WO2023070982A1 - 新能源驱动电机用无取向硅钢及其生产方法 - Google Patents

新能源驱动电机用无取向硅钢及其生产方法 Download PDF

Info

Publication number
WO2023070982A1
WO2023070982A1 PCT/CN2022/074302 CN2022074302W WO2023070982A1 WO 2023070982 A1 WO2023070982 A1 WO 2023070982A1 CN 2022074302 W CN2022074302 W CN 2022074302W WO 2023070982 A1 WO2023070982 A1 WO 2023070982A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
oriented silicon
thickness
new energy
rolling
Prior art date
Application number
PCT/CN2022/074302
Other languages
English (en)
French (fr)
Inventor
岳重祥
钱红伟
吴圣杰
詹东方
Original Assignee
江苏省沙钢钢铁研究院有限公司
江苏沙钢集团有限公司
张家港扬子江冷轧板有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 江苏沙钢集团有限公司, 张家港扬子江冷轧板有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Publication of WO2023070982A1 publication Critical patent/WO2023070982A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the invention belongs to the technical field of iron and steel material preparation, and relates to a non-oriented silicon steel for new energy drive motors and a production method thereof.
  • Non-oriented silicon steel is the iron core material of the motor and generator rotor working in the rotating magnetic field, which requires good magnetic properties, including lower iron loss and higher magnetic induction intensity, and the improvement of magnetic properties is still a must for those skilled in the art. Since then, it has been the core research topic of non-oriented silicon steel. Usually, in terms of chemical composition, the addition of a series of alloying elements such as Cu, Cr, Ni, Nb, V, Ti, etc. is usually strictly limited to avoid deterioration of the magnetic properties of non-oriented silicon steel due to high content of these alloying elements.
  • the driving motor of new energy vehicles has a higher speed than other conventional motors, and with the development of technology, the speed of driving motors of new energy vehicles is still increasing, which requires the non-oriented silicon steel used in addition to having good magnetic properties. On the basis of performance, it also needs to have high strength.
  • the purpose of the present invention is to provide a non-oriented silicon steel for new energy drive motors and its production method, which improves the strength while ensuring the magnetic performance, and solves the problem of balancing the magnetic performance and strength in the prior art.
  • one embodiment of the present invention provides a non-oriented silicon steel for new energy drive motors, the chemical composition of which includes: Si: 2.95% to 3.15%, Al: 0.75% to 0.95%, Si +2Al: 4.6% to 4.9%, Mn: 0.5% to 0.7%, Sn: 0.03% to 0.04%, Cu ⁇ 0.03%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cr+Ni+Cu ⁇ 0.07%, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.004%, Nb+V+Ti ⁇ 0.008%, C ⁇ 0.0025%, P ⁇ 0.015%, S ⁇ 0.0015%, N ⁇ 0.004%, C+S+N ⁇ 0.007 %, the rest is Fe and inevitable inclusions; and, Mn/S ⁇ 380, Al/N ⁇ 200.
  • the recrystallized grain size of the non-oriented silicon steel is 50 ⁇ m-80 ⁇ m.
  • non-oriented silicon steel is a steel plate with a thickness of 0.25mm-0.35mm, yield strength ⁇ 460Mpa, tensile strength ⁇ 550Mpa, iron loss P 1.0/400 ⁇ 18.5W/kg, magnetic induction B 5000 ⁇ 1.67T.
  • the non-oriented silicon steel is a steel plate with a thickness of 0.25mm, and the iron loss P 1.0/400 ⁇ 17.5W/kg; or, it is a steel plate with a thickness of 0.30mm, and the iron loss P 1.0/400 ⁇ 18.0W/kg; or, It is a steel plate with a thickness of 0.35mm, and the iron loss P 1.0/400 ⁇ 18.5W/kg.
  • one embodiment of the present invention provides a method for producing non-oriented silicon steel for new energy drive motors.
  • the chemical composition of the non-oriented silicon steel includes: Si: 2.95% to 3.15%, Al: 0.75 % ⁇ 0.95%, Si+2Al: 4.6% ⁇ 4.9%, Mn: 0.5% ⁇ 0.7%, Sn: 0.03% ⁇ 0.04%, Cu ⁇ 0.03%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cr+Ni+ Cu ⁇ 0.07%, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.004%, Nb+V+Ti ⁇ 0.008%, C ⁇ 0.0025%, P ⁇ 0.015%, S ⁇ 0.0015%, N ⁇ 0.004%, C +S+N ⁇ 0.007%, the rest is Fe and inevitable inclusions; and, Mn/S ⁇ 380, Al/N ⁇ 200;
  • the recrystallized grain size of the non-oriented silicon steel is 50 ⁇ m to 80 ⁇ m;
  • the production method prepares non-oriented silicon steel through sequential steelmaking, continuous casting, hot rolling, normalization, pickling, single-stand cold rolling, annealing, cooling, coating and finishing;
  • the continuous casting slab obtained in the continuous casting process is heated to 1080 ° C ⁇ 1110 ° C and kept for 160 min ⁇ 180 min, and then undergoes rough rolling, finish rolling, and coiling in sequence to obtain hot rolled coils;
  • the rolling temperature is 950 ⁇ 20°C
  • the final rolling temperature is 840 ⁇ 20°C and the total reduction rate is 94-95%
  • the coiling temperature during coiling is 620 ⁇ 20°C;
  • the normalization temperature is 840°C-860°C and the temperature is kept for 180s-200s;
  • the annealing temperature is 960°C-980°C and the temperature is kept for 40s-45s.
  • the total reduction rate is 85 ⁇ 3%, and the reduction rate of each pass except the last pass is not less than 30%.
  • the obtained non-oriented silicon steel is a steel plate with a thickness of 0.25 mm to 0.35 mm; in the hot rolling process, the continuous casting slab with a thickness of 220 mm is roughly rolled into an intermediate slab with a thickness of 35 mm to 40 mm, and then finished into a thickness It is a hot-rolled plate of 2.00mm to 2.30mm.
  • the obtained non-oriented silicon steel is a steel plate with a thickness of 0.25 mm, the thickness of the intermediate blank is 35 mm, and the thickness of the hot-rolled plate is 2.00 mm; or, the obtained non-oriented silicon steel is a steel plate with a thickness of 0.30 mm, and the intermediate The thickness of the billet is 37.5 mm, the thickness of the hot-rolled plate is 2.15 mm; or, the obtained non-oriented silicon steel is a steel plate with a thickness of 0.35 mm, the thickness of the intermediate billet is 40 mm, and the thickness of the hot-rolled plate is 2.30 mm .
  • the steel plate after the pickling process is directly rolled without preheating.
  • alloy elements such as Cu, Cr, Ni, Nb, V, Ti are not added, and combined with the design of elements such as Si, Al, Mn, Sn, the magnetic properties of non-oriented silicon steel are improved, and no Grain-oriented silicon steel has low iron loss and high magnetic induction; at the same time, on the basis of chemical composition, by controlling the grain size at 50 ⁇ m to 80 ⁇ m, the fine-grain strengthening of the steel plate can be realized to ensure that the non-oriented silicon steel has high strength, thereby In the case of low cost and low production difficulty, realize the comprehensive optimization of the magnetic properties and strength of non-oriented silicon steel, so that non-oriented silicon steel can meet the application requirements of the drive motor of new energy vehicles;
  • the recrystallization grain of non-oriented silicon steel is realized
  • the miniaturization of the size ensures the non-oriented silicon steel with excellent magnetic properties and high strength; on the other hand, it avoids the problem of cracks and fractures in cold rolling, and saves the common pre-rolling preheating or secondary rolling in the existing production process.
  • the final rolling can be completed without preheating the single-stand cold rolling process, which ensures low difficulty, low cost and stable and continuous production; on the other hand, through the low temperature control of heating temperature, rolling start temperature and normalization temperature , can greatly reduce production energy consumption; in addition, the normalization temperature is low and the holding time is short, which can also reduce the thickness of oxide scale on the surface of the steel plate before the pickling process, which is beneficial to improve the pickling efficiency, and improve the surface quality and finished product of the final non-oriented silicon steel Rate.
  • One embodiment of the present invention provides a non-oriented silicon steel.
  • the chemical composition of the non-oriented silicon steel includes: Si: 2.95% to 3.15%, Al: 0.75% to 0.95%, Si+2Al: 4.6% to 4.9%, Mn: 0.5% to 0.7%, Sn: 0.03 % ⁇ 0.04%, Cu ⁇ 0.03%, Cr ⁇ 0.03%, Ni ⁇ 0.03%, Cr+Ni+Cu ⁇ 0.07%, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.004%, Nb+V+Ti ⁇ 0.008%, C ⁇ 0.0025%, P ⁇ 0.015%, S ⁇ 0.0015%, N ⁇ 0.004%, C+S+N ⁇ 0.007%, the rest is Fe and inevitable inclusions; and, Mn/S ⁇ 380, Al /N ⁇ 200.
  • Si, Al Si is a solid solution strengthening element, the increase of its content will increase the strength of the steel plate, and can also increase the resistivity of the steel plate and reduce the iron loss.
  • the Si content in terms of mass percentage
  • the increase of Al content will increase the resistivity of the steel plate and reduce the iron loss, but will reduce the magnetic induction intensity.
  • the Al content (in terms of mass percentage) is controlled at 0.75% to 0.95%;
  • the iron loss of the steel plate is reduced due to AlN precipitation, and the Al content (in mass percentage) and the N content (in mass percentage) also satisfy Al/N ⁇ 200 in the present invention, so that the effect of the N element on the magnetic properties of the steel plate can be fully Unfavorable effects are converted into favorable effects, reducing the difficulty of controlling N elements in steelmaking; in addition, the increase of Si and Al content will also lead to difficulties in cold rolling. (by mass percentage) and Al content (by mass percentage) also satisfy Si+2Al: 4.6% ⁇ 4.9%.
  • Mn Adding Mn in an appropriate amount is beneficial to improving the magnetic properties of the steel plate; and, Mn can inhibit the hot brittleness caused by S, and easily form coarse MnS precipitates with S to reduce the iron loss of the steel plate.
  • the Mn content (by mass percentage) and S content (by mass percentage) also satisfy Mn/S ⁇ 380, so that the adverse effect of S element on the magnetic properties of the steel plate can be fully transformed into a favorable effect, reducing the difficulty and cost of controlling S element in steelmaking.
  • Sn is a grain boundary segregation element, which can improve the magnetic performance, and the Sn content (in mass percentage) in the present invention is 0.03%-0.04%.
  • this embodiment does not add alloy elements such as Cu, Cr, Ni, Nb, V, Ti, etc., and combines Si, Al,
  • alloy elements such as Cu, Cr, Ni, Nb, V, Ti, etc.
  • the design of the content of Mn, Sn and other elements improves the magnetic properties of non-oriented silicon steel and ensures that the non-oriented silicon steel has lower iron loss and higher magnetic induction intensity.
  • the recrystallized grain size of the non-oriented silicon steel is 50 ⁇ m to 80 ⁇ m.
  • the aforementioned chemical composition ensures that the non-oriented silicon steel has low iron loss and high magnetic induction
  • the fine-grain strengthening of the steel plate is realized to ensure that the non-oriented silicon steel has high strength, thus,
  • the comprehensive optimization of the magnetic properties and strength of non-oriented silicon steel is realized, so that the non-oriented silicon steel can meet the application requirements of the drive motor of new energy vehicles.
  • the non-oriented silicon steel is a steel plate with a thickness of 0.25mm-0.35mm, yield strength ⁇ 460Mpa, tensile strength ⁇ 550Mpa, iron loss P 1.0/400 ⁇ 18.5W/kg, magnetic induction B 5000 ⁇ 1.67T.
  • the non-oriented silicon steel may specifically be a steel plate with a thickness of 0.35mm, and its iron loss P 1.0/400 ⁇ 18.5W/kg; or it may be a steel plate with a thickness of 0.30mm, and its iron loss P 1.0/400 ⁇ 18.0 W/kg; or steel plate with a thickness of 0.25mm, iron loss P 1.0/400 ⁇ 17.5W/kg.
  • this embodiment also provides a preferred production method of the non-oriented silicon steel, the production method is carried out sequentially through steelmaking, continuous casting, hot rolling, normalization, pickling, single-stand cold rolling,
  • the non-oriented silicon steel is prepared by annealing, cooling, coating and finishing. That is, the non-oriented silicon steel can be prepared by this preferred production method.
  • the production method of this embodiment in addition to being able to successfully produce the non-oriented silicon steel with excellent magnetic properties and high strength as described above, also has the advantages of low production difficulty and low production cost, ensuring stable production of non-oriented silicon steel.
  • the molten steel obtained in the steelmaking process is made into a continuous casting slab by a continuous casting machine.
  • the chemical composition of the molten steel obtained in the steelmaking process and the chemical composition of the continuous casting slab obtained in the continuous casting process are consistent with the chemical composition of the non-oriented silicon steel finally obtained by the production method, that is, include in terms of mass percentage: Si: 2.95% to 3.15%, Al: 0.75% to 0.95%, Si+2Al: 4.6% to 4.9%, Mn: 0.5% to 0.7%, Sn: 0.03% to 0.04%, Cu ⁇ 0.03%, Cr ⁇ 0.03 %, Ni ⁇ 0.03%, Cr+Ni+Cu ⁇ 0.07%, Nb ⁇ 0.004%, V ⁇ 0.004%, Ti ⁇ 0.004%, Nb+V+Ti ⁇ 0.008%, C ⁇ 0.0025%, P ⁇ 0.015%, S ⁇ 0.0015%, N ⁇ 0.004%, C+S+N
  • the continuous casting slab obtained in the continuous casting process is heated to 1080°C-1110°C and kept for 160min-180min, and then undergoes rough rolling, finish rolling, and coiling in sequence to obtain hot-rolled coils.
  • the starting rolling temperature during rolling is 950 ⁇ 20°C
  • the final rolling temperature is 840 ⁇ 20°C and the total reduction rate is 94-95%
  • the coiling temperature during coiling is 620 ⁇ 20°C
  • the normalization temperature is 840°C to 860°C and the temperature is kept for 180s to 200s
  • the annealing temperature is 960°C to 980°C and the temperature is kept for 40s to 45s.
  • the production method of this embodiment avoids solid solution of coarse precipitates such as MnS and AlN in the continuous casting slab by controlling the lower heating temperature in the hot rolling process, thereby ensuring the subsequent rough rolling and finish rolling process.
  • Precipitate control in order to lay the foundation for the magnetic properties of the final non-oriented silicon steel; by controlling the start rolling temperature, finish rolling temperature, total reduction rate and coiling temperature during finishing rolling, combined with chemical composition
  • the design of Si+2Al:4.6% ⁇ 4.9% makes the structure of the hot-rolled coil stable and the storage energy consistent, thereby ensuring that the recrystallization temperature of the hot-rolled coil remains stable in the subsequent normalization process, so as to facilitate the subsequent normalization process.
  • Recrystallized grain size ⁇ 50 ⁇ m, so that on the one hand, it can create conditions for the control of recrystallized grain size in the annealing process, and on the other hand, it can also be based on a large number of grain boundaries between unrecrystallized structures and recrystallized grains.
  • the final rolling can be completed in the preheat-free single-stand cold rolling process; and, based on the creation of the normalization process, through the design of the annealing temperature and holding time, complete recrystallization occurs in the annealing process, and the recrystallized grain The grains do not grow significantly, which ensures that the recrystallized grain size in the final non-oriented silicon steel product is small.
  • the production method of this embodiment realizes non-oriented silicon steel
  • the miniaturization of the recrystallized grain size ensures that non-oriented silicon steel with excellent magnetic properties and high strength can be obtained.
  • the problem of crack fracture in cold rolling is avoided, and the pre-rolling pre-rolling commonly used in the existing production process is omitted.
  • Hot or secondary cold rolling to avoid preheating the single-stand cold rolling process to complete the final rolling, ensuring low difficulty, low cost and stable and continuous production.
  • through heating temperature, rolling start temperature, normalization temperature, etc. The low temperature control can greatly reduce the production energy consumption.
  • the normalization temperature is low and the holding time is short, which can also reduce the thickness of the oxide scale on the surface of the steel plate before the pickling process, which is conducive to improving the pickling efficiency and improving the surface of the final non-oriented silicon steel. Quality and Yield.
  • the steel plate after the pickling process is directly rolled without preheating.
  • this embodiment based on the creation of the normalization process, can realize direct rolling without preheating, saving production costs .
  • the single-stand cold rolling process multi-pass rolling is carried out, and the total reduction rate is 85 ⁇ 3%.
  • Such control can make the cold rolling storage energy of non-oriented silicon steel with different thicknesses in the single-stand cold rolling process basically Consistent, and then the subsequent annealing process can be implemented with the same annealing temperature and holding time, so as to achieve the effect of not needing to change operations frequently when continuously producing non-oriented silicon steel with different thicknesses on the same production line.
  • the reduction rate of each pass except the last pass is not less than 30%.
  • the reduction ratios of the first to fourth passes are ⁇ 30%, and the reduction ratio of the fifth pass can optionally be less than 30%.
  • the non-oriented silicon steel is a steel plate with a thickness of 0.25 mm to 0.35 mm.
  • the thickness of the continuous casting slab obtained in the continuous casting process is 220 mm; in the hot rolling process, the continuous casting slab with a thickness of 220 mm is roughly rolled into an intermediate slab with a thickness of 35 mm to 40 mm, and then finished into Hot-rolled sheet with a thickness of 2.00mm to 2.30mm. It can be understood that, in the single-stand cold rolling process, the hot-rolled plate with a thickness of 2.00 mm to 2.30 mm is further rolled into a finished product of non-oriented silicon steel with a target thickness.
  • the non-oriented silicon steel finally obtained by the production method is a steel plate with a thickness of 0.25mm
  • the continuous casting slab with a thickness of 220mm is roughly rolled into an intermediate slab with a thickness of 35mm, and then finished into a slab with a thickness of 35mm.
  • the non-oriented silicon steel finally obtained by the production method is a steel plate with a thickness of 0.30mm, then in the hot rolling process, the continuous casting slab with a thickness of 220mm is roughly rolled into a thickness of 37.5mm
  • the intermediate slab of mm is finished rolled into a hot-rolled plate with a thickness of 2.15mm; for another example, if the non-oriented silicon steel finally obtained by the production method is a steel plate with a thickness of 0.35mm, then in the hot rolling process, the thickness is 220mm
  • the continuous casting slab is roughly rolled into an intermediate slab with a thickness of 40mm, and then finished into a hot-rolled plate with a thickness of 2.30mm.
  • the normalization is performed under a pure dry N2 atmosphere, and the production speed is constant, that is, the roll speed is constant when the head, middle and tail of the steel plate are normalized.
  • the annealing is carried out under the mixed atmosphere of H 2 +N 2 , and the production speed is constant, that is, the roll speed is constant when the head, middle and tail of the steel plate are annealed.
  • the pickling process, the cooling process, the coating process and the finishing process can be carried out by adopting the existing disclosed feasible technology, and will not be repeated here.
  • alloy elements such as Cu, Cr, Ni, Nb, V, Ti are not added, and combined with the design of elements such as Si, Al, Mn, Sn, the magnetic properties of non-oriented silicon steel are improved, and no Grain-oriented silicon steel has low iron loss and high magnetic induction; at the same time, on the basis of chemical composition, by controlling the grain size at 50 ⁇ m to 80 ⁇ m, the fine-grain strengthening of the steel plate can be realized to ensure that the non-oriented silicon steel has high strength, thereby In the case of low cost and low production difficulty, realize the comprehensive optimization of the magnetic properties and strength of non-oriented silicon steel, so that non-oriented silicon steel can meet the application requirements of the drive motor of new energy vehicles;
  • the recrystallization grain of non-oriented silicon steel is realized
  • the miniaturization of the size ensures the non-oriented silicon steel with excellent magnetic properties and high strength; on the other hand, it avoids the problem of cracks and fractures in cold rolling, and saves the common pre-rolling preheating or secondary rolling in the existing production process.
  • the final rolling can be completed without preheating the single-stand cold rolling process, which ensures low difficulty, low cost and stable and continuous production; on the other hand, through the low temperature control of heating temperature, rolling start temperature and normalization temperature , can greatly reduce production energy consumption; in addition, the normalization temperature is low and the holding time is short, which can also reduce the thickness of oxide scale on the surface of the steel plate before the pickling process, which is beneficial to improve the pickling efficiency, and improve the surface quality and finished product of the final non-oriented silicon steel Rate.
  • Examples 1 to 6 respectively provide a non-oriented silicon steel, the chemical composition of which is shown in Table 1 in terms of mass percentage; and, the non-oriented silicon steel of each embodiment is specifically a steel plate with the thickness shown in Table 1.
  • the non-oriented silicon steels of Examples 1 to 6 were sampled and inspected, including: (1) Metallographic structure inspection, the measured recrystallized grain size is shown in Table 2; (2) Mechanical properties inspection, the measured recrystallized grain size Yield strength and tensile strength are shown in Table 2; (3) Magnetic performance testing, the measured iron loss P 1.0/400 and magnetic induction B 5000 are shown in Table 2 respectively.
  • the production method of the non-oriented silicon steel of embodiment 1 ⁇ 6 is as follows:
  • the molten iron is smelted into molten steel whose chemical composition is as shown in Table 1, and the alloying materials of Cu, Cr, Ni, Nb, V, Ti are not added during steelmaking; then the molten steel made by continuous casting is adopted Making a continuous casting slab with a thickness of 220mm, the chemical composition of the continuous casting slab is also as shown in Table 1;
  • the metallographic structure detection was carried out on the steel plates of each embodiment, and the measured area ratio of the non-recrystallized structure and the size of the recrystallized grains were shown in Table 4, wherein the area ratio of the non-recrystallized structure was is the ratio of the unrecrystallized structure area to the total area of the steel plate sampling section;
  • the non-oriented silicon steel according to one embodiment of the present invention not only has excellent magnetic properties, but also has high strength, low alloy cost, low production difficulty, low production cost, and meets the needs of new energy vehicles. application requirements on the drive motor.

Abstract

本发明揭示了一种新能源驱动电机用无取向硅钢及其生产方法。所述硅钢通过依序进行的炼钢、连铸、热轧、常化、酸洗、无预热单机架冷轧、退火、冷却、涂层和精整制备而成,炼钢时不添加Cu、Cr、Ni、Nb、V、Ti,硅钢的化学成分:Si:2.95%~3.15%,Al:0.75%~0.95%,Si+2Al:4.6%~4.9%,Mn:0.5%~0.7%,Sn:0.03%~0.04%,C≤0.0025%,余量铁;Mn/S≥380,Al/N≥200。本发明在保证磁性能的同时,提高了强度,解决了现有技术所存在的磁性能和强度的兼顾问题,能够满足新能源汽车的驱动电机上的应用要求。

Description

新能源驱动电机用无取向硅钢及其生产方法 技术领域
本发明属于钢铁材料制备技术领域,涉及一种新能源驱动电机用无取向硅钢及其生产方法。
背景技术
无取向硅钢是在旋转磁场中工作的电动机和发电机转子的铁芯材料,要求良好的磁性能,包括较低的铁损和较高的磁感应强度,而磁性能的改善也是本领域技术人员一直以来对无取向硅钢的核心研究课题。通常,在化学成分方面,通常会严格限制Cu、Cr、Ni、Nb、V、Ti等一系列合金元素的添加,以避免这些合金元素含量高而导致对无取向硅钢的磁性能的劣化。
随着新能源汽车在近些年的高速发展,对用于驱动电机的无取向硅钢提出了更高的性能要求。具体地,新能源汽车的驱动电机相对于其它常规电机而言转速高,且随着技术发展,新能源汽车的驱动电机的转速还在不断提升,这就要求所用的无取向硅钢除了具有良好磁性能的基础上,还需要具备高强度。
然而,关于钢材的强度提高的现有技术中,化学成分方面,通常需要增加Cu、Cr、Ni、Nb、V、Ti等一系列合金元素的添加量,以达到提升钢材强度的目的。而结合前述可知,这些合金元素的增加会劣化无取向硅钢的磁性能。
由此可见,对无取向硅钢的磁性能和强度的影响上,化学成分的设计方向相矛盾。故此,如何同时保证无取向硅钢的磁性能和强度,是无取向硅钢在应用于新能源汽车的驱动电机上所面临的重要问题。
发明内容
本发明的目的在于提供一种新能源驱动电机用无取向硅钢及其生产方法,在保证磁性能的同时,提高了强度,解决了现有技术所存在的磁性能和强度的兼顾问题。
为实现上述发明目的,本发明一实施方式提供了一种新能源驱动电机用无取向硅钢,其化学成分以质量百分比计包括:Si:2.95%~3.15%,Al:0.75%~0.95%,Si+2Al:4.6%~4.9%,Mn:0.5%~0.7%,Sn:0.03%~0.04%,Cu≤0.03%,Cr≤0.03%,Ni≤0.03%,Cr+Ni+Cu≤0.07%,Nb≤0.004%,V≤0.004%,Ti≤0.004%,Nb+V+Ti≤0.008%,C≤0.0025%,P≤0.015%,S≤0.0015%,N≤0.004%,C+S+N≤0.007%,其余为Fe及不可避免的夹杂;并且,Mn/S≥380,Al/N≥200。
进一步地,所述无取向硅钢的再结晶晶粒尺寸为50μm~80μm。
进一步地,所述无取向硅钢为厚度0.25mm~0.35mm的钢板,屈服强度≥460Mpa,抗拉强度≥550Mpa,铁损P 1.0/400≤18.5W/kg,磁感应强度B 5000≥1.67T。
进一步地,所述无取向硅钢为厚度0.25mm的钢板,铁损P 1.0/400≤17.5W/kg;或者,为厚度0.30mm的钢板,铁损P 1.0/400≤18.0W/kg;或者,为厚度0.35mm的钢板,铁损P 1.0/400≤18.5W/kg。
为实现上述发明目的,本发明一实施方式提供了一种新能源驱动电机用无取向硅钢的生产方法,无取向硅钢的化学成分以质量百分比计包括:Si:2.95%~3.15%,Al:0.75%~0.95%,Si+2Al:4.6%~4.9%,Mn:0.5%~0.7%,Sn:0.03%~0.04%,Cu≤0.03%,Cr≤0.03%,Ni≤0.03%,Cr+Ni+Cu≤0.07%,Nb≤0.004%,V≤0.004%,Ti≤0.004%,Nb+V+Ti≤0.008%,C≤0.0025%,P≤0.015%,S≤0.0015%,N≤0.004%,C+S+N≤0.007%,其余为Fe及不可避免的夹杂;并且,Mn/S≥380,Al/N≥200;
所述无取向硅钢的再结晶晶粒尺寸为50μm~80μm;
所述生产方法通过依序进行的炼钢、连铸、热轧、常化、酸洗、单机架冷轧、退火、冷却、涂层和精整,制备出无取向硅钢;
在热轧工序中,将连铸工序所得连铸坯加热到1080℃~1110℃并保温160min~180min,而后依次经过粗轧、精轧、卷取,得到热轧卷板;精轧时的开轧温度为950±20℃、终轧温度为840±20℃且总的压下率为94~95%,卷取时的卷取温度为620±20℃;
在常化工序中,常化温度为840℃~860℃并保温180s~200s;
在退火工序中,退火温度为960℃~980℃并保温40s~45s。
优选地,在单机架冷轧工序中,进行多道次轧制,总的压下率为85±3%,除了最后一道次之外的其余各个道次的压下率均不小于30%。
优选地,所得无取向硅钢为厚度0.25mm~0.35mm的钢板;在所述热轧工序中,将厚度为220mm的连铸坯粗轧成厚度为35mm~40mm的中间坯,再精轧成厚度为2.00mm~2.30mm的热轧板。
优选地,所得无取向硅钢为厚度0.25mm的钢板,所述中间坯的厚度为35mm,所述热轧板的厚度为2.00mm;或者,所得无取向硅钢为厚度0.30mm的钢板,所述中间坯的厚度为37.5mm,所述热轧板的厚度为2.15mm;或者,所得无取向硅钢为厚度0.35mm的钢板,所述中间坯的厚度为40mm,所述热轧板的厚度为2.30mm。
优选地,所述单机架冷轧工序中,将所述酸洗工序之后的钢板不进行预热而直接开轧。
与现有技术相比,本发明的有益效果为:
(1)在化学成分方面,不添加Cu、Cr、Ni、Nb、V、Ti等合金元素,并结合Si、Al、Mn、Sn等元素含量的设计,提高无取向硅钢的磁性能,保证无取向硅钢具有较低的铁损、较高的磁感应强度;同时,在化学成分基础上,通过将晶粒尺寸控制在50μm~80μm,实现钢板的细晶强化,保证无取向硅钢具有高强度,从而在低成本和低生产难度的情况下,实现无取向硅钢的磁性能和强度的综合优化,以使得无取向硅钢能够满足新能源汽车的驱动电机上的应用要求;
(2)进一步地,在化学成分的设计基础上,通过热轧工序、常化工序、单机架冷轧工序、退火工序的一系列工艺控制,一方面,实现了无取向硅钢的再结晶晶粒尺寸的细小化,保证得到磁性能优异且强度高的无取向硅钢;再一方面,避免了冷轧中的裂纹断裂问题,省去了现有生产流程中的常用的轧前预热或二次冷轧,以免预热单机架冷轧工序即可完成最终轧制,保证了生产的低难度、低成本和稳定连续;另一方面,通过加热温度、开轧温度、常化温度等的低温控制,可以大大降低生产能耗;另外,常化温度低且保温时间短,还可以减少酸洗工序前钢板表面的氧化铁皮厚度,利于提高酸洗效率,并提高最终无取向硅钢的表面质量和成材率。
具体实施方式
下面结合具体的实施方式来对本发明的技术方案做进一步的介绍。
在本发明一实施方式提供了一种无取向硅钢。该无取向硅钢的化学成分以质量百分比计包括:Si:2.95%~3.15%,Al:0.75%~0.95%,Si+2Al:4.6%~4.9%,Mn:0.5%~0.7%,Sn:0.03%~0.04%,Cu≤0.03%,Cr≤0.03%,Ni≤0.03%,Cr+Ni+Cu≤0.07%,Nb≤0.004%,V≤0.004%,Ti≤0.004%,Nb+V+Ti≤0.008%,C≤0.0025%,P≤0.015%,S≤0.0015%,N≤0.004%,C+S+N≤0.007%,其余为Fe及不可避免的夹杂;并且,Mn/S≥380,Al/N≥200。
其中,化学成分中各个元素的作用和效果说明如下。
C、S、N、Cu、Cr、Ni、Nb、V、Ti、P:这些元素的含量增加会导致无取向硅钢的磁性能下降,包括铁损增大、磁感应强度降低;本发明中,在不增加炼钢难度和炼钢成本的前提下适当降低这些元素的含量上限,C≤0.0025%,S≤0.0015%,N≤0.004%,C+S+N≤0.007%,Cu≤0.03%,Cr≤0.03%,Ni≤0.03%,Cr+Ni+Cu≤0.07%, Nb≤0.004%,V≤0.004%,Ti≤0.004%,Nb+V+Ti≤0.008%,P≤0.015%。
Si、Al:Si是固溶强化元素,其含量增加会增加钢板强度,还可以使钢板的电阻率提高、铁损降低,本发明中Si含量(以质量百分比计)控制在2.95%~3.15%;Al含量增加会使钢板的电阻率提高、铁损降低,但是会降低磁感应强度,本发明中Al含量(以质量百分比计)控制在0.75%~0.95%;并且,Al易与N形成粗大的AlN析出物而使得钢板的铁损降低,本发明中Al含量(以质量百分比计)和N含量(以质量百分比计)还满足Al/N≥200,如此可以充分将N元素对钢板磁性能的不利影响转化为有利影响,降低炼钢中控制N元素的难度;另外,Si和Al的含量增加还会导致冷轧困难,为避免生产难度增大而引起的生产成本提升,本发明中Si含量(以质量百分比计)和Al含量(以质量百分比计)还满足Si+2Al:4.6%~4.9%。
Mn:适量添加Mn,对提高钢板的磁性能有利;并且,Mn可以抑制S引起的热脆性,易与S形成粗大的MnS析出物而使得钢板的铁损降低,本发明中Mn含量(以质量百分比计)和S含量(以质量百分比计)还满足Mn/S≥380,如此可以充分将S元素对钢板磁性能的不利影响转化为有利影响,降低炼钢中控制S元素的难度和成本。
Sn:为晶界偏聚元素,可以改善磁性能,本发明中Sn含量(以质量百分比计)为0.03%~0.04%。
如上,本实施方式在化学成分方面,在保证合金成本低、生产难度小、生产成本低的情况下,不添加Cu、Cr、Ni、Nb、V、Ti等合金元素,并结合Si、Al、Mn、Sn等元素含量的设计,提高无取向硅钢的磁性能,保证无取向硅钢具有较低的铁损、较高的磁感应强度。
并且,本实施方式中,所述无取向硅钢的再结晶晶粒尺寸为50μm~80μm。如此,在前述化学成分来保证无取向硅钢具有低铁损、高磁感应强度的同时,通过将晶粒尺寸控制在50μm~80μm,实现钢板的细晶强化,保证无取向硅钢具有高强度,从而,在低成本和低生产难度的情况下,实现无取向硅钢的磁性能和强度的综合优化,以使得无取向硅钢能够满足新能源汽车的驱动电机上的应用要求。
具体地,所述无取向硅钢为厚度0.25mm~0.35mm的钢板,屈服强度≥460Mpa,抗拉强度≥550Mpa,铁损P 1.0/400≤18.5W/kg,磁感应强度B 5000≥1.67T。
其中,进一步地,所述无取向硅钢具体可以为厚度0.35mm的钢板,其铁损P 1.0/400≤18.5W/kg;或者也可以为厚度0.30mm的钢板,铁损P 1.0/400≤18.0W/kg;又或 者可以为厚度0.25mm的钢板,铁损P 1.0/400≤17.5W/kg。
进一步地,本实施方式还提供了所述无取向硅钢的一种优选地生产方法,该生产方法通过依序进行的炼钢、连铸、热轧、常化、酸洗、单机架冷轧、退火、冷却、涂层和精整而制备出所述无取向硅钢。也即,所述无取向硅钢可以采用该优选地生产方法制备而成。本实施方式的生产方法,除了能够顺利制得前文所述的磁性能优异、强度高的无取向硅钢,还具有生产难度低、生产成本低等优点,保证了无取向硅钢的稳定生产。
具体地,在炼钢工序中将铁水炼制成钢水,在连铸工序中将炼钢工序所得钢水采用连铸机制成连铸坯。可以理解的,炼钢工序所得钢水的化学成分和连铸工序所得连铸坯的化学成分,均与所述生产方法最终所得无取向硅钢的化学成分相一致,也即,以质量百分比计包括:Si:2.95%~3.15%,Al:0.75%~0.95%,Si+2Al:4.6%~4.9%,Mn:0.5%~0.7%,Sn:0.03%~0.04%,Cu≤0.03%,Cr≤0.03%,Ni≤0.03%,Cr+Ni+Cu≤0.07%,Nb≤0.004%,V≤0.004%,Ti≤0.004%,Nb+V+Ti≤0.008%,C≤0.0025%,P≤0.015%,S≤0.0015%,N≤0.004%,C+S+N≤0.007%,其余为Fe及不可避免的夹杂;并且,Mn/S≥380,Al/N≥200。
本实施方式,在热轧工序中,将连铸工序所得连铸坯加热到1080℃~1110℃并保温160min~180min,而后依次经过粗轧、精轧、卷取,得到热轧卷板,精轧时的开轧温度为950±20℃、终轧温度为840±20℃且总的压下率为94~95%,卷取时的卷取温度为620±20℃;在常化工序中,常化温度为840℃~860℃并保温180s~200s;在退火工序中,退火温度为960℃~980℃并保温40s~45s。
如此,本实施方式的生产方法,通过控制热轧工序中较低的加热温度,来避免连铸坯中的MnS、AlN等粗大析出物发生固溶,进而保证后续粗轧、精轧过程中的析出物控制,以便于为最终所得无取向硅钢的磁性能奠定基础;通过控制精轧时的开轧温度、终轧温度、总的压下率以及卷取时的卷取温度,结合化学成分中Si+2Al:4.6%~4.9%的设计,使得热轧卷板的组织稳定且储存能一致,进而保证热轧卷板在后续常化工序中的再结晶温度维持稳定,以便于为后续常化工序的再结晶程度的精确控制创造条件;在热轧工序的基础上,通过常化工序中的常化温度和保温时长的设计,以使得常化工序发生部分再结晶(也即尚未全部完成再结晶、或者说未发生完全再结晶),从而使所得钢板中的未再结晶组织面积占比、再结晶晶粒尺寸得到精确管控,具体地未再结晶组织面积占比约为5%~20%、再结晶晶粒尺寸≤50μm, 如此一方面可以为退火工序中对再结晶晶粒尺寸控制创造条件,再一方面还可以基于未再结晶组织和再结晶晶粒之间的大量晶界,来避免后续冷轧中的裂纹扩展,以降低冷轧工序的轧制难度、保证冷轧工序的稳定生产,而省去了现有技术中常用的轧前预热或二次冷轧,以低成本的免预热单机架冷轧工序即可完成最终轧制;并且,在常化工序所创造的基础下,通过退火温度和保温时长的设计,在退火工序中发生完全再结晶、且再结晶晶粒并未明显长大,保证最终无取向硅钢的成品中的再结晶晶粒尺寸较小。
综上,本实施方式的所述生产方法,在化学成分的设计基础上,通过热轧工序、常化工序、单机架冷轧工序、退火工序的一系列工艺控制,一方面实现了无取向硅钢的再结晶晶粒尺寸的细小化,保证得到磁性能优异且强度高的无取向硅钢,再一方面避免了冷轧中的裂纹断裂问题,省去了现有生产流程中的常用的轧前预热或二次冷轧,以免预热单机架冷轧工序即可完成最终轧制,保证了生产的低难度、低成本和稳定连续,另一方面通过加热温度、开轧温度、常化温度等的低温控制,可以大大降低生产能耗,另外,常化温度低且保温时间短,还可以减少酸洗工序前钢板表面的氧化铁皮厚度,利于提高酸洗效率,并提高最终无取向硅钢的表面质量和成材率。
进一步优选地,基于最终钢水所需的化学成分,在炼钢工序中,不添加Cu、Cr、Ni、Nb、V、Ti的合金化材料。如此,可以降低合金化材料的成本。
再优选地,在所述单机架冷轧工序中,将所述酸洗工序之后的钢板不进行预热而直接开轧。现有技术中通常需要在冷轧之前先对钢板进行预热方可轧制,而本实施方式,在常化工序所创造的基础下,可以实现不进行预热而直接开轧,节约生产成本。
在单机架冷轧工序中,进行多道次轧制,总的压下率为85±3%,如此控制,可以使得不同厚度的无取向硅钢在单机架冷轧工序中的冷轧储存能基本一致,进而在后续的退火工序中能够以相同的退火温度和保温时长进行实施,以达到在同一生产线上对不同厚度的无取向硅钢进行连续生产时无需频繁变更操作的效果。
并且,在单机架冷轧工序中,进行多道次轧制,除了最后一道次之外的其余各个道次的压下率均不小于30%。例如进行5道次轧制,则第1~4道次分别压下率≥30%,第5道次的压下率选择性地可以小于30%。如此,既有效避免单机架冷轧工序中发生冷轧断带,又减少轧制道次,还保证了最终无取向硅钢的板形良好。
如前所述,所述无取向硅钢为厚度0.25mm~0.35mm的钢板。一优选实施方式中,连铸工序所得的连铸坯厚度为220mm;在所述热轧工序中,将厚度为220mm的连铸坯粗轧成厚度为35mm~40mm的中间坯,再精轧成厚度为2.00mm~2.30mm的热轧板。可以理解的,在单机架冷轧工序中,再将厚度为2.00mm~2.30mm的热轧板进一步轧制为目标厚度的无取向硅钢的成品。
例如,所述生产方法最终所得无取向硅钢为厚度0.25mm的钢板,则在所述热轧工序中,将厚度为220mm的连铸坯粗轧成厚度为35mm的中间坯,再精轧成厚度为2.00mm的热轧板;再例如,所述生产方法最终所得无取向硅钢为厚度0.30mm的钢板,则在所述热轧工序中,将厚度为220mm的连铸坯粗轧成厚度为37.5mm的中间坯,再精轧成厚度为2.15mm的热轧板;再例如,所述生产方法最终所得无取向硅钢为厚度0.35mm的钢板,则在所述热轧工序中,将厚度为220mm的连铸坯粗轧成厚度为40mm的中间坯,再精轧成厚度为2.30mm的热轧板。当然,这些仅为优选的实施,本发明具体实施时并不限定于此。
优选地,在常化工序中,在纯干N 2气氛下进行常化,且恒速生产,也即针对钢板的头部、中部、尾部进行常化时的辊速恒定不变。
再者,在退火工序中,在H 2+N 2的混合气氛下进行退火,且恒速生产,也即针对钢板的头部、中部、尾部进行退火时的辊速恒定不变。
另外,所述生产方法中,酸洗工序、冷却工序、涂层工序和精整工序采用现有公开的可行技术予以实施即可,不再赘述。
综合前述,与现有技术相比,本发明一实施方式的有益效果在于:
(1)在化学成分方面,不添加Cu、Cr、Ni、Nb、V、Ti等合金元素,并结合Si、Al、Mn、Sn等元素含量的设计,提高无取向硅钢的磁性能,保证无取向硅钢具有较低的铁损、较高的磁感应强度;同时,在化学成分基础上,通过将晶粒尺寸控制在50μm~80μm,实现钢板的细晶强化,保证无取向硅钢具有高强度,从而在低成本和低生产难度的情况下,实现无取向硅钢的磁性能和强度的综合优化,以使得无取向硅钢能够满足新能源汽车的驱动电机上的应用要求;
(2)进一步地,在化学成分的设计基础上,通过热轧工序、常化工序、单机架冷轧工序、退火工序的一系列工艺控制,一方面,实现了无取向硅钢的再结晶晶粒尺寸的细小化,保证得到磁性能优异且强度高的无取向硅钢;再一方面,避免了冷轧中的裂纹断裂问题,省去了现有生产流程中的常用的轧前预热或二次冷轧,以免 预热单机架冷轧工序即可完成最终轧制,保证了生产的低难度、低成本和稳定连续;另一方面,通过加热温度、开轧温度、常化温度等的低温控制,可以大大降低生产能耗;另外,常化温度低且保温时间短,还可以减少酸洗工序前钢板表面的氧化铁皮厚度,利于提高酸洗效率,并提高最终无取向硅钢的表面质量和成材率。
上文所列出的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。
下面提供本发明的6个实施例来对本发明的技术方案进一步说明。当然,这些实施例仅为本发明所含众多变化实施例中的一部分,而非全部。
实施例1~6分别提供一种无取向硅钢,化学成分以质量百分比计如表1所示;并且,各实施例的无取向硅钢具体为如表1所示厚度的钢板。
[表1]
Figure PCTCN2022074302-appb-000001
对实施例1~6的无取向硅钢分别进行取样检测,包括:(1)金相组织检测,测量所得的再结晶晶粒尺寸分别如表2所示;(2)力学性能检测,测量所得的屈服强度和抗拉强度分别如表2所示;(3)磁性能检测,测量所得的铁损P 1.0/400和磁感应强度B 5000分别如表2所示。
[表2]
Figure PCTCN2022074302-appb-000002
实施例1~6的无取向硅钢的生产方法如下:
(1)将铁水炼制成化学成分如表1所示的钢水,炼钢期间不添加Cu、Cr、Ni、Nb、V、Ti的合金化材料;而后将所炼制的钢水采用连铸坯制成厚度为220mm的连铸坯,连铸坯的化学成分同样如表1所示;
(2)将步骤1所得连铸坯在加热炉中进行加热,加热温度和保温时长如表3所示;而后依次经过粗轧、精轧、卷取,得到热轧卷板;粗轧所得中间坯厚度、精轧时的开轧温度、终轧温度、总的压下率、所得热轧板的厚度以及卷取时的卷取温度如表3所示;
[表3]
Figure PCTCN2022074302-appb-000003
(3)将步骤2所得热轧卷板在纯干N 2气氛下进行常化,常化过程采用恒速生产,常化温度、保温时长如表4所示;
常化结束后,对各个实施例的钢板进行金相组织检测,测量所得的未再结晶组织面积占比、再结晶晶粒尺寸分别如表4所示,其中,未再结晶组织面积占比,为未再结晶组织面积在钢板取样截面的总面积中所占比值;
[表4]
Figure PCTCN2022074302-appb-000004
(4)将步骤3所得钢板进行酸洗,酸洗之后,不进行预热的情况下直接进行单机架冷轧;其中,单机架冷轧期间,进行五道次轧制,总的压下率为85±3%,除了最后一道次之外的其余各个道次的压下率均不小于30%,所得钢板的厚度如表1所示,各道次压下规程如表5所示;
[表5]
Figure PCTCN2022074302-appb-000005
(5)将步骤4所得钢板在在H 2+N 2的混合气氛下进行退火,且退火过程采用恒速生产,退火温度、保温时长如表6所示;退火完成后,对钢板依序进行冷却、涂层和精整,得到各个实施例的无取向硅钢的成品。
[表6]
  退火温度(℃) 退火保温时长(s)
实施例1 970 43
实施例2 972 43
实施例3 975 43
实施例4 968 43
实施例5 972 43
实施例6 965 43
从上述实施例1~6可以看出,采用本发明一实施方式的无取向硅钢,不仅具有优异的磁性能,而且强度高,且合金成本低、生产难度小、生产成本低,满足新能源汽车的驱动电机上的应用要求。

Claims (12)

  1. 一种新能源驱动电机用无取向硅钢的生产方法,其特征在于,通过依序进行的炼钢、连铸、热轧、常化、酸洗、无预热单机架冷轧、退火、冷却、涂层和精整,制备出0.25mm~0.35mm任意厚度的无取向硅钢;
    在连铸工序中,所得连铸坯的化学成分以质量百分比计包括:Si:2.95%~3.15%,Al:0.75%~0.95%,Si+2Al:4.6%~4.9%,Mn:0.5%~0.7%,Sn:0.03%~0.04%,Cu≤0.03%,Cr≤0.03%,Ni≤0.03%,Cr+Ni+Cu≤0.07%,Nb≤0.004%,V≤0.004%,Ti≤0.004%,Nb+V+Ti≤0.008%,C≤0.0025%,P≤0.015%,S≤0.0015%,N≤0.004%,C+S+N≤0.007%,Mn/S≥380,Al/N≥200,其余为Fe及不可避免的夹杂;
    在热轧工序中,将连铸工序所得连铸坯依次经过加热、粗轧、精轧、卷取,得到热轧卷板;精轧时的开轧温度为950±20℃、终轧温度为840±20℃且总的压下率为94~95%,卷取时的卷取温度为620±20℃;
    在常化工序中,使未再结晶组织面积占比为5%~20%。
  2. 根据权利要求1所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,在热轧工序中,将连铸工序所得连铸坯加热到1080℃~1110℃并保温160min~180min。
  3. 根据权利要求1所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,在常化工序中,常化温度为840℃~860℃并保温180s~200s。
  4. 根据权利要求1所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,在退火工序中,退火温度为960℃~980℃并保温40s~45s。
  5. 根据权利要求1所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,在单机架冷轧工序中,进行多道次轧制,总的压下率为85±3%,除了最后一道次之外的其余各个道次的压下率均不小于30%。
  6. 根据权利要求1所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,在所述热轧工序中,将厚度为220mm的连铸坯粗轧成厚度为35mm~40mm的中间坯,再精轧成厚度为2.00mm~2.30mm的热轧板。
  7. 根据权利要求6所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,所述无取向硅钢为厚度0.25mm的钢板,所述中间坯的厚度为35mm,所述热轧板的厚度为2.00mm;或者,所述无取向硅钢为厚度0.30mm的钢板,所述中间坯的厚度为37.5mm,所述热轧板的厚度为2.15mm;或者,所述无取向硅钢为厚度0.35mm 的钢板,所述中间坯的厚度为40mm,所述热轧板的厚度为2.30mm。
  8. 根据权利要求1所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,在炼钢工序中,不添加Cu、Cr、Ni、Nb、V、Ti的合金化材料。
  9. 一种新能源驱动电机用无取向硅钢,其特征在于,采用权利要求1所述的生产方法制备而成。
  10. 根据权利要求9所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,所述无取向硅钢的再结晶晶粒尺寸为50μm~80μm。
  11. 根据权利要求9所述的新能源驱动电机用无取向硅钢的生产方法,其特征在于,所述无取向硅钢屈服强度≥460Mpa,抗拉强度≥550Mpa,铁损P 1.0/400≤18.5W/kg,磁感应强度B 5000≥1.67T。
  12. 根据权利要求11所述的无取向硅钢,其特征在于,所述无取向硅钢为厚度0.25mm的钢板,铁损P 1.0/400≤17.5W/kg;或者,为厚度0.30mm的钢板,铁损P 1.0/400≤18.0W/kg;或者,为厚度0.35mm的钢板,铁损P 1.0/400≤18.5W/kg。
PCT/CN2022/074302 2021-10-26 2022-01-27 新能源驱动电机用无取向硅钢及其生产方法 WO2023070982A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111244023.3A CN113684422B (zh) 2021-10-26 2021-10-26 无取向硅钢及其生产方法
CN202111244023.3 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023070982A1 true WO2023070982A1 (zh) 2023-05-04

Family

ID=78587929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074302 WO2023070982A1 (zh) 2021-10-26 2022-01-27 新能源驱动电机用无取向硅钢及其生产方法

Country Status (2)

Country Link
CN (2) CN114196887B (zh)
WO (1) WO2023070982A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196887B (zh) * 2021-10-26 2022-11-18 江苏省沙钢钢铁研究院有限公司 新能源驱动电机用无取向硅钢及其生产方法
CN114369761B (zh) * 2022-01-07 2022-11-25 山西太钢不锈钢股份有限公司 一种薄规格无取向硅钢及其制备方法
CN114453430A (zh) * 2022-01-20 2022-05-10 安阳钢铁股份有限公司 一种防止高磁感取向硅钢冷轧断带的控制方法
CN117626111A (zh) * 2022-08-15 2024-03-01 宝山钢铁股份有限公司 一种电动车驱动马达用无取向电工钢及其制造方法
CN115198198B (zh) * 2022-09-13 2022-12-23 张家港扬子江冷轧板有限公司 一种高速电机用无取向硅钢及其制备方法
CN115341083A (zh) * 2022-09-13 2022-11-15 江苏省沙钢钢铁研究院有限公司 一种高频电机用无取向硅钢及其生产方法
CN115198199A (zh) * 2022-09-14 2022-10-18 张家港扬子江冷轧板有限公司 高强度无取向硅钢生产方法、高强度无取向硅钢及应用
CN115369225B (zh) * 2022-09-14 2024-03-08 张家港扬子江冷轧板有限公司 新能源驱动电机用无取向硅钢及其生产方法与应用
CN117305717B (zh) * 2023-11-27 2024-03-05 张家港扬子江冷轧板有限公司 无取向硅钢的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357800A1 (en) * 1988-03-04 1990-03-14 Nkk Corporation Process for producing nonoriented silicon steel sheet having excellent magnetic properties
CN109252102A (zh) * 2018-11-02 2019-01-22 东北大学 一种提高低硅无取向硅钢磁性能的方法
CN111206192A (zh) * 2020-03-04 2020-05-29 马鞍山钢铁股份有限公司 一种电动汽车驱动电机用高磁感冷轧无取向硅钢薄带及制造方法
CN112176250A (zh) * 2020-09-19 2021-01-05 张家港扬子江冷轧板有限公司 一种高速驱动电机用无取向硅钢及其制造方法
CN113684422A (zh) * 2021-10-26 2021-11-23 江苏省沙钢钢铁研究院有限公司 无取向硅钢及其生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676916B (zh) * 2012-05-09 2016-03-30 首钢总公司 一种高磁感变频压缩机用无取向硅钢的制备方法
CN103849810A (zh) * 2012-12-03 2014-06-11 宝山钢铁股份有限公司 无取向硅钢及其制造方法
CN103320692B (zh) * 2013-06-19 2016-07-06 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
CN107587039B (zh) * 2017-08-30 2019-05-24 武汉钢铁有限公司 磁性优良的电动汽车驱动电机用无取向硅钢及生产方法
CN112538592B (zh) * 2020-09-17 2022-02-01 武汉钢铁有限公司 一种用于频率≥10000Hz高速电机的无取向硅钢及生产方法
CN112609130B (zh) * 2020-12-16 2022-06-21 江苏省沙钢钢铁研究院有限公司 高牌号无取向硅钢及其生产方法
CN113528969A (zh) * 2021-07-20 2021-10-22 马鞍山钢铁股份有限公司 一种超高磁感无取向硅钢及其制造方法和在汽车发电机生产中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357800A1 (en) * 1988-03-04 1990-03-14 Nkk Corporation Process for producing nonoriented silicon steel sheet having excellent magnetic properties
CN109252102A (zh) * 2018-11-02 2019-01-22 东北大学 一种提高低硅无取向硅钢磁性能的方法
CN111206192A (zh) * 2020-03-04 2020-05-29 马鞍山钢铁股份有限公司 一种电动汽车驱动电机用高磁感冷轧无取向硅钢薄带及制造方法
CN112176250A (zh) * 2020-09-19 2021-01-05 张家港扬子江冷轧板有限公司 一种高速驱动电机用无取向硅钢及其制造方法
CN113684422A (zh) * 2021-10-26 2021-11-23 江苏省沙钢钢铁研究院有限公司 无取向硅钢及其生产方法
CN114196887A (zh) * 2021-10-26 2022-03-18 江苏省沙钢钢铁研究院有限公司 新能源驱动电机用无取向硅钢及其生产方法

Also Published As

Publication number Publication date
CN113684422A (zh) 2021-11-23
CN114196887B (zh) 2022-11-18
CN113684422B (zh) 2022-03-29
CN114196887A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023070982A1 (zh) 新能源驱动电机用无取向硅钢及其生产方法
WO2022127104A1 (zh) 高牌号无取向硅钢及其生产方法
WO2019214243A1 (zh) 一种锂电池用1100合金铝箔及其制造方法
JP5675950B2 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
TWI484046B (zh) Method for manufacturing non - directional electromagnetic steel sheet
CN102560235B (zh) 一种高磁感取向硅钢的制造方法
CN101139681A (zh) 中高牌号冷轧无取向硅钢及其制造方法
WO2021037061A1 (zh) 一种600MPa级无取向电工钢板及其制造方法
CN110964977B (zh) 一种能降低表面硬度的取向硅钢及其制备方法
WO2022262020A1 (zh) 无取向硅钢及其生产方法
CN114990308B (zh) 一种无需常化的高牌号无取向硅钢的生产方法
JPS6116323B2 (zh)
WO2019062732A1 (zh) 一种磁性能优异的冷轧磁性叠片钢及其制造方法
CN110777299A (zh) 一种含Ce高磁感无取向硅钢及制备方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法
CN109868349B (zh) 一种采用超快冷工艺生产全工艺冷轧无取向电工钢35wd1900的方法
JP7164071B1 (ja) 無方向性電磁鋼板
JPS583922A (ja) 時効性に優れるt−3級ぶりき板の製造方法
CN106001108A (zh) 一种低成本取向硅钢的轧制方法
CN115198199A (zh) 高强度无取向硅钢生产方法、高强度无取向硅钢及应用
CN114293100A (zh) 一种超低铁损无取向硅钢薄带及其制备方法
CN113403455A (zh) 无取向硅钢的生产方法
JPS5980726A (ja) 深絞り性に優れた面内異方性の小さい高強度冷延鋼板の製造方法
JPH0222446A (ja) 高成形性アルミニウム合金硬質板の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022884900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022884900

Country of ref document: EP

Effective date: 20240328

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024007031

Country of ref document: BR