WO2023067985A1 - スイッチの過電流検出装置 - Google Patents

スイッチの過電流検出装置 Download PDF

Info

Publication number
WO2023067985A1
WO2023067985A1 PCT/JP2022/035499 JP2022035499W WO2023067985A1 WO 2023067985 A1 WO2023067985 A1 WO 2023067985A1 JP 2022035499 W JP2022035499 W JP 2022035499W WO 2023067985 A1 WO2023067985 A1 WO 2023067985A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
overcurrent
overcurrent detection
electrical path
voltage
Prior art date
Application number
PCT/JP2022/035499
Other languages
English (en)
French (fr)
Inventor
敦紀 浅野
慶徳 林
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023067985A1 publication Critical patent/WO2023067985A1/ja
Priority to US18/639,361 priority Critical patent/US20240267039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Definitions

  • the present disclosure relates to an overcurrent detection device for a switch.
  • the detection device As this type of detection device, one that is applied to a power converter such as an inverter equipped with upper and lower arm switches is known. Of the upper and lower arm switches, one arm switch and the opposite arm switch are alternately turned on. The detection device detects the voltage between the pair of main terminals of the arm switch that is turned on, and determines that an overcurrent is flowing through the arm switch if the detected voltage exceeds a threshold.
  • ringing occurs in the voltage between the main terminals of the switches as the driving states of the own arm switch and the opposing arm switch are switched. Ringing occurs due to resonance between a parasitic inductor component such as wiring connected to the main terminal of the switch and a parasitic capacitance component of the switch. If ringing occurs, there is a concern that overcurrent detection accuracy based on the voltage between the main terminals may be lowered, for example, it may be determined that overcurrent is flowing even though overcurrent is not flowing.
  • Patent Document 1 discloses a failure detection that detects the voltage between a pair of main terminals of the own arm switch at the timing when the command for the own arm switch is switched from the ON command to the OFF command. A device is described. The fault detection device determines that a short-circuit fault has occurred in the opposing arm switch when the detected voltage exceeds the threshold. Since there is a time lag between when the command for the own arm switch is switched to the ON command and when the own arm switch is switched to the OFF state, ringing noise is not superimposed on the detected voltage at the above timing. Therefore, according to the failure detection device described in Patent Literature 1, it is possible to suppress the influence of ringing that occurs when the own arm switch is switched to the OFF state on short-circuit failure detection accuracy.
  • a main object of the present disclosure is to provide an overcurrent detection device for a switch that can quickly detect that an overcurrent is flowing through the switch.
  • the present disclosure provides an electric path having a first end connected to a high potential terminal side of a pair of main terminals of a switch to be driven; a diode provided in the electrical path with a cathode directed toward the high potential terminal; an overcurrent detector connected to the second end of the electrical path; with The overcurrent detection unit detects a voltage between a pair of main terminals of the switch to be driven through the electric path after the command to the switch to be driven is switched to an ON command, and the detected voltage is detected by the overcurrent detection unit.
  • the predetermined frequency range includes a ringing frequency range of the voltage between the pair of main terminals that occurs as the driving state of the switch to be driven is switched.
  • the electrical path is provided with a damping element having the above characteristics. Therefore, even if ringing occurs in the voltage between the main terminals as the switch to be driven is switched to the OFF state, it is possible to suppress the ringing noise from being superimposed on the voltage detected via the electrical path. Accordingly, it is possible to grasp whether or not the detected voltage exceeds the overcurrent threshold without waiting for the ringing to converge after the switch to be driven is switched to the ON state. Therefore, according to the present disclosure, it is possible to quickly detect an overcurrent while suppressing deterioration in overcurrent detection accuracy.
  • FIG. 1 is an overall configuration diagram of a control system according to the first embodiment
  • FIG. 2 is a diagram showing a drive IC and its peripheral circuits
  • FIG. 3 is a time chart showing transitions of the drive signal and determination voltage when no overcurrent flows.
  • FIG. 4 is a time chart showing transitions of the drive signal and determination voltage when an overcurrent flows.
  • FIG. 5 is a flowchart showing the procedure of overcurrent detection processing;
  • FIG. 6 is a time chart showing the transition of the voltage between the drain and the source superimposed with ringing noise.
  • FIG. 7 is a diagram showing frequency characteristics of the impedance of the damping element, FIG.
  • FIG. 8 is a diagram showing frequency characteristics of the gain of the RC filter circuit
  • FIG. 9 is a diagram showing a drive IC and its peripheral circuits according to a modification of the first embodiment
  • FIG. 10 is a diagram showing a drive IC and its peripheral circuits according to the second embodiment
  • FIG. 11 is a diagram showing a drive IC and its peripheral circuits according to the third embodiment
  • FIG. 12 is a diagram showing a drive IC and its peripheral circuits according to the fourth embodiment
  • FIG. 13 is a diagram showing a drive IC and its peripheral circuits according to the fifth embodiment
  • FIG. 14 is a diagram showing a drive IC and its peripheral circuits according to the sixth embodiment
  • FIG. 15 is a diagram showing a drive IC and its peripheral circuits according to the seventh embodiment.
  • a first embodiment embodying an overcurrent detection device according to the present disclosure will be described below with reference to the drawings.
  • a control system provided with the overcurrent detection device of the present embodiment can be applied to mobile bodies, robots (for example, industrial robots), generators, elevators, and the like.
  • a mobile object is, for example, an automobile, an aircraft, a ship, or a railroad vehicle.
  • the control system includes a rotating electrical machine 10, an inverter 20, and a DC power supply 21.
  • the rotating electrical machine 10 includes a three-phase winding 11 that is star-connected.
  • the rotary electric machine 10 is, for example, a synchronous machine.
  • the rotating electrical machine 10 may be an in-wheel motor provided integrally with the drive wheels of the automobile, or an on-board motor provided on the vehicle body. It may be integrated with a transmission (not shown).
  • the rotating electric machine 10 is connected to a DC power supply 21 via an inverter 20 .
  • the DC power supply 21 is, for example, a secondary battery.
  • the rated voltage of the DC power supply 21 is 100V or higher.
  • the inverter 20 has a smoothing capacitor 22 . Smoothing capacitor 22 may be provided outside inverter 20 .
  • the inverter 20 has upper and lower arm switches SWH and SWL for three phases.
  • each of the switches SWH and SWL is a voltage-controlled semiconductor switching element, specifically an SiC N-channel MOSFET. Therefore, in each switch SWH, SWL, the high potential terminal is the drain and the low potential terminal is the source.
  • Each switch SWH, SWL has a body diode.
  • the switches SWH and SWL may be IGBTs, for example.
  • the high potential terminal is the collector and the low potential terminal is the emitter.
  • the first end of the smoothing capacitor 22 is connected to the drain of the upper arm switch SWH.
  • the drain of the lower arm switch SWL is connected to the source of the upper arm switch SWH.
  • the second end of the smoothing capacitor 22 is connected to the source of the lower arm switch SWL.
  • a first end of winding 11 of rotating electric machine 10 is connected to the source of upper arm switch SWH and the drain of lower arm switch SWL.
  • a second end of each phase winding 11 is connected at a neutral point.
  • the control system includes a control board 25, a microcomputer 30, and a drive IC 50.
  • the drive IC 50 is individually provided corresponding to each of the switches SWH and SWL.
  • the microcomputer 30 performs switching control of the switches SWH and SWL of the inverter 20 in order to control the control amount of the rotating electric machine 10 to the command value.
  • the controlled variable is, for example, torque.
  • the microcomputer 30 generates drive signals GH and GL corresponding to the upper and lower arm switches SWH and SWL in order to alternately turn on the upper arm switch SWH and the lower arm switch SWL in each phase.
  • the microcomputer 30 is provided in the low pressure area.
  • the rotary electric machine 10 the switches SWH and SWL, the drive ICs 50, the DC power supply 21 and the smoothing capacitor 22 are provided in the high voltage region.
  • the drive IC 50 and its peripheral circuits will be described with reference to FIG.
  • the drive ICs corresponding to each switch basically have the same configuration. Therefore, the drive IC 50 corresponding to the lower arm switch SWL will be described as an example.
  • a power supply 40 is connected to the power terminal Tom of the drive IC 50 .
  • the power supply 40 is a constant voltage power supply with an output voltage of Vom.
  • the output voltage Vom of power supply 40 is lower than the output voltage of DC power supply 21 .
  • the drive IC 50 has a charge switch SC and a discharge switch SD.
  • the charge switch SC is a P-channel MOSFET and the discharge switch SD is an N-channel MOSFET.
  • a power supply terminal Tom is connected to the source of the charging switch SC, and an output terminal Tout of the drive IC 50 is connected to the drain of the charging switch SC.
  • the control board 25 is provided with a gate resistor 41A.
  • the output terminal Tout is connected to the first end of the gate resistor 41A, and the gate of the lower arm switch SWL is connected to the second end of the gate resistor 41A.
  • a ground terminal Tgnd of the drive IC 50 is connected to the gate of the lower arm switch SWL.
  • a drain of the discharge switch SD is connected to the output terminal Tout, and a ground terminal Tgnd is connected to the source of the discharge switch SD.
  • the control board 25 is provided with a soft cut-off resistor 41B.
  • a gate of the lower arm switch SWL is connected to a first end of the soft breaking resistor 41B.
  • a protective terminal Tss of the drive IC 50 is connected to the second end of the soft cutoff resistor 41B.
  • the resistance value of the soft cut-off resistor 41B is greater than the resistance value of the gate resistor 41A.
  • the drive IC 50 is equipped with a soft cutoff switch SS.
  • the soft cut-off switch SS is an N-channel MOSFET.
  • a protection terminal Tss is connected to the drain of the soft cutoff switch SS, and a ground terminal Tgnd is connected to the source of the soft cutoff switch SS.
  • the control board 25 is provided with a first electrical path L1.
  • a drain side of the lower arm switch SWL is connected to a first end of the first electric path L1.
  • a detection terminal Tdesat of the drive IC 50 is connected to the second end of the first electric path L1.
  • a diode 42 , a damping element 43 A, a filter resistor 44 and a capacitor 45 are provided on the control board 25 .
  • the diode 42 is provided in the first electric path L1 with its cathode facing the drain side of the lower arm switch SWL.
  • a damping element 43A is provided closer to the detection terminal Tdesat than the diode 42
  • a filter resistor 44 is provided closer to the detection terminal Tdesat than the damping element 43A.
  • a first end of a capacitor 45 is connected to the detection terminal Tdesat side of the filter resistor 44 in the first electrical path L1.
  • a second end of the capacitor 45 is connected to the ground terminal Tgnd and the source of the lower arm switch SWL.
  • the damping element 43 is a passive inductor element, specifically a ferrite bead.
  • a protective diode 46 and a protective Zener diode 47 are provided on the control board 25 . Cathodes of the protection diode 46 and the protection Zener diode 47 are connected to the detection terminal Tdesat side of the connection point with the capacitor 45 in the first electric path L1. A ground terminal Tgnd is connected to the anodes of the protection diode 46 and the protection Zener diode 47 .
  • the protection diode 46 is provided to prevent the potential of the ground terminal Tgnd from becoming excessively high with respect to the detection terminal Tdesat.
  • the protective Zener diode 47 is provided to prevent the potential of the detection terminal Tdesat from becoming excessively high with respect to the ground terminal Tgnd.
  • the drive IC 50 includes a constant current power supply 51, a regulating diode 52, a reset switch 53, a comparator 54, a reference power supply 55 and a second electrical path L2.
  • reset switch 53 is a P-channel MOSFET.
  • the second electric path L2 connects the detection terminal Tdesat and the non-inverting input terminal of the comparator 54 .
  • the constant current power supply 51 is connected to the power terminal Tom, receives power from the power supply 40, and outputs a constant current.
  • the anode of the regulation diode 52 is connected to the second electric path L2, and the source of the reset switch 53 is connected to the cathode of the regulation diode 52 .
  • a ground terminal Tgnd is connected to the drain of the reset switch 53 .
  • the non-inverting input terminal of the comparator 54 receives the determination voltage Vdeast, which is the voltage across the terminals of the capacitor 45, via the second electrical path L2.
  • An inverting input terminal of the comparator 54 is connected to a positive terminal of a reference power supply 55 .
  • a ground terminal Tgnd is connected to the negative terminal of the reference power supply 55 .
  • the inverting input terminal of the comparator 54 receives the overcurrent threshold value V ⁇ , which is the output voltage of the reference power supply 55 . That is, the comparator 54 detects the voltage across the terminals of the capacitor 45 with the potential of the ground terminal Tgnd as the reference potential (0 V), and compares the detected voltage with the overcurrent threshold value V ⁇ .
  • the output signal Sig of the comparator 54 is input to the drive control section 56 provided in the drive IC 50 .
  • a power terminal Tom and a ground terminal Tgnd are connected to the drive control unit 56 .
  • the drive control unit 56 acquires the drive signal GL output from the microcomputer 30 via the signal terminal Tsg of the drive IC 50 .
  • the drive control unit 56 determines that the acquired drive signal GL is an ON command, the drive control unit 56 switches the lower arm switch SWL to the ON state by the charging process.
  • the charging process is a process of turning on the charging switch SC and turning off the discharging switch SD. According to the charging process, the gate voltage of the lower arm switch SWL becomes equal to or higher than the threshold voltage Vth, and the lower arm switch SWL is switched to the ON state.
  • the drive control unit 56 determines that the drive signal GL is an OFF command, it switches the lower arm switch SWL to the OFF state through discharge processing.
  • the discharging process is a process of turning off the charging switch SC and turning on the discharging switch SD. According to the discharging process, the gate voltage of the lower arm switch SWL becomes less than the threshold voltage Vth, and the lower arm switch SWL is switched off.
  • the functions provided by the drive control unit 56 can be provided, for example, by software recorded in a physical memory device, a computer executing the software, hardware, or a combination thereof.
  • the drive control unit 56 performs overcurrent detection processing when performing charging processing.
  • the drive control section 56, the comparator 54 and the reference power supply 55 correspond to the "overcurrent detection section". This process will be described below with reference to FIGS. 3 and 4, taking the lower arm switch SWL as an example.
  • FIG. 3 shows a case where overcurrent does not flow through the lower arm switch SWL.
  • 3(a) shows the transition of the drive signal GL input to the drive control unit 56
  • FIG. 3(b) shows the transition of the gate voltage Vgs of the lower arm switch SWL
  • FIG. 3(c) shows the transition of the lower arm switch.
  • FIG. 10 shows transition of drain current Ids of SWL.
  • FIG. 3(d) shows changes in the determination voltage Vdeast
  • FIG. 3(e) shows changes in the voltage Vds between the drain and source of the lower arm switch SWL.
  • the drive control unit 56 determines that it has been switched to the ON command at time t1, and starts the charging process. This causes the gate voltage Vgs to start rising. After that, at time t2 after the filter time tf has elapsed from time t1, the drive control unit 56 causes the constant current power supply 51 to start outputting a constant current while keeping the reset switch 53 in the OFF state. As a result, current starts to be supplied from the constant current power supply 51 to the capacitor 45 . As a result, the determination voltage Vdeast starts rising from zero. In the example shown in FIG. 3, since overcurrent does not flow, the determination voltage Vdeast does not rise to the overcurrent threshold value V ⁇ . Note that in the example shown in FIG. 3, the end timing of the filter time tf is set in the middle of the period in which the gate voltage Vgs is set to the mirror voltage Vmil.
  • FIG. 4 shows a case where an overcurrent flows through the lower arm switch SWL. Specifically, when a short-circuit failure occurs in the upper arm switch SWH as the opposing arm switch, the lower arm switch SWL as the own arm switch is switched to the ON state, and the short-circuit current flows through the upper and lower arm switches SWH and SWL. is flowing. 4A to 4E correspond to FIGS. 3A to 3E.
  • the drive control unit 56 determines that it has been switched to the ON command at time t1, and starts the charging process. This causes the gate voltage Vgs to start rising. After that, at time t2 after the filter time tf has elapsed from time t1, the drive control unit 56 causes the constant current power supply 51 to start outputting a constant current while keeping the reset switch 53 in the OFF state. As a result, the determination voltage Vdeast starts rising from zero.
  • the determination voltage Vdeast reaches the overcurrent threshold value V ⁇ at time t3 thereafter.
  • the logic of the output signal Sig of the comparator 54 is switched to H, and the drive control unit 56 determines that overcurrent is flowing, and performs soft cutoff processing.
  • a short-circuit current also flows when a short-circuit failure occurs in the upper arm switch SWH while the lower arm switch SWL is in the ON state.
  • FIG. 5 shows the procedure of overcurrent detection processing executed by the drive control unit 56.
  • step S10 it is determined whether or not the drive signal GL has switched from the OFF command to the ON command.
  • step S10 If an affirmative determination is made in step S10, the process proceeds to step S11 to perform charging processing to turn on the charging switch SC and turn off the discharging switch SD. Also, the soft cutoff switch SS is turned off.
  • step S12 it waits until it is determined that the filter time tf has elapsed after the affirmative determination was made in step S10.
  • step S12 If an affirmative determination is made in step S12, the process proceeds to step S13, the reset switch 53 is turned off, and constant current output from the constant current power supply 51 is started. As a result, current starts to be supplied from the constant current power supply 51 to the capacitor 45 .
  • step S14 it is determined whether or not the logic of the output signal Sig of the comparator 54 is L.
  • the process proceeds to step S15 to determine whether or not the drive signal GL has been switched from the ON command to the OFF command. If it is determined in step S15 that an ON command has been issued, the process proceeds to step S14.
  • step S15 determines whether the command has been switched to the off command, or if a negative determination is made in step S10. If it is determined in step S15 that the command has been switched to the off command, or if a negative determination is made in step S10, the process advances to step S16 to perform a discharge process in which the charging switch SC is turned off and the discharging switch SD is turned on. conduct. Also, the output of the constant current from the constant current power supply 51 is stopped. Note that the reset switch 53 is temporarily turned on to reset the determination voltage Vdeast to 0 during the period in which the drive signal GL is set to the OFF command.
  • step S14 When it is determined in step S14 that the logic of the output signal Sig of the comparator 54 is H, it is determined that an overcurrent is flowing, and the process proceeds to step S17.
  • step S17 a soft cutoff process is performed to turn off the charge switch SC and the discharge switch SD and to turn on the soft cutoff switch SS. As a result, the lower arm switch SWL is turned off while suppressing the surge voltage that occurs when the lower arm switch SWL is turned off.
  • step S18 the logic of the fail signal FL to be output to the microcomputer 30 is switched. For example, switch from L to H. By switching the logic of the fail signal FL, the microcomputer 30 can grasp that an overcurrent is flowing through the lower arm switch SWL.
  • FIGS. 6A to 6E correspond to FIGS. 3A to 3E.
  • Ringing occurs due to resonance of a parasitic inductor component L such as wiring connected to the source and drain of the lower arm switch SWL and a parasitic capacitance component C of the lower arm switch SWL.
  • the ringing frequency fr is represented by the following equation (eq1), for example.
  • the determination voltage Vdeast exceeds the overcurrent threshold value V ⁇ after time t2, as shown in FIG. 6(d). As a result, it is erroneously determined that overcurrent is flowing even though overcurrent is not flowing.
  • the ringing noise propagates to the ground terminal Tgnd side, and the potential of the ground terminal Tgnd fluctuates.
  • the value of the overcurrent threshold value V ⁇ greatly deviates from an appropriate value, and there is a concern that the accuracy of overcurrent detection is lowered.
  • a damping element 43A is provided in this embodiment.
  • the damping element 43A has a characteristic that the impedance Z reaches a maximum value Zmax (for example, 1100 ⁇ ) at a specific frequency fp, and the impedance Z decreases as the distance from the specific frequency fp increases.
  • Zmax for example, 1100 ⁇
  • the middle value of the ringing frequency range Rngf of the voltage Vds between the drain and the source that occurs with the switching of the driving state of the lower arm switch SWL is the specific frequency fp.
  • the ringing frequency range Rngf is a range of frequencies that the ringing noise superimposed on the voltage Vds between the drain and the source can take, and can be determined by experiment or calculation, for example.
  • the characteristics of the damping element 43A and the switching frequency fsw of the upper and lower arm switches SWH and SWL may be determined as follows, for example.
  • a frequency corresponding to an impedance that is 1/100 of the maximum value Zmax of impedance is defined as a reference frequency fst.
  • the switching frequency fsw is set to a frequency equal to or lower than the reference frequency fst.
  • the impedance Z of the damping element 43A at the switching frequency fsw can be made close to zero.
  • the switching frequency fsw can be, for example, a value within the range of 5 kHz to 25 kHz.
  • the switching frequency fsw can be set to a value within the range of 18 kHz to 25 kHz, for example.
  • the switching frequency fsw is the reciprocal of the switching cycle Tsw.
  • the switching period Tsw is a period from when the drive signal GL is switched to the ON command until the drive signal GL is switched to the ON command again.
  • the damping element 43A By providing the damping element 43A, even if ringing occurs as shown in FIG. can be preferably prevented from being superimposed. As a result, it is possible to quickly detect an overcurrent while suppressing deterioration in detection accuracy of the overcurrent. In particular, when the switching frequency fsw is increased, there is a great merit that overcurrent can be detected quickly. In addition, by quickly detecting an overcurrent and performing soft cutoff processing, the rated current and current capacity of the upper and lower arm switches SWH and SWL can be reduced, and the upper and lower arm switches SWH and SWL as power elements can be reduced. Chip size can be reduced. As a result, the cost of the control system can be reduced.
  • the ringing can be attenuated by increasing the resistance value of the filter resistor 44 and the capacitance of the capacitor 45 that constitute the RC filter circuit.
  • FIG. 8 shows frequency characteristics of the RC filter circuit.
  • the damping element 43A is required to reduce the ringing.
  • a damping element 43A is provided closer to the detection terminal Tdesat than the diode 42 in the first electrical path L1. As a result, a low withstand voltage element can be used as the damping element 43A.
  • a damping element 43A is provided between the diode 42 and the filter resistor 44 in the first electrical path L1.
  • the ringing noise can be reduced on the drain side of the lower arm switch SWL in the first electric path L1, so that the noise reduction effect can be enhanced.
  • the RC filter circuit with filter resistor 44 and capacitor 45 may not be provided. Even in this case, for example, the parasitic capacitance components of the protection diode 46 and the protection Zener diode 47 serve as capacitors, and DESAT type overcurrent detection can be performed.
  • the same reference numerals are given to the same configurations as those shown in FIG. 2 for convenience.
  • ⁇ Second embodiment> The second embodiment will be described below with reference to the drawings, focusing on differences from the first embodiment.
  • a damping element 43B is provided on the drain side of the lower arm switch SWL with respect to the diode 42 in the first electric path L1.
  • the same reference numerals are assigned to the same configurations as those shown in FIG. 2 for convenience.
  • a low withstand voltage element can be used as the diode 42 .
  • a damping element 43E is provided on the detection terminal Tdesat side of the connection point between the protection diode 46 and the protection Zener diode 47 in the first electrical path L1.
  • the same reference numerals are given to the same configurations as those shown in FIG. 2 for convenience.
  • the seventh embodiment will be described below with reference to the drawings, focusing on differences from the first embodiment.
  • the drive IC 50 has an off-holding switch Soff.
  • the same reference numerals are assigned to the same configurations as those shown in FIG. 2 for the sake of convenience.
  • the off-holding switch Soff is an N-channel MOSFET.
  • the hold terminal Toff of the drive IC 50 is connected to the drain of the off hold switch Soff, and the ground terminal Tgnd is connected to the source of the off hold switch Soff.
  • a gate of the lower arm switch SWL is connected to the holding terminal Toff.
  • a holding terminal Toff is connected to the drive control unit 56 .
  • the drive control unit 56 detects the gate voltage Vgd of the lower arm switch SWL using the potential of the ground terminal Tgnd as a reference potential (0 V).
  • the drive control unit 56 turns off the off-holding switch Soff when performing the charging process. On the other hand, when the discharge process is performed, the drive control unit 56 turns off the off-holding switch Soff when the detected gate voltage Vgd is higher than the specified voltage, and turns off when the detected gate voltage Vgd is below the specified voltage.
  • the holding switch Soff is turned on.
  • the prescribed voltage is set to a voltage equal to or lower than the threshold voltage Vth of the lower arm switch SWL.
  • the damping element may be, for example, a resistor.
  • both the filter resistor 44 and the resistor as the damping element are provided on the control board 25 .
  • the power converter including the upper and lower arm switches is not limited to an inverter, and may be, for example, a DCDC converter.
  • the controller and techniques described in this disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program; may be implemented.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
  • a damping element 43A to 43F provided in the electrical path and having a characteristic that impedance in a predetermined frequency range is relatively higher than impedance in a frequency range other than the predetermined frequency range,
  • the overcurrent detection device for a switch wherein the predetermined frequency range includes a ringing frequency range (Rngf) of the voltage between the pair of main terminals that occurs as the driving state of the switch to be driven is switched.
  • the overcurrent detection device for a switch according to configuration 1 or 2 wherein the damping elements (43A, 43C to 43F) are provided closer to the overcurrent detection unit than the diode in the electrical path.
  • a resistor (44) provided closer to the overcurrent detection unit than the diode in the electrical path;
  • a filter circuit having a capacitor (45) connected to the low potential terminal,
  • the overcurrent detection unit causes an overcurrent to flow between the pair of main terminals when the detected voltage of the capacitor exceeds the overcurrent threshold after the command to the switch to be driven is switched to an ON command.
  • a drive IC (50) having the overcurrent detection unit Among the electric paths, a path connecting the high potential terminal and the detection terminal (Tdesat) of the drive IC is a first electric path (L1), and the drive IC connects the detection terminal and the overcurrent detection section. is the second electrical path (L2), the damping element, the resistor and the diode are provided on the first electrical path; the capacitor connects the first electric path and a ground terminal (Tgnd) which is a terminal of the drive IC and is connected to the low potential terminal;

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Inverter Devices (AREA)

Abstract

過電流検出装置は、駆動対象スイッチ(SWH,SWL)の一対の主端子のうち高電位端子側に第1端が接続された電気経路(L1,L2)と、カソードを高電位端子側に向けた状態で電気経路に設けられたダイオード(42)と、電気経路の第2端に接続された過電流検出部(54~56)と、を備える。過電流検出部は、駆動対象スイッチに対する指令がオン指令に切り替えられた後、一対の主端子間の電圧を電気経路を介して検出し、検出した電圧が過電流閾値を超えた場合、一対の主端子間に過電流が流れていると判定する。過電流検出装置は、所定周波数域におけるインピーダンスが、所定周波数域以外の周波数域におけるインピーダンスよりも相対的に高い特性を有するダンピング素子(43A~43F)を備える。所定周波数域は、駆動対象スイッチの駆動状態の切り替えに伴って発生する一対の主端子間の電圧のリンギング周波数域を含む。

Description

スイッチの過電流検出装置 関連出願の相互参照
 本出願は、2021年10月18日に出願された日本出願番号2021-170406号に基づくもので、ここにその記載内容を援用する。
 本開示は、スイッチの過電流検出装置に関する。
 この種の検出装置としては、上,下アームスイッチを備えるインバータ等の電力変換器に適用されるものが知られている。上,下アームスイッチのうち、一方である自アームスイッチと、他方である対向アームスイッチとは、交互にオン状態にされる。検出装置は、オン状態にされている自アームスイッチの一対の主端子間の電圧を検出し、検出した電圧が閾値を超えた場合、自アームスイッチに過電流が流れていると判定する。
 ところで、自アームスイッチ及び対向アームスイッチの駆動状態の切り替えに伴って、スイッチの主端子間の電圧にリンギングが発生する。リンギングは、スイッチの主端子に接続された配線等の寄生インダクタ成分と、スイッチの寄生容量成分との共振により発生する。リンギングが発生すると、過電流が流れていないにもかかわらず、過電流が流れていると判定される等、主端子間の電圧に基づく過電流の検出精度が低下する懸念がある。
 検出精度の低下を抑制するために、特許文献1には、自アームスイッチに対する指令がオン指令からオフ指令に切り替えられたタイミングにおいて、自アームスイッチの一対の主端子間の電圧を検出する故障検出装置が記載されている。故障検出装置は、検出した電圧が閾値を超えた場合、対向アームスイッチに短絡故障が発生していると判定する。自アームスイッチに対する指令がオン指令に切り替えられてから、自アームスイッチがオフ状態に切り替えられるまでにはタイムラグがあるため、上記タイミングにおける検出電圧にはリンギングノイズが重畳していない。このため、特許文献1に記載の故障検出装置によれば、自アームスイッチのオフ状態への切り替えに伴い発生するリンギングが、短絡故障の検出精度に及ぼす影響を抑制できる。
特開2013-118777号公報
 過電流を迅速に検出するためには、自アームスイッチがオフ状態からオン状態に切り替えられた直後において、検出された主端子間の電圧と閾値との比較が実施されることが要求される。しかしながら、オン状態に切り替えられた直後においては、主端子間の電圧にリンギングノイズが重畳し、過電流の検出精度が低下する懸念がある。このように、過電流を迅速に検出する技術については、未だ改善の余地がある。
 本開示は、スイッチに過電流が流れていることを迅速に検出できるスイッチの過電流検出装置を提供することを主たる目的とする。
 本開示は、駆動対象スイッチの一対の主端子のうち高電位端子側に第1端が接続された電気経路と、
 カソードを前記高電位端子側に向けた状態で前記電気経路に設けられたダイオードと、
 前記電気経路の第2端に接続された過電流検出部と、
を備え、
 前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、前記駆動対象スイッチの一対の主端子間の電圧を前記電気経路を介して検出し、検出した電圧が過電流閾値を超えた場合、前記駆動対象スイッチの一対の主端子間に過電流が流れていると判定し、
 前記電気経路に設けられ、所定周波数域におけるインピーダンスが、前記所定周波数域以外の周波数域におけるインピーダンスよりも相対的に高い特性を有するダンピング素子を備え、
 前記所定周波数域は、前記駆動対象スイッチの駆動状態の切り替えに伴って発生する前記一対の主端子間の電圧のリンギング周波数域を含む。
 本開示では、電気経路に上記特性を有するダンピング素子が設けられている。このため、駆動対象スイッチのオフ状態への切り替えに伴い主端子間の電圧のリンギングが発生したとしても、電気経路を介して検出された電圧にリンギングノイズが重畳することを抑制できる。これにより、駆動対象スイッチがオン状態に切り替えられた後、リンギングが収束するのを待つことなく、検出電圧が過電流閾値を超えたか否かを把握できる。したがって、本開示によれば、過電流の検出精度の低下を抑制しつつ、過電流を迅速に検出することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る制御システムの全体構成図であり、 図2は、ドライブIC及びその周辺回路を示す図であり、 図3は、過電流が流れない場合における駆動信号及び判定電圧等の推移を示すタイムチャートであり、 図4は、過電流が流れる場合における駆動信号及び判定電圧等の推移を示すタイムチャートであり、 図5は、過電流検出処理の手順を示すフローチャートであり、 図6は、リンギングノイズが重畳したドレイン及びソース間電圧等の推移を示すタイムチャートであり、 図7は、ダンピング素子のインピーダンスの周波数特性を示す図であり、 図8は、RCフィルタ回路のゲインの周波数特性を示す図であり、 図9は、第1実施形態の変形例に係るドライブIC及びその周辺回路を示す図であり、 図10は、第2実施形態に係るドライブIC及びその周辺回路を示す図であり、 図11は、第3実施形態に係るドライブIC及びその周辺回路を示す図であり、 図12は、第4実施形態に係るドライブIC及びその周辺回路を示す図であり、 図13は、第5実施形態に係るドライブIC及びその周辺回路を示す図であり、 図14は、第6実施形態に係るドライブIC及びその周辺回路を示す図であり、 図15は、第7実施形態に係るドライブIC及びその周辺回路を示す図である。
 <第1実施形態>
 以下、本開示に係る過電流検出装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態の過電流検出装置が備えられる制御システムは、移動体、ロボット(例えば産業用ロボット)、発電機又はエレベータ等に適用することができる。移動体は、例えば、自動車、航空機、船舶又は鉄道車両である。
 図1に示すように、制御システムは、回転電機10と、インバータ20と、直流電源21とを備えている。本実施形態において、回転電機10は、星形結線された3相の巻線11を備えている。回転電機10は、例えば同期機である。なお、制御システムが自動車に適用される場合、回転電機10は、自動車の駆動輪に一体に設けられるインホイールモータ、又は自動車の車体に備えられるオンボードモータであってもよいし、インバータ20及び図示しない変速機と一体化されていてもよい。
 回転電機10は、インバータ20を介して、直流電源21に接続されている。直流電源21は、例えば2次電池である。直流電源21の定格電圧は100V以上である。インバータ20は、平滑コンデンサ22を備えている。なお、平滑コンデンサ22は、インバータ20の外部に設けられていてもよい。
 インバータ20は、3相分の上,下アームスイッチSWH,SWLを備えている。本実施形態において、各スイッチSWH,SWLは、電圧制御形の半導体スイッチング素子であり、具体的にはSiCのNチャネルMOSFETである。このため、各スイッチSWH,SWLにおいて、高電位端子はドレインであり、低電位端子はソースである。各スイッチSWH,SWLは、ボディダイオードを有している。
 なお、各スイッチSWH,SWLは、例えばIGBTであってもよい。この場合、各スイッチSWH,SWLにおいて、高電位端子がコレクタであり、低電位端子がエミッタである。
 各相において、上アームスイッチSWHのドレインには、平滑コンデンサ22の第1端が接続されている。各相において、上アームスイッチSWHのソースには、下アームスイッチSWLのドレインが接続されている。各相において、下アームスイッチSWLのソースには、平滑コンデンサ22の第2端が接続されている。各相において、上アームスイッチSWHのソースと、下アームスイッチSWLのドレインとには、回転電機10の巻線11の第1端が接続されている。各相の巻線11の第2端は、中性点で接続されている。
 制御システムは、制御基板25、マイコン30、及びドライブIC50を備えている。本実施形態において、ドライブIC50は、各スイッチSWH,SWLに対応して個別に設けられている。
 マイコン30は、回転電機10の制御量を指令値に制御すべく、インバータ20の各スイッチSWH,SWLのスイッチング制御を行う。制御量は、例えばトルクである。マイコン30は、各相において、上アームスイッチSWHと、下アームスイッチSWLとを交互にオン状態にすべく、上,下アームスイッチSWH,SWLに対応する駆動信号GH,GLを生成する。
 マイコン30は、低圧領域に設けられている。一方、回転電機10、各スイッチSWH,SWL、各ドライブIC50、直流電源21及び平滑コンデンサ22は、高圧領域に設けられている。
 続いて、図2を用いて、ドライブIC50及びその周辺回路について説明する。なお、各スイッチに対応するドライブICは、基本的には同じ構成である。このため、下アームスイッチSWLに対応するドライブIC50を例にして説明する。
 ドライブIC50の電源端子Tоmには、電源40が接続されている。電源40は、出力電圧がVomの定電圧電源である。電源40の出力電圧Vomは、直流電源21の出力電圧よりも低い。
 ドライブIC50は、充電スイッチSC及び放電スイッチSDを備えている。本実施形態において、充電スイッチSCはPチャネルMOSFETであり、放電スイッチSDはNチャネルMOSFETである。充電スイッチSCのソースには、電源端子Tоmが接続され、充電スイッチSCのドレインには、ドライブIC50の出力端子Toutが接続されている。
 制御基板25には、ゲート抵抗体41Aが設けられている。ゲート抵抗体41Aの第1端には、出力端子Toutが接続され、ゲート抵抗体41Aの第2端には、下アームスイッチSWLのゲートが接続されている。下アームスイッチSWLのゲートには、ドライブIC50のグランド端子Tgndが接続されている。出力端子Toutには、放電スイッチSDのドレインが接続され、放電スイッチSDのソースには、グランド端子Tgndが接続されている。
 制御基板25には、ソフト遮断抵抗体41Bが設けられている。ソフト遮断抵抗体41Bの第1端には、下アームスイッチSWLのゲートが接続されている。ソフト遮断抵抗体41Bの第2端には、ドライブIC50の保護用端子Tssが接続されている。ソフト遮断抵抗体41Bの抵抗値は、ゲート抵抗体41Aの抵抗値よりも大きい。
 ドライブIC50は、ソフト遮断スイッチSSを備えている。本実施形態において、ソフト遮断スイッチSSはNチャネルMOSFETである。ソフト遮断スイッチSSのドレインには、保護用端子Tssが接続され、ソフト遮断スイッチSSのソースには、グランド端子Tgndが接続されている。
 制御基板25には、第1電気経路L1が設けられている。第1電気経路L1の第1端には、下アームスイッチSWLのドレイン側が接続されている。第1電気経路L1の第2端には、ドライブIC50の検出端子Tdesatが接続されている。
 制御基板25には、ダイオード42、ダンピング素子43A、フィルタ抵抗体44及びコンデンサ45が設けられている。ダイオード42は、カソードを下アームスイッチSWLのドレイン側に向けた状態で、第1電気経路L1に設けられている。第1電気経路L1において、ダイオード42よりも検出端子Tdesat側には、ダンピング素子43Aが設けられ、ダンピング素子43Aよりも検出端子Tdesat側には、フィルタ抵抗体44が設けられている。第1電気経路L1のうちフィルタ抵抗体44よりも検出端子Tdesat側には、コンデンサ45の第1端が接続されている。コンデンサ45の第2端には、グランド端子Tgndと、下アームスイッチSWLのソースとが接続されている。本実施形態において、ダンピング素子43は、受動素子であるインダクタ素子であり、具体的にはフェライトビーズである。
 制御基板25には、保護用ダイオード46と、保護用ツェナーダイオード47とが設けられている。保護用ダイオード46及び保護用ツェナーダイオード47のカソードには、第1電気経路L1のうちコンデンサ45との接続点よりも検出端子Tdesat側が接続されている。保護用ダイオード46及び保護用ツェナーダイオード47のアノードには、グランド端子Tgndが接続されている。保護用ダイオード46は、検出端子Tdesatに対するグランド端子Tgndの電位が過度に高くなることを防止するために設けられている。保護用ツェナーダイオード47は、グランド端子Tgndに対して検出端子Tdesatの電位が過度に高くなることを防止するために設けられている。
 ドライブIC50は、定電流電源51、規制ダイオード52、リセットスイッチ53、コンパレータ54、基準電源55及び第2電気経路L2を備えている。本実施形態において、リセットスイッチ53はPチャネルMOSFETである。
 第2電気経路L2は、検出端子Tdesatとコンパレータ54の非反転入力端子とを接続する。定電流電源51は、電源端子Tоmに接続され、電源40から給電されて定電流を出力する。第2電気経路L2には、規制ダイオード52のアノードが接続され、規制ダイオード52のカソードには、リセットスイッチ53のソースが接続されている。リセットスイッチ53のドレインには、グランド端子Tgndが接続されている。
 コンパレータ54の非反転入力端子には、第2電気経路L2を介して、コンデンサ45の端子間電圧である判定電圧Vdeastが入力される。コンパレータ54の反転入力端子には、基準電源55の正極端子が接続されている。基準電源55の負極端子には、グランド端子Tgndが接続されている。コンパレータ54の反転入力端子には、基準電源55の出力電圧である過電流閾値Vαが入力される。つまり、コンパレータ54は、グランド端子Tgndの電位を基準電位(0V)として、コンデンサ45の端子間電圧を検出し、検出電圧と過電流閾値Vαとを比較する。コンパレータ54の出力信号Sigは、ドライブIC50が備える駆動制御部56に入力される。
 駆動制御部56には、電源端子Tоm及びグランド端子Tgndが接続されている。駆動制御部56は、ドライブIC50の信号端子Tsgを介して、マイコン30から出力された駆動信号GLを取得する。駆動制御部56は、取得した駆動信号GLがオン指令であると判定した場合、充電処理により、下アームスイッチSWLをオン状態に切り替える。充電処理は、充電スイッチSCをオン状態にして、かつ、放電スイッチSDをオフ状態にする処理である。充電処理によれば、下アームスイッチSWLのゲート電圧がスレッショルド電圧Vth以上となり、下アームスイッチSWLがオン状態に切り替えられる。
 駆動制御部56は、駆動信号GLがオフ指令であると判定した場合、放電処理により、下アームスイッチSWLをオフ状態に切り替える。放電処理は、充電スイッチSCをオフ状態にして、かつ、放電スイッチSDをオン状態にする処理である。放電処理によれば、下アームスイッチSWLのゲート電圧がスレッショルド電圧Vth未満となり、下アームスイッチSWLがオフ状態に切り替えられる。
 なお、駆動制御部56が提供する機能は、例えば、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するコンピュータ、ハードウェア、又はそれらの組み合わせによって提供することができる。
 駆動制御部56は、充電処理を行う場合において過電流検出処理を行う。本実施形態において、駆動制御部56、コンパレータ54及び基準電源55が「過電流検出部」に相当する。以下、下アームスイッチSWLを例にして、図3及び図4を用いて、この処理について説明する。
 図3は、下アームスイッチSWLに過電流が流れない場合を示す。図3(a)は駆動制御部56に入力される駆動信号GLの推移を示し、図3(b)は下アームスイッチSWLのゲート電圧Vgsの推移を示し、図3(c)は下アームスイッチSWLのドレイン電流Idsの推移を示す。図3(d)は判定電圧Vdeastの推移を示し、図3(e)は下アームスイッチSWLのドレイン及びソース間電圧Vdsの推移を示す。
 駆動制御部56は、時刻t1においてオン指令に切り替えられたと判定し、充電処理を開始する。これにより、ゲート電圧Vgsが上昇し始める。その後、駆動制御部56は、時刻t1からフィルタ時間tf経過した時刻t2において、リセットスイッチ53をオフ状態に維持しつつ、定電流電源51からの定電流の出力を開始させる。これにより、定電流電源51からコンデンサ45へと電流が供給され始める。その結果、判定電圧Vdeastが0から上昇し始める。図3に示す例では、過電流が流れないことから、判定電圧Vdeastは過電流閾値Vαまで上昇しない。なお、図3に示す例では、フィルタ時間tfの終了タイミングは、ゲート電圧Vgsがミラー電圧Vmilにされる期間の途中に設定されている。
 図4は、下アームスイッチSWLに過電流が流れる場合を示す。詳しくは、対向アームスイッチとしての上アームスイッチSWHに短絡故障が発生している場合において、自アームスイッチとしての下アームスイッチSWLがオン状態に切り替えられ、上,下アームスイッチSWH,SWLに短絡電流が流れる場合を示す。なお、図4(a)~(e)は、先の図3(a)~(e)に対応している。
 駆動制御部56は、時刻t1においてオン指令に切り替えられたと判定し、充電処理を開始する。これにより、ゲート電圧Vgsが上昇し始める。その後、駆動制御部56は、時刻t1からフィルタ時間tf経過した時刻t2において、リセットスイッチ53をオフ状態に維持しつつ、定電流電源51からの定電流の出力を開始させる。これにより、判定電圧Vdeastが0から上昇し始める。
 図4に示す例では、過電流(短絡電流)が流れることから、判定電圧Vdeastは、その後時刻t3において過電流閾値Vαに到達する。その結果、コンパレータ54の出力信号Sigの論理がHに切り替えられ、駆動制御部56は、過電流が流れていると判定し、ソフト遮断処理を行う。なお、短絡電流は、下アームスイッチSWLがオン状態にされている期間の途中に上アームスイッチSWHに短絡故障が発生した場合にも流れる。
 図5に、駆動制御部56により実行される過電流検出処理の手順を示す。
 ステップS10では、駆動信号GLがオフ指令からオン指令に切り替わったか否かを判定する。
 ステップS10において肯定判定した場合には、ステップS11に進み、充電スイッチSCをオン状態にし、放電スイッチSDをオフ状態にする充電処理を行う。また、ソフト遮断スイッチSSをオフ状態にする。
 ステップS12では、ステップS10において肯定判定してからフィルタ時間tfが経過したと判定するまで待機する。
 ステップS12において肯定判定した場合には、ステップS13に進み、リセットスイッチ53をオフ状態にし、定電流電源51からの定電流の出力を開始させる。これにより、定電流電源51からコンデンサ45に電流が供給され始める。
 ステップS14では、コンパレータ54の出力信号Sigの論理がLであるか否かを判定する。ステップS14において論理がLであると判定した場合には、ステップS15に進み、駆動信号GLがオン指令からオフ指令に切り替えられたか否かを判定する。ステップS15においてオン指令がなされていると判定した場合には、ステップS14に移行する。
 一方、ステップS15においてオフ指令に切り替えられたと判定した場合、又はステップS10において否定判定した場合には、ステップS16に進み、充電スイッチSCをオフ状態にし、放電スイッチSDをオン状態にする放電処理を行う。また、定電流電源51からの定電流の出力を停止させる。なお、駆動信号GLがオフ指令とされている期間に、リセットスイッチ53を一時的にオン駆動し、判定電圧Vdeastを0にリセットする。
 ステップS14においてコンパレータ54の出力信号Sigの論理がHであると判定した場合には、過電流が流れていると判定し、ステップS17に進む。ステップS17では、充電スイッチSC及び放電スイッチSDをオフ状態にし、ソフト遮断スイッチSSをオン状態にするソフト遮断処理を行う。これにより、下アームスイッチSWLのターンオフに伴って発生するサージ電圧を抑制しつつ、下アームスイッチSWLをオフ状態に切り替える。
 続くステップS18では、マイコン30に出力するフェール信号FLの論理を切り替える。例えば、LからHに切り替える。フェール信号FLの論理が切り替えられることにより、マイコン30は、下アームスイッチSWLに過電流が流れていることを把握できる。
 ところで、図3(e),図4(e)での図示は省略したが、実際には、図6(e)に示すように、下アームスイッチSWLのオン状態への切り替えに伴い、ドレイン及びソース間電圧Vdsのリンギングが発生する。図6(a)~(e)は、先の図3(a)~(e)に対応している。リンギングは、図2に示すように、下アームスイッチSWLのソース,ドレインに接続された配線等の寄生インダクタ成分L、及び下アームスイッチSWLの寄生容量成分Cの共振により発生する。なお、リンギング周波数frは、例えば下式(eq1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ダンピング素子43Aが設けられていない比較例では、リンギングが発生すると、図6(d)に示すように、時刻t2以降において判定電圧Vdeastが過電流閾値Vαを超えてしまう。その結果、過電流が流れていないにもかかわらず、過電流が流れていると誤判定されてしまう。
 また、リンギングが発生すると、リンギングノイズがグランド端子Tgnd側にも伝播し、グランド端子Tgndの電位が変動する。その結果、比較例では、過電流閾値Vαの値が適正な値から大きくずれ、過電流の検出精度が低下する懸念もある。
 こうした事態の発生を防止すべく、本実施形態では、ダンピング素子43Aが設けられている。ダンピング素子43Aは、図7に示すように、特定周波数fpにおいてインピーダンスZが最大値Zmax(例えば1100Ω)となり、特定周波数fpから離れるほどインピーダンスZが小さくなる特性を有している。図7に示す例では、下アームスイッチSWLの駆動状態の切り替えに伴って発生するドレイン及びソース間電圧Vdsのリンギング周波数域Rngfの中間値が上記特定周波数fpになっている。リンギング周波数域Rngfは、ドレイン及びソース間電圧Vdsに重畳するリンギングノイズが取り得る周波数の範囲であり、例えば実験又は計算により定めることができる。
 ちなみに、ダンピング素子43Aの特性及び上,下アームスイッチSWH,SWLのスイッチング周波数fswは、例えば以下のように定められればよい。インピーダンスの最大値Zmaxの1/100となるインピーダンスに対応する周波数を基準周波数fstとする。スイッチング周波数fswを基準周波数fst以下の周波数にする。この場合、スイッチング周波数fswにおけるダンピング素子43AのインピーダンスZを0に近い値にできる。スイッチング周波数fswは、例えば、5kHz~25kHzの範囲内の値にすることができる。スイッチング速度の高速化を図るために、スイッチング周波数fswは、例えば、18kHz~25kHzの範囲内の値にすることができる。なお、スイッチング周波数fswは、スイッチング周期Tswの逆数である。スイッチング周期Tswは、例えば下アームを例に説明すると、駆動信号GLがオン指令に切り替えられてから、駆動信号GLが再度オン指令に切り替えられるまでの期間である。
 ダンピング素子43Aが設けられることにより、図6(e)に示すようにリンギングが発生した場合であっても、図3(d),図4(d)に示すように、判定電圧Vdeastにリンギングノイズが重畳することを好適に防止できる。その結果、過電流の検出精度の低下を抑制しつつ、過電流を迅速に検出することができる。特に、スイッチング周波数fswが高くされる場合においては、過電流を迅速に検出できるメリットが大きい。また、迅速に過電流を検出してソフト遮断処理が行われることにより、上,下アームスイッチSWH,SWLの定格電流,電流容量を小さくでき、パワー素子としての上,下アームスイッチSWH,SWLのチップサイズを小さくできる。その結果、制御システムのコストを削減することができる。
 ちなみに、RCフィルタ回路を構成するフィルタ抵抗体44の抵抗値や、コンデンサ45の静電容量を大きくすることにより、リンギングを減衰させることはできる。図8に、RCフィルタ回路の周波数特性を示す。しかし、抵抗値を大きくすると、実際のドレイン及びソース間電圧と検出電圧との差が大きくなり、静電容量を大きくすると、コンデンサ45の電圧上昇速度が低くなる。その結果、過電流の検出が遅れてしまう。つまり、リンギングを低減させるために、RCフィルタ回路の時定数を最適設計するのが困難である。このため、本実施形態のように、リンギングを低減させるためにダンピング素子43Aが必要となる。
 ダンピング素子43Aが、第1電気経路L1のうちダイオード42よりも検出端子Tdesat側に設けられている。これにより、ダンピング素子43Aとして低耐圧の素子を用いることができる。
 ダンピング素子43Aが、第1電気経路L1のうち、ダイオード42とフィルタ抵抗体44との間に設けられている。これにより、第1電気経路L1のうち下アームスイッチSWLのドレイン側でリンギングノイズを低減できるため、ノイズ低減効果を大きくできる。例えば、コンデンサ45経由でグランド端子Tgndへとリンギングノイズが伝播することを抑制でき、グランド端子Tgndの電位の変動を好適に抑制できる。
 <第1実施形態の変形例>
 図9に示すように、フィルタ抵抗体44及びコンデンサ45を有するRCフィルタ回路が設けられていなくてもよい。この場合であっても、例えば、保護用ダイオード46,保護用ツェナーダイオード47の寄生容量成分がコンデンサの役割を果たし、DESAT方式の過電流検出を行うことができる。なお、図9において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 <第2実施形態>
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図10に示すように、第1電気経路L1のうち、ダイオード42よりも下アームスイッチSWLのドレイン側にダンピング素子43Bが設けられている。なお、図10において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 以上説明した本実施形態によれば、リンギングノイズがダイオード42に印加されることを抑制できる。このため、ダイオード42として低耐圧の素子を用いることができる。
 <第3実施形態>
 以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図11に示すように、第1電気経路L1のうち、コンデンサ45との接続点と、保護用ダイオード46,保護用ツェナーダイオード47との接続点との間にダンピング素子43Cが設けられている。なお、図11において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
 <第4実施形態>
 以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図12に示すように、第1電気経路L1のうち、コンデンサ45との接続点と、フィルタ抵抗体44との間にダンピング素子43Dが設けられている。なお、図12において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
 <第5実施形態>
 以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図13に示すように、第1電気経路L1のうち、保護用ダイオード46,保護用ツェナーダイオード47との接続点よりも検出端子Tdesat側にダンピング素子43Eが設けられている。なお、図13において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
 <第6実施形態>
 以下、第6実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図14に示すように、第1電気経路L1のうち、保護用ダイオード46との接続点と、保護用ツェナーダイオード47との接続点との間にダンピング素子43Fが設けられている。なお、図14において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
 <第7実施形態>
 以下、第7実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図15に示すように、ドライブIC50は、オフ保持スイッチSoffを備えている。なお、図15において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
 オフ保持スイッチSoffはNチャネルMOSFETである。オフ保持スイッチSoffのドレインには、ドライブIC50の保持端子Toffが接続され、オフ保持スイッチSoffのソースには、グランド端子Tgndが接続されている。保持端子Toffには、下アームスイッチSWLのゲートが接続されている。
 駆動制御部56には、保持端子Toffが接続されている。駆動制御部56は、グランド端子Tgndの電位を基準電位(0V)として、下アームスイッチSWLのゲート電圧Vgdを検出する。
 駆動制御部56は、充電処理を行う場合、オフ保持スイッチSoffをオフ状態にする。一方、駆動制御部56は、放電処理を行う場合において、検出したゲート電圧Vgdが規定電圧よりも高いとき、オフ保持スイッチSoffをオフ状態にし、検出したゲート電圧Vgdが規定電圧以下のとき、オフ保持スイッチSoffをオン状態にする。規定電圧は、下アームスイッチSWLのスレッショルド電圧Vth以下の電圧に設定されている。
 リンギングの発生によりグランド端子Tgndの電位が変動する場合、ゲート電圧Vgdの検出精度が低下し、オフ保持スイッチSoffが誤動作する懸念がある。ここで、本実施形態では、ダンピング素子43Aが設けられているため、リンギングの発生に起因したオフ保持スイッチSoffの誤動作の発生を抑制することができる。
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
 ・ダンピング素子は、例えば抵抗体であってもよい。この場合、図2を例に説明すると、フィルタ抵抗体44と、ダンピング素子としての抵抗体との双方が制御基板25に設けられる。
 ・上,下アームスイッチを備える電力変換器としては、インバータに限らず、例えばDCDCコンバータであってもよい。
 ・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 ・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 ・以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
 駆動対象スイッチ(SWH,SWL)の一対の主端子のうち高電位端子側に第1端が接続された電気経路(L1,L2)と、
 カソードを前記高電位端子側に向けた状態で前記電気経路に設けられたダイオード(42)と、
 前記電気経路の第2端に接続された過電流検出部(54~56)と、
を備え、
 前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、前記駆動対象スイッチの一対の主端子間の電圧を前記電気経路を介して検出し、検出した電圧が過電流閾値(Vα)を超えた場合、前記駆動対象スイッチの一対の主端子間に過電流が流れていると判定し、
 前記電気経路に設けられ、所定周波数域におけるインピーダンスが、前記所定周波数域以外の周波数域におけるインピーダンスよりも相対的に高い特性を有するダンピング素子(43A~43F)を備え、
 前記所定周波数域は、前記駆動対象スイッチの駆動状態の切り替えに伴って発生する前記一対の主端子間の電圧のリンギング周波数域(Rngf)を含む、スイッチの過電流検出装置。
[構成2]
 前記電気経路のうち前記ダイオードよりも前記過電流検出部側に設けられた抵抗体(44)、及び前記電気経路のうち前記抵抗体よりも前記過電流検出部側と、前記一対の主端子のうち低電位端子とを接続するコンデンサ(45)を有するフィルタ回路を備え、
 前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、検出された前記コンデンサの電圧が前記過電流閾値を超えた場合、前記一対の主端子間に過電流が流れていると判定する、構成1に記載のスイッチの過電流検出装置。
[構成3]
 前記ダンピング素子(43A,43C~43F)は、前記電気経路のうち前記ダイオードよりも前記過電流検出部側に設けられている、構成1又は2に記載のスイッチの過電流検出装置。
[構成4]
 前記電気経路のうち前記ダイオードよりも前記過電流検出部側に設けられた抵抗体(44)、及び前記電気経路のうち前記抵抗体よりも前記過電流検出部側と、前記一対の主端子のうち低電位端子とを接続するコンデンサ(45)を有するフィルタ回路を備え、
 前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、検出された前記コンデンサの電圧が前記過電流閾値を超えた場合、前記一対の主端子間に過電流が流れていると判定し、
 前記ダンピング素子(43A)は、前記電気経路のうち、前記ダイオードと前記抵抗体との間に設けられている、構成1に記載のスイッチの過電流検出装置。
[構成5]
 前記過電流検出部を有するドライブIC(50)を備え、
 前記電気経路のうち、前記高電位端子と前記ドライブICの検出端子(Tdesat)とを接続する経路が第1電気経路(L1)であり、前記ドライブICにおいて前記検出端子と前記過電流検出部とを接続する経路が第2電気経路(L2)であり、
 前記ダンピング素子、前記抵抗体及び前記ダイオードは、前記第1電気経路に設けられ、
 前記コンデンサは、前記第1電気経路と、前記ドライブICの端子であって前記低電位端子と接続されるグランド端子(Tgnd)とを接続し、
 前記過電流検出部は、前記グランド端子の電位を基準として、前記コンデンサの電圧を検出する、構成2又は4に記載のスイッチの過電流検出装置。
[構成6]
 前記ダンピング素子(43B)は、前記電気経路のうち前記ダイオードよりも前記高電位端子側に設けられている、構成1に記載のスイッチの過電流検出装置。
[構成7]
 前記ダンピング素子は、特定周波数(fp)においてインピーダンスが最大値となり、前記特定周波数に対して低周波側及び高周波側にいくほどインピーダンスが小さくなる特性を有し、
 前記特定周波数は、前記リンギング周波数域に含まれている、構成1~6のいずれか1つに記載のスイッチの過電流検出装置。

Claims (7)

  1.  駆動対象スイッチ(SWH,SWL)の一対の主端子のうち高電位端子側に第1端が接続された電気経路(L1,L2)と、
     カソードを前記高電位端子側に向けた状態で前記電気経路に設けられたダイオード(42)と、
     前記電気経路の第2端に接続された過電流検出部(54~56)と、
    を備え、
     前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、前記駆動対象スイッチの一対の主端子間の電圧を前記電気経路を介して検出し、検出した電圧が過電流閾値(Vα)を超えた場合、前記駆動対象スイッチの一対の主端子間に過電流が流れていると判定し、
     前記電気経路に設けられ、所定周波数域におけるインピーダンスが、前記所定周波数域以外の周波数域におけるインピーダンスよりも相対的に高い特性を有するダンピング素子(43A~43F)を備え、
     前記所定周波数域は、前記駆動対象スイッチの駆動状態の切り替えに伴って発生する前記一対の主端子間の電圧のリンギング周波数域(Rngf)を含む、スイッチの過電流検出装置。
  2.  前記電気経路のうち前記ダイオードよりも前記過電流検出部側に設けられた抵抗体(44)、及び前記電気経路のうち前記抵抗体よりも前記過電流検出部側と、前記一対の主端子のうち低電位端子とを接続するコンデンサ(45)を有するフィルタ回路を備え、
     前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、検出された前記コンデンサの電圧が前記過電流閾値を超えた場合、前記一対の主端子間に過電流が流れていると判定する、請求項1に記載のスイッチの過電流検出装置。
  3.  前記ダンピング素子(43A,43C~43F)は、前記電気経路のうち前記ダイオードよりも前記過電流検出部側に設けられている、請求項1又は2に記載のスイッチの過電流検出装置。
  4.  前記電気経路のうち前記ダイオードよりも前記過電流検出部側に設けられた抵抗体(44)、及び前記電気経路のうち前記抵抗体よりも前記過電流検出部側と、前記一対の主端子のうち低電位端子とを接続するコンデンサ(45)を有するフィルタ回路を備え、
     前記過電流検出部は、前記駆動対象スイッチに対する指令がオン指令に切り替えられた後、検出された前記コンデンサの電圧が前記過電流閾値を超えた場合、前記一対の主端子間に過電流が流れていると判定し、
     前記ダンピング素子(43A)は、前記電気経路のうち、前記ダイオードと前記抵抗体との間に設けられている、請求項1に記載のスイッチの過電流検出装置。
  5.  前記過電流検出部を有するドライブIC(50)を備え、
     前記電気経路のうち、前記高電位端子と前記ドライブICの検出端子(Tdesat)とを接続する経路が第1電気経路(L1)であり、前記ドライブICにおいて前記検出端子と前記過電流検出部とを接続する経路が第2電気経路(L2)であり、
     前記ダンピング素子、前記抵抗体及び前記ダイオードは、前記第1電気経路に設けられ、
     前記コンデンサは、前記第1電気経路と、前記ドライブICの端子であって前記低電位端子と接続されるグランド端子(Tgnd)とを接続し、
     前記過電流検出部は、前記グランド端子の電位を基準として、前記コンデンサの電圧を検出する、請求項2又は4に記載のスイッチの過電流検出装置。
  6.  前記ダンピング素子(43B)は、前記電気経路のうち前記ダイオードよりも前記高電位端子側に設けられている、請求項1に記載のスイッチの過電流検出装置。
  7.  前記ダンピング素子は、特定周波数(fp)においてインピーダンスが最大値となり、前記特定周波数に対して低周波側及び高周波側にいくほどインピーダンスが小さくなる特性を有し、
     前記特定周波数は、前記リンギング周波数域に含まれている、請求項1,2,4,6のいずれか1項に記載のスイッチの過電流検出装置。
PCT/JP2022/035499 2021-10-18 2022-09-22 スイッチの過電流検出装置 WO2023067985A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/639,361 US20240267039A1 (en) 2021-10-18 2024-04-18 Switch overcurrent measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021170406A JP7552550B2 (ja) 2021-10-18 2021-10-18 スイッチの過電流検出装置
JP2021-170406 2021-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/639,361 Continuation US20240267039A1 (en) 2021-10-18 2024-04-18 Switch overcurrent measuring apparatus

Publications (1)

Publication Number Publication Date
WO2023067985A1 true WO2023067985A1 (ja) 2023-04-27

Family

ID=86059084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035499 WO2023067985A1 (ja) 2021-10-18 2022-09-22 スイッチの過電流検出装置

Country Status (3)

Country Link
US (1) US20240267039A1 (ja)
JP (1) JP7552550B2 (ja)
WO (1) WO2023067985A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240204688A1 (en) * 2022-12-16 2024-06-20 Bae Systems Controls Inc. Multi-wire common mode choke for increasing common mode transient immunity and minimizing circulating current in paralleled power semiconductors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200411A (ja) * 2009-02-23 2010-09-09 Mitsubishi Electric Corp 半導体装置
JP2020205668A (ja) * 2019-06-14 2020-12-24 株式会社デンソー スイッチの駆動回路
JP2021058044A (ja) * 2019-10-01 2021-04-08 株式会社デンソー 回転電機制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200411A (ja) * 2009-02-23 2010-09-09 Mitsubishi Electric Corp 半導体装置
JP2020205668A (ja) * 2019-06-14 2020-12-24 株式会社デンソー スイッチの駆動回路
JP2021058044A (ja) * 2019-10-01 2021-04-08 株式会社デンソー 回転電機制御装置

Also Published As

Publication number Publication date
US20240267039A1 (en) 2024-08-08
JP7552550B2 (ja) 2024-09-18
JP2023060683A (ja) 2023-04-28

Similar Documents

Publication Publication Date Title
US8884660B2 (en) Driver for switching element and control system for machine using the same
US8618753B2 (en) Inverter device
US9461457B2 (en) Driver for target switching element and control system for machine using the same
US7940503B2 (en) Power semiconductor arrangement including conditional active clamping
US9112344B2 (en) Driver for switching element and control system for rotary machine using the same
US9059709B2 (en) Gate drive circuit for transistor
US8841870B2 (en) Driver for switching element and control system for rotary machine using the same
US8829836B2 (en) Driver for switching element and control system for rotary machine using the same
JP2005506025A (ja) パワーエレクトロニクス及び駆動システム用dcリンクコンデンサのソフトスタート
JP6104660B2 (ja) 短絡電流保護装置
US9496790B2 (en) Power conversion device
WO2023067985A1 (ja) スイッチの過電流検出装置
US11050358B2 (en) Power module with built-in drive circuit
JP5611420B1 (ja) Dc−dcコンバータ
WO2021230177A1 (ja) 電力変換器の制御回路
WO2020031552A1 (ja) 駆動回路
WO2019235144A1 (ja) 駆動回路
JP2020039204A (ja) 駆動対象スイッチの駆動回路
JP2013176176A (ja) スイッチング素子の駆動装置
WO2022030190A1 (ja) 電力変換器の制御回路
JP5251553B2 (ja) 半導体装置
US10581425B2 (en) Semiconductor device
JP7140015B2 (ja) スイッチの駆動回路
WO2020044945A1 (ja) スイッチの駆動回路
US20230112315A1 (en) Drive device for voltage-controlled semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE