WO2023070551A1 - 发光器件、发光模组及其制备方法 - Google Patents

发光器件、发光模组及其制备方法 Download PDF

Info

Publication number
WO2023070551A1
WO2023070551A1 PCT/CN2021/127553 CN2021127553W WO2023070551A1 WO 2023070551 A1 WO2023070551 A1 WO 2023070551A1 CN 2021127553 W CN2021127553 W CN 2021127553W WO 2023070551 A1 WO2023070551 A1 WO 2023070551A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
emitting device
electrode
Prior art date
Application number
PCT/CN2021/127553
Other languages
English (en)
French (fr)
Inventor
熊志军
马俊杰
卢元达
赵加伟
杨山伟
孙元浩
李雪峤
Original Assignee
京东方科技集团股份有限公司
京东方晶芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方晶芯科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/127553 priority Critical patent/WO2023070551A1/zh
Priority to CN202180003200.0A priority patent/CN116368615A/zh
Publication of WO2023070551A1 publication Critical patent/WO2023070551A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present disclosure relates to the field of display technology, in particular to a light emitting device, a light emitting module and a preparation method thereof.
  • the light emitting module includes a substrate and a light emitting device.
  • the light emitting device can be welded to the substrate through a crystal bonding process.
  • the lighting module is prone to failure.
  • the purpose of the present disclosure is to provide a light emitting device, a light emitting module and a preparation method thereof, which can reduce the failure risk of the display module.
  • a light emitting device comprising:
  • a crystal-bonding structure at least part of the region of the crystal-bonding structure covers the surface of the electrode structure facing away from the light-emitting structure, and the crystal-bonding structure includes a doping material, and the doping material is used to suppress the intermetallic compound generate.
  • crystal-fixing structure includes:
  • a solder layer covers the surface of the electrode structure facing away from the light emitting structure, and the dopant material is doped in the solder layer.
  • the dopant material is at least one of nickel, ferric oxide, silicon dioxide, titanium dioxide or zirconium dioxide.
  • solder in the solder layer is at least one of tin, tin-silver alloy, tin-silver-copper alloy, indium-tin alloy or tin-copper alloy.
  • the electrode structure includes:
  • the blocking layer is arranged on the side of the electrode layer facing away from the light-emitting structure, and the material of the blocking layer is a conductive material.
  • the material of the barrier layer is at least one of nickel, platinum and gold.
  • the light emitting device further includes an insulating layer covering the electrode layer, the insulating layer is provided with an opening exposing the electrode layer, and the electrode structure further includes:
  • the conductive bridging layer is arranged on the surface of the insulating layer facing away from the light-emitting structure, and extends into the opening, and is in contact with the electrode layer; the barrier layer is arranged on the conductive bridging layer facing away from the light-emitting structure. the surface of the structure.
  • the light emitting device further includes an insulating layer covering the electrode layer, the insulating layer is provided with an opening exposing the electrode layer, and the electrode structure further includes:
  • a conductive filler filling the opening and in contact with the electrode layer
  • the conductive bridging layer is arranged on the surface of the insulating layer facing away from the light-emitting structure, and is in contact with the surface of the conductive filler facing away from the light-emitting structure; the barrier layer is arranged on the surface of the conductive bridging layer facing away from the light-emitting structure. The surface of the light-emitting structure.
  • the surface of the conductive filler facing away from the light emitting structure is flush with the surface of the insulating layer facing away from the light emitting structure;
  • a surface of the conductive filler facing away from the light emitting structure is lower than a surface of the insulating layer facing away from the light emitting structure.
  • crystal-fixing structure includes:
  • solder layer covering the surface of the electrode structure facing away from the light emitting structure
  • a liquid film covering the solder layer, the material of the liquid film is flux, and the doping material is doped in the liquid film.
  • the number of the electrode structure is two
  • the number of the solder layer is two
  • the number of the liquid film is two
  • the two liquid films are arranged at intervals
  • the two solder layers are one One corresponding to the surface of the two electrode structures, the two liquid films cover the two solder layers correspondingly
  • the doping material is nickel, ferric oxide, silicon dioxide, titanium dioxide or at least one of zirconium dioxide.
  • the number of the electrode structure is two, the number of the solder layer is two, and the number of the liquid film is one; the two solder layers are arranged on the two electrode structures in a one-to-one correspondence
  • the liquid film covers the two solder layers; the doping material is an insulating material.
  • the dopant material is at least one of silicon dioxide, titanium dioxide or zirconium dioxide.
  • a lighting module including:
  • a substrate provided with at least one set of pads
  • the light-emitting device is soldered to the bonding pad of the substrate through the crystal-bonding structure.
  • a method for preparing a light-emitting module including:
  • the above-mentioned light-emitting device is welded to the bonding pad of the substrate through the crystal-bonding structure by using a heating welding process.
  • the heating welding process includes a thermocompression welding process, a reflow soldering process or a laser welding process.
  • the crystal-bonding structure covers the surface of the electrode structure facing away from the light-emitting structure, since the dopant material in the crystal-bonding structure can be used to suppress the formation of intermetallic compounds, Furthermore, the thickness of the formed intermetallic compound layer can be reduced during the die bonding process, preventing the pads of the substrate from peeling off, avoiding damage to the light-emitting module, improving the die-bonding rework yield and reducing the failure risk of the display module.
  • FIG. 1 is a schematic diagram of a die-bonding process in the related art.
  • FIG. 2 is a schematic diagram after the crystal bonding process shown in FIG. 1 is completed.
  • FIG. 3 is a schematic diagram of the structure shown in FIG. 2 after being repaired.
  • FIG. 4 is a schematic diagram of a light emitting device according to an embodiment of the present disclosure.
  • FIG. 5 is another schematic diagram of a light emitting device according to an embodiment of the present disclosure.
  • Fig. 6 is another schematic diagram of a light emitting device according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of a light emitting module according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of the light emitting device shown in Fig. 4 before forming a liquid film.
  • Fig. 9 is an electron micrograph of an intermetallic compound.
  • Figure 10 is another electron micrograph of an intermetallic compound.
  • Fig. 11 is another electron micrograph of the intermetallic compound.
  • Intermetallic compound IMC Intermetallic Compound
  • an intermetallic compound refers to a compound composed of two or more metal components in proportion, which has the basic properties of metal and a long-range ordered crystal structure different from its components.
  • an intermetallic compound is a compound in which metal elements are chemically combined in various atomic weight ratios.
  • the key to evaluating a good soldering is whether a benign metal compound is generated.
  • the inventors of the present disclosure have found that the surface of the film layer made of benign metal compounds is a continuous and uniform surface, and the morphology of the film layer surface is scalloped (see Figure 9); with the increase of welding temperature and time, the metal The intermediate compound will grow excessively, and the shape will change from the initial scallop shape to the roof shape (see Figure 10), and finally form a malignant prism shape (see Figure 11), and the internal stress it bears will also increase, resulting in weakening of the mechanical strength , reduces the welding quality, and then causes virtual welding, dead lights and other phenomena.
  • the light-emitting module includes a substrate 6 and a light-emitting device welded to the substrate 6 .
  • the light-emitting module is a Mini LED light-emitting module, tens of thousands to hundreds of thousands of light-emitting devices need to be die-bonded on a single substrate 6 . In order to ensure a 100% yield, it is inevitable to carry out rework (Rework).
  • the heat input generated in the rework process will cause the intermetallic compound to grow excessively, further increasing the thickness of the intermetallic compound layer 9, and because the melting point of the intermetallic compound is greater than The melting point of the soldering layer 10 is low, so the phenomenon of peeling of the pad 7 is prone to occur after rework (see FIG. 3 ).
  • Embodiments of the present disclosure provide a light emitting device.
  • the light emitting device may be a micro light emitting device (Micro Light Emitting Diode, Micro LED), and of course, may also be a submillimeter light emitting device (Mini Light Emitting Diode, Mini LED), but the disclosure is not limited thereto.
  • the light-emitting device may include a light-emitting structure 1, an electrode structure 2, and a crystal-bonding structure 3, wherein:
  • the electrode structure 2 can be disposed on the light emitting structure 1 . At least part of the crystal-bonding structure 3 covers the surface of the electrode structure 2 facing away from the light-emitting structure 1 .
  • the crystal-bonding structure 3 includes a doping material 5 . This dopant material 5 is used to suppress the formation of intermetallic compounds.
  • the region of the crystal-bonding structure 3 covers the surface of the electrode structure 2 facing away from the light-emitting structure 1. Since the dopant material 5 in the crystal-bonding structure 3 can be used to suppress the formation of intermetallic compounds, further During the die bonding process, the thickness of the intermetallic compound layer 9 formed can be reduced, the pads 7 of the substrate 6 can be prevented from peeling off, the light-emitting module can be avoided from being damaged, the yield rate of the die bonded repair can be improved, and the failure risk of the display module can be reduced.
  • the inactive ions there are inactive ions in the doping material 5, and the inactive ions will not react with the solder in the crystal-bonding structure 3 to form intermetallic compounds, which can be regarded as second-phase ions, and play a role in inhibiting the growth of intermetallic compounds.
  • the microstructure of the solder alloy formed during the die bonding process is changed, and the mechanical properties of the solder alloy are improved.
  • the light emitting structure 1 may be a light emitting diode chip, but the disclosure is not limited thereto.
  • the LED chip may include a substrate 100 and an epitaxial structure 101 .
  • the substrate 100 may be one of a sapphire substrate 100 , a silicon carbide substrate 100 , a silicon nitride substrate 100 and a silicon substrate 100 , which is not limited in the embodiments of the present disclosure.
  • the epitaxial structure 101 can be disposed on one side of the substrate 100 .
  • the epitaxial structure 101 may include a first conductivity type semiconductor layer 1011 , a light emitting layer 1012 and a second conductivity type semiconductor layer 1013 .
  • the first conductivity type semiconductor layer 1011 can be disposed on one side of the substrate 100, the light emitting layer 1012 can be disposed on the side of the first conductivity type semiconductor layer 1011 facing away from the substrate 100, and the second conductivity type semiconductor layer 1013 can be It is disposed on the side of the light-emitting layer 1012 facing away from the substrate 100 .
  • the first conductivity type is different from the second conductivity type.
  • the first conductivity type semiconductor layer 1011 may be a p-type semiconductor layer, and the second conductivity type semiconductor layer 1013 may be an n-type semiconductor layer, but this is not specifically limited in this embodiment of the disclosure.
  • the light emitting layer 1012 may be one of a single quantum well structure, a multiple quantum well (MQW) structure, a quantum wire structure and a quantum dot structure. Taking the light-emitting layer 1012 as an example with a multi-quantum well structure, the light-emitting layer 1012 may include alternately arranged potential well layers and potential barrier layers.
  • the area of the orthographic projection of the first conductive type semiconductor layer 1011 on the substrate 100 is greater than the area of the orthographic projection of the light emitting layer 1012 on the substrate 100 , and the orthographic area of the first conductive type semiconductor layer 1011 on the substrate 100 The projected area is also larger than the area of the orthographic projection of the second conductivity type semiconductor layer 1013 on the substrate 100 .
  • the electrode structure 2 can be disposed on the light emitting structure 1 .
  • the electrode structure 2 may include an electrode layer 201 .
  • the material of the electrode layer 201 may be selected from at least one of gold, silver, aluminum, chromium, nickel, platinum, and titanium.
  • the number of the electrode layers 201 may be two.
  • One electrode layer 201 can be disposed on the surface of the first conductivity type semiconductor layer 1011 facing away from the substrate 100
  • the other electrode layer 201 can be disposed on the surface of the second conductivity type semiconductor layer 1013 facing away from the substrate 100 .
  • one electrode layer 201 of the two electrode layers 201 may be provided on the surface of the second conductivity type semiconductor layer 1013 facing away from the substrate 100 , and the other electrode layer 201 may be provided on the surface of the substrate 100 facing away from the substrate 100 .
  • the surface of the epitaxial structure 101 that is, the light emitting device is a light emitting device with a vertical structure.
  • the light emitting device of the present disclosure may further include an insulating layer 4 .
  • the insulating layer 4 may cover the above-mentioned electrode layer 201 , epitaxial structure 101 and substrate 100 .
  • the insulating layer 4 can expose the opening of the electrode layer 201 . Wherein, the number of the openings may be two, and the two openings correspond to expose the two electrode layers 201 one by one.
  • the electrode structure 2 may further include a conductive bridging layer 202 and a barrier layer 203 .
  • the conductive bridging layer 202 may cover the surface of the insulating layer 4 facing away from the substrate 100 . Wherein, the conductive bridging layer 202 can extend into the opening of the insulating layer 4 and be in contact with the electrode layer 201 .
  • the conductive bridging layer 202 may be a laminated structure.
  • the laminated structure may be a triple laminated structure, and the triple laminated structure may include two titanium metal layers disposed opposite to each other and an aluminum metal layer located between the two titanium metal layers.
  • the number of the conductive bridging layers 202 may be two, and the two conductive bridging layers 202 may protrude into the two openings of the insulating layer 4 in one-to-one correspondence, and contact the two electrode layers 201 in one-to-one correspondence.
  • the barrier layer 203 can be disposed on the surface of the conductive bridging layer 202 facing away from the substrate 100 .
  • the material of the barrier layer 203 may be selected from one or more of nickel, platinum, and gold.
  • the number of the barrier layers 203 may be two, and the two barrier layers 203 are correspondingly disposed on the surfaces of the two conductive bridging layers 202 facing away from the substrate 100 .
  • the barrier layer 203 can prevent the metal elements (mainly Sn) in the crystal-bonding structure 3 from diffusing to the electrode layer 201 during the welding process, avoiding the formation of intermetallic compounds between the diffused metal elements and the material of the electrode layer 201, and preventing abnormal welding.
  • the electrode structure 2 may further include a conductive filler 204 .
  • the conductive filler 204 fills the opening of the insulating layer 4 and is in contact with the electrode layer 201 .
  • the surface of the conductive filler 204 facing away from the light-emitting structure 1 may be flush with the surface of the insulating layer 4 facing away from the light-emitting structure 1, that is, the conductive filler 204 fills the opening of the insulating layer 4, and the conductive filler 204 does not protrude from the insulating layer. 4 openings.
  • the surface of the conductive filler 204 facing away from the light-emitting structure 1 may also be lower than the surface of the insulating layer 4 facing away from the light-emitting structure 1, that is, the conductive filler 204 is not filled with the insulating layer 4, that is, the conductive filler 204 behind
  • the distance between the surface facing the light emitting structure 1 and the substrate 100 is smaller than the distance between the surface of the insulating layer 4 facing away from the light emitting structure 1 and the substrate 100 .
  • the number of the conductive fillers 204 may be two, and the two conductive fillers 204 fill the two openings of the insulating layer 4 in a one-to-one correspondence.
  • the above-mentioned two conductive bridging layers 202 may be in contact with the surface of the two conductive fillers 204 facing away from the light emitting structure 1 in one-to-one correspondence.
  • the crystal-bonding structure 3 covers the surface of the electrode structure 2 facing away from the light-emitting structure 1 .
  • the crystal-bonding structure 3 may cover the surface of the barrier layer 203 facing away from the light emitting structure 1 .
  • the crystal-bonding structure 3 includes a doping material 5 . This dopant material 5 is used to suppress the formation of intermetallic compounds.
  • the die-bonding structure 3 may include a solder layer 301 .
  • the solder layer 301 may cover the surface of the electrode structure 2 facing away from the light emitting structure 1 , for example, the solder layer 301 covers the surface of the barrier layer 203 facing away from the light emitting structure 1 .
  • the solder in the solder layer 301 is tin, tin-silver alloy, tin-silver-copper alloy, indium-tin alloy or tin-copper alloy, but this is not specifically limited in the embodiments of the present disclosure.
  • the number of the solder layers 301 may be two, and the two solder layers 301 may cover the surfaces of the two barrier layers 203 facing away from the light emitting structure 1 correspondingly.
  • the thickness of the solder layer 301 may be 5 ⁇ m-50 ⁇ m, such as 5 ⁇ m, 10 ⁇ m, 25 ⁇ m, 45 ⁇ m, 50 ⁇ m and so on.
  • the orthographic area of the electrode layer 201 on the substrate 100 is smaller than the orthographic area of the solder layer 301 on the substrate 100.
  • the orthographic area of the electrode layer 201 on the substrate 100 can also be equal to the area of the solder layer 301 on the substrate 100.
  • the area of the orthographic projection of the electrode layer 201 on the substrate 100 may also be greater than the area of the orthographic projection of the solder layer 301 on the substrate 100 , but the present disclosure is not limited thereto.
  • the crystal-bonding structure 3 may also include a liquid film 302 .
  • the liquid film 302 may cover the solder layer 301 .
  • the material of the liquid film 302 may be flux.
  • the flux can be an organic solvent.
  • the flux has the functions of "assisting heat conduction", “reducing the surface tension of the material to be welded”, “removing oil stains on the surface of the material to be welded, increasing the welding area", and "preventing re-oxidation".
  • the number of the liquid films 302 can be two, and the two liquid films 302 can be arranged at intervals; the two liquid films 302 cover the two solders one by one. Layer 301.
  • the number of the liquid film 302 is one, and the liquid film 302 covers two solder layers 301 at the same time.
  • the liquid film 302 covering the solder may also cover the surface of the insulating layer 4 facing away from the light emitting structure 1 .
  • the above-mentioned liquid film 302 can be formed by dipping or printing.
  • the doping material 5 is used to suppress the generation of intermetallic compounds, specifically, the doping material 5 is used to suppress the excessive generation of intermetallic compounds, for example, from the scallop shape shown in Figure 9 to the one shown in Figure 9.
  • the doping material 5 can be doped in the solder layer 301 .
  • the doping material 5 doped in the solder layer 301 may be nickel, ferric oxide, silicon dioxide, titanium dioxide or zirconium dioxide, but this is not particularly limited in the embodiments of the present disclosure.
  • the solder layer 301 with the dopant material 5 can be formed by evaporation, sputtering, electroplating or printing, but the disclosure is not limited thereto.
  • the doping material 5 can also be doped in the liquid film 302 .
  • the dopant material 5 can be nickel, ferric oxide, silicon dioxide, titanium dioxide or zirconium dioxide;
  • the dopant material 5 can be an insulating material, such as ferric oxide, silicon dioxide, titanium dioxide or zirconium dioxide.
  • both the solder layer 301 and the liquid film 302 may be provided with the above-mentioned dopant material 5 .
  • the embodiment of the present disclosure also provides a light emitting module.
  • the light-emitting module may include a substrate 6 and the light-emitting device described in any of the above-mentioned embodiments.
  • the substrate 6 is provided with pads 7 .
  • the light emitting device is soldered to the pad 7 of the substrate 6 through the crystal bonding structure 3 .
  • the light-emitting module can be used as a backlight module of a display module, and of course, the light-emitting module can also be used as the display module itself.
  • the substrate 6 is a driving backplane
  • the driving backplane may be provided with array-distributed thin film transistors, but the present disclosure does not specifically limit this.
  • the embodiment of the present disclosure also provides a method for preparing a light-emitting module.
  • the preparation method of the light-emitting module may include: providing a substrate 6 provided with at least one set of pads 7; Structure 3 is soldered to pad 7 of substrate 6 .
  • the heating welding process may include a thermocompression welding process, a reflow soldering process or a laser welding process.
  • the liquid film 302 in the crystal-bonding structure 3 of the light-emitting device may be formed by coating, dipping, etc. in real time during the manufacturing process.
  • flux may also be added to the pad 7 of the substrate 6 , and the above-mentioned dopant material 5 may be added to the flux.
  • the light-emitting device, the light-emitting module, and the preparation method of the light-emitting module provided in the embodiments of the present disclosure belong to the same inventive concept, and the descriptions of related details and beneficial effects can be referred to each other, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

本公开提供了一种发光器件、发光模组及其制备方法。该发光器件包括:发光结构;电极结构,设于所述发光结构上;固晶结构,所述固晶结构的至少部分区域覆盖所述电极结构背向所述发光结构的表面,所述固晶结构中包括掺杂材料,所述掺杂材料用于抑制金属间化合物的生成。本公开能够提高固晶返修良率和降低显示模组失效风险。

Description

发光器件、发光模组及其制备方法 技术领域
本公开涉及显示技术领域,尤其涉及一种发光器件、发光模组及其制备方法。
背景技术
随着人们生活水平的提高,发光模组引起了人们越来越多的关注。发光模组包括基板和发光器件。该发光器件可以通过固晶工艺焊接于基板。然而,该发光模组易于失效。
发明内容
本公开的目的在于提供一种发光器件、发光模组及其制备方法,能够降低显示模组失效风险。
根据本公开的一个方面,提供一种发光器件,包括:
发光结构;
电极结构,设于所述发光结构上;
固晶结构,所述固晶结构的至少部分区域覆盖所述电极结构背向所述发光结构的表面,所述固晶结构中包括掺杂材料,所述掺杂材料用于抑制金属间化合物的生成。
进一步地,所述固晶结构包括:
焊料层,覆盖所述电极结构背向所述发光结构的表面,所述掺杂材料 掺杂于所述焊料层中。
进一步地,所述掺杂材料为镍、三氧化二铁、二氧化硅、二氧化钛或二氧化锆中的至少一种。
进一步地,所述焊料层中的焊料为锡、锡银合金、锡银铜合金、铟锡合金或锡铜合金中的至少一种。
进一步地,所述电极结构包括:
电极层,设于所述发光结构上;
阻挡层,设于所述电极层背向所述发光结构的一侧,所述阻挡层的材料为导电材料。
进一步地,所述阻挡层的材料为镍、铂、金中的至少一种。
进一步地,所述发光器件还包括覆盖所述电极层的绝缘层,所述绝缘层设有暴露所述电极层的开口,所述电极结构还包括:
导电桥接层,设于所述绝缘层背向所述发光结构的表面,且伸入所述开口,并与所述电极层接触;所述阻挡层设于所述导电桥接层背向所述发光结构的表面。
进一步地,所述发光器件还包括覆盖所述电极层的绝缘层,所述绝缘层设有暴露所述电极层的开口,所述电极结构还包括:
导电填充件,填充所述开口,并与所述电极层接触;
导电桥接层,设于所述绝缘层背向所述发光结构的表面,并与所述导电填充件背向所述发光结构的表面接触;所述阻挡层设于所述导电桥接层背向所述发光结构的表面。
进一步地,所述导电填充件背向所述发光结构的表面与所述绝缘层背向所述发光结构的表面平齐;或者
所述导电填充件背向所述发光结构的表面低于所述绝缘层背向所述发 光结构的表面。
进一步地,所述固晶结构包括:
焊料层,覆盖所述电极结构背向所述发光结构的表面;
液膜,覆盖所述焊料层,所述液膜的材料为助焊剂,所述掺杂材料掺杂于所述液膜中。
进一步地,所述电极结构的数量为两个,所述焊料层的数量为两个,所述液膜的数量为两个,且两个所述液膜间隔设置;两个所述焊料层一一对应地设于两个所述电极结构的表面,两个所述液膜一一对应地覆盖两个所述焊料层;所述掺杂材料为镍、三氧化二铁、二氧化硅、二氧化钛或二氧化锆中的至少一种。
进一步地,所述电极结构的数量为两个,所述焊料层的数量为两个,所述液膜的数量为一个;两个所述焊料层一一对应地设于两个所述电极结构的表面,所述液膜覆盖两个所述焊料层;所述掺杂材料为绝缘材料。
进一步地,所述掺杂材料为二氧化硅、二氧化钛或二氧化锆中的至少一种。
根据本公开的一个方面,提供一种发光模组,包括:
基板,设有至少一组焊盘;
上述的发光器件,所述发光器件通过所述固晶结构焊接于所述基板的所述焊盘。
根据本公开的一个方面,提供一种发光模组的制备方法,包括:
提供基板,所述基板设有至少一组焊盘;
采用加热焊接工艺将上述发光器件通过所述固晶结构焊接于所述基板的所述焊盘。
进一步地,所述加热焊接工艺包括热压焊接工艺、回流焊工艺或激光 焊接工艺。
本公开的发光器件、发光模组及其制备方法,固晶结构的至少部分区域覆盖电极结构背向发光结构的表面,由于固晶结构中的掺杂材料可以用于抑制金属间化合物的生成,进而在固晶过程中可以降低形成的金属间化合物层的厚度,防止基板的焊盘发生剥离,避免发光模组发生损坏,提高固晶返修良率和降低显示模组失效风险。
附图说明
图1是相关技术中固晶工艺的示意图。
图2是图1所示的固晶工艺完成后的示意图。
图3是图2所示的结构进行返修后的示意图。
图4是本公开实施方式的发光器件的示意图。
图5是本公开实施方式的发光器件的另一示意图。
图6是本公开实施方式的发光器件的又一示意图。
图7是本公开实施方式的发光模组的示意图。
图8是图4所示的发光器件在形成液膜前的示意图。
图9是金属间化合物的电镜照片。
图10是金属间化合物的另一电镜照片。
图11是金属间化合物的又一电镜照片。
附图标记说明:1、发光结构;100、衬底;101、外延结构;1011、第一导电类型半导体层;1012、发光层;1013、第二导电类型半导体层;2、电极结构;201、电极层;202、导电桥接层;203、阻挡层;204、导电填充件;3、固晶结构;301、焊料层;302、液膜;4、绝缘层;5、掺杂材料;6、基板;7、焊盘;8、锡膏;9、金属间化合物层;10、焊接层。
具体实施方式
这里将详细地对示例性实施方式进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施方式中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置的例子。
在本公开使用的术语是仅仅出于描述特定实施方式的目的,而非旨在限制本公开。除非另作定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“多个”或者“若干”表示两个及两个以上。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。在本公开说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
金属间化合物IMC(Intermetallic Compound)是指两个或更多的金属组元按比例组成的具有金属基本特性和不同于其组元的长程有序晶体结构的化合物。简单的讲,金属间化合物就是由金属元素按各种原子量比以化学结合方式结合在一起的化合物。
在固晶焊接过程中,评价一个良好焊接的关键在于是否生成了良性的金属化合物。本公开发明人研究发现,由良性的金属化合物构成的膜层的表面为连续均匀的表面,且膜层表面的形貌呈扇贝状(见图9);随着焊接温度以及时间的增加,金属间化合物会过渡生长,形貌会从最初的扇贝状转变成屋脊状(见图10),最终形成恶性的棱镜状(见图11),其所承受的内应力也会增加,导致机械强度弱化,降低了焊接质量,进而引起虚焊、死灯等现象。
如图1和图2所示,发光模组包括基板6以及焊接于基板6的发光器件。在图2中,电极结构2与焊接层10之间具有金属间化合物层9,焊盘7与焊接层10之间具有金属间化合物层9。在发光模组为Mini LED发光模组时,单个基板6上需要固晶几万至十几万颗发光器件。为保证100%的良率,不可避免需要进行返修(Rework),返修过程中产生的热输入会导致金属间化合物过渡生长,进一步增加金属间化合物层9的厚度,且由于金属间化合物的熔点大于焊接层10的熔点,从而在返修后容易出现焊盘7剥离(peeling)的现象(见图3)。
本公开实施方式提供一种发光器件。该发光器件可以为微型发光器件(Micro Light Emitting Diode,Micro LED),当然,也可以为次毫米发光器件(Mini Light Emitting Diode,Mini LED),但本公开不限于此。如图4-图6所示,该发光器件可以包括发光结构1、电极结构2以及固晶结构3,其中:
该电极结构2可以设于发光结构1上。该固晶结构3的至少部分区域覆盖电极结构2背向发光结构1的表面。该固晶结构3中包括掺杂材料5。该掺杂材料5用于抑制金属间化合物的生成。
本公开实施方式的发光器件,固晶结构3的至少部分区域覆盖电极结构2背向发光结构1的表面,由于固晶结构3中的掺杂材料5可以用于抑制金属间化合物的生成,进而在固晶过程中可以降低形成的金属间化合物层9的厚度,防止基板6的焊盘7发生剥离,避免发光模组发生损坏,提高固晶返修良率和降低显示模组失效风险。其中,掺杂材料5中具有非活性离子, 该非活性离子不会与固晶结构3中的焊料反应生成金属间化合物,可视为第二相离子,起到抑制金属间化合物生长的作用,改变固晶焊接过程中形成的焊料合金的微观结构,提升了焊料合金的力学性能。
下面对本公开实施方式的发光器件的各部分进行详细说明:
如图4所示,该发光结构1可以为发光二极管芯片,但本公开不限于此。该发光二极管芯片可以包括衬底100和外延结构101。该衬底100可以为蓝宝石衬底100、碳化硅衬底100、氮化硅衬底100和硅衬底100中的一种,本公开实施方式对此不加以限制。该外延结构101可以设于衬底100的一侧。该外延结构101可以包括第一导电类型半导体层1011、发光层1012以及第二导电类型半导体层1013。该第一导电类型半导体层1011可以设于衬底100的一侧,该发光层1012可以设于第一导电类型半导体层1011背向衬底100的一侧,该第二导电类型半导体层1013可以设于发光层1012背向衬底100的一侧。该第一导电类型与第二导电类型不同。该第一导电类型半导体层1011可以为p型半导体层,该第二导电类型半导体层1013可以为n型半导体层,但本公开实施例对此不做特殊限定。该发光层1012可以为单量子阱结构、多量子阱(MQW)结构、量子线结构和量子点结构中的一种。以发光层1012为多量子阱结构为例,该发光层1012可以包括交替设置的势阱层和势垒层。此外,该第一导电类型半导体层1011在衬底100上的正投影的面积大于发光层1012在衬底100上的正投影的面积,该第一导电类型半导体层1011在衬底100上的正投影的面积也大于第二导电类型半导体层1013在衬底100上的正投影的面积。
如图4所示,该电极结构2可以设于发光结构1上。该电极结构2可以包括电极层201。该电极层201的材料可以选自金、银、铝、铬、镍、铂、钛中的至少一种。该电极层201的数量可以为两个。一个电极层201可以设于第一导电类型半导体层1011背向衬底100的表面,另一个电极层201可以设于第二导电类型半导体层1013背向衬底100的表面。在本公开其它实施方 式中,两个电极层201中的一个电极层201可以设于第二导电类型半导体层1013背向衬底100的表面,另一个电极层201可以设于衬底100背向外延结构101的表面,即发光器件为垂直结构的发光器件。本公开的发光器件还可以包括绝缘层4。该绝缘层4可以覆盖上述的电极层201、外延结构101以及衬底100。该绝缘层4可以暴露电极层201的开口。其中,该开口的数量可以为两个,两个开口一一对应地暴露两个电极层201。
如图4所示,该电极结构2还可以包括导电桥接层202和阻挡层203。该导电桥接层202可以覆盖绝缘层4背向衬底100的表面。其中,该导电桥接层202可以伸入绝缘层4的开口内,并与电极层201接触。该导电桥接层202可以为叠层结构。该叠层结构可以为三叠层结构,该三叠层结构可以包括相对设置的两个钛金属层以及位于两个钛金属层之间的铝金属层。该导电桥接层202的数量可以为两个,两个导电桥接层202可以一一对应地伸入绝缘层4的两个开口内,并一一对应地与两个电极层201接触。该阻挡层203可以设于导电桥接层202背向衬底100的表面。该阻挡层203的材料可以选自镍、铂、金中的一种或多种。该阻挡层203的数量可以为两个,两个阻挡层203一一对应地设于两个导电桥接层202背向衬底100的表面。该阻挡层203可以阻挡焊接过程中固晶结构3中的金属元素(主要是Sn类)向电极层201扩散,避免扩散的金属元素与电极层201材料形成金属间化合物,防止出现焊接异常。
如图5所示,在本公开其它实施方式中,该电极结构2还可以包括导电填充件204。该导电填充件204填充绝缘层4的开口,并与电极层201接触。该导电填充件204背向发光结构1的表面可以与绝缘层4背向发光结构1的表面平齐,即导电填充件204填满绝缘层4的开口,且导电填充件204未伸出绝缘层4的开口。当然,该导电填充件204背向发光结构1的表面也可以低于绝缘层4背向发光结构1的表面,即导电填充件204未填满绝缘层4,也就是说,导电填充件204背向发光结构1的表面与衬底100的距离小于绝缘 层4背向发光结构1的表面与衬底100的距离。其中,该导电填充件204的数量可以为两个,两个导电填充件204一一对应地填充绝缘层4的两个开口。上述的两个导电桥接层202可以一一对应地与两个导电填充件204背向发光结构1的表面接触。
如图4和图5所示,该固晶结构3的至少部分区域覆盖电极结构2背向发光结构1的表面。以电极结构2包括阻挡层203为例,该固晶结构3可以覆盖阻挡层203背向发光结构1的表面。该固晶结构3中包括掺杂材料5。该掺杂材料5用于抑制金属间化合物的生成。
如图4和图5所示,该固晶结构3可以包括焊料层301。该焊料层301可以覆盖电极结构2背向发光结构1的表面,例如,焊料层301覆盖阻挡层203背向发光结构1的表面。该焊料层301中的焊料为锡、锡银合金、锡银铜合金、铟锡合金或锡铜合金,但本公开实施方式对此不做特殊限定。该焊料层301的数量可以为两个,两个焊料层301可以一一对应地覆盖两个阻挡层203背向发光结构1的表面。此外,该焊料层301的厚度可以为5μm-50μm,例如5μm、10μm、25μm、45μm、50μm等。上述电极层201在衬底100上的正投影面积小于焊料层301在衬底100的正投影面积,当然,电极层201在衬底100上的正投影面积也可以等于焊料层301在衬底100的正投影面积,但本公开不限于此,电极层201在衬底100上的正投影面积也可以大于焊料层301在衬底100的正投影面积。
当然,如图5所示,该固晶结构3还可以包括液膜302。该液膜302可以覆盖焊料层301。该液膜302的材料可以为助焊剂。该助焊剂可以为有机溶剂。该助焊剂具有“辅助热传导”、“降低被焊接材质表面张力”、“去除被焊接材质表面油污、增大焊接面积”、“防止再氧化”等作用。在本公开一实施方式中,如图5所示,该液膜302的数量可以为两个,且两个液膜302可以间隔设置;两个液膜302一一对应地覆盖两个所述焊料层301。在本公开其它实施方式中,如图6所示,该液膜302的数量为一个,该液膜302同时覆盖 两个焊料层301。其中,覆盖于焊料的液膜302也可以覆盖绝缘层4背向发光结构1的表面。其中,上述的液膜302可以通过蘸取或印刷的方式形成。
如图4所示,该掺杂材料5用于抑制金属间化合物的生成,具体地,该掺杂材料5用于抑制金属间化合物的过度生成,例如从图9所示的扇贝状变为图10所示的屋脊状或图11所示的棱镜状。该掺杂材料5可以掺杂于焊料层301中。其中,掺杂于焊料层301中的掺杂材料5可以为镍、三氧化二铁、二氧化硅、二氧化钛或二氧化锆,但本公开实施方式对此不做特殊限定。其中,具有掺杂材料5的焊料层301可以通过蒸镀、溅镀、电镀或印刷的方式形成,但本公开不限于此。此外,如图5所示,该掺杂材料5还可以掺杂于液膜302中。如图5所示,以液膜302的数量为两个且两个液膜302间隔设置为例,该掺杂材料5可以为镍、三氧化二铁、二氧化硅、二氧化钛或二氧化锆;如图6所示,以液膜302的数量为一个为例,该掺杂材料5可以为绝缘材料,例如三氧化二铁、二氧化硅、二氧化碳钛或二氧化锆等。在本公开其它实施方式中,该焊料层301以及液膜302中均可以设有上述的掺杂材料5。
本公开实施方式还提供一种发光模组。如图7所示,该发光模组可以包括基板6以及上述任一实施方式所述的发光器件。该基板6设有焊盘7。该发光器件通过固晶结构3焊接于基板6的焊盘7。该发光模组可以作为一显示模组的背光模组,当然,该发光模组也可以作为显示模组本身。其中,在发光模组作为显示模组时,该基板6为驱动背板,该驱动背板中可以设有阵列分布的薄膜晶体管,但本公开对此不做特殊限定。
本公开实施方式还提供一种发光模组的制备方法。如图7所示,该发光模组的制备方法可以包括:提供基板6,该基板6设有至少一组焊盘7;采用加热焊接工艺将上述任一实施方式所述的发光器件通过固晶结构3焊接于基板6的焊盘7。其中,该加热焊接工艺可以包括热压焊接工艺、回流焊工艺或激光焊接工艺。其中,如图4和图8所示,该发光器件的固晶结构3中的 液膜302可以是在制程过程中实时通过涂敷、蘸取等形式形成。此外,本公开也可以在基板6的焊盘7上添加助焊剂,并且在助焊剂中加入上述的掺杂材料5。
本公开实施方式提供的发光器件、发光模组以及发光模组的制备方法属于同一发明构思,相关细节及有益效果的描述可互相参见,不再进行赘述。
以上所述仅是本公开的较佳实施方式而已,并非对本公开做任何形式上的限制,虽然本公开已以较佳实施方式揭露如上,然而并非用以限定本公开,任何熟悉本专业的技术人员,在不脱离本公开技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施方式,但凡是未脱离本公开技术方案的内容,依据本公开的技术实质对以上实施方式所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (16)

  1. 一种发光器件,其特征在于,包括:
    发光结构;
    电极结构,设于所述发光结构上;
    固晶结构,所述固晶结构的至少部分区域覆盖所述电极结构背向所述发光结构的表面,所述固晶结构中包括掺杂材料,所述掺杂材料用于抑制金属间化合物的生成。
  2. 根据权利要求1所述的发光器件,其特征在于,所述固晶结构包括:
    焊料层,覆盖所述电极结构背向所述发光结构的表面,所述掺杂材料掺杂于所述焊料层中。
  3. 根据权利要求2所述的发光器件,其特征在于,所述掺杂材料为镍、三氧化二铁、二氧化硅、二氧化钛或二氧化锆中的至少一种。
  4. 根据权利要求2或3所述的发光器件,其特征在于,所述焊料层中的焊料为锡、锡银合金、锡银铜合金、铟锡合金或锡铜合金中的至少一种。
  5. 根据权利要求1所述的发光器件,其特征在于,所述电极结构包括:
    电极层,设于所述发光结构上;
    阻挡层,设于所述电极层背向所述发光结构的一侧,所述阻挡层的材料为导电材料。
  6. 根据权利要求5所述的发光器件,其特征在于,所述阻挡层的材料为镍、铂、金中的至少一种。
  7. 根据权利要求5所述的发光器件,其特征在于,所述发光器件还包括覆盖所述电极层的绝缘层,所述绝缘层设有暴露所述电极层的开口,所述电极结构还包括:
    导电桥接层,设于所述绝缘层背向所述发光结构的表面,且伸入所述开口,并与所述电极层接触;所述阻挡层设于所述导电桥接层背向所述发光结构的表面。
  8. 根据权利要求5所述的发光器件,其特征在于,所述发光器件还包括覆盖所述电极层的绝缘层,所述绝缘层设有暴露所述电极层的开口,所述电极结构还包括:
    导电填充件,填充所述开口,并与所述电极层接触;
    导电桥接层,设于所述绝缘层背向所述发光结构的表面,并与所述导电填充件背向所述发光结构的表面接触;所述阻挡层设于所述导电桥接层背向所述发光结构的表面。
  9. 根据权利要求8所述的发光器件,其特征在于,所述导电填充件背向所述发光结构的表面与所述绝缘层背向所述发光结构的表面平齐;或者
    所述导电填充件背向所述发光结构的表面低于所述绝缘层背向所述发光结构的表面。
  10. 根据权利要求1所述的发光器件,其特征在于,所述固晶结构包括:
    焊料层,覆盖所述电极结构背向所述发光结构的表面;
    液膜,覆盖所述焊料层,所述液膜的材料为助焊剂,所述掺杂材料掺杂于所述液膜中。
  11. 根据权利要求10所述的发光器件,其特征在于,所述电极结构的数量为两个,所述焊料层的数量为两个,所述液膜的数量为两个,且两个所述液膜间隔设置;两个所述焊料层一一对应地设于两个所述电极结构的表面,两个所述液膜一一对应地覆盖两个所述焊料层;所述掺杂材料为镍、三氧化二铁、二氧化硅、二氧化钛或二氧化锆中的至少一种。
  12. 根据权利要求10所述的发光器件,其特征在于,所述电极结构的数量为两个,所述焊料层的数量为两个,所述液膜的数量为一个;两个所述焊料层一一对应地设于两个所述电极结构的表面,所述液膜覆盖两个所述焊料层;所述掺杂材料为绝缘材料。
  13. 根据权利要求12所述的发光器件,其特征在于,所述掺杂材料为二氧化硅、二氧化钛或二氧化锆中的至少一种。
  14. 一种发光模组,其特征在于,包括:
    基板,设有至少一组焊盘;
    权利要求1-13任一项所述的发光器件,所述发光器件通过所述固晶结构焊接于所述基板的所述焊盘。
  15. 一种发光模组的制备方法,其特征在于,包括:
    提供基板,所述基板设有至少一组焊盘;
    采用加热焊接工艺将权利要求1-13任一项所述发光器件通过所述固晶结构焊接于所述基板的所述焊盘。
  16. 根据权利要求15所述的发光模组的制备方法,其特征在于,所述加热焊接工艺包括热压焊接工艺、回流焊工艺或激光焊接工艺。
PCT/CN2021/127553 2021-10-29 2021-10-29 发光器件、发光模组及其制备方法 WO2023070551A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/127553 WO2023070551A1 (zh) 2021-10-29 2021-10-29 发光器件、发光模组及其制备方法
CN202180003200.0A CN116368615A (zh) 2021-10-29 2021-10-29 发光器件、发光模组及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127553 WO2023070551A1 (zh) 2021-10-29 2021-10-29 发光器件、发光模组及其制备方法

Publications (1)

Publication Number Publication Date
WO2023070551A1 true WO2023070551A1 (zh) 2023-05-04

Family

ID=86158883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127553 WO2023070551A1 (zh) 2021-10-29 2021-10-29 发光器件、发光模组及其制备方法

Country Status (2)

Country Link
CN (1) CN116368615A (zh)
WO (1) WO2023070551A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282645A (zh) * 1999-08-02 2001-02-07 国际商业机器公司 用于减少焊料中金属间化合物形成的镍合金薄膜
US20080242063A1 (en) * 2007-03-30 2008-10-02 Mengzhi Pang Solder composition doped with a barrier component and method of making same
CN102171803A (zh) * 2008-12-23 2011-08-31 英特尔公司 对无铅焊料合金进行掺杂以及由此形成的结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282645A (zh) * 1999-08-02 2001-02-07 国际商业机器公司 用于减少焊料中金属间化合物形成的镍合金薄膜
US20080242063A1 (en) * 2007-03-30 2008-10-02 Mengzhi Pang Solder composition doped with a barrier component and method of making same
CN102171803A (zh) * 2008-12-23 2011-08-31 英特尔公司 对无铅焊料合金进行掺杂以及由此形成的结构

Also Published As

Publication number Publication date
CN116368615A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
JP5179766B2 (ja) 半導体発光装置およびその製造方法
TWI302356B (zh)
US8138001B2 (en) Semiconductor light-emitting device and method for producing semiconductor light-emitting device
TWI389295B (zh) 發光二極體光源模組
CN108365065A (zh) 发光元件
JP2006287226A (ja) はんだ結合を形成するために規定された層列を有する半導体チップ及び支持体と半導体チップとの間にはんだ結合を形成するための方法
JP4963950B2 (ja) 半導体発光装置およびその製造方法
CN114284402B (zh) Led器件及其制备方法、显示装置及发光装置
US20150214435A1 (en) Semiconductor light emitting diode device and formation method thereof
CN106449932A (zh) 一种垂直结构发光二极管及其制造方法
CN101005107A (zh) 带金属凸点阵列结构的倒装发光二极管及其制作方法
KR20110039639A (ko) 발광다이오드용 서브 마운트
CN104638097B (zh) 红光led倒装芯片的制作方法
WO2023070551A1 (zh) 发光器件、发光模组及其制备方法
WO2023226457A1 (zh) 一种显示面板及用于该显示面板的发光元件和背板
JP2012069545A (ja) 発光素子の搭載方法
JP4836769B2 (ja) 半導体発光装置およびその製造方法
JP5134108B2 (ja) 半導体素子の放熱体の製造方法
CN208014741U (zh) 焊盘结构及倒装led芯片
TWI446577B (zh) Led晶圓之接合方法、led晶粒之製造方法及led晶圓與基體之接合結構
CN103972351B (zh) Led芯片及其生长方法
US8853006B2 (en) Method of manufacturing semiconductor device and semiconductor device
JP2008004777A (ja) 放熱効果の優れた発光ダイオードの製造方法
CN214411241U (zh) 一种低空洞率的倒装led芯片
CN108365073A (zh) 一种反射层金属结构及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961906

Country of ref document: EP

Kind code of ref document: A1