.
  • the terminal device may send capability information of the terminal device to the network device, where the capability information may be used to indicate whether the terminal device supports access to the aggregated bandwidth.
  • the network device receives the capability information from the terminal device, and determines whether the terminal device supports access to the aggregated bandwidth according to the capability information.
  • the network device sends the aforementioned first bandwidth configuration information to the terminal device only when it is determined that the terminal device supports access to the aggregated bandwidth.
  • the terminal device attempts to access the aggregated bandwidth only when the terminal device supports access to the aggregated bandwidth.
  • the terminal device may determine the second channel quality information corresponding to the aggregated bandwidth in the following manner: the terminal device receives the CSI-RS of the cell corresponding to the aggregated bandwidth from the network device; and according to the CSI-RS, measure and obtain The second channel quality information.
  • the network device may send the aforementioned first bandwidth configuration information to the terminal device when it is determined that the terminal device supports access to aggregated bandwidth.
  • Step S203 The network device determines the interference encountered by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information.
  • the network device may determine the interference encountered by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information.
  • the network device may determine the interference value of the interference received by the terminal device when accessing the aggregation bandwidth according to the ratio between the evaluation value of the second channel quality information and the evaluation value of the first channel quality information. Specifically, the network device may determine the ratio between the evaluation value of the second channel quality information and the evaluation value of the first channel quality information as the interference value of the interference received by the terminal device when accessing the aggregated bandwidth.
  • the channel quality information (such as the first channel quality information and the second channel quality information) includes the interference signal power
  • the first channel quality information is the channel quality information corresponding to the small bandwidth (first bandwidth)
  • the second channel quality information is channel quality information corresponding to the large bandwidth (aggregated bandwidth).
  • the 2-stage filter in the terminal device can filter out the interference working in the small bandwidth, but cannot filter out the interference brought by the third bandwidth working in the aggregated bandwidth. Therefore, the ratio between the estimated value of the second channel quality information and the estimated value of the first channel quality information may be used to quantify the interference received by the terminal device when accessing the aggregated bandwidth.
  • the reference signal receiving power RSRP does not include the interference signal power, so RSRP cannot be used to quantify the interference received by the terminal device when accessing the aggregated bandwidth.
  • Channel quality information may include but not limited to one or more items of RSSI or CQI.
  • the RSSI includes not only useful signal power but also interference signal power. Therefore, using the RSSI to quantify the interference received by the terminal device when accessing the aggregation bandwidth is beneficial to improve the accuracy of quantifying the interference.
  • Step S204 The network device sends bandwidth configuration information to the terminal device according to the interference.
  • the terminal device receives the bandwidth configuration information from the network device.
  • the network device After the network device determines the interference received by the terminal device when accessing the aggregated bandwidth, it may send bandwidth configuration information (for example, second bandwidth configuration information) to the terminal device according to the interference.
  • bandwidth configuration information for example, second bandwidth configuration information
  • the terminal device can adjust the working bandwidth or keep the working bandwidth unchanged according to the second bandwidth configuration information.
  • the terminal device may periodically fall back to the first bandwidth (that is, periodically access the first bandwidth), and measure the second channel quality information.
  • channel quality information corresponding to a bandwidth and send the measured channel quality information to the network device.
  • the terminal device may also periodically switch to the aggregated bandwidth, measure channel quality information corresponding to the aggregated bandwidth, and send the measured channel quality information to the network device. Therefore, when the terminal device receives the second bandwidth configuration information, the working bandwidth of the terminal device may be the first bandwidth, the aggregated bandwidth, or other bandwidths other than the first bandwidth and the aggregated bandwidth.
  • the second bandwidth configuration information may indicate the first bandwidth or the aggregated bandwidth, and when the second bandwidth configuration information indicates a certain bandwidth, it may indicate that the network device configures the working bandwidth of the terminal device as the bandwidth.
  • the second bandwidth configuration information indicates the first bandwidth, which means that the second bandwidth configuration information indicates that the working bandwidth of the terminal device is the first bandwidth.
  • the second bandwidth configuration information indicates the aggregated bandwidth, which has the same meaning as the second bandwidth configuration information indicates that the working bandwidth of the terminal device is the aggregated bandwidth.
  • the aforementioned second bandwidth configuration information may be used to indicate that the working bandwidth of the terminal device is the first bandwidth.
  • the bandwidth configuration information may be used to indicate that the working bandwidth of the terminal device is the aggregated bandwidth. In this way, in the case of less interference, it works under the aggregated bandwidth, which is conducive to obtaining large-bandwidth services.
  • the preset interference value may be indicated by a network device, or may be stipulated in a protocol.
  • the preset interference value may be an empirical value, which is not limited in this embodiment of the present application.
  • the terminal device when the terminal device receives the second bandwidth configuration information, if the working bandwidth of the terminal device is the aggregated bandwidth, then the terminal device can switch from the aggregated bandwidth to the first bandwidth. bandwidth. If the operating bandwidth of the terminal device is the first bandwidth, the terminal device may keep working at the first bandwidth.
  • the terminal device when the terminal device receives the second bandwidth configuration information, if the operating bandwidth of the terminal device is the aggregated bandwidth, the terminal device can keep working under the aggregated bandwidth. If the working bandwidth of the terminal device is the first bandwidth, the terminal device may switch from the first bandwidth to the aggregated bandwidth.
  • the interference received by the terminal device when accessing the aggregated bandwidth is determined through the first channel quality information and the second channel quality information, and the interference may be quantified. And it is beneficial to adaptively adjust whether the terminal device works in a large bandwidth or a small bandwidth according to the interference, which is beneficial for the terminal device to work in a working bandwidth with less interference, that is, to prevent the terminal device from working in a bandwidth with strong interference. Therefore, it is beneficial to improve the performance of the terminal device. Moreover, this method is beneficial to solve the problem of terminal equipment blocking caused by interference from different operators, thereby providing application feasibility for discrete spectrum aggregation for virtual large bandwidth, and is also conducive to providing implementation for co-construction and sharing of operators. feasibility. This improves resource utilization and improves user experience.
  • FIG. 3 is a schematic flowchart of another interference determination method provided by an embodiment of the present application.
  • This method describes how a network device configures CSI-RS configuration information for a terminal device, and how the terminal device configures CSI-RS configuration information based on the CSI-RS
  • the configuration information sends the second channel quality information corresponding to the aggregated bandwidth to the network device.
  • the method may include, but is not limited to, the following steps:
  • Step S301 When the terminal device accesses the first bandwidth, it sends the first channel quality information corresponding to the first bandwidth to the network device.
  • the network device receives the first channel quality information from the terminal device, where the first channel quality information is sent by the terminal device when accessing the first bandwidth.
  • step S301 may refer to the specific description of step S201 in FIG. 2 , which will not be repeated here.
  • Step S302 The network device sends CSI-RS configuration information to the terminal device.
  • the CSI-RS configuration information includes CSI-RS configuration information corresponding to the first bandwidth and CSI-RS configuration information corresponding to the second bandwidth.
  • the terminal device receives the CSI-RS configuration information from the network device.
  • the CSI-RS configuration information may be used by the terminal device to measure the second channel quality information corresponding to the aggregation bandwidth.
  • the CSI-RS configuration information may include but not limited to one or more of the following: the time-frequency position of the CSI-RS, and the periodicity information of the periodic CSI-RS.
  • the configuration information of the CSI-RS corresponding to the first bandwidth may include but not limited to one or more of the following: the time-frequency position of the first CSI-RS, the first CSI-RS Periodic information of the RS (if the first CSI-RS is a periodic CSI-RS).
  • the configuration information of the CSI-RS corresponding to the second bandwidth may include but not limited to one or more of the following: the time-frequency position of the second CSI-RS, the period of the second CSI-RS Information (if the second CSI-RS is a periodic CSI-RS).
  • the network device may configure the CSI-RS configuration information through the capability information of the terminal device.
  • the terminal device may send capability information to the network device, and the capability information may indicate at least one of the following items: whether the terminal device supports periodic CSI-RS, whether the terminal device supports aperiodic CSI-RS, and whether the terminal device supports m sets of periodic CSI-RS.
  • RS the terminal device supports n sets of aperiodic CSI-RS.
  • m and n are both integers.
  • the network device can configure a z-period CSI-RS for the terminal device.
  • the CSI-RS configuration information It may include configuration information of z-period CSI-RS.
  • m ⁇ z the network device can configure m sets of periodic CSI-RS for the terminal device, and configure (z-m) sets of aperiodic CSI-RS for the terminal device.
  • the CSI-RS configuration information can include m sets of periodic CSI-RS RS configuration information, and (z-m) sets of aperiodic CSI-RS configuration information. If n ⁇ z, the network device can configure n sets of aperiodic CSI-RS for the terminal device, and configure (z-n) sets of periodic CSI-RS for the terminal device. At this time, the CSI-RS configuration information can include n sets of aperiodic CSI-RS - RS configuration information, and (z-n) set period CSI-RS configuration information. If m ⁇ z, the network device can configure 1 set of periodic CSI-RS for part of the small bandwidth included in the aggregated bandwidth (such as 1 small bandwidth: the first bandwidth).
  • the CSI-RS configuration information can include 1 set of periodic CSI -RS configuration information. It should be noted that some small bandwidths may also be z1 small bandwidths, 1 ⁇ z1 ⁇ z. Correspondingly, at this time, the CSI-RS configuration information may include z1 sets of periodic CSI-RS configuration information, and a small bandwidth corresponds to a set of periodic CSI-RS configuration information. If n ⁇ z, the network device can configure a set of aperiodic CSI-RS for a part of the small bandwidth included in the aggregated bandwidth (such as a small bandwidth: the second bandwidth). At this time, the CSI-RS configuration information can include a set of aperiodic CSI-RS Configuration information of the periodic CSI-RS.
  • the CSI-RS configuration information may include z2 sets of aperiodic CSI-RS configuration information, and one small bandwidth corresponds to a set of aperiodic CSI-RS configuration information.
  • the CSI-RS configuration information is only configured with CSI for some small bandwidths included in the aggregated bandwidth.
  • the channel quality information corresponding to another part of the small bandwidth included in the aggregated bandwidth may be the channel quality information corresponding to the small bandwidth configured with CSI-RS configuration information, that is, the existing CSI measurement results are reused .
  • the CSI-RS configuration information sent by the network device to the terminal device includes the CSI-RS configuration information corresponding to small bandwidth a, and the CSI-RS configuration information corresponding to small bandwidth b.
  • the configuration information of the CSI-RS does not include the configuration information of the CSI-RS corresponding to the small bandwidth c.
  • the terminal device can measure the channel quality information corresponding to the small bandwidth b according to the CSI-RS configuration information corresponding to the small bandwidth b, and multiplex the channel quality information corresponding to the small bandwidth b as the channel quality information corresponding to the small bandwidth c.
  • the frequency spectrum that is closest to the frequency spectrum of the small bandwidth 1 in the aggregated bandwidth (this frequency spectrum is a certain small bandwidth in the aggregated bandwidth)
  • the CSI measurement result of the frequency spectrum of the bandwidth is used as the CSI measurement result of the small bandwidth 1.
  • Step S303 In the case of accessing the aggregated bandwidth, the terminal device sends the second channel quality information corresponding to the aggregated bandwidth to the network device according to the CSI-RS configuration information; wherein, the aggregated bandwidth is at least aggregated by the first bandwidth and the second bandwidth It is obtained that there is a frequency spectrum of the third bandwidth between the frequency spectrum of the first bandwidth and the frequency spectrum of the second bandwidth.
  • the network device receives the second channel quality information from the terminal device, and the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth.
  • the terminal device may measure and obtain second channel quality information according to the CSI-RS configuration information, and send the second channel quality information to the network device. Specifically, the terminal device may measure and obtain channel quality information corresponding to the first bandwidth according to the configuration information of the CSI-RS corresponding to the first bandwidth; and obtain the channel quality information corresponding to the second bandwidth according to the configuration information of the CSI-RS corresponding to the second bandwidth.
  • the channel quality information corresponding to the aggregated bandwidth that is, the second channel quality information corresponding to the aggregated bandwidth may include measured channel quality information corresponding to the first bandwidth and channel quality information corresponding to the second bandwidth when the terminal device accesses the aggregated bandwidth.
  • step S303 refers to the specific description of step S202 in FIG. 2 , which will not be repeated here.
  • Step S304 The network device determines the interference encountered by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information.
  • Step S305 The network device sends bandwidth configuration information to the terminal device according to the interference.
  • the terminal device receives bandwidth configuration information from the network device.
  • step S304 to step S305 refer to the specific description of step S203 to step S204 in FIG. 2 , which will not be repeated here.
  • the interference received by the terminal device when accessing the aggregated bandwidth is determined through the first channel quality information and the second channel quality information, and the interference may be quantified. And it is beneficial to adaptively adjust whether the terminal device works in a large bandwidth or a small bandwidth according to the interference, which is beneficial for the terminal device to work in a working bandwidth with less interference, that is, to prevent the terminal device from working in a bandwidth with strong interference. Therefore, it is beneficial to improve the performance of the terminal device. Moreover, this method is beneficial to solve the problem of terminal equipment blocking caused by interference from different operators, thereby providing application feasibility for discrete spectrum aggregation for virtual large bandwidth, and is also conducive to providing implementation for co-construction and sharing of operators. feasibility. This improves resource utilization and improves user experience.
  • the terminal device may support a multi-slice filtering mechanism under the aggregated bandwidth, through which the interference received by the terminal device when accessing the aggregated bandwidth can be filtered out.
  • the fact that the terminal device supports the multi-slice filtering mechanism under the aggregated bandwidth may mean that the terminal device can identify each small bandwidth included in the aggregated bandwidth, and can perform adaptive filtering for each small bandwidth. Adaptive filtering is performed for each small bandwidth, and the filter width can be automatically adjusted for each small bandwidth to filter out interference other than the carrier width.
  • the aggregated bandwidth is obtained by aggregating the first bandwidth and the second bandwidth, wherein the carrier width of the first bandwidth is 5M, and the carrier width of the second bandwidth is 10M.
  • the terminal device can identify the information carried on the carrier of the first bandwidth, and can automatically adjust the filter width to 5M for the information, so that the interference of other carriers can be filtered out.
  • the terminal device can identify the information carried on the carrier of the second bandwidth, and can automatically adjust the filter width to 10M for the information, so that the interference of other carriers can be filtered out. In this way, the interference problem under the aggregated bandwidth can be solved fundamentally.
  • embodiments of the present application further provide corresponding apparatuses, including corresponding modules or units for executing the foregoing embodiments.
  • the modules or units may be software, or hardware, or a combination of software and hardware.
  • FIG. 4 is a schematic structural diagram of a communication device provided in this application.
  • the communication device 400 shown in FIG. 4 includes a communication unit 401 and a processing unit 402 .
  • communications apparatus 400 is a network device:
  • the communication unit 401 is configured to receive first channel quality information corresponding to the first bandwidth from the terminal device, where the first channel quality information is sent by the terminal device when accessing the first bandwidth; the communication unit 401, It is also used to receive second channel quality information corresponding to the aggregated bandwidth from the terminal device, where the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth; wherein the aggregated bandwidth consists of at least the first bandwidth and the second bandwidth Obtained by aggregation, there is a frequency spectrum of a third bandwidth between the frequency spectrum of the first bandwidth and the frequency spectrum of the second bandwidth; the processing unit 402 is configured to determine, according to the first channel quality information and the second channel quality information, that the terminal device is accessing the aggregated Interference received by the bandwidth; the communication unit 401 is further configured to send bandwidth configuration information to the terminal device according to the interference.
  • the bandwidth configuration information is used to indicate that the operating bandwidth of the terminal device is the first bandwidth.
  • the bandwidth configuration information is used to indicate that the operating bandwidth of the terminal device is the aggregated bandwidth.
  • the processing unit 402 is configured to determine the interference encountered by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information, and is specifically configured to: use the second channel quality information A ratio between the evaluation value of the information and the evaluation value of the first channel quality information is determined as an interference value of interference received by the terminal device when accessing the aggregation bandwidth.
  • both the first bandwidth and the second bandwidth correspond to the first operator, and the third bandwidth corresponds to the second operator.
  • the communication unit 401 is further configured to receive capability information of the terminal device from the terminal device, where the capability information is used to indicate that the terminal device supports access to aggregated bandwidth; the processing unit 402 is also configured to information to determine that the terminal device supports access to the aggregated bandwidth.
  • the communication unit 401 is further configured to send the channel state information reference signal CSI-RS of the cell corresponding to the first bandwidth, and the first channel quality information is obtained according to the CSI-RS when the terminal device accesses the cell. -RS OK.
  • the communication unit 401 is further configured to send CSI-RS configuration information to the terminal device, where the CSI-RS configuration information includes CSI-RS configuration information corresponding to the first bandwidth, and CSI-RS configuration information corresponding to the second bandwidth. RS configuration information.
  • the channel quality information includes one or more items of a received signal strength indicator (RSSI) or a channel quality indicator (CQI).
  • RSSI received signal strength indicator
  • CQI channel quality indicator
  • the communication device 400 When the communication device 400 is a network device, it is used to realize the functions of the network device in the embodiments corresponding to FIG. 2 to FIG. 3 .
  • the communication device 400 is a terminal device:
  • the processing unit 402 is configured to call the communication unit 401 to send the first channel quality information corresponding to the first bandwidth to the network device in the case of accessing the first bandwidth; the processing unit 402 is also configured to In the case of bandwidth, call the communication unit 401 to send the second channel quality information corresponding to the aggregated bandwidth to the network device; wherein, the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the spectrum of the first bandwidth and the spectrum of the second bandwidth There is a frequency spectrum with a third bandwidth between them; the processing unit 402 is also used to call the communication unit 401 to receive bandwidth configuration information from the network device, the bandwidth configuration information is sent by the network device according to the interference received by the communication device 400 when accessing the aggregated bandwidth ; the interference is determined according to the first channel quality information and the second channel quality information.
  • the bandwidth configuration information is used to indicate that the working bandwidth of the communication device 400 is the first bandwidth.
  • the bandwidth configuration information is used to indicate that the working bandwidth of the communication device 400 is the aggregated bandwidth.
  • the interference value of the interference is a ratio between the estimated value of the second channel quality information and the estimated value of the first channel quality information.
  • both the first bandwidth and the second bandwidth correspond to the first operator, and the third bandwidth corresponds to the second operator.
  • the processing unit 402 is further configured to call the communication unit 401 to send the capability information of the communication device 400 to the network device, where the capability information is used to indicate that the communication device 400 supports access to aggregated bandwidth.
  • the processing unit 402 is further configured to call the communication unit 401 to receive the channel state information reference signal CSI-RS from the cell corresponding to the first bandwidth of the network device; and determine the first channel according to the CSI-RS quality information.
  • the processing unit 402 is further configured to call the communication unit 401 to receive CSI-RS configuration information from the network device, the CSI-RS configuration information includes the configuration information of the CSI-RS corresponding to the first bandwidth, and the second Configuration information of the CSI-RS corresponding to the bandwidth.
  • the channel quality information includes one or more items of a received signal strength indicator (RSSI) or a channel quality indicator (CQI).
  • RSSI received signal strength indicator
  • CQI channel quality indicator
  • the communication device 400 When the communication device 400 is a terminal device, it is used to realize the functions of the terminal device in the embodiments shown in FIG. 2 to FIG. 3 .
  • FIG. 5 is a schematic structural diagram of another communication device provided in this application.
  • the communication device 500 shown in FIG. 5 includes at least one processor 501 and a transceiver 502 .
  • a memory 503 may also be included.
  • the memory 503 can be a volatile memory, such as a random access memory; the memory can also be a nonvolatile memory, such as a read-only memory, a flash memory, a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), or the memory 503 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 503 may be a combination of the above-mentioned memories.
  • a specific connection medium among the processor 501, the transceiver 502, and the memory 503 is not limited.
  • the processor 501, the transceiver 502, and the memory 503 are connected through the bus 504 in the figure, and the bus 504 is represented by a thick line in the figure, and the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus 504 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 5 , but it does not mean that there is only one bus or one type of bus.
  • the processor 501 can have a data sending and receiving function, and can communicate with other devices. In the device as shown in FIG. During communication, data transmission can be performed through the transceiver 502 .
  • the processor in FIG. 5 may execute the method performed by the network device in any one of the foregoing method embodiments.
  • the processor in FIG. 5 may execute the method performed by the terminal device in any of the foregoing method embodiments.
  • the functions/implementation process of the processing unit and the communication unit in FIG. 4 can be implemented by calling the computer-executed instructions stored in the memory 503 by the processor 501 in FIG. 5 .
  • the function/implementation process of the processing unit in FIG. 4 can be realized by calling the computer execution instructions stored in the memory 503 by the processor 501 in FIG. 5, and the function/implementation process of the communication unit in FIG. device 502 to achieve.
  • the communication device 500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processor described in this application can be implemented in the following ways: integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor can also be manufactured using the following IC process technologies: such as complementary metal oxide semiconductor (complementary metal oxide semiconductor, CMOS), n-type metal-oxide semiconductor (nMetal-oxide-semiconductor, NMOS), p-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal-oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • p-type metal oxide semiconductor positive channel metal oxide semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 5 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip 600 shown in FIG. 6 includes a processor 601 and an interface 602 .
  • the number of processors 601 may be one or more, and the number of interfaces 602 may be more than one.
  • chip 600 is used to implement the functions of the network device in the embodiment of the present application:
  • the interface 602 is configured to receive first channel quality information corresponding to the first bandwidth from the terminal device, where the first channel quality information is sent by the terminal device when accessing the first bandwidth;
  • the interface 602 is further configured to receive second channel quality information corresponding to the aggregated bandwidth from the terminal device, where the second channel quality information is sent by the terminal device when accessing the aggregated bandwidth; where the aggregated bandwidth consists of at least the first bandwidth and The second bandwidth is aggregated to obtain a spectrum of the third bandwidth between the spectrum of the first bandwidth and the spectrum of the second bandwidth;
  • the processor 601 is configured to determine the interference suffered by the terminal device when accessing the aggregated bandwidth according to the first channel quality information and the second channel quality information;
  • the interface 602 is further configured to send bandwidth configuration information to the terminal device according to the interference.
  • chip 600 is used to implement the functions of the terminal device in the embodiment of this application:
  • the processor 601 is configured to, in the case of accessing the first bandwidth, call the interface 602 to send the first channel quality information corresponding to the first bandwidth to the network device;
  • the processor 601 is further configured to call the interface 602 to send the second channel quality information corresponding to the aggregated bandwidth to the network device in the case of accessing the aggregated bandwidth; wherein the aggregated bandwidth is at least obtained by aggregating the first bandwidth and the second bandwidth, and the second a spectrum of a third bandwidth is spaced between a spectrum of a first bandwidth and a spectrum of a second bandwidth;
  • the processor 601 is further configured to call the interface 602 to receive bandwidth configuration information from the network device, the bandwidth configuration information is sent by the network device according to the interference received by the terminal device when accessing the aggregated bandwidth; the interference is based on the first channel quality information and The second channel quality information is determined.
  • the chip further includes a memory 603, which is used to store necessary computer programs and data.
  • the memory 603 can be set independently, or can be integrated with the processor 601, as shown by a dashed box 603 in FIG. 6 .
  • the embodiment of the present application further provides a communication system, and the system may include the network device and the terminal device in the embodiments corresponding to FIG. 2 to FIG. 3 .
  • the processing unit for performing these techniques at a communication device may be implemented on one or more general-purpose processors, digital signal processors ( digital signal processor, DSP), digital signal processing device, application specific integrated circuit (application specific integrated circuit, ASIC), programmable logic device, field programmable gate array (field programmable gate array, FPGA), or other programmable logic device, Discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration to accomplish.
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state drive (solid state drive, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state drive (solid state drive, SSD)
  • references to "an embodiment” throughout the specification mean that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the various embodiments throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” are often used herein interchangeably.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone The three cases of B, where A can be singular or plural, and B can be singular or plural.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种干扰确定方法及其装置,该方法包括:网络设备接收来自终端设备的第一带宽对应的第一信道质量信息,以及聚合带宽对应的第二信道质量信息;并根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰;根据该干扰,向终端设备发送带宽配置信息。其中,第一信道质量信息是终端设备在接入第一带宽的情况下发送的,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的;聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱。通过实施本申请实施例,有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。

Description

一种干扰确定方法及其装置
本申请要求于2021年10月28日提交中国国家知识产权局、申请号为202111268498.6、申请名称为“一种干扰确定方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种干扰确定方法及其装置。
背景技术
为充分利用离散频谱资源,提出了将多段离散频谱聚合为大带宽小区的解决方案。该方案通过非连续调度的方式,使得用户可以享受大带宽体验。
终端设备中的滤波器可以过滤连续频谱以外的干扰。但是,对于多段离散频谱聚合的大带宽,由于当前离散频谱方案将多段离散频谱聚合的大带宽作为1个单载波,因此滤波器无法滤除离散频谱之间的其他频谱造成的干扰。并且也无法量化该干扰,这样可能导致终端设备工作在干扰较强的情况下,对该终端设备的性能造成较大影响。
发明内容
本申请实施例提供一种干扰确定方法及其装置,通过确定终端设备在接入聚合带宽所受到的干扰,并根据该干扰向终端设备发送带宽配置信息,有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。
第一方面,本申请实施例提供一种干扰确定方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。该方法包括:网络设备接收来自终端设备的第一带宽对应的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的;网络设备接收来自终端设备的聚合带宽对应的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;网络设备根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰;并根据该干扰,向终端设备发送带宽配置信息。
在该技术方案中,通过第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰,可以量化干扰。并有利于根据该干扰,自适应调整终端设备工作在大带宽还是小带宽,这样有利于终端设备工作在干扰较小的工作带宽下,即有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。
在一种实现方式中,若该干扰的干扰值大于预设干扰值,则带宽配置信息用于指示终端设备的工作带宽为第一带宽。
在该技术方案中,有利于终端设备工作在干扰较小的第一带宽下,从而有利于提高终端设备的性能。
在一种实现方式中,若该干扰的干扰值小于或等于预设干扰值,则带宽配置信息用于指 示终端设备的工作带宽为聚合带宽。
在该技术方案中,在干扰较小的情况下,工作在聚合带宽下,有利于获取大带宽服务。
在一种实现方式中,网络设备根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰的具体实施方式可以为:将第二信道质量信息的评估值与第一信道质量信息的评估值之间的比值,确定为终端设备在接入聚合带宽所受到的干扰的干扰值。
在一种实现方式中,第一带宽和第二带宽均对应第一运营商,第三带宽对应第二运营商。
在一种实现方式中,该方法还可以包括:网络设备接收来自终端设备的该终端设备的能力信息,该能力信息用于指示终端设备支持接入聚合带宽;并根据该能力信息,确定终端设备支持接入聚合带宽。
在一种实现方式中,该方法还可以包括:网络设备发送第一带宽对应的小区的信道状态信息参考信号CSI-RS,第一信道质量信息是终端设备在接入该小区的情况下根据该CSI-RS确定的。
在一种实现方式中,该方法还可以包括:网络设备向终端设备发送CSI-RS配置信息,
CSI-RS配置信息包括第一带宽对应的CSI-RS的配置信息,以及第二带宽对应的CSI-RS的配置信息。
在一种实现方式中,信道质量信息包括接收信号强度指示RSSI或信道质量指示CQI中的一项或多项。
第二方面,本申请实施例提供另一种干扰确定方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。该方法包括:终端设备在接入第一带宽的情况下,向网络设备发送第一带宽对应的第一信道质量信息;在接入聚合带宽的情况下,向网络设备发送聚合带宽对应的第二信道质量信息;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;终端设备接收来自网络设备的带宽配置信息,带宽配置信息是网络设备根据终端设备在接入聚合带宽所受到的干扰发送的;该干扰是根据第一信道质量信息和第二信道质量信息确定的。
在该技术方案中,通过上报第一信道质量信息和第二信道质量信息,可以使得网络设备确定终端设备在接入聚合带宽所受到的干扰。通过这种方式,可以量化干扰,并有利于根据该干扰,自适应调整终端设备工作在大带宽还是小带宽,这样有利于终端设备工作在干扰较小的工作带宽下,即有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。
在一种实现方式中,若该干扰的干扰值大于预设干扰值,则带宽配置信息用于指示终端设备的工作带宽为第一带宽。
在该技术方案中,有利于终端设备工作在干扰较小的第一带宽下,从而有利于提高终端设备的性能。
在一种实现方式中,若该干扰的干扰值小于或等于预设干扰值,则带宽配置信息用于指示终端设备的工作带宽为聚合带宽。
在该技术方案中,在干扰较小的情况下,工作在聚合带宽下,有利于获取大带宽服务。
在一种实现方式中,该干扰的干扰值为第二信道质量信息的评估值与第一信道质量信息的评估值之间的比值。
在一种实现方式中,第一带宽和第二带宽均对应第一运营商,第三带宽对应第二运营商。
在一种实现方式中,该方法还可以包括:终端设备向网络设备发送终端设备的能力信息, 该能力信息用于指示终端设备支持接入聚合带宽。
在一种实现方式中,该方法还可以包括:终端设备接收来自网络设备的第一带宽对应的小区的信道状态信息参考信号CSI-RS;并根据该CSI-RS,确定第一信道质量信息。
在一种实现方式中,该方法还可以包括:终端设备接收来自网络设备的CSI-RS配置信息,CSI-RS配置信息包括第一带宽对应的CSI-RS的配置信息,以及第二带宽对应的CSI-RS的配置信息。
在一种实现方式中,信道质量信息包括接收信号强度指示RSSI或信道质量指示CQI中的一项或多项。
第三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中网络设备的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:通信单元,用于接收来自终端设备的第一带宽对应的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的;通信单元,还用于接收来自终端设备的聚合带宽对应的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;处理单元,用于根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰;通信单元,还用于根据该干扰,向终端设备发送带宽配置信息。
作为示例,前述处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
在一种实现方式中,所述通信装置包括:收发器,用于接收来自终端设备的第一带宽对应的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的;收发器,还用于接收来自终端设备的聚合带宽对应的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;处理器,用于根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰;收发器,还用于根据该干扰,向终端设备发送带宽配置信息。
第四方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中终端设备的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发 送单元耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:处理单元,用于在接入第一带宽的情况下,调用通信单元向网络设备发送第一带宽对应的第一信道质量信息;处理单元,还用于在接入聚合带宽的情况下,调用通信单元向网络设备发送聚合带宽对应的第二信道质量信息;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;处理单元,还用于调用通信单元接收来自网络设备的带宽配置信息,带宽配置信息是网络设备根据通信装置在接入聚合带宽所受到的干扰发送的;该干扰是根据第一信道质量信息和第二信道质量信息确定的。
作为示例,前述处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
在一种实现方式中,所述通信装置包括:处理器,用于在接入第一带宽的情况下,调用收发器向网络设备发送第一带宽对应的第一信道质量信息;处理器,还用于在接入聚合带宽的情况下,调用收发器向网络设备发送聚合带宽对应的第二信道质量信息;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;处理器,还用于调用收发器接收来自网络设备的带宽配置信息,带宽配置信息是网络设备根据通信装置在接入聚合带宽所受到的干扰发送的;该干扰是根据第一信道质量信息和第二信道质量信息确定的。
第五方面,本申请实施例还提供一种通信系统,该系统可以包括如第一方面所述的网络设备和第二方面所述的终端设备,或者,可以包括如第三方面所述的通信装置和第四方面所述的通信装置。
第六方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时使该通信装置执行上述第一方面的方法。
第七方面,本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时使该通信装置执行上述第二方面的方法。
第八方面,本申请还提供了一种包括计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第九方面,本申请还提供了一种包括计算机程序或指令的计算机程序产品,当计算机程序或指令在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,用于实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存发送端必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器和接口,用于实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存接收端必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1a是一种频谱划分示意图;
图1b是一种大带宽的实际应用中可能存在的4个方向干扰的示意图;
图1c是一种2级滤波器的工作示意图;
图1d是本申请实施例公开的一种通信系统的架构示意图;
图2是本申请实施例公开的一种干扰确定方法的流程示意图;
图3是本申请实施例公开的另一种干扰确定方法的流程示意图;
图4是本申请实施例公开的一种通信装置的结构示意图;
图5是本申请实施例公开的另一种通信装置的结构示意图;
图6是本申请实施例公开的一种芯片的结构示意图。
具体实施方式
为了更好地理解本申请实施例提供的技术方案,首先对本申请实施例涉及的技术术语进行介绍。
(1)聚合带宽
聚合带宽,是由多段频谱聚合得到的一段带宽,或者,可以理解为由多段小带宽聚合得到的大带宽。负责划分频谱的机构将可用的频谱划分成段,以分配给不同的运营商使用。其中,小带宽可以为频谱划分中划分得到的其中一段频谱,大带宽可以为由多个小带宽聚合的一段频谱。需要说明的是,小带宽和大带宽为便于理解本方案所提出的概念,其中,“小”和“大”并非用于衡量频谱的宽度。在本申请实施例中,大带宽和聚合带宽可以表示相同的含义。小带宽还可以称为部分带宽(bandwidth part,BWP)。
示例性的,参见图1a所示的频谱划分示意图。其中,频谱1710.5~1785用于上行传输,频谱1805~1880用于下行传输,图1a描述了频谱1710.5~1785和1805~1880中的哪些频谱分配给运营商a,哪些分配给运营商b。图1a中,每一列中的频谱可以表示一个小带宽的频谱。如图1a所示,可以将分配给运营商a的两段小带宽聚合为一段大带宽,该大带宽的频谱宽度为10M。虽然聚合为大带宽的两段小带宽的频谱不连续,但是在调度该大带宽的情况下,可以通过非连续调度的方式,以充分利用该10M离散频谱,以提供大带宽体验。
但是,在大带宽的实际应用中可能存在4个方向干扰,见图1b所示。图1b中包括终端设备1(101)、终端设备2(103)、网络设备1(102)和网络设备2(104)。其中,方向A、方向B、方向D的干扰可以解决,但是方向C的干扰目前无法解决。该干扰较强的情况下,可能导致终端设备101发生阻塞现象,即终端设备101无法获取有用信号。终端设备101无法滤除该干扰的原因见下文。
需要说明的是,图1a所示聚合的两段小带宽的频谱不连续用于举例,在其他实现方式中,也可以将频谱连续的多段小带宽聚合为大带宽。例如,可以将分配给运营商a的频谱1805~1812.5,和分配给运营商b的频谱1812.5~1827.5,聚合为一段大带宽。频谱1805~1812.5中的1812.5,与频谱1812.5~1827.5中的1812.5相同,表示这两段频谱连续。
(2)终端设备中的2级滤波器
终端设备包括2级滤波器:射频(radio frequency,RF)滤波器和中频(intermediate frequence,IF)滤波器。其中,RF滤波器为带通滤波器,可以过滤掉目标带宽(Band)以外的信号,目标Band以内的有用信号和其他载频信号或干扰会被接收进来。IF滤波器可以根据有用信号的载波带宽自动调整滤波器宽度,过滤掉载波宽度以外的干扰。如图1c所示的2级滤波器的 工作示意图为例,图1c中的左侧为2级滤波器针对单载波的滤波过程,图1c中的右侧为2级滤波器针对离散多载波的滤波过程。其中,柱状用于表示有用信号,三角用于表示干扰。由图1c中的左侧可知,对于单载波,经过2级滤波器后,可以滤除干扰。
当前离散频谱方案将多段离散频谱聚合的大带宽作为1个单载波,RF滤波器可以过滤掉大带宽对应的最低频率和最高频率之间的Band以外的干扰。例如,以图1a中的大带宽为例,RF滤波器可以过滤掉Band(1805~1830)以外的干扰。IF滤波器根据单载波的宽度自适应调整滤波器宽度,会把其他频谱(1812.5~1827.5)的信号接收进来,其他频谱的信号为干扰。因此,通过终端设备中的2级滤波器不能滤除该其他频谱造成的干扰。又如,由图1c中的右侧可知,对于离散多载波,由于将该离散多载波作为一个单载波,因此经过2级滤波器后,仍然存在干扰未被滤除。需要说明的是,其中单载波可以理解为小带宽的载波,多载波可以理解为多个小带宽的载波,离散多载波可以理解为多个小带宽的载波的频率不连续。
在经过滤波器处理后,可以进行功率调整。功率调整过程中会将总信号功率(即有用信号+噪声的总功率)放大到模拟数字转换器(analog-to-digital converter,ADC)动态范围区间,但是在干扰强度比有用信号高较多的情况下,有用信号实际被放大的倍数较小,使得放大后的有用信号的功率很小,甚至不会被识别为有用信号,从而使得终端设备发生阻塞。并且目前也无法量化方向C的干扰,这样可能导致终端设备工作在干扰较强的情况下,对该终端设备的性能造成较大影响。
鉴于上述问题,本申请实施例通过确定终端设备在接入聚合带宽所受到的干扰,并根据该干扰向终端设备发送带宽配置信息,有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。
为了更好的理解本申请实施例公开的一种干扰确定方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1d,图1d是本申请实施例公开的一种通信系统的架构示意图。如图1d所示,该通信系统包括:终端设备101和网络设备102。
其中,终端设备101可以用于在接入第一带宽的情况下,向网络设备102发送第一带宽对应的第一信道质量信息;并在接入聚合带宽的情况下,向网络设备102发送聚合带宽对应的第二信道质量信息。其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱。
相应的,网络设备102可以用于接收来自终端设备101的第一信道质量信息和第二信道质量信息;根据第一信道质量信息和第二信道质量信息,确定终端设备101在接入聚合带宽所受到的干扰;并根据该干扰,向终端设备101发送带宽配置信息。相应的,终端设备101还可以用于接收该带宽配置信息。
通过第一信道质量信息和第二信道质量信息,确定终端设备101在接入聚合带宽所受到的干扰,可以量化干扰,并根据该干扰向终端设备101发送带宽配置信息,进一步的,该终端设备101可以根据该带宽配置信息确定工作带宽。通过这种方式,有利于终端设备工作在干扰较小的工作带宽下,即有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。
其中,终端设备101可以是用户侧的一种用于接收或发射信号的实体。终端设备可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以部署在陆地上,包括室内或室外、手持或车 载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和人造卫星上等)。终端设备包括具有无线通信功能的手持式设备、车载设备、穿戴式设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、智能汽车(smart vehicle)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、无人机、无人机控制器、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备102可以是网络侧的一种用于发射或接收信号的实体。该网络设备可以为接入网设备,接入网设备可以为终端设备提供无线资源管理、服务质量管理、数据加密和压缩等功能。接入网设备可以是无线接入网(radio access network,RAN)设备。接入网设备可以包括基站(base station,BS),可以是一种部署在无线接入网络中能够和终端设备进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站、接入点、卫星、无人机等。示例性地,接入网设备可以是第五代通信(5 th generation,5G)系统中的基站或长期演进(long term evolution,LTE)系统中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代基站节点(next generation Node B,gNB)。本申请实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请实施例描述的技术可用于各种通信系统,例如第五代通信(5 th generation,5G)系统,多种通信系统融合的系统,或者未来演进的通信系统,如6G通信系统。需要说明的是,本申请实施例中提及的网元名称、消息名称等用于举例,应用于不同通信系统中,网元和消息名称可以不同,本申请实施例对此不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请提供的干扰确定方法及通信装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种干扰确定方法的流程示意图,该方法包括但不限于如下步骤:
步骤S201:终端设备在接入第一带宽的情况下,向网络设备发送第一带宽对应的第一信道质量信息。相应的,网络设备接收来自终端设备的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的。
其中,该第一带宽为小带宽。在一种实现方式中,终端设备可以在随机接入中接入该第一带宽,并在接入该第一带宽的情况下确定该第一带宽对应的第一信道质量信息,进而向网络设备发送该第一信道质量信息。在本申请实施例中,信道质量信息(如第一信道质量信息、第二信道质量信息)可以包括但不限于接收信号强度指示(received signal strength indication,RSSI)或信道质量指示(channel quality indication,CQI)中的一项或多项。
需要说明的是,终端设备接入某带宽,可以理解为该终端设备接入该带宽对应的小区。一个小区可以对应有一个或多个带宽,小区对应的一个或多个带宽中可以包括小带宽和聚合带宽,且小带宽和大带宽的数量均可以为一个或多个。可选的,该第一带宽可以由网络设备为终端设备配置。
在一种实现方式中,终端设备可通过如下方式确定第一带宽对应的第一信道质量信息:终端设备接收来自网络设备的第一带宽对应的小区的信道状态信息-参考信号(channel state information-reference signal,CSI-RS);并根据该CSI-RS,测量得到该第一信道质量信息。
步骤S202:终端设备在接入聚合带宽的情况下,向网络设备发送聚合带宽对应的第二信道质量信息;其中,该聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱。相应的,网络设备接收来自终端设备的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的。
终端设备在接入第一带宽(即小带宽)后,可以从该第一带宽切换到聚合带宽。即终端设备的工作带宽由第一带宽变为聚合带宽。
聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱。其中,第一带宽、第二带宽和第三带宽均可以为小带宽。或者,第一带宽和第二带宽为小带宽,第三带宽的数量可以为一个或多个。第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱,表明第一带宽和第二带宽的频谱不连续。此时,终端设备工作在聚合带宽下,第三带宽的信号将对终端设备造成干扰。需要说明的是,第三带宽的信号可以指承载于该第三带宽的频谱对应的载波上的信号。不同频谱对应的载波可以不同。可选的,本申请实施例中的小带宽、聚合带宽,可以为频分双工(frequency division duplexing,FDD)带宽、时分双工(timedivision duplex,TDD)带宽、标准带宽或非标带宽,本申请实施例对此不做限定。其中,标准带宽可以表示由标准协议定义的带宽,非标带宽可以表示标准协议定义的带宽以外的带宽。
在一种实现方式中,第一带宽和第二带宽均可以对应第一运营商,第三带宽对应第二运营商。换言之,第一带宽和第二带宽之间间隔有异运营商的带宽,这种情况下,终端设备在接入聚合带宽所受到的干扰为异运营商的干扰。其中,第一带宽对应第一运营商可以表示,该第一带宽分配给第一运营商,该第一运营商具有调度、分配该第一带宽的权利。在另一种实现方式中,第一带宽和第二带宽可以对应不同的运营商,例如,第一带宽对应运营商a,第二带宽对应运营商b,第三带宽对应运营商c,其中,运营商a和运营商b可以为共享带宽资源的运营商。
可选的,该第一带宽对应的小区,与该聚合带宽对应的小区可以为同一个小区。前述网络设备可以为该小区对应的网络设备(如接入网设备)。
可选的,终端设备在接入第一带宽后,可以接收来自网络设备的第一带宽配置信息,该第一带宽配置信息可以指示聚合带宽;然后,该终端设备可以根据该第一带宽配置信息,将该终端设备的工作带宽确定为聚合带宽。若接收到该第一带宽配置信息的情况下,该终端设备的工作带宽为第一带宽,那么该终端设备可以从该第一带宽切换至聚合带宽。若接收到该第一带宽配置信息的情况下,该终端设备的工作带宽为聚合带宽,那么该终端设备可以保持工作在该聚合带宽下。可选的,终端设备在接入第一带宽后,也可以自主地接入聚合带宽。
在一种实现方式中,终端设备可以向网络设备发送该终端设备的能力信息,该能力信息可以用于指示终端设备是否支持接入聚合带宽。相应的,网络设备接收来自终端设备的能力信息,并根据该能力信息,确定终端设备是否支持接入聚合带宽。在确定终端设备支持接入聚合带宽的情况下,网络设备才向该终端设备发送前述第一带宽配置信息。或者,在终端设备支持接入聚合带宽的情况下,该终端设备才尝试接聚合带宽。
在一种实现方式中,终端设备可通过如下方式确定聚合带宽对应的第二信道质量信息:终端设备接收来自网络设备的聚合带宽对应的小区的CSI-RS;并根据该CSI-RS,测量得到 该第二信道质量信息。可选的,网络设备可以在确定终端设备支持接入聚合带宽的情况下,向该终端设备发送前述第一带宽配置信息。
步骤S203:网络设备根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰。
网络设备在接收到第一信道质量信息和第二信道质量信息后,可以根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰。
在一种实现方式中,网络设备可以根据第二信道质量信息的评估值与第一信道质量信息的评估值之间的比值,确定终端设备在接入聚合带宽所受到的干扰的干扰值。具体的,网络设备可以将第二信道质量信息的评估值与第一信道质量信息的评估值之间的比值,确定为终端设备在接入聚合带宽所受到的干扰的干扰值。
需要说明的是,信道质量信息(如第一信道质量信息、第二信道质量信息)中包含干扰信号功率,第一信道质量信息为小带宽(第一带宽)对应的信道质量信息,第二信道质量信息为大带宽(聚合带宽)对应的信道质量信息。由前述可知,终端设备中的2级滤波器可以滤除工作在小带宽下的干扰,而不能滤除工作在聚合带宽下第三带宽带来的干扰。因此,可以用第二信道质量信息的评估值与第一信道质量信息的评估值之间的比值,来量化终端设备在接入聚合带宽所受到的干扰。值得注意的是,参考信号接收功率(reference signal receiving power,RSRP)不包含干扰信号功率,因此无法通过RSRP来量化终端设备在接入聚合带宽所受到的干扰。
信道质量信息(如第一信道质量信息、第二信道质量信息)可以包括但不限于RSSI或CQI中的一项或多项。其中,RSSI既包含有用信号功率,还包含干扰信号功率,因此,通过RSSI来量化终端设备在接入聚合带宽所受到的干扰,有利于提高量化干扰的精度。
步骤S204:网络设备根据干扰,向终端设备发送带宽配置信息。相应的,终端设备接收来自网络设备的带宽配置信息。
网络设备确定终端设备在接入聚合带宽所受到的干扰后,可以根据干扰,向终端设备发送带宽配置信息(如称为第二带宽配置信息)。终端设备可以根据该第二带宽配置信息,调整工作带宽或保持工作带宽不变。
在一种实现方式中,终端设备在工作在聚合带宽下,并向网络设备发送第二信道质量信息后,可以周期性回退到第一带宽(即周期性接入第一带宽),测量第一带宽对应的信道质量信息,并向网络设备发送所测量得到的信道质量信息。终端设备也可以周期性切换到聚合带宽,测量该聚合带宽对应的信道质量信息,并向网络设备发送所测量得到的信道质量信息。因此,终端设备在接收到第二带宽配置信息的情况下,该终端设备的工作带宽可能为第一带宽,也可能为聚合带宽,或者可以为第一带宽和聚合带宽以外的其他带宽。
该第二带宽配置信息可以指示第一带宽或聚合带宽,第二带宽配置信息指示某带宽时,可以表示网络设备配置该终端设备的工作带宽为该带宽。在本申请实施例中,第二带宽配置信息指示第一带宽,与第二带宽配置信息用于指示终端设备的工作带宽为第一带宽表示相同含义。同理,第二带宽配置信息指示聚合带宽,与第二带宽配置信息用于指示终端设备的工作带宽为聚合带宽表示相同含义。在一种实现方式中,若终端设备在接入聚合带宽所受到的干扰的干扰值大于预设干扰值,则前述第二带宽配置信息可以用于指示终端设备的工作带宽为第一带宽。通过这种方式,有利于终端设备工作在干扰较小的第一带宽下,从而有利于提高终端设备的性能。在一种实现方式中,若终端设备在接入聚合带宽所受到的干扰的干扰值小于或等于该预设干扰值,则带宽配置信息可以用于指示终端设备的工作带宽为聚合带宽。 通过这种方式,在干扰较小的情况下,工作在聚合带宽下,有利于获取大带宽服务。其中,该预设干扰值可以由网络设备指示,或者可以由于协议约定。该预设干扰值可以是一个经验值,本申请实施例对此不做限定。
以第二带宽配置信息指示第一带宽为例,终端设备在接收到第二带宽配置信息的情况下,若该终端设备的工作带宽为聚合带宽,那么该终端设备可以从聚合带宽切换至第一带宽。若该终端设备的工作带宽为第一带宽,那么该终端设备可以保持工作在该第一带宽下。以第二带宽配置信息指示聚合带宽为例,终端设备在接收到第二带宽配置信息的情况下,若该终端设备的工作带宽为聚合带宽,那么该终端设备可以保持工作在该聚合带宽下。若该终端设备的工作带宽为第一带宽,那么该终端设备可以从第一带宽切换至聚合带宽。
在本申请实施例中,通过第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰,可以量化干扰。并有利于根据该干扰,自适应调整终端设备工作在大带宽还是小带宽,这样有利于终端设备工作在干扰较小的工作带宽下,即有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。并且,通过这种方式,有利于解决异运营商干扰造成的终端设备发生阻塞的问题,从而有利于为离散频谱聚合为虚拟大带宽提供应用可行性,也有利于为运营商共建共享提供实施可行性。进而提升资源利用率,并提升用户体验。
请参见图3,图3是本申请实施例提供的另一种干扰确定方法的流程示意图,该方法描述了网络设备如何为终端设备配置CSI-RS配置信息,以及终端设备如何根据该CSI-RS配置信息向网络设备发送聚合带宽对应的第二信道质量信息。该方法可以包括但不限于如下步骤:
步骤S301:终端设备在接入第一带宽的情况下,向网络设备发送第一带宽对应的第一信道质量信息。相应的,网络设备接收来自终端设备的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的。
需要说明的是,步骤S301的执行过程可参见图2中步骤S201的具体描述,此处不再赘述。
步骤S302:网络设备向终端设备发送CSI-RS配置信息,CSI-RS配置信息包括第一带宽对应的CSI-RS的配置信息,以及第二带宽对应的CSI-RS的配置信息。相应的,终端设备接收来自网络设备的CSI-RS配置信息。
其中,该CSI-RS配置信息可用于终端设备测量聚合带宽对应的第二信道质量信息。CSI-RS配置信息可包括但不限于以下一项或多项:CSI-RS的时频位置、周期CSI-RS的周期信息。相应的,第一带宽对应的CSI-RS(如称为第一CSI-RS)的配置信息可包括但不限于以下一项或多项:第一CSI-RS的时频位置、第一CSI-RS的周期信息(若第一CSI-RS为周期CSI-RS)。第二带宽对应的CSI-RS(如称为第二CSI-RS)的配置信息可包括但不限于以下一项或多项:第二CSI-RS的时频位置、第二CSI-RS的周期信息(若第二CSI-RS为周期CSI-RS)。
在一种实现方式中,网络设备可以通过终端设备的能力信息配置该CSI-RS配置信息。终端设备可以向网络设备发送能力信息,该能力信息可以指示如下至少一项:该终端设备是否支持周期CSI-RS,该终端设备是否支持非周期CSI-RS,该终端设备支持m套周期CSI-RS,该终端设备支持n套非周期CSI-RS。其中,m和n均为整数。
可选的,聚合带宽包括的小带宽数量用z(z>=2)表示,若m>=z,则网络设备可以为终端设备配置z套周期CSI-RS,此时,CSI-RS配置信息可以包括z套周期CSI-RS的配置信息。 若n>=z,则网络设备可以为终端设备配置z套非周期CSI-RS,此时,CSI-RS配置信息可以包括z套非周期CSI-RS的配置信息。若m<z,则网络设备可以为终端设备配置m套周期CSI-RS,并为终端设备配置(z-m)套非周期CSI-RS,此时,CSI-RS配置信息可以包括m套周期CSI-RS的配置信息,以及(z-m)套非周期CSI-RS的配置信息。若n<z,则网络设备可以为终端设备配置n套非周期CSI-RS,并为终端设备配置(z-n)套周期CSI-RS,此时,CSI-RS配置信息可以包括n套非周期CSI-RS的配置信息,以及(z-n)套周期CSI-RS的配置信息。若m<z,则网络设备可以为聚合带宽包括的部分小带宽(如1个小带宽:第一带宽)配置1套周期CSI-RS,此时,CSI-RS配置信息可以包括1套周期CSI-RS的配置信息。需要说明的是,部分小带宽还可以为z1个小带宽,1<z1<z。相应的,此时,CSI-RS配置信息可以包括z1套周期CSI-RS的配置信息,一个小带宽对应一套周期CSI-RS的配置信息。若n<z,则网络设备可以为聚合带宽包括的部分小带宽(如1个小带宽:第二带宽)配置1套非周期CSI-RS,此时,CSI-RS配置信息可以包括1套非周期CSI-RS的配置信息。需要说明的是,部分小带宽还可以为z2个小带宽,1<z2<z。相应的,此时,CSI-RS配置信息可以包括z2套非周期CSI-RS的配置信息,一个小带宽对应一套非周期CSI-RS的配置信息。
在一种实现方式中,在网络设备为终端设备配置的CSI-RS的数量小于聚合带宽包括的小带宽数量的情况下,即CSI-RS配置信息仅为聚合带宽包括的部分小带宽配置有CSI-RS的配置信息的情况下,聚合带宽包括的另一部分小带宽对应的信道质量信息可以为配置有CSI-RS的配置信息的小带宽对应的信道质量信息,即复用已有的CSI测量结果。例如,若聚合带宽由小带宽a、小带宽b和小带宽c聚合得到,网络设备向终端设备发送的CSI-RS配置信息包括小带宽a对应的CSI-RS的配置信息,以及小带宽b对应的CSI-RS的配置信息,不包括小带宽c对应的CSI-RS的配置信息。那么终端设备可以根据小带宽b对应的CSI-RS的配置信息测量小带宽b对应的信道质量信息,并复用小带宽b对应的信道质量信息作为小带宽c对应的信道质量信息。换言之,对于未配置有CSI-RS的配置信息的小带宽(如称为小带宽1),可以将聚合带宽中距离该小带宽1的频谱最近的频谱(该频谱为聚合带宽中的某个小带宽的频谱)的CSI测量结果,作为该小带宽1的CSI测量结果。
步骤S303:终端设备在接入聚合带宽的情况下,根据该CSI-RS配置信息向网络设备发送聚合带宽对应的第二信道质量信息;其中,该聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱。相应的,网络设备接收来自终端设备的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的。
终端设备接收到来自网络设备的CSI-RS配置信息后,可以根据该CSI-RS配置信息,测量得到第二信道质量信息,并向网络设备发送第二信道质量信息。具体的,终端设备可以根据第一带宽对应的CSI-RS的配置信息,测量得到第一带宽对应的信道质量信息;并根据第二带宽对应的CSI-RS的配置信息,测量得到第二带宽对应的信道质量信息,即聚合带宽对应的第二信道质量信息可以包括终端设备接入聚合带宽的情况下,测量得到的第一带宽对应的信道质量信息以及第二带宽对应的信道质量信息。
需要说明的是,步骤S303的其余执行过程可参见图2中步骤S202的具体描述,此处不再赘述。
步骤S304:网络设备根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰。
步骤S305:网络设备根据干扰,向终端设备发送带宽配置信息。相应的,终端设备接收 来自网络设备的带宽配置信息。
需要说明的是,步骤S304~步骤S305的执行过程可参见图2中步骤S203~步骤S204的具体描述,此处不再赘述。
在本申请实施例中,通过第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰,可以量化干扰。并有利于根据该干扰,自适应调整终端设备工作在大带宽还是小带宽,这样有利于终端设备工作在干扰较小的工作带宽下,即有利于避免终端设备工作在干扰较强的带宽下,从而有利于提高终端设备的性能。并且,通过这种方式,有利于解决异运营商干扰造成的终端设备发生阻塞的问题,从而有利于为离散频谱聚合为虚拟大带宽提供应用可行性,也有利于为运营商共建共享提供实施可行性。进而提升资源利用率,并提升用户体验。
在一种实现方式中,终端设备可以支持聚合带宽下的多切片滤波机制,通过该机制可以滤除终端设备在接入聚合带宽所受到的干扰。终端设备支持聚合带宽下的多切片滤波机制可以表示:终端设备可以识别聚合带宽中包括的各个小带宽,并可以针对各个小带宽进行自适应滤波。针对各个小带宽进行自适应滤波表示,可以针对各个小带宽自动调整滤波器宽度,过滤掉载波宽度以外的干扰。例如,聚合带宽由第一带宽和第二带宽聚合得到,其中,第一带宽的载波宽度为5M,第二带宽的载波宽度为10M。那么终端设备可以识别出承载于第一带宽的载波上的信息,针对该信息可以将滤波器宽度自动调整为5M,使得可以滤除其他载波的干扰。同理,终端设备可以识别出承载于第二带宽的载波上的信息,针对该信息可以将滤波器宽度自动调整为10M,使得可以滤除其他载波的干扰。通过这种方式,可以从根本上解决聚合带宽下的干扰问题。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块或单元。所述模块或单元可以是软件,也可以是硬件,或者是软件和硬件结合。
请参见图4,为本申请提供的一种通信装置的结构示意图。图4所示的通信装置400包括通信单元401和处理单元402。
在一种设计中,通信装置400为网络设备:
示例性的,通信单元401,用于接收来自终端设备的第一带宽对应的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的;通信单元401,还用于接收来自终端设备的聚合带宽对应的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;处理单元402,用于根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰;通信单元401,还用于根据该干扰,向终端设备发送带宽配置信息。
在一种实现方式中,若该干扰的干扰值大于预设干扰值,则带宽配置信息用于指示终端设备的工作带宽为第一带宽。
在一种实现方式中,若该干扰的干扰值小于或等于预设干扰值,则带宽配置信息用于指示终端设备的工作带宽为聚合带宽。
在一种实现方式中,处理单元402用于根据第一信道质量信息和第二信道质量信息,确定终端设备在接入所述聚合带宽所受到的干扰时,具体用于:将第二信道质量信息的评估值与 第一信道质量信息的评估值之间的比值,确定为终端设备在接入聚合带宽所受到的干扰的干扰值。
在一种实现方式中,第一带宽和第二带宽均对应第一运营商,第三带宽对应第二运营商。
在一种实现方式中,通信单元401,还用于接收来自终端设备的该终端设备的能力信息,该能力信息用于指示终端设备支持接入聚合带宽;处理单元402,还用于根据该能力信息,确定终端设备支持接入聚合带宽。
在一种实现方式中,通信单元401,还用于发送第一带宽对应的小区的信道状态信息参考信号CSI-RS,第一信道质量信息是终端设备在接入该小区的情况下根据该CSI-RS确定的。
在一种实现方式中,通信单元401,还用于向终端设备发送CSI-RS配置信息,CSI-RS配置信息包括第一带宽对应的CSI-RS的配置信息,以及第二带宽对应的CSI-RS的配置信息。
在一种实现方式中,信道质量信息包括接收信号强度指示RSSI或信道质量指示CQI中的一项或多项。
通信装置400为网络设备时,用于实现图2~图3对应实施例中网络设备的功能。
在一种设计中,通信装置400为终端设备:
示例性的,处理单元402,用于在接入第一带宽的情况下,调用通信单元401向网络设备发送第一带宽对应的第一信道质量信息;处理单元402,还用于在接入聚合带宽的情况下,调用通信单元401向网络设备发送聚合带宽对应的第二信道质量信息;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;处理单元402,还用于调用通信单元401接收来自网络设备的带宽配置信息,带宽配置信息是网络设备根据通信装置400在接入聚合带宽所受到的干扰发送的;该干扰是根据第一信道质量信息和第二信道质量信息确定的。
在一种实现方式中,若该干扰的干扰值大于预设干扰值,则带宽配置信息用于指示通信装置400的工作带宽为第一带宽。
在一种实现方式中,若该干扰的干扰值小于或等于预设干扰值,则带宽配置信息用于指示通信装置400的工作带宽为聚合带宽。
在一种实现方式中,该干扰的干扰值为第二信道质量信息的评估值与第一信道质量信息的评估值之间的比值。
在一种实现方式中,第一带宽和第二带宽均对应第一运营商,第三带宽对应第二运营商。
在一种实现方式中,处理单元402,还用于调用通信单元401向网络设备发送通信装置400的能力信息,该能力信息用于指示通信装置400支持接入聚合带宽。
在一种实现方式中,处理单元402,还用于调用通信单元401接收来自网络设备的第一带宽对应的小区的信道状态信息参考信号CSI-RS;并根据该CSI-RS,确定第一信道质量信息。
在一种实现方式中,处理单元402,还用于调用通信单元401接收来自网络设备的CSI-RS配置信息,CSI-RS配置信息包括第一带宽对应的CSI-RS的配置信息,以及第二带宽对应的CSI-RS的配置信息。
在一种实现方式中,信道质量信息包括接收信号强度指示RSSI或信道质量指示CQI中的一项或多项。
通信装置400为终端设备时,用于实现图2~图3所示实施例中终端设备的功能。
请参见图5,为本申请提供的另一种通信装置的结构示意图。图5所示的通信装置500包括至少一个处理器501、收发器502。可选的,还可包括存储器503。
存储器503可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器503是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器503可以是上述存储器的组合。
本申请实施例中不限定上述处理器501、收发器502以及存储器503之间的具体连接介质。本申请实施例在图中以处理器501、收发器502以及存储器503之间通过总线504连接,总线504在图中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线504可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器501可以具有数据收发功能,能够与其他设备进行通信,在如图5装置中,也可以设置独立的数据通信单元,例如收发器502,用于收发数据;处理器501在与其他设备进行通信时,可以通过收发器502进行数据传输。
一种示例中,当网络设备采用图5所示的形式时,图5中的处理器可以执行上述任一方法实施例中的网络设备执行的方法。
一种示例中,当终端设备采用图5所示的形式时,图5中的处理器可以执行上述任一方法实施例中的终端设备执行的方法。
具体的,图4的处理单元和通信单元的功能/实现过程均可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现。或者,图4的处理单元的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现,图4的通信单元的功能/实现过程可以通过图5中的收发器502来实现。
在一种实现方式中,通信装置500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器可用如下方式实现:集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等。该处理器也可以用如下IC工艺技术来制造:例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图5的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图6所示的芯片的结构示意图。图6所示的芯片600包括处理器601和接口602。其中,处理器601的数量可以是一个或多个,接口602的数量可以是多个。
对于芯片600用于实现本申请实施例中网络设备的功能的情况:
接口602,用于接收来自终端设备的第一带宽对应的第一信道质量信息,第一信道质量信息是终端设备在接入第一带宽的情况下发送的;
接口602,还用于接收来自终端设备的聚合带宽对应的第二信道质量信息,第二信道质量信息是终端设备在接入聚合带宽的情况下发送的;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;
处理器601,用于根据第一信道质量信息和第二信道质量信息,确定终端设备在接入聚合带宽所受到的干扰;
接口602,还用于根据该干扰,向终端设备发送带宽配置信息。
具体的,在这种情况中,处理器601和接口602所执行的操作可以参照上述图2~图3所对应的实施例中有关网络设备的介绍。
对于芯片600用于实现本申请实施例中终端设备的功能的情况:
处理器601,用于在接入第一带宽的情况下,调用接口602向网络设备发送第一带宽对应的第一信道质量信息;
处理器601,还用于在接入聚合带宽的情况下,调用接口602向网络设备发送聚合带宽对应的第二信道质量信息;其中,聚合带宽至少由第一带宽和第二带宽聚合得到,第一带宽的频谱与第二带宽的频谱之间间隔有第三带宽的频谱;
处理器601,还用于调用接口602接收来自网络设备的带宽配置信息,带宽配置信息是网络设备根据终端设备在接入聚合带宽所受到的干扰发送的;该干扰是根据第一信道质量信息和第二信道质量信息确定的。
具体的,在这种情况中,处理器601和接口602所执行的操作可以参照上述图2~图3所对应的实施例中有关终端设备的介绍。
可选的,芯片还包括存储器603,存储器603用于存储必要的计算机程序和数据。存储器603可以单独设置,也可以与处理器601集成在一起,如图6中虚框603所示。
本申请实施例还提供一种通信系统,该系统可以包括图2~图3对应实施例中的网络设备和终端设备。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、核心网网元或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信 号处理器(digital signal processor,DSP)、数字信号处理器件、专用集成电路(application specific integrated circuit,ASIC)、可编程逻辑器件、现场可编程门阵列(field programmable gate array,FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drive,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (21)

  1. 一种干扰确定方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的第一带宽对应的第一信道质量信息,所述第一信道质量信息是所述终端设备在接入所述第一带宽的情况下发送的;
    所述网络设备接收来自所述终端设备的聚合带宽对应的第二信道质量信息,所述第二信道质量信息是所述终端设备在接入所述聚合带宽的情况下发送的;其中,所述聚合带宽至少由所述第一带宽和第二带宽聚合得到,所述第一带宽的频谱与所述第二带宽的频谱之间间隔有第三带宽的频谱;
    所述网络设备根据所述第一信道质量信息和所述第二信道质量信息,确定所述终端设备在接入所述聚合带宽所受到的干扰;
    所述网络设备根据所述干扰,向所述终端设备发送带宽配置信息。
  2. 如权利要求1所述的方法,其特征在于,若所述干扰的干扰值大于预设干扰值,则所述带宽配置信息用于指示所述终端设备的工作带宽为所述第一带宽。
  3. 如权利要求2所述的方法,其特征在于,若所述干扰的干扰值小于或等于所述预设干扰值,则所述带宽配置信息用于指示所述终端设备的工作带宽为所述聚合带宽。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述网络设备根据所述第一信道质量信息和所述第二信道质量信息,确定所述终端设备在接入所述聚合带宽所受到的干扰,包括:
    所述网络设备将所述第二信道质量信息的评估值与所述第一信道质量信息的评估值之间的比值,确定为所述终端设备在接入所述聚合带宽所受到的干扰的干扰值。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述第一带宽和所述第二带宽均对应第一运营商,所述第三带宽对应第二运营商。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的所述终端设备的能力信息,所述能力信息用于指示所述终端设备支持接入所述聚合带宽;
    所述网络设备根据所述能力信息,确定所述终端设备支持接入所述聚合带宽。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送所述第一带宽对应的小区的信道状态信息参考信号CSI-RS,所述第一信道质量信息是所述终端设备在接入所述小区的情况下根据所述CSI-RS确定的。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送CSI-RS配置信息,所述CSI-RS配置信息包括所述第一带宽对应的CSI-RS的配置信息,以及所述第二带宽对应的CSI-RS的配置信息。
  9. 如权利要求1~8任一项所述的方法,其特征在于,信道质量信息包括接收信号强度指示RSSI或信道质量指示CQI中的一项或多项。
  10. 一种干扰确定方法,其特征在于,所述方法包括:
    终端设备在接入第一带宽的情况下,向网络设备发送所述第一带宽对应的第一信道质量信息;
    所述终端设备在接入聚合带宽的情况下,向所述网络设备发送所述聚合带宽对应的第二信道质量信息;其中,所述聚合带宽至少由所述第一带宽和第二带宽聚合得到,所述第一带宽的频谱与所述第二带宽的频谱之间间隔有第三带宽的频谱;
    所述终端设备接收来自所述网络设备的带宽配置信息,所述带宽配置信息是所述网络设备根据所述终端设备在接入所述聚合带宽所受到的干扰发送的;所述干扰是根据所述第一信道质量信息和所述第二信道质量信息确定的。
  11. 如权利要求10所述的方法,其特征在于,若所述干扰的干扰值大于预设干扰值,则所述带宽配置信息用于指示所述终端设备的工作带宽为所述第一带宽。
  12. 如权利要求11所述的方法,其特征在于,若所述干扰的干扰值小于或等于所述预设干扰值,则所述带宽配置信息用于指示所述终端设备的工作带宽为所述聚合带宽。
  13. 如权利要求10~12任一项所述的方法,其特征在于,所述干扰的干扰值为所述第二信道质量信息的评估值与所述第一信道质量信息的评估值之间的比值。
  14. 如权利要求10~13任一项所述的方法,其特征在于,所述第一带宽和所述第二带宽均对应第一运营商,所述第三带宽对应第二运营商。
  15. 如权利要求10~14任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述终端设备的能力信息,所述能力信息用于指示所述终端设备支持接入所述聚合带宽。
  16. 如权利要求10~15任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的所述第一带宽对应的小区的信道状态信息参考信号CSI-RS;
    所述终端设备根据所述CSI-RS,确定所述第一信道质量信息。
  17. 如权利要求10~16任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的CSI-RS配置信息,所述CSI-RS配置信息包括所述第一带宽对应的CSI-RS的配置信息,以及所述第二带宽对应的CSI-RS的配置信息。
  18. 如权利要求10~17任一项所述的方法,其特征在于,信道质量信息包括接收信号强度指示RSSI或信道质量指示CQI中的一项或多项。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1~9或10~18中任一项所述的方法的单元。
  20. 一种通信装置,其特征在于,所述装置包括处理器,所述处理器执行如权利要求1~9或10~18中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被通信装置执行时,使得如权利要求1~9或10~18中任一项所述的方法被执行。
PCT/CN2022/127739 2021-10-28 2022-10-26 一种干扰确定方法及其装置 WO2023072157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111268498.6A CN114126061A (zh) 2021-10-28 2021-10-28 一种干扰确定方法及其装置
CN202111268498.6 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023072157A1 true WO2023072157A1 (zh) 2023-05-04

Family

ID=80377489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127739 WO2023072157A1 (zh) 2021-10-28 2022-10-26 一种干扰确定方法及其装置

Country Status (2)

Country Link
CN (1) CN114126061A (zh)
WO (1) WO2023072157A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126061A (zh) * 2021-10-28 2022-03-01 华为技术有限公司 一种干扰确定方法及其装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130044621A1 (en) * 2011-08-16 2013-02-21 Motorola Mobility Llc Self-interference handling in a wireless communication terminal supporting carrier aggregation
EP2590351A2 (en) * 2011-11-04 2013-05-08 ST-Ericsson SA Non-contiguous carrier aggregation
CN105792222A (zh) * 2014-12-23 2016-07-20 中兴通讯股份有限公司 同频干扰的消除方法、探测方法以及装置和基站
CN108075865A (zh) * 2016-11-11 2018-05-25 中国移动通信有限公司研究院 一种载波聚合方法和网络设备
CN114126061A (zh) * 2021-10-28 2022-03-01 华为技术有限公司 一种干扰确定方法及其装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130044621A1 (en) * 2011-08-16 2013-02-21 Motorola Mobility Llc Self-interference handling in a wireless communication terminal supporting carrier aggregation
EP2590351A2 (en) * 2011-11-04 2013-05-08 ST-Ericsson SA Non-contiguous carrier aggregation
CN105792222A (zh) * 2014-12-23 2016-07-20 中兴通讯股份有限公司 同频干扰的消除方法、探测方法以及装置和基站
CN108075865A (zh) * 2016-11-11 2018-05-25 中国移动通信有限公司研究院 一种载波聚合方法和网络设备
CN114126061A (zh) * 2021-10-28 2022-03-01 华为技术有限公司 一种干扰确定方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION: "Draft CR to reflect the completed NR inter-band CA/DC combinations into Rel16 TS38.101-1", 3GPP DRAFT; R4-1816624_DRAFT CR TO REFLECT THE COMPLETED NR INTER BAND CA DC COMBINATIONS INTO REL16 TS 38.101-1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Spokane, US; 20181112 - 20181116, 4 December 2018 (2018-12-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051491062 *

Also Published As

Publication number Publication date
CN114126061A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2021218920A1 (zh) 通信方法和装置
WO2023072157A1 (zh) 一种干扰确定方法及其装置
JP2024504940A (ja) ビーム情報の報告および受信の方法および装置
KR102535608B1 (ko) 전력 제어 방법 및 장치
WO2019015445A1 (zh) 一种通信方法及装置
JP6382994B2 (ja) ダウンリンク送信のための方法、システム、および装置
CN111132324B (zh) 一种旁链路资源的配置方法及装置
WO2022062838A1 (zh) 资源配置方法及装置
US11882620B2 (en) Communication method and apparatus
WO2022002016A1 (zh) 一种邻区测量方法及其装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2023124815A1 (zh) 无线设备、资源管理方法以及通信系统
WO2022161487A1 (zh) 参考信号图案的确定方法及装置
WO2021228117A1 (zh) 资源确定方法及装置
CN113366779B (zh) 一种信息传输方法、相关设备及系统
WO2021219059A1 (zh) 通信方法和装置
CN116982298A (zh) 频谱整形
WO2021087994A1 (zh) 一种上行传输的方法、设备及存储介质
WO2020073776A1 (zh) 确定信道质量信息的方法、装置及系统
WO2023125221A1 (zh) 一种信道质量指示的上报方法和装置
WO2024021981A1 (zh) 一种通信方法及装置
WO2023082287A1 (zh) 一种信息的传输方法及其装置
WO2023011109A1 (zh) 一种参考信号的传输方法及装置
WO2023155205A1 (zh) 一种侧行链路干扰消除的方法及其装置
WO2023030144A1 (zh) 一种频域资源配置方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022886033

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022886033

Country of ref document: EP

Effective date: 20240412