WO2020173292A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2020173292A1
WO2020173292A1 PCT/CN2020/074578 CN2020074578W WO2020173292A1 WO 2020173292 A1 WO2020173292 A1 WO 2020173292A1 CN 2020074578 W CN2020074578 W CN 2020074578W WO 2020173292 A1 WO2020173292 A1 WO 2020173292A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor
branch
antenna
excitation unit
antenna device
Prior art date
Application number
PCT/CN2020/074578
Other languages
English (en)
French (fr)
Inventor
王岩
李建铭
王吉康
尤佳庆
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910614002.2A external-priority patent/CN111628274B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20763850.3A priority Critical patent/EP3916907A4/en
Priority to US17/433,770 priority patent/US11949177B2/en
Publication of WO2020173292A1 publication Critical patent/WO2020173292A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/265Open ring dipoles; Circular dipoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use

Definitions

  • the present invention relates to the field of antenna technology, and in particular to an antenna device used in electronic equipment. Background technique
  • full-screen industrial design has become a design trend for portable electronic devices such as mobile phones.
  • Full screen means a huge screen-to-body ratio (usually above 90%).
  • the frame width of the full screen is greatly reduced, and the internal components of the mobile phone, such as the front camera, receiver, fingerprint reader, antenna, etc., need to be rearranged.
  • the headroom area is reduced and the antenna space is further compressed.
  • the size, bandwidth, and efficiency of the antenna are interrelated and affect each other. If the size (space) of the antenna is reduced, the efficiency-bandwidth product of the antenna is bound to decrease. Therefore, the full-screen ID brings great challenges to the antenna design of mobile phones.
  • the commonly used antenna design forms in electronic devices can be planer inverted F (planer inverted F) antennas, inverted F (inverted F) antennas, monopole antennas, T antennas, loop antennas Wait.
  • planer inverted F planer inverted F
  • inverted F inverted F
  • monopole antennas monopole antennas
  • T antennas loop antennas Wait.
  • the antenna length must meet at least one-quarter to one-half of the low-frequency wavelength, which requires high antenna space.
  • the embodiments of the present invention provide an antenna device and electronic equipment, which can effectively excite the floor to generate radiation. Because the radiation capacity of the floor is not affected by the clearance between the display screen and the floor, it is applicable to a full-screen antenna space that is drastically changed. Reduced electronic equipment.
  • the present application provides an antenna device.
  • the antenna device may include: a floor 15 of an electronic device and an excitation unit 23. among them:
  • Floor I 5 includes opposite first side (such as side 21-1) and second side (such as side 21_ 5 ), and opposite third side (such as bottom side 21 -7 ) and fourth side (such as top Edge 21-3).
  • the excitation unit 23 may have a first branch 29-2 and two second branches (29-1, 29-3).
  • the second branch 29-1 and the second branch 29-3 may be connected to both ends of the first branch 29-2, respectively.
  • the end of the second branch 29-1 away from the first branch 29-2 is connected to the floor 15, and the end of the second branch 29-3 away from the first branch 29-2 is connected to the floor 15.
  • the second branch 29-1 and the second branch 29-3 can be used to erect the first branch 29-2 on the floor 15, and a gap is formed between the first branch 29-2 and the floor 15.
  • the excitation unit 23 may be erected on the floor 15 adjacent to the first side of the floor 15.
  • the proximity may mean that the distance between the excitation unit 23 and the first side is less than a specific distance, such as 4 mm. It is not limited to 4 mm, and the specific distance can also be 3 mm, 2 mm, 1 mm, etc.
  • the distance L1 from the excitation unit 23 to the first side is less than that from the excitation unit 23 to the second side
  • the difference between the distance pi from the first end of the excitation unit 23 to the third side and the distance p2 from the second end of the excitation unit 23 to the fourth side is smaller than the first value, such as 15 mm. It is not limited to 15 mm, and the first value can also be 12 mm, 20 mm, etc.
  • the first end is an end of the excitation unit 23 close to the third side
  • the second end is an end of the excitation unit 23 close to the fourth side.
  • the excitation unit 23 may be provided with a feeding port 27, and the signal source is located in the feeding port 27.
  • a first slit may be opened on the first branch 29-2 of the excitation unit 23, and a first capacitor may be connected in series between the two parts of the first branch on both sides of the first slit. The first capacitor can be used to realize the current distributed on the excitation unit 23 in the same direction.
  • the antenna device provided in the first aspect effectively excites the floor to generate radiation by setting up an excitation unit above the floor of an electronic device (such as a mobile phone) and feeding the excitation unit.
  • an electronic device such as a mobile phone
  • the antenna solution provided in this application can be applied to a full-screen electronic device whose antenna space is drastically reduced.
  • the floor is one of the main radiation apertures of electronic equipment (such as mobile phones), and stimulating the floor to generate radiation can significantly improve antenna performance.
  • the excitation unit 23 may be parallel to the first side of the floor 15 (such as side 21-1), or the excitation unit 23 and the first side of the floor 15 (such as side 21- 1) There can be a small angle between them, that is, they can be close to parallel.
  • the smaller included angle may be smaller than the first angle, such as 5 ° .
  • the first angle can also be 3 ° , 7. Equiangular.
  • the angle a between the excitation unit 23 and the first side is smaller than the angle P between the excitation unit 23 and the third side.
  • the excitation unit 23 can be parallel to the first side of the floor 15, that is, the included angle a is equal to 0 ° . At this time, the excitation unit 23 can excite the floor 15 to generate a stronger current at the first side, and the excitation unit 23 can more easily excite the floor. 15 produces resonance.
  • the first slit can be opened in the middle of the first stub 29 _ 2, so that the excitation current to the unit 23 with a stronger, more easily excited from the floor 15 to produce emitted jurisdiction.
  • the first capacitor may be a lumped capacitor or a distributed capacitor (for example, a distributed capacitor formed by opening a gap on the excitation unit 23).
  • the feeding form at the feeding port 27 may include but not limited to the following two ways:
  • the feeding port 27 may be specifically arranged on the first branch 29-2, which may be implemented by opening a gap 1 on the first branch 29-2.
  • Gap 1 divides the first branch 29-2 into two parts (29-2-A, 29-2-B), the first branch 29-2-A and the first branch 29-2-B can be connected in series signal source.
  • the feed port 27 can be specifically arranged on the second branch 29-1 or the second branch 29-3, which can be implemented by opening a gap 2 on the second branch.
  • the inductance L in series in Figure 2F can be used to achieve impedance matching. The following content will introduce the matching network integrated at the feed end, which will not be repeated here.
  • the first branch 29-2 may be a horizontal branch, parallel to the floor 15.
  • the second branch 29-1 and the second branch 29-3 may be vertical branches, perpendicular to the floor 15, and used to suspend the first branch 29-2 on the floor 15.
  • the excitation unit 23 can be installed on the first side of the floor, and L1 is equal to 0 at this time, and the excitation unit 23 is easier to excite the floor 15 to generate radiation. That is to say, the closer the excitation unit 23 is to the first side, the easier it is to excite the floor 15 to produce radiation.
  • the distance pi and the distance p2 may be equal, and both are equal to (Lg-Le)/2.
  • the excitation unit 23 can be erected in the middle of the floor adjacent to the first side, and the excitation unit 23 can more easily excite the floor 15 to produce resonance.
  • the matching network integrated at the feed port may include a capacitor C and an inductor L, the capacitor C is connected in series with the feed port, and the inductor L is connected in parallel with the feed port.
  • the capacitance C may be referred to as the second capacitance
  • the inductance L may be referred to as the first inductance.
  • the antenna device provided in the present application can also implement dual frequency bands or broadband or multi-frequency bands, which can be achieved by matching networks or adding more magnetic rings.
  • dual frequency bands or broadband or multi-frequency bands which can be achieved by matching networks or adding more magnetic rings.
  • the matching network can be an LC parallel circuit (consisting of L2 and C2 connected in parallel) connected in series after the capacitor C1 in series, and finally the inductance L2 is connected in parallel. That is, the matching network integrated at the feed port can include: The capacitor Cl, LC parallel circuit, the inductor L2, the capacitor Cl, LC parallel circuit is connected in series with the feed port once, and the inductor L2 is connected in parallel with the feed port.
  • the capacitor C1 can be referred to as the third capacitor
  • the inductor L2 can be referred to as the second inductor
  • the capacitor C2 in the LC parallel circuit can be referred to as the fourth capacitor
  • the inductor L2 in the LC parallel circuit can be referred to as the third inductor.
  • the dual band can be a low frequency band (such as 80 (MHz) and GPS L1 band (1.5GHz)).
  • a parasitic unit (also called a parasitic magnetic ring) can be erected on the floor 15.
  • the antenna device provided in the present application may further include a parasitic element.
  • the parasitic unit can be erected near the first side of the floor (such as side 21-1).
  • near can mean that the distance between the parasitic unit and the first side of the floor (such as side 21-1) is less than a certain distance (such as 4 mm).
  • the distance L3 from the parasitic unit to the first side of the floor is less than the distance L4 from the parasitic unit to the second side of the floor.
  • the floor 15 While the excitation unit 23 excites the floor 15 to generate radiation, the floor 15 combines with the parasitic unit to generate radiation, so that dual-band radiation can be realized.
  • the structure of the parasitic unit and the structure of the excitation unit 23 may be the same.
  • the parasitic unit may have a third branch and two fourth branches.
  • Third exciting means similar to the first stub in the stub 23 29 _ 2 similar to the fourth minor minor second excitation unit 23 29-1, 29-3 cell structure 23 is similar to the excitation of parasitic elements in the two
  • the fourth branch can be connected to both ends of the third branch respectively.
  • the end of the fourth branch away from the first branch is connected to the floor 15.
  • the two fourth branches can be used to erect the third branch on the floor 15 so that the third branch and the floor 15 form a gap.
  • a capacitor can be connected in series with the parasitic unit. This capacitor can be referred to as the fifth capacitor.
  • a gap can be opened on the third branch, and the fifth capacitor can be connected in series between the two parts of the third branch on both sides of the gap. This gap may be referred to as a second gap.
  • the parasitic unit may also be other antennas, such as a bracket antenna, a suspension antenna, and the like.
  • the support antenna may include an IFA antenna, an ILA antenna, and so on.
  • the antenna device provided in this application may include multiple antenna units, and one antenna unit may have one excitation unit 23 , or may have one excitation unit 23 and M (M is positive Integer) parasitic units.
  • the multiple antenna units may be arranged near each side of the floor 15. That is, in an antenna unit, the excitation unit 23 is installed adjacent to the edge of the floor, and the parasitic unit is also installed adjacent to the edge of the floor.
  • the present application provides an electronic device that includes a non-metal back cover and the antenna device described in the first aspect. Description of the drawings
  • Figure 1 is a schematic diagram of the internal environment of an electronic device
  • 2A is a schematic diagram of the overall model of the antenna device provided by this application.
  • Figure 2B is a plan view of the antenna structure provided by this application in the X-Z plane;
  • 2C is a detailed view of the ring-shaped excitation unit in the antenna structure provided by this application.
  • Fig. 2D is a schematic diagram of the feeding form at the feeding port in the antenna structure provided by this application
  • Fig. 2E is a schematic diagram of a feeding form of the antenna device provided by this application
  • FIG. 2F is a schematic diagram of another power feeding form of the antenna device provided by this application.
  • Fig. 3A is a schematic diagram of S11 simulation of the antenna structure provided by this application under several matching networks
  • Fig. 3B is a simulation diagram of the efficiency of the antenna structure provided by this application under several matching networks
  • FIG. 3C is a schematic diagram of a matching network of the antenna structure provided by this application.
  • Fig. 4A is a simulated vector current distribution diagram of the antenna structure provided by this application.
  • Figure 4B is a front view of the three-bit radiation pattern of the antenna structure provided by this application working at 900MHz;
  • Figure 4C is a top view of the three-bit radiation pattern of the antenna structure provided by this application working at 900MHz;
  • Figure 5A is this application The application schematic diagram of the provided antenna structure in the whole machine model;
  • FIG. 5B is a schematic diagram of S11 simulation of the antenna structure provided by this application under several p values
  • Fig. 5C is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several p values
  • Fig. 6A is a schematic diagram of S11 simulation of the antenna structure provided by this application under several Le values
  • Fig. 6B is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several Le values;
  • FIG. 7A is a schematic diagram of S11 simulation of the antenna structure provided by this application under several h values
  • FIG. 7B is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several h values.
  • FIG. 8A is a schematic diagram of S11 simulation of the antenna structure provided by this application under several w values
  • FIG. 8B is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several w values
  • FIG. 10B is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several p values
  • Figure 10C is an antenna radiation pattern of the antenna structure provided by this application under several p values
  • FIG. 11A is a schematic diagram of S 11 simulation of the antenna structure provided by this application under several Lg values;
  • FIG. 11B is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several Lg values
  • Fig. 11C is a schematic diagram of S11 simulation of the antenna structure provided by this application under several Wg values;
  • Fig. 11D is a schematic diagram of efficiency simulation of the antenna structure provided by this application under several Wg values
  • Figure 12A is a schematic diagram of a dual-band matching network
  • Fig. 12B is a simulation diagram of S11 when the antenna structure provided by this application is configured with the matching network shown in Fig. 12A;
  • Fig. 13A is a schematic diagram of a multi-band or broadband antenna structure based on multiple magnetic loops;
  • FIG. 13B is a bird's-eye view of the antenna structure shown in FIG. 13A;
  • Fig. 13C is an S11 simulation diagram of the antenna structure shown in Fig. 13A under two matching network parameters
  • Fig. 13D is an efficiency simulation diagram of the antenna structure shown in Fig. 13A under two matching network parameters
  • Fig. 14 is another A schematic diagram of a multi-band or broadband antenna structure based on a multi-magnetic ring;
  • FIG. 15A is a schematic diagram of a layout of the excitation unit and the parasitic unit on the floor in this application;
  • Fig. 15B is a schematic diagram of another layout of the excitation unit and parasitic unit on the floor in this application;
  • Fig. 16 is a schematic diagram of the layout of the excitation unit and parasitic unit on the floor for implementing MIMO;
  • FIG. 17A shows a schematic diagram of an antenna device with IFA as a parasitic element
  • Figure 17B shows a schematic diagram of an antenna device with ILA as a parasitic element
  • Fig. 17C shows a schematic diagram of an antenna device with a suspended antenna as a parasitic element. detailed description
  • the technical solution provided in this application is applicable to electronic devices using one or more of the following communication technologies: Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity (wireless fidelity, Wi-Fi) communication technology (global system for mobile communications) (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication Technology, 5G communication technology, SUB-6G communication technology and other future communication technologies, etc.
  • the electronic device may be a mobile phone, a tablet computer, a personal digital assistant (PDA), etc.
  • Fig. 1 exemplarily shows the internal environment of the electronic device on which the antenna design solution provided in this application is based.
  • the electronic device 10 may include: a display screen 11, a printed circuit board PCB 13, a floor 15, a frame 17 and a back cover 19.
  • the display screen 11, the printed circuit board PCB13, the floor 15 and the back cover 19 can be respectively arranged on different layers, these layers can be parallel to each other, the plane on which each layer is located can be called the X-Z plane, and the direction perpendicular to the X-Z plane is the Y direction.
  • the display screen 11, the printed circuit board PCB13, the floor 15 and the back cover 19 can be distributed in layers in the Y direction.
  • the printed circuit board PCB13 may be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is a code name for the grade of flame-resistant material
  • Rogers dielectric board is a high-frequency board.
  • the back cover 19 is a back cover made of a non-conductive material, such as a glass back cover, a plastic back cover and other non-metal back covers.
  • the floor 15 is grounded and can be arranged between the printed circuit board PCB13 and the back cover 19.
  • the floor 15 can also be referred to as a PCB backplane.
  • the floor 15 may be a layer of metal etched on the surface of the PCB 13, and this layer of metal may also be connected to a metal middle frame (not shown) through a series of metal shrapnel to be integrated with the metal middle frame.
  • the floor 15 can be used for the grounding of electronic components carried on the printed circuit board PCB 13.
  • the electronic components carried on the printed circuit board PCB 13 can be connected to the floor 15 to achieve grounding, so as to prevent the user from electric shock or equipment damage.
  • the frame 17 can be arranged around the edge of the floor 15, and can cover the printed circuit board PCB 13 and the floor 15 between the rear cover 19 and the display screen 11 from the side to achieve the purpose of dustproof and waterproof.
  • the frame 17 may be a metal frame or a non-metal frame.
  • the frame 17 may include: a frame at the top of the electronic device 10 (may be called a top frame) 27-3, a side pivot at the bottom of the electronic device 10 (may be called a bottom side pivot) 27-7, and a side frame ( Can be called side border) 27-1 and 27-5.
  • the top of the electronic device 10 may be provided with a front camera (not shown), an earpiece (not shown), a proximity light sensor (not shown), an ambient light sensor (not shown), etc.
  • the bottom of the electronic device 10 may be provided with a USB charging port (not shown), a microphone (not shown), and the like.
  • the side of the electronic device 10 may be provided with a volume adjustment button (not shown) and a power button (
  • FIG. 1 only schematically shows each part included in the electronic device 10, and the actual shape, actual size, and actual structure of each part are not limited by FIG. 1.
  • the display screen 11 of the electronic device 10 may be a large-size display screen, and the screen-to-body ratio may reach more than 90%.
  • this application will provide a floor radiation antenna solution based on magnetic loop feeding.
  • an excitation unit is installed above the floor 15 and the excitation unit is fed to effectively excite the floor 15 to generate radiation.
  • the antenna solution provided by the present application can be applied to electronic equipment with a full-screen ID, which has a sharply reduced antenna space.
  • the floor 15 is one of the main radiation apertures of the electronic device 10. Excitation of the floor 15 to generate radiation can significantly improve the antenna performance.
  • FIGS. 2A-2C show the antenna device provided by the present application.
  • 2A is a schematic diagram of the overall model of the antenna device
  • FIG. 2B is a plan view of the antenna structure in the X-Z plane
  • FIG. 2C is a detailed view of the ring-shaped excitation unit in the antenna structure.
  • the antenna device may include a ground plane 15 and an exciting element 23. among them:
  • the floor 15 may have opposite side edges 21-1 and 21-5, and opposite top edges 21-3 and bottom edges 21-7.
  • the sides of the floor 15 are close to the side pivots of the frame 17 respectively.
  • the side 21-1 is next to the side hinge 17-1
  • the top 21-3 is next to the top frame 17-3
  • the side 21-5 is next to the side frame 17-5
  • the bottom edge 21-7 is next to the bottom border 17-7.
  • the floor 15 may be rectangular
  • the side 21-1 and the side 21-5 may be two opposite long sides
  • the top side 21-3 and the bottom side 21-7 may be two opposite short sides.
  • the excitation unit 23 may be erected on the floor 15 adjacent to a certain edge of the floor 15. This side can be called the first side of the floor 15.
  • This side can be called the first side of the floor 15.
  • the proximity may mean that the distance between the excitation unit 23 and the first side of the floor 15 is less than a certain distance, such as 4 mm.
  • the subsequent content will be analyzed and will not be repeated here.
  • the first side of the floor 15 may be the long side of the floor 15.
  • the excitation unit 23 may be parallel to the first side of the floor 15 or the angle between the excitation unit 23 and the first side of the floor 15 may also be relatively small. That is, the excitation unit 23 and the first side may be parallel or nearly parallel.
  • the smaller misalignment may be smaller than the first angle, such as 5. . Not limited to 5.
  • the first angle can also be 3 ° , 7°, etc.
  • the excitation unit 23 may have a first branch 29-2 and two second branches (29-1, 29-3).
  • the second branch 29-1 and the second branch 29-3 may be connected to both ends of the first branch 29-2, respectively.
  • the two ends of the first branch 29-2 may include an end 22-1 near the top side 21-3 and an end 22-3 near the bottom side 21-7.
  • the end of the second branch 29-1 away from the first branch 29-2 is connected to the floor 15, and the end of the second branch 29-3 away from the first branch 29-2 is connected to the floor 15.
  • the second branch 29-1 and the second branch 29-3 can be used to erect the first branch 29-2 on the floor 15, and a gap is formed between the first branch 29-2 and the floor 15, that is, the first branch 29 -2 does not touch the floor 15.
  • the first branch 29-2 may be a horizontal branch, parallel to the floor 15.
  • the second branch 29-1 and the second branch 29-3 may be vertical branches, perpendicular to the floor 15, for hanging the first branch 29-2 on the floor 15.
  • the length Lg of the floor 15 may be 140 mm, and the width Wg of the floor 15 may be 70 mm.
  • the width Wg of the floor 15 is the length of the short side of the floor 15 (21-3, 21-7 in Figure 2B), and the length Lg of the floor 15 is the long side of the floor 15 (21-1 in Figure 2B) , 21-5) length.
  • the length Le of the excitation unit 23 may be 40 mm, and the height h of the excitation unit 23 may be 4 mm.
  • the length Le of the excitation unit 23 is the length of the first stub 29-2
  • the height h of the excitation unit 23 is the length of the second stub.
  • the distance w between the excitation unit 23 and the first side of the floor 15 may be 2 mm
  • the distance between one end 22-3 of the excitation unit 23 and the bottom edge 21-7 of the floor 15 p can be 50 mm.
  • Lg, Wg, Le, h, w, and p may also be other values, and the influence of their values on the antenna performance will be described in detail in the following content. As shown in FIG.
  • the excitation unit 23 may be provided with a feeding port 27, and the signal source is located in the feeding port 27.
  • the feeding port 27 may be specifically arranged on the first branch 29-2, which may be specifically implemented by opening a slot 1 on the first branch 29-2. Gap 1 divides the first branch 29-2 into two parts (29-2-A, 29-2-B), the first branch 29-2-A and the first branch 29-2-B can be connected in series signal source.
  • the feed port 27 can be specifically arranged on the second branch 29-1 or the second branch 29-3, which can be implemented by opening a gap 2 on the second branch. .
  • the inductance L in series in Figure 2F can be used to achieve impedance matching.
  • the matching network integrated at the feed end will be introduced in the following content, which will not be repeated here.
  • a capacitor C1 may be connected in series with the excitation unit 23, and the capacitor C1 may be referred to as a first capacitor.
  • the first capacitor can be used to realize the current distributed on the excitation unit 23 in the same direction.
  • a gap 1 may be provided on the first branch 29-2. Gap 1 can divide the first branch 29-2 into two parts (29-2-A, 29-2-B), between the first branch 29-2-A and the first branch 29-2-B
  • the first capacitor can be connected in series.
  • the slot 1 where the first capacitor is located can be referred to as the first slot.
  • the first slit can be opened in the middle of the first stub 29 _ 2, so that the excitation current to the unit 23 with a stronger, more easily excited from the floor 15 to produce emitted jurisdiction.
  • the first capacitor may be a lumped capacitor or a distributed capacitor (for example, a distributed capacitor formed by opening a gap on the excitation unit 23).
  • the excitation unit 23 can open only a gap, such as slot 1, in slot 1, the first capacitor and the signal source may constitute a series circuit, the series circuit can be integrally and Between two parts of the first branch (ie, the first branch 29-2-A and the first branch 29-2-B) connected in series on both sides of the gap 1.
  • the slot where the first capacitor is located and the slot where the feed port is located can be the same slot, but it is not limited to this.
  • the slot where the first capacitor is located and the slot where the feed port is located can also be two. Different gaps.
  • a matching network may be integrated at the feed port 27, and the matching network may be used to adjust (by adjusting the antenna transmission coefficient, impedance, etc.) the frequency range covered by the antenna device provided in this application.
  • the matching network may include various structures capable of achieving impedance matching, such as impedance conversion lines or lumped element networks.
  • Lumped elements can include elements such as capacitors or inductors.
  • the input impedance of the antenna can be adjusted by changing the line width of the impedance conversion line and the electrical characteristic parameters (such as capacitance value, inductance value, etc.) of the components in the lumped element network, so as to achieve impedance matching.
  • the matching principle of the excitation unit 23 is explained below.
  • the input impedance is mainly located in the inductive region in the desired frequency band (such as 690MHz-960MHz).
  • the S11 simulation of the antenna device can be shown as the curve a1 in FIG. 3A, and the system efficiency and radiation efficiency of the antenna device can be shown as the curves bl and cl in FIG. 3B.
  • the input impedance in the desired frequency band (such as 690MHz-2700MHz) is shown as: in the low frequency band (such as 690MHz-960MHz) in the capacitive region and in the high frequency band ( Such as 1700MHz-2700MHz) is located in the inductive area.
  • the S11 simulation of the antenna device can be shown as curve a2 in FIG. 3A, and the system efficiency and radiation efficiency of the antenna device can be shown as curves b2 and c2 in FIG. 3B.
  • the S11 simulation of the antenna device can be as shown in Figure 3A shown by curve a 3, the system efficiency of the antenna device, the radiation efficiency curve b3 in FIG. 3B, c3 shown in FIG.
  • the excitation unit 23 can be matched with a good impedance by connecting the capacitor C in series and then the inductance L in parallel at the feeding port, so that the excitation unit 23 can effectively excite the floor 15 to generate radiation.
  • the matching network integrated at the feed port may include a capacitor C and an inductance L, the capacitor C is connected in series to the feed port, and the inductance L is connected in parallel to the feed port.
  • the capacitor C may be referred to as a second capacitor, and the inductor L may be referred to as a first inductor.
  • the working principle of the antenna device provided in the present application is described below by taking the 900 MHz working frequency band as an example. Assume that the integrated matching network at the feed port is a capacitor of lpF in series, and an inductor of 4.5nH in parallel.
  • the current distribution of the antenna device provided in the present application working at 900MHz can be as shown in FIG. 4A, the excitation unit 23 is distributed with the same direction current 31, and the same direction current 31 distributed on the ring-shaped excitation unit 23 can be equivalent to magnetic Therefore, the excitation unit 23 can be called a "magnetic ring".
  • the current 31 in the same direction can excite the floor 15 to generate a longitudinal current 33, thereby excite the floor 15 to generate resonance, and excite the floor 15 to generate radiation.
  • 4B and 4C are respectively a front view and a bird's eye view of a simulated three-dimensional radiation pattern of the antenna device provided by this application operating at 900 MHz. As shown in Figures 4B-4C, the shape of the three-dimensional radiation pattern is similar to that of a 1/2-wavelength dipole. Because the current of the floor 15 is mainly concentrated on the side 21-1 of the floor 15, the three-dimensional The firing pattern is mainly inclined to one side.
  • the distance p between the excitation unit 23 and the bottom edge 21-7 of the floor 15 shown in FIG. 5A is an important parameter of the excitation unit 23 in the actual complete machine model.
  • Lg l 4 0 mm
  • Wg 70 mm
  • Le 40 mm
  • h 4 mm
  • the working frequency band to an example GPS L5 5B and 5C illustrate the antenna apparatus when two different values of p S11 simulation, antenna efficiency.
  • the S11 simulation of the antenna device can be shown as the curve a1 in FIG. 5B
  • the system efficiency and radiation efficiency of the antenna device can be shown as the curves bl and cl in FIG. 5C.
  • p 45 mm
  • the radiation efficiency of the antenna device may be as shown in FIG.
  • the resonance position and resonance depth of the S11 simulation are basically the same, and the system efficiency peak value is about -6dB.
  • the reason will be analyzed in the following content.
  • the resonance depth of the antenna becomes deeper at a lower frequency band; the length Le of the excitation unit 23 decreases, and the resonance depth of the antenna becomes shallower at a higher frequency band.
  • Fig. 6A and Fig. 6B show the S11 simulation and antenna efficiency of the antenna device when Le has several different values.
  • the system efficiency and radiation efficiency of the antenna device can be shown as the curves bl and cl in Fig. 6B.
  • the system efficiency and radiation efficiency of the antenna device can be shown as curves b2 and c2 in Fig. 6B.
  • the system efficiency and radiation efficiency of the antenna device can be shown as curves b3 and c3 in Fig. 6B.
  • the resonance frequency of the antenna device is the lowest (closest 850MHz), the deepest resonance depth (up to -8dB).
  • the resonance depth can be deepened by reducing the parallel inductance.
  • the height h of the excitation unit 23 decreases, the resonance of the antenna moves toward high frequency, and the resonance depth becomes shallower.
  • Fig. 7A and Fig. 7B show the S11 simulation and antenna efficiency of the antenna device when h is several different values.
  • the S11 simulation of the antenna device can be shown as the curve al in FIG. 7A
  • the system efficiency and radiation efficiency of the antenna device can be shown as the curves bl and cl in FIG. 7B.
  • the S11 simulation of the antenna device can be shown as curve a2 in Fig. 7A
  • the system efficiency and radiation efficiency of the antenna device can be shown as curves b2 and c2 in Fig. 7B.
  • the S11 simulation of the antenna device can be shown as curve a3 in Fig. 7A
  • the system efficiency and radiation efficiency of the antenna device can be shown as curves b3 and c3 in Fig. 7B.
  • the antenna device has the lowest resonance frequency (about 900MHz) and the deepest resonance depth (reaching -7dB).
  • the resonance frequency of the antenna device is the highest (close to 1GHz), and the resonance depth is the shallowest (about -4dB). It can be seen that as the height h decreases from 4 mm to 3 mm and 2 mm, the resonance of the antenna moves to high frequency, and the resonance depth becomes shallower.
  • the resonance can be returned to the low frequency by increasing the length Le.
  • the system efficiency and radiation efficiency of the antenna device in millimeters. It can be seen that increasing the length of the excitation unit 23 from 40 mm to (40+10) mm can make the antenna resonance return to low frequency (900MHz). At this time, the peak efficiency of the antenna is only reduced by about 0.6dB without significant deterioration. The antenna bandwidth is also slightly reduced, and the antenna performance is not very sensitive to the height of the excitation unit 23.
  • the position of the excitation unit 23 can be reflected by two dimensions of parameters: the distance w between the excitation unit 23 and the first side of the floor (such as side 21-1), the distance w between the excitation unit 23 and the third side of the floor (such as the bottom) The distance p between edges 21-7).
  • the first side and the third side may be two connected sides of the floor 15, and they may be perpendicular to each other.
  • the smaller the distance w is, the closer the excitation unit 23 is to the side 21-1 of the floor 15. When w 0 mm, it means that the excitation unit 23 is erected at the side 21-1. The larger the distance w, it means that the excitation unit 23 is closer to the middle of the floor 15 along the Y direction.
  • Decreasing the distance w can cause the resonance of the antenna to move toward low frequencies, and the resonance depth becomes deeper; increasing the distance w, can cause the resonance of the antenna to move toward high frequencies, and the resonance depth becomes shallower.
  • the excitation unit 23 moves to the middle of the floor 15 (that is, w becomes larger), the same direction current on the excitation unit 23 is difficult to match the floor 15
  • the intrinsic current of 15 is coupled, so that it is difficult to excite the floor 15 to generate radiation.
  • FIGS. 8A and 8B show the S11 simulation and antenna efficiency of the antenna device when w is several different values.
  • d 0 mm (d represents the height of the metal side pivot), which means that no metal side pallet is provided on the side of the floor 15, that is, the side pallet 27 is a non-metal frame.
  • the S11 simulation of the antenna device can be shown as the curve a in FIG. 8A, and the system efficiency and radiation efficiency of the antenna device can be shown in FIG. 8B
  • the curves bl and cl are shown.
  • the S11 simulation of the antenna device can be shown as curve a2 in FIG. 8A, and the system efficiency and radiation efficiency of the antenna device can be shown as curves b2 and c2 in FIG. 8B.
  • the S11 simulation of the antenna device can be shown as curve a3 in FIG. 8A, and the system efficiency and radiation efficiency of the antenna device can be shown as curves b 3 and c 3 in FIG. 8B.
  • the antenna device has the lowest resonance frequency (about 900 MHz) and the deepest resonance depth (reaching -6dB).
  • the resonance frequency of the antenna device is the highest (close to 1GHz), and the resonance depth is the shallowest (about -3dB). It can be seen that as the height w increases from 0 mm to 2 mm and 4 mm, the resonance of the antenna moves to high frequency, and the resonance depth becomes shallower, and the system efficiency peak value and bandwidth also decrease significantly.
  • the S11 simulation of the antenna device can be shown as the curve in Figure 9A
  • the system efficiency and radiation efficiency of the antenna device can be shown as curves b3 and c3 in FIG. 9B.
  • d 0 mm (d represents the height of the metal frame)
  • w 2 mm when, S11 of the antenna apparatus in simulation curve a2 9A may be shown, the system efficiency of the antenna device, the radiation efficiency shown in FIG 9 B Curves b 2 , c 2 in.
  • FIG. 10C is an antenna radiation pattern of the antenna device when p is several different values.
  • the size of the floor 15 can be reflected by two dimensions: the length Lg of the floor 15 and the width Wg of the floor 15.
  • the size of the excitation unit 23 and the floor 15 can be determined according to the size of the overall model to which the antenna device provided in this application is actually applied.
  • the relative positional relationship between the excitation unit 23 and the floor 15 can be as follows:
  • the excitation unit 23 can be parallel to the first side of the floor 15 (such as side 21-1), or the gap between the excitation unit 23 and the first side of the floor 15 (such as side 21-1) can be smaller
  • the included angle that is, the two can be close to parallel.
  • the smaller included angle may be smaller than the first angle, such as 5 ° . It is not limited to 5°, and the first angle may also be 3 ° , 7°, etc.
  • the excitation unit 23 is parallel to the first side, it is easier for the excitation unit 23 to excite the floor 15 to produce a stem shot.
  • the excitation unit 23 can be erected on the floor 15 adjacent to the first side of the floor 15 (such as the side 21-1).
  • the proximity may mean that the distance between the excitation unit 23 and the first side is less than a specific distance, such as 4 mm. It is not limited to 4 mm, and the specific distance can also be 3 mm, 2 mm, 1 mm, etc.
  • the distance L1 from the excitation unit 23 to the first side is smaller than the distance L2 from the excitation unit 23 to the second side (for example, side 21-5).
  • the first side and the second side are two opposite sides of the floor 15. L1 can be equal to 0.
  • the excitation unit 23 is erected on the first side of the floor, and the excitation unit 23 is easier to excite the floor 15 to generate radiation.
  • the closer the excitation unit 23 is to the first side the easier it is to excite the floor 15 to generate radiation.
  • the distance between the excitation unit 23 and the first side is unique; when the excitation unit 23 and the first side are nearly parallel, the excitation unit 23 and the first side
  • the distance between each other may be the distance from a certain point (such as the center point) on the excitation unit 23 to the first side, or the average value of the multiple distances from each of the multiple points on the excitation unit 23 to the first side.
  • the difference between the distance p2 and is smaller than the first value, such as 15 mm. It is not limited to 15 mm, and the first value can also be 12 mm, 20 mm, etc.
  • the third and fourth sides are the other two opposite sides of the floor 15.
  • the first end is an end of the excitation unit 23 close to the third side
  • the second end is an end of the excitation unit 23 close to the fourth side.
  • pl+p2+Le Lg; when the excitation unit 23 and the first side are not parallel, and there is an angle a (a 0) between the two, pl+p2+Le> Lg.
  • a 0 the difference between pi and p2
  • pi and p2 are equal, and both are equal to (Lg-Le)/2.
  • the above content describes an antenna design scheme that works in a single frequency band.
  • the single frequency band may be a 900 MHz low frequency frequency band, GPS L5 or GPS L1, and so on.
  • the antenna device provided in the present application can also implement dual frequency bands or broadband or multiple frequency bands, which can be achieved by matching networks or adding more magnetic rings. Explain below.
  • the matching network in order to achieve dual-band matching, can be a series of LC parallel circuit (consisting of parallel L2 and C2) after the series capacitor C1, and finally a parallel inductor L2. That is, the integrated matching network at the feeding port may include: a series capacitor Cl, an LC parallel circuit, and an inductor L2. The capacitor Cl and LC parallel circuit are connected in series to the feeding port once, and the inductor L2 is connected in parallel to the feeding port.
  • the capacitor C1 can be referred to as the third capacitor
  • the inductor L2 can be referred to as the second inductor
  • the capacitor C2 in the LC parallel circuit can be referred to as the fourth capacitor
  • the inductor L2 in the LC parallel circuit can be referred to as the third inductor.
  • the dual frequency band can be a low frequency band (for example, at 8(8) MHz) and GPS L1 frequency band (at 1.5GHz).
  • a parasitic unit (also called a parasitic magnetic loop) can be erected on the floor 15.
  • the antenna device provided in the present application may further include a parasitic element.
  • the parasitic unit can be erected near the first side of the floor (such as side 21-1).
  • near can mean that the distance between the parasitic unit and the first side of the floor (such as side 21 -1) is less than a specific distance (such as 4 mm).
  • the distance L3 from the parasitic unit to the first side of the floor is less than the distance L4 from the parasitic unit to the second side of the floor.
  • the structure of the parasitic unit and the structure of the excitation unit 23 may be the same.
  • the parasitic unit may have a third branch and two fourth branches. Similar minor third excitation unit 23 in a first stub 29-2, similar to the fourth minor second excitation stub 23 units 29-1, 29-3 o structure, similar to the parasitic element excitation unit 23 in two
  • the fourth branch can be connected to both ends of the third branch respectively.
  • the end of the fourth branch away from the first branch is connected to the floor 15.
  • the two fourth branches can be used to erect the third branch on the floor 15 to form a gap between the third branch and the floor 15.
  • a capacitor can be connected in series with the parasitic unit. This capacitor can be referred to as the fifth capacitor.
  • a gap can be opened on the third branch, and the fifth capacitor can be connected in series between the two parts of the third branch on both sides of the gap. This gap may be referred to as a second gap.
  • the excitation unit 23 excites the floor 15 to generate radiation
  • the floor 15 will combine with the parasitic unit to generate radiation, so that dual-band radiation can be realized.
  • Figure 13C and Figure 13D show the antenna performance under two matching network parameters.
  • the S11 simulation of the antenna device can be as shown in Fig. 13C
  • the efficiency simulation of the antenna device can be shown as the curves bl and cl in FIG. 13D. It can be seen that the antenna device works in dual frequency bands: 800 MHz frequency band and 960 MHz frequency band. The antenna efficiency of these two frequency bands is basically the same, and there is no efficiency pit.
  • the S11 simulation of the antenna device can be shown as curve a in UC
  • the efficiency simulation of the antenna device can be shown as curves b 2 and c 2 in Fig. UD. It can be seen that the antenna device works in dual frequency bands: 800 MHz frequency band and 1.1 GHz frequency band. The antenna efficiency of these two frequency bands is basically the same, and there is no efficiency pit.
  • each parasitic magnetic ring has a series capacitor. It is not limited to being arranged near the side edge of the floor 15 as shown in FIG. 15A.
  • the excitation unit 23 and the parasitic unit, or only the excitation unit 23, can also be arranged near the bottom edge 21-7 or the top edge 21-3 of the floor 15. As shown in Figure 15B. That is, the first side of the floor can be the side of the floor 15, such as the side 21-1 or the side 21 -5, or the bottom 21 -7 or the top side 21 -3 of the floor 15.
  • the antenna device provided in this application may include multiple antenna units, and one antenna unit may have one excitation unit 23, or may have one excitation unit 23 and M (M is positive). Integer) parasitic units.
  • the multiple antenna units can be arranged near each side of the floor 15. For example, as shown in FIG. 16, 4 antenna units can be respectively arranged near 4 on the floor 15, and 4 X 4 MIMO can be realized in this case. If the two antenna elements in FIG. 16 are removed, 2 X 2 MIMO can be realized. If some antenna units are added near the floor in Fig. 16, high-order MIMO can be realized.
  • the parasitic unit may also be other antennas, such as a bracket antenna, a suspension antenna, and the like.
  • the support antenna may include an inverted F antenna (IFA), an inverted L antenna (ILA), and the like.
  • IFA inverted F antenna
  • ILA inverted L antenna
  • Fig. 17A exemplarily shows a parasitic IFA antenna
  • Fig. 17B exemplarily shows a parasitic ILA antenna
  • Fig. 17C exemplarily shows a parasitic floating metal antenna (FLM).
  • the parasitic suspended metal antenna can be pasted or printed on the inner or outer surface of a non-metal back cover (such as a glass back cover).
  • the IFA antenna can also be used as an excitation unit, that is, to feed the IFA, and the IFA antenna can couple energy to a magnetic ring with the same structure as the excitation unit 23. Then, the magnetic ring can couple energy to the floor, stimulating the floor to produce radiation.
  • the matching network of the IFA antenna as the excitation unit can be connected in series with an lpF capacitor and then a 4nH inductance in parallel; a 0.8pF capacitor can be connected in series with the magnetic ring as the parasitic unit.
  • the ILA can also be used as an excitation unit, that is, to feed the ILA.
  • the ILA antenna can couple energy to a magnetic ring with the same structure as the excitation unit 23. Then, the magnetic ring can couple energy to the floor, stimulating the floor to generate radiation.
  • capacitors and inductors mentioned in the above content of this application can be realized by lumped elements or distributed elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Engineering & Computer Science (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供的天线方案,通过在电子设备(如手机)的地板上方架设激励单元,对该激励单元馈电,来有效激励起地板产生辐射。这样,因地板的辐射能力不受显示屏和地板之间的净空大小影响,本申请提供的天线方案可适用全面屏这种天线空间被急剧缩减的电子设备。另外,地板作为电子设备(如手机)的主要的辐射口径之一,激励地板产生辐射可以显著提升天线性能。

Description

天线装置及电子设备 本申请要求在 2019年 2月 27 日提交中国国家知识产权局、 申请号为 201910146577.6、 发明名称为 “一种地板辐射天线方案” 的中国专利申请的优先权, 在 2019年 7月 8 日提交中 国国家知识产权局、 申请号为 201910614002.2、 发明名称为 “天线装置及电子设备” 的中国 专利申请的优先权其全部内容通过引用结合在本申请中。 技术领域
本发明涉及天线技术领域, 特别涉及应用在电子设备中的天线装置。 背景技术
为了给用户带来更为舒适的视觉感受, 全面屏工业设计 (industry design, ID) 已成为手 机等便携式电子设备的设计趋势。 全面屏意味着极大的屏占比(通常在 90%以上)。 全面屏的 边框宽度大幅缩减, 需要对手机内部器件, 如前置摄像头、 受话器、 指纹识别器、 天线等, 进行重新布局。 尤其对于天线设计来说, 净空区域缩减, 天线空间进一步被压缩。 而天线的 尺寸、 带宽、 效率是相互关联、 相互影响的, 减小天线尺寸 (空间), 天线的效率带宽积 (efficiency -bandwidth product) 势必减小。 因此, 全面屏 ID给手机的天线设计带来了极大的 挑战。
现有手机等电子设备中常用的天线设计形式可以为平面倒 F(planer inverted F) 天线、 倒 F (inverted F) 天线、 单极子 (monopole) 天线、 T型天线、 环型 (loop) 天线等。 这些天线 设计, 其天线长度至少要满足低频波长的四分之一到二分之一, 对天线空间要求较高。
如何在有限空间内设计天线又能满足天线性能要求, 为业界的研究方向。 发明内容
本发明实施例提供了一种天线装置及电子设备, 可有效激励起地板产生辐射, 因地板的 辐射能力不受显示屏和地板之间的净空大小影响, 可适用全面屏这种天线空间被急剧缩减的 电子设备。
第一方面, 本申请提供了一种天线装置, 如图 2A-图 2F所示, 该天线装置可以包括: 电子 设备的地板 15、 激励单元 23。 其中:
地板 I5包括相对的第一边 (如侧边 21-1) 和第二边 (如侧边 21_5) , 以及相对的第三边 (如底边 21-7) 和第四边 (如顶边 21-3) 。
激励单元 23可具有第一枝节 29-2和两个第二枝节 (29-1、 29-3) 。 第二枝节 29-1和第二 枝节 29-3可分别连接在第一枝节 29-2的两端。 第二枝节 29-1远离第一枝节 29-2的一端连接地 板 15, 第二枝节 29-3远离第一枝节 29-2的一端连接地板 15。 第二枝节 29-1和第二枝节 29-3可 用于将第一枝节 29-2架设于地板 15上, 第一枝节 29-2与地板 15之间形成空隙。
激励单元 23可以邻近地板 15的第一边架设在地板 15上。 这里, 该邻近可以是指激励单元 23和第一边之间的距离小于特定距离, 如 4毫米。 不限于 4毫米, 该特定距离还可以为 3毫米、 2毫米、 1毫米等数值。 此时, 激励单元 23到第一边的距离 L1, 小于, 激励单元 23到第二边的 激励单元 23的第一端到第三边的距离 pi,和,激励单元 23的第二端到第四边的距离 p2, 之间的差值小于第一值, 如 15毫米。 不限于 15毫米, 第一值还可以为 12毫米、 20毫米等 数值。 第一端为激励单元 23的靠近第三边的一端, 第二端为激励单元 23 的靠近第四边的一 端。
激励单元 23上可设置有馈电端口 27 , 信号源位于馈电端口 27中。 激励单元 23 的第一 枝节 29-2上可开设有第一缝隙, 第一缝隙两侧的两部分第一枝节之间可串联第一电容。 第一 电容可用于实现激励单元 23上分布的同向电流。
可以看出, 第一方面提供的天线装置, 通过在电子设备 (如手机) 的地板上方架设激励 单元, 对该激励单元馈电, 来有效激励起地板产生辐射。 这样, 因地板的辐射能力不受显示 屏和地板之间的净空大小影响, 本申请提供的天线方案可适用全面屏这种天线空间被急剧缩 减的电子设备。 另外, 地板作为电子设备 (如手机) 的主要的辖射口径之一, 激励地板产生 辐射可以显著提升天线性能。
结合第一方面,在一些实施例中,激励单元 23可以平行于地板 15的第一边(如侧边 21-1), 或者, 激励单元 23和地板 15的第一边 (如侧边 21-1) 之间可以呈现较小的夹角, 即二者之 间可以接近平行。该较小的夹角可以小于第一角度,如 5° 。不限于 5°,第一角度还可以是 3 ° 、 7。等角度。 此时, 激励单元 23和第一边之间的夾角 a, 小于, 激励单元 23和第三边之间的夹 角 P。 激励单元 23可以平行于地板 15的第一边, 即夹角 a等于 0° , 此时激励单元 23可以激 励起地板 15在第一边处产生更强的电流, 激励单元 23更容易激励起地板 15产生谐振。
结合第一方面, 在一些实施例中, 第一缝隙可以开设于第一枝节 29_2的中间, 这样激励 单元 23上的同向电流更强, 更容易激励起地板 15产生辖射。 第一电容可以是集总电容, 或 者分布式电容 (例如在激励单元 23上开设缝隙所形成的分布式电容)。
结合第一方面,在一些实施例中, 馈电端口 27处的馈电形式可以包括但不限于下述两种 方式:
在一种实现方式中, 如图 2E所示, 馈电端口 27可具体设置在第一枝节 29-2上, 具体可 通过在第一枝节 29-2上开设缝隙 1 来实现。 缝隙 1把第一枝节 29-2分成两部分 (29-2-A、 29-2-B) , 第一枝节 29-2-A、 第一枝节 29-2-B之间可串联信号源。
在另一种实现方式中, 如图 2F所示, 馈电端口 27可具体设置在第二枝节 29-1或第二枝 节 29-3上, 具体可通过在第二枝节上开设缝隙 2来实现。 图 2F中串联的电感 L可用来实现 阻抗匹配, 后续内容中会介绍馈电端处集成的匹配网络, 这里先不赘述。
结合第一方面, 在一些实施例中, 第一枝节 29-2可以是水平枝节, 平行于地板 15。 可选 的, 第二枝节 29-1、 第二枝节 29-3可以是垂直枝节, 垂直于地板 15, 用于将第一枝节 29-2 悬空架设于地板 15上。
结合第一方面,在一些实施例中,激励单元 23可平行于第一边,此时失角 a=0、失角 P=90° , 此时激励单元 23更容易激励起地板 15产生福射。
结合第一方面, 在一些实施例中, 激励单元 23可架设于地板的第一边处, 此时 L1等于 0 ,此时激励单元 23更容易激励起地板 15产生辐射。也即是说,激励单元 23 离第一边越近, 越容易激励起地板 15产生辖射。
结合第一方面, 在一些实施例中, 距离 pi 和距离 p2可以相等, 都等于 (Lg- Le) /2。 此时, 激励单元 23可邻近第一边架设于地板的中间, 激励单元 23更容易激励地板 15产生谐
2 振
结合第一方面, 在一些实施例中, 馈电端口处集成有匹配网络可包括电容 C和电感 L, 该电容 C串联于馈电端口, 该电感 L并联于馈电端口。 该电容 C可以称为第二电容, 该电感 L可以称为第一电感。
结合第一方面, 在一些实施例中, 本申请提供的天线装置还可实现双频段或宽频带或多 频段, 可以通过匹配网络或者增加更多的磁环来实现。 下面展开说明。
1.基于匹配网络的双频段天线方案
为了实现双频段匹配, 匹配网络可以为在串联电容 C1之后, 串联一个 LC并联电路 (由并 联的 L2和 C2构成) , 最后再并联电感 L2 即, 馈电端口处集成的匹配网络可包括: 串联电容 Cl、 LC并联电路、 电感 L2, 电容 Cl、 LC并联电路一次串联于馈电端口, 电感 L2并联于馈电端 口。 电容 C1可以称为第三电容, 电感 L2可以称为第二电感, LC并联电路中的电容 C2可以称为 第四电容, LC并联电路中的电感 L2可以称为第三电感。可选的,双频段可以是低频段(如 80(MHz 处)和 GPS L1频段(1. 5GHz处) ,针对该双频段的匹配网络的配置可以如下: Cl=lpF , Ll=6nH, C2=2. 2pF, L2=4. 5nH。
2.基于多磁环的双频段或宽频带或多频段天线方案
为了实现双频段或宽频段, 可以在地板 15上架设一个寄生单元 (又可称为寄生磁环)。 也即是说, 本申请提供的天线装置还可以进一步包括寄生单元。 在地板 15上, 和激励单元 23相同, 该寄生单元可架设于地板的第一边 (如侧边 21-1) 附近。 这里, 附近可以是指寄生 单元与地板的第一边 (如侧边 21-1) 之间的距离小于特定距离 (如 4毫米)。 此时, 寄生单元 到地板的第一边的距离 L3, 小于, 寄生单元到地板的第二边的距离 L4。
激励单元 23在激励起地板 15产生辖射的同时, 地板 15会辆合该寄生单元产生辖射, 从 而可实现双频段辐射。
在一些实施例中, 寄生单元的结构和激励单元 23的结构可以相同。 寄生单元可具有第三 枝节和两个第四枝节。 第三枝节类似激励单元 23中的第一枝节 29_2 , 第四枝节类似激励单元 23 中的第二枝节 29-1、 29-3 类似激励单元 23的结构, 寄生单元中的两个第四枝节可分别 连接在第三枝节的两端。 第四枝节远离第一枝节的一端连接地板 15。 两个第四枝节可用于将 第三枝节架设于地板 15上, 以使第三枝节与地板 15形成空隙。 和激励单元 23—样, 该寄生 单元上可串联电容。 该电容可以称为第五电容。 为了串联第五电容, 可以在第三枝节上开设 缝隙, 该缝隙两侧的两部分第三枝节之间可以串联第五电容。 该缝隙可以称为第二缝隙。
不限于和激励单元 23结构相同的寄生磁环, 为了实现多频段或宽频段, 寄生单元还可以 是其他天线, 如支架天线、 悬浮天线等。 支架天线可以包括 IFA天线、 ILA天线等。
结合第一方面, 在一些实施例中, 为了实现 MIM0, 本申请提供的天线装置可以包括多个 天线单元, 一个天线单元可具有一个激励单元 23, 或者可具有一个激励单元 23和 M (M是正整 数) 个寄生单元。 这多个天线单元可以设置于地板 15的各个边的附近。 即, 在一个天线单元 中, 激励单元 23邻近于地板的边缘架设, 寄生单元也邻近于地板的边缘架设。
第二方面, 本申请提供了一种电子设备, 该电子设备包括非金属后盖, 以及上述第一方 面描述的天线装置。 附图说明
为了更清楚地说明本申请实施例中的技术方案, 下面将对本申请实施例中所需要使用的 附图进行说明。
图 1是电子设备内部环境的示意图;
图 2A为本申请提供的天线装置的整体模型示意图;
图 2B为本申请提供的天线结构在 X-Z平面的平面视图;
图 2C为本申请提供的天线结构中的环状激励单元的细节视图;
图 2D为本申请提供的天线结构中的馈电端口处的馈电形式的示意图; 图 2E本申请提供的天线装置的一种馈电形式的示意图;
图 2F为本申请提供的天线装置的另一种馈电形式的示意图;
图 3A为本申请提供的天线结构在几种匹配网络下的 S11仿真示意图; 图 3B为本申请提供的天线结构在几种匹配网络下的效率仿真图;
图 3C为本申请提供的天线结构的一种匹配网络的示意图;
图 4A为本申请提供的天线结构的仿真的矢量电流分布图;
图 4B为本申请提供的天线结构工作在 900MHz处的三位辐射方向图的前视图; 图 4C为本申请提供的天线结构工作在 900MHz处的三位辐射方向图的俯视图; 图 5A为本申请提供的天线结构在整机模型中的应用示意图 ;
图 5B为本申请提供的天线结构在几种 p值下的 S11仿真示意图;
图 5C为本申请提供的天线结构在几种 p值下的效率仿真示意图;
图 6A为本申请提供的天线结构在几种 Le值下的 S11仿真示意图;
图 6B为本申请提供的天线结构在几种 Le值下的效率仿真示意图;
图 7A为本申请提供的天线结构在几种 h值下的 S11仿真示意图;
图 7B为本申请提供的天线结构在几种 h值下的效率仿真示意图;
图 8A为本申请提供的天线结构在几种 w值下的 S11仿真示意图;
图 8B为本申请提供的天线结构在几种 w值下的效率仿真示意图;
图 9A为本申请提供的天线结构在 d=4mm,w=2mm时的 S11仿真示意图; 图 9B为本申请提供的天线结构在 d=0mm,w=2mm时的效率仿真示意图; 图 10A为本申请提供的天线结构在几种 p值下的 S11仿真示意图;
图 10B为本申请提供的天线结构在几种 p值下的效率仿真示意图;
图 10C为本申请提供的天线结构在几种 p值下的天线辐射方向图;
图 11A为本申请提供的天线结构在几种 Lg值下的 S 11仿真示意图;
图 11B为本申请提供的天线结构在几种 Lg值下的效率仿真示意图;
图 11C为本申请提供的天线结构在几种 Wg值下的 S11仿真示意图;
图 11D为本申请提供的天线结构在几种 Wg值下的效率仿真示意图;
图 12A为实现双频段的匹配网络的示意图;
图 12B为本申请提供的天线结构配置有图 12A所示的匹配网络时的 S11仿真图; 图 13A为一种基于多磁环的多频段或宽频带天线结构的示意图;
图 13B为图 13A所示的天线结构的鸟瞰筒化图;
图 13C为图 13A所示的天线结构在两种匹配网络参数下的 S11仿真图; 图 13D为图 13A所示的天线结构在两种匹配网络参数下的效率仿真图; 图 14为另一种基于多磁环的多频段或宽频带天线结构的示意图;
图 15A为本申请中的激励单元和寄生单元在地板上的一种布局示意图; 图 15B为本申请中的激励单元和寄生单元在地板上的另一种布局示意图; 图 16为实现 MIMO的励单元和寄生单元在地板上的布局示意图;
图 17A示出了 IFA作为寄生单元的天线装置的示意图;
图 17B示出了 ILA作为寄生单元的天线装置的示意图;
图 17C示出了悬浮天线作为寄生单元的天线装置的示意图。 具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备: 蓝牙(bluetooth , BT)通信技术、 全球定位系统(global positioning system, GPS)通信技术、 无线保真(wireless fidelity, Wi-Fi)通信技木 全球移动通讯系统(global system for mobile communications) GSM) 通信技术、 宽频码分多址 (wideband code division multiple access , WCDMA) 通信技术、 长 期演进 (long term evolution , LTE) 通信技术、 5G通信技术、 SUB-6G通信技术以及未来其 他通信技术等。 本申请中, 电子设备可以是手机、 平板电脑、 个人数码助理 (personal digital assistant, PDA) 等等。
图 1示例性示出了本申请提供的天线设计方案所基于的电子设备内部环境。如图 1所示, 电子设备 10可包括: 显示屏 11、 印刷电路板 PCB 13、 地板 15、 边框 17和后盖 19。 显示屏 11、 印刷电路板 PCB13、地板 15和后盖 19可以分别设置于不同的层, 这些层可以相互平行, 各层所在的平面可以称为 X-Z平面, 垂直于 X-Z平面的方向为 Y方向。 也即是说, 显示屏 11、 印刷电路板 PCB13、 地板 15和后盖 19可以在 Y方向上分层分布。
其中, 印刷电路板 PCB13可以采用 FR-4介质板, 也可以采用罗杰斯(Rogers) 介质板, 也可以采用 Rogers和 FR-4的混合介质板, 等等。 这里, FR-4是一种耐燃材料等级的代号, Rogers介质板一种高频板。
其中, 后盖 19是非导电材料制成的后盖, 如玻璃后盖、 塑料后盖等非金属后盖。
其中, 地板 15接地, 可设置于印刷电路板 PCB13与后盖 19之间。 地板 15又可以称为 PCB底板。 具体的, 地板 15可以是蚀刻在 PCB13表面的一层金属, 这层金属还可以通过一 系列金属弹片接在金属中框 (未示出) 上, 跟金属中框成为一体。 地板 15可用于印刷电路板 PCB 13上承载的电子元件接地。 具体的, 印刷电路板 PCB13上承载的电子元件可以通过接线 到地板 15来实现接地, 以防止用户触电或设备损坏。
其中, 边框 17可以环设于地板 15的边缘, 可以从侧边包覆后盖 19与显示屏 11之间的 印刷电路板 PCB13、 地板 15 , 以达到防尘、 防水的目的。 边框 17可以是金属边框, 也可以 是非金属边框。 边框 17可以包括: 电子设备 10顶部的边框 (可称为顶部边框) 27-3, 电子 设备 10底部的边枢 (可称为底部边枢) 27-7, 以及电子设备 10侧边的边框 (可称为侧边边 框) 27-1 和 27-5。 电子设备 10顶部可设置有前置摄像头 (未示出)、 听筒 (未示出)、 接近 光传感器 (未示出) 以及环境光传感器 (未示出) 等。 电子设备 10底部可设置有 USB充电 接口 (未示出)、 麦克风 (未示出) 等。 电子设备 10侧边可设置有音量调节按键 (未示出)、 电源键 (未示出)。
图 1仅示意性的示出了电子设备 10包括的各个部分, 各个部分的实际形状、 实际大小和 实际构造不受图 1限定。电子设备 10的显示屏 11可以是大尺寸显示屏,屏占比可以达到 90% 以上。 基于图 1 所示的电子设备内部环境, 本申请将提供基于磁环馈电的地板辐射天线方案。 本申请提供的天线方案, 通过在地板 15上方架设激励单元, 对该激励单元馈电, 来有效激励 起地板 15产生辖射。 这样, 因地板 15的糕射能力不受显示屏 11和地板 15之间的净空大小 影响, 本申请提供的天线方案可适用全面屏 ID这种天线空间被急剧缩减的电子设备。 另外, 地板 15作为电子设备 10的主要的辐射口径之一,激励地板 15产生辐射可以显著提升天线性 能。
图 2A-图 2C示出了本申请提供的天线装置。 其中, 图 2A为该天线装置的整体模型示意 图, 图 2B为该天线结构在 X-Z平面的平面视图, 图 2C为该天线结构中的环状激励单元的细 节视图。 如图 2A-图 2C所示, 该天线装置可包括地板(ground plane) 15、 激励单元(exciting element) 23 。 其中:
地板 15可以具有相对的侧边 21-1和侧边 21-5, 以及相对的顶边 21-3和底边 21-7。 地板 15这几个边分别紧挨着边框 17的几个边枢。 具体的, 侧边 21-1 紧挨着侧边边枢 17-1、 顶边 21-3 紧挨着顶部边框 17-3、侧边 21-5紧挨着侧边边框 17-5、底边 21-7紧挨着底部边框 17-7。 可选的, 地板 15可以为矩形, 侧边 21-1和侧边 21-5可为两个相对的长边, 顶边 21-3和底边 21-7可以为两个相对的短边。
激励单元 23可以邻近地板 15的某条边架设在地板 15上。 该条边可以称为地板 15的第 一边。 这里, 该邻近可以是指激励单元 23和地板 15的第一边之间的距离小于特定距离, 如 4毫米。激励单元 23离与地板 15的第一边之间的距离越小,越容易激励起地板 15产生辐射, 后续内容会进行分析, 这里先不赘述。 可选的, 地板 15的第一边可以是地板 15的长边。
激励单元 23可以平行于地板 15的第一边, 或者, 激励单元 23和地板 15的第一边之间 也可以呈现较小的夹角。 即激励单元 23和第一边之间可以平行或者接近平行。该较小的失角 可以小于第一角度, 如 5。 。 不限于 5。, 第一角度还可以是 3 ° 、 7°等角度。
激励单元 23可具有第一枝节 29-2和两个第二枝节 (29-1、 29-3)。 第二枝节 29-1和第二 枝节 29-3可分别连接在第一枝节 29-2的两端。 第一枝节 29-2的两端可以包括靠近顶边 21-3 的一端 22-1和靠近底边 21-7的一端 22-3。第二枝节 29-1远离第一枝节 29-2的一端连接地板 15, 第二枝节 29-3远离第一枝节 29-2的一端连接地板 15。 第二枝节 29-1和第二枝节 29-3 可用于将第一枝节 29-2架设于地板 15上, 第一枝节 29-2与地板 15之间形成空隙, 即第一 枝节 29-2不接触地板 15。 可选的, 第一枝节 29-2可以是水平枝节, 平行于地板 15。 可选的, 第二枝节 29-1、 第二枝节 29-3可以是垂直枝节, 垂直于地板 15, 用于将第一枝节 29-2悬空 架设于地板 15上。
图 2B和图 2C还示例性示出了地板 15的尺寸、 激励单元 23 的尺寸, 以及激励单元 23 在地板 15上的位置。 具体的, 地板 15的长度 Lg可以是 140毫米, 地板 15的宽度 Wg可以 是 70毫米。 这里, 地板 15的宽度 Wg即地板 15的短边(如图 2B中的 21-3、 21-7) 的长度, 地板 15的长度 Lg即地板 15的长边 (如图 2B 中的 21-1、 21-5) 的长度。 激励单元 23的长 度 Le可以是 40毫米, 激励单元 23 的高度 h可以是 4毫米。 这里, 激励单元 23 的长度 Le 即第一枝节 29-2的长度, 激励单元 23 的高度 h即第二枝节的长度。 激励单元 23和地板 15 的第一边(如侧边 21-1) 的之间的距离 w可以为 2毫米, 激励单元 23的一端 22-3与地板 15 的底边 21-7之间的距离 p可以为 50毫米。 不限于附图所示, Lg、 Wg、 Le、 h、 w、 p还可以 为其他值, 后面内容中将详细介绍其值对天线性能的影响。 如图 2D所示, 激励单元 23上可设置有馈电端口 27, 信号源位于馈电端口 27中。 在一 种实现方式中, 如图 2E所示, 馈电端口 27可具体设置在第一枝节 29-2上, 具体可通过在第 一枝节 29-2上开设缝隙 1 来实现。 缝隙 1把第一枝节 29-2分成两部分 (29-2-A、 29-2-B) , 第一枝节 29-2-A、第一枝节 29-2-B之间可串联信号源。在另一种实现方式中,如图 2F所示, 馈电端口 27可具体设置在第二枝节 29-1或第二枝节 29-3上, 具体可通过在第二枝节上开设 缝隙 2来实现。 图 2F 中串联的电感 L可用来实现阻抗匹配, 后续内容中会介绍馈电端处集 成的匹配网络, 这里先不赘述。
如图 2D所示, 激励单元 23上还可串联有电容 C1, 电容可 C1 以称为第一电容。 第一电 容可用于实现激励单元 23上分布的同向电流。 为了串联第一电容, 如图 2E和图 2F所示, 第一枝节 29-2上可开设有缝隙 1。缝隙 1可把第一枝节 29-2分成两个部分(29-2-A、29-2-B), 第一枝节 29-2-A、 第一枝节 29-2-B之间可串联第一电容。 第一电容所处的缝隙 1可以称为第 一缝隙。 可选的, 第一缝隙可以开设于第一枝节 29_2的中间, 这样激励单元 23上的同向电 流更强, 更容易激励起地板 15产生辖射。 第一电容可以是集总电容, 或者分布式电容(例如 在激励单元 23上开设缝隙所形成的分布式电容)。
在一种实施例中, 如图 2E所示, 激励单元 23上可以仅开设一个缝隙, 如缝隙 1, 在缝 隙 1 中, 第一电容和信号源可组成串联电路, 然后该串联电路可以整体串联在缝隙 1两侧的 两部分第一枝节 (即第一枝节 29-2-A、 第一枝节 29-2-B) 之间。 也即是说, 第一电容所处的 缝隙和馈电端口所处的缝隙可以是同一个缝隙, 不限于此, 第一电容所处的缝隙和馈电端口 所处的缝隙也可以是两个不同的缝隙。
馈电端口 27处可集成有匹配网络, 该匹配网络可以用于 (通过调节天线发射系数、 阻抗 等) 调节本申请提供的天线装置所覆盖的频段范围。 该匹配网络可包括阻抗变换线或集总元 件网络等各种能够实现阻抗匹配的结构。 集总元件可包括电容或电感等元件。 具体的, 可以 通过改变阻抗变换线的线宽、 改变集总元件网络中元器件的电特性参数 (如电容值、 电感值 等), 调整天线输入阻抗, 从而实现阻抗匹配。
下面说明激励单元 23的匹配原理。 当没有使用任何匹配元件 (即没有匹配网络) 时, 输 入阻抗在期望频段 (如 690MHz-960MHz) 主要位于感性区域。 此时, 该天线装置的 S11 仿 真可如图 3A中的曲线 al所示, 该天线装置的系统效率、 辐射效率可如图 3B中的曲线 bl、 cl 所示。 当在馈电端口处仅串联电容 C (如 C=lpF) 时, 输入阻抗在期望频段 (如 690MHz-2700MHz) 表现为: 在低频段(如 690MHz-960MHz) 位于容性区域、 在高频段 (如 1700MHz-2700MHz)位于感性区域。此时该天线装置的 S11仿真可如图 3A中的曲线 a2所示, 该天线装置的系统效率、 辐射效率可如图 3B 中的曲线 b2、 c2所示。 如图 3C所示, 当馈电 端口处的匹配网络为先串联电容 C (如 C=lpF) 再并联电感 L (如 L=4.5nH) 时, 该天线装 置的 S11仿真可如图 3A中的曲线 a3所示, 该天线装置的系统效率、 辐射效率可如图 3B中 的曲线 b3、 c3所示。
可以看出, 曲线 al 没有谐振, 曲线 a2有一个较浅的谐振, 曲线 a3有一个较深的谐振。 另外, 曲线 b3表示的天线效率也明显优于曲线 bl、 b2表示的天线效率。 也即是说, 可以通 过在馈电端口处先串联电容 C再并联电感 L来对激励单元 23进行良好的阻抗匹配, 使得激 励单元 23可有效激励起地板 15产生辐射。 即, 馈电端口处集成有匹配网络可包括电容 C和 电感 L,该电容 C串联于馈电端口,该电感 L并联于馈电端口。该电容 C可以称为第二电容, 该电感 L可以称为第一电感。 下面以 900MHz工作频段为例说明本申请提供的天线装置的工作原理。 假设馈电端口处 集成的匹配网络为先串联一个 lpF的电容, 再并联一个 4.5nH的电感。 本申请提供的天线装 置工作在 900MHz处的电流分布可以如图 4A所示, 激励单元 23上分布有同向电流 31, 分布 在环状的激励单元 23上的同向电流 31可等效为磁流, 故激励单元 23可称为“磁环”。 同向电 流 31可以激励起地板 15产生纵向电流 33, 从而激励起地板 15产生谐振, 激励起地板 15产 生辐射。 图 4B和图 4C分别为本申请提供的天线装置工作在 900MHz处仿真的三维辐射方向 图的前视图、 乌瞰图。 如图 4B-图 4C所示, 三维辐射方向图的形状类似于 1/2波长偶极子的 辐射方向图, 因地板 15的电流主要集中在地板 15的侧边 21-1—侧, 故三维辖射方向图主要 向一侧倾斜。
可以看出, 通过在地板 15上方架设激励单元 23 , 对激励单元 23馈电, 并在馈电端口处 设置合适的匹配网络, 可有效激励起地板 15产生辐射。 这样, 可降低对天线空间的要求, 适 用全面屏 ID这种天线空间被急剧缩减的电子设备, 而且可以显著提升天线性能。 下面说明本申请提供的天线设计方案在实际整机模型中的应用。
例如,图 5A所示的激励单元 23与地板 15的底边 21-7之间的距离 p为激励单元 23在实 际整机模型中的重要参数。 假设 Lg=l40毫米, Wg=70毫米, Le=40毫米, h=4毫米, 以 GPS L5工作频段为例, 图 5B和图 5C示出了 p为两种不同取值时天线装置的 S11仿真、 天线效 率。 其中, 当 p=65毫米时, 该天线装置的 S11仿真可如图 5B 中的曲线 al 所示, 该天线装 置的系统效率、 辐射效率可如图 5C 中的曲线 bl、 cl 所示。 当 p=45 毫米时, 该天线装置的 S11仿真可如图 5C中的曲线 a2所示, 该天线装置的系统效率、 辐射效率可如图 5C中的曲线 b2> c2所示。
可以看出, p=65毫米和 p=45毫米这两种情况下, S11仿真的谐振位置、 谐振深度基本相 同, 系统效率峰值都在 -6dB左右。 其实, p=65毫米时的系统效率略高于 p=45毫米时的系统 效率, 后续内容中会分析原因。 另外, p=65 毫米时的上半球占比约为 45.18%, p=65毫米时 的上半球占比约为 55.88%。 上半球占比越高, 天线的纵向向上的轻射更强, 即在 Z向上的辖 射更强。
不限于激励单元 23与地板 15的底边 21-1之间的距离 p, 地板 15的尺寸、 激励单元 23 的尺寸, 以及激励单元 23与地板 15的侧边 21-1之间的距离 w, 也可以为本申请提供的天线 装置在实际整机模型中的重要参数。 这些参数的取值会影响天线性能。 下面将以单变量为原 则 (即单个参数改变, 其他参数不变) 详细说明某个参数对天线性能的影响。
(1) 激励单元 23的尺寸对天线性能的影响
激励单元 23 的长度 Le 增加, 天线的谐振在更低的频段, 谐振深度变深; 激励单元 23 的长度 Le减小, 天线的谐振在更高的频段, 谐振深度变浅。
例如, 以 900MHz工作频段为例, 图 6A和图 6B示出了 Le为几种不同取值时天线装置 的 S11仿真、 天线效率。 其中, 当 Le=35毫米时, 该天线装置的 S11仿真可如图 6A中的曲 线 al 所示, 该天线装置的系统效率、 辐射效率可如图 6B 中的曲线 bl、 cl 所示。 当 Le=40 毫米时, 该天线装置的 S11仿真可如图 6A中的曲线 a2所示, 该天线装置的系统效率、 辐射 效率可如图 6B 中的曲线 b2、 c2所示。 当 Le=45毫米时, 该天线装置的 S11仿真可如图 6A 中的曲线 a3所示, 该天线装置的系统效率、 辐射效率可如图 6B中的曲线 b3、 c3所示。
这几种不同 Le 下的天线性能中, Le=45 毫米时, 该天线装置的谐振频率最低 (最接近 850MHz), 谐振深度最深 (达到了 -8dB)。 Le=35毫米时, 该天线装置的谐振频率最高 (最接 近 1GHz), 谐振深度最浅 (约 -4dB)。 可以看出, 随着长度 Le从 45毫米变短为 40毫米、 35 毫米, 天线的谐振向高频移动, 且谐振深度变浅。
针对因激励单元 23的长度 Le减小导致谐振变或的情况, 可以通过减小并联电感来拉深 谐振深度。 例如, 如图 6A和图 6B所示, 曲线 a4表示 Le=35毫米、 L=3.5nH时天线装置的 S11仿真, 曲线 b4、 c4表示 Le=35毫米、 L=3.5nH时天线装置的系统效率、 辐射效率。 可以 看出, 将并联电感 L从 L=4.5nH减小为 L=3.5nH, 可以拉深谐振深度, 从 -4dB变为 -6dB。
激励单元 23的高度 h降低, 天线的谐振往高频移动, 谐振深度变浅。
例如, 以 900MHz工作频段为例, 图 7A和图 7B示出了 h为几种不同取值时天线装置的 S11仿真、 天线效率。 其中, 当 h=4毫米时, 该天线装置的 S11仿真可如图 7A中的曲线 al 所示, 该天线装置的系统效率、 辐射效率可如图 7B 中的曲线 bl、 cl所示。 当 h=3 毫米时, 该天线装置的 S11仿真可如图 7A中的曲线 a2所示, 该天线装置的系统效率、 辐射效率可如 图 7B中的曲线 b2、 c2所示。 当 h=2毫米时, 该天线装置的 S11仿真可如图 7A中的曲线 a3 所示, 该天线装置的系统效率、 辐射效率可如图 7B中的曲线 b3、 c3所示。
这几种不同 h下的天线性能中, h=4毫米时,该天线装置的谐振频率最低(约 900MHz) , 谐振深度最深 (达到了 -7dB)。 h=2毫米时, 该天线装置的谐振频率最高 (接近 1GHz), 谐振 深度最浅 (约 -4dB)。 可以看出, 随着高度 h从 4毫米降低到 3毫米、 2毫米, 天线的谐振向 高频移动, 且谐振深度变浅。
针对因激励单元 23的高度 h减小导致谐振向高频偏移的情况, 可以通过增大长度 Le来 使谐振重回低频。 例如, 如图 7A和图 7B所示, 曲线 a4表示 h=2毫米、 Le= (40+10) 毫米 时天线装置的 S11仿真, 曲线 b4、 c4表示 h=2毫米、 Le= (40+10) 毫米时天线装置的系统 效率、 辐射效率。 可以看出, 将激励单元 23的长度从 40毫米加长到 (40+10) 毫米, 可以使 得天线谐振重回低频 (900MHz), 此时天线的峰值效率仅降低了约 0.6dB, 没有明显恶化, 天线带宽也稍微降低了, 天线性能对激励单元 23的高度不是非常敏感。
(2) 激励单元 23在地板 15上的位置对天线性能的影响
激励单元 23的位置可以通过两个维度的参数来体现: 激励单元 23与地板的第一边 (如 侧边 21-1) 之间的距离 w、 激励单元 23与地板的第三边 (如底边 21-7) 之间的距离 p。 第一 边和第三边可以是地板 15的相连接的两条边, 二者可以相互垂直。
2-A . 距离 w对天线性能的影响
距离 w越小, 表示激励单元 23越接近地板 15的侧边 21-1。 当 w=0毫米时, 表示激励单 元 23架设于侧边 21-1处。 距离 w越大, 表示是激励单元 23沿着 Y方向越接近地板 15的中 间。
减小距离 w, 可导致天线的谐振往低频移动, 谐振深度变深; 增大距离 w, 可使得天线 的谐振往高频移动, 谐振深度变淺。 这是因为, 地板 15的本征电流由于趋边效应主要集中在 地板 15的, 当激励单元 23向地板 15的中间移动 (即 w变大) 时, 激励单元 23上的同向电 流难以和地板 15的本征电流耦合, 从而很难激励起地板 15产生辐射。
例如, 以 900MHz工作频段为例, 图 8A和图 8B示出了 w为几种不同取值时天线装置 的 S11仿真、 天线效率。 图 8A和图 8B 中的 d=0毫米 (d表示金属边枢的高度), 表示地板 15的侧边处没有设置金属边柩, 即边柩 27为非金属边框。 其中, 当 w=0毫米时, 该天线装 置的 S11仿真可如图 8A中的曲线 al所示, 该天线装置的系统效率、 辐射效率可如图 8B中 的曲线 bl、 cl所示。 当 w=2毫米时, 该天线装置的 S11仿真可如图 8A中的曲线 a2所示, 该天线装置的系统效率、 辐射效率可如图 8B中的曲线 b2、 c2所示。 当 w=4毫米时, 该天线 装置的 S11仿真可如图 8A中的曲线 a3所示, 该天线装置的系统效率、 輻射效率可如图 8B 中的曲线 b3、 c3所示。
这几种不同 w下的天线性能中, w=0毫米时,该天线装置的谐振频率最低(约 900MHz), 谐振深度最深 (达到了 -6dB)。 w=4 毫米时, 该天线装置的谐振频率最高 (接近 1GHz), 谐 振深度最浅 (约 -3dB)。 可以看出, 随着高度 w从 0毫米增大到 2毫米、 4毫米, 天线的谐振 向高频移动, 且谐振深度变浅, 系统效率峰值和带宽也明显减小。
另外, 地板 15的侧边处设置金属边框 (d不等于 0) 会使得天线的谐振往高频移动, 谐 振深度变浅。 这是因为, 金属边框可相当于地板 15的外延, 地板 15的本征电流由于趋边效 应主要集中在该金属边框的, 相当于地板 15的向外扩张。 此时, 天线的系统效率峰值和带宽 也会减小。
例如, 以 900MHz工作频段为例, 如图 9A和图 9B所示, 当 d=4毫米 (d表示金属边框 的高度), w=2毫米时, 天线装置的 S11仿真可如图 9A中的曲线 a3所示, 该天线装置的系 统效率、 辐射效率可如图 9B中的曲线 b3、 c3所示。 而 d=0毫米 (d表示金属边框的高度), w=2毫米时, 天线装置的 S11仿真可如图 9A中的曲线 a2所示, 该天线装置的系统效率、 辐 射效率可如图 9B中的曲线 b2、 c2所示。 可以看出, 在 w都为 2毫米的情况下, d=4毫米时 的天线性能明显弱于 d=0毫米时的天线性能, 谐振向高频移动, 谐振深度变浅, 系统效率峰 值和带宽明显减小。
2-B . 距离 p对天线性能的影响
距离 p越小, 表示激励单元 23越接近地板 15的底边 21-7。 距离 p越大, 表示是激励单 元 23沿着 Z方向越远离地板 15的底边 21-7。
假设地板 15的长度 Lg为 140毫米, 激励单元 23的长度为 40毫米, 那么, 当 p=50毫 米时, 此时 p= (Lg- Le) 12 , 可表示激励单元 23在 Z方向上设置于地板 I5的中间。 增大 p (例如 p=50毫米 +10毫米) 或减小 p (例如 p=50毫米 -10毫米) 会使得激励单元 23偏离地 板 15的中间, 可导致天线的谐振深度变浅、 系统效率峰值和带宽变小。 这是因为, 在 Z方向 上的地板 15的中间, 地板 15的本征电流最强, 远离该中间的位置处的本征电流变弱。 当激 励单元 23在 Z方向上远离地板 15的中间时, 激励单元 23上的同向电流和地板 15的本征电 流搞合变弱, 不容易激励起地板 15产生辖射, 导致天线性能变差。
例如, 以 900MHz工作频段为例, 图 10A和图 10B示出了 p为几种不同取值时天线装置 的 S11仿真、 天线效率。 可以看出, p=50毫米时, 天线的谐振深度最深, 系统效率峰值和带 宽最大; 而 p=40毫米、 p=60毫米, 以及 p=30毫米、 p=70毫米时, 天线的谐振深度变浅, 系统效率峰值和带宽变小。
另外, 激励单元 23越接近地板 15的底边 21-7(即 p越小), 天线辐射方向图的上半球占 比越大, 天线的纵向向上的辐射更强, 即在 Z向上的辐射更强。 激励单元 23越远离地板 15 的底边 21-7 (即 p越大), 天线辐射方向图的上半球占比越小, 天线的纵向向上的辐射更弱, 即在 Z向上的糕射更弱。
例如, 以 900MHz工作频段为例, 图 10C是 p为几种不同取值时天线装置的天线辐射方 向图。如图 10C所示, p=50毫米时,上半球占比为 50% ; p=40毫米时,上半球占比为 51.9% ; p=30毫米时, 上半球占比为 53.7% ; p=60毫米时, 上半球占比为 48.2% ; p=70毫米时, 上半 球占比为 46.4%。
(3) 地板 15的尺寸对天线性能的影响
地板 15的尺寸可以通过两个维度的参数来体现 :地板 15的长度 Lg、地板 15的宽度 Wg。
3-A. 长度 Lg对天线性能的影响
假设 Wg=70毫米, 如图 11A和图 11B所示, 当 Lg基于 140毫米加长 12毫米或缩短 12 毫米时,天线的谐振位置基本不变,这是因为地板 15的宽度很大,地板 15的特征阻抗很小。 本申请提供的天线装置的谐振受激励单元 23的长度 Le的影响更大,因为激励单元 23的特征 阻抗较大。
3-B . 宽度 Wg对天线性能的影响
如图 11C和图 11D所示, 当 Wg基于 70毫米加宽 10毫米或者缩窄 10毫米时, 天线的 谐振位置基本不变。 但当地板 15变窄 (即 Wg减小) 时, 天线的谐振变深, 系统效率峰值和 带宽变大。 这是因为, 地板 15越窄, 地板 15的本征电流越集中在地板 15的, 这样架设于地 板 5的附近的激励单元 23和地板 15的辆合越强, 更容易激励起地板 15产生辖射。
激励单元 23、 地板 15 的尺寸, 可以 4艮据本申请提供的天线装置实际所应用于的整机模 型的尺寸来确定。 为实现激励单元 23有效激励起地板 15辐射, 激励单元 23和地板 15的相 对位置关系可如下:
1. 激励单元 23可以平行于地板 15的第一边(如侧边 21-1), 或者, 激励单元 23和地板 15的第一边 (如侧边 21-1) 之间可以呈现较小的夹角, 即二者之间可以接近平行。 该较小的 夹角可以小于第一角度, 如 5 ° 。 不限于 5°, 第一角度还可以是 3 ° 、 7°等角度。 此时, 激励 单元 23和第一边之间的夹角 a, 小于, 激励单元 23和第三边之间的失角 P。 特别的, 当夹角 a=0 > 失角 p=90。时, 激励单元 23平行于第一边, 此时激励单元 23 更容易激励起地板 15产 生柄射。
2. 激励单元 23可以邻近地板 15的第一边 (如侧边 21-1) 架设在地板 15上。 这里, 该 邻近可以是指激励单元 23和第一边之间的距离小于特定距离, 如 4毫米。 不限于 4毫米, 该 特定距离还可以为 3毫米、 2毫米、 1 毫米等数值。 此时, 激励单元 23到第一边的距离 L1, 小于, 激励单元 23到第二边 (如侧边 21-5) 的距离 L2。 第一边和第二边是地板 15的相对的 两个边。 L1可以等于 0, 此时激励单元 23架设于地板的第一边处, 激励单元 23更容易激励 起地板 15产生辐射。也即是说,激励单元 23离第一边越近,越容易激励起地板 15产生辐射。
可以理解的, 当激励单元 23和第一边平行时, 激励单元 23和第一边之间的距离是唯一 的; 当激励单元 23和第一边接近平行时, 激励单元 23和第一边之间的距离可以是激励单元 23 上的某个点 (如中心点) 到第一边的距离, 或者是激励单元 23 上的多个点各自到第一边 的多个距离的平均值。
3. 激励单元 23 的第一端到地板 15 的第三边 (如底边 21-7) 的距离 pl, 和, 激励单元 23 的第二端到地板 15 的第四边 (如顶边 21-3) 的距离 p2 , 之间的差值小于第一值, 如 15 毫米。 不限于 15毫米, 第一值还可以为 12毫米、 20毫米等数值。 除相对的第一边 (如侧边 21-1) 和第二边 (如侧边 21-5) 外, 第三边和第四边为地板 15的相对的另外两条边。 第一端 为激励单元 23的靠近第三边的一端, 第二端为激励单元 23 的靠近第四边的一端。 当激励单 元 23平行于第一边时, pl+p2+Le = Lg; 当激励单元 23和第一边不平行, 二者之间存在失角 a (a 0) 时, pl+p2+Le>Lg。 pi与 p2的差值为 0时, 激励单元 23更容易激励地板 15产生 谐振, 此时 pi、 p2相等, 都等于 (Lg- Le) /2。 上述内容描述的是工作在单频段的天线设计方案, 该单频段可以是 900MHz低频频段、 GPS L5或者 GPS L1等等。 不限于单频段, 本申请提供的天线装置还可实现双频段或宽频带 或多频段, 可以通过匹配网络或者增加更多的磁环来实现。 下面展开说明。
1. 基于匹配网络的双频段天线方案
如图 12A所示, 为了实现双频段匹配, 匹配网络可以为在串联电容 C1之后, 串联一个 LC并联电路 (由并联的 L2和 C2构成), 最后再并联电感 L2。 即, 馈电端口处集成的匹配 网络可包括: 串联电容 Cl、 LC并联电路、 电感 L2, 电容 Cl、 LC并联电路一次串联于馈电 端口, 电感 L2并联于馈电端口。 电容 C1可以称为第三电容, 电感 L2可以称为第二电感, LC并联电路中的电容 C2可以称为第四电容, LC并联电路中的电感 L2可以称为第三电感。 可选的, 双频段可以是低频段 (如 8⑻ MHz处) 和 GPS L1频段(1.5GHz处), 针对该双频段 的匹配网络的配置可以如下: Cl=lpF , Ll=6nH, C2=2.2pF , L2=4.5nH。 通过在馈电端口处 设置该双频段的匹配网络, 本申请提供的天线装置的天线性能可以如图 12B , 图 12B示出的 是该天线装置的 S11仿真。
2. 基于多磁环的双频段或宽频带或多频段天线方案
如图 13A-图 13B所示, 为了实现双频段或宽频段, 可以在地板 15上架设一个寄生单元 (又可称为寄生磁环)。 也即是说, 本申请提供的天线装置还可以进一步包括寄生单元。 在地 板 15上, 和激励单元 23相同, 该寄生单元可架设于地板的第一边 (如侧边 21-1) 附近。 这 里, 附近可以是指寄生单元与地板的第一边 (如侧边 21 -1) 之间的距离小于特定距离 (如 4 毫米)。 此时, 寄生单元到地板的第一边的距离 L3, 小于, 寄生单元到地板的第二边的距离 L4。
寄生单元的结构和激励单元 23的结构可以相同。寄生单元可具有第三枝节和两个第四枝 节。 第三枝节类似激励单元 23中的第一枝节 29-2, 第四枝节类似激励单元 23中的第二枝节 29-1 , 29-3 o 类似激励单元 23的结构, 寄生单元中的两个第四枝节可分别连接在第三枝节的 两端。 第四枝节远离第一枝节的一端连接地板 15。 两个第四枝节可用于将第三枝节架设于地 板 15上 以使第三枝节与地板 15形成空隙。和激励单元 23—样,该寄生单元上可串联电容。 该电容可以称为第五电容。 为了串联第五电容, 可以在第三枝节上开设缝隙, 该缝隙两侧的 两部分第三枝节之间可以串联第五电容。 该缝隙可以称为第二缝隙。
激励单元 23在激励起地板 15产生辖射的同时, 地板 15会搞合该寄生单元产生辖射, 从 而可实现双频段辐射。
图 13C和图 13D示出了两种匹配网络参数下的天线性能。 其中, 当激励单元 23 串联电 容 C=2.0pF, 并联电感 L=3.5nH, 且激励单元 23的长度为 20毫米, 寄生单元的长度为 50毫 米时, 天线装置的 S11仿真可如图 13C中的曲线 al所示, 天线装置的效率仿真可如图 13D 中的曲线 bl、 cl所示。 可以看出, 天线装置工作在双频段: 800MHz频段和 960MHz频段, 这两个频段的天线效率基本一致, 且无效率凹坑。 当激励单元 23串联电容 C=3.0pF, 并联电 感 L=3.5nH, 且激励单元 23的长度为 12毫米, 寄生单元的长度为 60毫米时, 天线装置的 S11仿真可如图 UC中的曲线 a2所示, 天线装置的效率仿真可如图 UD中的曲线 b2、 c2所 示。 可以看出, 天线装置工作在双频段: 800MHz频段和 1.1GHz频段, 这两个频段的天线效 率基本一致, 且无效率凹坑。
为了覆盖更多频段或者更宽频带,可以在地板 15上设置更多寄生磁环,可如图 14所示。 具体的, 使用两个寄生磁环, 可以实现三个谐振频点; 使用三个寄生磁环, 可以实现四个谐 振频点; 使用 N (N是正整数) 个寄生磁环, 可以实现 N+1个谐振频点。 每个寄生磁环上都 有一个串联电容。 不限于图 15A所示的设置在地板 15的侧边附近, 激励单元 23和寄生单元, 或者仅激励单 元 23, 也可以设置在地板 15的底边 21-7或者顶边 21-3附近, 可如图 15B所示。 即, 地板的第一 边可以是地板 15的侧边,如侧边 21 - 1或者侧边 21 -5,也可以是地板 15的底边 21 -7或者顶边 21 -3。
为了实现多输入多输出 (multi input multi output, MIMO) , 本申请提供的天线装置可以 包括多个天线单元, 一个天线单元可具有一个激励单元 23, 或者可具有一个激励单元 23和 M (M是正整数) 个寄生单元。 这多个天线单元可以设置于地板 15的各个边的附近。 例如, 如 图 16所示, 4个天线单元可以分别设置于地板 15的 4个附近, 此时可实现 4 X 4 MIMO。 若移除 图 16中的两个天线单元, 则可以实现 2 X 2 MIMO。 若在图 16中的地板附近再增加一些天线单 元, 则可以实现高阶的 MIMO。
不限于和激励单元 23结构相同的寄生磁环, 为了实现多频段或宽频段, 寄生单元还可以 是其他天线,如支架天线、悬浮天线等。支架天线可以包括倒 F天线 (inverted F antenna , IFA)、 倒 L天线 (inverted L antenna, ILA) 等。 图 17A示例性示出了寄生的 IFA天线, 图 17B示例性 示出了寄生的 ILA天线, 图 17C示例性示出了寄生的悬浮金属天线 (floating metal antenna , FLM )。寄生的悬浮金属天线可以粘贴或印制于非金属后盖 (如玻璃后盖)的内表面或外表面。
在一些实施例中, IFA天线也可以作为激励单元, 即对 IFA进行馈电, IFA天线可以将能量 耦合到和激励单元 23结构相同的磁环。 然后, 磁环可以将能量耦合给地板, 激励起地板产生 辖射。 此时, 作为激励单元的 IFA天线的匹配网络可以是先串联 lpF电容, 然后再并联 4nH电 感; 作为寄生单元的磁环上可以串联 0.8pF的电容。
同样的, ILA也可以作为激励单元, 即对 ILA进行馈电, ILA天线可以将能量耦合到和激 励单元 23结构相同的磁环。 然后, 磁环可以将能量耦合给地板, 激励起地板产生辐射。
本申请以上内容中提及的电容、 电感, 可以通过集总元件实现, 也可以通过分布式元件 实现。
以上所述, 仅为本申请的具体实施方式, 但本申请的保护范围并不局限于此, 任何熟悉 本技术领域的技术人员在本申请揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本 申请的保护范围之内。 因此, 本申请的保护范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种电子设备的天线装置,其特征在于, 所述天线装置包括: 所述电子设备的地板、 激励单元, 其中:
所述激励单元具有第一枝节和两个第二枝节, 所述两个第二枝节分别连接在所述第一枝 节的两端; 所述第二枝节远离所述第一枝节的一端连接所述地板; 所述两个第二枝节用于将 所述第一枝节架设于所述地板上, 所述第一枝节与所述地板之间形成空隙;
所述地板包括相对的第一边和第二边, 以及相对的第三边和第四边, 其中 L1 小于 L2, 所述 L1为所述激励单元到所述地板的第一边的距离, 所述 L2为所述激励单元到所述地板的 第二边的距离; pi和 p2的差值小于第一值, 所述 pi为所述激励单元的第一端到所述第三边 的距离, 所述 p2为所述激励单元的第二端到所述地板的第四边的距离; 所述第一端为所述激 励单元的靠近所述第三边的一端, 所述第二端为所述激励单元的靠近所述第四边的一端; 所述激励单元上设置有馈电端口; 所述第一枝节上开设有第一缝隙, 所述第一缝隙两侧 的两部分第一枝节之间串联第一电容。
2、 如权利要求 1所述的天线装置, 其特征在于, 所述 L1等于 0。
3、 如权利要求 1-2中任一项所述的天线装置, 其特征在于, 所述 pi等于所述 p2。
4、 如权利要求 1-3 中任一项所述的天线装置, 其特征在于, 所述第一缝隙开设于所述第 一枝节的中间。
5、 如权利要求 1-4中任一项所述的天线装置, 其特征在于, 所述馈电端口具体设置在所 述第一枝节上, 或者, 所述馈电端口具体设置在所述第二枝节上。
6、 如权利要求 1-5中任一项所述的天线装置, 其特征在于, 所述馈电端口处集成有匹配 网络, 所述匹配网络包括第二电容和第一电感, 所述第二电容串联于所述馈电端口, 所述第 一电感并联于所述馈电端口。
7、 如权利要求 1-5中任一项所述的天线装置, 其特征在于, 所述馈电端口处集成有匹配 网络, 所述匹配网络包括第三电容、 第一并联电路和第二电感, 所述第一并联电路包括并联 的第四电容和第三电感, 所述第三电容、 所述第一并联电路依次串联于所述馈电端口, 所述 第二电感并联于所述馈电端口。
8、 如权利要求 1 -7中任一项所述的天线装置, 其特征在于, 所述天线装置还包括: 一个 或多个寄生单元, 所述寄生单元架设于所述地板上, 所述寄生单元到所述第一边的距离 L3 小于所述寄生单元到所述第二边的距离 L4。
9、 如权利要求 8所述的天线装置, 其特征在于, 所述寄生单元具有第三枝节和两个第四 枝节, 所述两个第四枝节分别连接在所述第三枝节的两端; 所述第四枝节远离所述第三枝节 的一端连接所述地板; 所述两个第四枝节用于将所述第三枝节架设于所述地板上, 所述第三 枝节与所述地板之间形成空隙; 所述第三枝节上开设有第二缝隙, 所述第二缝隙两侧的两个 第三枝节部分之间串联第五电容。
10、 如权利要求 8 所述的天线装置, 其特征在于, 所述寄生单元包括以下任一项: 倒 F 天线、 倒 L天线 、 设置于所述电子设备的非金属后盖的内表面或外表面的悬浮金属天线。
11、 如权利要求 1-10中任一项所述的天线装置, 其特征在于, 所述第一电容为集总电容 或者分布式电容。
12、 一种电子设备的天线装置, 其特征在于, 所述天线装置包括: 所述电子设备的地板 以及设置在所述地板上的多个天线单元; 其中, 所述天线单元具有一个激励单元, 或者所述 天线单元具有一个激励单元和 M个寄生单元, M是正整数; 其中:
所述激励单元具有第一枝节和两个第二枝节, 所述两个第二枝节分别连接在所述第一枝 节的两端; 所述第二枝节远离所述第一枝节的一端连接所述地板; 所述两个第二枝节用于将 所述第一枝节架设于所述地板上, 所述第一枝节与所述地板之间形成空隙;
所述地板包括相对的第一边和第二边, 以及相对的第三边和第四边, 其中 L1 小于 L2, 所述 L1 为所述激励单元到所述地板的第一边的距离, 所述 L2为所述激励单元到所述地板的 第二边的距离; pi和 p2的差值小于第一值, 所述 pi为所述激励单元的第一端到所述第三边 的距离, 所述 p2为所述激励单元的第二端到所述地板的第四边的距离; 所述第一端为所述激 励单元的靠近所述第三边的一端, 所述第二端为所述激励单元的靠近所述第四边的一端; 所述激励单元上设置有馈电端口; 所述第一枝节上开设有第一缝隙, 所述第一缝隙两侧 的两部分第一枝节之间串联第一电容;
所述寄生单元架设在所述地板上,所述寄生单元到所述第一边的距离 L3小于所述寄生单 元到所述第二边的距离 L4。
13、 如权利要求 12所述的天线装置, 其特征在于, 所述 L1等于 0。
14、 如权利要求 12-13 中任一项所述的天线装置, 其特征在于, 所述 pi等于所述 p2。
15、 如权利要求 12-14 中任一项所述的天线装置, 其特征在于, 所述第一缝隙开设于所 述第一枝节的中间。
16、 如权利要求 12-15 中任一项所述的天线装置, 其特征在于, 所述馈电端口具体设置 在所述第一枝节上, 或者, 所述馈电端口具体设置在所述第二枝节上。
17、 如权利要求 12-16 中任一项所述的天线装置, 其特征在于, 所述馈电端口处集成有 匹配网络, 所述匹配网络包括第二电容和第一电感, 所述第二电容串联于所述馈电端口, 所 述第一电感并联于所述馈电端口。
18、 如权利要求 12-16 中任一项所述的天线装置, 其特征在于, 所述馈电端口处集成有 匹配网络, 所述匹配网络包括第三电容、 第一并联电路和第二电感, 所述第一并联电路包括 并联的第四电容和第三电感, 所述第三电容、 所述第一并联电路依次串联于所述馈电端口, 所述第二电感并联于所述馈电端口。
19、 如权利要求 12-18 中任一项所述的天线装置, 其特征在于, 所述寄生单元具有第三 枝节和两个第四枝节, 所述两个第四枝节分别连接在所述第三枝节的两端; 所述第四枝节远 离所述第三枝节的一端连接所述地板; 所述两个第四枝节用于将所述第三枝节架设于所述地 板上, 所述第三枝节与所述地板之间形成空隙; 所述第三枝节上开设有第二缝隙, 所述第二 缝隙两侧的两个第三枝节部分之间串联第五电容。
20、 如权利要求 12-18 中任一项所述的天线装置, 其特征在于, 所述寄生单元包括以下 任一项: 倒 F天线、 倒 L天线 、 设置于所述电子设备的非金属后盖的内表面或外表面的悬 浮金属天线。
21、 一种电子设备, 其特征在于, 所述电子设备的后盖是绝缘材料制成的, 所述电子设 备包括: 权利要求 1至 20中任意一项所述的天线装置。
PCT/CN2020/074578 2019-02-27 2020-02-10 天线装置及电子设备 WO2020173292A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20763850.3A EP3916907A4 (en) 2019-02-27 2020-02-10 ANTENNA DEVICE AND ELECTRONIC DEVICE
US17/433,770 US11949177B2 (en) 2019-02-27 2020-02-10 Antenna apparatus and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910146577 2019-02-27
CN201910146577.6 2019-02-27
CN201910614002.2A CN111628274B (zh) 2019-02-27 2019-07-08 天线装置及电子设备
CN201910614002.2 2019-07-08

Publications (1)

Publication Number Publication Date
WO2020173292A1 true WO2020173292A1 (zh) 2020-09-03

Family

ID=72238353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074578 WO2020173292A1 (zh) 2019-02-27 2020-02-10 天线装置及电子设备

Country Status (3)

Country Link
US (1) US11949177B2 (zh)
EP (1) EP3916907A4 (zh)
WO (1) WO2020173292A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425390A (zh) * 2022-09-05 2022-12-02 荣耀终端有限公司 一种终端天线及电子设备
EP4283781A4 (en) * 2021-08-20 2024-09-11 Honor Device Co Ltd UNIPOLAR TERMINAL ANTENNA CAPABLE OF PROVIDING COUPLED FEEDING

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7140145B2 (ja) * 2018-02-02 2022-09-21 Agc株式会社 アンテナ装置、車両用窓ガラス及び窓ガラス構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723585A (zh) * 2012-05-31 2012-10-10 中兴通讯股份有限公司 一种环路耦合宽带天线结构及其实现方法
CN203690490U (zh) * 2013-10-18 2014-07-02 广东工业大学 新型移动终端天线
CN203839506U (zh) * 2014-05-28 2014-09-17 惠州硕贝德无线科技股份有限公司 一种地板激励的lte分布天线
CN104901000A (zh) * 2015-05-14 2015-09-09 广东欧珀移动通信有限公司 一种耦合馈电可重构天线及制造方法
US20170324151A1 (en) * 2016-05-03 2017-11-09 AAC Technologies Pte. Ltd. LTE Full-band Cellphone Antenna Structure

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI113588B (fi) 1999-05-10 2004-05-14 Nokia Corp Antennirakenne
TW527754B (en) 2001-12-27 2003-04-11 Ind Tech Res Inst Dual-band planar antenna
KR100787229B1 (ko) 2005-02-04 2007-12-21 삼성전자주식회사 이중 대역 역 에프 평판안테나
US7916089B2 (en) * 2008-01-04 2011-03-29 Apple Inc. Antenna isolation for portable electronic devices
CN101719598B (zh) 2010-01-07 2014-03-12 华为终端有限公司 缝隙天线及其参数调节方法和终端
KR101740061B1 (ko) 2010-04-09 2017-05-25 라디나 주식회사 캐패시터를 이용한 그라운드 방사체
CN202067897U (zh) 2010-12-04 2011-12-07 南京理工大学 通过介质加载来降低有限角度扫描的微带天线阵列
CN103460505B (zh) 2011-04-06 2016-06-15 拉迪娜股份有限公司 使用电容器的接地辐射体以及接地天线
KR101779457B1 (ko) 2011-04-22 2017-09-19 삼성전자주식회사 휴대용 단말기의 안테나 장치
US9130279B1 (en) 2013-03-07 2015-09-08 Amazon Technologies, Inc. Multi-feed antenna with independent tuning capability
CN104253315B (zh) 2013-06-28 2017-04-19 华为技术有限公司 多天线系统和移动终端
CN104253310B (zh) 2013-06-28 2018-06-26 华为技术有限公司 多天线系统及移动终端
CN103560318B (zh) 2013-10-24 2016-04-13 西安电子科技大学 一种小型化定向辐射印刷天线
US9618606B2 (en) 2014-03-12 2017-04-11 Saab Ab Antenna system for polarization diversity
CN104396086B (zh) 2014-03-28 2016-09-28 华为终端有限公司 一种天线及移动终端
CN105490018B (zh) 2014-09-19 2019-01-25 华为技术有限公司 一种贴片天线
US9722325B2 (en) * 2015-03-27 2017-08-01 Intel IP Corporation Antenna configuration with coupler(s) for wireless communication
CN104795628A (zh) 2015-04-07 2015-07-22 上海安费诺永亿通讯电子有限公司 一种利用pcb板净空实现双频谐振的地辐射天线
CN106935960B (zh) 2015-12-29 2020-04-14 华为技术有限公司 一种天线单元及mimo天线和终端
CN106058456B (zh) 2016-08-12 2017-09-19 上海安费诺永亿通讯电子有限公司 紧凑型激励地板正交辐射的高隔离度天线及其mimo通信系统
CN108886197A (zh) 2016-10-10 2018-11-23 华为技术有限公司 一种可穿戴设备
US11005154B2 (en) * 2017-04-11 2021-05-11 Hewlett-Packard Development Company, L.P. Antennas in frames for display panels
CN108736142B (zh) 2017-04-17 2020-12-08 华为技术有限公司 天线和终端
CN207677073U (zh) * 2017-11-24 2018-07-31 深圳市信维通信股份有限公司 5g mimo天线系统及手持设备
CN208507963U (zh) 2018-08-02 2019-02-15 上海安费诺永亿通讯电子有限公司 一种新型天线结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723585A (zh) * 2012-05-31 2012-10-10 中兴通讯股份有限公司 一种环路耦合宽带天线结构及其实现方法
CN203690490U (zh) * 2013-10-18 2014-07-02 广东工业大学 新型移动终端天线
CN203839506U (zh) * 2014-05-28 2014-09-17 惠州硕贝德无线科技股份有限公司 一种地板激励的lte分布天线
CN104901000A (zh) * 2015-05-14 2015-09-09 广东欧珀移动通信有限公司 一种耦合馈电可重构天线及制造方法
US20170324151A1 (en) * 2016-05-03 2017-11-09 AAC Technologies Pte. Ltd. LTE Full-band Cellphone Antenna Structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916907A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283781A4 (en) * 2021-08-20 2024-09-11 Honor Device Co Ltd UNIPOLAR TERMINAL ANTENNA CAPABLE OF PROVIDING COUPLED FEEDING
CN115425390A (zh) * 2022-09-05 2022-12-02 荣耀终端有限公司 一种终端天线及电子设备
CN115425390B (zh) * 2022-09-05 2023-07-14 荣耀终端有限公司 一种终端天线及电子设备

Also Published As

Publication number Publication date
EP3916907A4 (en) 2022-03-23
US20220140486A1 (en) 2022-05-05
US11949177B2 (en) 2024-04-02
EP3916907A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
CN111628274B (zh) 天线装置及电子设备
US11539123B2 (en) Antenna system for a portable device
CN113287230B (zh) 天线装置及终端
JP3864127B2 (ja) デュアルフィーディングポートを有するマルチバンドチップアンテナ及びこれを用いる移動通信装置
CN103155276B (zh) 能够进行多带mimo操作的无线装置
JP6159887B2 (ja) Mimoアンテナ、端末及びそのアイソレーションを向上させる方法
CN114122712B (zh) 一种天线结构及电子设备
WO2020173292A1 (zh) 天线装置及电子设备
WO2021083362A1 (zh) 天线装置及电子设备
KR102060331B1 (ko) 평면형 안테나 장치 및 방법
WO2012088837A1 (zh) 一种移动终端的阵列天线及其实现方法
US20220393360A1 (en) Electronic Device
US10777896B2 (en) Coupled antenna system for multiband operation
CN105027352B (zh) 天线和终端
CN1918920A (zh) 开槽多频带天线
CN201616506U (zh) 移动通信天线设备及移动通信终端设备
WO2022143320A1 (zh) 一种电子设备
WO2021148004A1 (zh) 天线装置及电子设备
WO2021104447A1 (zh) 天线装置及电子设备
CN105846055A (zh) 一种含寄生单元的多频pifa手机天线
CN113517557B (zh) 一种电子设备
CN113437480A (zh) 一种多频天线装置及移动终端
TW201834311A (zh) 天線結構
EP1188200A1 (en) Flat-plate monopole antennae
WO2022199531A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020763850

Country of ref document: EP

Effective date: 20210825