WO2023067839A1 - 空気調和機、制御方法、及びプログラム - Google Patents

空気調和機、制御方法、及びプログラム Download PDF

Info

Publication number
WO2023067839A1
WO2023067839A1 PCT/JP2022/021357 JP2022021357W WO2023067839A1 WO 2023067839 A1 WO2023067839 A1 WO 2023067839A1 JP 2022021357 W JP2022021357 W JP 2022021357W WO 2023067839 A1 WO2023067839 A1 WO 2023067839A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
frequency
time
air conditioner
operating frequency
Prior art date
Application number
PCT/JP2022/021357
Other languages
English (en)
French (fr)
Inventor
雅一 佐藤
祥之 多田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202280037331.5A priority Critical patent/CN118076842A/zh
Priority to JP2023554245A priority patent/JPWO2023067839A1/ja
Publication of WO2023067839A1 publication Critical patent/WO2023067839A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to air conditioners, control methods, and programs.
  • This application claims priority based on PCT/JP2021/038883 filed internationally on October 21, 2021, the contents of which are incorporated herein.
  • air conditioners that use the refrigeration cycle (heat pump cycle).
  • Such an air conditioner is configured to operate a compressor to circulate refrigerant in a cycle.
  • Refrigerating machine oil for lubrication is sealed inside the compressor to smoothen the movement of moving members.
  • compressor frequency the operating frequency of the compressor
  • return the time required for the refrigerating machine oil that has flowed out of the compressor to return to the compressor
  • the compressor frequency usually increases when the temperature difference between the room temperature and the set temperature is large, and decreases as the room temperature approaches the set temperature and the temperature difference decreases.
  • An operating range is set for the compressor frequency, and in particular, a minimum frequency is set as the lower limit of the compressor frequency.
  • Patent Literature 1 discloses a technique related to an air conditioner that performs minimum frequency increase control to temporarily increase the minimum frequency of the compressor when the operation of the compressor at a predetermined frequency or less continues for a certain period of time.
  • Minimum frequency increase control to temporarily increase the minimum frequency of the compressor when the operation of the compressor at a predetermined frequency or less continues for a certain period of time.
  • the thermo-off condition is changed to a condition in which the thermo-off is less likely to occur than the normal thermo-off condition.
  • frequent occurrence of thermo-off can be suppressed, and reliability and comfort of the air conditioner can be ensured.
  • the present disclosure has been made to solve the above problems, and the purpose thereof is to control the air conditioner so that the refrigerating machine oil inside the compressor does not run out even when intermittent operation is performed. It is to provide a control method and a program.
  • one aspect of the present disclosure is an air conditioner having a refrigeration cycle in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected by piping, and a refrigerant circulates.
  • an operating frequency detecting unit for detecting the operating frequency of the compressor; and based on the detection result of the operating frequency detecting unit, the low frequency operation in which the operating frequency of the compressor is equal to or lower than a reference frequency is continuously performed.
  • An operation time measurement unit that measures the continuous time that has been performed, and based on the measurement result of the operation time measurement unit, measures the number of times that the compressor is stopped without the continuous time continuing longer than a reference time.
  • an operation control unit that performs a recovery operation for recovering the concentration of refrigerating machine oil enclosed inside the compressor based on the number of stops.
  • one aspect of the present disclosure is an air conditioner having a refrigeration cycle in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected by piping, and a refrigerant circulates.
  • a control method performed by a control device provided in a compressor an operation frequency detection unit detects the operation frequency of the compressor, and an operation time measurement unit detects the operation frequency of the compressor based on the detection result of the operation frequency detection unit.
  • a continuous time during which low-frequency operation with an operating frequency equal to or lower than a reference frequency is continuously performed is measured, and a stop count measurement unit detects whether the continuous time is longer than the reference time based on the measurement result of the operation time measurement unit.
  • the number of times the compressor is stopped without being continued is measured, and the operation control unit performs a recovery operation to restore the concentration of the refrigerating machine oil enclosed inside the compressor based on the number of times the compressor is stopped. , is the control method.
  • one aspect of the present disclosure is an air conditioner having a refrigeration cycle in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected by piping, and a refrigerant circulates.
  • a continuous time during which low-frequency operation in which the operating frequency of the compressor is equal to or lower than a reference frequency is continuously performed, based on the detection result, by causing a control device provided in the compressor to detect the operating frequency of the compressor.
  • control can be performed so that the refrigerating machine oil inside the compressor does not run short.
  • FIG. 4 is an image diagram showing the relationship between compressor frequency and oil return time according to the first embodiment
  • FIG. 4 is an image diagram showing the relationship between the number of times the compressor is stopped and the oil concentration inside the compressor according to the first embodiment.
  • 4 is a flow chart showing the flow of processing performed by the air conditioner according to the first embodiment
  • FIG. 4 is an image diagram of recovery operation of the air conditioner according to the first embodiment
  • FIG. 4 is an image diagram showing the relationship between the oil return time of the air conditioner and the amount of oil inside the compressor according to the first embodiment
  • FIG. 4 is an image diagram showing the relationship between the oil return time of the air conditioner and the amount of oil inside the compressor according to the first embodiment
  • FIG. 4 is an image diagram showing the relationship between oil concentration and oil amount inside the compressor of the air conditioner according to the first embodiment.
  • FIG. 10 is an image diagram of recovery operation of the air conditioner according to the second embodiment.
  • FIG. 1 is a configuration diagram showing an example of an air conditioner according to a first embodiment.
  • the air conditioner 100 is a separate type air conditioner in which an outdoor unit and an indoor unit are connected by refrigerant pipes 6 (refrigerant pipes 61 to 66) or electrical wiring.
  • the outdoor unit houses a compressor 10, a four-way valve 20, an expansion valve 30, an outdoor heat exchanger 50, an outdoor fan 500, and a control device 300.
  • the indoor unit houses an indoor heat exchanger 40 and an indoor fan 400 .
  • the air conditioner 100 is composed of a refrigeration cycle, a blower, and a control system.
  • a circuit is formed by connecting a compressor 10, a four-way valve 20, an expansion valve 30, an indoor heat exchanger 40, and an outdoor heat exchanger 50 by refrigerant pipes 6, and refrigerant is circulated in the circuit.
  • refrigerant Various refrigerants can be adopted as the refrigerant to be circulated in the refrigeration cycle.
  • HFC refrigerants chlorofluorocarbon refrigerants
  • R32 refrigerant, R125 refrigerant, and R134a refrigerant or mixed refrigerants thereof such as R410A refrigerant, R407c refrigerant, and R404A refrigerant
  • the air blower is composed of an indoor fan 400 and an outdoor fan 500 .
  • the blower blows air to the heat exchanger.
  • the indoor fan 400 conveys indoor air to the indoor heat exchanger 40 .
  • Outdoor fan 500 conveys outdoor air to outdoor heat exchanger 50 .
  • the control system is composed of the control device 300 .
  • Control device 300 is a computer.
  • the control device 300 includes a hardware processor such as a CPU (Central Processing Unit), and the functions of the control device 300 are realized by the CPU or the like executing a program (software).
  • the control device 300 has a function of controlling the circulation of the refrigerant in the refrigeration cycle and the air blowing of the air blower, and controls the cooling operation and the heating operation of the air conditioner 100 by executing these functions.
  • a refrigerant pipe 61 connects the discharge side of the compressor 10 and the D port of the four-way valve 20 .
  • a refrigerant pipe 62 connects the E port of the four-way valve 20 and the indoor heat exchanger 40 .
  • a refrigerant pipe 63 connects the indoor heat exchanger 40 and the expansion valve 30 .
  • a refrigerant pipe 64 connects the expansion valve 30 and the outdoor heat exchanger 50 .
  • a refrigerant pipe 65 connects the outdoor heat exchanger 50 and the C port of the four-way valve.
  • a refrigerant pipe 66 connects the S port of the four-way valve 20 and the suction side of the compressor 10 .
  • the compressor 10 compresses the refrigerant sucked from the refrigerant pipe 66 and discharges the compressed refrigerant to the refrigerant pipe 61 .
  • Compressor 10 can adopt various types. For example, as the compressor 10, devices such as a rotary type, a reciprocating type, a scroll type, or a screw type can be adopted.
  • the four-way valve 20 is a device that switches between cooling operation and heating operation.
  • the refrigerant pipes 61 and 62 are connected, and the refrigerant pipes 65 and 66 are connected, as indicated by solid lines in FIG.
  • the refrigerant pipe 61 connected to the discharge side of the compressor 10 is connected to the refrigerant pipe 65, and the refrigerant pipe 62 is connected to the suction side of the compressor 10.
  • Refrigerant piping 66 is connected.
  • the expansion valve 30 is a device that reduces the pressure of the refrigerant flowing into the expansion valve 30 .
  • the expansion valve 30 decompresses and expands the refrigerant supplied from the refrigerant pipe 64 and supplies the refrigerant to the refrigerant pipe 63 .
  • the indoor heat exchanger 40 exchanges heat between the indoor air and the refrigerant.
  • the indoor fan 400 is installed side by side with the indoor heat exchanger 40 and conveys indoor air to the indoor heat exchanger 40 .
  • the outdoor heat exchanger 50 exchanges heat between the outside air, which is outdoor air, and the refrigerant.
  • the outdoor fan 500 is provided side by side with the outdoor heat exchanger 50 and conveys outside air to the outdoor heat exchanger 50 .
  • the outdoor heat exchanger 50 is, for example, a fin-tube heat exchanger having a plurality of heat transfer pipes and a plurality of heat exchange fins.
  • the control device 300 controls cooling operation and heating operation by the air conditioner 100 .
  • the compressor 10 sucks the refrigerant from the refrigerant pipe 66 , compresses the sucked refrigerant, and discharges it to the refrigerant pipe 61 .
  • Control device 300 changes the operating frequency of compressor 10 by outputting a control signal to compressor 10 . By changing the operating frequency of the compressor 10, the temperature and pressure of the refrigerant discharged from the compressor 10 can be adjusted.
  • the refrigerant compressed by the compressor 10 and discharged to the refrigerant pipe 61 flows through the four-way valve 20 into the refrigerant pipe 62 and into the indoor heat exchanger 40 .
  • the indoor heat exchanger 40 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 10 and indoor air. This heat exchange condenses and liquefies the refrigerant.
  • Control device 300 changes the rotation speed of indoor fan 400 by outputting a control signal to indoor fan 400 . By changing the rotation speed of the indoor fan 400, the amount of air conveyed to the indoor heat exchanger 40 can be changed, and the amount of heat exchanged between the refrigerant in the indoor heat exchanger 40 and the indoor air can be adjusted. .
  • the refrigerant condensed by the indoor heat exchanger 40 flows into the refrigerant pipe 63 and into the expansion valve 30 .
  • the expansion valve 30 decompresses and expands the refrigerant condensed by the indoor heat exchanger 40 .
  • Control device 300 changes the degree of opening of expansion valve 30 by outputting a control signal to expansion valve 30 .
  • the degree of opening of the expansion valve 30 By changing the degree of opening of the expansion valve 30, the state of the refrigerant flowing out from the expansion valve 30 can be adjusted. Specifically, by increasing the degree of opening of the expansion valve 30, the pressure of the refrigerant flowing out from the expansion valve 30 can be increased, and the dryness of the refrigerant can be adjusted to decrease.
  • the dryness of the refrigerant is the ratio of saturated vapor contained in the refrigerant in the gas-liquid two-phase state.
  • the pressure of the refrigerant flowing out from the expansion valve 30 can be reduced, and the dryness of the refrigerant can be adjusted to increase.
  • the refrigerant decompressed by the expansion valve 30 flows into the refrigerant pipe 64 and into the outdoor heat exchanger 50 .
  • the outdoor heat exchanger 50 exchanges heat between the refrigerant decompressed by the expansion valve 30 and the outside air. This heat exchange evaporates the refrigerant into superheated vapor.
  • Control device 300 changes the rotation speed of outdoor fan 500 by outputting a control signal to outdoor fan 500 . By changing the rotation speed of the outdoor fan 500, the amount of air conveyed to the outdoor heat exchanger 50 can be changed, and the amount of heat exchanged between the refrigerant in the outdoor heat exchanger 50 and the outside air can be adjusted.
  • the refrigerant turned into superheated vapor by the outdoor heat exchanger 50 flows into the refrigerant pipe 65 , flows through the four-way valve 20 into the refrigerant pipe 66 , and flows into the compressor 10 .
  • refrigerating machine oil 600 for lubrication is enclosed in order to smoothen the movement of moving members.
  • part of refrigerating machine oil 600 flows out of compressor 10 .
  • Refrigerant oil 600 that has flowed out of compressor 10 returns to compressor 10 after circulating through the refrigeration cycle.
  • FIG. 2 is an image diagram showing the relationship between the operating frequency of the compressor (compressor frequency) and the oil return time according to the first embodiment.
  • the horizontal axis of FIG. 2 indicates the compressor frequency, and the vertical axis indicates the oil return time.
  • the oil return time is the time required for the refrigeration oil 600 flowing out of the compressor 10 to return to the compressor 10 after circulating through the refrigeration cycle.
  • the higher the compressor frequency the shorter the time until the refrigerating machine oil 600 returns to the compressor 10.
  • the lower the compressor frequency the slower the flow rate of the oil flowing through the refrigerant pipe, and the longer it takes for the refrigerating machine oil 600 to return to the compressor 10 . That is, when the compressor frequency is low, the oil return time is longer than when the compressor frequency is high, resulting in poor oil return performance. Therefore, when the compressor frequency is low, there is a possibility that the amount of oil inside the compressor 10 will decrease, resulting in an oil shortage and making it impossible to maintain the reliability of the compressor 10 .
  • the opening degree of the expansion valve 30 is controlled to be slightly open (high opening degree) due to issues such as low pressure pull-in. Therefore, when the compressor 10 is started, the discharge SH is 0 [deg].
  • the discharge SH here is the difference between the temperature of the refrigerant discharged from the compressor 10 (discharge temperature) and the condensation temperature of the refrigerant, that is, the degree of discharge superheat.
  • the intermittent operation is an operation in which starting and stopping for a short period of time are repeated while the compressor frequency is low.
  • the refrigerant dissolved in the refrigerating machine oil 600 inside the compressor 10 does not evaporate.
  • the refrigerant that has circulated through the refrigerating cycle returns to the compressor 10 and part of it dissolves in the refrigerating machine oil 600 .
  • the oil concentration is the ratio of refrigerating machine oil 600 contained in the refrigerant inside compressor 10 .
  • FIG. 3 is an image diagram showing the relationship between the number of times the compressor is stopped and the oil concentration according to the first embodiment.
  • the horizontal axis in FIG. 3 indicates the number of times the compressor is stopped, and the vertical axis indicates the oil concentration inside the compressor 10 .
  • the oil concentration decreases as the number of stops increases.
  • recovery operation is performed to recover the oil concentration inside the compressor 10 . Specific operations performed by the recovery operation will be described below.
  • the control device 300 includes an operation frequency detection unit 301, an operation time measurement unit 302, a stop count measurement unit 303, and an operation control unit 304.
  • the operating frequency detector 301 detects the operating frequency of the compressor 10 .
  • the operating time measuring unit 302 measures continuous time based on the detection result of the operating frequency detecting unit 301 .
  • the continuous time is the time during which the low frequency operation in which the operating frequency of the compressor 10 is less than the reference frequency is continuously performed.
  • the number-of-stops measuring unit 303 measures the number of times of stops based on the result of measurement by the operating time measuring unit 302 .
  • the number of stoppages is the number of times the compressor 10 has been stopped without the continuous time being longer than or equal to the reference time.
  • the operation control unit 304 performs recovery operation based on the number of stops.
  • FIG. 4 is a flow chart showing the flow of processing performed by the air conditioner according to the first embodiment.
  • FIG. 4 shows the flow of determination processing for determining whether or not recovery operation should be performed.
  • the operation control unit 304 activates the compressor 10 (step S11).
  • the compressor activation event is, for example, when the thermo-on condition is satisfied, or when operation is started by a remote controller.
  • the thermo-on condition is that the indoor temperature is higher than the set temperature during cooling operation, and that the indoor temperature is lower than the set temperature during heating operation.
  • the operating time measurement unit 302 measures the operating time (step S12).
  • the operation time is the time during which operation at a low frequency (low-frequency operation) in which the compressor frequency is equal to or lower than the reference frequency is continued.
  • the operating frequency detection unit 301 detects the compressor frequency when the compressor 10 is started.
  • the operating frequency detection unit 301 outputs the detected compressor frequency to the operating time measurement unit 302 .
  • the operating time measurement unit 302 measures the operating time when the compressor frequency obtained from the operating frequency detection unit 301 is equal to or lower than the reference frequency.
  • the operating frequency detection unit 301 determines whether or not the compressor frequency is equal to or lower than the reference frequency (step S13).
  • the operating frequency detection unit 301 detects the compressor frequency when the compressor 10 is started.
  • the operating frequency detection unit 301 outputs the detected compressor frequency to the operating time measurement unit 302 and the operation control unit 304 .
  • the operating time measuring unit 302 stops measuring the operating time (step S19) and resets the operating time (step S20). Specifically, the number-of-stops measuring unit 303 resets (clears) the operating time by setting the operating time to 0 (zero) hours. Next, the stop count measurement unit 303 resets the stop count of the compressor 10 (step S21). That is, by setting the number of stops of the compressor 10 to 0 (zero), the number of stops is reset (cleared). Then, the control device 300 terminates the recovery operation determination process (step S22), returns to the process shown in step S10, and waits until a compressor startup event occurs.
  • the operation control unit 304 determines whether to stop the compressor 10 (step S14).
  • the operation control unit 304 stops the compressor 10, for example, when the thermo-off condition is satisfied or when the operation is stopped by the remote controller.
  • the thermo-off condition is that the indoor temperature is lower than the set temperature during cooling operation, and that the indoor temperature is higher than the set temperature during heating operation.
  • the operation control part 304 performs the process shown to step S12, when not stopping the compressor 10 (step S14: No).
  • the operation control unit 304 performs the process shown in step S15.
  • the operating time measuring unit 302 ends measuring the operating time.
  • the operating time measuring unit 302 outputs the measured operating time to the number-of-stops measuring unit 303 .
  • the number-of-stops measuring unit 303 determines whether or not the operating time acquired from the operating time measuring unit 302 is within the reference time (step S15). If the operating time is within the reference time (step S15: Yes), the stop count measurement unit 303 increases the stop count by 1 (step S16). The stop count measurement unit 303 outputs the stop count to the operation control unit 304 .
  • step S15 if the operation time is longer than the reference time (step S15: No), the control device 300 performs the processes shown in steps S19 to S22, and then returns to the process shown in step S10, where a compressor startup event occurs. wait until
  • the operation control unit 304 determines whether or not the number of stops acquired from the number of stops measuring unit 303 is greater than or equal to the reference number of times (step S17). When the number of stops is equal to or greater than the reference number of times, that is, when the number of stops reaches the reference number of times (step S17: Yes), the operation control unit 304 starts the recovery operation (step S18).
  • step S17 No
  • the operation control unit 304 returns to the process shown in step S10 and waits until the compressor startup event occurs.
  • FIG. 5 is an image diagram of the recovery operation of the air conditioner according to the first embodiment.
  • the recovery operation is performed when the number of stops reaches a reference number (three times in the example of this figure) or more.
  • the compressor 10 is operated at a compressor frequency that is greater than that during low frequency operation.
  • the refrigerating machine oil 600 that has flowed out of the compressor 10 is returned to the inside of the compressor 10 to restore the oil concentration inside the compressor 10 .
  • the operation control unit 304 performs low-frequency operation when the compressor 10 is started after the compressor 10 is stopped after the number of stops reaches the reference number of times (three times).
  • An example of the recovery operation is shown before. That is, when the compressor 10 is stopped after the compressor 10 is stopped after the number of stops reaches the reference number of times (three times), the operation control unit 304 first performs the recovery operation, and then performs the recovery operation. After finishing, low frequency operation is performed.
  • the operation control unit 304 operates the compressor 10 at a frequency higher than the operation frequency at which the compressor 10 was operated before the recovery operation.
  • This figure shows an example in which the compressor 10 is operated by increasing the compressor frequency stepwise in the recovery operation.
  • the oil return time varies depending on the compressor frequency and outside temperature. In general, the lower the outside temperature, the longer the time required for oil return tends to be.
  • the refrigerating machine oil 600 also rises with the flow of the refrigerant, and when the flow velocity of the refrigerant decreases, the refrigerating machine oil 600 descends along the pipe wall.
  • the reference frequency is set as the "reference frequency" to the compressor frequency corresponding to a speed greater than the zero penetration speed when the outside air temperature is low.
  • the zero penetration speed is the flow speed of the refrigerant at which the flow speed of the refrigerant increases and the phenomenon in which the refrigerating machine oil 600 descends along the inner wall of the refrigerant pipe 6 decreases.
  • the compressor frequency F1 corresponds to the zero-pene frequency.
  • a zero-penetration frequency is a frequency corresponding to a velocity greater than the zero-penetration velocity. Then, based on the correspondence shown in FIG. 2, the oil return time T1 corresponding to the compressor frequency F1 is determined.
  • FIG. 6 is an image diagram showing the relationship between the oil return time of the air conditioner and the amount of oil inside the compressor according to the first embodiment.
  • the horizontal axis in FIG. 6 indicates the oil return time, and the vertical axis indicates the amount of refrigerating machine oil 600 inside the compressor 10 .
  • the refrigerating machine oil 600 flows out from the compressor 10 while the compressor 10 is in operation, the refrigerating machine oil 600 must be returned to the compressor 10 before the amount of oil inside the compressor 10 falls below the lower limit. , the reliability of the compressor 10 can be maintained. Therefore, the relationship between the oil return time and the amount of refrigerating machine oil 600 inside the compressor 10 is a downward sloping relationship, as shown in FIG. Based on FIG.
  • the oil return time T1 corresponding to the compressor frequency F1 is determined. Then, based on FIG. 6, the oil amount V1 inside the compressor 10 corresponding to the oil return time T1 is determined. It is desirable to confirm by testing or the like that the oil amount V1 thus determined does not fall below the lower limit of the oil amount required to maintain the reliability of the compressor 10 .
  • FIG. 7 is an image diagram showing the relationship between oil concentration and oil amount inside the compressor according to the first embodiment.
  • the relationship with internal oil concentration limits is shown.
  • the horizontal axis of FIG. 7 indicates the oil concentration inside the compressor 10 and the vertical axis indicates the amount of oil remaining inside the compressor 10 .
  • the higher the oil concentration the smaller the amount of oil that flows out from the compressor 10 when the state changes to discharge SH>0 [deg].
  • oil concentration C1 corresponding to oil amount V1 of refrigerating machine oil 600 inside compressor 10 is determined.
  • the oil amount V1 here is an oil amount that does not fall below the lower limit of the oil amount required to maintain the reliability of the compressor 10, which is determined based on FIG.
  • the horizontal axis in FIG. 8 indicates the operation time, and the vertical axis indicates the oil concentration inside the compressor 10 .
  • the oil amount VI of the refrigerating machine oil 600 inside the compressor 10 is an oil amount that does not fall below the lower limit of the oil amount at which the reliability of the compressor 10 can be maintained.
  • the oil concentration C1 is an oil concentration corresponding to the oil amount V1, and is an oil concentration that does not fall below the lower limit of the oil concentration at which the reliability of the compressor 10 can be maintained.
  • the operating time T2 corresponding to the oil concentration C1 is determined. The operating time T2 thus determined is set as the "reference time".
  • the oil concentration decreases as the number of stops increases. Further, as described with reference to FIG. 7, the amount of oil inside the compressor 10 when the discharge SH>0 [deg] decreases as the oil concentration decreases. Based on this relationship, the stop count S1 corresponding to the oil concentration C1, which is an oil concentration that does not fall below the lower limit of the oil concentration at which the reliability of the compressor 10 can be maintained, is set as the "reference number of times".
  • the operation control unit 304 performs recovery operation when the compressor 10 is started after the compressor 10 is stopped after the number of stops of the compressor 10 reaches the reference number of times.
  • the operation control unit 304 performs recovery operation by performing control different from the control performed on the compressor 10 during normal heating operation or cooling operation.
  • the operation control unit 304 sets a plurality of operating frequencies used for recovery operation and the operating time at each operating frequency.
  • the operation control unit 304 for example, as shown in FIG.
  • Recovery operation is performed by increasing the compressor frequency. By increasing the compressor frequency in stages, it is possible to suppress the occurrence of failures in the moving members of the compressor 10 compared to the case where the frequency is increased all at once.
  • the operation control unit 304 once increases the compressor frequency, performs operation at the highest frequency among a plurality of recovery operation frequencies, and then decreases the compressor frequency in stages to perform recovery operation. may By increasing the compressor frequency at once, the oil concentration inside the compressor 10 can be quickly recovered.
  • FIG. 5 illustrates a case in which control is performed to increase the compressor frequency stepwise over four stages in the recovery operation, but the present invention is not limited to this, and the number of stages can be set arbitrarily. good.
  • FIG. 2 generally, by operating the compressor 10 at a high frequency, the oil return time can be shortened and the oil return speed can be increased. Therefore, during the recovery operation, the compressor 10 is operated at least at a frequency higher than the compressor frequency during the intermittent operation.
  • the operation control unit 304 may forcibly continue the operation of the compressor 10 during the recovery operation without stopping the operation.
  • the air conditioner 100 includes the compressor 10, the indoor heat exchanger 40, the expansion valve 30, and the outdoor heat exchanger 50.
  • the refrigerant pipe 6 (refrigerant pipe 61 66) and has a refrigeration cycle in which a refrigerant circulates. Refrigerant oil is sealed inside the compressor 10 .
  • the air conditioner 100 includes an operation frequency detection unit 301 , an operation time measurement unit 302 , a stop count measurement unit 303 and an operation control unit 304 .
  • the operating frequency detector 301 detects the operating frequency of the compressor 10 .
  • the operating time measurement unit 302 measures the operating time during which the compressor 10 is continuously operated at the operating frequency equal to or lower than the reference operating frequency.
  • the number-of-stops measuring unit 303 measures the number of times the compressor 10 is stopped without the operating time of the compressor 10 continuing longer than the reference operating time.
  • the operation control unit 304 performs recovery operation based on the number of stops.
  • the recovery operation is an operation for recovering the oil concentration inside the compressor 10 .
  • intermittent operation is performed, and recovery operation can be performed when the oil concentration inside the compressor 10 has decreased. Therefore, the oil concentration inside the compressor 10 can be restored before the oil concentration inside the compressor 10 decreases to the point where the reliability of the compressor 10 cannot be maintained. Therefore, the amount of oil inside the compressor 10 can be prevented from decreasing, and the reliability of the compressor 10 can be maintained.
  • the operating time measuring unit 302 determines whether the operation is continuous when the operating frequency of the compressor 10 is higher than the reference frequency or when the operating frequency of the compressor 10 is equal to or lower than the reference operating frequency. If the operation time (continuous time) performed as a result continues longer than the reference time, the measurement of the continuous time is stopped. The operating time measuring unit 302 stops measuring the continuous time and sets the continuous time to 0 (zero) time, thereby clearing the continuous time.
  • the number of times of stop measurement unit 303 detects when the operating frequency of the compressor 10 becomes higher than the reference frequency or when the operating frequency of the compressor 10 is equal to or lower than the reference operating frequency.
  • the number of stops is cleared.
  • the number-of-stops measuring unit 303 clears the number of stops by setting the number of stops to 0 (zero).
  • the recovery operation is an operation for resolving the lack of refrigerating machine oil in the compressor 10, and it is not necessarily a comfortable operation for the user, and may be an unpleasant operation.
  • the recovery operation is performed at a high compressor frequency in order to eliminate the shortage of refrigerating machine oil in the compressor 10.
  • the room temperature falls below the set temperature and the room becomes too cold
  • the room temperature exceeds the set temperature and the room becomes too warm. It may be uncomfortable driving for
  • the measured continuous time and number of stops are cleared.
  • the specific condition is a condition that can improve the lack of refrigerating machine oil in the compressor 10, for example, the condition that the operating frequency of the compressor 10 is greater than the reference frequency, or the condition that the continuous time is longer than the reference time. and at least one of As a result, in the present embodiment, it is possible to minimize the frequency of execution of the recovery operation, which may be uncomfortable for the user.
  • the frequency of the recovery operation can be suppressed so that the shortage of refrigerating machine oil in the compressor 10 does not become serious. can. Therefore, it is possible to prevent the shortage of refrigerating machine oil inside the compressor and to control the air conditioner so as to provide comfort to the user.
  • the present invention is not limited to this.
  • the number of stop times may be decreased according to the length of the continuous time.
  • the number of stops may be reduced according to the magnitude of the operating frequency. As a result, it is possible to reduce the frequency of the recovery operation according to the extent to which the lack of refrigerating machine oil in the compressor 10 is improved.
  • the operation control unit 304 stops the compressor 10 after the number of times of stop reaches the reference number of times, and then starts the compressor 10. , recovery operation is performed before the compressor 10 is put into low frequency operation.
  • the recovery operation can be performed at the earliest timing when the compressor 10 is started next time.
  • the operation control unit 304 operates the compressor at a frequency higher than the operation frequency at which the compressor was operated before performing the recovery operation. is at least present.
  • the oil return time of the refrigerating machine oil 600 can be shortened, and the shortage of oil inside the compressor 10 can be resolved.
  • the operation control unit 304 does not stop the operation of the compressor 10 during recovery operation. This prevents the compressor 10 from being stopped even when the thermo-off condition is satisfied during the recovery operation. Therefore, it is possible to prevent a situation in which it becomes difficult to recover the oil concentration.
  • FIG. 9 is an image diagram of the recovery operation of the air conditioner according to the second embodiment. As shown in FIG. 9, in this embodiment, the conditions for performing the recovery operation and the operating frequency and operating time of the compressor 10 in the recovery operation are the same as those in the above-described first embodiment.
  • the timing at which the operation control unit 304 causes the compressor 10 to start the recovery operation is different from the above-described first embodiment. Specifically, when the operation control unit 304 starts the compressor 10 after stopping the compressor 10 after the number of stops of the compressor 10 reaches the reference number, first, normal operation is performed. conduct. When stopping the compressor 10 by satisfying the thermo-off condition during normal operation, the operation control unit 304 performs recovery operation before stopping the compressor 10 .
  • the operation control unit 304 stops the compressor 10 when the number of stops reaches the reference number. After that, when the compressor 10 is started next, the compressor is first operated at a low frequency. When the compressor 10 is stopped by satisfying the thermo-off condition while the compressor 10 is being operated at a low frequency, the recovery operation is performed before the compressor 10 is stopped.
  • the same effect as in the first embodiment can be obtained. Furthermore, in the second embodiment, when the oil concentration inside the compressor 10 decreases, normal operation is first performed, and after adjusting the room temperature to an appropriate temperature, recovery operation can be performed. Therefore, it is possible to control so as to maintain the comfort of the space.
  • a plurality of combinations of the reference frequency, reference time, and reference number of times may be set.
  • the setting condition is to set the compressor frequency corresponding to a speed greater than at least the zero penetration speed as the reference frequency.
  • two reference frequencies a first reference frequency and a second reference frequency, are set within a range that satisfies this setting condition.
  • the first reference frequency is a frequency higher than the second reference frequency.
  • the reference time corresponding to the first reference frequency (referred to as first reference time) and the reference number of times (referred to as first reference number of times) are determined by the determination method of the embodiment described above. That is, the first oil return timing is determined based on the first reference frequency and FIG. The first oil amount is determined based on the first oil return time and FIG. A first oil concentration is determined based on the first oil amount and FIG. Then, the first operating time is determined based on the first oil concentration and FIG. 8, and this first operating time is set as the "first reference time”. Also, the first stop count is determined based on the first oil concentration and FIG. 3, and this first operating time is determined as the "first reference count”.
  • a reference time (referred to as a second reference time) and a reference number of times (referred to as a second reference number of times) corresponding to the second reference frequency are derived by the determination method of the embodiment described above. Then, when the second reference number of times is derived to be the same number as the first reference number of laps, the second reference number of times is changed to be a number less than the first reference number of laps.
  • the oil concentration inside the compressor 10 decreases to a greater extent than when the compressor frequency is high.
  • the second reference number of revolutions By setting the second reference number of revolutions to a number that is less than the first reference number of revolutions, when intermittent operation is performed at a low compressor frequency, the recovery operation can be performed at an earlier point in time than at a high compressor frequency. It is possible to prevent a decrease in the amount of oil and maintain the reliability of the compressor 10 .
  • the second reference number of times is derived to be the same number of times as the first reference number of revolutions
  • the second reference number of times is set to the same number of times as the first reference number of revolutions
  • the operating frequency of the compressor in the recovery operation is set to the first reference frequency.
  • the operation may be performed at a frequency higher than the operation frequency applied when the recovery operation is performed accordingly.
  • intermittent operation is performed at a low compressor frequency
  • the oil concentration inside the compressor 10 decreases to a greater extent than when the compressor frequency is high.
  • the operating frequency of the compressor in the recovery operation is operated at a frequency higher than the operating frequency applied when the recovery operation is performed corresponding to the first reference frequency, thereby increasing the amount of oil in the compressor 10. can be restored and the reliability of the compressor 10 can be maintained.
  • the air conditioner 100 described above has a computer system inside.
  • the processing steps of the above-described processing are stored in a computer-readable recording medium in the form of a program, and the above-described processing is performed by reading and executing this program by a computer.
  • the computer-readable recording medium refers to magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機は、圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機であり、前記圧縮機の運転周波数を検出する運転周波数検出部と、前記運転周波数検出部による検出結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測する運転時間計測部と、前記運転時間計測部による計測結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測する停止回数計測部と、前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う運転制御部と、を備える。

Description

空気調和機、制御方法、及びプログラム
 本開示は、空気調和機、制御方法、及びプログラムに関する。
 本願は、2021年10月21日に国際出願されたPCT/JP2021/038883に基づき優先権を主張し、その内容をここに援用する。
 冷凍サイクル(ヒートポンプサイクル)を利用する空気調和機がある。このような空気調和機は、圧縮機を運転させて冷媒をサイクル内で循環させるように構成されている。圧縮機の内部には、稼働部材の動きを滑らかにするために潤滑用の冷凍機油が封入されている。
 圧縮機が運転している間、冷凍機油の一部は、冷媒と共に圧縮機から流出する。圧縮機から流出した冷凍機油は、サイクルを循環した後、圧縮機へ戻ってくる。圧縮機の運転周波数(以下、圧縮機周波数と称する)が低く、冷媒配管内における冷媒の流速が低い場合には、圧縮機から流出した冷凍機油が圧縮機に戻るまでに要する時間(以下、返油時間と称する)が長くなり返油性が悪くなる。
 圧縮機周波数は、通常、室温と設定温度との温度差が大きい状態では高くなり、室温が設定温度に近づいて温度差が小さくなるにつれて低くなる。また、圧縮機周波数には運転範囲が設定されており、特に圧縮機周波数の下限値として最低周波数が設定されている。そして、最低周波数で運転していても冷房能力もしくは暖房能力が過剰となり、室温が設定温度よりも冷えるもしくは暖まると圧縮機の運転が停止される(サーモオフ)。サーモオフによって圧縮機が停止した後は、信頼性を確保するため、所定時間(3分程度)、圧縮機を再起動させないように運用されている。
 室温と設定温度との温度差が小さく、圧縮機周波数が低い状態(最低周波数に近い状態)で長時間運転が継続されると、圧縮機において冷凍機油不足が生じる恐れがある。このため、従来の空気調和機では、圧縮機周波数が低い状態で長時間運転が継続されると、圧縮機の最低周波数を一時的に上昇させ、冷凍機油の返油時間を短くして返油性を改善させる制御が行われている。
 特許文献1には、圧縮機の運転周波数が所定周波数以下での運転が一定時間継続された場合に、圧縮機の最低周波数を一時的に上昇させる最低周波数上昇制御を行う空気調和機に関する技術が記載されている。特許文献1には、最低周波数上昇制御の開始と同時に、サーモオフ条件を、通常のサーモオフ条件よりもサーモオフが発生しにくい条件に変更する。これにより、サーモオフの頻繁な発生を抑制することができ、空気調和機の信頼性及び快適性を確保できる。
特開2020-193746号公報
 しかしながら、圧縮機周波数が低い状態で長時間運転が継続されない場合でも、圧縮機において冷凍機油不足が生じる恐れがある。具体的には、断続運転が行われると冷凍機油不足が生じる恐れがある。断続運転は、圧縮機周波数が低い状態で短時間の起動と停止が繰り返される運転である。
 例えば、気密性又は断熱性の高い室内では、圧縮機周波数が低い状態で運転しても、すぐに冷房能力もしくは暖房能力が過剰となって運転が停止される。その後、室温と設定温度との温度差に応じて運転が再開されるが、またすぐに冷房能力もしくは暖房能力が過剰となって運転が停止される。このような、短時間の運転が繰り返されることで断続運転が行われる。
 断続運転が行われると、圧縮機周波数が低い状態での運転により、冷凍機油の返油性が悪くなる一方で圧縮機に冷媒が多く返ってくる。このため、圧縮機の内部にある冷媒に含まれる冷凍機油の割合である油濃度が低下する。その後、圧縮機の運転が開始され、圧縮機から吐出する冷媒の温度が上昇すると、冷凍機油内に溶け込んでいた冷媒が蒸発してフォーミングを起こし、蒸発した冷媒と共に、多量の冷凍機油が流出する。断続運転を行うと、油濃度が低下した状態で圧縮機から冷凍機油が多量に流出し、その結果、冷凍機油が不足して圧縮機の信頼性を維持することが困難となる問題があった。
 本開示は、上記問題を解決すべくなされたもので、その目的は、断続運転が行われた場合でも、圧縮機の内部にある冷凍機油が不足しないように制御することができる空気調和機、制御方法、及びプログラムを提供することにある。
 上記問題を解決するために、本開示の一態様は、圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機であり、前記圧縮機の運転周波数を検出する運転周波数検出部と、前記運転周波数検出部による検出結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測する運転時間計測部と、前記運転時間計測部による計測結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測する停止回数計測部と、前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う運転制御部と、を備える空気調和機である。
 上記問題を解決するために、本開示の一態様は、圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機が備える制御装置が行う制御方法であり、運転周波数検出部が、前記圧縮機の運転周波数を検出し、運転時間計測部が、前記運転周波数検出部による検出結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測し、停止回数計測部が、前記運転時間計測部による計測結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測し、運転制御部が、前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う、制御方法である。
 上記問題を解決するために、本開示の一態様は、圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機が備える制御装置に、前記圧縮機の運転周波数を検出させ、前記検出させた結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測させ、前記連続時間を計測させた結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測させ、前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う、プログラムである。
 本開示によれば、断続運転が行われた場合でも、圧縮機の内部にある冷凍機油が不足しないように制御することができる。
第1の実施形態による空気調和機の一例を示す構成図である。 第1の実施形態による圧縮機周波数と返油時間の関係を示すイメージ図である。 第1の実施形態による圧縮機の停止回数と圧縮機の内部における油濃度の関係を示すイメージ図である。 第1の実施形態による空気調和機が行う処理の流れを示すフローチャートである。 第1の実施形態による空気調和機の回復運転のイメージ図である。 第1の実施形態による空気調和機の返油時間と圧縮機の内部における油量の関係を示すイメージ図である。 第1の実施形態による空気調和機の圧縮機の内部における油濃度と油量の関係を示すイメージ図である。 第1の実施形態による空気調和機における、吐出SH=0[deg]での運転時間と、圧縮機の内部における油濃度の関係の例を示すイメージ図である。 第2の実施形態による空気調和機の回復運転のイメージ図である。
 以下、本開示の実施の形態による空気調和機について、図面を参照して説明する。以下、明細書の全文、及び各図において同一符号が付された機器等については、同一又はこれに相当する機器を示す。また、明細書全文に記載されている構成要素の形態は、あくまで例示である。本発明は、明細書内に記載された構成要素の形態のみに限定されない。
[第1の実施形態]
 図1は、第1の実施形態による空気調和機の一例を示す構成図である。図1に示すように、空気調和機100は、室外機と室内機が、冷媒配管6(冷媒配管61~66)又は電気配線などにより接続されたセパレート形空気調和機である。室外機には、圧縮機10、四方弁20、膨張弁30、室外熱交換器50、室外ファン500、及び制御装置300が収納されている。室内機には、室内熱交換器40及び室内ファン400が収納されている。
 空気調和機100は、冷凍サイクルと、送風装置と制御系により構成される。冷凍サイクルでは、圧縮機10、四方弁20、膨張弁30、室内熱交換器40、及び室外熱交換器50を冷媒配管6により接続させた回路が構成され、回路内に冷媒を循環させる。冷凍サイクルに循環させる冷媒は、様々な冷媒を採用可能である。例えば、冷媒として、HFC系冷媒(クロロフルオロカーボン系冷媒)のR32冷媒、R125冷媒、及びR134a冷媒など、或いは、これらの混合冷媒のR410A冷媒、R407c冷媒、R404A冷媒などを採用することができる。送風装置は、室内ファン400及び室外ファン500により構成される。
 送風装置は、熱交換器に空気を送風する。具体的には、室内ファン400は、室内空気を室内熱交換器40に搬送する。室外ファン500は、室外空気を室外熱交換器50に搬送する。
 制御系は、制御装置300により構成される。制御装置300は、コンピュータである。制御装置300は、CPU(Central Processing Unit)等のハードウェアプロセッサを含み、CPU等がプログラム(ソフトウェア)を実行することにより、制御装置300が備える機能が実現される。制御装置300は、冷凍サイクルにおける冷媒の循環、及び送風装置における送風などを制御する機能を有し、これらの機能を実行することによって、空気調和機100による冷房運転及び暖房運転を制御する。
 冷媒配管61は、圧縮機10の吐出側と、四方弁20のDポートを接続する。冷媒配管62は、四方弁20のEポートと、室内熱交換器40とを接続する。冷媒配管63は、室内熱交換器40と膨張弁30とを接続する。冷媒配管64は、膨張弁30と室外熱交換器50を接続する。冷媒配管65は、室外熱交換器50と、四方弁のCポートを接続する。冷媒配管66は、四方弁20のSポートと、圧縮機10の吸入側とを接続する。
 圧縮機10は、冷媒配管66から吸入した冷媒を圧縮し、圧縮した冷媒を冷媒配管61に吐出する。圧縮機10は、種々のタイプを採用可能である。例えば、圧縮機10として、ロータリータイプ、往復タイプ、スクロールタイプ、又はスクリュータイプ等の機器を採用することができる。
 四方弁20は、冷房運転と暖房運転とを切り替える装置である。暖房運転では、図1に実線で示すように、冷媒配管61と冷媒配管62を接続させるとともに、冷媒配管65と冷媒配管66を接続させる。冷房運転では、図1に破線で示すように、圧縮機10の吐出側と接続される冷媒配管61と、冷媒配管65を接続させるとともに、冷媒配管62と、圧縮機10の吸入側と接続される冷媒配管66を接続させる。
 膨張弁30は、膨張弁30に流れ込む冷媒を減圧する装置である。膨張弁30は、冷媒配管64から供給された冷媒を減圧して膨張させ、冷媒配管63に供給する。
 室内熱交換器40は、室内の空気と冷媒とを熱交換させる。室内ファン400は、室内熱交換器40に併設され、室内熱交換器40に室内の空気を搬送する。
 室外熱交換器50は、室外の空気である外気と冷媒とを熱交換させる。室外ファン500は、室外熱交換器50に併設され、室外熱交換器50に外気を搬送する。室外熱交換器50は、例えば、複数の伝熱配管と複数の熱交換フィンとを有するフィンチューブ型熱交換器である。
 制御装置300は、空気調和機100による冷房運転、及び暖房運転を制御する。
 まず、暖房運転の動作を例に、通常行われる運転の動作を説明する。圧縮機10は、冷媒配管66から冷媒を吸入し、吸入した冷媒を圧縮して冷媒配管61に吐出する。制御装置300は、圧縮機10に制御信号を出力することによって、圧縮機10の運転周波数を変更する。圧縮機10の運転周波数が変更されることによって、圧縮機10から吐出させる冷媒の温度及び圧力を調整することができる。圧縮機10によって圧縮され、冷媒配管61に吐出された冷媒は、四方弁20を経由して冷媒配管62に流れ、室内熱交換器40に流入する。
 室内熱交換器40は、圧縮機10により圧縮された高温高圧の冷媒と室内の空気とを熱交換させる。この熱交換によって、冷媒は凝縮されて液化する。制御装置300は、室内ファン400に制御信号を出力することによって、室内ファン400の回転数を変更する。室内ファン400の回転数が変更されることによって、室内熱交換器40に搬送させる空気量を変化させ、室内熱交換器40における冷媒と、室内の空気とが交換する熱量を調整することができる。室内熱交換器40によって凝縮された冷媒は、冷媒配管63に流れ、膨張弁30に流入する。
 膨張弁30は、室内熱交換器40によって凝縮された冷媒を減圧して膨張させる。制御装置300は、膨張弁30に制御信号を出力することによって、膨張弁30の開度を変更する。膨張弁30の開度が変更されることによって、膨張弁30から流出させる冷媒の状態を調整することができる。具体的には、膨張弁30の開度大きくすることによって、膨張弁30から流出される冷媒の圧力を上昇させ、冷媒の乾き度が低下するように調整することができる。ここでの冷媒の乾き度とは、気液二相の状態にある冷媒中に含まれる飽和蒸気の割合である。また、膨張弁30の開度を小さくすることによって、膨張弁30から流出される冷媒の圧力を低下させ、冷媒の乾き度が上昇するように調整することができる。膨張弁30によって減圧された冷媒は、冷媒配管64に流れ、室外熱交換器50に流入する。
 室外熱交換器50は、膨張弁30により減圧された冷媒と外気とを熱交換させる。この熱交換によって、冷媒は蒸発して過熱蒸気になる。制御装置300は、室外ファン500に制御信号を出力することによって、室外ファン500の回転数を変更する。室外ファン500の回転数が変更されることによって、室外熱交換器50に搬送させる空気量を変化させ、室外熱交換器50における冷媒と、外気とが交換する熱量を調整することができる。室外熱交換器50によって過熱蒸気となった冷媒は、冷媒配管65に流れ、四方弁20を経由して冷媒配管66に流れ、圧縮機10に流入する。
 圧縮機10の内部には、稼働部材の動きを滑らかにするために潤滑用の冷凍機油600が封入されている。圧縮機10が運転している場合、冷凍機油600の一部は、圧縮機10の外に流出する。圧縮機10の外部に流出した冷凍機油600は、冷凍サイクルを循環した後、圧縮機10に戻ってくる。
 図2は、第1の実施形態による圧縮機の運転周波数(圧縮機周波数)と返油時間の関係を示すイメージ図である。図2の横軸は圧縮機周波数、縦軸は返油時間を示している。返油時間は、圧縮機10から流出した冷凍機油600が、冷凍サイクルを循環した後、圧縮機10に戻ってくるまでに要する時間である。
 図2に示すように、圧縮機周波数が高いほど、圧縮機10に冷凍機油600が戻ってくるまでの時間は短い。一方、圧縮機周波数が低いほど、冷媒配管内を流れる油の流速が遅くなり圧縮機10に冷凍機油600が戻ってくるまでの時間が長くなる。つまり、圧縮機周波数が低い場合、圧縮機周波数が高い場合と比較して返油時間が長くなり返油性が悪くなる。このため、圧縮機周波数が低い場合、圧縮機10の内部の油量が低下して油不足となり圧縮機10の信頼性が維持できなくなる可能性がある。
 ここで、圧縮機10の起動時は、低圧の引き込み等の課題により、膨張弁30の開度は開き気味(高開度)に制御される。このため、圧縮機10を起動させた時点において、吐出SH=0[deg]となる。ここでの吐出SHは、圧縮機10が吐出する冷媒の温度(吐出温度)と、冷媒の凝縮温度の差、すなわち吐出過熱度である。
 なお、吐出SH=0[deg]となる運転では、圧縮機10から吐出される冷媒の状態が気液二相の状態となる。このため、圧縮機10の信頼性を維持するためには、速やかに吐出SH>0[deg]となる運転に移行し、吐出SH>0[deg]となる運転が継続されることが望ましい。
 圧縮機10が起動した時点において、吐出SH=0[deg]の状態であり、運転が継続され、吐出SH>0[deg]となった時に、油量が一時的に大きく減少する。吐出SH=0[deg]の状態で冷凍機油600に溶け込んでいた冷媒が蒸発して、冷媒とともに、多くの冷凍機油600が圧縮機10の吐出側から冷媒配管61に流出するためである。
 特に、室内の温度と設定温度と差がそれほど大きくない状態で、圧縮機10を起動させる場合、圧縮機周波数が低い状態で運転が開始される。この場合、圧縮機周波数が高い場合と比較して、吐出SH>0[deg]となるまでに時間を要する。吐出SH>0[deg]となるように、膨張弁30の開度を高開度から低開度に変更するまでに要する時間が、圧縮機周波数が高い場合と比較して長くなるためである。
 圧縮機10が断続運転を行うと、吐出SH=0[deg]の状態で運転が繰り返し行われる。ここでの断続運転は、圧縮機周波数が低い状態で短時間の起動と停止が繰り返される運転である。断続運転では、短時間の運転が行われた後に停止されることから、圧縮機10が起動した時点において吐出SH=0[deg]であった状態が、吐出SH>0[deg]に変化する前に停止される場合が多いと考えられる。このため、吐出SH=0[deg]での運転が、吐出SH>0[deg]に移行することなく続くことになる。吐出SH=0[deg]での運転では、圧縮機10の内部の冷凍機油600に溶け込んだ冷媒は蒸発しない。また、冷凍サイクルを循環してきた冷媒は圧縮機10に戻ってきて、その一部が冷凍機油600に溶け込む。この結果、吐出SH=0[deg]での運転が継続すると油濃度が低下する。油濃度は、圧縮機10の内部の冷媒に含まれる冷凍機油600の割合である。
 図3は、第1の実施形態による圧縮機の停止回数と油濃度の関係を示すイメージ図である。図3の横軸は圧縮機の停止回数、縦軸は圧縮機10の内部にある油濃度を示している。図3に示すように、停止回数が増えると、油濃度は低下する。
 断続運転が行われ、圧縮機10の内部の油濃度が低下した後、圧縮機10が起動された場合を考える。この場合、吐出SH>0[deg]に変化するまで圧縮機10の運転が継続されると、吐出SH>0[deg]に変化した時点で圧縮機10の内部にある冷凍機油600に溶け込んでいた多量の冷媒が蒸発する。そして、蒸発した冷媒と共に多量の冷凍機油600が圧縮機10から冷媒配管61に流出する。この結果、圧縮機10の内部が油不足となり、圧縮機10の信頼性が維持できなくなる可能性がある。
 上記の対策として、本実施形態では、圧縮機10の内部の油濃度を回復させる回復運転を行う。以下、回復運転により行われる具体的な動作を説明する。
 図1に示すように、制御装置300は、運転周波数検出部301と、運転時間計測部302と、停止回数計測部303と、運転制御部304とを備える。運転周波数検出部301は、圧縮機10の運転周波数を検出する。運転時間計測部302は、運転周波数検出部301による検出結果に基づいて、連続時間を計測する。連続時間は、圧縮機10の運転周波数が基準周波数未満である低周波数運転が連続して行われた時間である。停止回数計測部303は、運転時間計測部302による計測結果に基づいて、停止回数を計測する。停止回数は、連続時間が基準時間以上、継続されることなく、圧縮機10が停止された回数である。運転制御部304は、停止回数に基づいて、回復運転を行う。
 図4は、第1の実施形態による空気調和機が行う処理の流れを示すフローチャートである。図4には、回復運転を行うか否かを判定する判定処理の流れが示されている。
 まず、運転制御部304は、圧縮機起動イベントが発生する(ステップS10)と、圧縮機10を起動させる(ステップS11)。ここでの、圧縮機起動イベントは、例えば、サーモオン条件を充足した場合、又は、リモコンにより運転が開始操作された場合である。サーモオン条件は、冷房運転時であれば室内の温度が設定温度より高くなること、暖房運転であれば室内の温度が設定温度より低くなることである。
 運転時間計測部302は、運転時間を計測する(ステップS12)。運転時間は、圧縮機周波数が基準周波数以下である低い周波数での運転(低周波数運転)が継続された時間である。運転周波数検出部301は、圧縮機10が起動されると、圧縮機周波数を検出する。運転周波数検出部301は、検出した圧縮機周波数を運転時間計測部302に出力する。運転時間計測部302は、運転周波数検出部301から取得した圧縮機周波数が、基準周波数以下である場合に運転時間を計測する。次に、運転周波数検出部301は、圧縮機周波数が基準周波数以下であるか否かを判定する(ステップS13)。運転周波数検出部301は、圧縮機10が起動されると、圧縮機周波数を検出する。運転周波数検出部301は、検出した圧縮機周波数を運転時間計測部302、及び運転制御部304に出力する。
 運転時間計測部302は、運転周波数検出部301から取得した圧縮機周波数が基準周波数より大きい場合(ステップS13:No)、運転時間の計測を停止し(ステップS19)、運転時間をリセットする(ステップS20)。具体的に、停止回数計測部303は、運転時間を0(ゼロ)時間とすることによって、運転時間をリセット(クリア)する。次に、停止回数計測部303は、圧縮機10の停止回数をリセットする(ステップS21)。つまり、圧縮機10の停止回数を0(ゼロ)回とすることによって、停止回数をリセット(クリア)する。そして、制御装置300は、回復運転の判定処理を終了させ(ステップS22)、ステップS10に示す処理に戻り、圧縮機起動イベントが発生するまで待機する。
 一方、運転周波数検出部301から取得した圧縮機周波数が基準周波数より小さい場合(ステップS13:Yes)、運転制御部304は、圧縮機10を停止させるか否かを判定する(ステップS14)。運転制御部304は、例えば、サーモオフ条件を充足した場合、又は、リモコンにより運転が停止操作された場合に圧縮機10を停止させる。サーモオフ条件は、冷房運転時であれば室内の温度が設定温度より低くなること、暖房運転であれば室内の温度が設定温度より高くなることである。運転制御部304は、圧縮機10を停止させない場合(ステップS14:No)、ステップS12に示す処理を行う。一方、運転制御部304は、圧縮機10を停止させない場合(ステップS14:Yes)、ステップS15に示す処理を行う。
 運転時間計測部302は、圧縮機10が停止された場合、運転時間の計測を終了させる。運転時間計測部302は、計測した運転時間を停止回数計測部303に出力する。
 停止回数計測部303は、運転時間計測部302から取得した運転時間が基準時間以内であるか否かを判定する(ステップS15)。停止回数計測部303は、運転時間が基準時間以内である場合(ステップS15:Yes)、停止回数を1増加させる(ステップS16)。停止回数計測部303は、停止回数を運転制御部304に出力する。
 一方、運転時間が基準時間より大きい場合(ステップS15:No)、制御装置300は、ステップS19~S22の各々に示す処理を行った後、ステップS10に示す処理に戻り、圧縮機起動イベントが発生するまで待機する。
 運転制御部304は、停止回数計測部303から取得した停止回数が基準回数以上であるか否かを判定する(ステップS17)。運転制御部304は、停止回数が基準回数以上である、つまり、停止回数が基準回数に到達した場合(ステップS17:Yes)、回復運転を開始させる(ステップS18)。
 一方、運転制御部304は、停止回数が基準回数に満たない場合(ステップS17:No)、ステップS10に示す処理に戻り、圧縮機起動イベントが発生するまで待機する。
 図5は、第1の実施形態による空気調和機の回復運転のイメージ図である。図5に示すように、本実施形態の空気調和機100では、停止回数が基準回数(この図の例では、3回)以上となった場合、回復運転が行われる。回復運転では、圧縮機周波数を、低周波数運転させた時より大きい圧縮機周波数で圧縮機10を運転させる。これにより、圧縮機10から流出した冷凍機油600を圧縮機10の内部に戻し、圧縮機10の内部の油濃度を回復させる。
 この図の例では、運転制御部304は、停止回数が基準回数(3回)に到達して圧縮機10が停止した後、次に圧縮機10を起動させた場合において、低周波数運転を行う前に、回復運転を行う場合の例が示されている。つまり、運転制御部304は、停止回数が基準回数(3回)に到達して圧縮機10が停止した後、次に圧縮機10を起動させた場合、まず、回復運転を行い、回復運転を終了させた後に、低周波数運転を行う。
 また、運転制御部304は、回復運転において、回復運転を行う前に圧縮機10が運転した運転周波数よりも高い周波数で、圧縮機10を運転させる。この図の例では、回復運転において、圧縮機周波数を段階的に上昇させて圧縮機10を運転させた例が示されている。
 ここで、本実施形態における、基準周波数、基準時間、及び基準回数を決定する方法について説明する。
 図2に示すように、返油時間は、圧縮機周波数と外気温によって変化する。一般的に、外気温が低いほど、返油に要する時間が長くなる傾向にある。また、冷媒配管6の内部を流れる冷媒の流速が大きい場合は、冷凍機油600も冷媒の流れに同伴されて上昇し、冷媒の流速が減少すると冷凍機油600は管壁に沿って下降する。つまり、冷媒配管6の内部を流れる冷媒の流速が大きいと、外気温が低い場合において冷媒配管6の内壁に沿って下降して付着した油を上昇させることが可能となる。このため、基準周波数は、外気温が低い場合における、ゼロペネ速度により大きい速度に対応する圧縮機周波数が「基準周波数」として設定される。
 ゼロペネ速度は、冷媒の流速が速まり、冷凍機油600が冷媒配管6の内壁に沿って下降する現象が減少する状態となる冷媒の流速である。図2の例では、圧縮機周波数F1が、ゼロペネ周波数に相当する。ゼロペネ周波数は、ゼロペネ速度より大きい速度に対応する周波数である。そして、図2に示す対応関係に基づいて、圧縮機周波数F1に対応する返油時間T1が決定される。
 図6は、第1の実施形態による空気調和機の返油時間と圧縮機の内部にある油量の関係を示すイメージ図である。図6の横軸は返油時間、縦軸は圧縮機10の内部における冷凍機油600の油量を示している。圧縮機10が運転中に、圧縮機10から冷凍機油600が流出した場合であっても、圧縮機10の内部の油量が下限を下回る前に、圧縮機10に冷凍機油600が戻ってくれば、圧縮機10の信頼性を維持することができる。このため、返油時間と、圧縮機10の内部における冷凍機油600の油量との関係は図6に示すように、右下がりの関係となる。図2に基づいて、圧縮機周波数F1に対応する返油時間T1が決定される。そして、図6に基づいて、返油時間T1に対応する圧縮機10の内部の油量V1が決定される。このようにして決定された油量V1が、圧縮機10の信頼性を維持するために必要な油量の下限値を下回らないことを、試験等によって確認しておくことが望ましい。
 図7は、第1の実施形態による圧縮機の内部における油濃度と油量の関係を示すイメージ図である。図7には、圧縮機10による運転が吐出SH=0[deg]から吐出SH>0[deg]の状態に変化した時に圧縮機10の内部に残る油量の最低値と、圧縮機10の内部における油濃度の限界値との関係が示されている。図7の横軸は圧縮機10の内部における油濃度、縦軸は圧縮機10の内部に残る油量が示されている。図7に示すように、油濃度が高いほど、吐出SH>0[deg]の状態に変化した時に圧縮機10から流出する油量は少なくなる。油濃度が低いほど、吐出SH>0[deg]の状態に変化した時に圧縮機10から流出される油量は多くなる。図7に基づいて、圧縮機10の内部における冷凍機油600の油量V1に対応する油濃度C1が決定される。ここでの油量V1は、図6に基づいて決定された、圧縮機10の信頼性を維持するために必要な油量の下限値を下回らない油量である。
 図8は、吐出SH=0[deg]の状態で運転が継続された運転時間と、圧縮機の内部における油濃度との関係を示すイメージ図である。図8の横軸は運転時間、縦軸は圧縮機10の内部における油濃度を示している。図8に示すように、吐出SH=0[deg]の状態で運転が継続された時間が長いほど、圧縮機10の内部にある冷凍機油600に溶け込み、油濃度が低下する。図7で述べたように、圧縮機10の内部にある冷凍機油600の油量VIは、圧縮機10における信頼性を維持できる油量の下限値を下回らない油量である。また、油濃度C1は油量V1に対応する油濃度であり、圧縮機10における信頼性を維持できる油濃度の下限値を下回らない油濃度である。図8に基づいて、油濃度C1に対応する運転時間T2が決定される。このようにして決定された運転時間T2が、「基準時間」として設定される。
 図3で述べたように、停止回数が増えるほど油濃度は低下する。また、図7で述べたように、吐出SH>0[deg]となった場合における圧縮機10の内部にある油量は、油濃度が低いほど低下する。この関係に基づいて、圧縮機10における信頼性を維持できる油濃度の下限値を下回らない油濃度である油濃度C1に対応する停止回数S1が、「基準回数」として設定される。
 ここで、回復運転について説明する。本実施形態では、運転制御部304は、圧縮機10の停止回数が基準回数に到達して圧縮機10を停止させた後、次に、圧縮機10を起動させた時に回復運転を行う。
 運転制御部304は、通常の暖房運転又は冷房運転において圧縮機10に行う制御とは異なる制御を行うことにより回復運転を行う。運転制御部304は、回復運転に用いる複数の運転周波数と、それぞれの運転周波数における運転時間を設定する。運転制御部304は、例えば、図5に示すように、複数の回復運転周波数のうち、最も低い周波数から最も高い周波数まで、各運転周波数に対応づけられた運転時間の運転を行い、段階的に圧縮機周波数を上昇させて回復運転を行う。段階的に圧縮機周波数を高くすることにより、一気に周波数を高くした場合と比較して、圧縮機10の稼働部材に故障が発生することを抑制することができる。
 或いは、運転制御部304は、圧縮機周波数を一旦上昇させて、複数の回復運転周波数のうち、最も高い周波数の運転を行い、段階的に圧縮機周波数を下降させることにより回復運転を行うようにしてもよい。一気に圧縮機周波数を高めることにより、圧縮機10の内部における油濃度を早急に回復させることができる。
 また、図5では、回復運転において、4つの段階に渡り段階的に圧縮機周波数を上昇させる制御を行う場合を例示したが、これに限定されることはなく、段階数は任意に設定されてよい。図2に示すように、一般的に、圧縮機10を高い周波数で運転させることにより返油時間を短くして返油に係る速度を速めることができる。このため、回復運転においては、圧縮機10を、少なくとも断続運転中の圧縮機周波数よりも高い周波数で運転する時間を設けるようにする。
 また、回復運転中にサーモオフ条件を充足する等により圧縮機10が停止してしまうと、油濃度を回復させることが困難となる。このため、運転制御部304は、回復運転中において、圧縮機10の運転を停止させることなく、強制的に継続させるようにしてもよい。
 以上説明したように、第1の実施形態による空気調和機100は、圧縮機10と、室内熱交換器40と、膨張弁30と、室外熱交換器50とが、冷媒配管6(冷媒配管61~66)により接続され、冷媒が循環する冷凍サイクルを有する空気調和機である。圧縮機10の内部には冷凍機油が封入されている。空気調和機100は、運転周波数検出部301と、運転時間計測部302と、停止回数計測部303と、運転制御部304とを備える。運転周波数検出部301は、圧縮機10の運転周波数を検出する。運転時間計測部302は、圧縮機10の運転周波数が基準運転周波数以下で運転が連続して行われた運転時間を計測する。停止回数計測部303は、圧縮機10の運転時間が基準運転時間より長く継続されることなく圧縮機10が停止された停止回数を計測する。運転制御部304は、停止回数に基づいて、回復運転を行う。回復運転は、圧縮機10の内部における油濃度を回復させる運転である。
 これにより、第1の実施形態による空気調和機100では、断続運転が行われ、圧縮機10の内部における油濃度が低下した場合に回復運転を行うことができる。このため、圧縮機10の内部における油濃度が、圧縮機10の信頼性を維持できなくなるまで低下してしまう前に、圧縮機10の内部における油濃度を回復させることができる。したがって、圧縮機10の内部における油量の低下を防ぎ、圧縮機10の信頼性を維持することができる。
 また、第1の実施形態の空気調和機100では、運転時間計測部302は、圧縮機10の運転周波数が基準周波数より大きい場合、または圧縮機10の運転周波数が基準運転周波数以下で運転が連続して行われた運転時間(連続時間)が基準時間よりも長く継続された場合、連続時間の計測を停止させる。運転時間計測部302は、連続時間の計測を停止し、連続時間を0(ゼロ)時間とすることにより連続時間をクリアする。
 また、第1の実施形態の空気調和機100では、停止回数計測部303は、圧縮機10の運転周波数が基準周波数よりも大きくなった場合、または圧縮機10の運転周波数が基準運転周波数以下で運転が連続して行われた運転時間(連続時間)が基準時間よりも長く継続された場合、停止回数をクリアする。つまり、停止回数計測部303は、停止回数を0(ゼロ)回とすることにより停止回数をクリアする。
 ここで、回復運転は、圧縮機10における冷凍機油の不足を解消させるための運転であり、ユーザにとって必ずしも快適な運転になるとは限らず、不快な運転となる場合がある。例えば、室温と設定温度の差分がなくなり本来であれば運転を停止させるタイミングで、圧縮機10における冷凍機油の不足を解消させるために、圧縮機周波数が高い状態で回復運転が行われる。これによって、冷房運転であれば室温が設定温度を下回り室内が冷え過ぎた状態となり、暖房運転であれば室温が設定温度を上回り室内が温かくなり過ぎた状態となり得ることから、回復運転が、ユーザにとって不快な運転となる場合がある。
 この対策として、本実施形態では、特定条件を充足した場合、計測していた連続時間及び停止回数をクリアするようにした。特定条件は、圧縮機10における冷凍機油の不足が改善し得る条件であり、例えば、圧縮機10の運転周波数が基準周波数より大きくなったとの条件、または、連続時間が基準時間よりも長く継続されたとの条件のうち、少なくとも一方である。これにより、本実施形態ではユーザにとって不快となり得る回復運転が実行される頻度をなるべく抑えることができる。しかも、特定条件として、圧縮機10における冷凍機油の不足が改善し得る条件を設定することにより、圧縮機10における冷凍機油の不足が深刻化することないように、回復運転の頻度を抑えることができる。したがって、圧縮機の内部にある冷凍機油が不足しないようにすると共に、ユーザにとって快適となるように空気調和機を制御することが可能となる。
 なお、上述した実施形態では、停止回数を0(ゼロ)回とするによってクリアする場合を例示して説明したが、これに限定されることはない。例えば、連続時間が基準時間よりも長く継続された場合、その継続時間の長さに応じて停止回数を減少させるようにしてもよい。或いは、圧縮機10の運転周波数が基準周波数より大きくなった場合、その運転周波数の大きさに応じて停止回数を減少させるようにしてもよい。これにより、圧縮機10における冷凍機油不足の改善する度合に応じて回復運転の頻度を抑えることが可能となる。
 また、第1の実施形態の空気調和機100では、運転制御部304は、停止回数が基準回数に到達して圧縮機10を停止させた後、次に、圧縮機10を起動させた場合において、圧縮機10を低周波数運転させる前に、回復運転を行う。これにより、第1の実施形態では、圧縮機10の内部における油濃度が低下した場合に、次に圧縮機10を起動させた時点において最も早いタイミングで回復運転を行うことができる。
 また、第1の実施形態の空気調和機100では、運転制御部304は、回復運転において、回復運転を行う前に前記圧縮機が運転した運転周波数よりも高い周波数で前記圧縮機を運転させる時間が少なくとも存在するように制御する。これにより、実施形態の空気調和機100では、回復運転を行うことによって、冷凍機油600の返油時間を短くして、圧縮機10の内部における油不足を解消させることができる。
 また、第1の実施形態の空気調和機100では、運転制御部304は、回復運転を実行中に圧縮機10の運転を停止させない。これにより、回復運転中にサーモオフ条件を充足した場合でも圧縮機10が停止されないようにすることができる。したがって、油濃度を回復させることが困難となってしまう事態を抑制することができる。
[第2の実施形態]
 図9は、第2の実施形態による空気調和機の回復運転のイメージ図である。図9に示すように、本実施形態では、回復運転を行う条件、及び回復運転における圧縮機10の運転周波数及び運転時間は、上述した第1の実施形態と同様である。
 本実施形態では、運転制御部304が、圧縮機10に回復運転を開始させるタイミングを、上述した第1の実施形態とは異なるタイミングとする。具体的に、運転制御部304は、圧縮機10の停止回数が基準回数に到達して圧縮機10を停止させた後、次に、圧縮機10を起動させた場合、まず、通常の運転を行う。そして、運転制御部304は、通常の運転を行っている最中にサーモオフ条件を充足する等して圧縮機10を停止させる場合において、圧縮機10を停止させる前に回復運転を行う。
 以上説明したように、第2の実施形態の空気調和機100では、運転制御部304は、停止回数が基準回数に到達して圧縮機10を停止させる。その後、次に、圧縮機10を起動させた場合において、まず、圧縮機に低周波数運転させる。そして、圧縮機に低周波数運転を実行中にサーモオフ条件を充足する等して圧縮機10を停止させる場合、圧縮機10を停止させる前に、回復運転を行う。
 これにより、第2の実施形態では、第1の実施形態と同様の効果を得ることができる。さらに、第2の実施形態では、圧縮機10の内部における油濃度が低下した場合に、まずは通常の運転を行い、室温が適切な温度となるように調整した後に回復運転を行うことができる。したがって、空間の快適性を維持できるように制御することができる。
[実施形態の変形例]
 上述した少なくとも一つの実施形態において、基準周波数、基準時間、及び基準回数の組合せが複数設定されてもよい。
 上述したように、基準周波数として、少なくともゼロペネ速度より大きい速度に対応する圧縮機周波数を設定すること設定条件である。この設定条件を充足する範囲で、例えば、2つの基準周波数、第1基準周波数と、第2基準周波数とを設定する。ここで、第1基準周波数は、第2基準周波数より高い周波数である。
 例えば、第1基準周波数に対応する基準時間(第1基準時間という)、及び、基準回数(第1基準回数という)を、上述した実施形態の決定方法により決定する。すなわち、第1基準周波数及び図2に基づいて第1返油時を決定する。第1返油時間及び図6に基づいて第1油量を決定する。第1油量及び図7に基づいて第1油濃度を決定する。そして、第1油濃度及び図8に基づいて第1運転時間を決定し、この第1運転時間を、「第1基準時間」として設定する。また、第1油濃度及び図3に基づいて第1停止回数を決定し、この第1運転時間を、「第1基準回数」として決定する。
 また、第2基準周波数に対応する基準時間(第2基準時間という)、及び、基準回数(第2基準回数という)を、上述した実施形態の決定方法により導出する。そして、第2基準回数が第1基準周回数と同じ回数と導出された場合、第2基準回数を変更し、第1基準周回数よりも減らした回数とする。
 低い圧縮機周波数で断続運転が行われた場合、高い圧縮機周波数の場合と比較して、圧縮機10の内部における油濃度が低下する度合が大きくなる。第2基準回数を、第1基準周回数よりも減らした回数とすることにより、低い圧縮機周波数で断続運転が行われた場合に、高い圧縮機周波数と比較してより早い時点で回復運転が行われるようにすることができ、油量の低下を防ぎ、圧縮機10の信頼性を維持することができる。
 或いは、第2基準回数が第1基準周回数と同じ回数と導出された場合、2基準回数を第1基準周回数と同じ回数とし、回復運転における圧縮機の運転周波数を、第1基準周波数に対応して回復運転を行う場合に適用する運転周波数よりも高い周波数で運転させるようにしてもよい。低い圧縮機周波数で断続運転が行われた場合、高い圧縮機周波数の場合と比較して、圧縮機10の内部における油濃度が低下する度合が大きくなる。回復運転において、回復運転における圧縮機の運転周波数を、第1基準周波数に対応して回復運転を行う場合に適用する運転周波数よりも高い周波数で運転させることにより、圧縮機10により多くの油量を戻すことができ、圧縮機10の信頼性を維持することができる。
 なお、上述した空気調和機100は内部に、コンピュータシステムを有している。そして、上述した処理の処理過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 100…空気調和機、10…圧縮機、300…制御装置、301…運転周波数検出部、302…運転時間計測部、303…停止回数計測部、304…運転制御部

Claims (9)

  1.  圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機であり、
     前記圧縮機の運転周波数を検出する運転周波数検出部と、
     前記運転周波数検出部による検出結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測する運転時間計測部と、
     前記運転時間計測部による計測結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測する停止回数計測部と、
     前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う運転制御部と、
     を備える空気調和機。
  2.  前記運転時間計測部は、前記圧縮機の運転周波数が前記基準周波数より大きい場合、または前記連続時間が前記基準時間よりも長く継続された場合、前記連続時間の計測を停止し、前記連続時間をクリアする、
     請求項1に記載の空気調和機。
  3.  前記停止回数計測部は、前記圧縮機の運転周波数が前記基準周波数よりも大きくなった場合、または前記連続時間が前記基準時間よりも長く継続された場合、前記停止回数をクリアする、
     請求項1に記載の空気調和機。
  4.  前記運転制御部は、前記停止回数が基準回数に到達して前記圧縮機を停止させた後、次に前記圧縮機を起動させた場合において、前記圧縮機を前記低周波数運転させる前に前記回復運転を行う、
     請求項1に記載の空気調和機。
  5.  前記運転制御部は、前記停止回数が基準回数に到達して前記圧縮機を停止させた後、次に前記圧縮機を起動させた場合において、前記圧縮機に前記低周波数運転させた後に前記圧縮機を停止させる場合において、前記圧縮機を停止させる前に前記回復運転を行う、
     請求項1に記載の空気調和機。
  6.  前記運転制御部は、前記回復運転において、前記回復運転を行う前に前記圧縮機に運転させた運転周波数よりも高い周波数で前記圧縮機を運転させる時間が少なくとも存在するように、前記圧縮機の運転周波数を制御する、
     請求項1から請求項5のいずれか一項に記載の空気調和機。
  7.  前記運転制御部は、前記回復運転を実行中に前記圧縮機の運転を停止させない、
     請求項1から請求項6のいずれか一項に記載の空気調和機。
  8.  圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機が備える制御装置が行う制御方法であり、
     運転周波数検出部が、前記圧縮機の運転周波数を検出し、
     運転時間計測部が、前記運転周波数検出部による検出結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測し、
     停止回数計測部が、前記運転時間計測部による計測結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測し、
     運転制御部が、前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う、
     制御方法。
  9.  圧縮機と、室内熱交換器と、膨張弁と、室外熱交換器とが配管により接続され、冷媒が循環する冷凍サイクルを有する空気調和機が備える制御装置に、
     前記圧縮機の運転周波数を検出させ、
     前記検出させた結果に基づいて、前記圧縮機の運転周波数が基準周波数以下である低周波数運転が連続して行われた連続時間を計測させ、
     前記連続時間を計測させた結果に基づいて、前記連続時間が基準時間より長く継続されることなく前記圧縮機が停止された停止回数を計測させ、
     前記停止回数に基づいて、前記圧縮機の内部に封入された冷凍機油の濃度を回復させる回復運転を行う、
     プログラム。
PCT/JP2022/021357 2021-10-21 2022-05-25 空気調和機、制御方法、及びプログラム WO2023067839A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280037331.5A CN118076842A (zh) 2021-10-21 2022-05-25 空调机、控制方法以及程序
JP2023554245A JPWO2023067839A1 (ja) 2021-10-21 2022-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/038883 WO2023067747A1 (ja) 2021-10-21 2021-10-21 空気調和機、制御方法、及びプログラム
JPPCT/JP2021/038883 2021-10-21

Publications (1)

Publication Number Publication Date
WO2023067839A1 true WO2023067839A1 (ja) 2023-04-27

Family

ID=86057998

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/038883 WO2023067747A1 (ja) 2021-10-21 2021-10-21 空気調和機、制御方法、及びプログラム
PCT/JP2022/021357 WO2023067839A1 (ja) 2021-10-21 2022-05-25 空気調和機、制御方法、及びプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038883 WO2023067747A1 (ja) 2021-10-21 2021-10-21 空気調和機、制御方法、及びプログラム

Country Status (3)

Country Link
JP (1) JPWO2023067839A1 (ja)
CN (1) CN118076842A (ja)
WO (2) WO2023067747A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116056A (ja) * 1986-10-31 1988-05-20 ダイキン工業株式会社 冷凍装置
JP2016194389A (ja) * 2015-04-01 2016-11-17 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷凍装置及び冷凍機ユニット
CN106247686A (zh) * 2016-08-16 2016-12-21 广东美的暖通设备有限公司 空调器的回油控制方法、回油控制装置和空调器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214522A (ja) * 2004-01-29 2005-08-11 Toshiba Corp 冷蔵庫

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116056A (ja) * 1986-10-31 1988-05-20 ダイキン工業株式会社 冷凍装置
JP2016194389A (ja) * 2015-04-01 2016-11-17 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷凍装置及び冷凍機ユニット
CN106247686A (zh) * 2016-08-16 2016-12-21 广东美的暖通设备有限公司 空调器的回油控制方法、回油控制装置和空调器

Also Published As

Publication number Publication date
WO2023067747A1 (ja) 2023-04-27
JPWO2023067839A1 (ja) 2023-04-27
CN118076842A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
JP6847299B2 (ja) 冷凍サイクル装置
US10145595B2 (en) Refrigeration cycle apparatus
US10247459B2 (en) Refrigeration cycle apparatus
JP6403887B2 (ja) 冷凍サイクル装置、遠隔監視システム、遠隔監視装置および異常判定方法
JPH10122711A (ja) 冷凍サイクル制御装置
JP6257809B2 (ja) 冷凍サイクル装置
JP2011047552A (ja) 冷凍サイクル装置及び空気調和装置
US20220107123A1 (en) Air-conditioning apparatus
US10739050B2 (en) Air-conditioning apparatus
JPWO2018229826A1 (ja) 冷凍サイクル装置
JP6758506B2 (ja) 空気調和装置
US20210063042A1 (en) Air conditioner and control method thereof
WO2023067839A1 (ja) 空気調和機、制御方法、及びプログラム
JP6739664B2 (ja) 冷凍空調装置及び制御装置
WO2022059149A1 (ja) 冷凍サイクル装置及びそれを備える空気調和機、並びに冷凍サイクル装置の制御方法
JP2000283568A (ja) 冷凍装置の制御方法及び冷凍装置
JP7258129B2 (ja) 空気調和装置
JP2018141587A (ja) 空調機
JP7309063B2 (ja) 冷凍サイクル装置
WO2024047831A1 (ja) 冷凍サイクル装置および空気調和装置
WO2024047954A1 (ja) 冷凍サイクル装置および空気調和装置
JP7328533B2 (ja) 冷凍サイクル装置
WO2024047832A1 (ja) 冷凍サイクル装置および空気調和装置
WO2023139783A1 (ja) 冷凍サイクル装置
GB2587278A (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and fault determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18553502

Country of ref document: US

Ref document number: 2023554245

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2301007695

Country of ref document: TH