WO2023124645A1 - 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置 - Google Patents

正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置 Download PDF

Info

Publication number
WO2023124645A1
WO2023124645A1 PCT/CN2022/133101 CN2022133101W WO2023124645A1 WO 2023124645 A1 WO2023124645 A1 WO 2023124645A1 CN 2022133101 W CN2022133101 W CN 2022133101W WO 2023124645 A1 WO2023124645 A1 WO 2023124645A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
battery
secondary battery
present application
Prior art date
Application number
PCT/CN2022/133101
Other languages
English (en)
French (fr)
Inventor
钟韡
张小文
秦鹏程
林明翔
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22913903.5A priority Critical patent/EP4362124A1/en
Publication of WO2023124645A1 publication Critical patent/WO2023124645A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of secondary batteries, in particular to positive electrode active materials for secondary batteries, a preparation method for positive electrode materials, positive electrode sheets containing the same, secondary batteries, battery modules, battery packs and electrical devices.
  • secondary batteries have been widely used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, as well as electric tools, electric bicycles, electric motorcycles, electric vehicles, Military equipment, aerospace and other fields. Due to the great development of secondary batteries, higher requirements have been put forward for their energy density, cycle performance and safety performance.
  • the present application is made in view of the above-mentioned problems, and its purpose is to provide a positive electrode active material for a secondary battery so as to solve the problem of insufficient low-temperature power, especially low-temperature low-state-of-charge (SOC) long-pulse discharge power.
  • SOC low-temperature low-state-of-charge
  • the present application provides a positive electrode active material for a secondary battery, a preparation method of the positive electrode material, a positive electrode sheet containing the same, a secondary battery, a battery module, a battery pack and an electrical device.
  • the first aspect of the present application provides a secondary battery cathode active material, comprising lithium iron phosphate as the first active material and a compound having the general formula Li a M(XO 4 )Y b as the second active material,
  • M is selected from Fe, Mn, Co, Ni, Ti, V or a combination thereof;
  • X is selected from one of P, S, Si, As, Mo or W;
  • Y is selected from F;
  • a is any of 1 to 2 Value;
  • b is any value from 0 to 1.
  • the secondary battery using the positive electrode active material of the present application can also be continuously discharged at low temperature.
  • M is selected from Ti or Fe
  • X is selected from P or S
  • Y is F
  • a is 1
  • b is 1.
  • the plateau voltage of the second active material is less than 3.22V.
  • the content of the second active material is 2 to 15% by weight, optionally 5 to 10% by weight, based on the total weight of the first active material and the second active material.
  • the first active material is physically combined with the second active material; preferably, the second active material is coated on the surface of the first active material.
  • the first active material is physically combined with the second active material without solid phase sintering.
  • the Dv50 particle size of the second active material ranges from 10 nm to 5 ⁇ m, optionally from 15 nm to 500 nm, and further optionally from 20 nm to 100 nm.
  • the second aspect of the present application also provides a method for preparing a positive electrode material, comprising the following steps:
  • step (2) Coating the positive electrode slurry obtained in step (1) on the positive electrode current collector, and drying to prepare the secondary battery positive electrode material.
  • the positive electrode active material comprises lithium iron phosphate as the first active material, and a compound having the general formula Li a M(XO 4 )Y b as the second active material,
  • M is selected from Fe, Mn, Co, Ni, Ti, V or a combination thereof;
  • X is selected from one of P, S, Si, As, Mo or W;
  • Y is selected from F;
  • a is any of 1 to 2 Value;
  • b is any value from 0 to 1.
  • the preparation method does not include the step of performing solid phase sintering on the positive electrode slurry.
  • the second active material of the general formula Li a M(XO 4 )Y b is prepared by a ceramic preparation method or an ionothermal synthesis method.
  • the third aspect of the present application provides a positive electrode sheet, including the secondary battery positive electrode active material of the first aspect of the present application or the positive electrode material prepared by the method of the second aspect.
  • the fourth aspect of the present application provides a secondary battery, including the positive electrode active material of the secondary battery of the first aspect of the present application, the positive electrode material prepared by the method of the second aspect or the positive electrode sheet of the third aspect of the present application.
  • a fifth aspect of the present application provides a battery module including the secondary battery of the fourth aspect of the present application.
  • a sixth aspect of the present application provides a battery pack including the secondary battery of the fourth aspect of the present application or the battery module of the fifth aspect of the present application.
  • the positive electrode sheet, secondary battery, battery module, battery pack or electrical device of the present application includes the positive electrode active material of the first aspect of the present application, and therefore has at least the same advantages as the positive electrode material described in the first aspect of the present application.
  • FIG. 1 is a schematic diagram of a secondary battery according to an embodiment of the present application.
  • FIG. 2 is an exploded view of the secondary battery according to one embodiment of the present application shown in FIG. 1 .
  • FIG. 4 is a schematic diagram of a battery pack according to an embodiment of the present application.
  • FIG. 5 is an exploded view of the battery pack according to one embodiment of the present application shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of an electrical device in which a secondary battery is used as a power source according to an embodiment of the present application.
  • the numerical range "a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
  • the numerical range "0-5" indicates that all real numbers between "0-5" have been listed in this article, and "0-5" is only an abbreviated representation of the combination of these values.
  • a certain parameter is an integer ⁇ 2
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed in sequence, and may also include steps (b) and (a) performed in sequence.
  • steps (c) means that step (c) may be added to the method in any order, for example, the method may include steps (a), (b) and (c) , may also include steps (a), (c) and (b), may also include steps (c), (a) and (b) and so on.
  • the “comprising” and “comprising” mentioned in this application mean open or closed.
  • the “comprising” and “comprising” may mean that other components not listed may be included or included, or only listed components may be included or included.
  • the term "or” is inclusive unless otherwise stated.
  • the phrase "A or B” means “A, B, or both A and B.” More specifically, the condition "A or B” is satisfied by either of the following: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; or both A and B are true (or exist).
  • D V 50 is a well-known meaning in the art, and Dv50 refers to the particle size corresponding to the cumulative volume percentage of material particles or powders reaching 50%, which can be tested by methods known in the art. For example, referring to the standard GB/T 19077.1-2016, it can be directly tested with a laser diffraction particle size distribution measuring instrument (such as Malvern Mastersizer 3000 laser particle size analyzer).
  • a laser diffraction particle size distribution measuring instrument such as Malvern Mastersizer 3000 laser particle size analyzer.
  • Electric vehicles using lithium iron phosphate batteries have insufficient cruising range and power at low temperatures (the lower limit voltage protection occurs in actual working conditions, and more power cannot be released, and the actual cruising range is reduced).
  • Low temperature and low SOC (state of charge) power of lithium iron phosphate is insufficient, especially low temperature and low SOC long pulse discharge power is insufficient.
  • the solutions in the prior art include high-conductivity electrolyte, thin coating, etc., but the actual improvement effect is very limited.
  • the inventors of the present application found that adding a small amount of the second type of material with a lower discharge voltage platform than lithium iron phosphate to lithium iron phosphate can significantly improve the discharge capability at low temperature and low SOC.
  • the second type of material when the battery is discharged to a low SOC, because the discharge voltage platform of the second type of material is lower than that of lithium iron phosphate, the second type of material itself is in a high SOC state, has a strong discharge capacity, and can quickly embed a large amount of lithium Ions to keep the battery continuously discharged at a certain voltage.
  • the inventors of the present application found that when the positive electrode active material contains the following materials, the discharge capacity of the battery at low temperature and low SOC can be significantly improved:
  • Lithium iron phosphate as the first active material and a compound having the general formula Li a M (XO 4 ) Y b as the second active material, wherein M is selected from Fe, Mn, Co, Ni, Ti, V or combinations thereof; X is selected from one of P, S, Si, As, Mo or W; Y is selected from F; a is any value from 1 to 2; b is any value from 0 to 1.
  • the first aspect of the present application provides a positive electrode active material, comprising lithium iron phosphate as the first active material and a compound having the general formula Li a M(XO 4 )Y b as the second active material,
  • M is selected from Fe, Mn, Co, Ni, Ti, V or a combination thereof;
  • X is selected from one of P, S, Si, As, Mo or W;
  • Y is selected from F;
  • a is any of 1 to 2 Value;
  • b is any value from 0 to 1.
  • M is selected from Ti or Fe
  • X is selected from P or S
  • Y is F
  • a is 1
  • b is 1. Due to the use of metal elements such as Fe, Ti, etc., the cost of use is reduced.
  • the electronic conductivity of the second active material is ⁇ 1*10 -9 S cm -1 (room temperature); the ion conductivity is ⁇ 2*10 -9 S cm -1 (147°C).
  • the electrical conductivity of the second active material is better than that of lithium iron phosphate material.
  • the content of the second active material is 2 to 15% by weight, preferably 5 to 10% by weight, based on the total weight of the first active material and the second active material.
  • the content of the second active material is within the above range, the internal resistance of the battery using the positive electrode material of the present application is smaller and the power at low temperature is higher.
  • the first active material is physically combined with the second active material; preferably, the second active material is coated on the surface of the first active material.
  • “physical combination” means simply physical mixing of the first active material and the second active material or coating of the second active material on the surface of the first active material.
  • the first active material and the second active material are physically combined without solid state sintering. If the positive electrode active material is solid-state sintered, it will increase the manufacturing cost and process complexity of the battery in actual use. Therefore, the present invention solves the problem of low power at low temperature only through a simple physical combination of positive active materials.
  • the Dv50 particle size of the second active material ranges from 20 nm to 5 ⁇ m, preferably from 20 nm to 1 ⁇ m, preferably from 20 nm to 100 nm.
  • the inventors of the present application found that when the particle size of the second active material is from micron to nano, the electrical conductivity and lithium diffusion rate of the positive electrode material can be increased, thereby further improving the power performance of the battery.
  • the cathode material of the present application may optionally include a conductive agent in addition to the cathode active material.
  • a conductive agent in addition to the cathode active material.
  • the type of conductive agent which can be selected by those skilled in the art according to actual needs.
  • the conductive agent used in the positive electrode film layer can be selected from more than one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
  • the positive electrode material also optionally includes a binder.
  • the binder may be selected from polyvinylidene fluoride (PVdF), styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), At least one of sodium alginate (SA), polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • PAA polyacrylic acid
  • PAAS sodium polyacrylate
  • PAM polyacrylamide
  • PVA polyvinyl alcohol
  • SA sodium alginate
  • PMAA polymethacrylic acid
  • CMCS carboxymethyl chitosan
  • the positive electrode material can be prepared by:
  • step (2) Coating the positive electrode slurry obtained in step (1) on the positive electrode current collector, and drying to prepare a composite secondary battery positive electrode material.
  • the positive electrode active material comprises lithium iron phosphate as the first active material, and a compound having the general formula Li a M(XO 4 )Y b as the second active material,
  • M is selected from Fe, Mn, Co, Ni, Ti, V or a combination thereof;
  • X is selected from one of P, S, Si, As, Mo or W;
  • Y is selected from F;
  • a is any of 1 to 2 Value;
  • b is any value from 0 to 1
  • the preparation method does not include the step of performing solid-state sintering on the positive electrode slurry.
  • the second active material of the general formula Li a M(XO 4 )Y b is prepared by a ceramic preparation method or an ionothermal synthesis method.
  • the Li a M(XO 4 )Y b material with micron particle size can be prepared by the ceramic preparation method.
  • the preparation steps are as follows: mill the stoichiometric ratio of TiF 3 and Li 3 PO 4 precursors in a ball mill for a period of time, then place the powder in a stainless steel or platinum container, and sinter at high temperature under an inert gas for a period of time. The sintered powder is cleaned and then dried in an oven to prepare the micron-sized LiTiPO 4 F material.
  • Li a M(XO 4 )Y b materials with nanoscale particle size can be prepared by ion thermal synthesis.
  • the preparation steps are as follows: add 1,2-dimethyl-3-hydroxypropylimidazole bis(trifluoromethylsulfonyl)imide to TiF 3 and Li 3 PO 4 in an equimolar ratio, stir for a while, It is then heated at high temperature for a period of time, and finally cooled to room temperature. The powder is cleaned and then dried in an oven to prepare the nanoscale LiTiPO 4 F material.
  • the ionothermal synthesis method has been described in the patent US9590245B2, the disclosure of which is fully incorporated herein by reference.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector, and the positive electrode film layer includes the positive electrode material according to the first aspect of the present application.
  • the positive electrode current collector has two opposing surfaces in its own thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposing surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • aluminum foil can be used as the metal foil.
  • the composite current collector may include a polymer material base and a metal layer formed on at least one surface of the polymer material base.
  • the composite current collector can be formed by forming metal materials (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • PP polypropylene
  • PET polyethylene glycol ester
  • PBT polybutylene terephthalate
  • PS polystyrene
  • PE polyethylene
  • the positive electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the positive electrode sheet, such as active materials, conductive agents, binders and any other components, are dispersed in a solvent (such as N- Methylpyrrolidone) to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and after drying, cold pressing and other processes, the positive electrode sheet can be obtained.
  • a solvent such as N- Methylpyrrolidone
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
  • the negative electrode current collector has two opposing surfaces in its own thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposing surfaces of the negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • copper foil can be used as the metal foil.
  • the composite current collector may include a base layer of polymer material and a metal layer formed on at least one surface of the base material of polymer material.
  • Composite current collectors can be formed by metal materials (copper, copper alloys, nickel, nickel alloys, titanium, titanium alloys, silver and silver alloys, etc.) on polymer material substrates (such as polypropylene (PP), polyethylene terephthalic acid It is formed on substrates such as ethylene glycol ester (PET), polybutylene terephthalate (PBT), polystyrene (PS), polyethylene (PE), etc.).
  • the negative electrode film layer usually includes negative electrode active materials and optional binders, optional conductive agents and other optional additives, and is usually formed by coating and drying negative electrode slurry .
  • the negative electrode slurry coating is usually formed by dispersing the negative electrode active material and optional conductive agent and binder in a solvent and stirring them evenly.
  • the solvent can be N-methylpyrrolidone (NMP) or deionized water.
  • the conductive agent may be selected from one or more of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • the binder may be selected from styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), One or more of polymethacrylic acid (PMAA) and carboxymethyl chitosan (CMCS).
  • SBR styrene-butadiene rubber
  • PAA polyacrylic acid
  • PAAS sodium polyacrylate
  • PAM polyacrylamide
  • PVA polyvinyl alcohol
  • SA sodium alginate
  • PMAA polymethacrylic acid
  • CMCS carboxymethyl chitosan
  • thickeners such as sodium carboxymethylcellulose (CMC-Na)
  • CMC-Na sodium carboxymethylcellulose
  • the negative electrode film layer may also optionally include other commonly used negative electrode active materials.
  • other commonly used negative electrode active materials artificial graphite, natural graphite, soft Carbon, hard carbon, silicon-based materials, tin-based materials and lithium titanate, etc.
  • the silicon-based material can be selected from one or more of elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys.
  • the tin-based material can be selected from more than one of simple tin, tin oxide compounds and tin alloys.
  • the negative electrode sheet can be prepared in the following manner: the above-mentioned components used to prepare the negative electrode sheet, such as negative electrode active material, conductive agent, binder and any other components, are dispersed in a solvent (such as deionized water) to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and after drying, cold pressing and other processes, the negative electrode sheet can be obtained.
  • a solvent such as deionized water
  • the electrolyte plays the role of conducting ions between the positive pole piece and the negative pole piece.
  • the present application has no specific limitation on the type of electrolyte, which can be selected according to requirements.
  • the electrolyte may be selected from at least one of a solid electrolyte and a liquid electrolyte (ie, electrolyte solution).
  • the electrolyte is an electrolytic solution.
  • the electrolyte solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiAsF 6 (lithium hexafluoroarsenate), LiFSI (difluorosulfonate Lithium imide), LiTFSI (lithium bistrifluoromethanesulfonyl imide), LiTFS (lithium trifluoromethanesulfonate), LiDFOB (lithium difluorooxalate borate), LiBOB (lithium dioxalate borate), LiPO 2 F 2 (lithium difluorophosphate), LiDFOP (lithium difluorooxalatephosphate), and LiTFOP (lithium tetrafluorooxalatephosphate).
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiClO 4 lithium
  • the solvent may be selected from ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), Dipropyl Carbonate (DPC), Methyl Propyl Carbonate (MPC), Ethyl Propyl Carbonate (EPC), Butylene Carbonate (BC), Fluoroethylene Carbonate (FEC), Methyl Formate (MF), Methyl Acetate Ester (MA), Ethyl Acetate (EA), Propyl Acetate (PA), Methyl Propionate (MP), Ethyl Propionate (EP), Propyl Propionate (PP), Methyl Butyrate (MB) , ethyl butyrate (EB), 1,4-butyrolactone (GBL), sulfolane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and diethyl s
  • additives may optionally be included in the electrolyte.
  • additives can include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performances of batteries, such as additives that improve battery overcharge performance, additives that improve battery high-temperature performance, and battery low-temperature performance. additives, etc.
  • Secondary batteries using electrolytes and some secondary batteries using solid electrolytes also include a separator.
  • the separator is arranged between the positive pole piece and the negative pole piece to play the role of isolation.
  • the present application has no particular limitation on the type of the isolation membrane, and any known porous structure isolation membrane with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film can be selected from more than one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the separator can be a single-layer film or a multi-layer composite film, without any particular limitation. When the separator is a multilayer composite film, the materials of each layer may be the same or different, and there is no particular limitation.
  • the positive pole piece, the negative pole piece and the separator can be made into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer package can be used to package the above-mentioned electrode assembly and electrolyte.
  • the outer packaging of the secondary battery can be a hard case, such as a hard plastic case, aluminum case, steel case, and the like.
  • the outer packaging of the secondary battery may also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, and examples of plastic include polypropylene (PP), polybutylene terephthalate (PBT), and polybutylene succinate (PBS).
  • FIG. 1 shows a square-shaped secondary battery 5 as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plates enclose to form an accommodating cavity.
  • the casing 51 has an opening communicating with the accommodating cavity, and the cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator can be formed into an electrode assembly 52 through a winding process or a lamination process.
  • the electrode assembly 52 is packaged in the accommodating chamber. Electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery module.
  • FIG. 3 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4 .
  • the plurality of secondary batteries 5 may be fixed by fasteners.
  • the battery module 4 may also include a case having a housing space in which a plurality of secondary batteries 5 are accommodated.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be one or more, and the specific number can be selected by those skilled in the art according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery box and a plurality of battery modules 4 disposed in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3, and the upper box body 2 can cover the lower box body 3 to form a closed space for accommodating the battery module 4.
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the present application also provides an electric device, which includes at least one of the secondary battery, battery module, or battery pack provided in the present application.
  • the secondary battery, battery module, or battery pack can be used as a power source of the electric device, and can also be used as an energy storage unit of the electric device.
  • the electric devices may include mobile devices (such as mobile phones, notebook computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, etc.) , electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc., but not limited thereto.
  • a secondary battery, a battery module or a battery pack can be selected according to its use requirements.
  • FIG. 6 is an example of an electrical device.
  • the electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or a battery module may be used.
  • a device may be a cell phone, tablet, laptop, or the like.
  • the device is generally required to be light and thin, and a secondary battery can be used as a power source.
  • Ceramic preparation method (materials with micron-scale particle size): the stoichiometric ratio of TiF 3 (CAS: 13470-08-1, purchased from Aladdin) and Li 3 PO 4 (CAS: 10377-52-3 , purchased from Sinopharm Reagent) the precursor was milled in a ball mill for about 10-30 minutes (the reaction formula is as follows: TiF 3 +Li 3 PO 4 ⁇ LiTiPO 4 F+2LiF), and the powder obtained after ball milling was placed in a stainless steel or platinum container , sintered at 700°C for 24h under Ar inert gas. Rinse the sintered powder with cold water to remove LiF quickly, then wash it with acetone, and then dry it in an oven at 60°C. Finally, a LiTiPO 4 F material with a Dv50 particle size of 1-5 ⁇ m is obtained.
  • Ion thermal synthesis method (materials with nanometer particle size): add 5-10ml of 1,2 -dimethyl- 3 -hydroxypropylimidazole bis (Trifluoromethylsulfonyl)imide (CAS: 169051-76-7, purchased from Aladdin), stirred for 10-30 minutes, heated at 200-400°C for 24-48h, and cooled to room temperature. The powder was washed with acetone and cold water to remove the remaining ionic liquid and LiF, and then dried in an oven at 60 °C. Finally, a LiTiPO 4 F material with a Dv50 particle size of 20-100 nm is obtained.
  • LiFePO 4 F material In addition to the precursors being FeF 3 (CAS: 7783-50-8, purchased from Sinopharm Reagent) and Li 3 PO 4 (CAS: 10377-52-3, purchased from Sinopharm Reagent), according to the reaction formula Except for the stoichiometric ratio of (FeF 3 +Li 3 PO 4 ⁇ LiFePO 4 F+2LiF), a LiFePO 4 F material having a Dv50 of 1 to 5 ⁇ m was obtained by the same method as the above ceramic preparation method.
  • LiFeSO 4 F material the stoichiometric ratio of FeSO 4 7H 2 O (CAS: 7782-63-0, purchased from Sinopharm Reagent) and LiF (CAS: 70100-89-9, purchased from Aladdin) with high energy Ball mill ball milling for 8-24h, and then sintering at a high temperature of 350-400°C for 50-70h. Finally, a LiFeSO 4 F material with a Dv50 particle size of 500nm-2 ⁇ m is obtained.
  • Li 2 FeSiO 4 material the stoichiometric ratio of Li 2 SiO 3 (CAS: 10102-24-6, purchased from Sinopharm Reagent) and FeC 2 O 4 ⁇ 2H 2 O (CAS: 6047-25-2, purchased from from Sinopharm Reagent) was thoroughly mixed in acetone. After the acetone evaporates, the mixture is heated at 700-800°C for 24-48h, and a mixed flow of CO/CO 2 is introduced to prevent the oxidation of Fe 2+ . Finally, a Li 2 FeSiO 4 material with a Dv50 particle size of 100-300 nm is obtained.
  • LiFePO 4 material purchased from Sinopharm Reagent.
  • LiPF 6 material lithium hexafluorophosphate, CAS: 21324-40-3, purchased from Sinopharm Reagent.
  • the first active material LiFePO 4 , the second active material LiTiPO 4 F (obtained by ceramic preparation method), binder polyvinylidene fluoride (PVDF), conductive carbon black and dispersant (sodium lauryl sulfate) were prepared according to The mass ratio is 96.228:0.972:1.8:0.7:0.3 dissolved in the solvent N-methylpyrrolidone (NMP), and stirred to a uniform transparent system under the action of a vacuum mixer to obtain the positive electrode slurry.
  • NMP N-methylpyrrolidone
  • the positive electrode slurry is mixed with 0.0987mg/ The coating amount of mm 2 is evenly coated on the aluminum foil of the positive electrode current collector, dried at room temperature, then transferred to an oven for drying, and then subjected to cold pressing and slitting to obtain the positive electrode sheet.
  • SBR binder styrene-butadiene rubber
  • CMC thickener sodium carboxymethyl cellulose
  • Ethylene carbonate (EC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) were uniformly mixed in a volume ratio of 1:1:1 to obtain an organic solvent. Dissolve 1 mol/L LiPF 6 in the above-mentioned organic solvent, then add 2% vinylene carbonate (VC), mix well, and obtain an electrolyte solution.
  • a polypropylene film with a thickness of 12 ⁇ m as a separator, stack the positive electrode, separator, and negative electrode in order, so that the separator is between the positive and negative electrodes to play the role of isolation, and the electrode assembly is placed in the battery case In the body, the electrolyte is injected after drying, and then the secondary battery is produced through processes such as formation and standing.
  • Comparative Example 1 The process of Comparative Example 1 is the same as that of Example 1, except that no second active material is added during the preparation of the positive electrode material.
  • Table 1 The condition parameters of embodiment and comparative example
  • the plateau voltage of the second active material will affect the improvement of low-temperature power, and materials with a large plateau voltage difference from lithium iron phosphate (plateau voltage ⁇ 3.22V), such as LiTiPO 4 F, are preferred.
  • Example 10 of the present application was prepared according to the same method as Example 3, except that LiTiPO 4 F was coated on the surface of LiFePO4 during the preparation of the positive electrode material.
  • Examples 9 and 11 of the present application were prepared according to the same method as Examples 3 and 10, except that the LiTiPO 4 F material was prepared by ionothermal synthesis, and its particle size Dv50 was 20-100 nm.
  • the particle size of the second active material is from micron to nano
  • the electrical conductivity and lithium diffusion rate of the positive electrode material can be improved, thereby further improving the power performance of the battery.
  • the coating of the second active material on the surface of the first active material can also further improve the low-temperature power of the battery.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solutions of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same effects are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了正极活性材料,包含作为第一活性材料的磷酸铁锂和作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,其中M选自Fe、Mn、Co、Ni、Ti、V或其组合,X选自P、S、Si、As、Mo或W中的一种,Y选自F,a为1至2的任意数值,b为0至1的任意数值,制备包含其的正极材料的方法,以及包含所述正极活性材料的正极极片、二次电池、电池模块、电池包和用电装置。

Description

正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置 技术领域
本申请涉及二次电池技术领域,尤其涉及二次电池正极活性材料、正极材料的制备方法、包含其的正极极片、二次电池、电池模块、电池包和用电装置。
背景技术
近年来,随着二次电池的应用范围越来越广泛,二次电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。由于二次电池取得了极大的发展,因此对其能量密度、循环性能和安全性能等也提出了更高的要求。
但是,在低温充放电过程中,基于磷酸铁锂的二次电池的低温功率一直无法得到有效改善。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种二次电池正极活性材料,使得解决低温功率不足、尤其是低温低荷电状态(SOC)长脉冲放电功率不足的问题。
为了达到上述目的,本申请提供了一种二次电池用的正极活性材料、正极材料的制备方法、包含其的正极极片、二次电池、电池模块、电池包和用电装置。
本申请的第一方面提供了一种二次电池正极活性材料,包含作为第一活性材料的磷酸铁锂和作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,
其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值。
应用本申请的正极活性材料的二次电池在低温下也能持续放电。
在任意实施方式中,可选地,M选自Ti或Fe,X选自P或S,Y为F,a为1,b为1。
在任意实施方式中,可选地,第二活性材料的平台电压小于3.22V。
在任意实施方式中,可选地,第二活性材料的含量为2至15重量%,可选地5至10重量%,基于第一活性材料和第二活性材料的总重量计。
在任意实施方式中,可选地,将第一活性材料与第二活性材料进行物理结合;优选地,将第二活性材料涂覆在第一活性材料的表面。
在任意实施方式中,可选地,第一活性材料与第二活性材料物理结合后不经固相烧结。
在任意实施方式中,可选地,所述第二活性材料的Dv50粒径范围为10nm至5μm,可选为15nm至500nm,进一步可选为20nm至100nm。
本申请的第二方面还提供一种制备正极材料的方法,包括如下步骤:
(1)将本申请第一方面的正极活性材料、粘结剂、导电剂和分散剂加入至溶剂中;
(2)将步骤(1)中所得的正极浆料涂覆至正极集流体上,烘干后制得二次电池正极材料。
在任意实施方式中,可选地,所述正极活性材料包含作为第一活性材料的磷酸铁锂、作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,
其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值。
在任意实施方式中,可选地,所述制备方法不包括对正极浆料进行固相烧结的步骤。
在任意实施方式中,可选地,通式Li aM(XO 4)Y b的第二活性材料通过陶瓷制备法或离子热合成法制备。
本申请的第三方面提供一种正极极片,包括本申请的第一方面的二次电池正极活性材料或通过第二方面的方法制备的正极材料。
本申请的第四方面提供一种二次电池,包括本申请的第一方面的二次电 池正极活性材料、通过第二方面的方法制备的正极材料或本申请的第三方面的正极极片。
本申请的第五方面提供一种电池模块,包括本申请的第四方面的二次电池。
本申请的第六方面提供一种电池包,包括本申请的第四方面的二次电池或本申请的第五方面的电池模块。
本申请的第七方面提供一种用电装置,包括选自本申请的第四方面的二次电池、本申请的第五方面的电池模块或本申请的第六方面的电池包中的至少一种。
本申请的正极极片、二级电池、电池模块、电池包或用电装置包括本申请第一方面的正极活性材料,因此至少具有与本申请第一方面所述的正极材料相同的优势。
附图说明
图1是本申请一实施方式的二次电池的示意图。
图2是图1所示的本申请一实施方式的二次电池的分解图。
图3是本申请一实施方式的电池模块的示意图。
图4是本申请一实施方式的电池包的示意图。
图5是图4所示的本申请一实施方式的电池包的分解图。
图6是本申请一实施方式的二次电池用作电源的用电装置的示意图。
附图标记说明:
1电池包;2上箱体;3下箱体;4电池模块;5二次电池;51壳体;52电极组件;53顶盖组件
具体实施方式
以下,适当地参照附图详细说明具体公开了本申请的二次电池正极活性材料、正极材料的制备方法、包含其的正极极片、二次电池、电池模块、电池包和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。 此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
本申请中使用的术语“以上”、“以下”包含本数,例如“一种以上”是指一种或多种,“A和B中的一种以上”是指“A”、“B”或“A和B”。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
在本申请中,D V50均为本领域公知的含义,Dv50指材料颗粒或粉末累计体积百分数达到50%时所对应的粒径,可以采用本领域已知的方法测试。例如参照标准GB/T 19077.1-2016,用激光衍射粒度分布测量仪(如Malvern Mastersizer 3000激光粒度仪)直接测试得到。
除非另有说明,否则本发明上下文中的含量和百分比均基于质量计。
使用磷酸铁锂电池的电动汽车在低温出现续航里程及功率不足(在实际工况中出现下限电压保护,无法放出更多电量,实际续航里程减小)。磷酸铁锂低温低SOC(state of charge)功率不足,尤其是低温低SOC长脉冲放电功率不足。现有技术中的解决方案包括高导电解液、薄涂布等,但是实际改善效果很有限。本申请发明人发现,在磷酸铁锂中加入少量放电电压平台比磷酸铁锂更低的第二类材料,能够显著改善低温低SOC下的放电能力。不囿于任何理由,认为当电池放电到低SOC时,由于第二类材料的放电电压平台低于磷酸铁锂,第二类材料自身处于高SOC状态,放电能力强,可以快速嵌入大量的锂离子,维持电池在一定电压下持续放电。
经过大量实验,本申请发明人发现当正极活性材料包含如下材料时,能显著改善电池在低温低SOC下的放电能力:
作为第一活性材料的磷酸铁锂和作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值。
[正极材料]
本申请的第一方面提供一种正极活性材料,包含作为第一活性材料的磷酸铁锂和作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,
其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、 Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值。
在一些实施方式中,可选地,M选自Ti或Fe,X选自P或S,Y为F,a为1,b为1。由于使用了金属元素Fe,Ti等,因而降低了使用成本。
在一些实施方式中,可选地,第二活性材料的平台电压小于3.22V。平台电压是电池充放电过程中电压变化平缓区间对应的电压平均值。所述平台电压的测试方法如下:将活性材料组装成常规扣式电池,进行充放电克容量测试,电压范围为0.1-3.85V,0.1C充放电。
优选地,第二活性材料的电子导电性为≥1*10 -9S cm -1(室温);离子导电性为≥2*10 -9S cm -1(147℃)。所述第二活性材料的电导性优于磷酸铁锂材料。
在任意实施方式中,可选地,第二活性材料的含量为2至15重量%,优选地5至10重量%,基于第一活性材料和第二活性材料的总重量计。当第二活性材料的含量在上述范围内时,应用本申请正极材料的电池的内阻越小、低温功率越大。
在一些实施方式中,可选地,将第一活性材料与第二活性材料进行物理结合;优选地,将第二活性材料涂覆在第一活性材料的表面。在本文中,“物理结合”意指第一活性材料与第二活性材料简单的物理混合或者第二活性材料涂覆在第一活性材料的表面。当将第二活性材料涂覆在第一活性材料的表面时,应用本申请正极材料的电池的低温功率进一步得到改善。
在一些实施方式中,可选地,第一活性材料与第二活性材料物理结合后不经固相烧结。如果对正极活性材料进行固相烧结,则在实际使用中会增加电池的制备成本和工艺复杂度。因此,本发明仅通过正极活性材料的简单物理结合来解决低温功率低的问题。
在一些实施方式中,可选地,所述第二活性材料的Dv50粒径范围为20nm至5μm,优选20nm至1μm,优选20nm至100nm。本申请发明人发现,当第二活性材料的粒径从微米级趋向纳米化时,可提高正极材料的电导性和锂扩散速率,从而进一步改善电池的功率性能。
本申请的正极材料除了正极活性材料外还可选地包括导电剂。但对导电剂的种类不做具体限制,本领域技术人员可以根据实际需求进行选择。作为 示例,用于正极膜层的导电剂可以选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种以上。
正极材料还可选地包括粘结剂。所述粘结剂可选自聚偏氟乙烯(PVdF)、丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的至少一种。
在一些实施方式中,可以通过以下方式制备正极材料:
(1)将本申请第一方面的正极活性材料、粘结剂、导电剂和分散剂加入至溶剂中;
(2)将步骤(1)中所得的正极浆料涂覆至正极集流体上,烘干后制得复合的二次电池正极材料。
在一些实施方式中,可选地,所述正极活性材料包含作为第一活性材料的磷酸铁锂、作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,
其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值
在一些实施方式中,可选地,所述制备方法不包括对正极浆料进行固相烧结的步骤。
在一些实施方式中,可选地,通式Li aM(XO 4)Y b的第二活性材料通过陶瓷制备法或离子热合成法制备。
通过陶瓷制备法可以制得微米级粒径的Li aM(XO 4)Y b材料。例如其制备步骤如下:将化学计量比的TiF 3和Li 3PO 4前驱体在球磨机中球磨一段时间,随后将粉末放置在不锈钢或铂容器中,在惰性气体下高温烧结一段时间。对烧结后的粉末进行清洗,然后在烘箱中烘干,即可制得微米级的LiTiPO 4F材料。
通过离子热合成法可以制得纳米级粒径的Li aM(XO 4)Y b材料。例如其制备步骤如下:向等摩尔比例的TiF 3和Li 3PO 4中加入1,2-二甲基-3-羟丙基咪唑双(三氟甲基磺酰)亚胺,搅拌一段时间,然后高温加热一段时间,最后冷却至室温。对粉末进行清洗,然后在烘箱中烘干,即可制得纳米级的LiTiPO 4F材 料。所述离子热合成法已记载于专利US9590245B2中,其公开内容通过引用的方式全部纳入本文。
[正极极片]
正极极片包括正极集流体与设置在所述正极集流体的至少一个表面的正极膜层,所述正极膜层包括本申请第一方面的正极材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。
本申请的二次电池中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂(例如N-甲基吡咯烷酮)中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。
[负极极片]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,所述负极膜层包括负极活性材料。
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。
本申请的二次电池中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料(铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲 酸丁二醇酯(PBT)、聚苯乙烯(PS)、聚乙烯(PE)等的基材)上而形成。
本申请的二次电池中,所述负极膜层通常包含负极活性材料以及可选的粘结剂、可选的导电剂和其他可选助剂,通常是由负极浆料涂布干燥而成的。负极浆料涂通常是将负极活性材料以及可选的导电剂和粘结剂等分散于溶剂中并搅拌均匀而形成的。溶剂可以是N-甲基吡咯烷酮(NMP)或去离子水。
作为示例,导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种以上。
作为示例,粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)及羧甲基壳聚糖(CMCS)中的一种以上。
其他可选助剂例如是增稠剂(如羧甲基纤维素钠(CMC-Na))等。
本申请的二次电池中,所述负极膜层除了包括负极活性材料外,还可选地包括其它常用负极活性材料,例如,作为其它常用负极活性材料,可列举出人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的一种以上。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的一种以上。
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂(例如去离子水)中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。
[电解质]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可选自固态电解质及液态电解质(即电解液)中的至少一种。
在一些实施方式中,所述电解质采用电解液。所述电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自LiPF 6(六氟磷酸锂)、LiBF 4(四氟硼 酸锂)、LiClO 4(高氯酸锂)、LiAsF 6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO 2F 2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种以上。
在一些实施方式中,溶剂可选自碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种以上。
在一些实施方式中,所述电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、以及改善电池低温性能的添加剂等。
[隔离膜]
采用电解液的二次电池、以及一些采用固态电解质的二次电池中,还包括隔离膜。隔离膜设置在正极极片和负极极片之间,起到隔离的作用。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种以上。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解质。
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝 壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)以及聚丁二酸丁二醇酯(PBS)等。
另外,以下适当参照附图对本申请的二次电池、电池模块、电池包和用电装置进行说明。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图2,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔内。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。
图3是作为一个示例的电池模块4。参照图3,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以为一个或多个,具体数量本领域技术人员可根据电池包的应用和容量进行选择。
图4和图5是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和 下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池、电池模块、或电池包中的至少一种。所述二次电池、电池模块、或电池包可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等,但不限于此。
作为所述用电装置,可以根据其使用需求来选择二次电池、电池模块或电池包。
图6是作为一个示例的用电装置。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该用电装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本申请实施例涉及的原材料来源如下:
LiTiPO 4F材料的制备:
1)陶瓷制备法(制得微米级粒径的材料):将化学计量比的TiF 3(CAS:13470-08-1,购自阿拉丁)和Li 3PO 4(CAS:10377-52-3,购自国药试剂)前驱体在球磨机中球磨约10-30分钟(反应式如下:TiF 3+Li 3PO 4→LiTiPO 4F+2LiF),将球磨后得到的粉末放在不锈钢或铂容器中,在Ar惰性气 体下700℃烧结24h。将烧结后的粉末用冷水迅速润洗洗掉LiF,再用丙酮清洗,然后在60℃的烘箱中烘干即可。最终制得Dv50粒径为1-5μm的LiTiPO 4F材料。
2)离子热合成法(制得纳米级粒径的材料):在等摩尔比例的TiF 3和Li 3PO 4中加入5-10ml的1,2-二甲基-3-羟丙基咪唑双(三氟甲基磺酰)亚胺(CAS:169051-76-7,购自阿拉丁),搅拌10-30分钟,在200-400℃中加热24-48h,冷却到室温。粉末分别用丙酮和冷水清洗掉余量的离子液体和LiF,再在60℃烘箱中烘干。最终制得Dv50粒径为20-100nm的LiTiPO 4F材料。
LiFePO 4F材料的制备:除了前驱体为FeF 3(CAS:7783-50-8,购自国药试剂)和Li 3PO 4(CAS:10377-52-3,购自国药试剂),按照反应式(FeF 3+Li 3PO 4→LiFePO 4F+2LiF)的计量比以外,通过与上文的陶瓷制备法相同的方法获得Dv50为1-5μm的LiFePO 4F材料。
LiFeSO 4F材料的制备:将化学计量比的FeSO 4·7H 2O(CAS:7782-63-0,购自国药试剂)和LiF(CAS:70100-89-9,购自阿拉丁)用高能球磨机球磨8-24h,再在高温350-400℃下烧结50-70h。最终制得Dv50粒径为500nm-2μm的LiFeSO 4F材料。
Li 2FeSiO 4材料的制备:将化学计量比的Li 2SiO 3(CAS:10102-24-6,购自国药试剂)和FeC 2O 4·2H 2O(CAS:6047-25-2,购自国药试剂)在丙酮中充分混合。丙酮挥发后,混合物在700-800℃下加热24-48h,同时通入CO/CO 2的混合气流用于防止Fe 2+的氧化。最终制得Dv50粒径为100-300nm的Li 2FeSiO 4材料。
LiFePO 4材料:购自国药试剂。
LiPF 6材料:六氟磷酸锂,CAS:21324-40-3,购自国药试剂。
实施例1
【正极极片的制备】
将第一活性材料LiFePO 4、第二活性材料LiTiPO 4F(通过陶瓷制备法获得)、粘结剂聚偏二氟乙烯(PVDF)、导电炭黑和分散剂(十二烷基硫酸钠)按质量比为96.228:0.972:1.8:0.7:0.3溶于溶剂N-甲基吡咯烷酮(NMP)中,在真空搅拌机作用下搅拌至均一透明状体系,获得正极浆料,将正极浆料以0.0987mg/mm 2的涂布量均匀涂覆于正极集流体铝箔上,经室温晾干后转移至烘箱干燥,再经过冷压、分切,得到正极极片。
【负极极片的制备】
将活性物质人造石墨、导电剂乙炔黑、粘结剂丁苯橡胶(SBR)、增稠剂羧甲基纤维素钠(CMC)按照质量比为95:2:2:1溶于溶剂去离子水中,与溶剂去离子水均匀混合后制备成负极浆料;然后将负极浆料以0.219mg/mm 2的涂布量均匀涂覆在负极集流体铜箔上,烘干后得到负极膜片,再经过冷压、分切得到负极极片。
【电解液的制备】
将碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)及碳酸二乙酯(DEC)按照体积比为1:1:1混合均匀,得到有机溶剂。将1mol/L的LiPF 6溶解于上述有机溶剂中,然后加入2%碳酸亚乙烯酯(VC),混合均匀,得到电解液。
【二次电池的制备】
以厚度12μm的聚丙烯膜作为隔离膜,将正极极片、隔离膜、负极极片按顺序叠好,使隔离膜处于正、负极片之间起到隔离的作用,将电极组件置于电池壳体中,干燥后注入电解液,再经过化成、静置等工艺制得二次电池。
其他实施例的条件参数如表1中所示,这些实施例的【正极极片的制备】、【负极极片的制备】、【电解液的制备】和【电池的制备】均与实施例1的工艺相同。
对比例1与实施例1的工艺相同,不同之处,正极材料的制备过程中不添加第二活性材料。
【低温功率的测试】
常温下在高低温箱中调节上述制备的二次电池的SOC为指定20%SOC,记录下初始电压值V0,调节温箱温度为-25℃,静置2h,充放电机设定恒定电流为0.7C(C=电池额定容量125Ah),下限电压设定为1.5V,持续放电时间为180s。当放电时间满足180s时,记录放电末端的电压为Vt。内阻=(V0-Vt)/0.7C(mohm),内阻越小,表明二次电池的功率越大。
表1:实施例与对比例的条件参数
Figure PCTCN2022133101-appb-000001
综合分析表1中的结果,可见第二活性材料的平台电压会影响对低温功率的改善,优选与磷酸铁锂平台电压差异大的材料(平台电压<3.22V),例如LiTiPO 4F。
分析表1中实施例1-5可知,当第二活性材料的掺混比例为2-15wt%时,电池低温功率得到改善;当第二活性材料的掺混比例为5-10wt%时,电池的 低温功率得到进一步改善。当第二活性材料的掺混比例大于15wt%时,相比于增加的材料成本,对低温功率的改善程度是有限的。
【第二活性材料的粒径和混合方式对电池性能的影响】
本申请实施例10按照与实施例3相同的方法制备,不同之处在于,在正极材料的制备过程中将LiTiPO 4F涂覆在LiFePO4的表面。
本申请实施例9、11按照与实施例3、10相同的方法制备,不同之处在于,LiTiPO 4F材料通过离子热合成法制备,其粒径Dv50为20-100nm。
表2:第二活性材料的粒径和混合方式对电池性能的影响
Figure PCTCN2022133101-appb-000002
根据表2可知,当第二活性材料的粒径从微米级趋向纳米化时,可提高正极材料的电导性和锂扩散速率,从而进一步改善电池的功率性能。此外,与第一活性材料和第二活性材料的简单物理混合相比,将第二活性材料涂覆在第一活性材料的表面也能进一步改善电池低温功率。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (14)

  1. 一种正极活性材料,包含作为第一活性材料的磷酸铁锂和作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,
    其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值。
  2. 根据权利要求1所述的正极活性材料,其中,M选自Ti或Fe,X选自P或S,Y为F,a为1,b为1。
  3. 根据权利要求1或2所述的正极活性材料,其中,第二活性材料的平台电压小于3.22V。
  4. 根据权利要求1至3中任一项所述的正极活性材料,其中,第二活性材料的含量为2至15重量%,可选地5至10重量%,基于第一活性材料和第二活性材料的总重量计。
  5. 根据权利要求1至4中任一项所述的正极活性材料,其中,将第一活性材料与第二活性材料进行物理结合;可选地,将第二活性材料涂覆在第一活性材料的表面。
  6. 根据权利要求1所述的正极活性材料,其中,所述第二活性材料的Dv50粒径范围为20nm至5μm,可选为20nm至1μm,进一步可选为20nm至100nm。
  7. 一种制备正极材料的方法,包括如下步骤:
    (1)将正极活性材料、粘结剂、导电剂和分散剂加入至溶剂中;
    (2)将步骤(1)中所得的正极浆料涂覆至正极集流体上,烘干后制得二次电池正极材料,
    其中,所述正极活性材料包含作为第一活性材料的磷酸铁锂、作为第二活性材料的具有通式Li aM(XO 4)Y b的化合物,
    其中M选自Fe、Mn、Co、Ni、Ti、V或其组合;X选自P、S、Si、As、Mo或W中的一种;Y选自F;a为1至2的任意数值;b为0至1的任意数值。
  8. 根据权利要求7所述的方法,所述方法不包括对正极浆料进行固相烧结的步骤。
  9. 根据权利要求7所述的方法,其中通式Li aM(XO 4)Y b的第二活性材料通过陶瓷制备法或离子热合成法制备。
  10. 一种正极极片,包括权利要求1-6中任一项所述的正极活性材料或通过权利要求7-9中任一项所述的方法制备的正极材料。
  11. 一种二次电池,包括权利要求1-6中任一项所述的正极活性材料、通过权利要求7-9中任一项所述的方法制备的正极材料或权利要求10所述的正极极片。
  12. 一种电池模块,包括权利要求11所述的二次电池。
  13. 一种电池包,包括权利要求11所述的二次电池或权利要求13所述的电池模块。
  14. 一种用电装置,包括权利要求11所述的二次电池、权利要求12所述的电池模块或权利要求13所述的电池包,所述二次电池或所述电池模块或所述电池包用作所述用电装置的电源或所述用电装置的能量存储单元。
PCT/CN2022/133101 2021-12-29 2022-11-21 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置 WO2023124645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22913903.5A EP4362124A1 (en) 2021-12-29 2022-11-21 Positive electrode active material, method for preparing positive electrode material, positive electrode plate, secondary battery, battery module, battery pack, and electrical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111646255.1A CN116417579A (zh) 2021-12-29 2021-12-29 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置
CN202111646255.1 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023124645A1 true WO2023124645A1 (zh) 2023-07-06

Family

ID=86997507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133101 WO2023124645A1 (zh) 2021-12-29 2022-11-21 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置

Country Status (3)

Country Link
EP (1) EP4362124A1 (zh)
CN (1) CN116417579A (zh)
WO (1) WO2023124645A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387568B1 (en) * 2000-04-27 2002-05-14 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
CN102219230A (zh) * 2011-05-17 2011-10-19 中南大学 锂离子电池正极材料硅酸亚铁锂的制备方法
CN105074967A (zh) * 2013-03-15 2015-11-18 应用材料公司 用于制造较厚电极的多层电池电极设计
US9590245B2 (en) 2008-10-23 2017-03-07 Centre National De La Recherche Scientifique Method for producing inorganic compounds
CN108054360A (zh) * 2017-12-08 2018-05-18 安徽天时新能源科技有限公司 一种低温锂电池用氟化硫酸铁锂正极材料及其制备方法
CN112825352A (zh) * 2019-11-20 2021-05-21 通用汽车环球科技运作有限责任公司 预锂化锂离子电池组的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387568B1 (en) * 2000-04-27 2002-05-14 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
US9590245B2 (en) 2008-10-23 2017-03-07 Centre National De La Recherche Scientifique Method for producing inorganic compounds
CN102219230A (zh) * 2011-05-17 2011-10-19 中南大学 锂离子电池正极材料硅酸亚铁锂的制备方法
CN105074967A (zh) * 2013-03-15 2015-11-18 应用材料公司 用于制造较厚电极的多层电池电极设计
CN108054360A (zh) * 2017-12-08 2018-05-18 安徽天时新能源科技有限公司 一种低温锂电池用氟化硫酸铁锂正极材料及其制备方法
CN112825352A (zh) * 2019-11-20 2021-05-21 通用汽车环球科技运作有限责任公司 预锂化锂离子电池组的方法

Also Published As

Publication number Publication date
EP4362124A1 (en) 2024-05-01
CN116417579A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2023142340A1 (zh) 一种极片及具备其的二次电池
WO2023039717A1 (zh) 高镍正极活性材料、其制备方法、包括其的锂离子电池、电池模块、电池包和用电装置
CN116231091B (zh) 锂二次电池用电解液、二次电池和用电装置
WO2023044934A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023082918A1 (zh) 锂离子电池、电池模块、电池包及用电装置
WO2023185206A1 (zh) 一种电化学装置及包含其的电器
WO2023078047A1 (zh) 正极活性材料、其制备方法、包括其的锂离子电池、电池模块、电池包和用电装置
WO2023130888A1 (zh) 二次电池、电池模块、电池包及其用电装置
WO2023134340A1 (zh) 负极活性材料、负极极片、二次电池、电池模块、电池包及其用电装置
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2023122890A1 (zh) 二次电池以及包含其的用电装置
WO2023137624A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023044866A1 (zh) 硅碳负极材料、负极极片、二次电池、电池模块、电池包和用电装置
WO2023108352A1 (zh) 一种正极活性材料及其相关的极片、二次电池、电池模块、电池包和装置
WO2023060462A1 (zh) 正极极片、包括其的二次电池、电池模块、电池包和用电装置
WO2023141972A1 (zh) 正极极片及包含所述极片的锂离子电池
WO2023124645A1 (zh) 正极活性材料、制备正极材料的方法、正极极片、二次电池、电池模块、电池包和用电装置
WO2023023984A1 (zh) 负极极片、二次电池、电池模块、电池包和用电装置
WO2024020795A1 (zh) 一种复合正极材料、其制备方法、二次电池、电池模块、电池包和用电装置
WO2023130212A1 (zh) 一种锂离子二次电池、电池模块、电池包和用电装置
WO2023130310A1 (zh) 电解液、二次电池和用电装置
WO2023109363A1 (zh) 一种正极极片、二次电池、电池模块、电池包和用电装置
WO2023137625A1 (zh) 二次电池、电池模块、电池包以及用电装置
WO2023133882A1 (zh) 隔膜及其相关的二次电池、电池模块、电池包和用电装置
WO2023133833A1 (zh) 一种二次电池、电池模块、电池包和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022913903

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022913903

Country of ref document: EP

Effective date: 20240122