WO2023070368A1 - 锂镍锰复合氧化物材料、二次电池和用电装置 - Google Patents

锂镍锰复合氧化物材料、二次电池和用电装置 Download PDF

Info

Publication number
WO2023070368A1
WO2023070368A1 PCT/CN2021/126698 CN2021126698W WO2023070368A1 WO 2023070368 A1 WO2023070368 A1 WO 2023070368A1 CN 2021126698 W CN2021126698 W CN 2021126698W WO 2023070368 A1 WO2023070368 A1 WO 2023070368A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
nickel
manganese composite
oxide material
Prior art date
Application number
PCT/CN2021/126698
Other languages
English (en)
French (fr)
Inventor
张振国
王嗣慧
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21946248.8A priority Critical patent/EP4250401A4/en
Priority to KR1020237000287A priority patent/KR20230062803A/ko
Priority to PCT/CN2021/126698 priority patent/WO2023070368A1/zh
Priority to JP2023501335A priority patent/JP2023553772A/ja
Priority to CN202180094468.XA priority patent/CN116941069A/zh
Priority to US18/173,328 priority patent/US20230216047A1/en
Publication of WO2023070368A1 publication Critical patent/WO2023070368A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of secondary batteries, in particular to a lithium-nickel-manganese composite oxide material, a secondary battery and an electrical device.
  • secondary batteries have been widely used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, as well as in many fields such as electric tools, electric bicycles, electric motorcycles, electric vehicles, military equipment, and aerospace.
  • the purpose of the present application is to provide a lithium-nickel-manganese composite oxide material, which is used as a positive electrode active material for a secondary battery (such as a lithium-ion battery), and the battery can exhibit one or more improved properties, such as being selected from:
  • d v 50 is the volume median particle diameter (Volume median crystallite diameter) of the grain of described lithium nickel manganese composite oxide material
  • D v 50 is described lithium nickel manganese composite oxide The volume median particle diameter of the material.
  • the application adjusts the K value of the lithium-nickel-manganese composite oxide material in the range of 1-2, so that the lithium-nickel-manganese composite oxide material can be used as the positive electrode active material of a secondary battery (such as a lithium ion battery).
  • a secondary battery such as a lithium ion battery.
  • the volume median particle diameter d v 50 of the crystal grains of the lithium nickel manganese composite oxide material is 5 ⁇ m-15 ⁇ m; optionally, it is 5.5 ⁇ m-11 ⁇ m.
  • the lithium-nickel-manganese composite oxide material is used as a positive electrode active material of a secondary battery (such as a lithium ion battery), and the battery exhibits one or more improved properties.
  • the volume median particle diameter D v 50 of the lithium-nickel-manganese composite oxide material is 9 ⁇ m-20 ⁇ m; optionally, it is 9 ⁇ m-11 ⁇ m.
  • the lithium-nickel-manganese composite oxide material is used as a positive electrode active material of a secondary battery (such as a lithium ion battery), and the battery exhibits one or more improved properties.
  • the lithium nickel manganese composite oxide material includes a lithium nickel manganese composite oxide with a space group of P4 3 32 and a lithium nickel manganese composite oxide with a space group of Fd-3m; the P4 3 32 space group
  • the content of the lithium-nickel-manganese composite oxide of the group is greater than the content of the lithium-nickel-manganese composite oxide of the Fd-3m space group.
  • the lithium-nickel-manganese composite oxide having a space group of P4 3 32 accounts for more than 50% of the weight of the lithium-nickel-manganese composite oxide material; it may be 80%-91%.
  • the lithium-nickel-manganese composite oxide material contains Mn 3+ , and the weight content of Mn 3+ in the lithium-nickel-manganese composite oxide material is less than or equal to 5wt%; it can be 1.0wt%-2.2 wt%.
  • the specific surface area of the lithium-nickel-manganese composite oxide material is less than 1 m 2 /g; optionally, it is 0.1 m 2 /g-0.9 m 2 /g.
  • the tap density of the lithium-nickel-manganese composite oxide material is greater than or equal to 1.9 g/cm 3 ; it may be 1.9 g/cm 3 -3.0 g/cm 3 .
  • the lithium-nickel-manganese composite oxide material includes lithium-nickel-manganese composite oxide particles with a coating layer on at least a part of the surface;
  • the material of the cladding layer includes at least one of aluminum oxide, titanium oxide, zirconium oxide, boron oxide, rare earth oxide, lithium salt, phosphate, borate, and fluoride;
  • the cladding layer includes a fast lithium ion conductor layer
  • the cladding layer has a multi-layer structure, and the cladding layer includes a fast lithium ion conductor layer on the inner side and an aluminum oxide layer on the outer side.
  • the fast lithium ion conductor is selected from oxide-based, phosphate-based, borate-based, sulfide-based, and LiPON-based inorganic materials with lithium ion conductivity.
  • the fast lithium ion conductor contains one or more of the following elements phosphorus, titanium, zirconium, boron and lithium.
  • the fast lithium ion conductor is selected from Li 2 BO 3 , Li 3 PO 4 , or a combination thereof.
  • the general formula of the lithium nickel manganese composite oxide is as formula I:
  • element M is selected from Ti, Zr, W, Nb, Al, Mg, P, Mo, V, Cr, Zn, or combinations thereof;
  • element X is selected from F, Cl, I, or a combination thereof;
  • the element M is selected from Mg, Ti, or a combination thereof;
  • element X is F.
  • the second aspect of the present application provides a preparation method of lithium nickel manganese composite oxide, comprising
  • the K value of the lithium-nickel-manganese composite oxide material is 1-2, and the K value is calculated according to the following formula:
  • d v 50 is the volume median particle diameter of the crystal grains of the lithium nickel manganese composite oxide material
  • D v 50 is the volume median particle diameter of the lithium-nickel-manganese composite oxide material.
  • the general formula of the lithium nickel manganese composite oxide is as formula I:
  • element M is selected from Ti, Zr, W, Nb, Al, Mg, P, Mo, V, Cr, Zn, or combinations thereof;
  • element X is selected from F, Cl, I, or a combination thereof;
  • the method satisfies one or more of the following:
  • the ratio of the nickel source to the volume median particle size of the lithium-nickel-manganese composite oxide material is 0.4-1;
  • the ratio of the manganese source to the volume median particle size of the lithium-nickel-manganese composite oxide material is 0.4-1;
  • the volume median particle size of the lithium source is 1-20 ⁇ m (eg 3-10 ⁇ m).
  • said sintering includes a first heat treatment stage
  • the peak temperature of the first heat treatment stage is 950°C-1200°C, and the holding time at the peak temperature of the first heat treatment stage is 5h-30h.
  • the heating rate of the first heat treatment to the peak temperature is less than or equal to 5°C/min, optionally 0.5-3°C/min.
  • the sintering also includes a second heat treatment stage after the first heat treatment stage:
  • the peak temperature of the second heat treatment stage is 550°C-680°C, and the time of the second heat treatment stage is 5h-50h.
  • the method further comprises ball milling the precursor composition before sintering
  • the ball milling time is more than 2 hours, for example, 2-6 hours is optional.
  • the third aspect of the present application provides a secondary battery, the secondary battery includes a positive electrode sheet, the positive electrode sheet includes a positive electrode active material, and the positive electrode active material includes the lithium described in any one of the first aspect of the present application.
  • the nickel-manganese composite oxide material may include the lithium-nickel-manganese composite oxide prepared according to any one of the methods described in the second aspect of the present application.
  • a fourth aspect of the present application provides an electrical device including the secondary battery of the third aspect of the present application.
  • Fig. 1 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Example 2a.
  • Fig. 2 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Example 2b.
  • Fig. 3 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Example 2c.
  • Fig. 4 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Example 3b.
  • FIG. 5 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Comparative Example 1.
  • FIG. 6 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Comparative Example 2.
  • FIG. 7 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide material of Comparative Example 3.
  • FIG. 8 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 9 is an exploded view of a secondary battery according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • ranges disclosed herein are defined in terms of lower and upper limits, and a given range is defined by selecting a lower limit and an upper limit that define the boundaries of the particular range. Ranges defined in this manner may be inclusive or exclusive and may be combined arbitrarily, ie any lower limit may be combined with any upper limit to form a range. For example, if ranges of 60-120 and 80-110 are listed for a particular parameter, it is understood that ranges of 60-110 and 80-120 are contemplated. Additionally, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4, and 5 are listed, the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4 and 2-5.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • Secondary batteries also known as rechargeable batteries or accumulators, refer to batteries that can be activated by charging the active materials and continue to be used after the battery is discharged.
  • a secondary battery typically includes a positive pole piece, a negative pole piece, a separator, and an electrolyte.
  • active ions such as lithium ions
  • the separator is arranged between the positive pole piece and the negative pole piece, which mainly plays a role in preventing the short circuit of the positive and negative poles, and at the same time allows active ions to pass through.
  • the electrolyte is between the positive pole piece and the negative pole piece, and mainly plays the role of conducting active ions.
  • the positive electrode sheet generally includes a positive electrode current collector and a positive electrode film layer arranged on at least one surface of the positive electrode current collector, and the positive electrode film layer includes a positive electrode active material.
  • the positive electrode current collector has two opposite surfaces in its own thickness direction, and the positive electrode film layer is arranged on any one or both of the two opposite surfaces of the positive electrode current collector.
  • the application makes the lithium nickel manganese composite oxide material as a secondary battery ( Positive electrode active materials such as lithium ion batteries), the battery exhibits one or more improved properties, for example selected from:
  • the term "grain” refers to the largest region in a bulk of material in which atoms are regularly repeated (allowing for a small number of atomic-scale point or line defects).
  • the arrangement of atoms at the interface between adjacent grains is different from the arrangement of atoms within the grains.
  • the atoms at the interface between adjacent grains are continuous as a thin layer and run through the contact surface (grain boundary) between the grains.
  • each nanometer or micrometer-scale region separated by a clear interface inside the particle is a crystal grain.
  • the approximate diameter of the crystal grains is referred to as the grain size of the crystal grains.
  • the grain morphology can be observed in a scanning electron microscope.
  • the lithium-nickel-manganese composite oxide material contains multiple crystal grains (for example, single crystal grains, polycrystalline grains).
  • Single crystal grains consist of one crystal grain.
  • Polycrystalline grains are composed of a plurality of grains, and grain boundaries exist between adjacent grains.
  • specific surface area also known as BET specific surface area
  • BET specific surface area is obtained by measuring the specific surface area of solid substances with reference to GB/T 19587-2004 gas adsorption BET method.
  • volume median particle size Dv50 is measured with reference to GB/T 19077-2016 particle size analysis laser diffraction method.
  • the test instrument uses a Mastersizer 3000 laser particle size analyzer.
  • volume median particle size of crystal grains is obtained by testing according to the following method: using a scanning electron microscope (such as a Zeiss Sigma300 field emission scanning electron microscope) to observe the lithium-nickel-manganese composite oxide material, during the shooting process (or obtained from the shooting In the photo) randomly select 5 areas, determine the largest grain size d max in this area, define the grains in the grain size range from 0.1d max to d max as effective grains, and then count the grains in this area one by one.
  • the grains with a grain size between 0.1d max and d max are defined as micropowder grains for grains with a grain size smaller than 0.1d max , and no statistics are made for micropowder grains.
  • the measuring method of the particle diameter of single crystal grain can be as follows: draw the circumscribed circle of minimum area to this crystal grain (circumscribed circle can be perfect circle or ellipse), when circumscribed circle is perfect circle, take the diameter of perfect circle as grain size. When the circumscribed circle is an ellipse, the average length of the major and minor axes of the ellipse is the grain size. After counting the particle diameters of individual effective crystal grains in each region, they are summarized and recorded as the particle diameters of n effective crystal grains (d 1 , d 2 , d 3 . . . d n ). Then, the "volume median diameter of crystal grains" dv50 was calculated according to the following formula.
  • the volume median particle diameter dv50 of the crystal grains of the lithium-nickel-manganese composite oxide material is 5 ⁇ m-15 ⁇ m (such as 5 ⁇ m-6 ⁇ m, 6 ⁇ m-7 ⁇ m, 7 ⁇ m-8 ⁇ m, 8 ⁇ m-9 ⁇ m, 9 ⁇ m-10 ⁇ m , 10 ⁇ m-11 ⁇ m, 11 ⁇ m-12 ⁇ m, 12 ⁇ m-13 ⁇ m, 13 ⁇ m-14 ⁇ m, 14 ⁇ m-15 ⁇ m); optional 5.5 ⁇ m-11 ⁇ m, optional 5.5-8 ⁇ m.
  • the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • the volume median particle size D v 50 of the lithium nickel manganese composite oxide material is 9 ⁇ m-20 ⁇ m (such as 9 ⁇ m-10 ⁇ m, 10 ⁇ m-11 ⁇ m, 11 ⁇ m-12 ⁇ m, 12 ⁇ m-13 ⁇ m, 13 ⁇ m-14 ⁇ m, 14 ⁇ m -15 ⁇ m, 15 ⁇ m-16 ⁇ m, 16 ⁇ m-17 ⁇ m, 17 ⁇ m-18 ⁇ m, 18 ⁇ m-19 ⁇ m, 19 ⁇ m-20 ⁇ m), can be 9 ⁇ m-13 ⁇ m, can be 9-11 ⁇ m.
  • the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • the lithium nickel manganese composite oxide material includes a lithium nickel manganese composite oxide with a space group of P4 3 32 and a lithium nickel manganese composite oxide with a space group of Fd-3m; the P4 3 32 space group
  • the content of the lithium-nickel-manganese composite oxide of the group is greater than the content of the lithium-nickel-manganese composite oxide of the Fd-3m space group.
  • the lithium nickel manganese composite oxide material comprises a lithium nickel manganese composite oxide having a P4 3 32 space group, and the lithium nickel manganese composite oxide having a P4 3 32 space group accounts for the lithium nickel manganese composite oxide More than 50% of the weight of the manganese composite oxide material can be 80%-91%, 50%-60%, 60-70%, 70-80%, 80%-90% or 90%-95%. Based on the above scheme, the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • the lithium nickel manganese composite oxide material includes Mn 3+ , and the weight content of the Mn 3+ in the lithium nickel manganese composite oxide material is less than or equal to 5.5wt% (for example, 1wt%- 2wt%, 2wt%-3wt%, 3wt%-4wt% or 4wt%-5wt%). Based on the above scheme, the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • the specific surface area of the lithium-nickel-manganese composite oxide material is less than 1 m 2 /g; optionally, it is 0.1 m 2 /g-0.9 m 2 /g. Based on the above scheme, the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • the tap density of the lithium-nickel-manganese composite oxide material is greater than or equal to 1.9 g/cm 3 , optionally 1.9 g/cm 3 -3.0 g/cm 3 .
  • the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • the K value is 1-2, and the shape is regular, so it is easier to pack densely during the powder vibration process, so the vibration density is high.
  • the lithium-nickel-manganese composite oxide material includes lithium-nickel-manganese composite oxide particles with a coating layer on at least a part of their surface.
  • the material of the cladding layer includes at least one of aluminum oxide, titanium oxide, zirconium oxide, boron oxide, rare earth oxide, lithium salt, phosphate, borate, and fluoride.
  • the cladding layer includes a fast lithium ion conductor layer.
  • the cladding layer has a multi-layer structure, and the cladding layer includes a fast lithium ion conductor layer on the inner side and an aluminum oxide layer on the outer side.
  • the fast lithium ion conductor is selected from oxide-based, phosphate-based, borate-based, sulfide-based, and LiPON-based inorganic materials with lithium ion conductivity.
  • the fast lithium ion conductor contains one or more of the following elements phosphorus, titanium, zirconium, boron and lithium.
  • the fast lithium ion conductor is selected from Li 2 BO 3 , Li 3 PO 4 , or a combination thereof. Based on the above scheme, the lithium nickel manganese composite oxide material is used in a secondary battery, and the secondary battery exhibits one or more improved properties.
  • a fast lithium ion conductor refers to a substance having a lithium ion conductivity of 1.0 ⁇ 10 ⁇ 5 S cm ⁇ 1 .
  • the fast Li-ion conductors are selected from oxide-based, phosphate-based, borate-based, sulfide-based and LiPON-based inorganic materials with Li-ion conductivity.
  • Fast lithium-ion conductors are for example selected from Li 2 BO 3 or Li 3 PO 4 .
  • the general formula of the lithium nickel manganese composite oxide is as formula I:
  • element M is selected from Ti, Zr, W, Nb, Al, Mg, P, Mo, V, Cr, Zn, or combinations thereof;
  • element X is selected from F, Cl, I, or a combination thereof;
  • a 1-1.05.
  • x 0.
  • -0.1 ⁇ y ⁇ 0.1 eg -0.01 ⁇ x ⁇ 0.01
  • x 0.
  • x+y ⁇ 0, 0 ⁇ x+y ⁇ 0.1, optionally x+y 0.
  • the lithium nickel manganese composite oxide is Li 1.01 Ni 0.49 Mn 1.51 O 4 .
  • the lithium nickel manganese composite oxide is Li 1.02 Ni 0.5 Mn 1.4 Ti 0.1 O 4 .
  • the K value of the lithium-nickel-manganese composite oxide material is 1-2 (such as 1-1.1, 1.1-1.2, 1.2-1.3, 1.3-1.4, 1.4-1.5, 1.5-1.6, 1.6-1.7, 1.7-1.8, 1.8-1.9, 1.9-2), the K value is calculated as follows:
  • d v 50 is the volume median particle diameter of the crystal grains of the lithium nickel manganese composite oxide material
  • D v 50 is the volume median particle size of the lithium-nickel-manganese composite oxide material.
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material for a secondary battery (such as a lithium ion battery), and the battery shows one or more improved properties, such as being selected from:
  • the lithium source may be selected from lithium oxides, hydroxides, salts, or combinations thereof.
  • the nickel source may be selected from nickel compounds, hydroxides, salts, or combinations thereof.
  • the manganese source may be selected from manganese oxides, hydroxides, salts, or combinations thereof.
  • the lithium source may be selected from lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, or a combination thereof.
  • the nickel source may be selected from nickel hydroxide, nickel oxide, nickel nitrate, nickel carbonate, or combinations thereof.
  • the manganese source may be selected from manganese hydroxide, manganese oxide, manganese nitrate, manganese carbonate, or combinations thereof.
  • the source of nickel and manganese can be a nickel manganese hydroxide such as Ni 0.25 Mn 0.75 (OH) 2
  • the ratio of the nickel source to the volume median particle size of the lithium-nickel-manganese composite oxide material is 0.4-1 (for example, 0.5:1, 0.6:1, 0.7:1, 0.8:1 , 0.9:1 or 1.0:1).
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material for a secondary battery (such as a lithium-ion battery), and the battery exhibits one or more improved properties
  • the ratio of the manganese source to the volume median particle size of the lithium-nickel-manganese composite oxide material is 0.4-1:1 (for example, 0.5:1, 0.6:1, 0.7:1, 0.8 :1, 0.9:1 or 1.0:1).
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material for a secondary battery (such as a lithium-ion battery), and the battery exhibits one or more improved properties
  • the lithium source has a volume median particle size of 1-20 ⁇ m (eg, 3-10 ⁇ m).
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material for a secondary battery (such as a lithium-ion battery), and the battery exhibits one or more improved properties.
  • the sintering includes a first heat treatment stage; the peak temperature of the first heat treatment stage is 950°C-1200°C (for example, 950°C-1000°C, 1000°C-1050°C, 1050°C-1100°C, 1100°C-1150°C, 1150°C-1200°C), the holding time of the first heat treatment stage at the peak temperature is 5h-30h (for example, 5h-10h, 10h-15h, 15h-20h, 20h-25h, 25h-30h ).
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material of a secondary battery (such as a lithium ion battery), and the battery exhibits one or more improved properties.
  • the heating rate to the peak temperature is less than or equal to 5°C/min, optionally 0.5-3°C/min, optionally 1°C/min-2°C/min, 2°C/min-3°C/min, 3°C/min-4°C/min or 4°C/min-5°C/min.
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material of a secondary battery (such as a lithium ion battery), and the battery exhibits one or more improved properties.
  • the sintering further includes a second heat treatment stage after the first heat treatment stage: the peak temperature of the second heat treatment stage is 550°C-680°C (for example, 550°C-570°C, 570°C-590°C °C, 590°C-610°C, 610°C-630°C, 630°C-650°C, 650°C-670°C), the time of the second heat treatment stage is 5h-50h (5h-15h, 15h-25h, 25h- 35h, 35h-45h).
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material of a secondary battery (such as a lithium ion battery), and the battery exhibits one or more improved properties.
  • the preparation method of the lithium-nickel-manganese composite oxide further includes ball milling the precursor composition before sintering; optionally, the ball milling time is more than 2 hours, for example, 2-6 hours is optional.
  • the purpose of ball milling is to disperse the product after the first heat treatment.
  • the lithium-nickel-manganese composite oxide material obtained based on the above scheme is used as a positive electrode active material of a secondary battery (such as a lithium ion battery), and the battery exhibits one or more improved properties.
  • the content of the lithium-nickel-manganese composite oxide in the positive electrode active material can be 10-100wt% (such as 20wt%, 30wt%, 40wt%, 50wt%, 60wt%, 70wt%, 80wt%, 90wt%) ).
  • the positive electrode active material may include other positive electrode active materials known in the art for batteries in addition to any of the lithium-nickel-manganese composite oxides described above.
  • other positive electrode active materials may include at least one of the following materials: olivine-structured lithium-containing phosphates, lithium transition metal oxides, and respective modification compounds thereof.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials of batteries can also be used. These positive electrode active materials may be used alone or in combination of two or more.
  • lithium transition metal oxides may include, but are not limited to, lithium cobalt oxides (such as LiCoO 2 ), lithium nickel oxides (such as LiNiO 2 ), lithium manganese oxides (such as LiMnO 2 , LiMn 2 O 4 ), lithium Nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide (such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 (also referred to as NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (also abbreviated as NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (also abbreviated as NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (also abbreviated as NCM 622 ), LiNi At least one of 0.8 Co 0.1 Mn 0.1 O 2 (also referred to as NCM 811 ), lithium nickel cobalt aluminum oxide (such as LiNi
  • the olivine structure contains Examples of lithium phosphates may include, but are not limited to, lithium iron phosphate (such as LiFePO 4 (also may be abbreviated as LFP)), composite materials of lithium iron phosphate and carbon, lithium manganese phosphate (such as LiMnPO 4 ), lithium manganese phosphate and carbon At least one of a composite material, lithium manganese iron phosphate, and a composite material of lithium manganese iron phosphate and carbon.
  • lithium iron phosphate such as LiFePO 4 (also may be abbreviated as LFP)
  • composite materials of lithium iron phosphate and carbon such as LiMnPO 4
  • LiMnPO 4 lithium manganese phosphate and carbon
  • the positive electrode film layer may further optionally include a binder.
  • the binder may include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene At least one of meta-copolymer, tetrafluoroethylene-hexafluoropropylene copolymer and fluorine-containing acrylate resin.
  • the positive electrode film layer may also optionally include a conductive agent.
  • the conductive agent may include at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • a metal foil or a composite current collector can be used as the positive electrode current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as positive electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as N -methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N -methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • a metal foil or a composite current collector can be used as the negative electrode current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode active material can be a negative electrode active material known in the art for batteries.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based material, tin-based material, lithium titanate, and the like.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material can be selected from at least one of simple tin, tin oxide and tin alloy.
  • the present application is not limited to these materials, and other conventional materials that can be used as negative electrode active materials of batteries can also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode film layer may further optionally include a binder.
  • the binder may be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), At least one of polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • the negative electrode film layer may also optionally include a conductive agent.
  • the conductive agent may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the negative electrode film layer may optionally include other additives, such as thickeners (such as sodium carboxymethylcellulose (CMC-Na)) and the like.
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • electrolytes can be liquid, gel or all solid.
  • the electrolyte is liquid and includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium hexafluoroarsenate, lithium bisfluorosulfonyl imide, lithium bistrifluoromethanesulfonyl imide, trifluoromethane At least one of lithium sulfonate, lithium difluorophosphate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium difluorodifluorooxalatephosphate and lithium tetrafluorooxalatephosphate.
  • the solvent may be selected from ethylene carbonate, propylene carbonate, ethyl methyl carbonate, diethyl carbonate, dimethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, Butylene carbonate, fluoroethylene carbonate, methyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate At least one of ester, 1,4-butyrolactone, sulfolane, dimethyl sulfone, methyl ethyl sulfone and diethyl sulfone.
  • the electrolyte also optionally includes additives.
  • the additives can include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performances of the battery, such as additives that improve battery overcharge performance, additives that improve high-temperature or low-temperature performance of the battery, and the like.
  • a separator is further included in the secondary battery.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery may be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft case may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, polybutylene succinate, and the like.
  • FIG. 8 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the housing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating cavity. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • FIG. 10 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module including the above-mentioned secondary battery may be used.
  • the composition of the precursor composition includes: lithium source (Li 2 CO 3 ), nickel manganese source Ni 0.25 Mn 0.75 (OH) 2 .
  • the volume median particle size of the nickel-manganese source precursor is shown in Table 2. The precursor composition was mixed and ball-milled for 3 hours to obtain a ball-milled product.
  • the first heat treatment is carried out to the ball mill product, the atmosphere of the first heat treatment is air, and the first heat treatment includes:
  • the heating rate, peak temperature and holding time (holding time at peak temperature) are shown in Table 1.
  • the product after the first heat treatment was cooled to room temperature.
  • the lithium nickel manganese composite oxide Li 1.01 Ni 0.49 Mn 1.51 O 4 was obtained.
  • the heating rate, peak temperature and/or holding time of the first heat treatment and the second heat treatment are different, and the parameters of the specific preparation methods are different in Table 1.
  • the physical and chemical parameters of lithium nickel manganese composite oxide are shown in Table 2.
  • the composition of the precursor composition includes: a lithium source (Li 2 CO 3 ), a nickel source (Ni(OH) 2 ), a manganese source (Mn(OH) 2 ), and a dopant (nano-TiO 2 ).
  • the precursor composition was mixed and ball-milled for 3 hours to obtain a ball-milled product.
  • the volume median particle size of the nickel-manganese source precursor is shown in Table 2.
  • step (3) specifically:
  • the composition of the precursor composition includes: a lithium source (Li 2 CO 3 ), a nickel source (Ni(OH) 2 ), a manganese source (Mn(OH) 2 ), and a dopant (nano-TiO 2 ).
  • the precursor composition was mixed and ball-milled for 3 hours to obtain a ball-milled product.
  • Three different commercially available lithium-nickel-manganese composite oxide powders are provided, numbered B1, B2 and B3 respectively.
  • the lithium-nickel-manganese composite oxide materials of the examples and comparative examples were assembled into a half-cell.
  • the loading capacity of the lithium-nickel-manganese composite oxide on the positive pole piece is 0.015g/cm 2 .
  • a mixed solution of carbonate, phosphate, etc. containing 1 mol/L LiPF 6 was provided as an electrolytic solution.
  • a polypropylene film ( ⁇ 16mm) with a thickness of 12 ⁇ m is used as a separator, and the lithium sheet, separator, and positive electrode sheet are placed in order, so that the separator is placed between the metal lithium sheet and the composite negative electrode sheet to play the role of isolation. Inject the electrolyte, assemble it into a CR2030 button cell, and let it stand for 24 hours to obtain a half cell.
  • the lithium-nickel-manganese composite oxide materials of Examples and Comparative Examples were assembled into pouch batteries.
  • the loading capacity of the lithium-nickel-manganese composite oxide on the positive electrode sheet is 0.02 g/cm 2 .
  • FIG. 1 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Example 2a.
  • the ellipse outline shows some representative grains, including grain 1, grain 2, grain 3, grain 4, and the grain sizes are 6.0 ⁇ m, 7.1 ⁇ m, 3.8 ⁇ m and 3.9 ⁇ m, respectively.
  • Figure 2 shows a scanning electron microscope photo of the lithium-nickel-manganese composite oxide of Example 2b, and the ellipse outline shows some representative grains, including grain 1, grain 2, grain 3, grain 4Grains 5, the grain sizes are 3.1 ⁇ m, 3.8 ⁇ m, 8.2 ⁇ m, 7.5 ⁇ m and 5.7 ⁇ m respectively.
  • Figure 3 shows a scanning electron microscope photo of the lithium-nickel-manganese composite oxide of Example 2c.
  • the ellipse outline shows some representative grains, including grain 1, grain 2, grain 3, grain
  • the particle sizes were 9.3 ⁇ m, 6.0 ⁇ m, and 12.9 ⁇ m, respectively.
  • Fig. 4 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Example 3b, and the circular outline shows some representative grains, including grain 1, grain 2, grain 3, grain 4Grain 5, the particle size distribution is 4.2 ⁇ m, 6.6 ⁇ m, 9.5 ⁇ m, 9.6 ⁇ m, 9.1 ⁇ m.
  • the square outline in the figure shows the micropowder grains with a particle size smaller than 0.1d max , which are not included in the statistical range.
  • FIG. 5 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Comparative Example 1.
  • FIG. The circular outlines show some representative grains, including grain 1, grain 2, and grain 3, with a particle size distribution of 4.7 ⁇ m, 1.9 ⁇ m, and 3.5 ⁇ m.
  • the square outline in the figure shows the micropowder grains with a particle size smaller than 0.1d max , which are not included in the statistical range.
  • FIG. 6 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Comparative Example 2.
  • FIG. As shown in the figure, the circular outline shows some representative grains, including grain 1, grain 2, and grain 3, with a particle size distribution of 1.5 ⁇ m, 1.6 ⁇ m, and 1.0 ⁇ m.
  • the square outline in the figure shows the micropowder grains with a particle size smaller than 0.1d max , which are not included in the statistical range.
  • FIG. 7 shows a scanning electron micrograph of the lithium-nickel-manganese composite oxide of Comparative Example 3.
  • FIG. As shown in the figure, the circular outline shows some representative grains, including grain 1, grain 2, grain 3, grain 4, grain 5, and the particle size distribution is 5.0 ⁇ m, 4.4 ⁇ m, 3.0 ⁇ m, 4.3 ⁇ m, 2.8 ⁇ m.
  • the square outline in the figure shows the micropowder grains with a particle size smaller than 0.1d max , which are not included in the statistical range.
  • volume median particle diameter dv50 and the volume median particle diameter Dv50 of the crystal grains of the lithium-nickel-manganese composite oxides of the examples and comparative examples are distributed according to the method above, and the K value is calculated according to the following formula:
  • the specific test method is as follows:
  • the Mn 3+ content (r) in the lithium-nickel-manganese composite oxide material can be calculated:
  • the coefficient 0.45 is the mass content of Mn in LiNi 0.5 Mn 1.5 O 4 , and 1.5 is 1.5 in the chemical formula (that is, the stoichiometric ratio of Mn/Li).
  • the spinel phase of this material includes and only includes the P4 3 32 space group and the Fd-3m space group. Based on x, the content (y) of the nickel-manganese composite oxide with the P4 3 32 space group in the lithium-nickel-manganese composite oxide material can also be calculated:
  • the coefficient of 0.375 is based on the assumption that nickel-manganese is in a completely disordered state.
  • Li-nickel-manganese composite oxides with P4 3 32 space group rely on Ni 2+ /Ni 3+ and Ni 3+ /Ni 4+ to charge and discharge, and the discharge voltage range is 4.8-4.5V (mainly concentrated in 4.7-4.6V) ;
  • the variable valence pairs for charge and discharge of lithium-nickel-manganese composite oxides with Fd-3m space group include Ni 2+ /Ni 3+ , Ni 3+ /Ni 4+ and Mn 3+ /Mn 4+ , where Mn 3+ /
  • the discharge voltage range of Mn 4+ is 4.4-3.5V (mainly concentrated around 4.0V), therefore, the r value can accurately reflect the content of Mn 3+ in the material, and the content of Mn 3+ is linearly positively correlated with the content of Fd-3m of.
  • the graphite pouch batteries of the examples and comparative examples were used as test objects.
  • the graphite pouch batteries of the examples and comparative examples were used as test objects.
  • the graphite pouch battery was charged at a constant current of 0.3C to a voltage of 4.9V, and then charged at a constant voltage of 4.9V to a current of 0.05C. Place the fully charged battery in a constant temperature factory building at 25°C. During the process, measure the volume of the pouch cell by the drainage method every 10 days, and the increased volume is the gas production volume. After 100 days, get 100 days of stored gas production data. After the test, discharge the battery with a constant current of 0.33C to 3.5V, and then discharge it with a constant current of 0.05C to 3.5V to obtain a fully discharged battery.
  • the K values of the lithium-nickel-manganese composite oxides in Examples (1a-1b, 2a-2c) are between 1.36-1.89, and the K-values of the lithium-nickel-manganese composite oxides in Comparative Example (1-3) are between 2.10-4.15.
  • the lithium-nickel-manganese composite oxide of the embodiment (1a-1b, 2a-2c) is used as the positive electrode active material of the lithium-ion battery, and the number of turns for the lithium-ion battery to reach the cut-off capacity is 365-449 turns, which is higher than the 120-283 turns of the comparative example. lock up. This shows that the lithium-ion batteries used in the example materials have improved cycle performance.
  • the lithium-nickel-manganese composite oxides of Examples (1a-1b, 2a-2c) are used as positive electrode active materials for lithium-ion batteries, and the Ni ion dissolution value of lithium-ion batteries is 209 ⁇ g/g-308 ⁇ g/g, which is lower than 312 ⁇ g of the comparative example /g-367 ⁇ g/g.
  • the Mn ion dissolution value of the lithium ion battery is 1665 ⁇ g/g-2072 ⁇ g/g, which is lower than 2571 ⁇ g/g-3021 ⁇ g/g of the comparative example. This demonstrates that the lithium-ion batteries for which the example materials are used have reduced ion leaching.
  • the lithium-nickel-manganese composite oxide of the embodiment (1a-1b, 2a-2c) is used as the positive electrode active material of the lithium-ion battery, and the gas production of the lithium-ion battery is 27.2-35.6ml/Ah, which is lower than the 36.9ml/Ah of the comparative example -49.2ml/Ah.
  • This demonstrates that the materials of the examples are used in Li-ion batteries with reduced gassing.
  • the lithium-nickel-manganese composite oxide in Example 3a is doped with Ti element, and the lithium-nickel-manganese composite oxide is used as the positive electrode active material of the lithium-ion battery.
  • the number of turns for the lithium-ion battery to reach the cut-off capacity is 481 turns.
  • the dissolution value of Ni ions is 262 ⁇ g/g, which is 35.3 ml/Ah lower than the 1895 ⁇ g/g of the comparative example.
  • the lithium-nickel-manganese composite oxide of Example 3a exhibits better cycle performance, lower ion dissolution, and lower gas production than Examples (1a-1b, 2a-2c). This shows that the doped lithium-nickel-manganese composite oxide has better performance.
  • the lithium-nickel-manganese composite oxide in Examples 3b-3e has a coating layer, and the lithium-nickel-manganese composite oxide is used as the positive electrode active material of the lithium-ion battery.
  • the Ni ion dissolution value of the battery is 157-201 ⁇ g/g
  • the Mn ion dissolution value of the lithium ion battery is 1168-1592 ⁇ g/g
  • the gas production of the lithium ion battery is 16.6-25.7ml/Ah.
  • the lithium-nickel-manganese composite oxides of Examples 3b-3e exhibit better cycle performance, lower ion dissolution, and lower gas production than those of Example 3a. This shows that the lithium-nickel-manganese composite oxide with cladding layer has better performance
  • the peak temperature of the first heat treatment determines the upper limit and average value of grain size, and is also the driving force for grain growth and deformation.
  • the peak temperature of the first heat treatment and the holding time jointly determine the grain size and morphology.
  • the peak temperature of the first heat treatment stage is preferably 950°C-1200°C, and the holding time at the peak temperature of the first heat treatment stage is preferably 5h-30h.
  • the temperature increase rate of the first heat treatment is preferably less than or equal to 5°C/min, optionally 0.5-3°C/min
  • the particle size of nickel source and manganese source precursor The smaller the particles of nickel source and manganese source precursor, the more small particles need to be combined to obtain the finished product particles with the same target particle size, and the corresponding first heat treatment temperature needs to be increased, which also leads to serious adhesion between particles in the finished product. However, if the nickel-manganese precursor particles are too large, it will be difficult to burn through, and the first heat treatment temperature will also be increased, resulting in adhesion between particles.
  • the ratio of the nickel source, the manganese source precursor and the volume median particle size of the lithium nickel manganese composite oxide material is preferably 0.4-1, optionally 0.6-0.8.
  • the content of the P4 3 32 structure above 50% is beneficial to the performance of the battery.
  • the second heat treatment temperature and holding time match the target grain size and the first heat treatment temperature and time. Because P4 3 32 is a low-temperature phase, from a thermodynamic point of view, the lower the temperature, the more it tends to the P4 3 32 structure. However, from a kinetic point of view, the lower the temperature, the more unfavorable the diffusion of atoms and the phase transition. The higher the first heat treatment temperature is, the higher the Fd-3m structure content is, and the longer the holding time of the second heat treatment is. The larger the grain size, the larger the diffusion power is required, and the higher the second heat treatment temperature is.
  • the second heat treatment temperature also affects the second heat treatment time.
  • the peak temperature of the second heat treatment stage is preferably 550°C-680°C, and the holding time of the second heat treatment stage is preferably 5h-50h.
  • Factor 2 Elemental composition.
  • the generation of Fd-3m phase is related to the radius of each atom of the transition metal layer. Atoms with different radii (especially atoms with stable radii) can stabilize the crystal structure and improve the tendency of Ni and Mn to be ordered.
  • Ti, Cr, Zr The high valence ions such as ions and the +1, +2 valence atom doping at the Ni site are all related to this.
  • a preferred doping element is Ti element.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本申请提供了一种锂镍锰复合氧化物材料,所述锂镍锰复合氧化物材料的K值为1-2,所述K值按下式计算:K=Dv50/dv50;其中,dv50为所述锂镍锰复合氧化物材料中晶粒的体积中值粒径,Dv50为所述锂镍锰复合氧化物材料的体积中值颗粒粒径。

Description

锂镍锰复合氧化物材料、二次电池和用电装置 技术领域
本申请涉及二次电池技术领域,尤其涉及一种锂镍锰复合氧化物材料、二次电池和用电装置。
背景技术
近年来,二次电池被广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。
由于二次电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。
发明内容
本申请的目的在于提供一种锂镍锰复合氧化物材料,该材料作为二次电池(例如锂离子电池)的正极活性材料,电池可以表现出一项或多项改善的性能,例如选自:
i)改善的循环性能;
ii)降低的离子溶出;
iii)降低的产气。
为了达到上述目的,本申请提供了一种锂镍锰复合氧化物材料(lithium nickel-manganese-based composite oxide material),所述锂镍锰复合氧化物材料的K值为1-2(例如1-1.1、1.1-1.2、1.2-1.3、1.3-1.4、1.4-1.5、1.5-1.6、1.6-1.7、1.7-1.8、1.8-1.9、1.9-2),所述K值按下式计算:K=D v50/d v50;其中,d v50为所述锂镍锰复合氧化物材料的晶粒的体积中值粒径(Volume median crystallite diameter),D v50为所述锂镍锰复合氧化物材料的体积中值颗粒粒径(Volume median particle diameter)。
由此,本申请通过调整锂镍锰复合氧化物材料的K值在1-2的范围内,使得该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池) 的正极活性材料,电池表现出一项或多项改善的性能,例如选自:
i)改善的循环性能;
ii)降低的离子溶出;
iii)降低的产气。
在任意实施方式中,所述锂镍锰复合氧化物材料的晶粒的体积中值粒径d v50为5μm-15μm;可选为5.5μm-11μm。该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能。
在任意实施方式中,所述锂镍锰复合氧化物材料的体积中值颗粒粒径D v50为9μm-20μm;可选为9μm-11μm。该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能。
在任意实施方式中,所述锂镍锰复合氧化物材料包括具有P4 332空间群的锂镍锰复合氧化物和具有Fd-3m空间群的锂镍锰复合氧化物;所述P4 332空间群的锂镍锰复合氧化物的含量大于所述Fd-3m空间群的锂镍锰复合氧化物的含量。
在任意实施方式中,所述具有P4 332空间群的锂镍锰复合氧化物占所述锂镍锰复合氧化物材料重量的50%以上;可选为80%-91%。
在任意实施方式中,所述锂镍锰复合氧化物材料含有Mn 3+,所述锂镍锰复合氧化物材料中Mn 3+的重量含量小于或等于5wt%;可选为1.0wt%-2.2wt%。
在任意实施方式中,所述锂镍锰复合氧化物材料的比表面积为1m 2/g以下;可选为0.1m 2/g-0.9m 2/g。
在任意实施方式中,所述锂镍锰复合氧化物材料的振实密度大于或等于1.9g/cm 3;可选为1.9g/cm 3-3.0g/cm 3
在任意实施方式中,所述锂镍锰复合氧化物材料包括至少一部分表面设置有包覆层的锂镍锰复合氧化物颗粒;
可选地,所述包覆层的材质包括氧化铝、氧化钛、氧化锆、 氧化硼、稀土氧化物、锂盐、磷酸盐、硼酸盐、氟化物中的至少一种;
可选地,所述包覆层包括快锂离子导体层;
可选地,所述包覆层具有多层结构,所述包覆层包括位于内侧的快锂离子导体层和位于外侧的氧化铝层。
在任意实施方式中,所述快锂离子导体选自具有锂离子导电性的氧化物基,磷酸盐基,硼酸盐基、硫化物基、LiPON基无机材料。
在任意实施方式中,所述快锂离子导体含有以下一种或多种元素磷、钛、锆、硼和锂。
在任意实施方式中,所述快锂离子导体选自Li 2BO 3、Li 3PO 4、或其组合。
在任意实施方式中,所述锂镍锰复合氧化物的通式如式I:
Li aNi 0.5-xMn 1.5-yM x+yO 4-zX z       式I
式I中,元素M选自Ti、Zr、W、Nb、Al、Mg、P、Mo、V、Cr、Zn、或其组合;
式I中,元素X选自F、Cl、I、或其组合;
式I中,0.9≤a≤1.1,-0.2≤x≤0.2,-0.2≤y≤0.3,0≤z≤1;
可选地,元素M选自Mg、Ti、或其组合;
可选地,元素X为F。
本申请第二方面提供一种锂镍锰复合氧化物的制备方法,包括
-提供前驱体组合物,所述前驱体含有锂源、镍源和锰源;
-烧结所述前驱体组合物,获得锂镍锰复合氧化物;
所述锂镍锰复合氧化物材料的K值为1-2,所述K值按下式计算:
K=D v50/d v50
其中,d v50为所述锂镍锰复合氧化物材料的晶粒的体积中值 粒径;
其中,D v50为所述锂镍锰复合氧化物材料的体积中值颗粒粒径。
在任意实施方式中,所述锂镍锰复合氧化物的通式如式I:
Li aNi 0.5-xMn 1.5-yM x+yO 4-zX z       式I
式I中,元素M选自Ti、Zr、W、Nb、Al、Mg、P、Mo、V、Cr、Zn、或其组合;
式I中,元素X选自F、Cl、I、或其组合;
式I中,0.9≤a≤1.1,-0.2≤x≤0.2(例如0≤x≤0.2),-0.2≤y≤0.3(例如0≤y≤0.3),0≤z≤1。
在任意实施方式中,所述方法满足以下一项或多项:
i.所述镍源与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值为0.4-1;
ii.所述锰源与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值为0.4-1;
iii.所述锂源体积中值颗粒粒径为1-20μm(例如3-10μm)。
在任意实施方式中,所述烧结包括第一热处理阶段;
所述第一热处理阶段的峰值温度为950℃-1200℃,所述第一热处理阶段在峰值温度的保温时间为5h-30h。
在任意实施方式中,所述第一热处理升温至峰值温度的升温速率小于或等于5℃/min,可选0.5-3℃/min。
在任意实施方式中,所述烧结还包括在第一热处理阶段后的第二热处理阶段:
所述第二热处理阶段的峰值温度为550℃-680℃,所述第二热处理阶段的时间为5h-50h。
在任意实施方式中,所述方法还包括在烧结前球磨所述前驱体组合物;
可选地,球磨时间为2h以上,例如可选2-6h。
本申请第三方面提供一种二次电池,所述二次电池包括正极极片,所述正极极片包括正极活性材料,所述正极活性材料包括本申请第一方面任一项所述的锂镍锰复合氧化物材料或包括根据本申请第二方面任一项所述的方法制备得到的锂镍锰复合氧化物。
本申请的第四方面提供一种用电装置,包括本申请的第三方面的二次电池。
附图说明
图1示出实施例2a的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图2示出实施例2b的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图3示出实施例2c的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图4示出实施例3b的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图5示出对比例1的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图6示出对比例2的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图7示出对比例3的锂镍锰复合氧化物材料的扫描电子显微镜照片。
图8是本申请一实施方式的二次电池的示意图。
图9是本申请一实施方式的二次电池的分解图。
图10是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的正极活性材料及其制造方法、正极极片、负极极片、二次电池和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b) 等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
[二次电池]
二次电池又称为充电电池或蓄电池,是指在电池放电后可通过充电的方式使活性材料激活而继续使用的电池。
通常情况下,二次电池包括正极极片、负极极片、隔离膜及电解液。在电池充放电过程中,活性离子(例如锂离子)在正极极片和负极极片之间往返嵌入和脱出。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使活性离子通过。电解液在正极极片和负极极片之间,主要起到传导活性离子的作用。
[正极极片]
正极极片通常包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,正极膜层包括正极活性材料。
正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
本申请的正极活性材料包括锂镍锰复合氧化物材料(lithium nickel-manganese-based composite oxide material),所述锂镍锰复合氧化物材料的K值为1-2(例如1-1.1、1.1-1.2、1.2-1.3、1.3-1.4、1.4-1.5、1.5-1.6、1.6-1.7、1.7-1.8、1.8-1.9、1.9-2),所述K值按下式计算:K=D v50/d v50;其中,d v50为所述锂镍锰复合氧化物材料的晶粒的体积中值粒径(Volume median crystallite diameter),D v50所述锂镍锰复合氧化物材料的体积中值颗粒粒径(Volume median particle diameter)。
虽然机理尚不明确,但本申请人意外地发现:本申请通过调整锂 镍锰复合氧化物材料的K值在1-2的范围内,使得该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能,例如选自:
i)改善的循环性能;
ii)降低的离子溶出;
iii)降低的产气。
术语“晶粒”是指在材料体中原子规则重复排列(允许有少量原子级点缺陷或线缺陷)的最大区域。相邻晶粒间的界面处原子排列与晶粒内的原子排列不同。相邻晶粒间的界面处原子连续为一个薄层并贯穿晶粒之间的接触面(晶界)。例如在扫描电镜的视野下,颗粒内部被明确的界面分隔开的一个个纳米或微米级的区域就是一个个晶粒。在此将晶粒的近似直径称为晶粒的粒径。晶粒形貌可以在扫描电子显微镜中观察到。
锂镍锰复合氧化物材料含有多个晶粒(例如单晶颗粒、多晶颗粒)。单晶颗粒由一个晶粒构成。多晶颗粒由多个晶粒构成,相邻的晶粒之间存在晶界。
术语“比表面积”(也称BET比表面积)是参照GB/T 19587-2004气体吸附BET法测定固态物质比表面积测定获得的。
术语“体积中值颗粒粒径Dv50”是参照GB/T 19077-2016粒度分析激光衍射法测得的。测试仪器使用Mastersizer 3000激光粒度仪。
术语“晶粒的体积中值粒径”是按照以下方法测试获得的:使用扫描电子显微镜(例如蔡司Sigma300场发射扫描电镜)观察锂镍锰复合氧化物材料,在拍摄过程中(或从拍摄获得的照片中)随机选取5个区域,确定该区域中最大的的晶粒粒径d max,将0.1d max至d max区间粒径区间的晶粒定义为有效晶粒,然后逐个统计该区域内晶粒粒径在0.1d max至d max区间的晶粒,对晶粒粒径小于0.1d max的晶粒定义为微粉晶粒,对微粉晶粒不做统计。控制一个区域内有效晶粒数量为100-150个,逐个统计每个区域内每个有效晶粒的粒径。单个晶粒的粒径的测量方法可以如下:对该晶粒绘制最小面积的外接圆(外接圆可以为正圆形或椭圆形),当外接圆为正圆形,以正圆形的直径为晶 粒的粒径。当外接圆为椭圆形,以椭圆形的长轴和短轴的长度平均值为晶粒的粒径。统计了各区域内的单个有效晶粒的粒径后,将它们汇总并记录为n个有效晶粒的粒径(d 1、d 2、d 3…d n)。然后根据下式计算“晶粒的体积中值粒径”dv50。
Figure PCTCN2021126698-appb-000001
在任意实施方案中,所述锂镍锰复合氧化物材料的晶粒的体积中值粒径dv50为5μm-15μm(例如5μm-6μm、6μm-7μm、7μm-8μm、8μm-9μm、9μm-10μm、10μm-11μm、11μm-12μm、12μm-13μm、13μm-14μm、14μm-15μm);可选为5.5μm-11μm,可选为5.5-8μm。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。
在任意实施方案中,锂镍锰复合氧化物材料的体积中值颗粒粒径D v50为9μm-20μm(例如9μm-10μm、10μm-11μm、11μm-12μm、12μm-13μm、13μm-14μm、14μm-15μm、15μm-16μm、16μm-17μm、17μm-18μm、18μm-19μm、19μm-20μm),可选为9μm-13μm,可选为9-11μm。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。
在任意实施方案中,所述锂镍锰复合氧化物材料包括具有P4 332空间群的锂镍锰复合氧化物和具有Fd-3m空间群的锂镍锰复合氧化物;所述P4 332空间群的锂镍锰复合氧化物的含量大于所述Fd-3m空间群的锂镍锰复合氧化物的含量。
在任意实施方案中,所述锂镍锰复合氧化物材料包括具有P4 332空间群的锂镍锰复合氧化物,所述具有P4 332空间群的锂镍锰复合氧化物占所述锂镍锰复合氧化物材料重量的50%以上,可选为80%-91%,50%-60%,60-70%,70-80%,80%-90%或90%-95%。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。
在任意实施方案中,所述锂镍锰复合氧化物材料包括Mn 3+,所 述Mn 3+在所述锂镍锰复合氧化物材料中的重量含量小于或等于5.5wt%(例如1wt%-2wt%,2wt%-3wt%,3wt%-4wt%或4wt%-5wt%)。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。
在任意实施方案中,锂镍锰复合氧化物材料的比表面积为1m 2/g以下;可选为0.1m 2/g-0.9m 2/g。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。
在任意实施方案中,锂镍锰复合氧化物材料的振实密度大于或等于1.9g/cm 3,可选为1.9g/cm 3-3.0g/cm 3。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。K值1-2、外形规则,所以在粉体振实过程中更易密堆积,所以振实密度高。
在任意实施方案中,所述锂镍锰复合氧化物材料包括至少一部分表面设置有包覆层的锂镍锰复合氧化物颗粒。
在任意实施方式中,所述包覆层的材质包括氧化铝、氧化钛、氧化锆、氧化硼、稀土氧化物、锂盐、磷酸盐、硼酸盐、氟化物中的至少一种。
在任意实施方式中,所述包覆层包括快锂离子导体层。
在任意实施方式中,所述包覆层具有多层结构,所述包覆层包括位于内侧的快锂离子导体层和位于外侧的氧化铝层。
在任意实施方式中,所述快锂离子导体选自具有锂离子导电性的氧化物基,磷酸盐基,硼酸盐基、硫化物基、LiPON基无机材料。
在任意实施方式中,所述快锂离子导体含有以下一种或多种元素磷、钛、锆、硼和锂。
在任意实施方式中,所述快锂离子导体选自Li 2BO 3、Li 3PO 4、或其组合。基于上述方案,锂镍锰复合氧化物材料用于二次电池,二次电池表现出一项或多项改善的性能。
在任意实施方案中,快锂离子导体是指具有1.0×10 -5S cm -1锂 离子电导率的物质。快锂离子导体选自具有锂离子导电性的氧化物基,磷酸盐基,硼酸盐基、硫化物基和LiPON基无机材料。快锂离子导体例如选自Li 2BO 3或Li 3PO 4
在任意实施方案中,所述锂镍锰复合氧化物的通式如式I:
Li aNi 0.5-xMn 1.5-yM x+yO 4-zX z      式I
式I中,元素M选自Ti、Zr、W、Nb、Al、Mg、P、Mo、V、Cr、Zn、或其组合;
式I中,元素X选自F、Cl、I、或其组合;
式I中,0.9≤a≤1.1,-0.2≤x≤0.2(例如0≤x≤0.2),-0.2≤y≤0.3(例如0≤y≤0.3),0≤z≤1。
在任意实施方案中,a=1-1.05。
在任意实施方案中,-0.1≤x≤0.1,例如-0.01≤x≤0.01可选地,x=0。
在任意实施方案中,-0.1≤y≤0.1,例如-0.01≤x≤0.01可选地,x=0。
在任意实施方案中,x+y≥0,0≤x+y≤0.1,可选地,x+y=0。
在任意实施方案中,z=0-0.1,例如z=0。
在任意实施方案中,锂镍锰复合氧化物为Li 1.01Ni 0.49Mn 1.51O 4
在任意实施方案中,锂镍锰复合氧化物为Li 1.02Ni 0.5Mn 1.4Ti 0.1O 4
在任意实施方案中,提供一种锂镍锰复合氧化物的制备方法,包括
-提供前驱体组合物,所述前驱体含有锂源、镍源和锰源;
-烧结所述前驱体组合物,获得锂镍锰复合氧化物;
所述锂镍锰复合氧化物材料的K值为1-2(例如1-1.1、1.1-1.2、1.2-1.3、1.3-1.4、1.4-1.5、1.5-1.6、1.6-1.7、1.7-1.8、1.8-1.9、1.9-2),所述K值按下式计算:
K=D v50/d v50
其中,d v50为所述锂镍锰复合氧化物材料的晶粒的体积中值粒径;
其中,D v50所述锂镍锰复合氧化物材料的体积中值颗粒粒径。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能,例如选自:
i)改善的循环性能;
ii)降低的离子溶出;
iii)降低的产气。
在任意实施方案中,所述锂源可以选自锂的氧化物、氢氧化物、盐、或其组合。所述镍源可以选自镍的镍化物、氢氧化物、盐、或其组合。所述锰源可以选自锰的氧化物、氢氧化物、盐、或其组合。所述锂源可以选自碳酸锂、氢氧化锂、硝酸锂、氧化锂、或其组合。所述镍源可以选自氢氧化镍、氧化镍、硝酸镍、碳酸镍、或其组合。所述锰源可以选自氢氧化锰、氧化锰、硝酸锰、碳酸锰、或其组合。
在任意实施方案中,镍源和锰源可以是镍锰氢氧化物,例如Ni 0.25Mn 0.75(OH) 2
在任意实施方案中,所述镍源与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值为0.4-1(例如0.5:1、0.6:1、0.7:1、0.8:1、0.9:1或1.0:1)。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能
在任意实施方案中,所述锰源与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值为0.4-1:1(例如0.5:1、0.6:1、0.7:1、0.8:1、0.9:1或1.0:1)。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能
在任意实施方案中,所述锂源的体积中值颗粒粒径为1-20μm(例如3-10μm)。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出 一项或多项改善的性能。
在任意实施方案中,所述烧结包括第一热处理阶段;所述第一热处理阶段的峰值温度为950℃-1200℃(例如950℃-1000℃、1000℃-1050℃、1050℃-1100℃、1100℃-1150℃、1150℃-1200℃),所述第一热处理阶段在峰值温度的保温时间为5h-30h(例如5h-10h、10h-15h、15h-20h、20h-25h、25h-30h)。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能。
在任意实施方案中,所述第一热处理阶段中,升温至峰值温度的升温速率小于或等于5℃/min,可选0.5-3℃/min,可选1℃/min-2℃/min、2℃/min-3℃/min、3℃/min-4℃/min或4℃/min-5℃/min。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能。
在任意实施方案中,所述烧结还包括在第一热处理阶段后的第二热处理阶段:所述第二热处理阶段的峰值温度为550℃-680℃(例如550℃-570℃、570℃-590℃、590℃-610℃、610℃-630℃、630℃-650℃、650℃-670℃),所述第二热处理阶段的时间为5h-50h(5h-15h、15h-25h、25h-35h、35h-45h)。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能。
在任意实施方案中,锂镍锰复合氧化物的制备方法还包括在烧结前球磨所述前驱体组合物;可选地,球磨时间为2h以上,例如可选2-6h。球磨的目的是对第一热处理后的产品进行分散。基于上述方案获得的该锂镍锰复合氧化物材料作为二次电池(例如锂离子电池)的正极活性材料,电池表现出一项或多项改善的性能。
在任意实施方案中,锂镍锰复合氧化物在正极活性材料中的 含量可以为10-100wt%(例如20wt%、30wt%、40wt%、50wt%、60wt%、70wt%、80wt%、90wt%)。
在一些实施方式中,正极活性材料除了包括上述任一项所述的锂镍锰复合氧化物外,还可以包括本领域公知的用于电池的其他正极活性材料。作为示例,其他正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物(如LiCoO 2)、锂镍氧化物(如LiNiO 2)、锂锰氧化物(如LiMnO 2、LiMn 2O 4)、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物(如LiNi 1/3Co 1/3Mn 1/3O 2(也可以简称为NCM 333)、LiNi 0.5Co 0.2Mn 0.3O 2(也可以简称为NCM 523)、LiNi 0.5Co 0.25Mn 0.25O 2(也可以简称为NCM 211)、LiNi 0.6Co 0.2Mn 0.2O 2(也可以简称为NCM 622)、LiNi 0.8Co 0.1Mn 0.1O 2(也可以简称为NCM 811)、锂镍钴铝氧化物(如LiNi 0.85Co 0.15Al 0.05O 2)及其改性化合物等中的至少一种。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂(如LiFePO 4(也可以简称为LFP))、磷酸铁锂与碳的复合材料、磷酸锰锂(如LiMnPO 4)、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可 通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
在一些实施方式中,负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,负极膜层还可选地包括粘结剂。作为示例,粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,负极膜层还可选地包括导电剂。作为示例,导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂(如羧甲基纤维素钠(CMC-Na))等。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。
在一些实施方式中,电解质为液态的,且包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、双氟磺酰亚胺锂、双三氟甲磺酰亚胺锂、三氟甲磺酸锂、二氟磷酸锂、二氟草酸硼酸锂、二草酸硼酸锂、二氟二草酸磷酸锂及四氟草酸磷酸锂中的至少一种。
在一些实施方式中,溶剂可选自碳酸亚乙酯、碳酸亚丙酯、碳酸甲乙酯、碳酸二乙酯、碳酸二甲酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、碳酸亚丁酯、氟代碳酸亚乙酯、甲酸甲酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丁酸甲酯、丁酸乙酯、1,4-丁内酯、环丁砜、二甲砜、甲乙砜及二乙砜中的至少一种。
在一些实施方式中,电解液还可选地包括添加剂。作为示例,添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改 善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。
[隔离膜]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图8是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图9,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根 据电池模块的应用和容量进行选择。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图10是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用含有上述二次电池的电池包或电池模块。
[实施例]
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1a-1b
锂镍锰复合氧化物的制备
(1)按目标产物LiNi 0.5Mn 1.5O 4的成分比例提供相应的前驱体组合物。前驱体组合物的组成包括:锂源(Li 2CO 3)、镍锰源Ni 0.25Mn 0.75(OH) 2。镍锰源前驱体的体积中值颗粒粒径Dv50(P)分别满足:Dv50(P)=xDv50(C),其中Dv50(C)为镍锰复合氧化物材料产物的体积中值颗粒粒径,x=0.4-1。镍锰源前驱体的体积中值颗粒粒径详见 表2。将前驱体组合物混合球磨3h,获得球磨产物。
(2)对球磨产物进行第一热处理,第一热处理的气氛为空气,第一热处理包括:
a)以预设的升温速率c 1(℃/min)从室温升温至峰值温度;
b)在峰值温度保温T 1,保温一定时间t 1
升温速率、峰值温度和保温时间(在峰值温度的保温时间)为如表1所示。第一热处理后的产物冷却至室温。获得锂镍锰复合氧化物Li 1.01Ni 0.49Mn 1.51O 4
(3)对上一步产物进行第二热处理,第二热处理的气氛为空气,第二热处理的峰值温度T 2和保温时间t 2为如表1所示。热处理后产物冷却至室温。获得锂镍锰复合氧化物Li 1.01Ni 0.49Mn 1.51O 4
实施例2a-2c
锂镍锰复合氧化物的制备。
实施例2a、2b、2c与实施例1a的区别在于:
第一热处理和第二热处理的升温速率、峰值温度和/或保温时间不同,具体制备方法参数区别详见表1。锂镍锰复合氧化物的物化参数参见表2。
实施例3a
(1)按目标产物LiNi 0.5Mn 1.4Ti 0.1O 4的成分比例提供相应的前驱体组合物。前驱体组合物的组成包括:锂源(Li 2CO 3)、镍源(Ni(OH) 2)、锰源(Mn(OH) 2)、掺杂剂(纳米TiO 2)。将前驱体组合物混合球磨3h,获得球磨产物。镍锰源前驱体的体积中值颗粒粒径详见表2.
(2)对球磨产物进行第一热处理,第一热处理升温速率、峰值温度和在峰值温度的保温时间为如表1所示,热处理后冷却至室温。
(3)将上一步产物研磨3h。
(4)将上述研磨产物进行第二热处理,热处理温度和时间见表 1,热处理后冷却至室温。获得锂镍锰(掺钛)复合氧化物Li 1.02Ni 0.5Mn 1.4Ti 0.1O 4。锂镍锰复合氧化物的颗粒参数参见表2。
实施例3b、3c、3d
实施例3b、3c、3d与实施例3a的区别在于步骤(3),具体地:
(3)将上一步产物中按目标配比加入第一包覆物,研磨3h;第一包覆物与添加量详见表1。
具体制备方法参数区别详见表1。锂镍锰复合氧化物的颗粒参数参见表2。
实施例3e、3f
(1)按目标产物LiNi 0.5Mn 1.4Ti 0.1O 4的成分比例提供相应的前驱体组合物。前驱体组合物的组成包括:锂源(Li 2CO 3)、镍源(Ni(OH) 2)、锰源(Mn(OH) 2)、掺杂剂(纳米TiO 2)。将前驱体组合物混合球磨3h,获得球磨产物。
(2)对球磨产物进行第一热处理,第一热处理的升温速率、峰值温度和保温时间为如表1所示,热处理后冷却至室温。
(3)向上一步产物中按目标配比加入第一包覆物,研磨3h;第一包覆物与添加量详见表1。
(4)对上述研磨产物进行第二热处理,第二热处理温度和时间见表1,热处理后冷却至室温;
(5)向上一步产物中按目标配比加入第二包覆物,研磨3h;第二包覆物与添加量详见表1。
(6)对上述研磨产物进行第三热处理,热处理温度和时间见表1,热处理后冷却至室温。获得锂镍锰复合氧化物。
具体制备方法参数区别详见表1。锂镍锰复合氧化物的颗粒参数参见表2。
对比例1-3
提供三种不同的市售锂镍锰复合氧化物粉体,分别编号为B1、B2和B3。
半电池(扣式电池)的组装
以锂片为对电极,将实施例和对比例的锂镍锰复合氧化物材料组装为半电池。
将锂镍锰复合氧化物与导电炭黑、PVDF按重量比90:5:5混合,加入适量溶剂,搅拌均匀,获得正极浆料。将正极浆料涂布在铝箔上,涂布后烘干,获得正极极片。正极极片上锂镍锰复合氧化物的负载量为0.015g/cm 2
提供含有1mol/L LiPF 6的碳酸脂、磷酸酯等的混合溶液作为电解液。
以厚度12μm的聚丙烯薄膜(Φ16mm)作为隔离膜,将锂片、隔离膜、正极片按顺序放好,使隔离膜处于金属锂片与复合负极极片中间起到隔离的作用。注入电解液,组装成CR2030扣式电池,静置24h,得半电池。
软包电池的制作
将实施例和对比例的锂镍锰复合氧化物材料组装为软包电池。
将锂镍锰复合氧化物与导电炭黑、PVDF按重量比96:2.5:1.5混合,加入适量溶剂,搅拌均匀,获得正极浆料。将正极浆料涂布在铝箔上,涂布后烘干,获得正极极片。正极极片上锂镍锰复合氧化物的载量为0.02g/cm 2
将石墨与导电炭黑、羧甲基纤维素按重量比96:1:3混合,加入适量溶剂,搅拌均匀,获得负极浆料。将负极浆料涂布在铜箔上,涂布后烘干,获得负极极片。负极极片上石墨的负载量为0.008g/cm 2
与扣式半电使用相同电解液。
以厚度12μm的聚丙烯薄膜(Φ16mm)作为隔离膜,将上述制得的正极极片、隔离膜,负极极片按顺序放好,使隔离膜处于正负极片中间起到隔离的作用,卷绕成型,用铝塑袋包装。注入电解液,封装后进行化成容量,制得软包电芯。
分析检测
一、形貌观察、粒径检测和振实密度检测
如图1示出一张实施例2a的锂镍锰复合氧化物的扫描电子显微镜照片。其中,椭圆轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③、晶粒④,晶粒粒径分别为6.0μm、7.1μm、3.8μm和3.9μm。
如图2示出一张实施例2b的锂镍锰复合氧化物的扫描电子显微镜照片,椭圆轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③、晶粒④晶粒⑤,晶粒粒径分别为3.1μm、3.8μm、8.2μm、7.5μm和5.7μm。
如图3示出一张实施例2c的锂镍锰复合氧化物的扫描电子显微镜照片.椭圆轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③,晶粒粒径分别为9.3μm、6.0μm、12.9μm。
图4示出一张实施例3b的锂镍锰复合氧化物的扫描电子显微镜照片,圆形轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③、晶粒④晶粒⑤,粒径分布为4.2μm、6.6μm、9.5μm、9.6μm、9.1μm。图中的方形轮廓示出粒径小于0.1d max的微粉晶粒,这些微粉晶粒不计入统计范围。
图5示出一张对比例1的锂镍锰复合氧化物的扫描电子显微镜照片。圆形轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③,粒径分布为4.7μm、1.9μm、3.5μm。图中的方形轮廓示出粒径小于0.1d max的微粉晶粒,这些微粉晶粒不计入统计范 围。
图6示出对比例2的锂镍锰复合氧化物的扫描电子显微镜照片。如图所示,圆形轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③,粒径分布为1.5μm、1.6μm、1.0μm。图中的方形轮廓示出粒径小于0.1d max的微粉晶粒,这些微粉晶粒不计入统计范围。
图7示出对比例3的锂镍锰复合氧化物的扫描电子显微镜照片。如图所示,圆形轮廓示出一些具有代表性的晶粒,包括晶粒①、晶粒②、晶粒③、晶粒④、晶粒⑤,粒径分布为5.0μm、4.4μm、3.0μm、4.3μm、2.8μm。图中的方形轮廓示出粒径小于0.1d max的微粉晶粒,这些微粉晶粒不计入统计范围。
按照上文的方法分布检测实施例和对比例的锂镍锰复合氧化物的晶粒的体积中值粒径dv50和体积中值颗粒粒径D v50,计算根据以下公式计算K值:
K=D v50/d v50
振实密度测试参考标准GB/T 5162-2006《金属粉末振实密度的测定》。
结果详见表2。
二、电池性能进行检测:
1、Mn 3+含量(wt.%)与P4 332结构占比
以实施例和对比例的半电池为测试对象。测试其4.5-3.5V的放电容量(Q 1)和4.9-3.5V放电总容量(Q 2),计算4V平台容量占比x=Q 1/Q 2。具体的测试方法如下:
在25℃下,将扣式半电池以0.1C恒流充电至电压为4.9V,然后以4.9V恒压充电至电流为0.05C,静置5min之后,将扣式半电池以0.1C恒流放电至电压为3.5V。从原始充放电数据中截取4.5-3.5V的放电容量(Q 1)和4.9-3.5V放电总容量(Q 2)。
基于x能够反映材料的以下成分特征(1)-(2)
(1)基于x能够计算出锂镍锰复合氧化物材料中Mn 3+含量(r):
r≈0.45x/1.5=0.3x;
上式中,系数0.45是LiNi 0.5Mn 1.5O 4中的Mn的质量含量,1.5是化学式中的1.5(也即Mn/Li的化学计量比)。
(2)本材料的尖晶石相包括且仅包括P4 332空间群和Fd-3m空间群。基于x还能够计算出锂镍锰复合氧化物材料中具有P4 332空间群的镍锰复合氧化物的含量(y):
y≈1-x/0.375=1-r/0.1125;
上式中,系数0.375是假设镍锰完全无序的状态下,理论上将有3/4的Ni为Ni 3+,对应到充放电曲线中就是Ni 3+/Ni 2+平台有3/4变为4V平台,而Ni 3+/Ni 2+平台容量占总容量的一半,所以1/2×3/4=0.375。具有P4 332空间群的锂镍锰复合氧化物依靠Ni 2+/Ni 3+和Ni 3+/Ni 4+变价充放电,放电电压区间为4.8-4.5V(主要集中在4.7-4.6V);具有Fd-3m空间群的锂镍锰复合氧化物充放电的变价电对包括Ni 2+/Ni 3+、Ni 3+/Ni 4+和Mn 3+/Mn 4+,其中Mn 3+/Mn 4+的放电电压区间为4.4-3.5V(主要集中在4.0V附近),因此,r值能够准确反映材料中的Mn 3+含量,Mn 3+的含量与Fd-3m含量是线性正相关的。
Mn 3+含量(r)和具有P4 332空间群的镍锰复合氧化物的含量(y)的统计结果详见表3。
2、循环性能
以实施例和对比例的石墨软包电池为测试对象。
在25℃下,将石墨软包电池以0.3C恒流充电至电压为4.9V,然后以4.9V恒压充电至电流为0.05C,静置5min之后,将石墨软包电池以0.33C恒流放电至电压为3.5V,此为一个充放电循环过程,此次的放电容量为首次循环的放电容量。将全电池按上述方法进行多次循环充放电测试,直至全电池的放电容量衰减至80%,记录全电池的循环次数。统计结果详见表3。
3、产气和离子溶出
以实施例和对比例的石墨软包电池为测试对象。
在25℃下,将石墨软包电池以0.3C恒流充电至电压为4.9V,然后以4.9V恒压充电至电流为0.05C。将此满充态电池放置在25℃恒温厂房内,过程中每隔10d利用排水法测一次软包电芯体积,增加的体积即为产气体积。100d后,获得100d存储产气数据,测试结束后将电池以0.33C恒流放电至3.5V,然后以0.05C恒流放电至3.5V,即获得充分放电的电池。
将充分放电的电池拆解,分离阳极极片,将阳极极片在DMC溶剂中轻微晃动5s,以除去阳极表面残留电解液,然后晾干。从阳极极片的表面刮下负极材料,采用电感耦合等离子光谱技术检测负极材料中的Ni含量(μg/g)和Mn含量(μg/g),作为Ni离子溶出值和Mn离子溶出值。产气和离子溶出的测试结果详见表3。
Figure PCTCN2021126698-appb-000002
Figure PCTCN2021126698-appb-000003
Figure PCTCN2021126698-appb-000004
根据表3的数据,能够获得如下结论:
(1)关于K值
实施例(1a-1b,2a-2c)的锂镍锰复合氧化物的K值介于1.36-1.89,对比例(1-3)的锂镍锰复合氧化物的K值介于2.10-4.15。
电池性能检测发现实施例的锂镍锰复合氧化物有如下优点:
实施例(1a-1b,2a-2c)的锂镍锰复合氧化物用作锂离子电池正极活性材料,锂离子电池到达截止容量的圈数为365-449圈,高于对比例的120-283圈。这说明实施例材料用于的锂离子电池,电池具有改善的循环性能。
实施例(1a-1b,2a-2c)的锂镍锰复合氧化物用作锂离子电池正极活性材料,锂离子电池的Ni离子溶出值为209μg/g-308μg/g,低于对比例的312μg/g-367μg/g。锂离子电池的Mn离子溶出值为1665μg/g-2072μg/g,低于对比例的2571μg/g-3021μg/g。这说明实施例材料用于的锂离子电池,电池具有降低的离子溶出。
实施例(1a-1b,2a-2c)的锂镍锰复合氧化物用作锂离子电池正极活性材料,锂离子电池的产气量为27.2-35.6ml/Ah,低于对比例的36.9ml/Ah-49.2ml/Ah。这说明实施例的材料用于锂离子电池,电池具有降低的产气。
(2)关于掺杂
实施例3a的锂镍锰复合氧化物中掺杂了Ti元素,该锂镍锰复合氧化物用作锂离子电池正极活性材料,锂离子电池到达截止容量的圈数为481圈,锂离子电池的Ni离子溶出值为262μg/g,低于对比例的1895μg/g的产气量为35.3ml/Ah。
实施例3a的锂镍锰复合氧化物比实施例(1a-1b,2a-2c)表现出更好的循环性能、更低的离子溶出、更低的产气量。这说明掺杂锂镍锰复合氧化物具有更好的性能。
(3)关于包覆
实施例3b-3e的锂镍锰复合氧化物具有包覆层,该锂镍锰复合氧化物用作锂离子电池正极活性材料,锂离子电池到达截止容量 的圈数为570-724圈,锂离子电池的Ni离子溶出值为157-201μg/g,锂离子电池的Mn离子溶出值为1168-1592μg/g,锂离子电池的产气量为16.6-25.7ml/Ah。
实施例3b-3e的锂镍锰复合氧化物比实施例3a表现出更好的循环性能、更低的离子溶出、更低的产气量。这说明具有包覆层的锂镍锰复合氧化物具有更好的性能
(4)关于制备工艺
为了获得K值介于1-2的锂镍锰复合氧化物,以下因素是关键的:
因素1.第一热处理温度和保温时间。第一热处理的峰值温度决定了晶粒粒径的上限和平均值,也是晶粒长大和变形的驱动力。第一热处理的峰值温度和保温时间共同决定了晶粒大小和形貌。第一热处理阶段的峰值温度优选为950℃-1200℃,所述第一热处理阶段在峰值温度的保温时间优选为5h-30h。
因素2.第一热处理的升温速率。升温速率过快会使局部热失衡,导致部分晶粒率先长大,出现严重的大晶粒吸收小晶粒的情况,导致晶粒间粘连严重。第一热处理从室温升温至峰值温度的升温速率优选小于或等于5℃/min,可选0.5-3℃/min
因素3.镍源、锰源前驱体的粒径。镍源、锰源前驱体的颗粒越小,获得同一目标粒径后的成品颗粒就需要联合更多小颗粒,则对应的第一热处理温度就需要升高,也导致成品中颗粒间粘连严重。而镍锰前驱体颗粒太大又会出现烧透困难,也会提高第一热处理温度,导致颗粒间粘连。镍源、锰源前驱体与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值优选为0.4-1,可选为0.6-0.8。
实施例(1a-1b,2a-2c,3a-3f)的制备工艺复合上述要求,因而成功获得了K值介于1-2的锂镍锰复合氧化物。
(5)关于P4 332结构的含量或Mn 3+的含量
如实施例(1a-1b,2a-2c,3a-3f)证实的,P4 332结构的含量在50%以上(或Mn 3+的含量在5%以下)对于电池的性能是有利 的。
为了获得以P4 332结构为主的锂镍锰复合氧化物,以下因素是关键的:
因素1.第二热处理温度及保温时间与目标晶粒大小及第一热处理温度和时间匹配。因为P4 332属低温相,所以从热力学角度温度越低越趋向于P4 332结构。但从动力学角度温度越低越不利于原子扩散而进行相变。第一热处理温度越高,则Fd-3m结构含量越高,则第二热处理保温时间需越长。晶粒越大,越需要较大的扩散动力,则第二热处理温度越高。第二热处理温度同样影响第二热处理时间。第二热处理阶段的峰值温度优选为550℃-680℃,第二热处理阶段的保温时间优选为5h-50h。
因素2.元素成分。Fd-3m相的产生与过渡金属层的各原子半径相关,不同半径的原子(尤其具有稳定半径的原子)可以稳定晶体结构,提高Ni、Mn有序排布的趋向性,Ti、Cr、Zr等的高价离子和Ni位置的+1、+2价原子掺杂均与此相关。优选的掺杂元素为Ti元素。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (20)

  1. 一种锂镍锰复合氧化物材料,所述锂镍锰复合氧化物材料的K值为1-2,所述K值按下式计算:
    K=D v50/d v50
    其中,d v50为所述锂镍锰复合氧化物材料中晶粒的体积中值粒径;D v50为所述锂镍锰复合氧化物材料的体积中值颗粒粒径。
  2. 根据权利要求1所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料的晶粒的体积中值粒径d v50为5μm-15μm;可选为5.5μm-11μm。
  3. 根据权利要求1-2任一项所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料的体积中值颗粒粒径D v50为9μm-20μm;可选为9μm-11μm。
  4. 根据权利要求1-3任一项所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料包括具有P4 332空间群的锂镍锰复合氧化物和具有Fd-3m空间群的锂镍锰复合氧化物;所述P4 332空间群的锂镍锰复合氧化物的含量大于所述Fd-3m空间群的锂镍锰复合氧化物的含量。
  5. 根据权利要求4任一项所述的锂镍锰复合氧化物材料,其中,所述具有P4 332空间群的锂镍锰复合氧化物占所述锂镍锰复合氧化物材料重量的50%以上;可选为80%-91%。
  6. 根据权利要求1-5任一项所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料含有Mn 3+,所述锂镍锰复合氧 化物材料中Mn 3+的含量小于或等于5.5wt%;可选为1.0wt%-2.2wt%。
  7. 根据权利要求1-6任一项所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料的比表面积为1m 2/g以下;可选为0.1m 2/g-0.9m 2/g。
  8. 根据权利要求1-7任一项所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料的振实密度大于或等于1.9g/cm 3,可选为1.9m 2/g-3.0m 2/g。
  9. 根据权利要求1-8任一项所述的锂镍锰复合氧化物材料,其中,所述锂镍锰复合氧化物材料包括至少一部分表面设置有包覆层的锂镍锰复合氧化物颗粒;
    可选地,所述包覆层的材质包括氧化铝、氧化钛、氧化锆、氧化硼、稀土氧化物、锂盐、磷酸盐、硼酸盐、氟化物中的至少一种;
    可选地,所述包覆层包括快锂离子导体层;
    可选地,所述包覆层具有多层结构,所述包覆层包括位于内侧的快锂离子导体层和位于外侧的氧化铝层。
  10. 根据权利要求9所述的锂镍锰复合氧化物材料,其具有以下一项或多项特征:
    (1)所述快锂离子导体选自具有锂离子导电性的氧化物基,磷酸盐基,硼酸盐基、硫化物基、LiPON基无机材料;
    (2)所述快锂离子导体含有以下一种或多种元素磷、钛、锆、硼和锂;
    (3)所述快锂离子导体选自Li 2BO 3、Li 3PO 4、或其组合。
  11. 根据权利要求1-10任一项所述的锂镍锰复合氧化物,其中,所述锂镍锰复合氧化物的通式如式I:
    Li aNi 0.5-xMn 1.5-yM x+yO 4-zX z    式I
    式I中,元素M选自Ti、Zr、W、Nb、Al、Mg、P、Mo、V、Cr、Zn、或其组合;
    式I中,元素X选自F、Cl、I、或其组合;
    式I中,0.9≤a≤1.1,-0.2≤x≤0.2,-0.2≤y≤0.3,0≤z≤1;
    可选地,元素M选自Mg、Ti、或其组合;
    可选地,元素X为F。
  12. 一种锂镍锰复合氧化物的制备方法,包括
    -提供前驱体组合物,所述前驱体含有锂源、镍源和锰源;
    -烧结所述前驱体组合物,获得锂镍锰复合氧化物;
    所述锂镍锰复合氧化物材料的K值为1-2,所述K值按下式计算:
    K=D v50/d v50
    其中,d v50为所述锂镍锰复合氧化物材料的晶粒的体积中值粒径;
    其中,D v50所述锂镍锰复合氧化物材料的体积中值颗粒粒径。
  13. 根据权利要求12所述的方法,其中,所述锂镍锰复合氧化物的通式如式I:
    Li aNi 0.5-xMn 1.5-yM x+yO 4-zX z    式I
    式I中,元素M选自Ti、Zr、W、Nb、Al、Mg、P、Mo、V、Cr、Zn、或其组合;
    式I中,元素X选自F、Cl、I、或其组合;
    式I中,0.9≤a≤1.1,-0.2≤x≤0.2(例如0≤x≤0.2),-0.2≤y≤0.3(例如0≤y≤0.3),0≤z≤1。
  14. 根据权利要求12-13任一项所述的方法,其特征在于,满足以下一项或多项:
    i.所述镍源与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值为0.4-1;
    ii.所述锰源与所述锂镍锰复合氧化物材料的体积中值颗粒粒径的比值为0.4-1;
    iii.所述锂源体积中值颗粒粒径为1-20μm。
  15. 根据权利要求12-14任一项所述的方法,其中,所述烧结包括第一热处理阶段;
    所述第一热处理阶段的峰值温度为950℃-1200℃,所述第一热处理阶段在峰值温度的保温时间为5h-30h。
  16. 根据权利要求15任一项所述的方法,所述第一热处理升温至峰值温度的升温速率小于或等于5℃/min,可选0.5-3℃/min。
  17. 根据权利要求12-16任一项所述的方法,其中,所述烧结还包括在第一热处理阶段后的第二热处理阶段:
    所述第二热处理阶段的峰值温度为550℃-680℃,所述第二热处理阶段的时间为5h-50h。
  18. 根据权利要求12-17任一项所述的方法,其中,还包括在烧结前球磨所述前驱体组合物。;
    可选地,球磨时间为2h以上,例如可选2-6h。
  19. 一种二次电池,包括正极极片,所述正极极片包括正极活性材料,所述正极活性材料包括权利要求1-11任一项所述的锂镍锰 复合氧化物材料或权利要求12-18任一项所述的方法制备得到的锂镍锰复合氧化物。
  20. 一种用电装置,包括如权利要求19所述的二次电池。
PCT/CN2021/126698 2021-10-27 2021-10-27 锂镍锰复合氧化物材料、二次电池和用电装置 WO2023070368A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21946248.8A EP4250401A4 (en) 2021-10-27 2021-10-27 LITHIUM-NICKEL-MANGANESE BASED MIXED OXIDE MATERIAL, SECONDARY BATTERY AND ELECTRICAL DEVICE
KR1020237000287A KR20230062803A (ko) 2021-10-27 2021-10-27 리튬-니켈-망간 복합 산화물 소재, 이차전지 및 전기기기
PCT/CN2021/126698 WO2023070368A1 (zh) 2021-10-27 2021-10-27 锂镍锰复合氧化物材料、二次电池和用电装置
JP2023501335A JP2023553772A (ja) 2021-10-27 2021-10-27 リチウムニッケルマンガン複合酸化物材料、二次電池と電力消費装置
CN202180094468.XA CN116941069A (zh) 2021-10-27 2021-10-27 锂镍锰复合氧化物材料、二次电池和用电装置
US18/173,328 US20230216047A1 (en) 2021-10-27 2023-02-23 Lithium-nickel-manganese-based composite oxide material, secondary battery, and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126698 WO2023070368A1 (zh) 2021-10-27 2021-10-27 锂镍锰复合氧化物材料、二次电池和用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,328 Continuation US20230216047A1 (en) 2021-10-27 2023-02-23 Lithium-nickel-manganese-based composite oxide material, secondary battery, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2023070368A1 true WO2023070368A1 (zh) 2023-05-04

Family

ID=86160283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126698 WO2023070368A1 (zh) 2021-10-27 2021-10-27 锂镍锰复合氧化物材料、二次电池和用电装置

Country Status (6)

Country Link
US (1) US20230216047A1 (zh)
EP (1) EP4250401A4 (zh)
JP (1) JP2023553772A (zh)
KR (1) KR20230062803A (zh)
CN (1) CN116941069A (zh)
WO (1) WO2023070368A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080419A (zh) * 2023-10-16 2023-11-17 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、正极极片、二次电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082581A (ja) * 2011-10-11 2013-05-09 Toyota Industries Corp リチウム含有複合酸化物粉末およびその製造方法
CN105226270A (zh) * 2015-10-22 2016-01-06 北京科技大学 具有镍锰浓度梯度的锂镍锰氧化物正极材料及其制备方法
CN105428628A (zh) * 2015-12-28 2016-03-23 安徽工业大学 一种多孔球形的高压锂离子电池正极材料的制备方法
CN110304665A (zh) * 2019-07-11 2019-10-08 兰州理工大学 一种微米级单晶镍锰酸锂正极材料的制备方法
CN113178566A (zh) * 2021-04-26 2021-07-27 宁波容百新能源科技股份有限公司 一种尖晶石型单晶无钴高电压镍锰酸锂正极材料、其制备方法及锂离子电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010862A1 (ko) * 2012-07-09 2014-01-16 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체, 그 제조방법, 및 리튬 복합 전이금속 산화물
JP6604080B2 (ja) * 2015-08-04 2019-11-13 日立化成株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極材料及びリチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082581A (ja) * 2011-10-11 2013-05-09 Toyota Industries Corp リチウム含有複合酸化物粉末およびその製造方法
CN105226270A (zh) * 2015-10-22 2016-01-06 北京科技大学 具有镍锰浓度梯度的锂镍锰氧化物正极材料及其制备方法
CN105428628A (zh) * 2015-12-28 2016-03-23 安徽工业大学 一种多孔球形的高压锂离子电池正极材料的制备方法
CN110304665A (zh) * 2019-07-11 2019-10-08 兰州理工大学 一种微米级单晶镍锰酸锂正极材料的制备方法
CN113178566A (zh) * 2021-04-26 2021-07-27 宁波容百新能源科技股份有限公司 一种尖晶石型单晶无钴高电压镍锰酸锂正极材料、其制备方法及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250401A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080419A (zh) * 2023-10-16 2023-11-17 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、正极极片、二次电池和用电装置

Also Published As

Publication number Publication date
EP4250401A4 (en) 2023-11-22
EP4250401A1 (en) 2023-09-27
KR20230062803A (ko) 2023-05-09
JP2023553772A (ja) 2023-12-26
US20230216047A1 (en) 2023-07-06
CN116941069A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2021057428A1 (zh) 二次电池及含有该二次电池的电池模块、电池包、装置
WO2023015429A1 (zh) 复合金属氧化物材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2023197807A1 (zh) 正极材料及其制备方法、复合正极材料、正极极片及二次电池
WO2024007142A1 (zh) 负极极片、二次电池、电池模块、电池包及用电装置
WO2023070368A1 (zh) 锂镍锰复合氧化物材料、二次电池和用电装置
WO2024051216A1 (zh) 复合正极活性材料及其制备方法和包含其的用电装置
WO2023240598A1 (zh) 改性正极材料、其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2022257146A1 (zh) 复合正极材料及其制备方法、二次电池及包含该二次电池的电池组和用电装置
CN117916912A (zh) 正极活性材料及其制备方法、二次电池、电池模块、电池包和用电装置
WO2023115527A1 (zh) 一种尖晶石型含镍锰锂复合氧化物、其制备方法及含有其的二次电池和用电装置
WO2024007159A1 (zh) 电极组件、二次电池、电池模块、电池包及用电装置
WO2023197240A1 (zh) 正极活性材料、二次电池、电池模块、电池包和用电装置
WO2023023984A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置
WO2024198700A1 (zh) 正极活性材料组合物、正极极片、电池及用电装置
WO2023124645A1 (zh) 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置
WO2024036472A1 (zh) 正极活性材料及其制备方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2023092491A1 (zh) 一种正极活性材料及其制备方法和应用
WO2023109363A1 (zh) 一种正极极片、二次电池、电池模块、电池包和用电装置
WO2024077522A1 (zh) 负极活性材料的制备方法、负极活性材料、二次电池和用电装置
WO2024065151A1 (zh) 隔离膜及其制备方法、二次电池、电池模块、电池包及用电装置
WO2023164931A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2023193231A1 (zh) 一种二次电池、相应正极活性材料的制备方法、电池模块、电池包和用电装置
WO2024026621A1 (zh) 改性富锂锰基材料、富锂锰基材料的改性方法、二次电池及用电装置
WO2024108520A1 (zh) 二次电池和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023501335

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021946248

Country of ref document: EP

Effective date: 20230203

WWE Wipo information: entry into national phase

Ref document number: 202327021043

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094468.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE