WO2023071477A1 - 一种高隔离度的终端天线系统 - Google Patents

一种高隔离度的终端天线系统 Download PDF

Info

Publication number
WO2023071477A1
WO2023071477A1 PCT/CN2022/114817 CN2022114817W WO2023071477A1 WO 2023071477 A1 WO2023071477 A1 WO 2023071477A1 CN 2022114817 W CN2022114817 W CN 2022114817W WO 2023071477 A1 WO2023071477 A1 WO 2023071477A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
current loop
magnetic
magnetic current
electronic device
Prior art date
Application number
PCT/CN2022/114817
Other languages
English (en)
French (fr)
Inventor
周大为
李元鹏
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22885375.0A priority Critical patent/EP4283784A1/en
Priority to US18/548,036 priority patent/US20240235027A9/en
Publication of WO2023071477A1 publication Critical patent/WO2023071477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present application relates to the technical field of antennas, in particular to a terminal antenna system with high isolation.
  • Multiple antennas can be arranged in an electronic device to support more and more wireless communication requirements of the electronic device.
  • mutual interference may occur, thereby affecting the overall radiation performance of the electronic device.
  • the mutual influence of multiple antennas during operation can be effectively improved.
  • An embodiment of the present application provides a terminal antenna system with high isolation, which can combine current loop antennas and/or magnetic current loop antennas with different location characteristics to provide better isolation while providing better radiation performance.
  • a high-isolation terminal antenna system which is applied to electronic equipment.
  • the terminal antenna system includes a first antenna and a second antenna, and the first antenna and the second antenna include at least one current loop antenna or Magnetic current loop antenna.
  • a uniform magnetic field is distributed between the radiator of the current loop antenna and the reference ground; when the magnetic current loop antenna is working, a uniform magnetic field is distributed between the radiator of the magnetic current loop antenna and the reference ground. electric field.
  • the first antenna and the second antenna are arranged on the same side of the electronic device, or the first antenna and the second antenna are arranged on two opposite sides of the electronic device.
  • the high-isolation antenna system may include at least one current loop antenna or magnetic current loop antenna, so as to ensure that the antenna system can provide better radiation performance of at least one antenna for the working frequency band.
  • the two antennas can separately excite the orthogonal current on the floor, thus obtaining high isolation characteristic.
  • the second antenna when the first antenna is a magnetic current loop antenna, the second antenna is a current loop antenna.
  • the types of antennas included in the antenna system in this application are defined.
  • the other antenna when one antenna is a magnetic current loop, the other antenna can be a current loop antenna.
  • the first antenna and the second antenna are in the form of direct feed, or the first antenna and the second antenna are in the form of coupled feed.
  • the feeding form of the antenna included in the antenna system in this application is defined.
  • any antenna in the terminal antenna system can be directly fed or coupled fed.
  • the exciting floor current when the first antenna is working, the exciting floor current is in the first direction, and when the second antenna is working, the exciting floor current is in the second direction, and the first direction and the second direction are positive pay.
  • the solution provided in this application can obtain high isolation characteristics. Since the two antennas can separately excite the orthogonal (or nearly orthogonal) currents on the floor, the two antennas can obtain a higher degree of isolation.
  • the first antenna and the second antenna are arranged on the same side of the electronic device, including: the first antenna and the second antenna are arranged on the first side of the electronic device, and the first Projections of the antenna and the second antenna on the first side do not coincide with each other.
  • a specific example of the location of the series distribution is provided.
  • two antennas in the terminal antenna system are taken as an example.
  • the two antennas may be distributed in series on the same side of the electronic device (such as a mobile phone).
  • the two antennas are located on the upper side of the mobile phone, distributed along the x-axis, and do not coincide with each other when projected in the y-axis.
  • a series distribution is achieved.
  • the feed point of the first antenna is set on the first antenna, close to one end of the second antenna.
  • the feeding point of the second antenna is set on the second antenna, close to one end of the first antenna.
  • the feeding point of the first antenna is set on the first antenna, away from one end of the second antenna.
  • the feeding point of the second antenna is set on the second antenna, away from one end of the first antenna. Based on this scheme, a definition of the feeding point in the case of series distribution is provided.
  • the feeding points of the two antennas may be set close to each other, and for another example, the feeding points of the two antennas may be set far away from each other.
  • the terminal antenna system further includes a third antenna, and the third antenna is also arranged on the first side. Projections of radiators of the third antenna, the first antenna, and the second antenna in a direction perpendicular to the first direction do not overlap, and the second antenna is disposed between the first antenna and the third antenna.
  • a schematic diagram of the series distribution of the three antennas is provided.
  • a third antenna may also be provided.
  • the first antenna is set on the left part of the top edge of the mobile phone
  • the second antenna is set on the center of the top plate of the mobile phone
  • the third antenna is set on the right part of the top edge of the mobile phone.
  • the first antenna is a magnetic current loop antenna
  • the second antenna is a current loop antenna
  • the third antenna is a magnetic current loop antenna
  • the first antenna and the third antenna form a first distributed antenna pair
  • the first distributed antenna pair includes a first port
  • the first port is connected to the port of the first antenna and the port of the first antenna.
  • the port of the third antenna is connected, and when the terminal antenna system is working, feed signals of equal amplitude and same phase are respectively input to the first antenna and the third antenna through the first port.
  • the first antenna and the third antenna may constitute a distributed antenna pair.
  • the port of the first antenna and the port of the second antenna may be connected to the first port for feeding, and the first antenna and the third antenna may be fed symmetrically through the first port. In this way, the floor current excited by the distributed antenna pair formed by the first antenna and the third antenna can be distributed orthogonally to the floor current excited by the second antenna, thereby obtaining high isolation characteristics.
  • the first antenna, the second antenna and the third antenna are all current loop antennas. Based on this solution, another type limitation for each antenna in another three-antenna series distribution scenario is provided.
  • the first antenna and the third antenna form a second distributed antenna pair
  • the second distributed antenna pair includes a second port
  • the second port is connected to the port of the first antenna and the port of the first antenna.
  • the port of the third antenna is connected, and when the terminal antenna system is working, feed signals of equal amplitude and anti-phase are respectively input to the first antenna and the third antenna through the first port.
  • the current direction of the second distributed antenna exciting the floor is orthogonal to the current direction of the second antenna exciting the floor.
  • the first antenna and the third antenna (that is, the left and right current loop antennas) can be antisymmetrically fed, so that the floor current excited by the distributed antenna pair composed of the first antenna and the third antenna can be compared with the first
  • the floor currents excited by the two antennas are distributed orthogonally to obtain high isolation characteristics.
  • the first antenna and the second antenna are arranged on the same side of the electronic device, including: the first antenna and the second antenna are arranged on the first side of the electronic device, and the first Projections of the antenna and the second antenna on the first side are at least partially overlapped.
  • a specific example of the location of the parallel distribution is provided.
  • two antennas in the terminal antenna system are taken as an example.
  • the two antennas may be distributed in parallel on the same side of the electronic device (such as a mobile phone).
  • the two antennas are located on the upper side of the mobile phone, distributed along the x-axis, and have at least partial overlap in the y-direction projection.
  • planes where radiators of the first antenna and the second antenna are located are orthogonal. Based on this solution, a specific implementation of parallel distribution is provided.
  • the first antenna may be located on the xoz plane
  • the second antenna may be located on the xoy plane. There is at least partial coincidence in the projections on the x-axis.
  • the second antenna is any one of the following antennas: a magnetic current loop antenna, a CM wire antenna, and a DM slot antenna.
  • the current loop antenna can excite transverse current
  • the magnetic current loop antenna, CM line antenna, and DM slot antenna can excite longitudinal current, so that the first antenna and the second antenna can have high isolation characteristics.
  • the first antenna and the second antenna are arranged on two opposite sides of the electronic device, including: the first antenna is arranged at a first position on the first side of the electronic device , the second antenna is disposed at a second position on a second side of the electronic device, and the first side and the second side are respectively adjacent to a third side of the electronic device.
  • the first antenna and the second antenna are arranged on two opposite sides of the electronic device, including: the first antenna is arranged at a first position on the first side of the electronic device , the second antenna is disposed at a second position on a second side of the electronic device, and the first side and the second side are respectively adjacent to a third side of the electronic device.
  • two antennas in the terminal antenna system are taken as an example.
  • the two antennas can be set on two opposite sides of the electronic device (such as a mobile phone).
  • the first antenna is located on the left long side of the mobile phone
  • the second antenna is located on the right long side of the mobile phone.
  • the first position and the second position are axisymmetric with respect to the center line of the third side.
  • a limitation on the relative positional relationship between the first antenna and the second antenna is provided.
  • the positions of the first antenna and the second antenna may be symmetrical with respect to the center line of the upper side of the mobile phone. In this way, the first antenna and the second antenna can be respectively located at the upper end, middle part, or lower end of the left long side and the right long side.
  • the first position is located in the middle of the first side
  • the second position is located in the middle of the second side.
  • a specific position limitation of the first antenna and the second antenna is provided.
  • the first antenna may be located in the middle of the left long side
  • the second antenna may be located in the middle of the right long side.
  • the feed point of the first antenna is set on the radiator of the first antenna, and the feed point of the second antenna
  • the feed point is set on the radiator of the second antenna, and the feed point of the first antenna and the feed point of the second antenna are respectively set on the radiator of the first antenna and the radiator of the second antenna.
  • an example of the position of the feed point of the direct-fed antenna is provided in the scenarios of parallel distribution and relative distribution.
  • the feeding points of the two antennas can be set at the left end of their respective radiators, or both can be set at the right end of their respective radiators.
  • the feed points of the direct-fed antennas can be set at the upper ends of the respective radiators, or both can be arranged at the lower ends of the respective radiators.
  • the current loop antenna includes a current loop antenna and a current loop slot antenna, the radiator of the current loop antenna is connected in parallel with at least one first capacitor grounded, and the radiator of the current loop slot antenna is connected in series with at least one a second capacitor.
  • the first capacitor is used to adjust the current distribution on the current loop antenna to obtain a uniform magnetic field between the current loop antenna and the reference ground
  • the second capacitor is used to adjust the current distribution on the current loop slot antenna to obtain A uniform magnetic field is obtained between the current loop slot antenna and reference ground.
  • the current loop antenna includes a current loop monopole antenna and a current loop dipole antenna.
  • the current loop slot antenna includes a current loop left-hand antenna and a current loop slot antenna. Based on this scheme, several specific examples of types of current loop antennas are provided.
  • the radiator of the magnetic current loop antenna is connected in parallel with at least one first inductor to ground, and the radiator of the magnetic current loop slot antenna is connected in series with at least one second inductor.
  • the first inductance is used to adjust the current distribution on the magnetic current loop antenna to obtain a uniform electric field between the magnetic current loop antenna and the reference ground
  • the second inductance is used to adjust the current on the magnetic current loop slot antenna distributed to obtain a uniform electric field between the magnetic current loop slot antenna and the reference ground.
  • the magnetic current loop antenna includes a magnetic current loop monopole antenna and a magnetic current loop dipole antenna.
  • the magnetic current loop slot antenna includes a magnetic current loop left-hand antenna and a magnetic current loop slot antenna. Based on this solution, several specific examples of types of magnetic current loop antennas are provided.
  • a terminal antenna system with high isolation is provided, which is applied to electronic equipment.
  • the terminal antenna system includes a first antenna and a second antenna, and the first antenna and the second antenna include at least one current loop antenna or Magnetic current loop antenna.
  • the first antenna and the second antenna are arranged on the same side of the electronic device, or the first antenna and the second antenna are arranged on two opposite sides of the electronic device.
  • the current loop antenna is a current loop monopole antenna or a current loop dipole antenna
  • at least one end of the radiator of the current loop antenna is provided with a first capacitive ground.
  • the current loop antenna is a current loop slot antenna or a current loop left-hand antenna
  • at least one second capacitor is arranged in series on the radiator of the current loop antenna.
  • the capacitance range of the first capacitor and the second capacitor is set as follows: when the operating frequency band of the current loop antenna is 450MHz-1GHz, the capacitance of the first capacitor or the second capacitor is set at [1.5pF, 15pF] within. When the working frequency band of the current loop antenna is 1GHz-3GHz, the capacitance of the first capacitor or the second capacitor is set within [0.5pF, 15pF]. When the working frequency band of the current loop antenna is 3GHz-10GHz, the capacitance of the first capacitor or the second capacitor is set within [1.2pF, 12pF].
  • the magnetic current loop antenna is a magnetic current loop monopole antenna or a magnetic current loop dipole antenna, at least one end of the magnetic current loop antenna radiator is provided with a first inductive ground.
  • the inductance range of the first inductance and the second inductance is set as follows: when the working frequency band of the magnetic current loop antenna is 450MHz-1GHz, the inductance value of the first inductance or the second inductance is set at [5nH, 47nH ]within. When the working frequency band of the magnetic current loop antenna is 1GHz-3GHz, the inductance value of the first inductor or the second inductor is set within [1nH, 33nH]. When the working frequency band of the magnetic current loop antenna is 3GHz-10GHz, the inductance value of the first inductance or the second inductance is set within [0.5nH, 10nH].
  • the high-isolation antenna system may include at least one current loop antenna or magnetic current loop antenna, so as to ensure that the antenna system can provide better radiation performance of at least one antenna for the working frequency band.
  • the two antennas can separately excite the orthogonal current on the floor, thus obtaining high isolation characteristic.
  • the value of the capacitance or inductance provided on the current loop antenna and the magnetic current loop antenna is also limited.
  • the second antenna when the first antenna is a magnetic current loop antenna, the second antenna is a current loop antenna.
  • the types of antennas included in the antenna system in this application are defined.
  • the other antenna when one antenna is a magnetic current loop, the other antenna can be a current loop antenna.
  • the first antenna and the second antenna are in the form of direct feed, or the first antenna and the second antenna are in the form of coupled feed.
  • the feeding form of the antenna included in the antenna system in this application is defined.
  • any antenna in the terminal antenna system can be directly fed or coupled fed.
  • the exciting floor current when the first antenna is working, the exciting floor current is in the first direction, and when the second antenna is working, the exciting floor current is in the second direction, and the first direction and the second direction are positive pay.
  • the solution provided in this application can obtain high isolation characteristics. Since the two antennas can separately excite the orthogonal (or nearly orthogonal) currents on the floor, the two antennas can obtain a higher degree of isolation.
  • the first antenna and the second antenna are arranged on the same side of the electronic device, including: the first antenna and the second antenna are arranged on the first side of the electronic device, and the first Projections of the antenna and the second antenna on the first side do not coincide with each other.
  • a specific example of the location of the series distribution is provided.
  • two antennas in the terminal antenna system are taken as an example.
  • the two antennas may be distributed in series on the same side of the electronic device (such as a mobile phone).
  • the two antennas are located on the upper side of the mobile phone, distributed along the x-axis, and do not coincide with each other when projected in the y-axis.
  • a series distribution is achieved.
  • the feed point of the first antenna is set on the first antenna, close to one end of the second antenna.
  • the feeding point of the second antenna is set on the second antenna, close to one end of the first antenna.
  • the feeding point of the first antenna is set on the first antenna, away from one end of the second antenna.
  • the feeding point of the second antenna is set on the second antenna, away from one end of the first antenna. Based on this scheme, a definition of the feeding point in the case of series distribution is provided.
  • the feeding points of the two antennas may be set close to each other, and for another example, the feeding points of the two antennas may be set far away from each other.
  • the terminal antenna system further includes a third antenna, and the third antenna is also arranged on the first side. Projections of radiators of the third antenna, the first antenna, and the second antenna in a direction perpendicular to the first direction do not overlap, and the second antenna is disposed between the first antenna and the third antenna.
  • a schematic diagram of the series distribution of the three antennas is provided.
  • a third antenna may also be provided.
  • the first antenna is set on the left part of the top edge of the mobile phone
  • the second antenna is set on the center of the top plate of the mobile phone
  • the third antenna is set on the right part of the top edge of the mobile phone.
  • the first antenna is a magnetic current loop antenna
  • the second antenna is a current loop antenna
  • the third antenna is a magnetic current loop antenna
  • the first antenna and the third antenna form a first distributed antenna pair
  • the first distributed antenna pair includes a first port
  • the first port is connected to the port of the first antenna and the port of the first antenna.
  • the port of the third antenna is connected, and when the terminal antenna system is working, feed signals of equal amplitude and same phase are respectively input to the first antenna and the third antenna through the first port.
  • the first antenna and the third antenna may constitute a distributed antenna pair.
  • the port of the first antenna and the port of the second antenna may be connected to the first port for feeding, and the first antenna and the third antenna may be fed symmetrically through the first port. In this way, the floor current excited by the distributed antenna pair formed by the first antenna and the third antenna can be distributed orthogonally to the floor current excited by the second antenna, thereby obtaining high isolation characteristics.
  • the first antenna, the second antenna and the third antenna are all current loop antennas. Based on this solution, another type limitation for each antenna in another three-antenna series distribution scenario is provided.
  • the first antenna and the third antenna form a second distributed antenna pair
  • the second distributed antenna pair includes a second port
  • the second port is connected to the port of the first antenna and the port of the first antenna.
  • the port of the third antenna is connected, and when the terminal antenna system is working, feed signals of equal amplitude and anti-phase are respectively input to the first antenna and the third antenna through the first port.
  • the current direction of the second distributed antenna exciting the floor is orthogonal to the current direction of the second antenna exciting the floor.
  • the first antenna and the third antenna (that is, the left and right current loop antennas) can be antisymmetrically fed, so that the floor current excited by the distributed antenna pair composed of the first antenna and the third antenna can be compared with the first
  • the floor currents excited by the two antennas are distributed orthogonally to obtain high isolation characteristics.
  • the first antenna and the second antenna are arranged on the same side of the electronic device, including: the first antenna and the second antenna are arranged on the first side of the electronic device, and the first Projections of the antenna and the second antenna on the first side are at least partially overlapped.
  • a specific example of the location of the parallel distribution is provided.
  • two antennas in the terminal antenna system are taken as an example.
  • the two antennas may be distributed in parallel on the same side of the electronic device (such as a mobile phone).
  • the two antennas are located on the upper side of the mobile phone, distributed along the x-axis, and have at least partial overlap in the y-direction projection.
  • planes where radiators of the first antenna and the second antenna are located are orthogonal. Based on this solution, a specific implementation of parallel distribution is provided.
  • the first antenna may be located on the xoz plane
  • the second antenna may be located on the xoy plane. There is at least partial coincidence in the projections on the x-axis.
  • the second antenna is any one of the following antennas: a magnetic current loop antenna, a CM wire antenna, and a DM slot antenna.
  • the current loop antenna can excite transverse current
  • the magnetic current loop antenna, CM line antenna, and DM slot antenna can excite longitudinal current, so that the first antenna and the second antenna can have high isolation characteristics.
  • the first antenna and the second antenna are arranged on two opposite sides of the electronic device, including: the first antenna is arranged at a first position on the first side of the electronic device , the second antenna is disposed at a second position on a second side of the electronic device, and the first side and the second side are respectively adjacent to a third side of the electronic device.
  • the first antenna and the second antenna are arranged on two opposite sides of the electronic device, including: the first antenna is arranged at a first position on the first side of the electronic device , the second antenna is disposed at a second position on a second side of the electronic device, and the first side and the second side are respectively adjacent to a third side of the electronic device.
  • two antennas in the terminal antenna system are taken as an example.
  • the two antennas can be set on two opposite sides of the electronic device (such as a mobile phone).
  • the first antenna is located on the left long side of the mobile phone
  • the second antenna is located on the right long side of the mobile phone.
  • the first position and the second position are axisymmetric with respect to the center line of the third side.
  • a limitation on the relative positional relationship between the first antenna and the second antenna is provided.
  • the positions of the first antenna and the second antenna may be symmetrical with respect to the center line of the upper side of the mobile phone. In this way, the first antenna and the second antenna can be respectively located at the upper end, middle part, or lower end of the left long side and the right long side.
  • the first position is located in the middle of the first side
  • the second position is located in the middle of the second side.
  • a specific position limitation of the first antenna and the second antenna is provided.
  • the first antenna may be located in the middle of the left long side
  • the second antenna may be located in the middle of the right long side.
  • the feed point of the first antenna is set on the radiator of the first antenna, and the feed point of the second antenna
  • the feed point is set on the radiator of the second antenna, and the feed point of the first antenna and the feed point of the second antenna are respectively set on the radiator of the first antenna and the radiator of the second antenna.
  • an example of the position of the feed point of the direct-fed antenna is provided in the scenarios of parallel distribution and relative distribution.
  • the feeding points of the two antennas can be set at the left end of their respective radiators, or both can be set at the right end of their respective radiators.
  • the feed points of the direct-fed antennas can be set at the upper ends of the respective radiators, or both can be arranged at the lower ends of the respective radiators.
  • an electronic device configured with the terminal antenna system as described in the first aspect and any possible design thereof.
  • the electronic device transmits or receives signals, it transmits or receives signals through the terminal antenna system.
  • FIG. 1 is a schematic diagram of a multi-antenna scenario
  • FIG. 2 is a schematic stacking diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an antenna arrangement on a metal casing provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of the composition of an electronic device provided in an embodiment of the present application.
  • FIG. 5 is a working schematic diagram of a current loop antenna provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the composition of a current loop antenna provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a coupled-feed current loop antenna provided in an embodiment of the present application.
  • FIG. 8 is a working schematic diagram of a magnetic current loop antenna provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the composition of a magnetic current loop antenna provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a coupling-feed magnetic current loop antenna provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the location of a pair of antennas distributed in series according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the position of a parallel distributed antenna pair provided by the embodiment of the present application.
  • FIG. 13A is a schematic diagram of the location of a relatively distributed antenna pair provided by the embodiment of the present application.
  • FIG. 13B is a schematic diagram of the location of an orthogonally distributed antenna pair provided in an embodiment of the present application.
  • FIG. 13C is a schematic structural diagram of a CM antenna and a DM antenna provided in an embodiment of the present application.
  • FIG. 14 is an orthogonal schematic diagram of a floor current provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of floor current distribution provided by the embodiment of the present application.
  • FIG. 16 is a schematic diagram of a floor electric field distribution provided by an embodiment of the present application.
  • FIG. 17A is a schematic diagram of a series-connected antenna pair provided by an embodiment of the present application.
  • FIG. 17B is a schematic diagram of a magnetic current loop antenna exciting floor current provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a floor current of a series-connected antenna pair provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a radiation pattern of a series-connected antenna pair provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of S parameters of a series-connected antenna pair provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of the efficiency of a series-connected antenna pair provided by an embodiment of the present application.
  • FIG. 22A is a schematic diagram of another antenna pair connected in series according to the embodiment of the present application.
  • FIG. 22B is a schematic diagram of an antenna group with three antennas connected in series according to an embodiment of the present application.
  • FIG. 22C is a schematic diagram of a directional diagram of a series-connected antenna group provided by an embodiment of the present application.
  • FIG. 22D is a schematic diagram of the isolation of a series-connected antenna group provided by the embodiment of the present application.
  • FIG. 22E is a schematic diagram of the composition of a series-connected antenna group provided by the embodiment of the present application.
  • FIG. 22F is a schematic diagram of a radiation pattern of a series-connected antenna group provided by an embodiment of the present application.
  • FIG. 23A is a schematic diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 23B is a schematic diagram of a structure realization of a parallel antenna pair provided by the embodiment of the present application.
  • FIG. 24 is a schematic current diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of a radiation pattern of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 26 is a schematic diagram of S parameters of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 27 is a schematic diagram of the efficiency of a parallel antenna pair provided by the embodiment of the present application.
  • FIG. 28 is a schematic diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 29 is a schematic diagram of a radiation pattern of a parallel antenna pair provided in an embodiment of the present application.
  • FIG. 30 is a schematic diagram of S parameters of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 31 is a schematic diagram of the efficiency of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 32 is a schematic diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 33 is a schematic current diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 34 is a schematic diagram of a radiation pattern of a parallel antenna pair provided in an embodiment of the present application.
  • FIG. 35 is a schematic diagram of S parameters of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 36 is a schematic diagram of the efficiency of a parallel antenna pair provided by the embodiment of the present application.
  • FIG. 37 is a schematic diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 38 is a schematic diagram of a radiation pattern of a parallel antenna pair provided in an embodiment of the present application.
  • FIG. 39 is a schematic diagram of S parameters of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 40 is a schematic diagram of the efficiency of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 41 is a schematic diagram of a parallel antenna pair provided by an embodiment of the present application.
  • FIG. 42 is a schematic diagram of a pair of relative antennas provided by an embodiment of the present application.
  • FIG. 43 is a specific example of a pair of relative antennas provided in the embodiment of the present application.
  • FIG. 44 is a schematic diagram of the current flow of a pair of relative antennas provided by the embodiment of the present application.
  • FIG. 45A is a schematic diagram of a current simulation of a relative antenna pair provided by the embodiment of the present application.
  • FIG. 45B is a schematic diagram of a current simulation of a relative antenna pair provided by the embodiment of the present application.
  • FIG. 45C is a schematic diagram of a direction diagram of a pair of relative antennas provided by the embodiment of the present application.
  • FIG. 46 is a schematic diagram of S parameters of a relative antenna pair provided by the embodiment of the present application.
  • FIG. 47 is a schematic diagram of an orthogonal antenna pair provided by an embodiment of the present application.
  • FIG. 48 is a schematic diagram of a pattern of an orthogonal antenna pair provided in an embodiment of the present application.
  • FIG. 49 is a schematic diagram of S parameters of an orthogonal antenna pair provided in an embodiment of the present application.
  • FIG. 50 is a schematic diagram of an orthogonal antenna pair provided by an embodiment of the present application.
  • FIG. 51 is a schematic diagram of a pattern of an orthogonal antenna pair provided in an embodiment of the present application.
  • FIG. 52 is a schematic diagram of S parameters of an orthogonal antenna pair provided in an embodiment of the present application.
  • FIG. 53A is a schematic diagram of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 53B is a schematic diagram of the current flow of an orthogonal three-antenna antenna group provided by the embodiment of the present application.
  • FIG. 54 is a schematic diagram of a pattern of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 55 is a schematic diagram of S parameters of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 56 is a schematic diagram of a pattern of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 57 is a schematic diagram of S parameters of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 58A is a schematic diagram of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 58B is a schematic diagram of a current simulation of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 59 is a schematic diagram of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 60 is a schematic diagram of S parameters of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 61 is a schematic diagram of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 62 is a schematic diagram of a pattern of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 63 is a schematic diagram of S parameters of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 64 is a schematic diagram of a pattern of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • FIG. 65 is a schematic diagram of S parameters of an orthogonal three-antenna antenna group provided by an embodiment of the present application.
  • the working frequency bands of some antennas may overlap partially or completely, so as to improve the communication capability of the corresponding frequency bands.
  • the antennas provided in the electronic equipment include E1 and E2, and the working frequency bands of E1 and E2 overlap.
  • E1 and E2 may work simultaneously.
  • the signal of the electronic device can be transmitted in the form of electromagnetic waves, and the resonance frequency corresponding to the electromagnetic wave can be included in the working frequency band of E1, thereby realizing the transmission of signals.
  • E2 can convert electromagnetic waves in the external space into signals (such as analog signals) that electronic equipment can process, thereby realizing signal reception.
  • the signal received by E2 may include the signal sent by E1. And this part of the signal is obviously unnecessary for the electronic equipment to receive, therefore, this part of the signal is an invalid signal for the work of E2. That is to say, when E1 and E2 work at the same time, there may be mutual influence between the two antennas, thereby reducing the wireless communication efficiency of the antennas.
  • E1 transmits and E2 receives are used as an example.
  • similar problems may also exist, which reduce the wireless communication efficiency of the antenna.
  • E1 receives and E2 transmits the same problem will also arise due to a similar mechanism.
  • the working frequency bands of E1 and E2 are different, taking the working frequency band of E1 lower than that of E2 as an example, although the working frequency band of E1 does not coincide with that of E2, the corresponding resonance frequency multiplier of E1 may also be different. Affects the work of E2.
  • the influence between the antennas can be reduced by increasing the isolation between the antennas.
  • the isolation degree may be identified by a normalized value. For example, taking the dual-port isolation degree as an example, the isolation degree can be identified by S21 (or S12) in the S parameter, and the value of S21 at different frequency points corresponds to the dual-port isolation degree at the current frequency point. After normalization, the maximum value of the isolation degree does not exceed 0, and the greater the absolute value of the isolation degree, the better the isolation degree and the smaller the influence between the antennas.
  • the absolute value of the isolation is simply referred to as the isolation.
  • the absolute value of the isolation degree is larger, it is simply referred to as a larger isolation degree.
  • the absolute value of the isolation degree is smaller, which is simply referred to as the isolation degree is smaller.
  • the strength of the radiation performance of the antennas will also affect the isolation between the antennas.
  • the better the radiation performance of the antenna the smaller the isolation between the antennas and the greater the mutual influence.
  • the better the radiation performance of E1 the lower the isolation from E2 will be in the frequency points or frequency bands with better radiation performance.
  • the antenna needs to provide better radiation performance. That is to say, for the antenna in the electronic device, it is required that it can not only provide better radiation performance, but also need to have better isolation between antennas. This also creates higher requirements for multi-antenna design in electronic equipment.
  • an embodiment of the present application provides a high-isolation antenna solution, which can enable the antenna to have better isolation while providing better radiation performance.
  • the radiation performance involved in the embodiments of the present application may refer to radiation efficiency and/or system efficiency of a corresponding antenna.
  • the radiation efficiency can be used to identify the maximum radiation capability of the antenna system, and the system efficiency is used to identify the efficiency that the antenna can provide under the current environment and port matching.
  • the antenna solution provided in the embodiment of the present application may be applied in a user's electronic device to support the wireless communication function of the electronic device.
  • the electronic device may be a portable mobile device such as a mobile phone, a tablet computer, a personal digital assistant (personal digital assistant, PDA), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a media player, etc.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • the electronic device may also be a wearable electronic device such as a smart watch.
  • the embodiment of the present application does not specifically limit the specific form of the device.
  • FIG. 2 is a schematic structural diagram of an electronic device 200 provided in an embodiment of the present application.
  • the electronic device 200 provided by the embodiment of the present application can be provided with a screen and a cover 201 , a metal shell 202 , an internal structure 203 , and a rear cover 204 in sequence along the z-axis from top to bottom.
  • the screen and the cover 201 can be used to realize the display function of the electronic device 200 .
  • the metal shell 202 can be used as a main frame of the electronic device 200 to provide rigid support for the electronic device 200 .
  • the internal structure 203 may include a collection of electronic components and mechanical components that implement various functions of the electronic device 200 .
  • the internal structure 203 may include a shield, screws, reinforcing ribs and the like.
  • the rear cover 204 may be the exterior surface of the back of the electronic device 200, and the rear cover 204 may use glass materials, ceramic materials, plastics, etc. in different implementations.
  • the antenna solution provided in the embodiment of the present application can be applied in the electronic device 200 shown in FIG. 2 , and is used to support the wireless communication function of the electronic device 200 .
  • the antenna involved in the antenna solution may be disposed on the metal casing 202 of the electronic device 200 .
  • the antenna involved in the antenna solution may be disposed on the rear cover 204 of the electronic device 200 and the like.
  • FIG. 3 shows a schematic composition of the metal housing 202 .
  • the metal shell 202 may be made of metal materials, such as aluminum alloy.
  • a reference ground may be provided on the metal shell 202 .
  • the reference ground can be a metal material with a large area, which is used to provide most of the rigid support, and at the same time provide a zero-potential reference for each electronic component.
  • a metal frame may also be provided around the reference ground.
  • the metal frame may be a complete closed metal frame, and the metal frame may include part or all of metal bars suspended in the air.
  • the metal frame may also be a metal frame interrupted by one or more gaps as shown in FIG. 3 .
  • slot 1 , slot 2 , and slot 3 may be set at different positions on the metal frame. These gaps can interrupt the metal frame to obtain independent metal branches.
  • some or all of these metal stubs can be used as radiation stubs of the antenna, so as to realize structural reuse in the antenna setting process and reduce the difficulty of antenna setting.
  • the positions of the slots corresponding to one or both ends of the metal branch can be flexibly selected according to the configuration of the antenna.
  • one or more metal pins may also be arranged on the metal frame.
  • the metal pins may be provided with screw holes for fixing other structural components by screws.
  • the metal pin can be coupled to the feeding point, so that when the metal branch connected to the metal pin is used as a radiation branch of the antenna, the metal pin can feed power to the antenna.
  • the metal pins can also be coupled with other electronic components to achieve corresponding electrical connection functions.
  • the main board (such as PCB1 ) may be used to carry electronic components that implement various functions of the electronic device 200 .
  • the main board such as PCB1
  • Small boards (such as PCB2) can also be used to carry electronic components.
  • the small board can also be used to carry a radio frequency circuit and the like corresponding to the antenna disposed at the bottom (that is, the part in the negative direction of the y-axis of the electronic device).
  • the antenna solutions provided in the embodiments of the present application can all be applied to an electronic device having a composition as shown in FIG. 2 or FIG. 3 .
  • the electronic device 200 in the above example is only one possible composition.
  • the electronic device 200 may also have other logic components.
  • a communication module as shown in FIG. 4 may be provided in the electronic device.
  • the communication module may include an antenna, a radio frequency module that performs signal interaction with the antenna, and a processor that performs signal interaction with the radio frequency module.
  • the signal interaction between the radio frequency module and the antenna may be an analog signal interaction.
  • the signal interaction between the radio frequency module and the processor may be an analog signal or a digital signal.
  • the processor can be a baseband processor.
  • multiple antennas may be set in the electronic device, such as antenna 1 to antenna n shown in FIG. 4 .
  • the n antennas may include one or more magnetic current loop antennas and/or current loop antennas.
  • the current loop antenna involved in the solution provided by the embodiment of the present application can have the current and magnetic field distribution as shown in FIG. 5 when the antenna works through its composition features.
  • a radiation feature having a current distribution and/or a magnetic field distribution as shown in FIG. 5 may also be referred to as a current loop radiation feature.
  • the aforementioned current loop radiation characteristics can be obtained by setting series and/or parallel capacitors on the radiation stubs.
  • a capacitor can be set at position 1. It should be understood that through the energy storage characteristics of the capacitor for electric energy, the change of the current on the radiation branch can be made gentle, and the magnetic field corresponds to the current, so it can also make the area near the radiation branch (such as the radiation branch and the reference ground) The change of the magnetic field in the region between ) tends to be gentle, so as to obtain a more uniformly distributed magnetic field.
  • a dielectric material is set between the antenna radiation branch and the reference ground, because the electromagnetic field formed between the antenna radiation branch and the reference ground by the current loop antenna shown in Figure 5 above is mainly a uniform magnetic field, while the magnetic field When the coupling energy passes through the dielectric material, the loss is zero, that is, the dielectric material has no loss effect on the formed uniform magnetic field. Therefore, the current loop antenna has better radiation performance than the prior art when radiating.
  • Fig. 6 shows several possible implementations of the current loop antenna.
  • current loop antennas may be divided into current loop line antennas and current loop slot antennas according to differences in composition and structure of the current loop antennas.
  • the current loop antenna may include a current loop monopole antenna, a current loop dipole antenna, and the like.
  • Current loop slot antennas may include current loop left-hand antennas, current loop slot antennas, and the like.
  • a first capacitor connected in parallel may be provided, thereby realizing the working mechanism as shown in FIG. 5 .
  • one or more capacitors may be connected in series with the radiator of the current loop antenna, so as to improve the radiation performance of the current loop antenna.
  • a second capacitor connected in series may be provided on the current loop slot antenna, thereby realizing the working mechanism as shown in FIG. 5 .
  • more capacitors may be connected in series with the radiator of the current loop slot antenna, so as to improve the radiation performance of the current loop antenna.
  • both the current loop slot antenna and the current loop wire antenna are provided with capacitive grounding on at least one end of the radiator of the current loop antenna.
  • the capacitors at the end of the setting may be different in size.
  • the capacitances C1 and C2 arranged at the end of the radiation branch can be included within [1.5pF, 15pF].
  • the size of the capacitors C1 and C2 arranged at the end of the radiation branch can be included within [0.5pF, 15pF].
  • the size of the capacitors C1 and C2 arranged at the end of the radiation branch can be included within [1.2pF, 12pF].
  • the working frequency band covered by the antenna pair may include low frequency, intermediate frequency, and/or high frequency.
  • the low frequency may include a frequency range of 450M-1GHz.
  • the intermediate frequency may include a frequency range of 1G-3GHz.
  • the high frequency may include a frequency range of 3GHz-10GHz.
  • the low, middle and high frequency bands may include but not limited to Bluetooth (Bluetooth, BT) communication technology, global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless fidelity, Wi -Fi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology , 5G communication technology, SUB-6G communication technology and other communication technologies in the future.
  • the LB, MB, and HB can include common frequency bands such as 5G NR, WiFi 6E, and UWB.
  • compositions of the current loop antenna are described below with reference to specific examples.
  • FIG. 6 shows a schematic diagram of a current loop monopole antenna.
  • the current loop monopole antenna can include a radiator B1, and when the current loop monopole antenna works in a fundamental mode (such as a 1/4 wavelength mode), the length of the radiator B1 can be 1/2 of the working wavelength of the antenna. /4 corresponds. For example, the length of B1 may be less than 1/4 of the working wavelength.
  • One end of B1 is electrically connected to the feeding point, and the other end of B1 is grounded through a capacitor (such as capacitor C M1 ), thereby forming a current loop monopole antenna.
  • FIG. 6 shows a schematic diagram of a current loop dipole antenna.
  • the current loop dipole antenna may include radiators B2 and B3.
  • B2 and B3 can be connected through a feed point, the end of B2 away from B3 can be grounded through capacitor C D1 , and the end of B3 away from B2 can be grounded through capacitor C D2 .
  • the length of the radiator B2 and the length of B3 can respectively correspond to 1/4 of the working wavelength, that is to say, the The length of the radiation stub (such as B2 plus B3) of the current loop dipole antenna corresponds to 1/2 of the working wavelength.
  • the length of B2 may be less than 1/4 of the working wavelength.
  • the length of B3 may be less than 1/4 of the working wavelength. That is to say, the length of the radiation stub (such as B2 plus B3 ) of the current loop dipole antenna can be less than 1/2 of the working wavelength. In some embodiments, the sum of the lengths of B2 and B3 may be greater than 1/4 of the working wavelength and less than 1/2 of the working wavelength.
  • FIG. 6 shows a schematic diagram of a current loop left-handed antenna.
  • the current loop left-hand antenna may include a radiator B4. Capacitor C C1 may be connected in series with B4. One end of B4 can be grounded and the other end can be connected to the left hand feed.
  • the left-hand feed may include a feed point, and a left-hand capacitor in series with the feed point.
  • the left-hand capacitance can be used to excite B4 to generate left-hand mode.
  • the structure and working mechanism of the left-hand antenna can refer to CN201380008276.8 and CN201410109571.9, and will not be repeated here.
  • FIG. 6 shows a schematic diagram of a current loop slot antenna.
  • the current loop slot antenna may include radiators B5 and B6. Radiators B5 and B6 are connected through feed points. The end of B5 away from B6 and the end of B6 away from B5 can be grounded respectively. Thus B5 and B6 and the reference ground can form a gap for radiation.
  • a capacitor C S1 may be connected in series on B5, and a capacitor C S2 may be connected in series on B6.
  • FIG. 6 shows a schematic diagram of a coupled-feed current loop monopole antenna.
  • the current loop monopole antenna may include a radiation stub and a feed stub.
  • the radiation branch may include a radiator B12, and both ends of B12 are grounded through capacitors C CM1 and C CM2 respectively.
  • the feeding branch can be used for coupled feeding, and the feeding branch can include a first feeding part CB12 and a second feeding part CB13, and the connection between CB13 and CB12 is through a feeding point, and the other ends of CB12 and CB13 are both grounded.
  • the feeding stub may be arranged between the radiation stub and the reference ground. The radiating stub is thus excited via the feed stubs CB12 and CB13 to emit radiation characteristic of current loop radiation.
  • FIG. 5 , FIG. 6 and FIG. 7 illustrate the current loop antenna as an example, and the magnetic current loop antenna will be briefly described below in conjunction with FIG. 8 and FIG. 9 .
  • the magnetic current loop antenna may include at least one radiation stub.
  • the radiation stub can be used for radiation with the characteristics of magnetic current loop antenna radiation.
  • the radiation characteristics of the magnetic current loop antenna described in the embodiments of the present application may include: generating a uniform electric field distribution between the radiation stub and the reference ground. For example, as shown in Figure 8, a uniform downward electric field may be distributed between the antenna radiation stub and the reference ground. Of course, in some other scenarios, the electric field may also be uniformly distributed upward due to the constant change of the feed signal.
  • the magnetic current loop antenna provided in the embodiment of this application can be based on the existing electric field antenna, and the inductors are connected in series and/or in parallel on the radiating branches, so that the position with higher potential on the radiator can be approached by the inductance Return to the ground, thereby reducing the potential of this part, and then pulling down the electric field near the high potential; correspondingly, by setting the energy storage characteristics of the inductor for magnetic energy, the time difference between the change of the electric field and the change of the current in the low electric field area, and then in the current
  • the electric field in the original low electric field area can be rapidly increased, while the electric field in the original high electric field area still maintains a high electric field for a subsequent period of time. In this way, a uniformly distributed electric field near the radiating stub is obtained.
  • a closed magnetic current loop can be formed in the space near the radiating stub. That is to say, the radiation characteristics of the magnetic current loop antenna involved in the embodiment of the present application may also include: generating a closed magnetic current loop distribution near the radiation branch. For example, as shown in FIG. 8 , a closed magnetic current loop along the counterclockwise direction may be formed near the radiating stub of the antenna. Similar to the description of the electric field distribution above, in other scenarios, since the feed signal is constantly changing, the magnetic current loop may also be closed and distributed clockwise.
  • the magnetic current loop antenna can provide better radiation performance than an electric field antenna with an inhomogeneous electric field.
  • a magnetic medium material is arranged between the antenna radiation branch and the reference ground, since the electromagnetic field formed between the antenna radiation branch and the reference ground by the magnetic current loop antenna shown in Figure 8 above is mainly a uniform electric field, The radio frequency energy is coupled to the floor where the reference ground of the electronic equipment is located through the electric field, and the loss of the electric field coupling energy is zero when passing through the magnetic medium material, that is, the magnetic medium material has no loss effect on the formed uniform electric field. Therefore, the magnetic current loop Compared with the existing electric field antenna with inhomogeneous electric field, the antenna has better radiation performance when radiating.
  • the magnetic current loop antenna can be divided into a magnetic current loop antenna and a magnetic current loop slot antenna according to the difference in the structure of the magnetic current loop antenna.
  • the magnetic current loop antenna may include a magnetic current loop monopole antenna, a magnetic current loop dipole antenna, and the like.
  • the magnetic current loop slot antenna may include a magnetic current loop left-hand antenna, a magnetic current loop slot antenna, and the like.
  • a first inductor connected in parallel may be provided, thereby realizing the working mechanism as shown in FIG. 8 .
  • one or more inductors may be connected in series with the radiator of the magnetic current loop antenna, so as to improve the radiation performance of the magnetic current loop antenna.
  • a second inductance connected in series may be provided on the magnetic current loop slot antenna, thereby realizing the working mechanism as shown in FIG. 8 .
  • more inductors may be connected in series with the radiator of the magnetic current loop slot antenna, so as to improve the radiation performance of the magnetic current loop antenna.
  • both the magnetic current loop slot antenna and the magnetic current loop wire antenna are provided with an inductive ground at at least one end of the radiator of the magnetic current loop antenna.
  • the inductance of the terminal grounding may be different.
  • the inductance value of the inductor can be in the range of 5nH to 47nH.
  • the inductance value of the inductor can be in the range of 1nH to 33nH.
  • the inductance value of the inductor can be in the range of 0.5nH to 10nH.
  • Figure 9 shows schematic diagrams of several possible magnetic current loop antennas.
  • FIG. 9 shows a magnetic current loop monopole antenna.
  • the magnetic current loop monopole antenna may include a radiator B1, one end of B1 may be grounded through an inductor L M1 , and the other end of B1 may be connected to a feeding point.
  • the length of the B1 may be related to 1/4 of the working wavelength.
  • the length of B1 may be less than 1/4 of the working wavelength.
  • the magnetic current loop dipole antenna may include radiators B2 and B3.
  • B2 can be connected to B3 through a feed point.
  • the end of B2 away from B3 can be grounded through inductor L D1
  • the end of B3 away from B2 can be grounded through inductor L D2 .
  • the arrangement of B2 and B3 may be symmetrical about the feed point.
  • the length of B2 (or B3) may be related to 1/4 of the working wavelength.
  • the length of B2 may be less than 1/4 of the working wavelength.
  • the length of B3 may be less than 1/4 of the working wavelength.
  • the length of the radiation branch of the antenna formed by B2 and B3 may be less than 1/2 of the working wavelength and greater than 1/4 of the working wavelength.
  • FIG. 9 shows a magnetic current loop left-handed antenna.
  • the magnetic current loop left-hand antenna may include a radiator B4. One end of this B4 can be grounded and the other end can be connected to the left hand feed.
  • the form of the left-hand feeding can refer to the left-hand feeding shown in FIG. 6 .
  • An inductor L C1 may be connected in series with B4.
  • FIG. 9 shows a flux loop slot antenna.
  • the flux loop slot antenna may include radiators B5 and B6.
  • the B5 and B6 can be connected through a feed point.
  • the end of B5 away from B6 can be grounded, and the end of B6 away from B5 can be grounded.
  • B5 and B6 and the reference ground can form a gap for radiation.
  • an inductor L S1 may be connected in series on B5
  • an inductor L S2 may be connected in series on B6.
  • FIG. 10 shows a schematic diagram of a coupling-feed magnetic current loop monopole antenna.
  • both ends of the radiator B11 of the antenna can be grounded through inductors (such as L CM1 and L CM2 ).
  • a feed branch CB11 may be provided between the radiation branch and the reference ground, both ends of the CB11 may be suspended, and the CB11 may be connected to a feed point, for example, the feed point may be set at the center of the CB11.
  • the excitation of the magnetic current loop antenna can be realized, so that B11 can radiate with the characteristic of magnetic current loop radiation.
  • the excitation may also be performed in the form of coupled feeding.
  • the structure of the feeding branch can also be various. For details, please refer to the following patent applications: application number 202111034604.4, application number 202111034603.X, application number 202111034611.4, and application number 202111033384.3. I won't repeat them here.
  • the current loop antenna and/or the magnetic current loop antenna provided in the above example, and/or the existing antenna composition can be used in the antenna system including multiple antennas An antenna pair, where the antenna pair may have a high degree of isolation.
  • the radiation performance of the antenna system including the antenna pair can also be guaranteed.
  • the relative positional relationship of two or more antennas may include series, parallel, opposite, and orthogonal positional relationships.
  • the serial location arrangement may include that two or more antennas are arranged on the same side of the electronic device, and the projections of the respective antennas on the side do not overlap.
  • the parallel position setting may include that two or more antennas are set on the same side of the electronic device, and the projections of the parallel two antennas on the set side are at least partially overlapped.
  • the planes where the radiators of the two parallel antennas are located are orthogonal.
  • the relative positioning may include the two antennas being disposed on two opposite sides of the electronic device.
  • the orthogonal position setting may include two antennas being set on two adjacent sides of the electronic device.
  • CM antennas and DM antennas can be subdivided into CM wire (Wire) antennas, CM slot (Slot) antennas, and DM wire antennas and DM slot antennas.
  • CM wire Wireless
  • Slot CM slot
  • DM wire antennas and DM slot antennas can be excited by anti-symmetric feeding.
  • the DM slot can be excited by symmetrical feeding.
  • a high-isolation antenna pair includes two antennas as an example. It may include at least one current loop antenna or magnetic current loop antenna.
  • the other antenna in the high-isolation antenna pair may be a current loop antenna, a magnetic current loop antenna, a CM antenna, or a DM antenna.
  • Table 1 below shows the effect of radiation combination of two antennas in an antenna pair when different antenna types are arranged in parallel. For ease of description, it is taken as an example that two antennas are arranged in parallel at the center of one side of the electronic device.
  • the current loop antenna and any of the following antennas can form a high isolation effect: magnetic current loop antenna, CM line antenna, and DM slot antenna.
  • the magnetic current loop antenna and any of the following antennas can form a high isolation effect: current loop antenna, DM line antenna, CM slot antenna.
  • the above-mentioned current loop antenna or magnetic current loop antenna forms a high isolation effect with other antennas, which can be obtained by exciting orthogonal (or nearly orthogonal) currents on the floor to form an orthogonal spatial field distribution.
  • the aforementioned pair of antennas with high isolation features can be arranged in series or in parallel or relative to each other to achieve a high isolation effect.
  • compositions of strongly coupled antenna pairs other than high isolation effects are also shown in Table 1.
  • the two antennas in the antenna pair with high isolation effect can separately excite the orthogonal currents on the floor during the working process, so high isolation can be obtained by connecting in series or in parallel or by setting them in opposite positions. Effect.
  • the two antennas in a strongly coupled antenna pair can excite parallel or nearly parallel currents on the floor during operation, so the high isolation characteristics of the strongly coupled antenna pair can be achieved through the orthogonal setting in position.
  • the relationship of strong coupling can be that when two radiation systems (such as two antennas) work at the same time, there will be significant mutual influence, such as positive superposition or negative superposition. For example, when two antennas work at the same time, the directions of the respectively excited floor currents are the same or nearly the same, which corresponds to a strong coupling relationship.
  • antenna combinations with strong coupling characteristics can include:
  • the current loop antenna is combined with any of the following antennas: current loop antenna, DM line antenna, CM slot antenna.
  • An antenna combination composed of a magnetic current loop antenna and any of the following antennas: magnetic current loop antenna, CM line antenna, and DM slot antenna.
  • the two antennas included in the antenna pair are distributed in series.
  • the antenna A1 and the antenna A2 may be respectively located on the same side of the electronic device.
  • the antennas A1 and A2 distributed in series may be located at different positions on the same side. That is to say, the projections of the antenna A1 and the antenna A2 in the direction perpendicular to the center of the electronic device do not overlap each other.
  • the antenna A1 and the antenna A2 can be distributed on the top edge of the electronic device, and at the same time, the antenna A1 and the antenna A2 are arranged on the same approximate straight line, similar to being strung together on the straight line one after the other, so the antenna A1 and the antenna A2
  • the similar distribution of antenna A2 is called series distribution in the present invention.
  • the antenna A1 and the antenna A2 are located at different positions on the X-axis on the top side.
  • the antenna A1 and the antenna A2 distributed in series may also be located together on a side of the electronic device. In this way, the antenna A1 and the antenna A2 are located at different positions on the Y-axis on the side.
  • the antenna A1 and the antenna A2 distributed in series may also be located together on the bottom side of the electronic device. In this way, the antenna A1 and the antenna A2 are located at different positions on the X-axis on the bottom side.
  • FIG. 12 it is a parallel distribution of two antennas (such as antenna B1 and antenna B2 ) included in the antenna pair.
  • Antenna B1 and antenna B2 may be respectively located on the same side of the electronic device, such as the top side, and at the same time, the projections of antenna B1 and antenna B2 on the same side, such as the top side, partially or completely overlap, so the antenna B1 and the antenna
  • the distribution of B2 is called parallel distribution in the present invention. Referring to FIG. 12 , the antenna B1 and the antenna B2 can be distributed in parallel on the top edge of the electronic device.
  • the projections of the antenna B1 and the antenna B2 in the direction perpendicular to the center of the electronic device may partially or completely overlap.
  • the antenna B1 and the antenna B2 that are distributed in parallel may also be located together on a side of the electronic device.
  • the projections of the antenna B1 and the antenna B2 in the direction perpendicular to the center of the electronic device may partially or completely overlap.
  • the parallel distributed antennas B1 and B2 may also be located on the bottom side of the electronic device.
  • the projections of the antenna B1 and the antenna B2 in the direction perpendicular to the center of the electronic device may partially or completely overlap.
  • FIG. 13A it is the relative distribution of the two antennas (such as antenna C1 and antenna C2 ) included in the antenna pair.
  • the antenna C1 and the antenna C2 are respectively located on two opposite sides of the electronic device, and the distribution of the antenna C1 and the antenna C2 is called relative distribution in the present invention.
  • the projections of the antenna C1 and the antenna C2 on any one of the two opposite sides are at least partially coincident, and a preferred embodiment is that the projections of the antenna C1 and the antenna C2 The projections on any one of the sides are completely coincident, that is to say, the antenna C1 and the antenna C2 are completely oppositely arranged on two opposite sides of the electronic device.
  • FIG. 13A it is the relative distribution of the two antennas included in the antenna pair.
  • the antenna C1 and the antenna C2 are respectively located on two opposite sides of the electronic device, and the distribution of the antenna C1 and the antenna C2 is called relative distribution in the present invention.
  • the antenna C1 and the antenna C2 may be relatively distributed on the left side and the right side of the electronic device. Projections along the X-axis direction of the antenna C1 and the antenna C2 may at least partially overlap. In other examples, the relatively distributed antennas C1 and C2 may also be located on the top or bottom of the electronic device, respectively. Projections along the Y-axis direction of the antenna C1 and the antenna C2 may at least partially overlap.
  • the antenna D1 and the antenna D2 are respectively located on two adjacent sides of the electronic device, and the distribution of the antenna D1 and the antenna D2 is called an orthogonal distribution in the present invention.
  • the antenna D1 may be located on the top of the electronic device, and the corresponding antenna D2 may be located on the side of the electronic device.
  • the antenna D1 may be located on the side of the electronic device, and the corresponding antenna D2 may be located on the top or bottom of the electronic device.
  • the antenna D1 may be located at the bottom of the electronic device, and the corresponding antenna D2 may be located at the side of the electronic device.
  • the current loop antenna and the magnetic current loop antenna or the CM line antenna or the DM slot antenna; the magnetic current loop antenna and the current loop antenna or the DM line antenna or CM slot antennas can obtain high isolation characteristics through parallel distribution.
  • current loop antennas and current loop antennas or CM slot antennas or DM wire antennas; magnetic current loop antennas and magnetic current loop antennas or DM slot antennas or CM wire antennas can obtain high isolation characteristics in the form of orthogonal distribution.
  • the acquisition of the high isolation characteristic of a high isolation antenna pair including two antennas is taken as an example for illustration.
  • the embodiment of the present application also provides acquisition of high isolation characteristics of a high isolation antenna group including three or more antennas and its working mechanism. The specific implementation will be detailed sequentially in the subsequent description.
  • FIG. 13C shows schematic diagrams of several different CM antennas and DM antennas.
  • CM antennas/DM antennas can be divided into wire antennas (Wire) and slot antennas (Slot).
  • the CM wire antenna may include a radiator BCM1 and a radiator BCM2 , and feeding ports may be provided at opposite ends of BMC1 and BMC2 .
  • a port a1 may be disposed on the right end of the radiator of BMC1, and a port a2 may be disposed on the left end of BCM2.
  • the ends of the BCM1 and the BCM2 away from the ports a1 and a2 are suspended respectively.
  • a symmetrical feed signal (that is, a signal with equal amplitude and same phase) can be fed into the port a1 and port a2 to realize the feed to the CM line antenna.
  • a CM line antenna that is, a signal with equal amplitude and same phase
  • the BCM1 and BCM2 can also be connected, and a feed point can be set at the connection between BCM1 and BCM2, so as to realize a radiation function similar to the structure shown in (a) in FIG. 13C .
  • the CM slot antenna may include two radiators, such as BCM3 and BCM4.
  • BCM3 and BCM4 have one end opposite to each other, and ports can be set at the opposite ends, for example, port b1 is set at the end of BCM3 close to BCM4, and port b2 is set at the end of BCM4 close to BCM3.
  • an antisymmetric feed signal ie, a signal with equal amplitude and opposite phase
  • the end of BCM4 away from BCM3 is grounded, and correspondingly, the end of BCM3 away from BCM4 is grounded.
  • (b) in FIG. 13C is only an example of a CM slot antenna, and the structural composition of the CM slot antenna may also be different in other implementations.
  • the opposite ends of BCM3 and BCM4 are respectively connected to the positive pole and the negative pole of the feed point, so as to realize the feed-in of the anti-symmetrical feed signal.
  • the DM line antenna may include two radiators BDM1 and BDM2.
  • the end of BDM1 away from BDM2 is floating.
  • the end of BDM2 away from BDM1 is suspended.
  • ports can be respectively provided at the ends of BDM1 and BDM2 that are close to each other.
  • port c1 may be set at the end of BDM1 close to BDM2
  • port c2 may be set at the end of BDM2 close to BDM1.
  • antisymmetric feed signals can be fed into port c1 and port c2 respectively.
  • (c) in FIG. 13C is only an example of a DM wire antenna, and the structural composition of the DM wire antenna may also be different in other implementations.
  • anti-symmetric feed signals to BDM1 and BDM2 can be realized by connecting the opposite ends of BDM1 and BDM2 to the positive pole and negative pole of the feed point respectively.
  • the DM slot antenna may include two radiators, such as BDM3 and BDM4.
  • One end of BDM3 and BDM4 is arranged opposite to each other, and the ends of the two radiators far away from each other are grounded respectively.
  • One end of the opposing arrangement may be respectively provided with ports.
  • a port d1 may be set at the end of the BDM3 close to the BDM4
  • a port d2 may be set at the end of the BDM4 close to the BDM3.
  • 13C is only an example of a DM slot antenna, and the structural composition of the DM slot antenna may also be different in other implementations.
  • BDM3 and BDM4 can be connected to each other, and a feed point can be set at the connection position, through which the DM slot antenna can be fed symmetrically.
  • the generation of its high isolation characteristics is mostly based on the orthogonality of the current excited by the floor.
  • a pair of high-isolation antennas is taken as an example.
  • One of the antennas (such as antenna 1) can excite the transverse current on the floor, and the other antenna (such as antenna 2) can excite the longitudinal current on the floor. Since the transverse and longitudinal currents on the floor are orthogonal, the corresponding spatial field distribution also has orthogonal characteristics. Then, when antenna 1 and antenna 2 work at the same time, even if part or all of the frequency bands overlap, since the orthogonal space electromagnetic field generated by the exciting floor radiates, the mutual interference is small, so the isolation can be effectively guaranteed.
  • the currents excited by the antenna 1 and the antenna 2 may not be horizontal or vertical.
  • the current excited by antenna 1 can point to the lower right, and the current excited by antenna 2 can point to the lower left.
  • the two currents can also have an orthogonal relationship, which can also make the two antennas have high isolation. characteristics.
  • At least two antennas can be included to form a distributed antenna structure, and the distributed antenna structure can separately excite the orthogonal current on the floor with at least one other antenna, and its effect is similar to that shown in Figure 14.
  • the current distribution shown is obtained to obtain an orthogonal spatial field structure, thereby achieving high isolation.
  • the solution provided by the embodiment of the present application can not only provide better isolation, but also provide better radiation performance for the antenna pair based on the excellent radiation performance of the current loop antenna and/or the magnetic current loop antenna.
  • the antenna when the antenna is working, it can radiate more effectively by exciting the floor.
  • floor radiation can be stimulated more effectively when the antenna position matches the floor eigenmodes.
  • antennas can be classified into electric field type antennas and magnetic field type antennas according to their radiation characteristics.
  • the current loop antenna is a magnetic field type antenna, which corresponds to the current distribution characteristics of the eigenmodes of the matching floor. It should be understood that when the magnetic field antenna is placed at a point where the current distribution of the eigenmode of the floor is larger, the floor current can be better stimulated, and a stronger current is excited on the floor, and a stronger current can generate a stronger The magnetic field, so that the radiation of the floor can provide better help for the radiation of the antenna. That is to say, better radiation of the floor can be used as a part of antenna radiation, so that the antenna can obtain better radiation performance.
  • the magnetic current loop antenna is an electric field antenna, corresponding to the electric field distribution characteristics of the eigenmodes of the matching floor. That is, in the corresponding frequency band, setting the magnetic current loop antenna at the high electric field distribution position of the eigenmode of the floor can more effectively stimulate the floor to radiate, thereby obtaining better radiation performance of the magnetic current loop antenna.
  • FIG. 15 shows the current distribution of floor eigenmodes at low frequency (such as 0.85GHz), medium frequency (such as 1.97GHz), and high frequency (such as 2.32GHz).
  • the current distribution corresponding to the eigenmode of the floor is different at different frequencies.
  • the stronger current at 0.85GHz is distributed across the x-direction of the floor.
  • the strong current distribution at 1.97 GHz converges in the positive direction and the reverse direction of the y direction, forming four strong current distribution regions as shown in Figure 15 .
  • the stronger current distribution at 2.32 GHz further converges toward the positive and negative directions of the y-axis, forming two stronger current regions at the top and bottom of the floor as shown in Figure 15 .
  • a magnetic field antenna such as a current loop antenna, it can be installed in an area where the floor current is strong at the corresponding frequency, so that the antenna can better excite the floor when it is working, thereby obtaining better radiation performance.
  • Fig. 16 shows the electric field distribution of floor eigenmodes at low frequency (such as 0.85GHz), medium frequency (such as 1.97GHz), and high frequency (such as 2.32GHz). It can be seen that at different frequencies, the electric field distribution corresponding to the eigenmodes of the floor is also different. For example, the stronger electric field at 0.85 GHz is distributed at both ends of the floor in the y direction. The stronger electric field at 1.97GHz is distributed at both ends of the floor in the y direction and in the middle area of the floor in the y direction. The stronger electric field distribution at 2.32GHz tends to the edge, and is distributed in four edge regions as shown in Figure 16.
  • the electric field antenna such as the magnetic current loop antenna, it can be installed in the area where the electric field of the floor is strong at the corresponding frequency, so that the antenna can better excite the floor when the antenna is working, so as to obtain better radiation performance.
  • the arrangement scheme of the high-isolation antenna pair provided by the embodiment of the present application will be illustrated by combining the eigenmode matching characteristics corresponding to different antennas.
  • FIG. 17A shows an example of an antenna pair distributed in series with a certain degree of isolation provided by the embodiment of the present application.
  • the antenna pair may include antenna A1 and antenna A2.
  • the antenna A1 and the antenna A2 may include at least one current loop antenna and/or magnetic current loop antenna.
  • the magnetic current loop antenna M11 and/or may be a coupling-feed magnetic current loop monopole antenna as shown in FIG. 10 .
  • the magnetic current loop antenna M11 may include a radiator B11, one end of the radiator B11 may be provided with a feeding point, and the other end of the radiator B11 may be grounded through an inductor L M1 .
  • the magnetic current loop antenna M12 may include a radiator B12, one end of the radiator B12 may be provided with a feed point, and the other end of the radiator B12 may be grounded through an inductor L M2 .
  • the magnetic current loop antenna M11 and the magnetic current loop antenna M12 can be set as left and right mirror images.
  • the feeding point of the magnetic current loop antenna M11 and the feeding point of the magnetic current loop antenna M12 can be respectively arranged on the two antennas. ends close to each other. In this way, the orthogonality of the floor current can be better stimulated, and better isolation can be obtained.
  • the magnetic current loop antenna as an electric field antenna, can be installed on the upper left corner or upper right of an electronic device (such as a mobile phone) when it works at a medium and high frequency angle, thereby encouraging the floor to perform better radiation, so that the magnetic current loop antenna M11 can have better radiation performance.
  • the current direction shown in (a) in Figure 17B can be excited on the floor. It can be seen that the current direction is close to the vertical downward in the floor area close to the antenna , so the magnetic current loop antenna forms a high isolation effect with the current loop antenna or DM wire antenna or CM slot antenna that can excite transverse current. However, at a position gradually away from the side where the antenna is located, the component of the current in the horizontal direction gradually increases. Therefore, two magnetic current loop antennas distributed in series can also have better isolation.
  • magnetic current loop antennas can be installed at the left and right ends of the top edge of the electronic device respectively, and the floor current flow directions excited by them can be current flow direction 1 and current flow direction 2 respectively, as can be seen , at the position close to the side where the antennas are located, the longitudinal components of the current excited by the two antennas are more, and at the position gradually farther away from the side where the antennas are located (area 1 as shown in Figure 17B), with the gradual increase of the transverse component, the two The included angles of the flow directions of the partial currents generated by the two antennas are gradually approaching 90°, therefore, the spatial field distribution corresponding to this part of the current excitation in this region has a nearly orthogonal characteristic. Therefore, in the direction corresponding to the spatial field distribution, the two antennas can obtain relatively good isolation.
  • the magnetic current loop antenna is set near the end of one side of the electronic device as an example for description. Since the position of the magnetic current loop antenna is not located in the center of the side, the antenna is in an unbalanced state relative to the reference ground, and the current generated by it will also have both horizontal and vertical components. Relatively speaking, when the magnetic current loop antenna is set at the center of the side, the longitudinal component of the floor current excited by the magnetic current loop antenna will be much larger than the horizontal component, thus enabling the magnetic current loop antenna to excite a relatively single The effect of the longitudinal current.
  • the direction of the excited floor current relatively simple.
  • the excited floor current will include both lateral current and longitudinal current.
  • the excited current includes both a transverse component and a longitudinal component.
  • the antenna A1 that is, the magnetic current loop antenna M11
  • the antenna A2 that is, the magnetic current loop antenna M12
  • it can excite the current on the floor of the mobile phone to the lower right.
  • the floor current excited by the antenna A1 can generate a spatial field distribution downward to the right.
  • the floor current excited by the antenna A2 to the lower right can generate a spatial field distribution to the lower left. That is to say, the two antennas can respectively transmit signals through orthogonal spatial field distributions during the excitation process. Due to the orthogonal relationship of spatial field distribution, the two antennas can have better isolation.
  • the antenna pair distributed in series provided by the embodiment of the present application can provide better radiation performance because a current loop antenna and/or a magnetic current loop antenna is used.
  • FIG. 21 it shows the efficiency comparison of the two antennas in the current scenario.
  • both antenna A1 and antenna A2 exceed -5dB after 1.5 GHz, and the radiation performance of the two antennas is equivalent due to the mirror image setting, and the radiation efficiency curves basically coincide .
  • the peak efficiency of both antenna A1 and antenna A2 exceeds -6dB, and the bandwidth can effectively cover at least one working frequency band.
  • the antenna pair includes two magnetic current loop antennas as an example.
  • the current loop antenna and/or the magnetic current loop antenna can be coupled feed or direct feed.
  • the pair of antennas distributed in series may also include other antennas capable of exciting floor transverse currents and antennas capable of exciting floor longitudinal currents.
  • the antenna pair distributed in series may include a current loop antenna and any one of a CM line antenna or a DM slot antenna.
  • the current loop antenna can excite the current on the floor parallel to the side where the current loop antenna is located, and correspondingly, the CM line antenna or the DM slot antenna can excite the current on the floor perpendicular to (or nearly perpendicular to) the side where the current loop antenna is located. This results in high isolation characteristics.
  • the pair of antennas distributed in series may include a magnetic current loop antenna, and any one of a DM line antenna or a CM slot antenna.
  • the magnetic current loop antenna can excite the current on the floor that is perpendicular (or close to vertical) to the side where the magnetic current loop antenna is located. (or nearly parallel) currents. This results in high isolation characteristics.
  • a direct-fed current loop antenna and a magnetic current loop antenna distributed in series can be arranged in the electronic device, and a current loop antenna and a magnetic current loop antenna can be provided.
  • the floor currents separately excited by the flow loop antennas can also be partially orthogonal, thereby obtaining better isolation.
  • a direct-fed current loop antenna and a monopole antenna distributed in series may be provided in an electronic device.
  • the high-isolation antenna may consist of three or more antennas.
  • three antennas are taken as an example.
  • Two of the three antennas can be equivalently regarded as a distributed antenna structure.
  • the distributed antenna structure and other antennas can be distributed in series to obtain a high isolation effect by exciting the orthogonal current of the floor.
  • an antenna group with high isolation characteristics composed of three or more antennas may be referred to as a high isolation antenna group.
  • FIG. 22B shows several examples of high-isolation antenna groups composed of three antennas.
  • the three antennas of the high-isolation antenna group in this example may include two magnetic current loop antennas: magnetic current loop antenna M13, magnetic current loop antenna M14, and a current loop antenna E12 .
  • the magnetic current loop antenna M13 and the magnetic current loop antenna M14 are arranged on the same side of the electronic device, and may be on any side of the electronic device.
  • the current loop antenna E12 may be provided between the magnetic current loop antenna M13 and the magnetic current loop antenna M14.
  • the two magnetic current loop antennas can adopt the form of symmetrical feeding (equal amplitude and same phase) to form a single-port segmented antenna structure 1 . That is to say, the feed signals fed into the magnetic current loop antenna M13 and the magnetic current loop antenna M14 are equal in amplitude and in phase. In this way, when the two magnetic current loop antennas are working, they form a distributed antenna structure 1.
  • the floor current generated by the two magnetic current loops as shown in FIG. 18, One is toward the lower left, and the other is toward the lower right.
  • the floor current generated by the excitation of the current loop antenna E12 is mainly a transverse current, as shown in Figure 5. Therefore, the floor current generated by the distributed antenna structure 1 and the floor current generated by the current loop antenna E12 have good orthogonality characteristics. Therefore, the distributed antenna structure 1 and the current loop antenna E12 form an antenna pair with high isolation.
  • FIG. 22C there is shown an example of a pattern with a high isolation antenna group composed as shown in (a) of FIG. 22B .
  • FIG. 22D shows a diagram of port isolation with a high-isolation antenna group composed as shown in (a) in FIG. 22B .
  • the distributed antenna structure 1 may correspond to one of the dual ports
  • the current loop antenna E12 may correspond to the other of the dual ports.
  • the isolation is very good, and the peak is also below -120dB. Therefore, the high isolation characteristic of the high isolation antenna group composed as shown in (a) of FIG. 22B is fully proved.
  • the antennas that make up the high-isolation antenna group are magnetic current loop antennas and current loop antennas, combined with the foregoing description of the current loop antennas and magnetic current loop antennas, the high-isolation antenna group also has better radiation characteristics. For specific details, refer to the foregoing examples, and details are not repeated here.
  • the three antennas of the high-isolation antenna group in this example may include two current loop antennas: a current loop antenna E13 , a current loop antenna E14 , and a magnetic current loop antenna M15 .
  • the current loop antenna E13 and the current loop antenna E14 are arranged on the same side of the electronic device, and may be on any side of the electronic device.
  • This magnetic current loop antenna M15 is provided between the current loop antenna E13 and the current loop antenna E14.
  • two current loop antennas when feeding, two current loop antennas (such as current loop antenna E13 and current loop antenna E14) can adopt symmetrical feeding (equal amplitude and same phase) to form a single-port
  • the distributed antenna structure 2 that is, the feed signals fed into the current loop antenna E13 and the current loop antenna E14 can be equal in amplitude and in phase.
  • the two current loop antennas when they are working, they can form a distributed antenna structure 2, and the distributed antenna structure 2 can form a highly isolated antenna pair effect with the magnetic current loop antenna M15, because the two current loop antennas constitute The horizontal floor current generated by the excitation of the distributed antenna structure 2 and the longitudinal floor current generated by the excitation of the magnetic current loop antenna M15 have better orthogonal characteristics.
  • the high isolation antenna group with the composition shown in (b) in Figure 22B can also have better high isolation and better radiation properties.
  • the high-isolation antenna group may further include antennas of the same type, and the antennas of the same type may be divided into two groups according to feeding differences.
  • the high-isolation antenna group includes three current loop antennas as an example.
  • the three current loop antennas can be distributed in series on one side of the electronic device.
  • the current loop antennas on both sides can form a distributed antenna pair 3 .
  • the current loop antenna E15 and the current loop antenna E17 adopt anti-symmetric feeding (equal amplitude and anti-phase), forming a single-port distributed antenna structure 3 .
  • This formed single-port structure 3 forms a dual-port antenna structure with the current loop antenna E16 located in the middle.
  • a feed signal (such as obtained through an inverter) that is equal to and out of phase with f1 can be fed into the current loop antenna E17, thereby realizing the control of the current loop antenna E15.
  • the distributed antenna pair 3 and the current loop antenna E16 can separately excite the orthogonal currents on the floor, thereby obtaining high isolation characteristics.
  • FIG. 22F shows a schematic diagram of a high-isolation antenna group composed as shown in (a) in FIG. 22E .
  • the current loop antenna E16 located in the middle can form a lateral spatial field distribution under the excitation of f1
  • the corresponding distributed antenna pair 3 composed of the current loop antenna E15 and the current loop antenna E17 located at both ends can form a horizontal field distribution at f2
  • the vertical spatial field distribution is formed under the antisymmetric excitation. In this way, two orthogonal spatial field distributions can be obtained, and thus high isolation characteristics can be obtained.
  • the high-isolation antenna group includes three magnetic current loop antennas ((b) in FIG. 22E ).
  • the magnetic current loop antenna (such as the magnetic current loop antenna M16 and the magnetic current loop antenna M18) adopts anti-symmetrical feeding (equal amplitude and anti-phase), forming a single-port distributed antenna structure 4 .
  • the formed distributed antenna structure 4 and the magnetic current loop antenna M17 in the middle form a dual-port antenna structure.
  • the feed signal (such as obtained by an inverter) with equal amplitude and anti-phase with f3 can be fed into the magnetic current loop antenna M18, thereby realizing the Anti-symmetric feeding of magnetic current loop antenna M16 and magnetic current loop antenna M18.
  • the transverse floor current distribution generated by the excitation of the distributed antenna pair 4 and the vertical floor current generated by the excitation of the magnetic current loop antenna M17 form an orthogonal current, thereby obtaining high isolation characteristics.
  • composition of the high-isolation antenna group shown in Fig. 22B-Fig. 22E above can be any composition different from the current loop antenna or magnetic current loop antenna shown in the previous example, which
  • the feeding method may also be in the form of direct feeding as in the above example, or in the form of coupled feeding.
  • the effect it can achieve is similar to the effect shown in the above description, and will not be repeated here.
  • At least one current loop antenna and/or magnetic current loop antenna can be arranged in the antenna pair, thus while obtaining better radiation performance, Obtain better isolation, thereby reducing the mutual influence between antennas in the antenna pair, and improving the overall radiation performance.
  • the antenna pair includes two antennas (such as antenna B1 and antenna B2), the antenna B1 is the magnetic current loop antenna M21, and the antenna B2 is the current loop antenna E21.
  • the magnetic current loop antenna M21 may be a coupled-feed magnetic current loop antenna
  • the current loop antenna E21 may be a coupled-feed current loop antenna as an example.
  • the antenna B1 may be a magnetic current loop antenna as shown in FIG. 23A .
  • the magnetic current loop antenna M21 may have a structure as shown in FIG. 10 .
  • the antenna may include a radiation branch B11, and two ends of the B11 may be respectively provided with inductance grounds.
  • the two ends of B11 can be respectively provided with inductors L CM1 and L CM2 to be grounded.
  • the magnetic current loop antenna M21 may also include a feeding branch CB11 between the radiation branch and the reference ground when feeding through coupling. It should be noted that, in some other embodiments, the magnetic current loop antenna M21 may also have other structures, for details, refer to the relevant description about the magnetic current loop antenna above, which will not be repeated here.
  • the antenna B2 may be a current loop antenna E21 as shown in FIG. 23A.
  • the current loop antenna E21 may have a structure as shown in FIG. 7 .
  • the antenna may include a radiation branch B12, and two ends of the B12 may be respectively provided with capacitors and grounded.
  • capacitors C CM1 and C CM2 can be respectively set at both ends of B12 to be grounded.
  • the current loop antenna E21 may also include feeding branches CB12 and CB13 between the radiation branch and the reference ground.
  • the current loop antenna E21 may also have other structures, for details, refer to the relevant description about the current loop antenna above, which will not be repeated here.
  • FIG. 23B shows a model view of antenna pairs distributed in parallel with the topology shown in FIG. 23A.
  • the current loop antenna E21 can be arranged on the top of the electronic device.
  • the radiator of the current loop antenna E21 may be located on the zox plane.
  • the magnetic current loop antenna M21 may also be disposed on the top of the electronic device, and the radiator of the magnetic current loop antenna M21 may be disposed parallel to the xoy plane of the electronic device. That is to say, in the case of the parallel distribution, the planes where the radiators of the two antennas are located have an orthogonal relationship. It should be understood that, for other antenna pairs distributed in parallel, it can also be realized in corresponding products by respectively arranging radiators on two orthogonal planes.
  • the antenna pair with parallel distribution also has a high degree of isolation.
  • the antenna B1 can excite the longitudinal current on the floor
  • the antenna B2 can excite the transverse current on the floor.
  • the floor current simulation shown in Figure 24 it can be verified.
  • the floor current excited by the antenna B1 is a longitudinal current along the Y axis.
  • the floor current excited by the antenna B2 is a rightward transverse current along the X-axis. That is to say, the floor currents excited by the antenna B1 and the antenna B2 are orthogonal, so the antenna B1 and the antenna B2 provided in this example have a good degree of isolation.
  • the orthogonality of the working state of the excited floor during the working process of the antenna B1 and the antenna B2 can be proved.
  • the antenna pair composed of the antenna B1 and the antenna B2 distributed in parallel can have better isolation due to the orthogonality characteristic of the exciting floor.
  • the antenna pair formed by the antenna B1 and the antenna B2 may include a current loop antenna and a magnetic current loop antenna.
  • the antenna pair Due to the better radiation characteristics of the current loop antenna and the magnetic current loop antenna, even in a parallel distribution scenario, the antenna pair can provide better radiation performance.
  • FIG. 26 it is a simulation diagram of S parameters. It can be seen that the deepest point of S11 of antenna B1 and antenna B2 exceeds -10dB, and the corresponding worst point of isolation is about -42dB, which can meet the isolation requirements of different antennas in electronic equipment.
  • Fig. 27 shows a schematic diagram of the efficiency simulation of the parallel distributed antenna pair. As shown in (a) in Figure 27, from the perspective of radiation efficiency, the peak radiation efficiency of the current loop antenna has exceeded -1dB, and correspondingly, the radiation efficiency of the magnetic current loop antenna has also exceeded -4dB. As shown in (b) in Figure 27, from the perspective of system efficiency, the peak system efficiency of the current loop antenna exceeds -1dB, and correspondingly, the system efficiency of the magnetic current loop antenna also exceeds -4dB.
  • the parallel distributed antenna pair provided in this example can provide better radiation performance (such as including radiation efficiency and/or system efficiency, etc.) while having better isolation.
  • the antenna pair distributed in parallel is set at the middle position of the top of the electronic device as an example.
  • the middle position on the top can better stimulate the radiation of the current loop antenna, so in the efficiency diagrams shown in Figure 26 and Figure 27, the efficiency of the current loop antenna is relatively good, while the magnetic The efficiency of the current loop antenna is relatively poor. Therefore, this position is suitable for scenarios where the performance requirements of the current loop antenna are relatively good.
  • the excitation of each antenna in the antenna pair to the floor can be reasonably adjusted, so as to flexibly adjust the radiation performance of each antenna.
  • FIG. 28 it is taken as an example to arrange the antenna pairs distributed in parallel at the upper left corner of the electronic device. It can be understood that, at this position, the magnetic current loop antenna can better excite the floor eigenmodes, and thus can have better radiation performance.
  • Fig. 29 is a schematic diagram of the far-field pattern of each antenna when the pair of antennas arranged as shown in Fig. 28 is in operation.
  • Fig. 30 is a schematic diagram of S parameter simulation.
  • the magnetic current loop antenna M21 can be well excited at this position, and the deepest point of S11 has exceeded -20dB, which is significantly improved compared with the case where the antenna pair is set in the middle of the top.
  • the isolation of the corresponding frequency band has also deteriorated accordingly.
  • the worst point of S12 is close to -15dB.
  • the device When the device is in the corner, it will cause the floor current excited by the magnetic current loop antenna M21 to generate an oblique component, that is, generate a transverse component, thereby affecting the orthogonality and further affecting the isolation.
  • the isolation degree is close to -15dB, so this solution can be applied to electronic equipment. Due to the improved performance of the magnetic current loop antenna M21, it can provide Better radiation performance.
  • the radiation performance of the magnetic current loop antenna M21 can be significantly improved, while ensuring that the radiation performance of the current loop antenna E21 is not greatly affected.
  • the antenna pair including the coupled-feed current loop antenna and the coupled-feed magnetic current loop antenna is taken as an example for illustration.
  • the antenna pair may further include a direct-fed current loop antenna and/or a direct-fed magnetic current loop antenna.
  • the antenna pair may also include other existing antennas.
  • FIG. 32 shows a schematic diagram of antenna pairs distributed in parallel.
  • the antenna pair may include a coupled-feed current loop antenna E21 (such as antenna B2 ) as shown in FIG. 7 , and a CM line antenna (such as antenna B1 ).
  • the antenna B1 and the antenna B2 may be distributed in parallel on the top edge of the electronic device. That is, the antenna B1 and the antenna B2 include at least a partial overlap or a complete overlap in the Y-axis direction projection.
  • the antenna B1 i.e. the CM line antenna
  • the antenna B2 i.e. the current loop antenna E21
  • Figure 34 shows a schematic representation of the far-field pattern of each antenna in this example.
  • the antenna pair composed of the current loop antenna E21 and the existing antenna (such as the CM line antenna) in parallel distribution as shown in Figure 32 can provide better isolation while having better isolation. radiation performance.
  • antenna B1 may be a current loop antenna E21.
  • the current loop antenna E21 may have a composition as shown in FIG. 7 .
  • the antenna B2 can be a DM slot antenna.
  • the antenna B2 ie, the DM slot antenna
  • the antenna B1 ie, the current loop antenna E21
  • the antenna B1 and the antenna B2 can excite the orthogonal current on the floor, and the two have a high degree of isolation.
  • FIG. 38 shows the far-field pattern of each antenna in this example.
  • the antenna pair composed of the current loop antenna E21 and the existing antenna (such as the DM slot antenna) in parallel distribution as shown in Figure 37 can provide better isolation while having better isolation. radiation performance.
  • the high-isolation antenna pair formed with the existing antenna may also include a current loop antenna, and an antenna pair composed of a CM line antenna or a DM slot antenna.
  • the current loop antenna and the monopole antenna can be distributed in parallel to form a high isolation antenna pair.
  • the floor current that it can stimulate is similar to the orthogonality of the series distribution in the foregoing description, so it can also have high isolation characteristics.
  • the antenna pair composed of the magnetic current loop antenna and the DM line antenna or the CM slot antenna can also generate orthogonal floor currents in some directions through series distribution or parallel distribution, providing better isolation.
  • the antenna pair shown in Figure 41 can also be understood as a miniaturized design of the high-isolation antenna pair shown in Figure 32, such as , after flipping the left and right mirror images of the antenna pair with the structure shown in Figure 41, and splicing with the combined antenna shown in Figure 41, a high-isolation antenna pair close to that shown in Figure 32 can be obtained. That is to say, when the high-isolation antenna pair shown in Figure 32 can provide better isolation and radiation performance, its miniaturized design, that is, the antenna pair composed as shown in Figure 41 can also provide better isolation and radiation performance.
  • a high-isolation antenna pair including at least two antennas can pass the orthogonal excitation on the floor. current (or locally stimulated quadrature currents) to obtain high isolation characteristics. Similarly, high isolation characteristics can also be obtained through the relative setting of the two antennas.
  • a high-isolation antenna pair including two antennas is taken as an example.
  • the two antennas may be antenna C1 and antenna C2 as shown in FIG. 42 .
  • the antenna C1 and the antenna C2 may be arranged on two sides of the electronic device that do not intersect each other.
  • the antenna C1 and the antenna C2 can be respectively arranged on two opposite sides of the mobile phone.
  • the antenna C1 and the antenna C2 can also be respectively arranged on the top side and the bottom side of the mobile phone.
  • both the antenna C1 and the antenna C2 may be configured as magnetic current loop antennas.
  • FIG. 43 shows specific examples of several high-isolation antenna pairs that are relatively arranged in the embodiment of the present application.
  • the high-isolation antenna pair in this example may include a magnetic current loop antenna M41 and a magnetic current loop antenna M42.
  • the magnetic current loop antenna M41 and the magnetic current loop antenna M42 may be relatively disposed on two non-adjacent sides of the electronic device.
  • the magnetic current loop antenna M41 and the magnetic current loop antenna M42 can be arranged on two long sides (ie left and right) of the electronic device.
  • the magnetic current loop antenna M41 and the magnetic current loop antenna M42 may be located at different positions on the long side. For example, as shown in (a) of FIG.
  • the magnetic current loop antenna M41 and the magnetic current loop antenna M42 may be arranged in the middle of the long side and opposite to each other. Therefore, during operation, the magnetic current loop antenna M41 and the magnetic current loop antenna M42 can separately excite orthogonal currents on the floor, thereby obtaining an orthogonal spatial field distribution and further obtaining high isolation characteristics.
  • the high-isolation antenna pair in this example may include a current loop antenna E41 and a current loop antenna E42.
  • the current loop antenna E41 and the current loop antenna E42 may be relatively disposed on two non-adjacent sides of the electronic device.
  • the current loop antenna E41 and the current loop antenna E42 can be arranged on two long sides (ie, left and right) of the electronic device.
  • the current loop antenna E41 and the current loop antenna E42 may be located at different positions on the long side. For example, as shown in (b) of FIG.
  • the current loop antenna E41 and the current loop antenna E42 can be arranged in the middle of the long side and opposite to each other. Therefore, during operation, the current loop antenna E41 and the current loop antenna E42 can respectively excite local orthogonal currents on the floor, thereby obtaining an orthogonal spatial field distribution and further obtaining high isolation characteristics.
  • the high-isolation antenna pair in this example may include a current loop antenna E43 and a magnetic current loop antenna M43.
  • the current loop antenna E43 and the magnetic current loop antenna M43 may be relatively arranged on two non-adjacent sides of the electronic device.
  • the current loop antenna E43 and the magnetic current loop antenna M43 can be arranged on two long sides (ie, left and right) of the electronic device.
  • the current loop antenna E43 and the magnetic current loop antenna M43 may be located at different positions on the long side. For example, as shown in (c) of FIG.
  • the current loop antenna E43 and the magnetic current loop antenna M43 can be arranged in the middle of the long side and opposite to each other. Therefore, during operation, the current loop antenna E43 and the magnetic current loop antenna M43 can respectively excite orthogonal currents on the floor, thereby obtaining orthogonal spatial field distribution and further obtaining high isolation characteristics.
  • the power feeding in the form of direct feeding is taken as an example for illustration.
  • at least one antenna in the antenna pair with the same antenna type can also be fed through coupling in the form of feeding.
  • the antenna pair may include a coupled and fed current loop antenna E44, and a magnetic current loop antenna M44 disposed opposite to the current loop antenna E44.
  • the current loop antenna E44 may have a composition as shown in FIG. 7
  • the magnetic current loop antenna M44 may have a composition as shown in FIG. 10 .
  • the schematic diagram of the coupled feed in Figure 44 is based on (c) in Figure 43, such as in (a) in Figure 43 or in the antenna involved in (b) in Figure 43 It may also include that at least one antenna is fed through coupling feeding. No more details here.
  • FIG. 45A shows the situation of exciting the floor current when the current loop antenna E44 is working. Compared with the theoretical analysis shown in Figure 44, the results are completely consistent. It can be seen that the current loop antenna E44 is able to excite longitudinal currents in the center of the floor.
  • FIG. 45B shows the excitation of the floor current when the magnetic current loop antenna M44 is in operation. It can be seen that the magnetic current loop antenna M44 can excite the transverse current in the center of the floor. Therefore, at the center of the floor, two orthogonal currents can be obtained respectively, so that the current loop antenna E44 and the magnetic current loop antenna M44 can excite the orthogonal currents to obtain a high isolation effect.
  • FIG. 45C The far-field pattern of the antenna group having the structure shown in Fig. 44 is shown in Fig. 45C.
  • Figure 46 shows the results of the S-parameter simulation. It can be seen that the two-port isolation of the two antennas has reached below -160dB, so the isolation meets the high isolation requirement. In addition, S11 shows that the deepest points of the two antennas are also close to or reach -20dB, and the bandwidth is sufficient to cover at least one working frequency band. Therefore, the structure as shown in FIG. 44 can provide better radiation performance while providing high isolation.
  • providing antenna pairs composed of the same type of antennas can also provide better isolation.
  • the reason is that the distance between the two antennas is relatively long compared to the distribution in series or parallel, so better isolation can be obtained due to the long distance.
  • the isolation in both examples is about -20dB.
  • the current loop antenna and the magnetic current loop antenna can also have different structures from the above examples, and the feeding form can also be different Coupling feed for direct feed.
  • the effects that can be achieved are similar and will not be repeated here.
  • a high-isolation antenna pair including at least two antennas with orthogonal characteristics may be set on the electronic device to form a high isolation.
  • the position of the orthogonal characteristic may be: the two antennas are respectively arranged on two adjacent sides of the electronic device.
  • the electronic device as a mobile phone as an example, one antenna may be disposed on a short side of the mobile phone, and the other antenna may be disposed on any long side adjacent to the short side of the mobile phone.
  • the orthogonally distributed high-isolation antenna pair may include any of the following combinations:
  • One antenna is a current loop antenna, and the other antenna is a current loop antenna, a DM line antenna, and a CM slot antenna.
  • one antenna is a magnetic current loop antenna, and the other antenna is a magnetic current loop antenna, a CM line antenna, or a DM slot antenna.
  • the two antennas can separately excite orthogonal currents on the floor, thereby obtaining orthogonal spatial field distribution, and further obtaining high isolation characteristics.
  • the current loop antenna/magnetic current loop antenna adopted by the high-isolation antenna pair better radiation characteristics can be provided at the same time.
  • the high-isolation antenna pair may include two current loop antennas.
  • the two current loop antennas are the current loop antenna E31 and the current loop antenna E32 respectively.
  • the current loop antenna E31 and the current loop antenna E32 may be current loop monopole antennas.
  • the current loop antenna E21 and/or the current loop antenna E32 may also be other forms of current loop antennas.
  • the feeding form of the current loop antenna may also be different, such as direct feeding or coupled feeding.
  • the current loop antenna E31 and the current loop antenna E32 may be respectively located on two adjacent sides of the electronic device (such as a mobile phone).
  • the current loop antenna E31 is arranged on the top short side of the mobile phone
  • the current loop antenna E32 is arranged on the left long side of the mobile phone.
  • the current loop antenna E32 can be arranged on both sides of the left long side, such as the top or bottom of the left long side.
  • the current loop antenna E31 can excite the transverse current on the short side of the floor, and correspondingly, the current loop antenna E32 can excite the longitudinal current on the long side of the floor .
  • the effect of exciting the floor orthogonal current is achieved, thereby obtaining the orthogonal spatial field distribution in the far field, and further obtaining the effect of high isolation.
  • the magnetic current loop antenna is used as a direct-fed magnetic current loop monopole antenna as an example for illustration.
  • the magnetic current loop antenna M31 and/or the magnetic current loop antenna M32 can also be any other magnetic current loop antenna mentioned in the above description, and its feeding form is not limited to direct Feed can also be realized through coupling feed.
  • the current loop antenna E32/magnetic current loop antenna M32 is set on the top of the left long side as an example. It can be understood that when the high-isolation antenna pair works near the intermediate frequency (2GHz), the corresponding large current points on the floor are located on both sides of the side, and the floor current at the center of the side is relatively small. Therefore, the current of the magnetic field antenna As far as the loop antenna is concerned, better performance can be obtained when the current loop antenna E32 is arranged on both sides of the long side.
  • the current loop antenna E32 can also be arranged at the bottom of the long side of the electronic device, which can also excite the longitudinal current of the long side, so as to obtain a high isolation effect from the current loop antenna E31.
  • the current loop antenna E32 can also be set at the high current position corresponding to the long side on the right side of the mobile phone, so that while obtaining better radiation performance, it can also obtain a high isolation effect from the current loop antenna E31.
  • a pair of high-isolation antennas having an orthogonal distribution as shown in (b) in FIG. 47 produces a spatial field distribution close to an orthogonal state.
  • the magnetic current loop antenna M31 can excite the longitudinal current on the floor.
  • the magnetic current loop antenna M32 can excite the transverse current on the floor.
  • the magnetic current loop antenna M32 is not arranged in the middle of the side of the electronic device, so the excited floor transverse current is not absolutely parallel to the horizontal direction.
  • the angle between the space fields generated by the two antennas is close to 90 degrees, a high isolation effect can also be produced.
  • the antennas arranged on the side are located at both ends (such as the top or bottom of the side of the mobile phone) as an example. In other embodiments of the present application, the antennas on the side It can also be set at the center of the side.
  • the current loop antenna E32 arranged on the side can be arranged at the center of the side (or close to the center).
  • the magnetic current loop antenna M32 arranged on the side can be arranged at the center position of the side (or near the center).
  • FIG. 51 shows a schematic simulation of the pattern of the high-isolation antenna pair composed of two magnetic current loop antennas with the above-mentioned orthogonal distribution as shown in (b) of FIG. 50 .
  • the magnetic current loop antenna M31 arranged at the center of the top can still generate a lateral spatial field distribution.
  • the magnetic current loop antenna M32 arranged in the middle of the side can respectively excite the spatial field distribution close to the longitudinal direction in the upper area and the lower area of the electronic device, thereby enabling the magnetic current loop antenna M31 and the magnetic current loop antenna M32 to be able to Excite orthogonal spatial field distributions for high isolation characteristics.
  • the high-isolation antenna pair with the composition shown in (b) in FIG. Good radiation performance since the magnetic current loop antenna M31 and the magnetic current loop antenna M32 themselves have better radiation characteristics, the high-isolation antenna pair with the composition shown in (b) in FIG. Good radiation performance.
  • FIG. 52 a schematic diagram of the S-parameter simulation of the above-mentioned orthogonally distributed high-isolation antenna pair composed of two magnetic current loop antennas as shown in (b) of FIG. 50 is shown. It can be seen that after the magnetic current loop antenna M32 is moved to the side center position, the S11 has been significantly improved, and the deepest point has exceeded -20dB. In addition, due to the enhanced orthogonality of the pattern, the two-port isolation is also improved, and the worst point reaches about -20dB.
  • the above-mentioned high-isolation antenna pair as shown in (a) in FIG. 50 can also obtain similar high isolation characteristics and better radiation performance.
  • the position of the side current loop antenna/magnetic current loop antenna can be flexibly set according to the requirements of the specific environment, so as to obtain high isolation characteristics.
  • the orthogonally distributed high-isolation antenna solution may further include more antennas.
  • a high-isolation antenna group including three or more antennas may be provided in the orthogonally distributed high-isolation antenna solution.
  • Two or more antennas may be included in the high-isolation antenna group to form a distributed antenna structure.
  • the distributed antenna structure can form a high isolation effect with other antennas in the high isolation antenna group.
  • FIG. 53A it is a schematic diagram of some orthogonally distributed high-isolation antenna groups provided by the embodiment of the present application.
  • the high-isolation antenna group in this example may include three antennas.
  • the three antennas are the current loop antenna E33 arranged in the middle of the top, the magnetic current loop antenna M33 arranged on the left long side (such as the upper end of the left side), and the magnetic current loop antenna M33 arranged on the long side of the right side (such as the upper end of the right side).
  • Magnetic current loop antenna M34 Two magnetic current loop antennas (such as magnetic current loop antenna M33 and magnetic current loop antenna M34 ) adopt symmetrical feeding (equal amplitude and same phase) to form a single-port distributed antenna structure 5 .
  • This distributed antenna structure 5 forms a two-port antenna structure with the current loop antenna E33 located in the middle.
  • the magnetic current loop antenna M33 is fed by the feeding signal f5.
  • the magnetic current loop antenna M34 can also be fed by the feeding signal f5. In this way, symmetrical feeding to the magnetic current loop antenna M33 and the magnetic current loop antenna M34 is realized.
  • the current loop antenna E33 can also be fed by the feed signal f6. Therefore, the distributed antenna structure 5 can form a high isolation effect with the current loop antenna E33.
  • the high-isolation antenna group in this example may include three antennas.
  • the three antennas are the current loop antenna E36 set in the middle of the top, the current loop antenna E34 set on the left long side (such as the upper end of the left side), and the current loop antenna set on the long side of the right side (such as the upper end of the right side).
  • Loop antenna E35 Two current loop antennas (such as current loop antenna E34 and current loop antenna E35) adopt symmetrical feeding (equal amplitude and same phase) to form a single-port distributed antenna structure6. This distributed antenna structure 6 forms a two-port antenna structure with the current loop antenna E36 located in the middle.
  • the current loop antenna E34 is fed by the feed signal f7.
  • the current loop antenna E35 can also be fed by the feed signal f7.
  • a symmetrical feeding of the current loop antenna E34 and the current loop antenna E35 is thus achieved.
  • the current loop antenna E36 can also be fed by the feed signal f8. Therefore, the distributed antenna structure 6 can form a high isolation effect with the current loop antenna E36.
  • FIG. 53B a current diagram of an antenna group having a structure as shown in (a) in FIG. 53A is shown.
  • the magnetic current loop antenna M33 can excite the current to the lower right
  • the magnetic current loop antenna M34 can excite the current to the lower left.
  • the horizontal component of the floor current excited by them has a counteracting effect because the direction is opposite. Since the vertical components are in the same direction, they can be superimposed on each other.
  • the magnetic current loop antenna M33 and the magnetic current loop antenna M34 work simultaneously, they can jointly excite the longitudinal current on the floor.
  • the longitudinal current and the transverse current excited by the current loop antenna E33 have a good orthogonality effect. This provides a high isolation effect.
  • Fig. 54 shows the distribution of the far-field pattern of the antenna scheme with the schematic structure of (a) in Fig. 53A when it is working.
  • FIG. 55 shows the S-parameter simulation diagram of the antenna scheme with the schematic structure shown in (a) in FIG. 53A when it is working. It can be seen that the deepest point S11 of the distributed antenna structure 5 composed of the current loop antenna E33, the magnetic current loop antenna M33 and the magnetic current loop antenna M34 exceeds -10dB, and its bandwidth is sufficient to cover at least one working frequency band. Correspondingly, from the perspective of isolation, the worst point of the isolation of the two antenna structures is also lower than -40dB, so they have better isolation.
  • Fig. 56 shows the far-field pattern distribution of the antenna scheme with the structural schematic diagram of (b) in Fig. 53A when it is working.
  • Fig. 57 shows the S-parameter simulation diagram of the antenna scheme with the schematic structure shown in (b) in Fig. 53A when it is working. It can be seen that the deepest point of S11 of the current loop antenna E36 and the distributed antenna structure 6 is close to -10dB, and its bandwidth is sufficient to cover at least one working frequency band. Correspondingly, from the perspective of isolation, the worst point of the isolation of the two antenna structures is also lower than -40dB, so they have better isolation.
  • the feeding mode of the high-isolation antenna group composed of multiple antennas distributed orthogonally in the above-mentioned Figure 53A- Figure 57 is symmetrical, that is to say, the multiple antennas in the high-isolation antenna group can be simultaneously In-phase feed.
  • the embodiment of the present application also provides another high-isolation antenna group composed of multiple antennas distributed orthogonally. Different antennas (distributed antenna structures) in the high-isolation antenna group can be fed antisymmetrically to obtain high isolation. characteristic.
  • FIG. 58A it is a schematic diagram of the composition of two high-isolation antenna groups provided in the embodiment of the present application.
  • the two high-isolation antenna groups can respectively obtain high isolation characteristics through anti-symmetric feeding.
  • the high-isolation antenna group may include three antennas.
  • the magnetic current loop antenna M35 is arranged at the center of the short side of the electronic device, and the magnetic current loop antenna M36 and the magnetic current loop antenna M37 are arranged at any same end (such as the top of the long side) of the long side of the electronic device.
  • the magnetic current loop antenna M36 and the magnetic current loop antenna M37 adopt anti-symmetric feeding (equal amplitude and anti-phase), forming a single-port distributed antenna structure 7 .
  • the formed single-port structure 7 and the current loop antenna M35 in the middle form a dual-port antenna structure, and the distributed structure 7 and the magnetic current loop antenna M35 can form a high isolation effect.
  • the magnetic current loop antenna M36 can be fed by the feed signal f9, and the magnetic current loop antenna M37 can also be fed by a signal (such as obtained by an inverter) with equal amplitude and anti-phase with the feed signal f9 Electricity, so as to realize the anti-symmetric feeding of the magnetic current loop antenna M36 and the magnetic current loop antenna M37.
  • the magnetic current loop antenna M35 can also be fed by the feeding signal f10.
  • the high-isolation antenna group may include three antennas.
  • the magnetic current loop antenna M38 is set at the center of the short side of the electronic device, and the current loop antenna E37 and the current loop antenna E38 are set at any same end (such as the top of the long side) of the long side of the electronic device.
  • the current loop antenna E37 and the current loop antenna E38 adopt anti-symmetrical feeding (equal amplitude and anti-phase), forming a single-port distributed antenna structure 8 .
  • the formed single-port structure 8 and the magnetic current loop antenna M38 in the middle form a dual-port antenna structure.
  • the distributed structure 8 and the magnetic current loop antenna M38 can form a high isolation effect.
  • the current loop antenna E37 can be fed by the feed signal f11, and the current loop antenna E38 can also be fed by a signal (such as obtained by an inverter) with equal amplitude and phase opposite to the feed signal f11, In this way, the anti-symmetric feeding to the current loop antenna E37 and the current loop antenna E38 is realized.
  • the magnetic current loop antenna M38 can also be fed by the feeding signal f12.
  • FIG. 58B shows a schematic diagram of current simulation with a high-isolation antenna group as shown in (a) of FIG. 58A. It can be seen that the distributed antenna structure formed by the antisymmetrically fed magnetic current loop antenna M36 and the magnetic current loop antenna M37 can obtain lateral current distribution. Correspondingly, the magnetic current loop antenna M35 arranged in the middle of the short side can excite the vertical current on the floor. This excites two orthogonal current distributions, resulting in high isolation properties.
  • FIG. 59 is a performance simulation example with a high-isolation antenna group as shown in (a) of FIG. 58A .
  • FIG. 59 is a schematic diagram of the far field pattern. Referring to the S-parameter simulation shown in Figure 60, the worst isolation is below -35dB, so it can meet the requirement of high isolation.
  • the deepest point of S11 of the magnetic current loop antenna M35 and the distributed antenna structure 7 both exceeds -10dB, and the bandwidth can also meet the coverage requirements of at least one working frequency band. Therefore, a high-isolation antenna group having a structure as shown in (a) in FIG. 58A can also provide better radiation performance and better isolation.
  • the magnetic current loop antenna on the side is set at one of the two ends of the side as an example for illustration.
  • the magnetic current loop antenna when it is arranged on the side, it may also be arranged on a part except one of the two ends.
  • the magnetic current loop antenna may be arranged near the center on the long sides of the sides.
  • the high-isolation antenna group includes a magnetic current loop antenna M35 arranged in the center of the short side of the electronic device, a magnetic current loop antenna M36 and a magnetic current loop antenna M37 arranged in the middle of the long side of the electronic device as an example. That is to say, compared to the example of (a) in FIG. 58A , in this example, the position of the magnetic current loop antenna arranged on the left side and/or arranged on the right side can be moved down to the center position of the long side nearby.
  • the feed signals fed into the magnetic current loop antenna M36 and the magnetic current loop antenna M37 may be anti-symmetrical feed signals.
  • the magnetic current loop antenna M36 is fed by the feed signal f9, and the magnetic current loop antenna M37 can also be fed by a signal (eg, obtained by an inverter) with equal amplitude and opposite phase to the feed signal f9.
  • the magnetic current loop antenna M35 can also be fed by the feeding signal f10.
  • FIG. 62 shows the far-field pattern when the high-isolation antenna group with the structure shown in FIG. 61 works.
  • the worst isolation of the magnetic current loop antenna M35 and the distributed antenna structure 8 exceeds -80 dB, so it meets the requirement of high isolation characteristics.
  • the deepest point of the magnetic current loop antenna M35 and the distributed antenna structure 8 has exceeded -10dB, and the bandwidth is sufficient to cover at least one working frequency band.
  • the distributed high-isolation antenna group provided by the embodiment of the present application can obtain high isolation characteristics regardless of whether the magnetic current loop antenna on the side is arranged at the side or the center. It should be understood that, for a high-isolation antenna group composed of two current loop antennas and one magnetic current loop antenna as shown in (b) of FIG. 58A , the above conclusion still holds true.
  • the working conditions of the high-isolation antenna group with the structure shown in (b) in FIG. 58A will be described below with reference to the accompanying drawings.
  • FIG. 64 is a performance simulation example with a high-isolation antenna group as shown in (b) of FIG. 58A .
  • FIG. 64 is a schematic diagram of the far field pattern. Referring to the S-parameter simulation in Figure 65, the worst isolation is below -35dB, so it can meet the requirement of high isolation.
  • the high-isolation antenna group with the structure shown in (b) in FIG. 58A can provide better radiation performance and better isolation under the excitation of the antisymmetric feed signal.
  • the current loop antenna and the magnetic current loop antenna can also have structures different from those in the above examples, and the feeding form can also be It is different from the coupling feed of direct feed. The effects that can be achieved are similar and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请实施例公开了一种高隔离度的终端天线系统,涉及天线技术领域,能够结合不同位置特征的电流环天线和/或磁流环天线,在提供较好辐射性能的同时,提供较好的隔离度。具体方案为:该终端天线系统包括第一天线和第二天线,该第一天线和该第二天线中包括至少一个电流环天线或者磁流环天线。该电流环天线在工作时,电流环天线的辐射体与参考地之间分布有均匀的磁场,该磁流环天线在工作时,磁流环天线的辐射体与参考地之间分布有均匀的电场。该第一天线和该第二天线设置在该电子设备的同一边,或者,该第一天线和该第二天线设置在该电子设备的相对的两个边上。

Description

一种高隔离度的终端天线系统
本申请要求于2021年10月30日提交国家知识产权局、申请号为202111278457.5、发明名称为“一种高隔离度的终端天线系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种高隔离度的终端天线系统。
背景技术
在电子设备中可以通过多个天线的设置,支持电子设备越来越多的无线通信需求。在多个天线同时工作时,可能产生互相干扰,从而影响电子设备整体的辐射性能。通过提升多个天线之间的隔离度,能够有效地改善多天线工作过程中彼此之间的影响。
发明内容
本申请实施例提供一种高隔离度的终端天线系统,能够结合不同位置特征的电流环天线和/或磁流环天线,在提供较好辐射性能的同时,提供较好的隔离度。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种高隔离度的终端天线系统,应用于电子设备,该终端天线系统包括第一天线和第二天线,该第一天线和该第二天线中包括至少一个电流环天线或者磁流环天线。该电流环天线在工作时,电流环天线的辐射体与参考地之间分布有均匀的磁场,该磁流环天线在工作时,磁流环天线的辐射体与参考地之间分布有均匀的电场。该第一天线和该第二天线设置在该电子设备的同一边,或者,该第一天线和该第二天线设置在该电子设备的相对的两个边上。
基于该方案,提供了两种基于不同位置设置的高隔离天线的获取方案。在本示例中,该高隔离的天线系统中至少可以包括一个电流环天线或者磁流环天线,从而保证该天线系统能够为工作频段提供至少一个天线的较好的辐射性能。此外,基于串联或并联(即设置在同一个边)以及相对设置(即设置在相对的两个边上)的位置分布,使得两个天线能够分别激励地板上的正交电流,从而获取高隔离特性。
在一种可能的设计中,该第一天线为磁流环天线时,该第二天线为电流环天线。基于该方案,限定了本申请中的天线系统中包括的天线的类型。比如一个天线是磁流环时,另一个天线就可以是电流环天线。
在一种可能的设计中,该第一天线和该第二天线是直馈的馈电形式,或者,该第一天线和该第二天线是耦合馈电的馈电形式。基于该方案,限定了本申请中的天线系统中包括的天线的馈电形式。比如,终端天线系统中的任意一个天线可以是直馈的,也可以是耦合馈电的。
在一种可能的设计中,该第一天线在工作时,激励地板电流为第一方向,该第二天线在工作时,激励地板电流为第二方向,该第一方向和该第二方向正交。基于该方案,提供了本申请提供方案能够获取高隔离特性的说明。由于两个天线能够分别激励地板上 的正交(或接近正交)的电流,使得两个天线可以获取较高的隔离度。
在一种可能的设计中,该第一天线和该第二天线设置在该电子设备的同一边,包括:该第一天线和该第二天线设置在该电子设备的第一边,该第一天线和该第二天线在该第一边上的投影互不重合。基于该方案,提供了一种具体的串联分布的位置示例。在本示例中,以终端天线系统中的两个天线为例。这两个天线可以是在电子设备(如手机)的同一个边上串联分布的。比如,两个天线都位于手机的上边,沿x轴向分布,在y向投影互不重合。从而实现串联分布。
在一种可能的设计中,该第一天线和该第二天线是直馈的馈电形式时,该第一天线的馈电点设置在该第一天线上,靠近该第二天线的一端。该第二天线的馈电点设置在该第二天线上,靠近该第一天线的一端。或者,该第一天线的馈电点设置在该第一天线上,远离该第二天线的一端。该第二天线的馈电点设置在该第二天线上,远离该第一天线的一端。基于该方案,提供了一种串联分布情况下馈电点的限定。比如,两个天线的馈电点可以互相靠近设置,又如,两个天线的馈电点互相远离设置。
在一种可能的设计中,该终端天线系统还包括第三天线,该第三天线也设置在该第一边。该第三天线、该第一天线、该第二天线的辐射体在垂直于该第一方向上的投影均不重合,该第二天线设置在该第一天线和该第三天线之间。基于该方案,提供了三天线的串联分布示意。在本示例中,在第一天线和第二天线之外,还可以设置有第三天线。比如,第一天线设置在手机顶边的靠左部分,第二天线设置在手机顶板的中心位置,第三天线设置在手机顶边的靠右部分。
在一种可能的设计中,该第一天线为磁流环天线,该第二天线为电流环天线,该第三天线为磁流环天线。基于该方案,提供了三天线的串联分布场景下,对各个天线的一种类型限定。
在一种可能的设计中,该第一天线和该第三天线构成第一分布式天线对,该第一分布式天线对包括第一端口,该第一端口与该第一天线的端口和该第三天线的端口连接,在该终端天线系统工作时,通过该第一端口,分别向该第一天线和该第三天线输入等幅同相的馈电信号。基于该方案,提供了三天线的串联分布场景下,各个天线的馈电激励方式的示例。在本示例中,第一天线和第三天线可以构成分布式天线对。第一天线的端口和第二天线的端口可以连接第一端口进行馈电,通过第一端口对第一天线和第三天线进行对称馈电。由此使得第一天线和第三天线构成的分布式天线对所激励的地板电流可以与第二天线激励的地板电流呈正交分布,从而获取高隔离特性。
在一种可能的设计中,该第一天线,该第二天线以及该第三天线均为电流环天线。基于该方案,提供了又一种三天线的串联分布场景下,对各个天线的一种类型限定。
在一种可能的设计中,该第一天线和该第三天线构成第二分布式天线对,该第二分布式天线对包括第二端口,该第二端口与该第一天线的端口和该第三天线的端口连接,在该终端天线系统工作时,通过该第一端口,分别向该第一天线和该第三天线输入等幅反相的馈电信号。该第二分布式天线对激励地板的电流方向与该第二天线激励地板的电流方向正交。基于该方案,可以对第一天线和第三天线(即左右两个电流环天线)进行反对称馈电,使得第一天线和第三天线构成的分布式天线对所激励的地板电流可以与第二天线激励的地板电流呈正交分布,从而获取高隔离特性。
在一种可能的设计中,该第一天线和该第二天线设置在该电子设备的同一边,包括:该第一天线和该第二天线设置在该电子设备的第一边,该第一天线和该第二天线在该第一边上的投影有至少部分重合。基于该方案,提供了一种具体的并联分布的位置示例。在本示例中,以终端天线系统中的两个天线为例。这两个天线可以是在电子设备(如手机)的同一个边上并联分布的。比如,两个天线都位于手机的上边,沿x轴向分布,在y向投影有至少部分重合。从而实现并联分布。
在一种可能的设计中,该第一天线和该第二天线的辐射体所在平面正交。基于该方案,提供了一种具体的并联分布的实现。比如,第一天线可以位于xoz平面,第二天线可以位于xoy平面。在在x轴上的投影有至少部分的重合。
在一种可能的设计中,该第一天线为电流环天线时,该第二天线为以下天线中的任意一种:磁流环天线,CM线天线,DM槽天线。基于该方案,提供了一种并联分布场景下,两个天线的类型限定。可以理解的是,电流环天线能够激励横向电流,磁流环天线,CM线天线,DM槽天线能够激励纵向电流,由此就可以使得第一天线和第二天线具有高隔离的特性。
在一种可能的设计中,该第一天线和该第二天线设置在该电子设备的相对的两个边上,包括:该第一天线设置在该电子设备的第一边上的第一位置,该第二天线设置在该电子设备的第二边上的第二位置,第一边和第二边分别与电子设备的第三边相邻。基于该方案,提供了一种具体的相对分布的位置示例。在本示例中,以终端天线系统中的两个天线为例。这两个天线可以是在电子设备(如手机)的两个相对的边上设置的。比如,第一天线位于手机的左侧长边,第二天线位于手机的右侧长边。
在一种可能的设计中,该第一位置和该第二位置关于该第三边的中线呈轴对称。基于该方案,提供了一种对于第一天线和第二天线相对位置关系的限定。比如,第一天线和第二天线的位置可以相对于手机的上边的中线轴对称。这样,第一天线和第二天线可以分别位于左侧长边和右侧长边的上端,或者中部,或者下端。
在一种可能的设计中,该第一位置位于该第一边的中间位置,该第二位置位于该第二边的中间位置。基于该方案,提供了一种具体的第一天线和第二天线的位置限定。比如第一天线可以位于左侧长边的中间位置,第二天线可以位于右侧长边的中间位置。
在一种可能的设计中,该第一天线和该第二天线是直馈的馈电形式时,该第一天线的馈电点设置在该第一天线的辐射体上,该第二天线的馈电点设置在该第二天线的辐射体上,该第一天线的馈电点和该第二天线的馈电点分别设置在该第一天线的辐射体和该第二天线的辐射体的同一侧。基于该方案,提供了并联分布和相对分布场景下,直馈的天线馈电点位置的示例。比如,在两个天线并联分布在上边的情况下,两个天线的馈电点可以均设置在各自辐射体的左侧末端,或者均设置在各自辐射体的右侧末端。又如,在两个天线相对分布在左右两个侧边的情况下,直馈的天线馈电点可以均设置在各自辐射体的上侧末端,或者均设置在各自辐射体的下侧末端。
在一种可能的设计中,该电流环天线包括电流环线天线和电流环槽天线,该电流环线天线的辐射体并联有至少一个第一电容接地,该电流环槽天线的辐射体上串联有至少一个第二电容。该第一电容用于调整该电流环线天线上的电流分布,以获得在该电流环线天线与参考地之间的均匀磁场,该第二电容用于调整该电流环槽天线上的电流分布, 以获得在该电流环槽天线与参考地之间的均匀磁场。基于该方案,提供了一种具体的电流环天线的说明示例。
在一种可能的设计中,该电流环线天线包括电流环单极子天线、电流环偶极子天线。该电流环槽天线包括电流环左手天线、电流环缝隙天线。基于该方案,提供了几种具体的电流环天线的类型示例。
在一种可能的设计中,该磁流环线天线的辐射体并联有至少一个第一电感接地,该磁流环槽天线的辐射体上串联有至少一个第二电感。该第一电感用于调整该磁流环线天线上的电流分布,以获得在该磁流环线天线与参考地之间的均匀电场,该第二电感用于调整该磁流环槽天线上的电流分布,以获得在该磁流环槽天线与参考地之间的均匀电场。基于该方案,提供了一种具体的磁流环天线的说明示例。
在一种可能的设计中,该磁流环线天线包括磁流环单极子天线、磁流环偶极子天线。该磁流环槽天线包括磁流环左手天线、磁流环缝隙天线。基于该方案,提供了几种具体的磁流环天线的类型示例。
第二方面,提供一种高隔离度的终端天线系统,应用于电子设备,该终端天线系统包括第一天线和第二天线,该第一天线和该第二天线中包括至少一个电流环天线或者磁流环天线。该第一天线和该第二天线设置在该电子设备的同一边,或者,该第一天线和该第二天线设置在该电子设备的相对的两个边上。其中,该电流环天线为电流环单极子天线或电流环偶极子天线时,该电流环天线辐射体的至少一个末端设置有第一电容接地。该电流环天线为电流环缝隙天线或电流环左手天线时,该电流环天线辐射体上至少串联设置有一个第二电容。其中,该第一电容和第二电容容值范围设置如下:在该电流环天线的工作频段为450MHz-1GHz时,该第一电容或该第二电容的容值设置在[1.5pF,15pF]之内。在该电流环天线的工作频段为1GHz-3GHz时,该第一电容或该第二电容的容值设置在[0.5pF,15pF]之内。在该电流环天线的工作频段为3GHz-10GHz时,该第一电容或该第二电容的容值设置在[1.2pF,12pF]之内。该磁流环天线为磁流环单极子天线或磁流环偶极子天线时,该磁流环天线辐射体的至少一个末端设置有第一电感接地。该磁流环天线为磁流环缝隙天线或磁流环左手天线时,该磁流环天线辐射体上至少串联设置有一个第二电感。其中,该第一电感和第二电感的感值范围设置如下:在该磁流环天线的工作频段为450MHz-1GHz时,该第一电感或该第二电感的感值设置在[5nH,47nH]之内。在该磁流环天线的工作频段为1GHz-3GHz时,该第一电感或该第二电感的感值设置在[1nH,33nH]之内。在该磁流环天线的工作频段为3GHz-10GHz时,该第一电感或该第二电感的感值设置在[0.5nH,10nH]之内。
基于该方案,提供了两种基于不同位置设置的高隔离天线的获取方案。在本示例中,该高隔离的天线系统中至少可以包括一个电流环天线或者磁流环天线,从而保证该天线系统能够为工作频段提供至少一个天线的较好的辐射性能。此外,基于串联或并联(即设置在同一个边)以及相对设置(即设置在相对的两个边上)的位置分布,使得两个天线能够分别激励地板上的正交电流,从而获取高隔离特性。此外,在本示例中,还对电流环天线以及磁流环天线上设置的电容或电感的取值进行了限定。
在一种可能的设计中,该第一天线为磁流环天线时,该第二天线为电流环天线。基于该方案,限定了本申请中的天线系统中包括的天线的类型。比如一个天线是磁流环时, 另一个天线就可以是电流环天线。
在一种可能的设计中,该第一天线和该第二天线是直馈的馈电形式,或者,该第一天线和该第二天线是耦合馈电的馈电形式。基于该方案,限定了本申请中的天线系统中包括的天线的馈电形式。比如,终端天线系统中的任意一个天线可以是直馈的,也可以是耦合馈电的。
在一种可能的设计中,该第一天线在工作时,激励地板电流为第一方向,该第二天线在工作时,激励地板电流为第二方向,该第一方向和该第二方向正交。基于该方案,提供了本申请提供方案能够获取高隔离特性的说明。由于两个天线能够分别激励地板上的正交(或接近正交)的电流,使得两个天线可以获取较高的隔离度。
在一种可能的设计中,该第一天线和该第二天线设置在该电子设备的同一边,包括:该第一天线和该第二天线设置在该电子设备的第一边,该第一天线和该第二天线在该第一边上的投影互不重合。基于该方案,提供了一种具体的串联分布的位置示例。在本示例中,以终端天线系统中的两个天线为例。这两个天线可以是在电子设备(如手机)的同一个边上串联分布的。比如,两个天线都位于手机的上边,沿x轴向分布,在y向投影互不重合。从而实现串联分布。
在一种可能的设计中,该第一天线和该第二天线是直馈的馈电形式时,该第一天线的馈电点设置在该第一天线上,靠近该第二天线的一端。该第二天线的馈电点设置在该第二天线上,靠近该第一天线的一端。或者,该第一天线的馈电点设置在该第一天线上,远离该第二天线的一端。该第二天线的馈电点设置在该第二天线上,远离该第一天线的一端。基于该方案,提供了一种串联分布情况下馈电点的限定。比如,两个天线的馈电点可以互相靠近设置,又如,两个天线的馈电点互相远离设置。
在一种可能的设计中,该终端天线系统还包括第三天线,该第三天线也设置在该第一边。该第三天线、该第一天线、该第二天线的辐射体在垂直于该第一方向上的投影均不重合,该第二天线设置在该第一天线和该第三天线之间。基于该方案,提供了三天线的串联分布示意。在本示例中,在第一天线和第二天线之外,还可以设置有第三天线。比如,第一天线设置在手机顶边的靠左部分,第二天线设置在手机顶板的中心位置,第三天线设置在手机顶边的靠右部分。
在一种可能的设计中,该第一天线为磁流环天线,该第二天线为电流环天线,该第三天线为磁流环天线。基于该方案,提供了三天线的串联分布场景下,对各个天线的一种类型限定。
在一种可能的设计中,该第一天线和该第三天线构成第一分布式天线对,该第一分布式天线对包括第一端口,该第一端口与该第一天线的端口和该第三天线的端口连接,在该终端天线系统工作时,通过该第一端口,分别向该第一天线和该第三天线输入等幅同相的馈电信号。基于该方案,提供了三天线的串联分布场景下,各个天线的馈电激励方式的示例。在本示例中,第一天线和第三天线可以构成分布式天线对。第一天线的端口和第二天线的端口可以连接第一端口进行馈电,通过第一端口对第一天线和第三天线进行对称馈电。由此使得第一天线和第三天线构成的分布式天线对所激励的地板电流可以与第二天线激励的地板电流呈正交分布,从而获取高隔离特性。
在一种可能的设计中,该第一天线,该第二天线以及该第三天线均为电流环天线。 基于该方案,提供了又一种三天线的串联分布场景下,对各个天线的一种类型限定。
在一种可能的设计中,该第一天线和该第三天线构成第二分布式天线对,该第二分布式天线对包括第二端口,该第二端口与该第一天线的端口和该第三天线的端口连接,在该终端天线系统工作时,通过该第一端口,分别向该第一天线和该第三天线输入等幅反相的馈电信号。该第二分布式天线对激励地板的电流方向与该第二天线激励地板的电流方向正交。基于该方案,可以对第一天线和第三天线(即左右两个电流环天线)进行反对称馈电,使得第一天线和第三天线构成的分布式天线对所激励的地板电流可以与第二天线激励的地板电流呈正交分布,从而获取高隔离特性。
在一种可能的设计中,该第一天线和该第二天线设置在该电子设备的同一边,包括:该第一天线和该第二天线设置在该电子设备的第一边,该第一天线和该第二天线在该第一边上的投影有至少部分重合。基于该方案,提供了一种具体的并联分布的位置示例。在本示例中,以终端天线系统中的两个天线为例。这两个天线可以是在电子设备(如手机)的同一个边上并联分布的。比如,两个天线都位于手机的上边,沿x轴向分布,在y向投影有至少部分重合。从而实现并联分布。
在一种可能的设计中,该第一天线和该第二天线的辐射体所在平面正交。基于该方案,提供了一种具体的并联分布的实现。比如,第一天线可以位于xoz平面,第二天线可以位于xoy平面。在在x轴上的投影有至少部分的重合。
在一种可能的设计中,该第一天线为电流环天线时,该第二天线为以下天线中的任意一种:磁流环天线,CM线天线,DM槽天线。基于该方案,提供了一种并联分布场景下,两个天线的类型限定。可以理解的是,电流环天线能够激励横向电流,磁流环天线,CM线天线,DM槽天线能够激励纵向电流,由此就可以使得第一天线和第二天线具有高隔离的特性。
在一种可能的设计中,该第一天线和该第二天线设置在该电子设备的相对的两个边上,包括:该第一天线设置在该电子设备的第一边上的第一位置,该第二天线设置在该电子设备的第二边上的第二位置,第一边和第二边分别与电子设备的第三边相邻。基于该方案,提供了一种具体的相对分布的位置示例。在本示例中,以终端天线系统中的两个天线为例。这两个天线可以是在电子设备(如手机)的两个相对的边上设置的。比如,第一天线位于手机的左侧长边,第二天线位于手机的右侧长边。
在一种可能的设计中,该第一位置和该第二位置关于该第三边的中线呈轴对称。基于该方案,提供了一种对于第一天线和第二天线相对位置关系的限定。比如,第一天线和第二天线的位置可以相对于手机的上边的中线轴对称。这样,第一天线和第二天线可以分别位于左侧长边和右侧长边的上端,或者中部,或者下端。
在一种可能的设计中,该第一位置位于该第一边的中间位置,该第二位置位于该第二边的中间位置。基于该方案,提供了一种具体的第一天线和第二天线的位置限定。比如第一天线可以位于左侧长边的中间位置,第二天线可以位于右侧长边的中间位置。
在一种可能的设计中,该第一天线和该第二天线是直馈的馈电形式时,该第一天线的馈电点设置在该第一天线的辐射体上,该第二天线的馈电点设置在该第二天线的辐射体上,该第一天线的馈电点和该第二天线的馈电点分别设置在该第一天线的辐射体和该第二天线的辐射体的同一侧。基于该方案,提供了并联分布和相对分布场景下,直馈的 天线馈电点位置的示例。比如,在两个天线并联分布在上边的情况下,两个天线的馈电点可以均设置在各自辐射体的左侧末端,或者均设置在各自辐射体的右侧末端。又如,在两个天线相对分布在左右两个侧边的情况下,直馈的天线馈电点可以均设置在各自辐射体的上侧末端,或者均设置在各自辐射体的下侧末端。
第三方面,提供一种电子设备,该电子设备设置有如第一方面及其任一种可能的设计中所述的终端天线系统。该电子设备在进行信号发射或接收时,通过该终端天线系统进行信号的发射或接收。
应当理解的是,上述第二方面以及第三方面提供的技术方案,其技术特征均可对应到第一方面及其可能的设计中提供的终端天线系统,因此能够达到的有益效果类似,此处不再赘述。
附图说明
图1为一种多天线场景的示意;
图2为本申请实施例提供的一种电子设备的堆叠示意图;
图3为本申请实施例提供的一种金属壳体上天线设置的示意图;
图4为本申请实施例提供的一种电子设备的组成示意图;
图5为本申请实施例提供的一种电流环天线的工作示意图;
图6为本申请实施例提供的一种电流环天线的组成示意图;
图7为本申请实施例提供的一种耦合馈电的电流环天线的示意图;
图8为本申请实施例提供的一种磁流环天线的工作示意图;
图9为本申请实施例提供的一种磁流环天线的组成示意图;
图10为本申请实施例提供的一种耦合馈电的磁流环天线的示意图;
图11为本申请实施例提供的一种串联分布的天线对的位置示意图;
图12为本申请实施例提供的一种并联分布的天线对的位置示意图;
图13A为本申请实施例提供的一种相对分布的天线对的位置示意图;
图13B为本申请实施例提供的一种正交分布的天线对的位置示意图;
图13C为本申请实施例提供的一种CM天线和DM天线的结构示意图;
图14为本申请实施例提供的一种地板电流的正交示意图;
图15为本申请实施例提供的一种地板电流分布示意图;
图16为本申请实施例提供的一种地板电场分布示意图;
图17A为本申请实施例提供的一种串联的天线对的示意图;
图17B为本申请实施例提供的一种磁流环天线激励地板电流的示意图;
图18为本申请实施例提供的一种串联的天线对的地板电流示意图;
图19为本申请实施例提供的一种串联的天线对的方向图示意图;
图20为本申请实施例提供的一种串联的天线对的S参数示意图;
图21为本申请实施例提供的一种串联的天线对的效率示意图;
图22A为本申请实施例提供的又一种串联的天线对的组成示意图;
图22B为本申请实施例提供的一种串联的三天线的天线组的示意图;
图22C为本申请实施例提供的一种串联的天线组的方向图示意图;
图22D为本申请实施例提供的一种串联的天线组的隔离度示意图;
图22E为本申请实施例提供的一种串联的天线组的组成示意图;
图22F为本申请实施例提供的一种串联的天线组的方向图示意图;
图23A为本申请实施例提供的一种并联的天线对的示意图;
图23B为本申请实施例提供的一种并联的天线对的结构实现示意图;
图24为本申请实施例提供的一种并联的天线对的电流示意图;
图25为本申请实施例提供的一种并联的天线对的方向图示意图;
图26为本申请实施例提供的一种并联的天线对的S参数示意图;
图27为本申请实施例提供的一种并联的天线对的效率示意图;
图28为本申请实施例提供的一种并联的天线对的示意图;
图29为本申请实施例提供的一种并联的天线对的方向图示意图;
图30为本申请实施例提供的一种并联的天线对的S参数示意图;
图31为本申请实施例提供的一种并联的天线对的效率示意图;
图32为本申请实施例提供的一种并联的天线对的示意图;
图33为本申请实施例提供的一种并联的天线对的电流示意图;
图34为本申请实施例提供的一种并联的天线对的方向图示意图;
图35为本申请实施例提供的一种并联的天线对的S参数示意图;
图36为本申请实施例提供的一种并联的天线对的效率示意图;
图37为本申请实施例提供的一种并联的天线对的示意图;
图38为本申请实施例提供的一种并联的天线对的方向图示意图;
图39为本申请实施例提供的一种并联的天线对的S参数示意图;
图40为本申请实施例提供的一种并联的天线对的效率示意图;
图41为本申请实施例提供的一种并联的天线对的示意图;
图42为本申请实施例提供的一种相对的天线对的示意图;
图43为本申请实施例提供的一种相对的天线对的具体示例;
图44为本申请实施例提供的一种相对的天线对的电流流向示意图;
图45A为本申请实施例提供的一种相对的天线对的电流仿真示意图;
图45B为本申请实施例提供的一种相对的天线对的电流仿真示意图;
图45C为本申请实施例提供的一种相对的天线对的方向图示意图;
图46为本申请实施例提供的一种相对的天线对的S参数示意图;
图47为本申请实施例提供的一种正交的天线对的示意图;
图48为本申请实施例提供的一种正交的天线对的方向图示意图;
图49为本申请实施例提供的一种正交的天线对的S参数示意图;
图50为本申请实施例提供的一种正交的天线对的示意图;
图51为本申请实施例提供的一种正交的天线对的方向图示意图;
图52为本申请实施例提供的一种正交的天线对的S参数示意图;
图53A为本申请实施例提供的一种正交的三天线的天线组的示意图;
图53B为本申请实施例提供的一种正交的三天线的天线组的电流流向示意图;
图54为本申请实施例提供的一种正交的三天线的天线组的方向图示意图;
图55为本申请实施例提供的一种正交的三天线的天线组的S参数示意图;
图56为本申请实施例提供的一种正交的三天线的天线组的方向图示意图;
图57为本申请实施例提供的一种正交的三天线的天线组的S参数示意图;
图58A为本申请实施例提供的一种正交的三天线的天线组的示意图;
图58B为本申请实施例提供的一种正交的三天线的天线组的电流仿真示意图;
图59为本申请实施例提供的一种正交的三天线的天线组的方向图示意图;
图60为本申请实施例提供的一种正交的三天线的天线组的S参数示意图;
图61为本申请实施例提供的一种正交的三天线的天线组的示意图;
图62为本申请实施例提供的一种正交的三天线的天线组的方向图示意图;
图63为本申请实施例提供的一种正交的三天线的天线组的S参数示意图;
图64为本申请实施例提供的一种正交的三天线的天线组的方向图示意图;
图65为本申请实施例提供的一种正交的三天线的天线组的S参数示意图。
具体实施方式
随着无线通信技术的发展,电子设备中通常需要设置多个天线才能够满足电子设备对的无线通信功能的要求。部分天线的工作频段可以部分重叠或者完全重叠,从而提升对应频段的通信能力。
比如,结合图1,以在电子设备中设置的天线包括E1和E2,E1和E2的工作频段重合为例。在电子设备使用E1和E2对应的工作频段进行无线通信时,E1和E2可能会同时工作。示例性的,E1在工作时,可以将电子设备的信号通过电磁波的形式发射出去,该电磁波对应的谐振频率可以包括在E1的工作频段内,由此实现信号的发射。E2可以将外部空间中的电磁波转换为电子设备能够处理的信号(如模拟信号),从而实现信号的接收。
可以理解的是,由于E1和E2的工作频段相同,因此E2所接收的信号中就可能包括E1发出的信号。而这部分信号显然是电子设备不需要接收的,因此,这部分信号对于E2的工作而言就是无效的信号。也就是说,E1和E2同时工作时,两个天线之间可能会产生互相影响,从而降低天线的无线通信效率。
上述示例中,是以E1发射,E2接收的场景为例的,在其他场景中,也可能存在类似的问题,降低天线的无线通信效率。示例性的,在E1接收,E2发射的场景中也会由于类似的机制产生相同的问题。此外,在E1和E2的工作频段不同时,以E1的工作频段低于E2的工作频段为例,E1的工作频段虽然与E2并不重合,但是E1工作时对应的谐振的倍频也可能会影响到E2的工作。
为了解决多天线场景下的互相影响的问题,可以通过提升天线之间的隔离度(isolation),降低天线之间的影响。天线之间的隔离度越好,则天线之间的互相影响越小。其中,隔离度可以是通过归一化的值进行标识的。比如,以双端口隔离度为例,隔离度可以通过S参数中的S21(或S12)标识,S21在不同频点下的值则对应当前频点下双端口的隔离度。归一化之后,隔离度最大值不超过0,隔离度的绝对值越大,则表明隔离度越好,天线之间的影响越小。对应的,隔离度的绝对值越小,则表明隔离度越差,天线之间的影响越大。为了便于说明,以下示例中,将隔离度的绝对值简称为隔离度。比如,将隔离度的绝对值较大,简称为隔离度较大。又如,将隔离度的绝对值较小,简称为隔离度较小。
应当理解的是,天线辐射性能的强弱,也会对天线之间的隔离度造成影响。继续结合上述图1所示的示例,在E1和E2存在互相影响的情况下,不考虑其他影响时,天线的辐射性能越好,则天线之间的隔离度越小,互相影响越大。例如,E1的辐射性能越好,则具有较好辐射性能的频点或频段内,与E2的隔离度就会相对恶化。然而,为了能够保证电子设备的无线通信功能,需要天线提供较好的辐射性能。也就是说,对于电子设备中的天线,需要其既能够提供较好的辐射性能,又需要具有较好的天线之间的隔离度。这也就对电子设备中的多天线设计产生了较高的要求。
为了解决上述问题,本申请实施例提供一种高隔离度天线方案,能够使得天线在提供较好的辐射性能的同时,具有较好的隔离度。需要说明的是,本申请实施例中涉及的辐射性能,可以指对应天线的辐射效率和/或系统效率。其中,辐射效率可以用于标识该天线系统的最大辐射能力,系统效率则用于标识当前环境以及端口匹配下,天线能够提供的效率情况。
以下首先对本申请实施例提供的高隔离度天线方案的实施场景进行说明。
本申请实施例提供的天线方案,可以应用在用户的电子设备中,用于支持电子设备的无线通信功能。比如,该电子设备可以是手机、平板电脑、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、媒体播放器等便携式移动设备,该电子设备也可以是智能手表等可穿戴电子设备。本申请实施例对该设备的具体形态不作特殊限制。
请参考图2,为本申请实施例提供的一种电子设备200的结构示意图。如图2所示,本申请实施例提供的电子设备200沿z轴由上到下的顺序可以依次设置屏幕及盖板201,金属壳体202,内部结构203,以及后盖204。
其中,屏幕及盖板201可以用于实现电子设备200的显示功能。金属壳体202可以作为电子设备200的主体框架,为电子设备200提供刚性支撑。内部结构203可以包括实现电子设备200各项功能的电子部件以及机械部件的集合。比如,该内部结构203可以包括屏蔽罩,螺钉,加强筋等。后盖204可以为电子设备200背部外观面,该后盖204在不同的实现中可以使用玻璃材料,陶瓷材料,塑料等。
本申请实施例提供的天线方案能够应用在如图2所示的电子设备200中,用于支撑该电子设备200的无线通信功能。在一些实施例中,该天线方案涉及的天线可以设置在电子设备200的金属壳体202上。在另一些实施例中,该天线方案涉及的天线可以设置在电子设备200的后盖204上等。
作为一种示例,以金属壳体202具有金属边框架构为例,图3示出了一种金属壳体202的组成示意。在本示例中,金属壳体202可以采用金属材料,如铝合金等。如图3所示,该金属壳体202上可以设置有参考地。该参考地可以为具有较大面积的金属材料,用于提供大部分刚性支撑,同时为各个电子部件提供零电位参考。在如图3所示的示例中,在参考地外围还可以设置有金属边框。该金属边框可以是完整的一个闭合的金属边框,该金属边框可以包括部分或全部悬空设置的金属条。在另一些实现中,该金属边框也可以是如图3所示的通过一个或多个缝隙打断的金属边框。比如,在如图3的示例中,金属边框上可以分别在不同位置设置缝隙1,缝隙2以及缝隙3。这些缝隙可以打断金属边框,从而获取独立的金属枝节。在一些实施例中,这些金属枝节中的部分或全部可 以用于作为天线的辐射枝节使用,从而实现天线设置过程中的结构复用,降低天线设置难度。在金属枝节作为天线的辐射枝节使用时,对应在金属枝节一端或两端设置的缝隙的位置可以根据天线的设置而灵活选取。
在如图3所示的示例中,金属边框上还可以设置一个或多个金属引脚。在一些示例中,金属引脚上可以设置有螺钉孔,用于通过螺钉固定其他结构件。在另一些示例中,金属引脚可以与馈电点耦接,以便在该金属引脚连接的金属枝节作为天线的辐射枝节使用时,通过金属引脚向天线进行馈电。在另一些示例中,金属引脚还可以与其他电子部件耦接,实现对应的电连接功能。
在本示例中,同时也示出了印制线路板(printed circuit board,PCB)在金属壳体上的设置示意。其中以主板(main board)和小板(sub board)分板设计为例。在另一些示例中,主板和小板还可以是连接的,比如L型PCB设计。在本申请的一些实施例中,主板(如PCB1)可以用于承载实现电子设备200的各项功能的电子部件。比如处理器,存储器,射频模块等。小板(如PCB2)也可以用于承载电子部件。比如通用串行总线(Universal Serial Bus,USB)接口以及相关电路,音腔(speak box)等。又如,该小板还可以用于承载设置在底部(即电子设备的y轴负方向部分)的天线对应的射频电路等。
本申请实施例提供的天线方案均能够应用于具有如图2或图3所示的组成的电子设备中。
需要说明的是,上述示例中的电子设备200仅为一种可能的组成。在本申请的另一些实施例中,电子设备200还可以具有其他逻辑组成。比如,为了实现电子设备200的无线通信功能,在电子设备中可以设置有如图4所示的通信模块。该通信模块可以包括天线,与天线进行信号交互的射频模块,以及与射频模块进行信号交互的处理器。示例性的,射频模块与天线之间的信号交互可以为模拟信号的交互。射频模块与处理器之间的信号交互可以为模拟信号或者数字信号。在一些实现中,处理器可以为基带处理器。
在本示例中,电子设备中设置的天线可以为多个,如图4所示的天线1到天线n。其中,在这n个天线中可以包括一个或多个磁流环天线和/或电流环天线。
以下首先结合附图,对磁流环天线以及电流环天线进行简单说明。
示例性的,本申请实施例提供的方案中涉及的电流环天线,可以通过其组成特征,使得天线在工作时具有如图5所示的电流以及磁场分布。在本申请实施例中,具有如图5所示的电流分布和/或磁场分布的辐射特征也可以称为电流环辐射特征。
如图5所示,天线在辐射时,在辐射枝节上形成同向电流,在电流环天线的辐射枝节上的电流方向与作为参考地的地板(如地板接近电流环天线的边)的电流方向反向;从而形成辐射枝节与地板组成的电流环,该电流环在天线辐射枝节与参考地之间形成垂直纸面向外的磁场,通过在辐射枝节的末端并联电容到地,形成均匀的磁场分布,从而实现具有电流环天线辐射特征的辐射,射频能量通过磁场耦合到电子设备的参考地地板上。在一些实施例中,可以通过在辐射枝节上设置串联和/或并联电容,获取上述电流环辐射特征。比如结合图5,可以在位置1设置电容等。应当理解的是,通过电容对于电能的储能特性,可以使得电流在辐射枝节上的变化趋于平缓,而磁场与电流相对应,因此也就可以使得辐射枝节附近区域(如辐射枝节与参考地之间的区域)中的磁场变化 趋于平缓,进而获取较为均匀分布的磁场。
在优选实施例中,天线辐射枝节与参考地之间设置电介质材料,由于上图5所示的电流环天线在天线辐射枝节与参考地之间形成的电磁场主要以均匀的磁场为主,而磁场耦合能量在穿过电介质材料时损耗为零,即电介质材料对形成的均匀磁场不产生损耗的影响,因此,该电流环天线在辐射时性能相对于现有技术具有更佳的辐射性能。
通过实验验证,该具有均匀磁场分布的电流环天线能够在相同空间条件下提供更好的辐射性能。比如更好的辐射效率,系统效率,带宽等。
作为一种示例,图6示出了几种可能的电流环天线的具体实现。需要说明的是,在本申请的不同实现中,根据电流环天线的组成结构的差异,可以将电流环天线划分为电流环线天线和电流环槽天线。其中,电流环线天线可以包括电流环单极子天线,电流环偶极子天线等。电流环槽天线可以包括电流环左手天线,电流环缝隙天线等。
在电流环线天线上,可以设置有并联的第一电容,由此实现如图5所示的工作机制。在一些实现中,在电流环线天线的辐射体上还可以串联有一个或多个电容,从而提升电流环线天线的辐射性能。
与电流环线天线对应的,在电流环槽天线上,可以设置有串联的第二电容,由此实现如图5所示的工作机制。在一些实现中,在电流环槽天线的辐射体上还可以串联有更多电容,从而提升电流环线天线的辐射性能。
可以看到,电流环槽天线和电流环线天线均在电流环天线的辐射体上的至少一个末端设置有电容接地。在本申请实施例中,在电流环天线工作在不同的频段时,该设置在末端接地的电容大小可以是不同的。
比如,在电流环天线的工作频段为低频(Low Band,LB)时,设置在辐射枝节的末端的电容C1以及C2的大小可以包括在[1.5pF,15pF]之内。在电流环天线的工作频段为中频(Mid Band,MB)时,设置在辐射枝节的末端的电容C1以及C2的大小可以包括在[0.5pF,15pF]之内。在电流环天线的工作频段为高频(High Band,HB)时,设置在辐射枝节的末端的电容C1以及C2的大小可以包括在[1.2pF,12pF]之内。
在本申请实施例中,天线对所覆盖的工作频段可以包括低频,中频,和/或高频。其中,在一些实施例中,该低频可以包括450M-1GHz的频段范围。中频可以包括1G-3GHz的频段范围。高频可以包括3GHz-10GHz的频段范围。可以理解的是,在不同实施例中,该低中高频段可以包括不限于蓝牙(Bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,Wi-Fi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等要求的工作频段。在一些实现中,该LB,MB以及HB能够包括5G NR,WiFi 6E,UWB等常见频段。
以下结合具体示例对电流环天线的不同组成进行举例说明。
图6中的(a)示出了一种电流环单极子天线的示意。该电流环单极子天线可以包括辐射体B1,在该电流环单极子天线工作在基模(如1/4波长模式)的情况下,该辐射体B1的长度可以与天线工作波长的1/4对应。比如,B1的长度可以小于工作波长的 1/4。B1的一端与馈电点电连接,B1的另一端通过电容(如电容C M1)接地,从而形成电流环单极子天线。
图6中的(b)示出了一种电流环偶极子天线的示意。该电流环偶极子天线可以包括辐射体B2和B3。B2和B3可以通过馈电点连接,B2远离B3的一端可以通过电容C D1接地,B3远离B2的一端可以通过电容C D2接地。在该电流环偶极子天线工作在基模(如1/4波长模式)的情况下,该辐射体B2的长度以及B3的长度可以分别与工作波长的1/4对应,也就是说,该电流环偶极子天线的辐射枝节(如B2加B3)的长度与工作波长的1/2相对应。比如,B2的长度可以小于工作波长的1/4。又如,B3的长度可以小于工作波长的1/4。也就是说,该电流环偶极子天线的辐射枝节(如B2加B3)的长度可以小于工作波长的1/2。在一些实施例中该B2和B3的长度之和可以大于工作波长的1/4,小于工作波长的1/2。
图6中的(c)示出了一种电流环左手天线的示意。该电流环左手天线可以包括辐射体B4。在该B4上可以串联有电容C C1。B4的一端可以接地,另一端可以连接左手馈电。在本示例中,左手馈电可以包括馈电点,以及与馈电点串联的左手电容。该左手电容可以用于激励B4上产生左手模式。其中左手天线的结构以及工作机制可以参考CN201380008276.8和CN201410109571.9,在此不再赘述。
图6中的(d)示出了一种电流环缝隙天线的示意。该电流环缝隙天线可以包括辐射体B5和B6。辐射体B5和B6之间通过馈电点进行连接。B5远离B6的一端,以及B6远离B5的一端可以分别接地。由此B5和B6以及参考地就可以形成缝隙进行辐射。在本示例中,B5上可以串联有电容C S1,B6上可以串联有电容C S2
在如图6所示的示例中,均以通过直接馈电的形式进行馈电为例进行说明。在本申请的另一些实现中,上述电流环天线还可以通过耦合馈电的形式进行激励。示例性的,图7示出了耦合馈电的电流环单极子天线的示意。
如图7所示,该电流环单极子天线可以包括辐射枝节以及馈电枝节。辐射枝节可以包括辐射体B12,B12的两端分别通过电容C CM1和C CM2接地。馈电枝节可以用于进行耦合馈电,该馈电枝节可以包括第一馈电部CB12和第二馈电部CB13,CB13和CB12之间通过馈电点进行连接,CB12和CB13的另一端均接地。该馈电枝节可以设置在辐射枝节和参考地之间。由此通过馈电枝节CB12和CB13激励辐射枝节进行具有电流环辐射特征的辐射。
应当理解的是,对于其他电流环天线,也可以通过耦合馈电的形式进行激励。馈电枝节的结构也可以是多种的。具体可以参考如下专利申请:申请号202110961752.4,申请号202110963510.9,申请号202110961755.8,以及申请号202110962491.8。此处不再赘述。
上述图5,图6以及图7对电流环天线进行了示例性的说明,以下结合图8以及图9对磁流环天线进行简要说明。
示例性的,结合图8,提供了磁流环天线的一种示意。如图8所示,该磁流环天线可以包括至少一个辐射枝节。该辐射枝节可以用于进行具有磁流环天线辐射特征的辐射。其中,本申请实施例中所述的磁流环天线的辐射特征可以包括:在辐射枝节与参考地之间,产生均匀的电场分布。例如,如图8所示,在天线辐射枝节与参考地之间可以分布 有均匀的方向向下的电场。当然,在另一些场景下,由于馈电信号的不断的变化中,因此该电场也可以是向上的均匀分布。
作为一种可能的实现,本申请实施例提供的磁流环天线可以基于现有的电场型天线,在辐射枝节上串联和/或并联电感,使得辐射体上电位较高的位置能够通过电感就近回地,从而降低该部分电位,进而拉低该高电位附近的电场;对应的,通过设置电感的对磁能的储能特性,使得电场较低区域的电场变化与电流变化出现时间差,进而在电流依照馈电点提供的电流增强时,原先的低电场区域的电场可以快速增强,而原先的高电场区域的电场依旧在后续一段时间内保持高电场。由此获取辐射枝节附近均匀分布的电场。
应当理解的是,具有均匀分布的电场特征的情况下,辐射枝节附近空间中可以形成具有闭合特性的磁流环。也就是说,本申请实施例中涉及的磁流环天线的辐射特征也可以包括:在辐射枝节附近产生闭合的磁流环分布。例如,如图8所示,在天线辐射枝节附近,可以形成沿逆时针方向的闭合磁流环。类似于上述电场分布的说明,在另一些场景下,由于馈电信号处于不断的变化中,因此该磁流环也可以是顺时针闭合分布的。
基于上述对于本申请实施例提供的磁流环天线工作过程中的特性描述(如具有磁流环天线的辐射特征),由于本申请实施例提供的磁流环天线能够在工作时产生均匀的电场(或者闭合的磁流环)进行辐射,结合前述说明,因此该磁流环天线能够提供较一般具有不均匀电场的电场型天线更好的辐射性能。
在优选实施例中,天线辐射枝节与参考地之间设置磁介质材料,由于上图8所示的磁流环天线在天线辐射枝节与参考地之间形成的电磁场主要以均匀的电场为主,射频能量通过电场耦合到电子设备参考地所在的地板,而电场耦合能量在穿过磁介质材料时损耗为零,即磁介质材料对形成的均匀电场不产生损耗的影响,因此,该磁流环天线在辐射时性能相对于现有不均匀电场的电场型天线具有更佳的辐射性能。
需要说明的是,在本申请的不同实现中,根据磁流环天线的组成结构的差异,可以将磁流环天线划分为磁流环线天线和磁流环槽天线。其中,磁流环线天线可以包括磁流环单极子天线,磁流环偶极子天线等。磁流环槽天线可以包括磁流环左手天线,磁流环缝隙天线等。
在磁流环线天线上,可以设置有并联的第一电感,由此实现如图8所示的工作机制。在一些实现中,在磁流环线天线的辐射体上还可以串联有一个或多个电感,从而提升磁流环线天线的辐射性能。
与磁流环线天线对应的,在磁流环槽天线上,可以设置有串联的第二电感,由此实现如图8所示的工作机制。在一些实现中,在磁流环槽天线的辐射体上还可以串联有更多电感,从而提升磁流环线天线的辐射性能。
可以看到,磁流环槽天线和磁流环线天线均在磁流环天线的辐射体上的至少一个末端设置有电感接地。在本申请实施例中,在磁流环天线工作在不同的频段时,该设置在末端接地的电感大小可以是不同的。
例如,在该磁流环线天线工作在LB时,电感的感值可以位于5nH到47nH的范围内。在该磁流环线天线工作在MB时,电感的感值可以位于1nH到33nH的范围内。在该磁流环线天线工作在HB时,电感的感值可以位于0.5nH到10nH的范围内。
图9示出了几种可能的磁流环天线的示意。
图9中的(a)示出了一种磁流环单极子天线。该磁流环单极子天线可以包括辐射体B1,B1的一端可以通过电感L M1接地,B1的另一端可以与馈电点连接。在该天线工作在基模的情况下,该B1的长度可以与工作波长的1/4相关。比如B1的长度可以小于工作波长的1/4。
图9中的(b)示出了一种磁流环偶极子天线。该磁流环偶极子天线可以包括辐射体B2和B3。B2可以与B3通过馈电点连接。B2远离B3的一端可以通过电感L D1接地,B3远离B2的一端可以通过电感L D2接地。在一些实施例中,B2和B3的设置可以关于馈电点对称。在该天线工作在基模的情况下,该B2(或B3)的长度可以与工作波长的1/4相关。比如B2的长度可以小于工作波长的1/4。又如,B3的长度可以小于工作波长的1/4。又如,B2和B3构成的该天线的辐射枝节的长度可以小于工作波长的1/2,大于工作波长的1/4。
图9中的(c)示出了一种磁流环左手天线。该磁流环左手天线可以包括辐射体B4。该B4的一端可以接地,另一端可以连接左手馈电。该左手馈电的形式可以参考如图6所示的左手馈电。在B4上可以串联有电感L C1
图9中的(d)示出了一种磁流环缝隙天线。该磁流环缝隙天线可以包括辐射体B5和B6。该B5与B6可以通过馈电点连接。B5远离B6的一端可以接地,B6远离B5的一端可以接地。这样,B5和B6与参考地就可以围成一个缝隙进行辐射。在本示例中B5上可以串联有电感L S1,B6上可以串联有电感L S2
在图9的示例中,是以通过直馈的形式进行激励为例进行说明的,在本申请的另一些实施例中,该磁流环天线还可以通过耦合馈电的形式进行激励的。示例性的,图10示出了一种耦合馈电的磁流环单极子天线的示意图。如图10所示,该天线的辐射体B11的两端都可以通过电感(如L CM1和L CM2)接地。在辐射枝节与参考地之间可以设置有馈电枝节CB11,该CB11的两端可以悬空设置,该CB11可以与馈电点连接,比如馈电点可以设置在CB11的中心位置。由此即可实现对磁流环天线的激励,使得B11进行具有磁流环辐射特征的辐射。应当理解的是,对于其他磁流环天线,也可以通过耦合馈电的形式进行激励。馈电枝节的结构也可以是多种的。具体可以参考以下专利申请:申请号202111034604.4,申请号202111034603.X,申请号202111034611.4,以及申请号202111033384.3。此处不再赘述。
本申请实施例提供的高隔离度的天线方案中,可以在包括多个天线的天线系统中,使用上述示例中提供的电流环天线和/或磁流环天线,和/或现有的天线组成天线对,该天线对可以具有较高的隔离度。同时由于电流环天线/磁流环天线提供的较好的辐射性能,因此在具有较高隔离度的同时,也能够保证包括该天线对的天线系统的辐射性能。
在本申请实施例中,两个或多个天线的相对位置关系可以包括串联、并联、相对,以及正交的位置关系。以两个天线为例,串联的位置设置可以包括两个或多个天线设置在电子设备的同一个边上,各个天线在该边上的投影均不重合。并联的位置设置可以包括两个或多个天线设置在电子设备的同一个边上,并且并联的两个天线在所设置的边上的投影有至少部分重合。在一些实施例中,并联的两个天线的辐射体所在平面正交。相对的位置设置可以包括两个天线设置在电子设备的两个相对的边上。正交的位置设置可以包括两个天线设置在电子设备的两个相邻的两个边上。
应当理解的是,基于共模/差模的不同区分,现有天线可以至少包括共模(Common Mode,CM)天线,差模(Differential Mode,DM)天线等。基于实现形式的不同,CM天线和DM天线又可以细分为CM线(Wire)天线,CM槽(Slot)天线,以及DM线天线和DM槽天线。其中,在一些实施例中,CM slot可以通过反对称馈电进行激励的。对应的,DM slot可以是通过对称馈电进行激励的。
在本申请实施例中,以高隔离天线对包括两个天线为例。其中至少可以包括一个电流环天线或者磁流环天线。高隔离天线对中的另一个天线可以为电流环天线或磁流环天线或CM天线或DM天线。以下表1示出了不同天线形式在并联设置的情况下,天线对中两个天线的辐射组合效果的示意。为了便于说明,以两个天线并联设置在电子设备的一个边的中心位置为例。
表1
Figure PCTCN2022114817-appb-000001
如表1所示,电流环天线和以下任一种天线可以构成高隔离的效果:磁流环天线,CM线天线,以及DM槽天线。
磁流环天线和以下任一种天线可以构成高隔离的效果:电流环天线,DM线天线,CM槽天线。
上述电流环天线或者磁流环天线与其他天线构成高隔离的效果,可以通过激励地板上正交的(或接近正交的)电流,从而形成正交的空间场分布获取。在具体实现中,上述具有高隔离特征的天线对构成,可以通过串联或并联或相对的位置设置,实现高隔离的效果。
此外,在表1中还示出了不同于高隔离效果的强耦合天线对的可能组成。需要说明的是,具有高隔离效果的天线对中的两个天线,能够在工作的过程中,分别激励地板上正交的电流,因此通过串联或并联或相对等位置设置,就能够获取高隔离的效果。对应的,强耦合的天线对中的两个天线,在工作过程中能够激励地板上平行或接近平行的电流,因此可以通过位置上的正交设置,实现强耦合天线对的高隔离特性。其中,强耦合的关系可以为两个辐射系统(如两个天线)同时工作时,会产生显著的相互影响,比如正向叠加,或者负向叠加等。例如,两个天线同时工作时,所分别激励的地板电流的方向相同或接近相同,由此即可对应到强耦合的关系。
如表1所示,在并联的位置关系下,具有强耦合特性的天线组合可以包括:
电流环天线与以下天线中的任一种构成的天线组合:电流环天线,DM线天线,CM槽天线。
磁流环天线与以下天线中的任一种构成的天线组合:磁流环天线,CM线天线,DM槽天线。
应当理解的是,在串联和相对的位置设置情况下,各个天线激励地板电流的情况与并联类似,因此,在串联或者相对的位置设置下,也能够获取与上述并联的位置关系相应的高隔离或者强耦合特性。
以下首先结合附图对串联,并联,相对,正交等位置设置进行示例性说明。
在一些实施例中,如图11所示,为天线对中包括的两个天线(如天线A1和天线A2)的串联分布。在串联分布的场景下,天线A1和天线A2可以分别位于电子设备的同一个边上。此外,串联分布的天线A1和天线A2可以位于该同一边上的不同位置。也就是说,天线A1和天线A2在向电子设备中心垂线方向的投影互不重叠。结合图11,天线A1和天线A2可以分布在电子设备的顶部边上,同时,天线A1和天线A2设置在同一近似直线上,类似于一前一后串在该直线上,因此该天线A1和天线A2的类似分布,本发明称之为串联分布。这样,天线A1和天线A2位于该顶部边上的X轴不同位置。在另一些示例中,串联分布的天线A1和天线A2还可以一起位于电子设备的侧边上。这样,天线A1和天线A2位于该侧边上的Y轴不同位置。或者,串联分布的天线A1和天线A2还可以一起位于电子设备的底边上。这样,天线A1和天线A2位于该底部边上的X轴不同位置。
在另一些实施例中,如图12所示,为天线对中包括的两个天线(如天线B1和天线B2)的并联分布。天线B1和天线B2可以分别位于电子设备的同一边上,如顶边上,同时,天线B1和天线B2在所述同一边,如顶边,的投影部分或者完全重叠,因此该天线B1和天线B2的分布,本发明称之为并联分布。结合图12,天线B1和天线B2可以并联分布在电子设备的顶部边上。天线B1和天线B2可以在向电子设备中心垂线方向(即Y轴负方向)的投影有部分或全部重叠。在另一些示例中,并联分布的天线B1和天线B2还可以一起位于电子设备的侧边上。天线B1和天线B2可以在向电子设备中心垂线方向(即X轴正方向或负方向)的投影有部分或全部重叠。在另一些示例中,并联分布的天线B1和天线B2还可以一起位于电子设备的底边上。天线B1和天线B2可以在向电子设备中心垂线方向(即Y轴正方向)的投影有部分或全部重叠。
在另一些实施例中,如图13A所示,为天线对中包括的两个天线(如天线C1和天线C2)的相对分布。天线C1和天线C2分别位于电子设备的两条相对的边上,该天线C1和天线C2的分布,本发明称之为相对分布。在一些实现中,天线C1和天线C2在沿所述两条相对的边中任意一条边上的投影至少部分重合,最佳实施例是,天线C1和天线C2在沿所述两条相对的边中任意一条边上的投影完全重合,也就是说,天线C1和天线C2完全相对设置在所述电子设备的两条相对的边上。在如图13A的示例中,天线C1和天线C2可以相对分布在电子设备的左侧边和右侧边。天线C1和天线C2可以在沿X轴方向的投影有至少部分重合。在另一些示例中,相对分布的天线C1和天线C2还可以分别位于电子设备的顶边或底边。天线C1和天线C2可以在沿Y轴方向的投影有至少部分重合。
在另一些实施例中,如图13B所示,为天线对中包括的两个天线(如天线D1和天线D2)的正交分布。天线D1和天线D2分别位于电子设备的相邻的两个边上,该天线D1和天线D2的分布,本发明称之为正交分布。结合图13B,天线D1可以位于电子设备的顶边,对应的天线D2可以位于电子设备的侧边。在另一些示例中,天线D1可以位于电子设备的侧边,对应的天线D2可以位于电子设备的顶边或底边。在另一些实施例中,天线D1可以位于电子设备的底边,对应的天线D2可以位于电子设备的侧边。
可以理解的是,上述图11-图13B的相对位置关系说明,还可以描述为平行和正交 的差异。比如,图11所示的串联分布,图12所示的并联分布,图13A所示的相对分布,两个天线所在电子设备的边为同一个边或者互相平行的两个边。因此,在本申请实施例中,串联分布、并联分布以及相对分布也可以称为平行分布。对应的,如图13B所示的正交分布,两个天线所在电子设备的两个相邻的边可以是互相垂直或接近垂直等非平行的。
结合前述不同类型天线的组合构成高隔离特性的说明,在一些实施例中,电流环天线与磁流环天线或CM线天线或DM槽天线;磁流环天线与电流环天线或DM线天线或CM槽天线,可以通过平行分布的形式,获取高隔离特性。对应的,电流环天线与电流环天线或CM槽天线或DM线天线;磁流环天线与磁流环天线或DM槽天线或CM线天线,可以通过正交分布的形式,获取高隔离特性。
此外,上述示例中均以包括两个天线的高隔离天线对的高隔离特性的获取为例进行说明。本申请实施例还提供包括三个或更多天线的高隔离天线组的高隔离特性的获取及其工作机制。具体实现将在后续说明中依次详述。
示例性的,图13C示出了几种不同的CM天线和DM天线的示意。在本示例中,根据天线辐射特征,可以将CM天线/DM天线划分为线天线(Wire)和槽天线(Slot)。
如图13C中的(a)所示,CM线天线可以包括辐射体BCM1和辐射体BCM2,BMC1和BMC2相对设置的一端可以分别设置有馈电端口。比如,以BCM1设置在BCM2左侧为例,在BMC1辐射体的右端可以设置有端口a1,在BCM2的左端可以设置有端口a2。BCM1以及BCM2远离端口a1和a2的一端分别悬空设置。在该CM线天线工作时,可以向端口a1和端口a2馈入对称馈电信号(即等幅同相的信号),实现对该CM线天线的馈电。需要说明的是,如图13C中的(a)仅为一种CM线天线的示例,在其他实现中CM线天线的结构组成还可以不同。比如,该BCM1和BCM2还可以是连接的,在BCM1和BCM2连接处可以设置有馈电点,从而实现与如图13C中的(a)所示结构类似的辐射功能。
如图13C中的(b)所示,CM槽天线可以包括两个辐射体,如BCM3和BCM4。BCM3和BCM4有一端相对设置,该相对设置的一端可以分别设置端口,比如,在BCM3靠近BCM4的一端设置端口b1,在BCM4靠近BCM3的一端设置端口b2。在该CM槽天线工作时,可以分别向端口b1和端口b2馈入反对称馈电信号(即等幅反相的信号),实现对该CM槽天线的馈电。BCM4远离BCM3的一端接地,对应的,BCM3远离BCM4的一端接地。需要说明的是,如图13C中的(b)仅为一种CM槽天线的示例,在其他实现中CM槽天线的结构组成还可以不同。比如,BCM3和BCM4相对设置的两个端分别与馈电点的正极和负极连接,从而实现反对称馈电信号的馈入。
如图13C中的(c)所示,DM线天线可以包括两个辐射体BDM1以及BDM2。BDM1上远离BDM2的一端悬空。对应的,BDM2上远离BDM1的一端悬空。类似于前述CM线天线,在BDM1和BDM2互相靠近的一端可以分别设置端口。比如,在BDM1靠近BDM2的一端可以设置端口c1,在BDM2靠近BDM1的一端可以设置端口c2。不同于CM线天线上馈入的对称馈电信号,在该DM线天线工作时,可以分别向端口c1和端口c2馈入反对称馈电信号。从而实现对该DM线天线的馈电。应当理解的是,如图13C中的(c)仅为一种DM线天线的示例,在其他实现中DM线天线的结构组成还可以不同。比如,对BDM1和BDM2的反对称馈电信号可以通过将BDM1和BDM2相对的一端分别连接馈电点的正极和 负极实现。
如图13C中的(d)所示,DM槽天线可以包括两个辐射体,如BDM3和BDM4。BDM3和BDM4有一端相对设置,两个辐射体互相远离的一端分别接地。该相对设置的一端可以分别设置有端口。比如,在BDM3靠近BDM4的一端可以设置有端口d1,在BDM4靠近BDM3的一端可以设置有端口d2。在该DM槽天线工作时,可以分别向端口d1和端口d2馈入对称馈电信号,实现对DM槽天线的激励。应当理解的是,如图13C中的(d)仅为一种DM槽天线的示例,在其他实现中DM槽天线的结构组成还可以不同。比如,对BDM3和BDM4可以是互相连接的,在连接的位置可以设置有一个馈电点,通过该馈电点,可以对该DM槽天线进行对称馈电。
应当注意到,在本申请实施例提供的高隔离天线方案中,由于使用了至少一个电流环天线或磁流环天线,因此能够提供较好的辐射性能。
无论是包括两个天线的高隔离天线对,还是包括更多天线的高隔离天线组,其高隔离特性的产生,大多是基于对地板激励的电流实现正交而产生的。
示例性的,结合图14,在一些实施例中,以高隔离天线对为例。其中一个天线(如天线1)可以激励地板上的横向电流,另一个天线(如天线2)可以激励地板上的纵向电流。由于地板上的横向电流和纵向电流是正交的,因此对应的空间场分布也具有正交特性。那么,天线1和天线2同时工作时,即使有部分或全部频段重合,由于激励地板产生的正交的空间电磁场在进行辐射时,相互干扰较小,因此隔离度可以得到有效的保证。需要说明的是,在本申请的一些实现中,天线1和天线2激励的电流也可以不是横向或纵向的。比如,天线1激励的电流可以为指向右下方的,天线2激励的电流可以是指向左下方的,这样,两个电流也可以具有正交的关系,由此也可以使得两个天线具有高隔离的特性。
对于高隔离天线组而言,其中可以包括至少两个天线可以构成分布式天线结构,该分布式天线结构能够与其他至少一个天线分别激励地板上的正交电流,其效果类似于如图14所示的电流分布,从而获取正交的空间场结构,由此实现高隔离。
本申请实施例提供的方案,在能够提供较好的隔离度的同时,还能够基于电流环天线和/或磁流环天线的优秀的辐射性能,为天线对提供较好的辐射性能。
应当理解的是,天线在进行工作过程中,可以通过激励地板进行更加有效的辐射。一般而言,在天线位置与地板本征模相匹配的情况下,能够更加有效地激励地板辐射。
本示例中,天线可以根据其辐射特性区分为电场型天线和磁场型天线。其中,电流环天线为一种磁场型天线,对应匹配地板本征模的电流分布特征。应当理解的是,磁场型天线在放置在地板本征模的电流分布较大点位置时,能够更好地激励地板电流,在地板上激励较强的电流,较强的电流能够对应产生较强的磁场,由此使得地板的辐射可以为天线的辐射提供较好的帮助。也就是说,地板的较好的辐射可以作为天线辐射的一部分,使得天线能够获取较好的辐射性能。即,在对应频段下,将电流环天线设置在地板本征模的高电流分布位置,能够更加有效地激励地板进行辐射,从而获取较好的电流环天线的辐射性能。对应的,磁流环天线为一种电场型天线,对应匹配地板本征模的电场分布特征。即,在对应频段下,将磁流环天线设置在地板本征模的高电场分布位置,能够更加有效地激励地板进行辐射,从而获取较好的磁流环天线的辐射性能。
示例性的,图15示出了地板本征模在低频(如0.85GHz),中频(如1.97GHz),以及高频(如2.32GHz)的电流分布情况。可以看到,在不同频率下,地板本征模对应的电流分布是不同的。比如,0.85GHz下较强的电流分布在地板的x向两端。1.97GHz下较强的电流分布向y向正方向以及反方向汇聚,形成如图15所示的四个强电流分布区域。2.32GHz下较强的电流分布进一步向y轴正方向以及负方向汇聚,形成如图15所示的在地板顶部以及底部两个较强的电流区域。对于磁场型天线而言,如电流环天线等,可以通过设置在在对应频率下地板电流较强的区域,使得天线工作时能够更好地激励地板,从而获得更好的辐射性能。
图16示出了地板本征模在低频(如0.85GHz),中频(如1.97GHz),以及高频(如2.32GHz)的电场分布情况。可以看到,在不同频率下,地板本征模对应的电场分布也是不同的。比如,0.85GHz下较强的电场分布在地板的y向两端。1.97GHz下较强的电场分布在地板的y向两端以及地板y向中间区域。2.32GHz下较强的电场分布趋于边缘,分布在如图16所示的四个边缘区域。对于电场型天线而言,如磁流环天线等,可以通过设置在在对应频率下地板电场较强的区域,使得天线工作时能够更好地激励地板,从而获得更好的辐射性能。
以下示例中将结合不同天线对应的本征模匹配特性,对本申请实施例提供的高隔离度天线对的设置方案进行举例说明。
首先,对平行分布的高隔离天线方案进行说明。
示例性的,图17A示出了本申请实施例提供的一种串联分布的具有一定隔离度天线对的示例。在本示例种,该天线对可以包括天线A1和天线A2。其中,天线A1和天线A2中可以包括至少一个电流环天线和/或磁流环天线。在本示例中,以天线A1为磁流环天线M11,天线A2为磁流环天线M12为例。其中,在一些实现中,磁流环天线M11和/或可以为如图10所示的耦合馈电的磁流环单极子天线。比如,磁流环天线M11可以包括一个辐射体B11,辐射体B11的一端可以设置有馈电点,辐射体B11的另一端可以通过电感L M1接地。类似的,磁流环天线M12可以包括一个辐射体B12,辐射体B12的一端可以设置有馈电点,辐射体B12的另一端可以通过电感L M2接地。在一些实施例中,磁流环天线M11和磁流环天线M12可以左右镜像设置,比如,磁流环天线M11的馈电点和磁流环天线M12的馈电点可以分别设置在两个天线互相靠近的一端。由此能够更好地激励地板电流的正交性,获取更好的隔离度。
结合对图15以及图16中对地板本征模的说明,磁流环天线作为一种电场型天线,在工作在中高频的情况下,可以设置在电子设备(如手机)的左上角或右上角,由此激励地板进行较好的辐射,以使得磁流环天线M11可以具有较好的辐射性能。
应当理解的是,磁流环天线在工作过程中,可以在地板上激励如图17B中的(a)所示的电流方向,可以看到,在接近天线的地板区域,电流方向接近垂直向下,因此磁流环天线与能够激励横向电流的电流环天线或者DM线天线或者CM槽天线形成高隔离效果。而在逐渐远离天线所在边的位置,电流在水平方向的分量逐渐增加。因此,两个串联分布的磁流环天线也能够具有较好的隔离度。比如,参考如图17B中的(b),在电子设备的顶边的左右两端可以分别设置磁流环天线,其激励的地板电流流向可以分别为电流流向1和电流流向2,可以看到,在靠近天线所在边的位置,两个天线激励的电流 的纵向分量更多,而在逐渐远离天线所在边的位置(如图17B所示的区域1),随着横向分量的逐渐增加,两个天线产生的部分电流流向的夹角逐渐接近90°,因此,在该区域对应的这部分电流激励的空间场分布,就具有接近正交的特性。从而使得在该空间场分布对应的方向上,两个天线可以获取相对较好的隔离度。
需要说明的是,如图17B的说明中,均以磁流环天线设置在电子设备的一边的靠近末端为例进行说明的。由于磁流环天线设置的位置并非处于所在边的中心位置,因此天线相对于参考地处于不平衡的状态,其产生的电流也会出现横向分量与纵向分量同时存在的情况。相对而言,在磁流环天线设置在所在边的中心位置的情况下,磁流环天线所激励的地板电流的纵向分量就会远大于横向分量,由此使得磁流环天线能够激励较为单一的纵向电流的效果。应当理解的是,对于其他的设置在横边上能够产生纵向电流的天线而言,类似于上述磁流环天线的说明,在该天线设置在所在边的中心位置时,则激励的地板电流方向较为单一。在该天线设置在所在边的靠近末端的位置时,则激励的地板电流就会同时包括横向电流和纵向电流。
以下以如图17A所示的组成为例,通过电流仿真对上述高隔离的分析进行验证说明。
在本示例中,如图18所示,在当前时刻,由于两个磁流环天线并非设置在所在边的中心位置,因此激励的电流同时包括横向分量和纵向分量。天线A1(即磁流环天线M11)在工作时,可以激励手机地板上向左下方的电流。天线A2(即磁流环天线M12)在工作时,可以激励手机地板上向右下方的电流。可以看到,两个磁流环天线分别激励的地板电流虽然不是完全横向或纵向的,但是依然具有部分电流正交的特征。因此,具有如图17A所示的组成的天线对可以通过部分激励正交的地板电流获取正交空间场分布。
结合图19所示的远场方向图示意,可以看到,在相同时刻,天线A1激励的地板向左下方的电流可以产生向右下方的空间场分布。对应的,天线A2激励的地板向右下方的电流可以产生向左下方的空间场分布。也就是说,两个天线在激励过程中可以分别通过正交的空间场分布进行信号的传输。由于空间场分布的正交关系,因此两个天线可以具有较好的隔离度。此外,本申请实施例提供的串联分布的天线对,由于使用了电流环天线和/或磁流环天线,因此能够提供较好的辐射性能。
示例性的,参考图20示出的S参数仿真。在当前场景下,天线A1和天线A2的回波损耗都达到-10dB,因此两个天线都具有较好的辐射性能。而通过仿真可以看到,用于标识两个天线隔离度的S12,则处于-15dB之下,因此两个天线的隔离度较好,能够应用在电子设备的天线设置中,如果两个天线激励的地板电流完全正交,则隔离度会进一步提高。
继续参考图21,示出了当前场景下的两个天线的效率对比。如图21中的(a)所示,从辐射效率的角度而言,天线A1和天线A2在1.5GHz之后都超过-5dB,两个天线由于镜像设置,因此辐射性能相当,辐射效率曲线基本重合。此外,如图21中的(b)所示,从系统效率的角度而言,天线A1和天线A2的峰值效率都超过-6dB,带宽也能够有效地覆盖至少一个工作频段。
以上说明中,是以天线对包括两个磁流环天线为例进行说明的。其中的电流环天线和/或磁流环天线可以为耦合馈电或者直馈。在本申请的另一些实施例中,串联分布的 天线对还可以包括其他能够激励地板横向电流的天线以及能够激励地板纵向电流的天线。
示例性的,在一些实施例中,串联分布的天线对中可以包括一个电流环天线,以及CM线天线或者DM槽天线中的任一种。其中,电流环天线可以激励地板上的与电流环天线所在边平行的电流,对应的,CM线天线或者DM槽天线能够激励地板上的与电流环天线所在边垂直(或接近垂直)的电流。由此形成高隔离特性。
在另一些实施例中,串联分布的天线对中可以包括一个磁流环天线,以及DM线天线或者CM槽天线中的任一种。其中,磁流环天线可以激励地板上的与磁流环天线所在边垂直(或接近垂直)的电流,对应的,DM线天线或者CM槽天线能够激励地板上的与磁流环天线所在边平行(或接近平行)的电流。由此形成高隔离特性。
例如,如图22A中的(a)所示,为其他形成高隔离特性的天线对,在电子设备中可以设置有串联分布的直馈的电流环天线和磁流环天线,电流环天线和磁流环天线所分别激励的地板电流也能够实现部分正交,由此获取较好的隔离度。如图22A中的(b)所示,以CM线天线为单极子天线为例,在电子设备中可以设置有串联分布的一个直馈的电流环天线和一个单极子天线。
而由于其他能够激励纵向电流的天线形式(如CM线天线等)的地板电流激励情况与磁流环天线类似,因此,磁流环天线也可以与包括CM线天线以及DM槽天线在内的天线形式在一定方向上构成高隔离的效果。该串联分布的高隔离天线形式也应在本申请实施例的保护范围之内。
需要说明的是,在上述示例中,均以两个天线组成高隔离天线对为例进行说明。在本申请的另一些实现中,还可以使用更多天线组成高隔离的效果。
示例性的,高隔离天线可以由三个天线或更多天线组成。其中,以由三个天线为例。该三个天线中的两个可以等效看作一个分布式天线结构。这样,该分布式天线结构与其余的天线可以在串联分布的状态下,通过激励地板的正交电流获取高隔离的效果。在本申请中,可以将由三个或三个以上天线组成的具有高隔离特性的天线组称为高隔离天线组。
作为一种示例,图22B示出了由三个天线组成的高隔离天线组的几种示例。如图22B中的(a)所示,该示例中的高隔离天线组的三个天线可以包括两个磁流环天线:磁流环天线M13,磁流环天线M14,以及一个电流环天线E12。该磁流环天线M13和磁流环天线M14设置在电子设备的同一边上,可以在电子设备的任一边上。在磁流环天线M13和磁流环天线M14之间可以设置有该电流环天线E12。
在馈电时,两个磁流环天线(如磁流环天线M13和磁流环天线M14)可以采用对称馈电(等幅同相)的形式,形成一个单端口的分部式天线结构1。也就是说,馈入磁流环天线M13和磁流环天线M14的馈电信号是等幅同相的。这样,两个磁流环天线在工作时,构成一个分布式天线结构1,该分布式天线结构1在对称馈电的情形下,两个磁流环产生的地板电流,如图18所示,一个朝左下方,一个朝右下方,两者合并之后,横向电流相互抵消,主要以垂直向下的电流为主。而电流环天线E12激励产生的地板电流主要以横向电流为主,参见图5,因此,该分布式天线结构1产生的地板电流与电流环天线E12产生的地板电流具有很好的正交特性,从而使得该分布式天线结构1与电流环 天线E12构成高隔离的天线对的效果。
参考图22C,示出了具有如图22B中的(a)所示组成的高隔离天线组的方向图示例。图22D示出了具有如图22B中的(a)所示组成的高隔离天线组的端口隔离度示意。其中,分布式天线结构1可以对应双端口中的一个,电流环天线E12可以对应双端口中的另一个。如图22D所示,隔离度非常好,最高点也低于-120dB。因此充分证明具有如图22B中的(a)所示组成的高隔离天线组的高隔离特性。此外,由于组成该高隔离天线组的天线为磁流环天线和电流环天线,结合前述对电流环天线和磁流环天线的说明,该高隔离天线组也具有较好的辐射特性。其具体情况参考前述示例,此处不再赘述。
继续参考图22B。如图22B中的(b)所示,该示例中的高隔离天线组的三个天线可以包括两个电流环天线:电流环天线E13,电流环天线E14,以及磁流环天线M15。该电流环天线E13,电流环天线E14设置在电子设备的同一边上,可以在电子设备的任一边上。在电流环天线E13和电流环天线E14之间设置有该磁流环天线M15。
类似于前述图22B中的(a)的说明,在馈电时,两个电流环天线(如电流环天线E13和电流环天线E14)可以采用对称馈电(等幅同相),形成一个单端口的分布式天线结构2,也就是说,馈入电流环天线E13和电流环天线E14的馈电信号可以是等幅同相的。这样,两个电流环天线在工作时,可以构成一个分布式天线结构2,该分布式天线结构2可以与磁流环天线M15构成高隔离的天线对的效果,原因在于两个电流环天线构成的分布式天线结构2激励产生的横向地板电流,与磁流环天线M15激励产生的纵向地板电流具有较好正交特性。
结合前述对图22B中的(a)的高隔离以及较好辐射特性的说明,该具有如图22B中的(b)所示组成的高隔离天线组也可以具有较好的高隔离以及较好辐射特性。
可以看到,上述图22B-图22D的示例中,是以高隔离天线组中的各个天线采用对称馈电的形式进行馈电获取两个高隔离的工作模式为例进行说明的。
在本申请的另一些实现中,该高隔离天线组还可以包括相同类型的天线,该相同类型的天线可以根据馈电差异区分为两组。
比如,结合图22E中的(a),以高隔离天线组包括三个电流环天线为例。该三个电流环天线(电流环天线E15、E16、E17)可以串联分布在电子设备的一个边上。处于两边的电流环天线可以构成分布式天线对3。电流环天线E15和电流环天线E17采用反对称馈电(等幅反相),形成一个单端口分布式天线结构3。这个形成的单端口结构3与位于中间的电流环天线E16形成双端口天线结构。也就是说,在f1直接馈入电流环天线E15的情况下,可以将与f1等幅反相的馈电信号(如通过反相器获取)馈入电流环天线E17,由此实现对电流环天线E15和电流环天线E17的反对称馈电。
这样,分布式天线对3和电流环天线E16就可以分别激励地板上正交的电流,从而获取高隔离特性。
示例性的,图22F示出了具有如图22E中的(a)所示组成的高隔离天线组的方向图示意。可以看到,位于中间位置的电流环天线E16在f1的激励下可以形成横向的空间场分布,而对应的位于两端的电流环天线E15和电流环天线E17构成的分布式天线对3可以在f2的反对称激励下形成纵向的空间场分布。由此可以获取两个正交的空间场分布,也就获取了高隔离的特性。
继续结合图22E,以高隔离天线组包括三个磁流环天线(如图22E中的(b))为例。磁流环天线(如磁流环天线M16和磁流环天线M18)采用反对称馈电(等幅反相),形成一个单端口分布式天线结构4。这个形成的分布式天线结构4与位于中间的磁流环天线M17形成双端口天线结构。也就是说,在f3直接馈入磁流环天线M16的情况下,可以将与f3等幅反相的馈电信号(如通过反相器获取)馈入磁流环天线M18,由此实现对磁流环天线M16和磁流环天线M18的反对称馈电。
这样,分布式天线对4激励产生的横向地板电流分布和磁流环天线M17激励产生的纵向地板电流形成正交的电流,从而获取高隔离特性。
结合前述说明,由于图22E中示出的两种高隔离天线组示例由电流环天线或磁流环天线组成,因此在具有高隔离特性的同时还能够提供较好的辐射性能。
此外,需要说明的是,上述图22B-图22E所示出的高隔离天线组中的组成,可以是任一种不同于前述示例中示出的电流环天线或者磁流环天线的组成,其馈电方式也可以是如上述示例中的直馈的形式,也可以是耦合馈电的形式。其能够达到的效果与上述说明中示出的效果类似,此处不再赘述。
通过上述说明,可以看到,在本示例提供的串联分布的情况下,在天线对中可以设置至少一个电流环天线和/或磁流环天线,由此在获取较好的辐射性能的同时,获取较好的隔离度,从而减少天线对中各个天线之间的相互影响,提升整体辐射性能。
以下结合附图对本申请实施例提供的并联分布的高隔离度天线对方案进行说明。继续以天线对中包括两个天线(如天线B1和天线B2),天线B1为磁流环天线M21,天线B2为电流环天线E21为例。在一些实施例中,如图23A所示,该磁流环天线M21可以为耦合馈电的磁流环天线,该电流环天线E21可以为耦合馈电的电流环天线为例。
如图23A所示,天线B2和天线B1可以在Y轴的轴向投影部分重合或全部重合。其中,天线B1可以为如图23A所示的磁流环天线。该磁流环天线M21可以具有如图10所示的结构组成。比如,该天线可以包括辐射枝节B11,B11的两端可以分别设置电感接地。如图23A所示,B11的两端可以分别设置电感L CM1和L CM2接地。该磁流环天线M21在通过耦合馈电时,还可以包括辐射枝节和参考地之间的馈电枝节CB11。需要说明的是,在另一些实施例中,该磁流环天线M21还可以为其他结构,具体参考上述关于磁流环天线的相关描述,此处不再赘述。
此外,天线B2可以为如图23A所示的电流环天线E21。该电流环天线E21可以具有如图7所示的结构组成。比如,该天线可以包括辐射枝节B12,B12的两端可以分别设置电容接地。如图23A所示,B12的两端可以分别设置电容C CM1和C CM2接地。该电流环天线E21在通过耦合馈电时,还可以包括辐射枝节和参考地之间的馈电枝节CB12和CB13。需要说明的是,在另一些实施例中,该电流环天线E21还可以为其他结构,具体参考上述关于电流环天线的相关描述,此处不再赘述。
作为一种可能的实现,图23B示出了一种具有如图23A所示拓扑结构的并联分布的天线对的模型视图。可以看到,在本示例中,电流环天线E21可以设置在电子设备的顶部。该电流环天线E21的辐射体可以位于zox平面。磁流环天线M21也可以设置在电子设备的顶部,该磁流环天线M21的辐射体可以设置在平行于电子设备的xoy平面。也就是说,在该并联分布的情况下,两个天线的辐射体所在平面具有正交的关系。应当理解 的是,对于其他的并联分布的天线对,也可以通过分别将辐射体设置在两个正交的平面上实现在各自对应的产品中。
该具有并联分布的天线对,也具有较高的隔离度。比如,在本示例中,天线B1可以激励地板上的纵向电流,天线B2可以激励地板上的横向电流。结合图24所示的地板电流仿真可以验证。如图24所示,在当前场景下,天线B1所激励的地板电流为沿Y轴向上的纵向电流。对应的,天线B2激励的地板电流为沿X轴向右的横向电流。也就是说,天线B1和天线B2所激励的地板电流具有正交性,因此该示例中提供的天线B1和天线B2具有较好的隔离度。结合图25所示的远场方向图,也能够证明天线B1和天线B2工作过程中所激励地板工作状态的正交性。
通过上述说明,应当理解并联分布的天线B1和天线B2组成的天线对,由于激励地板的正交特性,因此可以具有较好的隔离度。其中,在本示例中,天线B1和天线B2组成的天线对可以包括一个电流环天线,以及一个磁流环天线。
由于电流环天线和磁流环天线的较好的辐射特性,即使在并联分布的场景下,也能够使得该天线对提供较好的辐射性能。
示例性的,结合图26,为S参数的仿真示意。可以看到天线B1以及天线B2的S11最深点均超过-10dB,对应的隔离度最差点约-42dB,能够满足电子设备中对于不同天线的隔离度要求。图27示出了该并联分布的天线对的效率仿真示意。如图27中的(a)所示,从辐射效率的角度,电流环天线的辐射效率峰值已经超过-1dB,对应的,磁流环天线的辐射效率也超过-4dB。如图27中的(b)所示,从系统效率的角度,电流环天线的系统效率峰值超过-1dB,对应的,磁流环天线的系统效率也超过-4dB。
也就是说,本示例提供的并联分布的天线对在具有较好隔离度的同时,能够提供较好的辐射性能(如包括辐射效率和/或系统效率等)。
上述说明中,是以并联分布的天线对设置在电子设备的顶部中间位置为例进行说明的。结合前述关于地板本征模的分布,该顶部中间位置能够较好地激励电流环天线的辐射,因此如图26和图27所示的效率示意中,电流环天线的效率相对较好,而磁流环天线的效率相对差一些。因此该位置适用于电流环天线性能需求较好的场景下。
在另一些实现中,可以通过移动天线对的位置,合理调整天线对中各个天线对地板的激励情况,从而灵活调整各个天线的辐射性能。示例性的,结合图28,以将并联分布的天线对设置在电子设备的左上角为例。可以理解的是,在该位置,磁流环天线能够更好地激励地板本征模,因此可以具有较好的辐射性能。
图29为具有如图28设置的天线对在工作时,各个天线的远场方向图示意。图30为S参数仿真示意。如图30所示,磁流环天线M21在该位置能够得到较好的激励,S11最深点已经超过-20dB,相较于天线对设置在顶部中间位置的情况下有显著的改善。而对应的,由于磁流环天线M21的性能的显著提升,对应频段的隔离度也有相应恶化,例如,S12的最差点已经接近-15dB,隔离度恶化的原因是由于并联天线对在移向电子设备的角落时,会导致磁流环天线M21激励的地板电流产生斜向分量,也即产生横向分量,从而使得正交性受到影响,进而影响隔离度。但是,即使隔离度有所恶化,隔离度也接近-15dB,因此该方案能够应用于电子设备中,而由于磁流环天线M21性能的提升,因此对于隔离度要求不是非常严格的场景,能够提供更好的辐射性能。
结合图31所示的效率仿真示意,可以看到,如图31中的(a)所示,磁流环天线M21的辐射效率由如图27所示的-4dB左右提升到了-2dB左右,有较明显的提升。对应的,电流环天线E21的辐射效率也保持在-1dB峰值左右。如图31中的(b)所示,磁流环天线M21的系统效率提升到了接近-2dB左右,而电流环天线E21的系统效率峰值超过-2dB。
因此,通过上述仿真验证,通过将并联分布的天线对移动到电子设备的左上角,能够显著提升磁流环天线M21的辐射性能,同时保证电流环天线E21的辐射性能不受较大影响。
以上对于并联分布的高隔离度天线对的介绍中,是以天线对包括耦合馈电的电流环天线和耦合馈电的磁流环天线为例进行说明的。在本申请的另一些实施例中,天线对中还可以包括直馈的电流环天线和/或直馈的磁流环天线。在本申请的另一些实施例中,天线对中还可以包括其他现有天线。比如上述示例中涉及的CM天线和/或DM天线。
示例性的,图32示出了一种并联分布的天线对的示意。在本示例中,该天线对可以包括如图7所示的耦合馈电的电流环天线E21(如天线B2),以及CM线天线(如天线B1)。天线B1和天线B2可以并联分布在电子设备的顶部边沿。即,在Y轴方向投影上天线B1和天线B2包括至少部分重叠或全部重叠。
在具有如图32所示组成的天线对在工作时,如图33所示,天线B1(即CM线天线)能够激励地板上的纵向电流,对应的,天线B2(即电流环天线E21)能够激励地板上的横向电流。也就是说,天线B1和天线B2能够激励地板上的正交电流。图34示出了该示例中各个天线的远场方向图示意。
以下通过S参数以及效率仿真进行说明。如图35所示,在天线B1和天线B2的工作频段基本重合的情况下,S11在1.6GHz附近基本重合。曲线最深点都超过了-10dB。S12所标识的隔离度在整个工作频段范围内都在-40dB以下,因此具有较好的隔离度。如图36中的(a)所示,在辐射效率的角度,电流环天线E21明显提供了更好的辐射性能。同时,现有的CM线天线也能够提供高于-6dB的辐射效率。因此两个天线所能提供的辐射能力都可以用于满足实际工作过程中的带宽覆盖。如图36中的(b)所示,从系统效率的角度,在当前环境匹配下,电流环天线E21(即天线B2)的峰值效率已经超过-1dB,对应的,现有的CM天线的峰值效率也超过了-6dB。
由此,即证明了具有如图32所示的由电流环天线E21和现有天线(如CM线天线)组成的并联分布的天线对,在具有较好隔离度的同时,也能够提供较好的辐射性能。
以下继续对包括电流环/磁流环天线以及现有天线组成的天线对,在并联分布场景下进行举例说明。
参考图37,在该示例中,天线B1可以为电流环天线E21。比如,该电流环天线E21可以具有如图7所示的组成。天线B2可以为DM槽天线,同样地,天线B2(即DM槽天线)能够激励地板上的纵向电流,对应的,天线B1(即电流环天线E21)能够激励地板上的横向电流。也就是说,天线B1和天线B2能够激励地板上的正交电流,二者具有较高隔离度。
在具有如图37所示组成的天线对在工作时,图38示出了该示例中各个天线的远场方向图示意。
以下通过S参数以及效率仿真进行说明。如图39所示,在天线B1和天线B2的工作频段基本重合的情况下,S11在1.6GHz附近基本重合。S12所标识的隔离度在整个工作频段范围内都在-60dB以下,因此具有较好的隔离度。如图40中的(a)所示,在辐射效率的角度,电流环天线E21明显提供了更好的辐射性能。同时,现有的DM槽天线也能够提供高于-7dB的辐射效率。因此两个天线所能提供的辐射能力都可以用于满足实际工作过程中的带宽覆盖。如图40中的(b)所示,从系统效率的角度,在当前环境匹配下,电流环天线E21(即天线B1)的峰值效率已经超过-4dB,对应的,现有的DM槽天线的峰值效率也超过了-8dB。
由此,即证明了具有如图37所示的由电流环天线E21和现有天线(如DM槽天线)组成的并联分布的天线对,在具有较好隔离度的同时,也能够提供较好的辐射性能。
可以理解的是,在与现有天线构成的高隔离天线对中,还可以包括一个电流环天线,与CM线天线或者DM槽天线组成的天线对。比如,如图41所示,电流环天线和单极子天线可以通过并联分布构成高隔离天线对。其能够激励的地板电流与前述说明中的串联分布的正交性类似,因此也能够具备高隔离的特性。此外,磁流环天线,与DM线天线或者CM槽天线组成的天线对,通过串联分布或者并联分布也能够在一些方向上产生正交的地板电流,提供较好的隔离度。结合如图32所示的CM线天线和电流环天线构成的高隔离天线对,该如图41所示的天线对,也可以理解为如图32所示高隔离天线对的小型化设计,比如,在对如图41所示结构的天线对进行左右镜像翻转之后,与如图41所示组合的天线进行拼接,即可获取接近如图32所示组成的高隔离天线对。也就是说,在如图32所示的高隔离天线对能够提供较好的隔离度以及辐射性能的情况下,其小型化设计,即如图41所示组成的天线对也能够提供较好的隔离度以及辐射性能。
通过上述图17A-图41的说明,可以理解的是,包括串联分布以及并联分布在内的平行分布的位置关系下,包括至少两个天线的高隔离天线对,能够通过激励地板上的正交电流(或者在局部激励正交的电流),从而获取高隔离特性。与之类似的,还可以通过两个天线的相对设置,获取高隔离特性。
示例性的,如图42所示,以包括两个天线的高隔离天线对为例。该两个天线可以为如图42所示的天线C1和天线C2。其中,该天线C1和天线C2可以设置在电子设备的互不相交的两个边上。比如,该天线C1和天线C2可以分别设置在手机的两个相对的侧边。该天线C1和天线C2还可以分别设置在手机的顶边和底边。此外,天线C1和天线C2在所设置的边上的投影可以是部分重叠或全部重叠的,比如天线C1和C2分别设置在两个相对的侧边,则在两个相对的侧边中的任意一个侧边上的投影部分重叠或者全部重叠;也可以是互相错开,即投影没有重叠部分的。如图42所示,天线C1和天线C2可以都设置为磁流环天线。
需要说明的是,在不同实现中,该天线C1和天线C2的具体实现可以不同。比如,作为一种示例,图43示出了本申请实施例提供的几种相对设置的高隔离天线对的具体示例。
如图43中的(a)所示,该示例中的高隔离天线对可以包括磁流环天线M41和磁流环天线M42。该磁流环天线M41和磁流环天线M42可以相对设置在电子设备的两个互不相邻的边上。比如,如图43中的(a)所示,该磁流环天线M41和磁流环天线M42可以 设置在电子设备的两个长边上(即左边和右边)上。在不同实现中,该磁流环天线M41和磁流环天线M42可以位于长边上的不同位置。比如,如图43中的(a)所示,该磁流环天线M41和磁流环天线M42可以设置在长边的中间位置相对设置。由此,在工作时磁流环天线M41和磁流环天线M42可以分别激励地板上的正交的电流,从而获取正交的空间场分布,进而获取高隔离特性。
与如图43中的(a)所示的机制类似的,如图43中的(b)所示,该示例中的高隔离天线对可以包括电流环天线E41和电流环天线E42。该电流环天线E41和电流环天线E42可以相对设置在电子设备的两个互不相邻的边上。比如,如图43中的(b)所示,该电流环天线E41和电流环天线E42可以设置在电子设备的两个长边上(即左边和右边)上。在不同实现中,该电流环天线E41和电流环天线E42可以位于长边上的不同位置。比如,如图43中的(b)所示,该电流环天线E41和电流环天线E42可以设置在长边的中间位置相对设置。由此,在工作时电流环天线E41和电流环天线E42可以分别激励地板上局部的正交的电流,从而获取正交的空间场分布,进而获取高隔离特性。
此外,如图43中的(c)所示,该示例中的高隔离天线对可以包括电流环天线E43和磁流环天线M43。该电流环天线E43和磁流环天线M43可以相对设置在电子设备的两个互不相邻的边上。比如,如图43中的(c)所示,该电流环天线E43和磁流环天线M43可以设置在电子设备的两个长边上(即左边和右边)上。在不同实现中,该电流环天线E43和磁流环天线M43可以位于长边上的不同位置。比如,如图43中的(c)所示,该电流环天线E43和磁流环天线M43可以设置在长边的中间位置相对设置。由此,在工作时电流环天线E43和磁流环天线M43可以分别激励地板上的正交的电流,从而获取正交的空间场分布,进而获取高隔离特性。
此外,上述图43的示例中,均以通过直馈的形式进行馈电为例进行说明的。在本申请的其他实现中,在如图43所示的高隔离天线对的相对位置关系(如相对设置)下,具有相同天线类型的天线对中的至少一个天线,还可以是通过耦合馈电的形式进行馈电的。
示例性的,以下以如图43中的(c)作为基础,对基于耦合馈电的相对设置的高隔离天线对进行举例说明。
如图44所示,该示例中,该天线对可以包括耦合馈电的电流环天线E44,以及与电流环天线E44相对设置的磁流环天线M44。在一些实现中,该电流环天线E44可以具有如图7所示的组成,该磁流环天线M44可以具有如图10所示的组成。
应当理解的是,图44的耦合馈电的示意是以如图43中的(c)为基础进行的,如图43中的(a)或如图43中的(b)中涉及的天线中也可以包括至少一个天线通过耦合馈电的形式进行馈电。此处不再详述。
如图44所示,基于上述分析,磁流环天线M44设置在左侧长边的中心时,其能够激励的地板电流中,横向电流分量将远大于纵向电流分量,由此获取如图44所示横向电流的效果。对应的,电流环天线E44能够激励地板上的纵向电流,磁流环天线M44和电流环天线E44激励的地板电流正交。由此获取高隔离的效果。
为了能够更清楚地对本申请实施例提供的天线方案的效果进行说明,以下以相对设置的高隔离天线对具有如图44所示的结构为例,结合图45A-图46对其工作机制以及 效果进行说明。
示例性的,图45A示出了电流环天线E44工作时,激励地板电流的情况。对比如图44所示的理论分析,结果完全一致。可以看到电流环天线E44能够在地板中心位置激励纵向电流。图45B示出了磁流环天线M44工作时,激励地板电流的情况。可以看到磁流环天线M44能够在地板中心位置激励横向电流。由此,在该地板中心位置,能够分别获取两个正交的电流,从而使得电流环天线E44和磁流环天线M44可以激励正交电流,获取高隔离的效果。
具有如图44所示的结构的天线组的远场方向图如图45C所示。图46示出了S参数仿真的结果,可以看到两个天线的双端口隔离度已经达到了-160dB之下,因此隔离度符合高隔离度要求。此外,S11示出两个天线的最深点也接近或到达-20dB,带宽也足以覆盖至少一个工作频段。因此,该具有如图44所示的结构能够在提供高隔离的同时提供较好的辐射性能。
此外,在如图43中的(a)以及如图43中的(b)的示例中,同时提供了由相同类型的天线构成的天线对也能够提供较好的隔离度。原因在于,两个天线之间的距离,相对于串联或并联的分布而言,距离较远,因此可以由于距离较远获取较好的隔离度。该两个示例中的隔离度均可达到约-20dB的效果。
需要说明的是,类似与前述串联分布和并联分布的方案介绍,在相对分布的方案中,电流环天线和磁流环天线还可以具有不同于上述示例中的结构,馈电形式也可以是不同于直馈的耦合馈电。其能够达到的效果类似,此处不再赘述。
由此,通过前述如图17A-图46的方案说明,可以理解的是,在包括串联分布,并联分布,以及相对分布的平行分布情况下,由于能够激励地板上的正交的电流,因此能够获取较好的隔离度。同时由于使用了电流环天线和/或磁流环天线,使得该天线方案同时还具有较好的辐射性能。
以下说明中,将结合附图对正交分布的情况,对具有如表1所示的强耦合的天线构成的天线对(天线组)的高隔离特性的获取,进行示例性说明。
在本示例中,电子设备上可以设置至少包括两个位置具有正交特性的天线的高隔离天线对构成高隔离。其中,该正交特性的位置可以为:两个天线分别设置在电子设备的相邻的两个边上。以电子设备为手机为例,一个天线可以设置在手机的短边上,另一个天线可以设置在手机的与该短边相邻的任一个长边上。
作为一种可能的实现,结合前述表1的说明,该正交分布的高隔离天线对可以包括如下组合的任一种:
一个天线为电流环天线,另一个天线为电流环天线,DM线天线,CM槽天线。或者,一个天线为磁流环天线,另一个天线为磁流环天线,CM线天线,DM槽天线。
在工作时两个天线就可以分别激励地板上的正交的电流,从而获取正交的空间场分布,进而获取高隔离特性。此外,由于高隔离天线对采用的电流环天线/磁流环天线,因此同时能够提供较好的辐射特性。
示例性的,在一些实施例中,该高隔离天线对可以包括两个电流环天线。例如,结合图47中的(a)所示,以两个电流环天线分别为电流环天线E31和电流环天线E32为例。在本示例中,该电流环天线E31和电流环天线E32可以为电流环单极子天线。在 另一些示例中,电流环天线E21和/或电流环天线E32还可以是其他形式的电流环天线。应当理解的是,在不同的实现中,电流环天线的馈电形式也可以是不同的,比如直馈或耦合馈电等。
在如图47中的(a)的示例中,电流环天线E31和电流环天线E32可以分别位于电子设备(如手机)的两个相邻的边上。以电流环天线E31设置在手机的顶部短边,电流环天线E32设置在手机的左侧长边为例。电流环天线E32可以设置在该左侧长边的两侧,如左侧长边的顶部或者底部。
这样,在由电流环天线E31和电流环天线E32组成的高隔离天线对工作时,电流环天线E31可以激励地板短边的横向电流,对应的,电流环天线E32可以激励地板长边的纵向电流。由此实现激励地板正交电流的效果,由此获取远场下的正交的空间场分布,进而获取高隔离的效果。
与上述图47中的(a)类似,在如图47中的(b)的示例中,是以磁流环天线为直馈的磁流环单极子天线为例进行说明的。在本申请的另一些实施例中个,磁流环天线M31和/或磁流环天线M32还可以是上述说明中涉及的任一种其他的磁流环天线,其馈电形式也不限于直馈,还可以是通过耦合馈电实现馈电的。
如上述示例的说明,是以电流环天线E32/磁流环天线M32设置在左侧长边的顶部为例进行说明的。可以理解的是,在高隔离天线对工作在中频(2GHz)附近时,地板对应的大电流点位于侧边的两侧,侧边中心位置的地板电流较小,因此,对于磁场型天线的电流环天线而言,在电流环天线E32设置在长边两侧的情况下,可以获取较好的性能。比如,在另一些实施例中,还可以将电流环天线E32设置在电子设备的长边底部,同样能够激励长边的纵向电流,从而获取与电流环天线E31的高隔离效果。类似的,还可以将电流环天线E32设置在手机的右侧长边对应的大电流位置,从而在获取较好的辐射性能的同时,还能够获取与电流环天线E31的高隔离效果。
以下以正交分布的高隔离天线对为如图47中的(b)的组成为例,对其性能进行说明。
示例性的,如图48所示,具有如图47中的(b)组成的正交分布的高隔离天线对,其产生的空间场分布近似于正交状态。可以理解的是,磁流环天线M31可以激励地板上的纵向电流。对应的,磁流环天线M32可以激励地板上的横向电流。而在本示例中,为了兼顾磁流环天线的性能,磁流环天线M32并未设置在电子设备侧边中间位置,因此激励的地板横向电流与水平方向并非绝对平行。但是,该由于两个天线产生的空间场的夹角接近90度,因此也能够产生高隔离的效果。
示例性的,结合图49中的S参数仿真效果,可以看到,两个天线的S11最深点均超过-5dB,带宽也足以覆盖一个工作频段。对应的,S21最差点接近-15dB。该隔离度也能够满足电子设备中两个天线之间的隔离度要求(最差-10dB),因此能够证实上述如图47中的(b)所示的两个磁流环天线能够组成较好辐射性能的高隔离天线对。
上述对于正交分布的说明中,是以设置在侧边的天线位于两端(如手机侧边顶部,或底部)为例进行说明的,在本申请的另一些实施例中,侧边的天线还可以设置在侧边中心位置。
示例性的,结合图50。如图46中的(a)所示,在高隔离天线对包括两个电流环 天线的情况下,设置在侧边的电流环天线E32可以是设置在侧边中心位置(或靠近中心位置)的。类似的,如图50中的(b)所示,在高隔离天线对包括两个磁流环天线的情况下,设置在侧边的磁流环天线M32可以是设置在侧边中心位置(或靠近中心位置)的。
结合图51,示出了具有上述如图50中的(b)所示的由两个磁流环天线组成的正交分布的高隔离天线对的方向图仿真示意。可以看到,设置在顶部中心的磁流环天线M31依然能够产生横向的空间场分布。对应的,设置在侧边中间位置的磁流环天线M32,能够在电子设备的上部区域和下部区域分别激励接近纵向的空间场分布,由此使得磁流环天线M31和磁流环天线M32能够激励正交的空间场分布,获取高隔离特性。此外,类似于前述说明,由于磁流环天线M31和磁流环天线M32本身具有较好的辐射特性,因此该具有如图50中的(b)所示的组成的高隔离天线对同时具有较好的辐射性能。
结合图52,示出了具有上述如图50中的(b)所示的由两个磁流环天线组成的正交分布的高隔离天线对的S参数仿真示意。可以看到,在磁流环天线M32移动到侧边中心位置之后,S11得到了较为明显的改善,最深点已经超过-20dB。此外,由于方向图的正交性增强,因此双端口隔离度也得到改善,最差点达到了-20dB左右。
与如图50中的(b)类似的,上述具有如图50中的(a)所示组成的高隔离天线对,也能够获得类似的高隔离特性以及较好的辐射性能。
在正交的高隔离天线对的实际应用过程中,可以根据具体环境的需求,灵活地设置侧边的电流环天线/磁流环天线的位置,从而获取高隔离特性。
上述对正交分布的高隔离天线方案的说明,均是以该天线方案中包括一个包括两个天线的天线对为例进行说明的。在本申请的另一些实施例中,该正交分布的高隔离天线方案中还可以包括更多天线。示例性的,该正交分布的高隔离天线方案中可以设置有包括三个或三个以上天线的高隔离天线组。在该高隔离天线组中可以包括两个或多个天线构成分布式天线结构。该分布式天线结构可以与高隔离天线组中的其他天线构成高隔离效果。
示例性的,结合图53A,为本申请实施例提供的一些正交分布的高隔离天线组的示意图。
如图53A中的(a)所示,该示例中的高隔离天线组可以包括三个天线。该三个天线分别为设置在顶部中间位置的电流环天线E33,设置在左侧长边(如左侧上端)的磁流环天线M33,以及设置在右侧长边(如右侧上端)的磁流环天线M34。两个磁流环天线(如磁流环天线M33和磁流环天线M34)采用对称馈电(等幅同相),形成一个单端口的分布式天线结构5。这个分布式天线结构5与位于中间的电流环天线E33形成双端口天线结构。示例性的,以通过馈电信号f5对磁流环天线M33进行馈电。此外,还可以通过该馈电信号f5对磁流环天线M34进行馈电。由此实现对磁流环天线M33和磁流环天线M34的对称馈电。此外,还可以通过馈电信号f6对电流环天线E33进行馈电。从而使得分布式天线结构5可以与电流环天线E33构成高隔离效果。
在另一些实施例中,如图53A中的(b)所示,该示例中的高隔离天线组可以包括三个天线。该三个天线分别为设置在顶部中间位置的电流环天线E36,设置在左侧长边(如左侧上端)的电流环天线E34,以及设置在右侧长边(如右侧上端)的电流环天线E35。两个电流环天线(如电流环天线E34和电流环天线E35)采用对称馈电(等幅同 相),形成一个单端口的分布式天线结构6。这个分布式天线结构6与位于中间的电流环天线E36形成双端口天线结构。示例性的,以通过馈电信号f7对电流环天线E34进行馈电。此外,还可以通过该馈电信号f7对电流环天线E35进行馈电。由此实现对电流环天线E34和电流环天线E35的对称馈电。此外,还可以通过馈电信号f8对电流环天线E36进行馈电。从而使得分布式天线结构6可以与电流环天线E36构成高隔离效果。
以下以图53A中的(a)的结构示意为例,结合图54和图55通过远场方向图以及S参数仿真对其高隔离特性以及较好的辐射性能进行说明。
结合图53B,示出了具有如图53A中的(a)的结构组成的天线组的电流示意。结合前述分析,磁流环天线在设置在所在边的末端的情况下,其激励的地板电流的横向分量和纵向分量均较为显著。如图53B所示,磁流环天线M33可以激励向右下方的电流,磁流环天线M34可以激励向左下方的电流。那么,在磁流环天线M33和磁流环天线M34同时工作进行对称馈电时,其激励的地板电流的水平分量由于方向相反,因此具有抵消效果。而垂直分量由于方向相同,因此可以互相叠加。这样,磁流环天线M33和磁流环天线M34同时工作时,就能够共同激励地板上的纵向电流。该纵向电流与电流环天线E33激励产生的横向电流具有很好的正交效果。由此提供高隔离的效果。
图54示出了具有图53A中的(a)的结构示意的天线方案在工作时的远场方向图分布。
图55示出了具有图53A中的(a)的结构示意的天线方案在工作时的S参数仿真示意。可以看到,电流环天线E33和磁流环天线M33和磁流环天线M34构成的分布式天线结构5的S11最深点均超过-10dB,其带宽也足以覆盖至少一个工作频段。对应的,从隔离度的角度看,两个天线结构的隔离度最差点也低于-40dB,因此具有较好的隔离度。
以下以图53A中的(b)的结构示意为例,结合图56和图57通过远场方向图以及S参数仿真对其高隔离特性以及较好的辐射性能进行说明。
图56示出了具有图53A中的(b)的结构示意的天线方案在工作时的远场方向图分布。
图57示出了具有图53A中的(b)的结构示意的天线方案在工作时的S参数仿真示意。可以看到,电流环天线E36和分布式天线结构6的S11最深点均接近-10dB,其带宽也足以覆盖至少一个工作频段。对应的,从隔离度的角度看,两个天线结构的隔离度最差点也低于-40dB,因此具有较好的隔离度。
上述图53A-图57中的正交分布的多个天线构成的高隔离天线组的馈电方式均为对称馈电,也就是说,对高隔离天线组中的多个天线可以同时进行等幅同相的馈电。
本申请实施例还提供另一类正交分布的多个天线构成的高隔离天线组,对该高隔离天线组中的不同天线(分布式天线结构)可以进行反对称馈电,从而获取高隔离特性。
示例性的,参考图58A,为本申请实施例提供的两种高隔离天线组的组成示意。该两种高隔离天线组可以分别通过反对称馈电的形式,获取高隔离特性。
如图58A中的(a)所示,该高隔离天线组可以包括三个天线。如设置在电子设备短边中心的磁流环天线M35,设置在电子设备长边两端中任意一相同的末端(如长边顶部)的磁流环天线M36和磁流环天线M37。在工作时,磁流环天线M36和磁流环天线M37采用反对称馈电(等幅反相),形成一个单端口分布式天线结构7。这个形成的单端口 结构7与位于中间的电流环天线M35形成双端口天线结构,该分布式结构7和磁流环天线M35可以形成高隔离效果。示例性的,可以通过馈电信号f9对磁流环天线M36进行馈电,还可以通过与馈电信号f9等幅反相的信号(如通过反相器获取)对磁流环天线M37进行馈电,从而实现对磁流环天线M36和磁流环天线M37的反对称馈电。此外,还可以通过馈电信号f10对磁流环天线M35进行馈电。
如图58A中的(b)所示,该高隔离天线组可以包括三个天线。如设置在电子设备短边中心的磁流环天线M38,设置在电子设备长边两端中任意一相同的末端(如长边顶端)的电流环天线E37和电流环天线E38。在工作时,电流环天线E37和电流环天线E38采用反对称馈电(等幅反相),形成一个单端口分布式天线结构8。这个形成的单端口结构8与位于中间的磁流环天线M38形成双端口天线结构。该分布式结构8和磁流环天线M38可以形成高隔离效果。示例性的,可以通过馈电信号f11对电流环天线E37进行馈电,还可以通过与馈电信号f11等幅反相的信号(如通过反相器获取)对电流环天线E38进行馈电,从而实现对电流环天线E37和电流环天线E38的反对称馈电。此外,还可以通过馈电信号f12对磁流环天线M38进行馈电。
以下结合方向图和S参数仿真示例,对上述方案的效果进行说明。
示例性的,图58B示出了具有如图58A中的(a)所示的高隔离天线组的电流仿真示意。可以看到,反对称馈电的磁流环天线M36和磁流环天线M37构成的分布式天线结构可以获取横向的电流分布。对应的,设置在短边中间位置的磁流环天线M35可以激励地板上纵向的电流。由此激励两个正交的电流分布,获取高隔离特性。
结合图59和图60,为具有如图58A中的(a)所示的高隔离天线组的性能仿真示例。其中,图59为远场方向图示意。参考图60的S参数仿真示意,隔离度最差也在-35dB之下,因此能够满足高隔离的要求。此外,S11上看,磁流环天线M35和分布式天线结构7的S11最深点都超过-10dB,同时带宽也能够满足至少一个工作频段的覆盖要求。因此,具有如图58A中的(a)所示的结构的高隔离天线组能够也提供较好的辐射性能以及较好的隔离度。
需要说明的是,上述如图58A中的(a)的示例中,是以在侧边的磁流环天线设置在侧边两端中的一端为例进行说明的。在本申请的另一些实施例中,磁流环天线设置在侧边时,还可以是设置在除去两端中的一端之外的部分。比如,磁流环天线可以是设置在侧边长边上的中心附近的。示例性的,结合图61,以高隔离天线组包括设置在电子设备短边中心的磁流环天线M35,设置在电子设备长边靠近中间位置的的磁流环天线M36和磁流环天线M37为例。也就是说,相比图58A中的(a)的示例,本示例中,该设置在左侧边和/或设置在右侧边的磁流环天线的位置可以向下移动到长边中心位置附近。
在工作时,馈入磁流环天线M36和磁流环天线M37的馈电信号可以为反对称馈电信号。比如,通过馈电信号f9对磁流环天线M36进行馈电,还可以通过与馈电信号f9等幅反相的信号(如通过反相器获取)对磁流环天线M37进行馈电。还可以通过馈电信号f10对磁流环天线M35进行馈电。从而获取磁流环天线M36和磁流环天线M37构成的分布式天线与磁流环天线M35的工作模式的高隔离特性。
示例性的,图62示出了具有如图61所示结构的高隔离天线组工作时的远场方向图。 结合图63所示的S参数仿真示意,磁流环天线M35以及分布式天线结构8的隔离度最差也超过-80dB,因此符合高隔离特性的要求。此外,如S11的仿真结果,可以看到磁流环天线M35以及分布式天线结构8的最深点已经超过-10dB,带宽也足以覆盖至少一个工作频段。
也就是说,本申请实施例提供的分布式的高隔离天线组,无论侧边的磁流环天线设置在侧边端侧,还是中心位置,都可以获取高隔离特性。应当理解的是,对于如图58A中的(b)示出的由两个电流环天线和一个磁流环天线构成的高隔离天线组,上述结论依然成立。以下结合附图对具有如图58A中的(b)示出的结构的高隔离天线组的工作情况进行说明。
示例性的,结合图64和图65,为具有如图58A中的(b)所示的高隔离天线组的性能仿真示例。其中,图64为远场方向图示意。参考图65的S参数仿真示意,隔离度最差也在-35dB之下,因此能够满足高隔离的要求。此外,S11上看,磁流环天线M38和分布式天线结构9的S11最深点都超过或接近-10dB,同时带宽也能够满足至少一个工作频段的覆盖要求。因此,具有如图58A中的(b)所示的结构的高隔离天线组能够在反对称馈电信号的激励下,提供较好的辐射性能以及较好的隔离度。
通过上述图47-图65的说明,本领域技术人员应当能够对本申请提供的正交分布的高隔离天线对/天线组的组成特征以及所能够获取的效果有了准确的认识。需要说明的是,类似与前述串联分布和并联分布的方案介绍,在正交分布的方案中,电流环天线和磁流环天线还可以具有不同于上述示例中的结构,馈电形式也可以是不同于直馈的耦合馈电。其能够达到的效果类似,此处不再赘述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (30)

  1. 一种高隔离度的终端天线系统,其特征在于,应用于电子设备,所述终端天线系统包括第一天线和第二天线,所述第一天线和所述第二天线中包括至少一个电流环天线或者磁流环天线;所述电流环天线在工作时,电流环天线的辐射体与参考地之间分布有均匀的磁场,所述磁流环天线在工作时,磁流环天线的辐射体与参考地之间分布有均匀的电场;
    所述第一天线和所述第二天线设置在所述电子设备的同一边,或者,
    所述第一天线和所述第二天线设置在所述电子设备的相对的两个边上。
  2. 根据权利要求1所述的终端天线系统,其特征在于,
    所述第一天线为磁流环天线时,所述第二天线为电流环天线。
  3. 根据权利要求1或2所述的终端天线系统,其特征在于,
    所述第一天线和所述第二天线是直馈的馈电形式,或者,
    所述第一天线和所述第二天线是耦合馈电的馈电形式。
  4. 根据权利要求1-3中任一项所述的终端天线系统,其特征在于,
    所述第一天线在工作时,激励地板电流为第一方向,所述第二天线在工作时,激励地板电流为第二方向,所述第一方向和所述第二方向正交。
  5. 根据权利要求1-4中任一项所述的终端天线系统,其特征在于,所述第一天线和所述第二天线设置在所述电子设备的同一边,包括:
    所述第一天线和所述第二天线设置在所述电子设备的第一边,所述第一天线和所述第二天线在所述第一边上的投影互不重合。
  6. 根据权利要求5所述终端天线系统,其特征在于,
    所述第一天线和所述第二天线是直馈的馈电形式时,
    所述第一天线的馈电点设置在所述第一天线上,靠近所述第二天线的一端;所述第二天线的馈电点设置在所述第二天线上,靠近所述第一天线的一端;或者,
    所述第一天线的馈电点设置在所述第一天线上,远离所述第二天线的一端;所述第二天线的馈电点设置在所述第二天线上,远离所述第一天线的一端。
  7. 根据权利要求5所述的终端天线系统,其特征在于,所述终端天线系统还包括第三天线,所述第三天线也设置在所述第一边;
    所述第三天线、所述第一天线、所述第二天线的辐射体在垂直于所述第一方向上的投影均不重合,所述第二天线设置在所述第一天线和所述第三天线之间。
  8. 根据权利要求7所述的终端天线系统,其特征在于,所述第一天线为磁流环天线,所述第二天线为电流环天线,所述第三天线为磁流环天线。
  9. 根据权利要求8所述的终端天线系统,其特征在于,
    所述第一天线和所述第三天线构成第一分布式天线对,所述第一分布式天线对包括第一端口,所述第一端口与所述第一天线的端口和所述第三天线的端口连接,
    在所述终端天线系统工作时,通过所述第一端口,分别向所述第一天线和所述第三天线输入等幅同相的馈电信号。
  10. 根据权利要求1-4中任一项所述的终端天线系统,其特征在于,所述第一天线和所述第二天线设置在所述电子设备的同一边,包括:
    所述第一天线和所述第二天线设置在所述电子设备的第一边,所述第一天线和所述第二天线在所述第一边上的投影有至少部分重合。
  11. 根据权利要求10所述的终端天线系统,其特征在于,所述第一天线和所述第二天线的辐射体所在平面正交。
  12. 根据权利要求10或11所述的终端天线系统,其特征在于,
    所述第一天线为电流环天线时,所述第二天线为以下天线中的任意一种:
    磁流环天线,CM线天线,DM槽天线。
  13. 根据权利要求1-4中任一项所述的终端天线系统,其特征在于,所述第一天线和所述第二天线设置在所述电子设备的相对的两个边上,包括:
    所述第一天线设置在所述电子设备的第一边上的第一位置,所述第二天线设置在所述电子设备的第二边上的第二位置,第一边和第二边分别与所述电子设备的第三边相邻。
  14. 根据权利要求13所述的终端天线系统,其特征在于,所述第一位置和所述第二位置关于所述第三边的中线呈轴对称。
  15. 根据权利要求13或14所述的终端天线系统,其特征在于,所述第一位置位于所述第一边的中间位置,所述第二位置位于所述第二边的中间位置。
  16. 根据权利要求10或15所述终端天线系统,其特征在于,
    所述第一天线和所述第二天线是直馈的馈电形式时,
    所述第一天线的馈电点设置在所述第一天线的辐射体上,所述第二天线的馈电点设置在所述第二天线的辐射体上,所述第一天线的馈电点和所述第二天线的馈电点分别设置在所述第一天线的辐射体和所述第二天线的辐射体的同一侧。
  17. 根据权利要求1-16中任一项所述的终端天线系统,其特征在于,
    所述电流环天线包括电流环线天线和电流环槽天线,
    所述电流环线天线的辐射体并联有至少一个第一电容接地,所述电流环槽天线的辐射体上串联有至少一个第二电容;所述第一电容用于调整所述电流环线天线上的电流分布,以获得在所述电流环线天线与参考地之间的均匀磁场,所述第二电容用于调整所述电流环槽天线上的电流分布,以获得在所述电流环槽天线与参考地之间的均匀磁场。
  18. 根据权利要求17所述的终端天线系统,其特征在于,
    所述电流环线天线包括电流环单极子天线、电流环偶极子天线;
    所述电流环槽天线包括电流环左手天线、电流环缝隙天线。
  19. 根据权利要求1-16中任一项所述的终端天线系统,其特征在于,
    所述磁流环天线包括磁流环线天线和磁流环槽天线,
    所述磁流环线天线的辐射体并联有至少一个第一电感接地,所述磁流环槽天线的辐射体上串联有至少一个第二电感;所述第一电感用于调整所述磁流环线天线上的电流分布,以获得在所述磁流环线天线与参考地之间的均匀电场,所述第二电感用于调整所述磁流环槽天线上的电流分布,以获得在所述磁流环槽天线与参考地之间的均匀电场。
  20. 根据权利要求19所述的终端天线系统,其特征在于,
    所述磁流环线天线包括磁流环单极子天线、磁流环偶极子天线;
    所述磁流环槽天线包括磁流环左手天线、磁流环缝隙天线。
  21. 一种高隔离度的终端天线系统,其特征在于,应用于电子设备,所述终端天线 系统包括第一天线和第二天线,所述第一天线和所述第二天线中包括至少一个电流环天线或者磁流环天线;
    所述第一天线和所述第二天线设置在所述电子设备的同一边,或者,
    所述第一天线和所述第二天线设置在所述电子设备的相对的两个边上;
    其中,所述电流环天线为电流环单极子天线或电流环偶极子天线时,所述电流环天线辐射体的至少一个末端设置有第一电容接地;
    所述电流环天线为电流环缝隙天线或电流环左手天线时,所述电流环天线辐射体上至少串联设置有一个第二电容;
    其中,所述第一电容和第二电容容值范围设置如下:
    在所述电流环天线的工作频段为450MHz-1GHz时,所述第一电容或所述第二电容的容值设置在[1.5pF,15pF]之内;在所述电流环天线的工作频段为1GHz-3GHz时,所述第一电容或所述第二电容的容值设置在[0.5pF,15pF]之内;在所述电流环天线的工作频段为3GHz-10GHz时,所述第一电容或所述第二电容的容值设置在[1.2pF,12pF]之内;
    所述磁流环天线为磁流环单极子天线或磁流环偶极子天线时,所述磁流环天线辐射体的至少一个末端设置有第一电感接地;
    所述磁流环天线为磁流环缝隙天线或磁流环左手天线时,所述磁流环天线辐射体上至少串联设置有一个第二电感;
    其中,所述第一电感和第二电感的感值范围设置如下:
    在所述磁流环天线的工作频段为450MHz-1GHz时,所述第一电感或所述第二电感的感值设置在[5nH,47nH]之内;在所述磁流环天线的工作频段为1GHz-3GHz时,所述第一电感或所述第二电感的感值设置在[1nH,33nH]之内;在所述磁流环天线的工作频段为3GHz-10GHz时,所述第一电感或所述第二电感的感值设置在[0.5nH,10nH]之内。
  22. 根据权利要求21所述的终端天线系统,其特征在于,
    所述第一天线为磁流环天线时,所述第二天线为电流环天线。
  23. 根据权利要求21或22所述的终端天线系统,其特征在于,所述第一天线和所述第二天线设置在所述电子设备的同一边,包括:
    所述第一天线和所述第二天线设置在所述电子设备的第一边,所述第一天线和所述第二天线在所述第一边上的投影互不重合。
  24. 根据权利要求23所述的终端天线系统,其特征在于,所述终端天线系统还包括第三天线,所述第三天线也设置在所述第一边;
    所述第三天线、所述第一天线、所述第二天线的辐射体在垂直于所述第一方向上的投影均不重合,所述第二天线设置在所述第一天线和所述第三天线之间。
  25. 根据权利要求24所述的终端天线系统,其特征在于,所述第一天线为磁流环天线,所述第二天线为电流环天线,所述第三天线为磁流环天线。
  26. 根据权利要求21或22所述的终端天线系统,其特征在于,所述第一天线和所述第二天线设置在所述电子设备的同一边,包括:
    所述第一天线和所述第二天线设置在所述电子设备的第一边,所述第一天线和所述第二天线在所述第一边上的投影有至少部分重合。
  27. 根据权利要求26所述的终端天线系统,其特征在于,
    所述第一天线为电流环天线时,所述第二天线为以下天线中的任意一种:
    磁流环天线,CM线天线,DM槽天线。
  28. 根据权利要求21或22所述的终端天线系统,其特征在于,所述第一天线和所述第二天线设置在所述电子设备的相对的两个边上,包括:
    所述第一天线设置在所述电子设备的第一边上的第一位置,所述第二天线设置在所述电子设备的第二边上的第二位置,第一边和第二边分别与所述电子设备的第三边相邻,其中,所述第一位置和所述第二位置关于所述第三边的中线呈轴对称。
  29. 根据权利要求28所述的终端天线系统,其特征在于,所述第一位置位于所述第一边的中间位置,所述第二位置位于所述第二边的中间位置。
  30. 一种电子设备,其特征在于,所述电子设备设置有至少一个处理器,射频模块,
    所述电子设备还包括如权利要求1-20中任一项所述的终端天线系统;或者如权利要求21-29中任一项所述的终端天线系统;
    所述电子设备在进行信号发射或接收时,通过所述射频模块和所述终端天线系统进行信号的发射或接收。
PCT/CN2022/114817 2021-10-30 2022-08-25 一种高隔离度的终端天线系统 WO2023071477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22885375.0A EP4283784A1 (en) 2021-10-30 2022-08-25 High-isolation terminal antenna system
US18/548,036 US20240235027A9 (en) 2021-10-30 2022-08-25 High-Isolation Terminal Antenna System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111278457.5A CN116073125A (zh) 2021-10-30 2021-10-30 一种高隔离度的终端天线系统
CN202111278457.5 2021-10-30

Publications (1)

Publication Number Publication Date
WO2023071477A1 true WO2023071477A1 (zh) 2023-05-04

Family

ID=86160158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114817 WO2023071477A1 (zh) 2021-10-30 2022-08-25 一种高隔离度的终端天线系统

Country Status (3)

Country Link
EP (1) EP4283784A1 (zh)
CN (1) CN116073125A (zh)
WO (1) WO2023071477A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471789A (zh) * 2012-12-21 2015-03-25 株式会社村田制作所 天线装置及电子设备
US20190207307A1 (en) * 2018-01-04 2019-07-04 Motorola Mobility Llc Antenna System and Wireless Communication Device having a Secondary Conductive Structure which Extends into an Area Forming a Loop
CN110350295A (zh) * 2019-06-30 2019-10-18 RealMe重庆移动通信有限公司 穿戴式电子设备
CN111129752A (zh) * 2020-01-08 2020-05-08 朴海燕 一种自解耦mimo天线系统
CN112751195A (zh) * 2019-10-31 2021-05-04 珠海市魅族科技有限公司 一种终端天线系统及移动终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269609B (zh) * 2014-09-16 2019-03-15 深圳汉阳天线设计有限公司 一种利用共振式馈电结构的槽缝天线
CN107403995B (zh) * 2016-05-18 2020-04-28 华硕电脑股份有限公司 电子装置
WO2020133111A1 (zh) * 2018-12-27 2020-07-02 华为技术有限公司 天线装置及终端
CN112751162B (zh) * 2019-10-31 2022-04-22 华为技术有限公司 移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471789A (zh) * 2012-12-21 2015-03-25 株式会社村田制作所 天线装置及电子设备
US20190207307A1 (en) * 2018-01-04 2019-07-04 Motorola Mobility Llc Antenna System and Wireless Communication Device having a Secondary Conductive Structure which Extends into an Area Forming a Loop
CN110350295A (zh) * 2019-06-30 2019-10-18 RealMe重庆移动通信有限公司 穿戴式电子设备
CN112751195A (zh) * 2019-10-31 2021-05-04 珠海市魅族科技有限公司 一种终端天线系统及移动终端
CN111129752A (zh) * 2020-01-08 2020-05-08 朴海燕 一种自解耦mimo天线系统

Also Published As

Publication number Publication date
US20240136715A1 (en) 2024-04-25
CN116073125A (zh) 2023-05-05
EP4283784A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
CA2914269C (en) Multiple-antenna system and mobile terminal
US20230208040A1 (en) Antenna and electronic device
US20220393360A1 (en) Electronic Device
WO2021093684A1 (zh) 一种电子设备
WO2023071478A1 (zh) 一种终端天线及电子设备
EP4113746A1 (en) Antenna and terminal
WO2023130904A1 (zh) 一种终端天线
US20230163457A1 (en) Electronic Device
CN113224503A (zh) 一种天线及终端设备
WO2022143320A1 (zh) 一种电子设备
WO2018157661A1 (zh) 天线和终端
WO2022007936A1 (zh) 电子设备
CN114566785A (zh) 一种终端天线和电子设备
US20230048914A1 (en) Antenna Apparatus and Electronic Device
WO2023071477A1 (zh) 一种高隔离度的终端天线系统
EP4366081A1 (en) Foldable electronic device
WO2020173292A1 (zh) 天线装置及电子设备
US20240235027A9 (en) High-Isolation Terminal Antenna System
CN115708258A (zh) 一种耦合馈电的终端缝隙天线
EP4283783A1 (en) Terminal monopole antenna
WO2020001280A1 (zh) 移动终端天线和移动终端
WO2023020019A1 (zh) 一种耦合馈电的终端单极子天线
EP4350883A1 (en) Microstrip antenna and electronic device
WO2023207117A1 (zh) 一种终端天线和高隔离天线系统
CN116073126A (zh) 一种高隔离度的终端天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18548036

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022885375

Country of ref document: EP

Effective date: 20230823